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Abstract

In this dissertation, a systematic approach is used to find an approximate solution of a
system of nonlinear PDEs. The system of nonlinear PDEs is reduced into a system of
ODEs by using similarity transformations, which are solved numerically. We approxi-
mated numerical solutions by suitable functions. These simialrity transformations are
again used to obtain approximate solution in the form of functions for the sytem of
nonlinear PDEs. Residues for the system of ODEs and PDEs are calculated in accor-
dance with the approximate solutions. Then, Lie symmetry method is used to find
new transformations for the system of nonlinear PDEs.
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Chapter 1

Introduction

Mathematics is the science of relations, structures and order that has developed grad-
ually from elemental practices of describing the shapes of objects, counting and mea-
suring. It deals with quantitative calculation and logical reasoning. As a theoretical
discipline, it opens ways for the feasible correspondence among abstractions without
any concern whether such abstractions have counterparts in the real world.

Differential equations play a very important role not only in mathematics but also
in various fields like physics, engineering, chemistry, computer sciences, economics and
biology. The study of differential equations is important as they have been developed
through the mathematical formulation of many problems of real life. For example,
problem of growth and decay, problem of motion of a rocket, finding current in elec-
tric circuit, carbon dating problem and temperature problem. Such problems can be
described through a single equation or a set of equations that relate various quantities
and their rates of change.

In the language of mathematics, variable is a term which is liable to vary and they
can be dependent or independent. The term derivative is defined as the rate of change
of one variable with respect to another. An equation containing derivative(s) of one
or more dependent variable(s) with respect to one or more independent variable(s) is
called differential equation. Following are some examples of differential equations:

dy

dx
+ 2xy = ex.

du

dx
− dv

dx
= x.

∂u

∂y
+
∂u

∂x
= 0.
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Differential equations first came into existence with the development of calculus by
Newton [1]. Two Swiss mathematicians Jacob Bernoulli and Johann Bernoulli [2]
worked on differential equations and their hard work ends up in making differential
equation as a segregated branch of mathematics.
Newton’s second law of motion is defined as:

F = ma,

where F is the force, m is mass of an object and a is acceleration which is derivative
of velocity v, with respect to time t. Therefore, the above equation can be written in
the form of differential equation as

F = m
dv

dt
. (1.1)

That is F can be defined as a function of velocity and time.
The order of differential equation is define as the highest derivative appearing in a
differential equation. e.g.

d3y

dx3
+
dy

dx
= 0,

is a third order differential equation.
The degree of a differential equation is the power of the highest derivative appearing
in the equation. e.g. (

d2y

dx2

)4

+ 5

(
dy

dx

)2

− 4y = x,

has degree 4.

Differential equations can be classified as Ordinary Differential Equation (ODE) and
Partial Differential Equation (PDE). An equation which contains only ordinary deriva-
tive of one or more dependent variable(s) with respect to a single independent variable
is known as ordinary differential equation. On the other hand, a partial differential
equation is the one which contains the derivatives of dependent variable with respect
to two or more independent variables.

Differential equations are also classified as linear, nonlinear, homogeneous and non-
homogeneous. For linearity, an equation is characterized by the following properties:

• The dependent variable and all its derivatives are of first degree that is the power
of each term involving dependent variable or its derivative is one.
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• There is no product of dependent variable and its derivative.

• No transcendental functions (sine, cosine, exponential, etc.) in terms of depen-
dent variable.

Otherwise, they are known as nonlinear differential equations.

Some examples of linear and nonlinear ordinary differential equations and partial dif-
ferential equations are given below:

x
d3y

dx3
+ ex

d2y

dx2
− xy = 2

y3
(
dy

dx

)2

− 3(x2 − 1)y = 2,

and
∂u

∂x1
+

∂u

∂x2
= 0

u2
(
∂u

∂x1

)3

+
∂u

∂x2
+ u4 = 0.

A linear ordinary differential equation of nth order given as

an(x)
dny

dxn
+ ...+ a1(x)

dy

dx
+ a0(x)y = F (x),

where an(x) 6= 0, is said to be homogeneous differential equation if F (x) = 0. Other-
wise, it is said to be non-homogeneous differential equation.

In eighteenth century, the study of partial differential equations appeared as an im-
portant tool in the explanation of mechanics of continuum and more generally, as the
principal mode of analytical study of models in the physical science because of the
work of Euler, d’Alembert, Lagrange and Laplace [3].

