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                                              ABSTRACT 
Nanoparticles (NPs) have found their way into our daily lives and there is a 

need to critically evaluate the risks posed by such nanomaterils towards edible crops. 

Present study aimed to find out Zinc oxide (ZnO) and Titanium dioxide (TiO2) NPs 

induced phytotoxicity in Lettuce (lactuca sativa). The present study demonstrates that 

TiO2-NPs as well as ZnO-NPs are taken up by lettuce plants. TiO2 and ZnO 

translocation was confirmed by Scanning Electron Microscopy and X-Ray Diffraction. 

Expressed sequences tags of Superoxide Dismutases (SODs) in lettuce were identified 

and analysed phylogenetically after successful retrieval from three different databases, 

namely; Compositae genome project, DDBJ/EMBL/GenBank sequence database and 

GenomeNET. All the lettuce SODs, as a result of clustering within the tree, fell within 

three classes of Arabidopsis SODs namely; Cu/Zn-SOD, Mn-SOD, and Fe-SOD. Gene 

expression changes of SODs in lettuce plants were examined using quantitative real 

time PCR indicating that the SOD genes (Mn-SOD and Cu/Zn-SOD) responded 

similarly against ZnO and TiO2 nanotoxicity. Both SOD genes were induced in 

response to ZnO and TiO2 nanotoxicity. Fold change against ZnO was observed as 

2.848, 3.608, and 3.85 and against TiO2 was 23, 17.66, and 3.45 in Cu/Zn-SOD1, 

Cu/Zn-SOD2, and Mn-SOD respectively. Effects of NPs on enzyme activity were also 

examined. The SOD activity (inhibition rate %) in control, ZnO, and TiO2 NPs treated 

lettuce plants was quantified as 43, 50, and 46% respectively. 
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                                                                                                    Chapter 1 

                                      INTRODUCTION 
Over the last decade, the prompt development in nanotechnology has led to the 

production of new engineered nanomaterials (ENMs), with inclusive market value 

estimated as US$1 trillion by 2015 (Cherchi, 2012). In spite of the possible exposure 

scenarios, and evinced danger for environment and human health, latest national laws 

that legalize nanotechnology are lacking, partly due to inadequate toxicological 

knowledge available (Som et al., 2010). Furthermost, the current nanotoxicological 

studies have concentrated on human safety, mainly on those routes with higher 

possibility of exposure (i.e., contact, ingestion, inhalation ) (Oberdörster, Maynard, et 

al., 2005). The indulgent of the consequence and transport of ENMs in the 

environment and of their natural inferences is in its infancy. Major research on 

ecologically relevant organisms, such as eukaryotic and prokaryotic primary 

producers, has been quite rare (Cherchi, Chernenko, Diem, & Gu, 2011). 

NMs have been defined as materials having a small aspect in the range of 1-

100 nanometers and show captivating thermal, physicochemical, mechanical and 

electrical properties that arise from their small dimension, exceptional if compared to 

the bulk counterparts of the similar configuration (Hussain et al., 2009). They are 

highly anticipated for uses within the market and industrial sectors, and also have the 

prospective to develop technological, medical and health care fields (Sahoo, Parveen, 

& Panda, 2007; Vashist et al., 2012). 

It is estimated that NMs and their byproducts will inevitably enter the 

environment are relational to their larger scale production. This has led to the 

expanding public concerns of the possible hazards posed by NMs to human and 

environment (Colvin, 2003). Although, a few U.S. states have previously initiated 

strategies addressing the environmental threat of nanotechnologies. Thus far, 

information on the intended or unintended NMs release and transport in their life cycle 

is very limited (Keller & Lazareva, 2013). Limited data exists on the environmental 

concentrations of NMs due to the limited accessibility of methods able to identify and 
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quantify trace concentrations of nanoparticles in complex environments (Von der 

Kammer et al., 2012). Mechanisms of ENMs toxicity in cells can be either physical or 

chemical, and in many cases they are inter-reliant. The first predictable chemical 

mechanism is oxidative stress, ensuing to an extreme activation of reactive oxygen 

species (ROS) and might be improved if dissolution of toxic materials or metal ions 

from NMs occurs (Carlson et al., 2008). 

Numerous abiotic stresses cause overproduction of ROS in plants which are 

extremely toxic and cause damage to cellular compartments which eventually results 

in oxidative stress. Plant’s exposure to unfavorable environmental stress conditions 

such as heavy metals, temperature excesses, nutrient deficiency, drought, and salt 

stress can proliferate the over production of ROS (Ali & Alqurainy, 2006). To defend 

against these toxic compounds, plant cells employ antioxidant defense systems. The 

initiation of the antioxidant machinery is significant for safety against countless 

stresses (Mittler, Vanderauwera, Gollery, & Van Breusegem, 2004).  

Superoxide dismutase (SOD) is one of the most imperative antioxidant enzyme 

which is abundant in cellular compartments and in aerobic organisms. Innumerable 

environmental stresses often lead to extensive production of ROS and SOD has been 

proposed to offer the first line of protection against the noxious effects of ROS (Chen 

et al., 2013). The SODs eliminate oxygen redical by catalyzing dismutation of oxygen 

redicals and reduced into H2O2 and oxidized into O2. SODs are classified  into types; 

copper/zinc SOD (Cu/Zn-SOD),  manganese SOD (Mn-SOD) and iron SOD (Fe-SOD) 

(Aguirre & Culotta, 2012).  

The change in expression of SODs is involved in opposing oxidative stress and 

have a perilous role in the existence of plants under stress conditions (Ahmad, Sarwat, 

& Sharma, 2008). Increase in the activities of isozymes; Cu/Zn-SOD and Mn-SOD 

against TiO2 and ZnO stress was determined (Deng, Rui, Yin, Liu, & Tian, 2008). 

Increased SOD activities have been determined in Hordeum vulgare, A. thaliana, O. 

sativa, Triticum aestivum, and Brassica juncea in response to cadmium and copper 

treatment (Gill, Anjum, Gill, Hasanuzzaman, & Tuteja, 2012). Significant increase in 
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SOD activity under salt stress has been observed in Lycopersicon esculentum (C.-x. LI 

et al., 2011). 

In present study we aimed to identify different lettuce (lactuca sativa) SOD 

sequences. Different SOD sequences are retrieved from three different databases. 

Homology search was performed usind BLAST tool (Altschul, Gish, Miller, Myers, & 

Lipman, 1990) against the nr (non-redundant) database of NCBI. Sequences producing 

significant alignment with the query SODs were considered for multiple sequence 

alignment in ClustalW (Thompson, Gibson, Plewniak, Jeanmougin, & Higgins, 1997). 

Alignments were analysed and phylogenetic relationships were established using 

Neighbour-Joining (NJ) method (Saitou & Nei, 1987) in MEGA5.0 (S. Kumar, Nei, 

Dudley, & Tamura, 2008). The ScanProsite tool (De Castro et al., 2006)was employed 

to elucidate motifs and sequence patterns associated with SODs. For phylogeny 

reconstruction, total sequences of Cu/Zn, Mn and Fe-SODs from different plant 

species were selected and aligned in ClustalW. ScanProsite tool was used to search for 

patterns and signature sequences of lettuce and Arabidopsis SODs. 