In nineteenth century, Riemann’s work also shed light on the importance of PDEs
in different branches of mathematics [3]. In the field of physics, engineering and many
other applied disciplines, PDEs are always used to model different systems. In 20th
century, they were not only like a bridge between important issues of applied mathe-
matics and physical sciences but also helped a lot in the evolution of new ideas in pure
mathematics.
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Solution of a partial differential equation satisfies the given equation. Generally, sys-
tem of nonlinear PDEs is more difficult to handle than a single PDE for solution. If
we are not able to find the analytical solution of a partial differential equation then we
may use a numerical methods for obtaining approximate solution.

The steadily revolving flow of a viscous fluid above a planar surface has a system of
equations which is a system of nonlinear PDEs [4]. This system of PDEs is converted
into a system of ODEs by using specific similarity transformations. As the reduced
system of ODEs is nonlinear and it is difficult to find its exact solution. Therefore, we
use a systematic approach to obtain an approximate closed form solution.

1.1 History

Researchers have been working on the steadily revolving flow of a viscous fluid above a
solid surface since long time back. Karman was the first person who studied such kind
of flows where axial velocity component was considered in the direction of rotating disk
in 1921 [5]. In 1940, Bodewadt was the one who worked on the steadily revolving flow
of a viscous fluid above solid surface considering reverse Karman flow [6]. His research
in this aspect opens ways for many other researchers to work in this area. The concept
of heat transfer from a steadily rotating disk by keeping the temperature constant for
varying values of Prandtl number was disscused by Millsaps et al. in 1952 [7]. The
steady flow and heat transfer arising due to the rotation of a viscous fluid at a larger
distance from a stationary disk is extended to the case where the disk surface admits
partial slip was discussed by Sahoo et al. in 2014 [8].

In 2013 [9], Sahoo et al. tried to find out solution for the system of nonlinear cou-
pled equations by a finite difference and Keller-box method for the Bodewadt flow
with partial slip. Shevchuk discussed the case when disk temperature was varying ra-
dially for the heat transfer in a fluid which is rotating with a rotating disk and found
out self similar solutions for the flow in 2009 [10]. In 2011, Sahoo also discussed the
analysis of heat transfer with electrically conducting non-Newtonian fluids and the ef-
fects of slip on steady Bodewadt flow in [11].

Bodewadt boundary layer flow was also extended to the case when stationary disk
is allowed to stretch in the radial direction by Turkyilmazoglu in 2015 [12]. MacK-
errell in his research discusses the stability of bodewadt flow which was published in
2005 [13]. The case when the flow is steady and partial slip is under consideration then
its effect on Bodewadt flow of a non-Newtonian fluid was discussed by Sahoo et al. in
2013 [14].
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In 2017, Rahman and Andersson explained the heat transfer in steadily revolving Bode-
wadt flow [4]. In this thesis, coupled nonlinear PDEs are obtained by modeling the
above mentioned problem discussed in [4].

1.2 MATLAB

MATLAB is the basic tool to find the solutions of those equations for which we are not
able to find analytical solution. MATLAB is defined as multi-paradigm numerical com-
puting environment and proprietary programming language developed by moler [15].
Numerical solutions for nonlinear PDEs are obtained by using MATLAB. We have
many algorithms for mathematical models which are built-in in MATLAB.

Basic utilization of MATLAB includes:

• Computation of mathematical problems.

• Development of various algorithm.

• Visualization, data analysis and exploration.

• Simulation, modeling and prototyping.

• Application development including graphical user interface building.

• Scientific and engineering graphics.

bvp4c is one of the built-in tool used to solve boundary value problems in MATLAB.
It is difficult to get the exact guess for the BVPs. bvp4c uses a right approach by
restricting the error which helps in dealing with poor guess.

bvp4c needs three main arguments which are:

• A function BC for evaluating the residual in the boundary conditions.

• A structure solinit that provides a guess for a mesh.

• The solution on this mesh [16].

We require a proper guess (used to find out the solution the we need) which assists the
solver to compute that solution. The guess is supplied to bvp4c as a structure formed
by the auxiliary function bvpinit. The syntax for bvp4c is given by:
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sol = bvp4c(@odefun, @bcfun, solinit).

The first order reduced ODEs are represented by new variables in bvp4c. BVPs are
evaluated by the function ’odefun’ in the form of first order ODEs and given as:

function dydx=odefun(x,y,parameters).

Here, y and dydx are column vectors and x is scalar. So odefun provides column vectors
expressed by dydx.
Residuals in boundary value problems are being evaluated by using function bcfun and
it has the form:

function residual = bcfun(ya, yb),

where ya and yb are column vectors along with numerical solution at x = a and x = b
respectively. The structure solinit provides initial guess in bvp4c. bvpinit is a helper
function because of the difficulty in making guess structure.

solinit = bvpinit(x, yinit, params).

In [17] Shampine et al. discussed boundary value problems for ordinary differential
equation in MATLAB using bvp4c.

1.3 Fluid Mechanics

Fluid mechanics is the branch of physics that deals with the mechanics of fluid and the
external forces being exerted on them and how these fluids respond to those forces. In
this section, we discuss some basic definitions of fluid mechanics as they are used in
later chapters.

1.3.1 Density

Density ρ is the measure of mass, m, per unit volume, v [18].

ρ =
m

v
.

1.3.2 Viscosity

Viscosity is defined as the measure of the resistance of a fluid which is being deformed
by the shear stress [18] and is denoted by µ. There are many fluids which have higher
viscosities than water because it has lowest viscosity. For example, honey, vegetable
oil, etc.
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1.3.3 Kinematic Viscosity

Kinematic viscosity is the ratio of dynamic viscosity to density and is denoted by ν.
Mathematically,

ν =
µ

ρ
.

1.3.4 Boundary Layer

Boundary layer is a thin region close to a surface of body. It is a layer where viscous
forces are more dominant than inertial forces. This layer divides the flow past a sur-
face into two different regions. One of them is a region where influence of viscosity is
important while other region shows negligible effect of viscosity.

1.3.5 Bodewadt Flow

Bodewadt flow is basically a reversed Karman flow. In this flow, the axial velocity
component is directed away from the planar surface rather than towards the rotating
disk [4].

1.3.6 Steady Flow

Steady flow is a flow in which terms like pressure, temperature, velocity etc are time
independent [19].

1.3.7 Angular Velocity

Angular velocity is the change of angular displacement with respect to time t. It is
also known as rotational velocity.

1.3.8 Navier Stoke’s Equation

Momentum is conserved when the fluid is in motion. Navier-Stokes equations repre-
sent the conservation of momentum. They are nonlinear partial differential equations.
Mathematically,

∂v

∂t
+ (v.∇)v +

∇P

ρ
− µ∇2v

ρ
= 0,

7



where P is the fluid pressure, ρ is the fluid density, µ is the dynamic viscosity and ∇2=
( ∂2

∂x2 + ∂2

∂y2 ) is the differential operator.

1.3.9 Continuity Equation

Continuity equation states that the rate at which mass enters a system is equal to the
rate at which mass leaves the system. Continuity equation is used when the mass of a
fluid is conserved. Mathematically,

∂ρ

∂t
+ ∇.(ρv) = 0,

8



Chapter 2

oSolution ofoSystem of
oNonlinearoPDEs by using
oApproximationoMethod

In this chapter, review work of [20] is presented. The boundary layer flow of a rotating
fluid over an exponentially stretching sheet is discussed by Javed et. al. in [21]. The
flow is governed by nonlinear partial differential equations.

2.1 System of Nonlinear PDEs

Consider a boundary layer flow for a viscous incompressible fluid. It is a three dimen-
sional flow. This flow is considered on a stretching surface in a rotating frame. Here,
flow is steady. Assumption is applied on the flow that it is generated when elastic
boundary surface is stretched in such a way that its velocity is directed towards x-axis
exponentially. The fluid is moving in such a way that its mass and momentum are
conserved, so the governing continuity equation and Navier Stoke’s equations are [21]

∂

∂x
(u1) +

∂

∂z
(w1) = 0, (2.1)

u1
∂

∂x
(u1) + w

∂

∂z
(u1)− 2Ωv1 = ν

∂2u1
∂z2

, (2.2)

u1
∂

∂x
(v1) + w

∂

∂z
(v1) + 2Ωu1 = ν

∂2v1
∂z2

, (2.3)

where u1, v1 and w1 are the velocity components in the x, y and z directions respectively,
ν is the kinematic viscosity and Ω is the angular velocity which is constant.
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For the given problem the suitable boundary conditions are:

u1 = Ue(
x
L
), v1 = 0, w1 = 0 at z = 0,

u1 → 0, v1 → 0 as z →∞,
(2.4)

where U is a constant which has dimensions of velocity and L is the reference length.