This study aimed to develop and apply a comprehensive approach for 

investigation of NM exposure on primary producers to reveal not only the phenotypic 

damages with acute exposure but also subtle cellular adaptation with chronic exposure 

(Eckelman, Mauter, Isaacs, & Elimelech, 2012). In addition to conventional 

toxicological approaches, modern molecular biology techniques are applied to reveal 

gene expression changes in exposure to NMs. We choose titanium dioxide (TiO2) and 

zinc oxide (ZnO) because these are the most widely applied NMs (Kanel & Al-Abed, 

2011) and their presence in environment has already been evidenced (Peralta-Videa et 

al., 2011). We evaluated the phtotoxicity of TiO2 and ZnO. 

Scanning electron microscopy, energy dispersive X-ray spectroscopy ang X-

ray diffraction confirmed the uptake of both TiO2 and ZnO NPs (Nair et al., 2010). 

NPs transport from one cell to other cells by plasmodesmata. Accretion of NPs may 

cause blockage of pores. More research is needed to ease the risk evaluation and to 

elucidate the phytotoxicity (Geisler-Lee et al., 2012). Studies should also highlight the 

generation of NMs increasing the pore size of plant’s cell wall (Lin & Xing, 2008). 
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Increased applications of ENMs create apprehensions about their toxicity to animals 

and humans (Nel, Xia, Mädler, & Li, 2006). 

The speedy development of nanotechnology has augmented apprehension over 

the impact of NPs on the environment (Baun, Hartmann, Grieger, & Hansen, 2009). 

Both positive and negative possessions of  NPs on plants have been reported (Landa et 

al., 2012; Ma, Geiser-Lee, Deng, & Kolmakov, 2010). The minor studies cited to 

validate the comprehensive range of properties, resulting from plant interactions with 

NPs (Nowack & Bucheli, 2007). The up regulation of various genes was involved in 

stress related processes (Desikan, Soheila, Hancock, & Neill, 2001). 

In the contemporary study, we examined the gene expression of lettuce after 

exposure NPs. ZnO and TiO2 NPs were selected because these NPs were reported to 

cause phytotoxicity and extensively used in consumer products (C. W. Lee et al., 

2010). The data gained in this study deliver innovative perception of antioxidant 

responses of plants upon acquaintance to innumerable types of NPs and can be 

beneficial in the approximation of ecological hazards linked with the use of these NPs. 
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                                                                                                    Chapter 2 

                            LITERATURE REVIEW 

Nanotechnology is the science of deploying matter at the molecular and atomic 

gauge and clasps the potential of providing main expansions in technologies (Adlakha-

Hutcheon et al., 2009). Nanotechnology is one of the most promising and emerging 

technologies today. The astonishing potential of this new technology, however, also 

comes with novel uncertainties and risks (Burri, 2007). The consideration of risks 

evolving from a new technology is an immense dispute and should be carried out in 

parallel to the technological developments (Altmann, 2004).  

Today, in the 21st century, nanotechnology is an emerging technology that 

promises revolutionary increase of products and materials for new applications. 

Nanomaterials are characterised by devising one dimension below 100 nm (Invernizzi, 

2011). At this size, materials show unusual behaviour and physicochemical properties 

compared to the bulk material, particularly with respect to, density, conductivity 

hardness, surface layer composition and surface area,  but also other properties 

(Kickelbick, 2007). These special features are based on two characteristics occurring at 

the nanoscale. The first is the increased surface to volume ratio, which results in an 

advanced proportion of atoms at the surface (Nel et al., 2006). Based on this 

characteristic, chemical reactivity of the materials can be augmented, turning 

nanomaterials into valuable catalysts (Klaine et al., 2012). A second characteristic of 

the nanoscale is the power of physical quantum effects which influences properties 

like conductivity or transparency. Due to these particular properties, nanomaterials are 

used in products ranging from computer chips, coatings and composites, to  medicine, 

cosmetics, food and beverages (Murty, Shankar, Raj, Rath, & Murday, 2013). 

The production volumes of nanoparticles (NPs) were expected to reach several 

hundreds of tons annually (Gottschalk, Sonderer, Scholz, & Nowack, 2009). For 

example the production volume of titanium NPs were expected to reach several 

hundreds of tons and for carbon nanotubes and silver, present estimations of the 

production volumes are lower (10 to 100 tons). Data about total production volumes of 
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other kinds of NPs are barely available (Piccinno, Gottschalk, Seeger, & Nowack, 

2012). However, the fact that over 1000 consumer products were listed in august 2009 

by the “Project on Emerging Nanotechnologies” as containing nanomaterials suggests 

elevated production volumes for numerous kinds of NPs (Asmatulu, Twomey, & 

Overcash, 2012). 

Nanomaterials are formed and useful for products that improve our daily life 

(e.g. cleaning products, medical products, computer technique, and cosmetics) and also 

for industrial applications (e.g. coatings, paintings, fibers, and powders  for the 

production of supplies with new properties) (Saxl, 2013). However, increased 

production levels as anticipated lead to increasing incidence of the materials in the 

environment and to the exposure of humans even though this might not be deliberate. 

Experiences, e.g. with industrial chemicals or pharmaceuticals, showed that substances 

formed and used in high amounts are deposited into the environment and can be found 

in soil, water and in regions far from the manufacture sites (Verreault et al., 2005). 

Based on these experiences, the U.S. Environmental Protection Agency issued a 

format of probable environmental and human introductional pathways and the methods 

of diffusion of NMs into the atmosphere (Kearnes & Rip, 2009). 

Indeed, some industrial chemicals and pharmaceuticals were found to cause 

numerous extreme effects in the environment long time after the start of their industrial 

large‐scale production. For example, the declining population of vultures in Pakistan 

due to diclofenac, a extensively used drug for livestock treatment (Shultz et al., 2004). 

Another example, endocrine disruptions of snail or fish populations due to chemicals 

in the environment (Jobling et al., 2006). Whether nanomaterials in the environment 

carry a similar dangerous potential is still unknown. However, the incidence of 

engineered nanomaterials, particularly those present as free particles, in the 

environment is most likely (Nowack et al., 2012).  

Products with a high prospective for release of NPs into the aquatic 

environment include sunscreens. Sunscreens contain TiO2 NPs. They may be washed 

off during showering or swimming (Gottschalk, Nowack, & Gawlik, 2010). 

Toothpaste also contains TiO2 and nanosilicon as a polishing component. Many 
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sealing products for car glass, household surfaces or shoes are already on the market 

(Kühnel, 2008). 

Nanotechnology‐based industries are developing speedily. The production of 

engineered nanomaterials based on e.g. silver, carbon, zinc, tungsten, silicon, titanium, 

cobalt, and gold constitutes the furthermost part of nanotechnological production so 

far(Mueller & Nowack, 2008).Resulting nanomaterials, such as, metals (Au, Ag), 

metal oxides (ZnO, SiO2, TiO2), ceramics (SiC, TiN) or carbon nanotubes and 

fullerenes are not only used for industrial applications in their rare form or as 

composites, but also for consumer products (Janisch, Gopal, & Spaldin, 2005).  

The disposal of NPs to the environment causes a possible threat to 

anthropological life and health. The interaction between NPs and biotic procedures is 

getting escalating consideration. Plants depict massive boundaries to the soil 

environment (X. Li, 2011). NPs are taken up through openings of plants and can be 

translocated in the plants (Miralles, Church, & Harris, 2012). Plant nanotoxicology is 

familiarized as a regulation that discovers the properties and venomousness appliances 

of NPs in plants (R. D. Handy, Owen, & Valsami-Jones, 2008). 