2.2 Reduction to a Nonlinear System of ODEs

Similarity transformations are used to get required reduced system of ODEs. Following
are the similarity transformations used for the conversion of PDEs (2.1)-(2.3) into
ODEs [21]:

η =

√
U

2νL
e(

x
2L

)z, (2.5)

u1 = Ue(
x
L
)f ′(η), (2.6)

v1 = Ue(
x
L
)g(η), (2.7)

w1 = −
√
vU

2L
e(

x
2L

)[f(η) + ηf ′(η)], (2.8)

where prime shows differentiation with respect to η.

Now next step would be taking partial derivatives of the similarity transformations
for the system of PDEs (2.1)-(2.3). By putting the results in the system, we get the
simplified version of ODEs.

Taking partial derivatives of Eqs. (2.6) and (2.7) with respect to x and z respectively,
we get

∂

∂x
(u1) = e(

x
L
)U

L
f ′(η) + e(

x
L
) U

2L

√
U

2νL
e(

x
2L

)zf ′′(η), (2.9)

∂

∂z
(u1) = e(

x
L
)Uf ′′(η)

√
U

2νL
e(

x
2L

), (2.10)

10



∂

∂x
(v1) = e(

x
L
)U

L
g′(η) + e(

x
L
) U

2L

√
U

2νL
e(

x
2L

)g′(η), (2.11)

∂

∂z
(v1) = e(

x
L
)U

√
U

2νL
e(

x
2L

)g′(η). (2.12)

Now, by taking partial derivative of Eq. (2.8) with respect to z

∂

∂z
(w1) = −e(

x
L
) U

2L

√
U

2νL
e(

x
2L

)zf ′′(η)− e(
x
L
)U

L
f ′(η). (2.13)

Differentiating Eq. (2.10) and Eq. (2.12) with respect to z, we get

∂2

∂z2
(u1) = e(

2x
L
) U

2

2νL
f ′′′(η), (2.14)

∂2

∂z2
(v1) = e(

2x
L
) U

2

2νL
g′′(η). (2.15)

Using Eqs. (2.9) and (2.13), the PDE (2.1) vanishes. Eq. (2.2) reduces to the following
nonlinear ODE by using Eqs. (2.9), (2.10) and (2.14)

f ′′′ − 2f ′2 + ff ′′ + 4Ωg = 0. (2.16)

Similarly, Eq. (2.3) reduces to the following nonlinear ODE by using Eqs. (2.11),
(2.12) and (2.15)

g′′ − 2gf ′ + fg′ − 4Ωf ′ = 0. (2.17)

The corresponding boundary conditions are transformed as

f = 0, f ′ = 0, g = 0 at η = 0,

f ′ = 0, g = 0 as η →∞,
(2.18)

where Ω = e(
x
L
) L
U

Ω is a dimensionless local rotation.

2.3 Numerical Solution of the Reduced Nonlinear

System of ODE

The resulting ODEs given by Eqs. (2.16) and (2.17) are nonlinear. It is difficult to
solve this reduced nonlinear system of ODEs analytically, so a MATLAB built in func-
tion bvp4c has been used to get numerical solution of f

′
and g.
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Figure 2.1: Numerical solution of the function f
′

Graph of numerical solution of f
′
, denoted as f

′
num is shown in Figure 2.1 and graph

of numerical solution of g, denoted as gnum is shown in Figure 2.2.
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Figure 2.2: Numerical solution of the function g
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2.3.1 Approximation for f
′

The graph of numerical solution of the function f
′
, in Figure 2.1 resembles the graph

of function

f1 =
cos(1.35297η)

(0.8η + 1)3
. (2.19)

Figure 2.3 shows the correspondence between f
′
num and f1 . The difference between

f
′
num and f1 is shown in Figure 2.4.
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Figure 2.3: Graph of f
′
num and f1

The graph of difference shows resemblance to the graph of function

f2 = αη(η − x0)(η − x1)(η − x2)(η − x3)(η − x4)e−βη. (2.20)