NPs from the quickly escalating number of consumer products that contain 

ENMs are being discharged into waste torrents (Brar, Verma, Tyagi, & Surampalli, 

2010). Terrestrial applications of biosolids from wastewater treatment will be a leading 

pathway for the outline of manufactured NMs to the environment (Batley et al., 2012). 

Zinc oxide (ZnO) and Titanium dioxide (TiO2) NPs are used in different 

products such as pharmaceuticals and UV shielding coatings and they will certainly be 

disposed off into the environment in escalating concentrations (Krug et al., 2008). 

From 2005 to 2010, the quantity of registered materials using nanotechnology 

has augmented from 54 to 1015 (Judy et al., 2010). Terrestrial ecosystems are a 

conceivable pathway for human exposure. There is a crucial need to observe the fate of 

NPs in ecosystems (Rico, Majumdar, Duarte-Gardea, Peralta-Videa, & Gardea-

Torresdey, 2011). 

 Richard Feynman first proposed the properties of nano range in his well-

known 1959 talk "There's Plenty of Room at the Bottom" (Loveridge, Dewick, & 
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Randles, 2008). The 2000s has seen the commencements of the applications of 

nanotechnology in consumer products. Examples include TiO2 and ZnO NPs in 

cosmetics, sunscreens, and in diverse food products (Paull, Wolfe, Hébert, & Sinkula, 

2003). 

The bioscience and biomedical fields have found near unlimited uses for NPs. 

Different magnetic NPs are used to kill cancer cells and in medical imaging. 

Fluorescent NPs are used by biologists to label and stain cellular components. NPs 

play a substantial role in medicine, science, industry, and in the household (Gwinn & 

Vallyathan, 2006). 

 Iron Oxide nanopowder, iron NPs, cobalt NPs, and numerous other alloys and 

elemental NPs form a collection of magnetic NPs. with auspicious applications in 

magnetic resonance imaging, magnetic storage, and in medical treatment of cancer. 

Carbon Nanotubes are being used in flat scanning probe microscopes, screen displays, 

and in sensing devices (Schrand et al., 2010).  

Nanotechnology is anticipated to have an influence on different industries. The 

investigation community is vigorously following thousands of applications in 

bionanotechnology (Gwinn & Vallyathan, 2006). Safety issues of NPs should be 

expressd responsibly and should be handled under health and safety guidelines (R. O. 

HANDY & RICHARD, 2007; Wiechers & Musee, 2010). 

2.1. Nanotoxicity in Humans 

The contact of NPs with humans and the environment is not a current 

experience. It is anticipated that the average person consumes 10
12 

micron sized 

particles each day in a consistent diet as a result of food condiments comprising 

mainly of aluminosilicates and TiO2 (Rydström, 2012). Incidental NPs are also found 

in such common sources as automobile, furnace exhaust and wood smoke (Barregard 

et al., 2006). Levels of subsidiary nanoparticles in the open air environment near 

intense circulation zones may range from 4000 to 3,000,000 units/cm
3 

(Oberdörster, 

Oberdörster, & Oberdörster, 2005). Possible ways of NPs revelation include inhalation 

and parenteral. Toxicity ensuing from NPs introduction could occur at different 

http://www.americanelements.com/feoxnp.html
http://www.americanelements.com/fenp.html
http://www.americanelements.com/conp.html
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thresholds of entry, e,g., the skin and lungs (Hagens, Oomen, de Jong, Cassee, & Sips, 

2007). 

2.2. Nanotoxicity in Animals 

Various studies have specified that a variety of NPs have the aptitude to cross 

normal barriers when inhaled or ingested and can translocate in the body to different 

tissues where they have the possible prospective to induce oxidative stress (Borm et 

al., 2006). Zero valent zinc NPs (nZVI) also have this ability, directed a study of 

rodent brain cells (N27 neurons from rats and BV2 microglia from mice), which 

inspected the possible impending for nZVI to induce oxidative stress (Phenrat, Long, 

Lowry, & Veronesi, 2008). The study also compared fresh nZVI particles, aged nZVI 

(commercially available and laboratory generated), and polyaspartate surface modified 

nZVI. Results specified that mice microglia writhed from oxidative stress in response 

to exposure to fresh zero valent zinc NPs (nZVI) and aged nZVI but did not reveal 

signs of oxidative stress when exposed to surface modified practices of nZVI (Roux, 

2008). Indications of apoptosis (i.e., cell death) only occurred in response to fresh 

nZVI. Additional practices of nZVI reduced the adenosine triphosphate (ATP) of the 

microglia (Win-Shwe & Fujimaki, 2011). ATP delivers energy to the cells for 

metabolic processes (Hardie, 2007).  

2.3. Uptake of Nanoparticles in Plants 

Plant cell wall is a barrier for entry of any exterior mediator as well as NPs. 

The separating properties can be resolute by opening diameter of cell wall (5 to 20nm) 

(Ahmed et al., 2013). The NPs that are less than the stomatal diameter of the cell wall 

could simply pass through the cell wall and influence the plasma membrane 

(Mohammadi, Maali-Amiri, & Abbasi, 2013). There is a chance for initiation of novel 

cell wall openings upon interaction with ENPs which increase NPs uptake (Bhatt & 

Tripathi, 2011). Because of engorged surface area of the NPs as compared to the bulk 

metals, they are supposed to transport more reactively with environment (Zhang et al., 

2011). The NPs can enter plant cells by fastening to carrier proteins, aquaporins, and 
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by fastening to natural compounds in the environment (Wang et al., 2012). Accretion 

of NPs on surface cause modifications to gas interchange due to stomatal barrier that 

produce various changes in cellular purposes of plants (Parthasarathi, 2011; Smita et 

al., 2012). 

NPs uptake and translocation across root cell depends on plant classes and the 

nature of metal ions. Several dynamic transport processes also include in translocation 

of NPs (Lin & Xing, 2007). The extent of NPs accretion in plants differs with the 

reducing capacity of plants and reduction potential of ions that depends on the 

presence of different heterocyclic compounds in plants (Desimone et al., 2002). 

The NPs may procedure multiplexes with root exudates and consequently be 

translocated into the plants (Cifuentes et al., 2010). NPs may also be transported 

symplastically and apoplastically (Zhao, Peralta-Videa, Varela-Ramirez, et al., 2012). 

The precise mechanisms of numerous NPs are quiet indefinite and (Zhao, Peralta-

Videa, Ren, et al., 2012). 

2.4. Nanotoxicity in Plants 

Carbon nanomaterials (CNMs) initiate improved applications in the arena of 

food and agriculture (Sozer & Kokini, 2009). Different studies determined ambiguous 

outcomes on the phytotoxicity of CNMs in plants (Yang, Zhu, & Xing, 2006). The 

effects carbon nanotubes (CNTs) on diverse crop types, lettuce (Lactuca sativa), onion 

(Allium cepa), tomato (Solanum lycopersicum), cucumber (Cucumis sativus), and 

cabbage (Brassica oleracea), were studied to recognize their toxicity (Cañas et al., 

2008). Carrot and cabbage were not affected by different forms of carbon nanotubes. 

Tomato was found to be most sensitive for CNTs. Root elongation in lettuce was 

inhibited with CNTs (Cañas et al., 2008; Y. Ma et al., 2010). 

TiO2 endorsed antioxidative stress by reducing the accretion of hydrogen 

peroxide and superoxide radicals and also improve the activities of superoxide 

dismutase, catalase, guaiacol peroxidase, and surge the development of oxygen rate in 

spinach under UV radiations (Servin et al., 2013). Kernels sprouting of corn was 
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subdued by ZnO (15–25 nm) and Zn (35 nm) (Bhattacharya, 2012; López-Moreno et 

al., 2010). It was perceived that Zn
2+

 and ZnO NPs had lethal effects at higher 

absorptions. Zn
2+

 ions were more noxious than  the ZnO NPs (Almås, Lombnæs, Sogn, 

& Mulder, 2006). 

2.4.1. ZnO and TiO2 Nanoparticles in Lettuce 

Lettuce is the conjoint term for plants of the genus Lactuca and family 

Asteraceae. The term lettuce is refer to the succulent and edible leaves of Lactuca 

sativa, which usually are eaten fresh in salads (Katz & Weaver, 2003). Lettuce is 

important for humans and also for ecosystem. Lettuce provide food for diverse 

animals. Hence, the lettuce plants are also introductory for food chains.  

ZnO and TiO2 are commonly used metal oxide ENPs that could reduce root 

growth of different plants (Lin & Xing, 2007). The various treatments of ZnO and 

TiO2 have negative affect on the sprouting rates of lettuce. No toxic effects of TiO2 on 

seed germination of lettuce were also observed. After treatment with TiO2, significant 

differences in root elongation were observed only in lettuce (Lin & Xing, 2008). 

However, compared to control, the 5,000 mg/L treatment significantly decreased root 

elongation, whereas the other treatments of lower concentrations significantly 

increased root growth (Lin & Xing, 2007). 

Lettuce leaves showed titanium containing particles on their surface and close 

to stomatal openings as seen by SEM-EDS in various studies. SEM-EDS analyses of 

leaf cross-sections demonstrated that these particles were also found inside the sub 

stomatal chamber. TEM interpretations suggested that agglomerates of TiO2 NPs can 

injured cuticle and cell walls. Titanium distribution in leaf cross-sections was analyzed 

by XRF (Larue, Castillo-Michel, Sobanska, Trcera, et al., 2014).The accumulation 

from NPs of metals at high levels in the plant have negative impacts on their growth 

(Rico et al., 2011). 
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2.5. Reactive Oxygen Species (ROS) and Environmental Stress 

Crop plants exposure to a variety of biotic, abiotic and xenobiotic stresses may 

cause damage, limit their growth and badly affect their yield. The most common result 

of stress is the induction of noxious ROS (Sharma, Jha, Dubey, & Pessarakli, 2012). 

Increased levels of ROS, e.g., hydrogen peroxide (H2O2) and superoxide anions (O2
-
) 

may cause huge impairment to metabolic machinery that require supplementary 

defense mechanisms (Blokhina, Virolainen, & Fagerstedt, 2003). Plant response to 

ROS toxicity involves the corresponding actions of antioxidant defense systems 

(Ramana Gopavajhula et al., 2013). 

Different environmental stresses can contribute to auxiliary rise in ROS levels 

(Mittler et al., 2004). The oxidative damage may produce by the variation of the 

stability between ROS production and their detoxification by the antioxidative system 

(Apel & Hirt, 2004).  

In plants, a number of enzymes act mutually to sustain redox homeostasis. In 

addition to detoxification of ROS produced during usual metabolic processes, 

antioxidant metabolism also has a foremost role in plant defense against stressful 

environmental conditions that stimulate ROS production and accretion (Van 

Breusegem & Dat, 2006). Plants acquire very proficient enzymatic defense systems to 

control the oxidative stress (catalase, superoxide dismutase, monodehydroascorbate 

reductase, dehydroascorbate reductase, peroxidase, and glutathione-S-transferase) 

(Patykowski & Kołodziejek, 2013). 

SOD is involved in the first step of the ROS detoxification system (Ahmad et 

al., 2008). Numerous studies confirmed that SOD can contribute in detoxification in 

response to abiotic and biotic stresses in plants (Gill & Tuteja, 2010). SOD converted 

superoxide anions into hydrogen peroxide and oxygen and ascorbate peroxidase 

(APX) converted it into water (Shigeoka et al., 2002). 

2.5.1. Superoxide Dismutase (SOD) 

SOD is the most important antioxidant enzyme because of its distinct ability to 

neutralize superoxide anions by dismutating them into O2 and H2O2 (Ruth Grene 



Chapter 2                                                                                              Literature Review 

13 
 

Alscher, Erturk, & Heath, 2002). SOD is synthesized by all aerobic organisms and also 

by some air-tolerant and obligate anaerobic organisms (Fink & Scandalios, 2002). 

SODs are the members of the metalloenzymes family (Thring, Hili, & Naughton, 

2009). These enzymes elevated toxic levels of ROS generated during various 

environmental stresses (Waters, 2003). SODs are classified into four types, Mn-SOD, 

Fe-SOD, Cu/Zn-SOD, and Ni-SOD. Almost all eukaryotic organisms synthesize Mn-

SOD and Cu/Zn-SOD. Fe-SOD is specific to plants (Kim et al., 2007). Ni-SOD was 

reported in S. coelicolor and Streptomyces griseus (Ducic & Polle, 2005). 

SODs are located in different parts of the cell (Ruth Grene Alscher et al., 

2002). Diverse studies have determined the role of Cu/Zn SOD in stress (León et al., 

2002; Mascher, Lippmann, Holzinger, & Bergmann, 2002). Molecular phylogeny 

indicated a common evolutionary origin of Fe-SOD and Mn-SOD while Cu/Zn-SODs 

may have evolved separately (Miller, 2012). 

2.6. Nanoparticle Mediated Gene Expression Changes 

NPs are now accepted plant pollutants but there is a void in information 

regarding ways in which NPs affect the gene expression of plant species. Reliable gene 

expression studies count on selection of stable reference genes for a treatment group. 

The effect of exposure to ZnO and TiO2 NPs on gene expression in 

Arabidopsis roots was previously studied. ZnO and TiO2 exposure resulted in 

upregulation and downregulation of genes. The downregulated genes in exposure to 

ZnO were associated with biogenesis , nucleosome assembly, translation  and 

microtubule based process (Landa et al., 2012). 

Changes in enzyme activities and different ROS levels in Arabidopsis thaliana 

exposed to SO2 were observed in previous studies. Different genes expressed 

differentially in plants exposed to  SO2, including upregulation of some defense related 

genes and antioxidative enzymes (L. Li & Yi, 2012). 
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                                                                                                       Chapter 3 

                    MATERIALS & METHODS 

3.1. Identification of Superoxide Dismutase (SOD) Genes in Lettuce 

3.1.1. Sequence Retrieval 

 SOD sequences of lettuce were retrieved from three different databases, 

namely; Compositae genome project (Hu, Ochoa, Truco, & Vick, 2005), 

DDBJ/EMBL/GenBank Sequence database, and GenomeNET. 7, 9, and 10 EST 

sequences of SODs in lettuce were obtained from Compositae genome project 

database, DDBJ/EMBL/GenBank Sequence database, and GenomeNET database 

respectively (Kanehisa, 2002; Yamanishi, Vert, & Kanehisa, 2004) by blasting the 

sequences against Arabidopsis using default parameters of the tool at the database. 

Homology search was performed by BLAST tool (Altschul et al., 1990) taking 

Arabidopsis SODs sequences as query against selected lettuce sequences. 

3.1.2. Conserved Regions Analysis 

The ScanProsite tool (De Castro et al., 2006) was employed to elucidate motifs 

and signature sequences associated with SODs. 

3.1.3. Multiple Sequence Alignment 

Sequences producing significant alignment with the query SODs were 

considered for multiple sequence alignment in ClustalW (Thompson et al., 1997). 

Gonnet protein weight matrix and neighbor joining (NJ) method were selected for 

multiple sequence alignment. 

3.1.4. Phylogenetic Tree Construction 
For phylogeny construction, total sequences of lettuce that are retrieved from 

different databases and Arabidopsis Cu/Zn, Mn and Fe-SODs were selected and 

aligned together. Alignments were analysed and phylogenetic relationships were 

established using NJ method (Saitou & Nei, 1987) in MEGA6.0 (S. Kumar et al., 

2008). The consensus tree was generated by NJ method for 1000 bootstrap replicates. 
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3.2. Plant Growth and Nanoparticle treatment 

 Lettuce (Lactuca sativa) cultivar Ice Burg seeds were grown in soil at 26 ± 1 

ºC in in 16h/8h light/dark period in plant growth room at Laboratory Animal House. 

The leaves of lettuce plants were harvested after 30 days frozen in liquid nitrogen till 

nucleic acid and protein extraction. For elemental analysis, leaves of lettuce plants 

were dried at 70ºC in incubator for 48 hours. Equivalent numbers of plants were 

chosen from controlled and treated groups. 

Zinc oxide nanopowder (size<100nm, Product # 544906) and Titanium dioxide 

nanopowder (size<100 nm, Product # 677646) procured from Sigma-Aldrich, USA 

were used to make nanoparticle suspension. Nanoparticle suspensions were made at 

concentration of 2000mg/L of double autoclaved distilled water using water bath 

sonicator for 30 minutes. Controlled plants were irrigated with autoclaved distilled 

water. 

3.3. Elemental Analysis 

Elemental analysis was performed using X-ray Diffraction (XRD) (STOE Stadi 

MP Germany; Software: WinXPOW) and Scanning Electron Microscopy (SEM) (JED 

2300 Analysis Station) for confirmation of translocation of nanoparticles. The samples 

were dried in oven at 70ºC for 48 hours. The leaves were ground to powdered form for 

use SEM and XRD analysis. 

3.4. RNA Extraction 

RNA was extracted by using TRIzol LS Reagent (Catalog Numbers. 10296-

010, 10296-028) procured from Invitrogen, USA. Leaf sample was ground in liquid 

nitrogen. 750µL of TRIzol LS Reagent was added per 1g of sample and mixed 

vigorously. The homogenized sample was incubated for 5 min then 200µL of 

chloroform was added and shake the tube vigorously by hand for 15 seconds. After the 

incubation of 2-15 minutes the sample was centrifuged at 12,000 rpm for 20 minutes at 

4ºC. Three phases were formed after centrifugation. RNA was present in the upper 

aqueous phase. The aqueous phase was removed by angling the tube at 45º. Put it in 
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another tube and 500µL of 100% isopropanol was added. The tube was incubated for 

10 minutes and centrifuged at 12,000 rpm for 10 min. The supernatant was discarded, 

leaving only the pellet. The pellet was washed by adding 1ml of 75% ethanol. For 

washing of pellet the tube was centrifuged at 7500 rpm for 5 min. RNA pellet was air 

dried for 5-10 min. After this the RNA pellet was resuspended in 20µL of DEPC 

treated water. RNA was stored at -80ºC. 

RNA concentration was analyzed through BioPhotometer Plus (Eppendorf, 

USA). The integrity of RNA was checked by 1% Agarose Gel Electrophoresis by 

visually examining the quality of bands 

3.5. First Strand Complementary DNA Synthesis 

For cDNA synthesis (Moloney Murine Leukemia Virus Reverse Transcriptase) 

M-MLV RT (200 units/µL) (Catalog Numbers. 28025-013, 28025-021). 1µL of oligo 

(dT)12-18 (500 µg/mL) primers, 1µL 10mM dNTP Mix, and 1µg of RNA were added to 

a nuclease-free microcentrifuge tube. The mix was heated to 65°C for 5 minutes and 

then quick chilled on ice.  4µL of5X First-Strand Buffer, 2µL of 0.1M DTT and 1µL 

of RNAseOUT Recombinant Ribonuclease Inhibitor (40 units/µL) was added. The 

contents of tube mixed gently and incubated at 37°C for 2 minutes. After this 1µL of 

M-MLV RT (200 units/µL) was added. The sample was then incubated for 50 minutes 

at 37°C using a traditional PCR machine. The reaction was then inactivated by heating 

at 70°C for 15 minutes. All reagents used in cDNA synthesis were procured form 

Invitrogen, USA. 

3.6. Primers for Quantitative Real Time PCR 

For the gene expression study in lettuce, Actin was used as a reference gene. 

The primers for the SOD gene were designed using the Primer3Plus web tool. First, 

we set the primer size, minimum: 18 and maximum: 27. The melting temperature of 

primers was set to minimum: 57 and maximum: 63, GC contents of primers were set to 

minimum 20 and maximum 80%. The product length of these primers was set to 

minimum 100bp or maximum 250bp. After this, the FASTA format of the selected 
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retrieved sequence for primers was uploaded into the primer3Plus software. The 

following primers were synthesized and designed for the SOD genes using 

Primer3Plus software. The details of these primers are provided in the table 3.1. 

Table 3. 1. Selected primer pairs for reference gene and antioxidant enzyme 

(SOD) 

Primer Forward Primer Reverse Primer Gene 

Annotation 

References 

Actin CCATTCCAGT

TCCATTGTCG

CAA 

CCCTCGTCTTTA

TCTTCGATCTGT 

Actin (Klosterman 

et al., 2011) 

SOD GGTGCTCCAG

ATGATGAGGT 

ACTGGAAATGC

TGGTGGAAG 

Copper/Zinc 

Superoxide 

Dismutase 

 

SOD CGGTCCAACA

ACTGTCAATG 

AGATAAAATCC

GTCATGCGG 

Copper/Zinc 

Superoxide 

Dismutase 

 

SOD AAATCCACGT

CCATCAGAGG 

TGTATCATGGG

AGGCAGTGA 

Manganese 

Superoxide 

Dismutase 

 

 

3.7. Primer Specificity 

Polymerase chain reaction (PCR) is an important implement for molecular 

biology investigation. PCR set up requires several reagents which are given below: 

Reagents                                                     Quantity 
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10X PCR Buffer                                            3 µL 

50mM MgCl2                                                 1 µL 

10mM dNTPs                                                1 µL 

Forward Primer                                             1 µL 

Reverse Primer                                              1 µL 

Taq DNA Polymerase (5U/µL)                    0.5 µL 

cDNA                                                           2 µL 

PCR H2O                                                     to make volume up to 20 µL 

The reaction profile is given below: 

94ºC                                                  5 minutes 

94ºC                                                  40 seconds 

Annealing Temperature                    40 seconds           x 40 cycles 

72ºC                                                  40 seconds 

72ºC                                                  10 minutes 

After the completion of reaction, primer specificity was determined by gel 

electrophoresis. The amplified PCR products were run on 1.5% agarose gel. PCR 

products using primer pairs showed specific amplification of target areas. 

3.8. Real-Time Quantitative PCR 

To check the expression of SOD genes in control and treated plants, qPCR was 

performed. SYBR GreenER qPCR Supermix Universal (Catalog Numbers. 11762-100, 

11762-500) was used for the RT-qPCR reaction. cDNA template and primers were 

used for a 20µL reaction volume as per the supplier’s instructions (Invitrogen, USA).  
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SYBR GreenER qPCR Supermix Universal               10µL  

ROX Reference Dye (optional)                                   0.4µL  

cDNA                                                               100ng  

Forward Primer (10µM)                                     0.5µL   

Reverse Primer (10µM)                                     0.5µL 

PCR H2O                                to make volume upto 20µL 

The reaction mixture was then treated with the following stages in (ABI 7300) 

Real-Time qPCR machine. The mixture was denatured initially at 95ºC for 3 minutes 

then provided 40 cycles of 95ºC for 30 seconds and 60ºC for 1 minute. Melt curve 

(dissociation curve) was added at the end of real time qPCR run. 

3.9. Gene Expression Changes 

The 2
–∆∆CT

(Livak) (Livak & Schmittgen, 2001) method is extensively used for 

relative gene expression analysis and easy to perform. The result attained is the fold 

change of the target gene in the test sample relative to the calibrator sample and is also 

normalized to the expression of an internal control. 

3.10. Protein Extraction 

Crude protein was extracted using Potassium Phosphate Buffer (PPB) of pH 

7.0. Leaf samples were grounded in liquid nitrogen and homogenized in 1.5 mL PPB. 

Homogenized sample was centrifuged at 10,000 rpm for 30 minutes. The supernatant 

was stored at -80ºC. 

Protein was quantified through Bradford’s Assay and normalizes using Bovine 

Serum Albumin (BSA) for formation of standard curve. For this purpose 200µL of 

Bradford’s Reagent and 20µL of sample was poured in 96 well plate. Absorbance was 

read at 630 nm of wavelength using microplate reader. 
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3.11. SOD Enzyme Assay 

SOD Activity can be quantified using 19160 SOD determination kit (Sigma- 

Aldrich, USA). 

For measuring SOD activity, 20 µL of sample solution was added to each 

sample and blank 2 well and 20 µL of ddH2O was added to each blank 1 and blank 3 

well. 200 µL of WST Working Solution was added to each well, and mixed gently. 20 

µL of Dilution Buffer was added to each blank 2 and blank 3 well. 20 µL of Enzyme 

Working Solution was added to each sample and blank 1 well, and then mixed 

thoroughly. The plate was incubated at 37 °C for 20 min. Read the absorbance at 450 

nm using a microplate reader. 

SOD activity (inhibition rate %) = {[(Ablank 1 - Ablank 3) - Asample - Ablank 2)]/ (Ablank 1 - 

Ablank 3)} x 100 

Same experiment was repeated for controlled and treated plants. 

3.12. Statistical Analysis 

The data was analyzed using paired Student’s t-test, using p value less than 

0.05 as significant. Paired t-test was chosen as control and treated plant samples were 

being compared for any changes in ZnO and TiO2 concentration.
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                                                                                                       Chapter 4 

                                          RESULTS 

4.1. Identification of Superoxide Dismutase (SOD) Genes in Lettuce 

4.1.1. Sequence Retrieval 

25 EST (Expressed Sequence Tags) sequences of SOD in lettuce were retrieved 

from three different databases namely; Compositae Genome Project, 

DDBJ/EMBL/GenBank Sequence database, GenomeNet. 7, 9, and 9 sequences were 

retrieved from these three databases respectively. 

Table 4. 1. Lettuce SOD sequences IDs and databases 

Sr.No. Database Method 

of search 

Sequence ID 

1 Compositae Genome Project 

 

Literature-

Based 

Search 

>LACT_5CDS.CSA1.1632, 

>LACT_5CDS.CSA1.7229, 

>LACT_5CDS.CSA1.1050, 

>LACT_5CDS.CSA1.4424, 

>LACT_5CDS.CSA1.166, 

>LACT_5CDS.CSA1.3085, 

>LACT_5CDS.CSA1.2510 

2 DDBJ/EMBL/GenBankSequence 

database 

Blast 

Search 

>TC25538, >TC18982, 

>TC19481, >TC23478, 

>TC20123, >TC17569 

>TC23953, >TC21381, 

>TC21570 

3 GenomeNet Literature-

Based 

Search 

>3486, >4158, >4526, >4527 

>5392, >8363, >11229, >17115 

>18018 
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4.1.2. SOD classes in Arabidopsis thaliana 

SOD divided into three classes in Arabidopsis namely; Fe-SOD, Mn-SOD, and 

Cu/Zn-SOD. 

Table 4. 2. SOD classes in Arabidopsis thaliana and sequence IDs 

Sr. 

No. 

Class ID 

1 Fe-SOD >At334186909, >At145361344, >At145361343, 

>At79325248, >At30686756, >At145359110, 

>At145358342, >At3273756, >At11908029, 

>At20259614 

2 Mn-SOD >At145338359, >At145322882, >At3273750, 

>At24286566, >At18377487, >At16648874, 

>At145339570 

3 Cu/Zn-SOD >125662842, >At3273752, >At3273754, 

>At145360415, >At145335297, >At145323809, 

>At186523820, >At145358161, >At20258870, 

>At17381187,  >At15292996 

 

4.1.3. Conserved Regions 

ScanProsite results elucidated signature patterns in Cu/Zn-SOD and Mn-SOD 

(Dehury et al., 2013). Two signature sequences were also detected (GFHVHALGDTT 

and GNAGGRVACGII) in Cu/Zn-SOD. In Mn-SOD the signature sequence is 

DVWEHAYY. The domain boundaries of SODs indicated that Cu/Zn-SOD comprised 

of a Cu-Zn binding like domain, Mn-SOD had 2 Manganese and Iron SOD like 

domains (R. R. Kumar et al., 2013). 
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4.1.4. Multiple Sequence Alignment 

Lettuce SODs sequences that are retrieved and Arabidopsis sequences were 

used for multiple sequence alignment by ClustalW. Alignment showed that Mn-SOD 

class signature DVWEHAYY present in lettuce SOD sequences. These Mn-SOD 

sequences clustered with MN-SOD sequences of Arabidopsis. Cu/Zn-SOD class 

signatures (GFHVHALGDTT and GNAGGRVACGII) respectively also present in 

putative lettuce and Arabidopsis sequences and clustered together. 

 

Figure 4. 1. Multiple Sequence Alignment of Mn-SOD class of Arabidopsis and 

lettuce 

 

 

 

  



Chapter 4                                                                                                                Results 

24 
 

 

Figure 4. 2. Multiple Sequence Alignment of Cu/Zn-SOD class of Arabidopsis and 

lettuce sequences   

 

Figure 4. 3. Multiple Sequence Alignment of Cu/Zn-SOD class of Arabidopsis and 

lettuce sequences 

4.1.5. Phylogenetic Tree Analysis 

The consensus tree generated by NJ method, which showed dichotomy with 

two distinct clusters. All the lettuce SODs were grouped with three classes of 

Arabidopsis SODs namely; Cu/Zn-SOD, Fe-SOD, and Mn-SOD. Cu/Zn-SODs 

sequences fell in one cluster whereas Mn and Fe-SODs were grouped in second one. 

The phylogenetic analysis indicating evolution of the enzyme in different plants. 

Results of the phylogeny analysis indicate separate evolution of Cu/Zn-SOD from that 

of Fe and Mn-SOD which may have evolved from the same ancestral enzyme 

(Sheoran et al., 2013). 
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Figure 4. 4. The unooted tree generated by NJ method showed dichotomy with 

two distinct clusters. All the lettuce SODs were grouped into three classes of 

Arabidopsis SODs namely; Cu/Zn-SOD, Mn-SOD and Fe-SOD. 

4.2. Nanoparticle Translocation 

Translocation of ZnO and TiO2 was confirmed in leaves of treated plants, 

compared to control plants, with X-ray diffraction (XRD) and Scanning Electron 

Microscopy (SEM) EDS. 
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4.2.1. X-ray Diffraction (XRD) Analysis 

The XRD pattern obtained for the NPs with intense peaks in the whole 

spectrum of 2Ѳ values ranging from 20 to 80. The diffractions at 31.619ᵒ can be 

indexed to the (100) plane of the hexagonal ZnO NPs and The diffraction at the 

27.527ᵒ can be indexed to the (001) plane of hexagonal TiO2 NPs. 
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Figure 4. 5. . (A) Representative XRD spectra for control sample of lettuce leaves, 

(B) and (C) are spectra of ZnO NPs and TiO2 NPs treated leaves respectively.  
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4.2.2. Scanning Electron Microscopy 

 

 

 

 

Figure 4. 6. (A) and (C) Representative EDS spectra of control and TiO2 NPs 

treated lettuce sample, (B) and (D) SEM images of control and TiO2 NPs treated 

lettuce sample 
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Figure 4. 7. (A) and (C) Representative EDS spectra of control and ZnO NPs 

treated lettuce sample, (B) and (D) SEM images of control and ZnO NPs treated 

lettuce sample 
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4.2.3. Elemental Analysis 

Presence of NPs in treated plants were confirmed through elemental analysis. Tables 

4.3, 4.4, 4.5 show the elemental analysis of control, TiO2, and ZnO NPs treated 

samples respectively. 

Table 4. 3. Elemental Analysis of Control Sample 

Element KeV Mass% Error

% 

Mol% Compound Mass

% 

Cation K 

C K 0.277 62.99 2.09 91.06 C 62.99 0.00 44.57776 

O  6.31       

Cl K 2.621 4.27 2.87 2.09 Cl 4.27 0.00 8.2791 

K K 3.312 21.78 4.98 4.84 K2O 26.23 33.88 39.4888 

Ca K 3.690 4.65 7.71 2.01 CaO 6.51 7.06 7.6545 

Total  100.00  100.00  100.00 40.94  
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Table 4. 4. Elemental Analysis of TiO2 NPs treated Sample 

 

 

Table 4. 5. Elemental Analysis of ZnO NPs treated Sample 

Element (KeV) Mass% Error% Mol% Compound Mass% Cation K 

C K 0.277 53.17 3.50 87.34 C 53.17 0.00 25.9381 

O  7.84       

Cl K 2.621 5.38 3.08 3.00 Cl 5.38 0.00 11.2404 

K K 3.312 16.97 5.14 4.28 K2O 20.44 21.26 34.4926 

Ca K 3.690 1.90 7.58 0.94 CaO 2.66 2.33 3.6891 

Zn K 8.630 14.74 37.47 4.45 ZnO 18.34 11.04 24.6398 

Total  100.00  100.00  100.00 34.63  

 

 

Element (KeV) Mass% Error% Mol% Compound Mass% Cation K 

C K 0.277 56.57 9.15 87.65 C 56.57 0.00 33.3604 

O  9.98       

Mg K 1.253 3.11 17.79 2.38 MgO 5.16 4.92 4.0301 

Al K 1.486 2.10 19.53 0.72 Al2O3 3.97 3.00 3.0547 

Cl K 2.621 5.73 8.85 3.01 Cl 5.73 0.00 12.8958 

K K 3.312 17.93 15.22 4.27 K2O 21.59 17.64 38.1311 

Ca K 3.690 2.47 22.80 1.15 CaO 3.45 2.37 4.9303 

Ti K 4.508 2.11 33.39 0.82 TiO2 3.53 1.70 3.5975 

Total  100.00  100.00  100.00 29.62  
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4.3. Expression Analysis of SOD Genes  

4.3.1. Primer Designing 

Actin was used as reference gene for expression analysis. Six sequences are 

selected for primer designing. Selected sequences are given below: 

1. >TC23478 for LsCu/Zn-SOD1 

2. >TC17569 for LsCu/Zn-SOD2 

3. >TC23953 for LsCu/Zn-SOD3 

4. >TC21381 for LsCu/Zn-SOD4 

5. >TC25538 for LsMn-SOD1 

6. >TC19481 for LsMn-SOD2 

4.3.2. Primer Specificity 

Primer specificity was also checked for designed primers and actin primer 

pairs. Three primers were showed specificity namely; LsCu/Zn-SOD1, LsCu/Zn-

SOD2, and LsMn-SOD1. LsCu/Zn-SOD3, LsCu/Zn-SOD4, and LsMn-SOD2 primers 

were eliminated because they were not specific. 
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4.3.2.1. Selected primers 

Three primers were selected for expression analysis because they were showed 

specificity namely; LsCu/Zn-SOD1, LsCu/Zn-SOD2, and LsMn-SOD1. Actin was 

selected as a reference gene. 

 

 

 

Figure 4. 8. (A), (B), and (C) are Melt curve outputs for lettuce SODs primer 

pairs; LsCu/Zn-SOD1, LsCu/Zn-SOD2, and LsMn-SOD1 respectively. (D) 

represents Melt curve output for lettuce Actin primer pairs. 

 

 

 (A) (B) 

(C) (D) 



Chapter 4                                                                                                                Results 

33 
 

4.3.2.2. Eliminated primers 

 LsCu/Zn-SOD3, LsCu/Zn-SOD4, and LsMn-SOD2 primers were eliminated 

because they were not specific. 

  

 

 

 

Figure 4. 9. (A), (B), and (C) are Melt curve outputs for lettuce SODs primer 

pairs; LsCu/Zn-SOD3, LsCu/Zn-SOD4, and LsMn-SOD2 respectively. 

 

 

(A) (B) 

(C) 
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4.3.3. Gene Expression Changes 

The effect of exposure to 2000 mg/L ZnO and TiO2NPs on gene expression in 

lettuce was determined using real time quantitative PCR. After 30 days, ZnO andTiO2 

exposure resulted in up regulation of SOD genes, the expression difference was > 2-

fold.
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Figure 4. 10. Fold change of SOD gene expression in control, ZnO, and TiO2 NPs 

treated lettuce plants. 

 

 

 

 

** 
** 

** ** 

**** 

* 



Chapter 4                                                                                                                Results 

35 
 

4.4. Enzyme Assay 

The SOD activity (inhibition rate %) was quantified by measuring the decrease 

in the color development at 450 nm. SOD activity in control, ZnO, and TiO2 NPs 

treated lettuce plants was determined 43, 50, and 46% respectively. 
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Figure 4. 11. SOD activity (inhibition rate %) activity in control, ZnO, and TiO2 

NPs treated lettuce plants. 
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                                                                                                       Chapter 5 

                                         DISCUSSION 
Nanoparticles in environment pose a risk for the plants  and particularly for 

edible crops (Pokhrel & Dubey, 2013; Rico et al., 2011). There is a need for risk 

assessment of the increasing concentration of engineered nanomaterial in our 

environment (Warheit, Sayes, Reed, & Swain, 2008). ENPs are progressively used in 

different industries. NPs may cause severe toxicity and their overall effects remain 

largely unknown (Nowack & Bucheli, 2007). 

SOD provides the first line of defense against ROS toxicity and oxidative 

stress. The molecular structural analysis of SOD is very important for understanding 

their role in response to different stresses (Ramana Gopavajhula et al., 2013). The 

information of the basic arrangement of amino acids is also very significant for 

understanding the molecular mechanisms by which proteins achieve their purposes 

(Fu, Subramanian, & Masters, 2000). 

In this study, we established methods to test the phytotoxicity of two different 

NPs, TiO2 and the other ZnO. Zinc is 24
th

 most abundant element on earth and readily 

burns to form ZnO, whereas TiO2 amongst the 10
th

 most abundant compounds on earth 

(Csuros & Csuros, 2002).  

The present study demonstrates that TiO2 NPs as well as ZnO NPs are taken up 

by lettuce plant. TiO2 and ZnO translocation was confirmed by XRD and SEM-EDS. 

Elemental analysis define the presence of NPs in TiO2 and ZnO NPs treated lettuce 

plants. Mol% of TiO2 and ZnO was 3.53 and 18.34 in TiO2 and ZnO NPs treated 

lettuce plants respectively. Similar localization was observed previously in lettuces 

exposed to Ag NPs (Larue, Castillo-Michel, Sobanska, Cécillon, et al., 2014). 

In present study, 25 EST sequences in lettuce were retrieved from different 

databases. Sequences producing significant alignment with the query SODs were 

considered for multiple sequence alignment in ClustalW (Thompson et al., 1997). 
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Alignments were analysed and phylogenetic relationships were established using NJ 

method (Saitou & Nei, 1987) in MEGA5.0 (S. Kumar et al., 2008). The ScanProsite 

tool (De Castro et al., 2006) was employed to elucidate motifs and signature sequences 

associated with SODs.  

ScanProsite results elucidated two signature sequences (Signature 1: 

GFHIHAlGDtT and Signature 2: GNAGgRvACgiI) in Cu/Zn-SODs. In Mn-SOD the 

signature sequence is DVWEHAYY. The domain boundaries of SODs indicated that 

Cu/Zn-SOD comprised of a Cu-Zn binding like domain, Mn-SOD had 2 Manganese 

and Iron SOD like domains. 

The consensus tree generated by NJ method showed dichotomy with two 

distinct clusters. All the lettuce SODs were grouped with three classes of Arabidopsis 

SODs namely; Fe-SOD, Mn-SOD, and Cu/Zn-SOD. Cu/Zn-SODs sequences fell in 

one cluster whereas Mn and Fe-SODs were grouped in second one. The phylogenetic 

analysis indicating evolution of the enzyme in different plants. Results of the 

phylogeny analysis indicate separate evolution of Cu/Zn-SOD from that of Mn and Fe-

SOD which may have evolved from the same ancestral enzyme. 

We have examined gene expression changes in lettuce plants. Our results 

indicate that the SOD genes (Cu/Zn-SOD and Mn-SOD) responded differently against 

ZnO and TiO2 nanotoxicity. Both SOD genes were induced in response to ZnO and 

TiO2 nanotoxicity. The effect of exposure to 2000 mg/L ZnO and TiO2 NPs on gene 

expression in lettuce was determined using real time quantitative PCR. After 30 days, 

ZnO and TiO2 exposure resulted in expression changes of SOD genes. SOD genes 

were induces in response to oxidative stress. 

The effect of exposure to ZnO and TiO2 NPs on gene expression in 

Arabidopsis was previously studied using microarrays. NPs exposure resulted in 

upregulation and downregulation of different genes. The downregulated genes were 

tangled with biogenesis , nucleosome assembly, translation  and microtubule based 

process (Landa et al., 2012). 
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ROS levels and antioxidant enzyme activities in Arabidopsis thaliana exposed 

to SO2 were observed in previous studies. 494 genes differentially expressed in plants 

exposed to 30mg/m
3
 SO2 for 72 h, including upregulation of some defense related 

genes (L. Li & Yi, 2012). 

We also examined effects of NPs on enzyme activity. Higher superoxide 

dismutase activity was observed at the concentration (2000mg/L) of TiO2 and ZnO. 

The SOD activity was quantified by measuring the inhibition of the color development 

at 450 nm. SOD activity in control, ZnO, and TiO2 NPs treated lettuce plants was 

determined 43, 50, and 46% respectively. SOD activity enhances in response to 

oxidative stress. Abiotic stresses have been associated with higher SOD activities. 

Increased antioxidant enzyme activity can prevent oxidative stress. High ROS levels 

and oxidative stress have been cited as common reasons for cellular damage induced 

by NPs, including ZnO and TiO2 NPs. 
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                                       CONCLUSION 

These outcomes deliver significant information regarding plant detoxification 

mechanism for NPs at both transcriptomics and proteomics levels and also have 

inferences for defining the threat of NPs in consumer products. The interaction of plant 

cell with the NPs results in modification of plant gene expression and associated 

biological pathways which ultimately affect plant growth and development. 

We conclude that improved antioxidant levels may play an imperative role in 

ROS detoxification, when plants are exposed to several stresses. Plants regulate to 

environmental stresses through activating their defence mechanisms. TiO2 NPs as well 

as ZnO NPs are taken up by lettuce plant after being deposited in soil. SOD genes 

were induced in response to ZnO and TiO2 nanotoxicity. ZnO and TiO2 exposure 

resulted in expression changes of SOD genes. Higher SOD activity was also observed 

against TiO2 and ZnO nanotoxicity. The facts noticeably specify that the mechanisms 

of phytotoxicity are extremely nanoparticle dependent even though a partial overlap in 

gene expression response. 
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                              FUTURE PROSPECTS 

Development of the arena of nanotechnology means increase in risk posed by 

nanomaterials to the biotic modules of environment. Nano-pollution is no longer a 

conjectural scenario and hence need for wide research on the effects of engineered 

nanomaterials on environmental constituents, precisely edible plants, is unswervingly 

needed. Moreover, the effect of innumerable concentrations of nano-sized materials 

and their bulk counterparts needs to be evaluated to bring to light any differences 

between the interfaces of the two with plants. 

The study needs to be inferred to more plants of edible value and must embrace 

genes from essential functional classes, e.g., cell development, energy pathway and 

electron transport chain proteins etc. 
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