We have use different data points in f2 to get the values of x0, x1, x2, x3 and x4
which are 1.1055, 1.3568, 3.4673, 5.8291 and 8.0905 respectively. We get the following
function that approximates the difference curve:

f2 = −0.0024248η(η− 1.1055)(η− 1.3568)(η− 3.4673)(η− 5.8291)(η− 8.0905)e−4.4221η.
(2.21)

The approximation, f2, of the difference between f
′
num and f1 is illustrated in Figure

2.5. The approximate solution, f
′
approx is
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Figure 2.4: Graph of difference between f
′
num and f1
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Figure 2.5: Graph of f2
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Figure 2.6: Graph of f
′
approx
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Figure 2.7: Approximate solution of the function f
′
num and f

′
approx
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f
′

approx = f1 + f2,

or

f
′

approx =
cos(1.35297η)

(0.8η + 1)3
− 0.0024248η(η − 1.1055)

(η − 1.3568)(η − 3.4673)(η − 5.8291)(η − 8.0905)e−0.9124η.

(2.22)

Figure 2.6 shows the graph of f
′
approx. Figure 2.7 shows a graph of numerical solution

along with its approximate solution.

2.3.2 Approximation for g

The graph of numerical solution of the function g, in Figure 2.2 resembles the graph
of function

g1 = −sin(1.3699η)

(0.54η + 1)4
. (2.23)

Figure 2.9 shows the correspondence between gnum and g1. The difference between
gnum and g1 and is shown in Figure 2.10.
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Figure 2.8: Graph of g1

The graph of difference shows resemblance to the graph of function

g2 = sin(0.05η)(η − x0)(η − x1)(η − x2)e−1.45η. (2.24)
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Figure 2.9: Graph of gnum and g1
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Figure 2.10: Graph of difference between gnum and g1
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Figure 2.11: Graph of g2

Using different data points in g2 we get the values of x0, x1, x2, x3 and x4 which
are 0.3015, 1.1055, 2.3116 and 4.5729 respectively. We get the following function that
approximates the difference curve:

g2 = sin(0.05η)(η − 0.3015)(η − 1.1055)(η − 2.3116)(η − 4.5729)e−1.45η. (2.25)

The approximation, g2, denoted by data 2, of the difference between gnum and g1 is
illustrated in Figure 2.12.

The approximate solution, gapprox is obtained as

gapprox = g1 + g2,

or

gapprox =− sin(1.3699η)

(0.54η + 1)4
+ sin(0.05η)

(η − 0.3015)(η − 1.1055)(η − 2.3116)(η − 4.5729)e−1.45η.

(2.26)

Figure 2.13 shows the graph of gapprox. Figure 2.14 shows a graph of numerical solution
gnum along with its approximate solution gapprox.
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Figure 2.12: Graph of difference alongwith its approximation g2
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Figure 2.13: Graph of gapprox
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Chapter 3

Approximate Solutions of System of
Nonlinear Partial Differential
Equations

Modeling of mathematical problems always play an important role in natural sciences.
In physics, many theories have been described by the mathematical modeling like wave
mechanics and fluid dynamics etc. Nonlinear partial differential equations are obtained
from these processes for which exact solutions are not easy to find. Numerical approxi-
mation method is being used to find the solutions of these nonlinear partial differential
equations. Therefore, nonlinear PDEs are being transformed into ODEs. For their
reduction in ODEs, similarity transformations are used most oftenly.

Most of the times, analytical solutions for these reduced ODEs do not exist. In order to
cope up with such situations, a method is used to approximate the numerical solution
of the reduced ordinary differential equations by a function. This chapter explains the
approach which is used to find the solutions of nonlinear partial differential equations.
Residues of approximate solutions have been found just to check the authenticity of
approximate solutions.

3.1 System of Nonlinear Partial Differential Equa-

tions

Many physical processes in fluid dynamics can also be described through PDEs like
Navier-Stokes equations. Consider a steadily revolving flow of a viscous fluid in cylin-
drical polar coordinates (r, θ, z). The fluid is moving in such a way that its mass and
momentum are conserved, so the governing continuity equation and Navier Stoke’s
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equations are [4],

∂

∂r
(ru) +

∂

∂z
(rw) = 0, (3.1)

u
∂u

∂r
− v2

r
+ w

∂u

∂z
= −1

ρ

∂p

∂r
+ ν

[
∂2u

∂r2
+

∂

∂r

(u
r

)
+
∂2u

∂z2

]
, (3.2)

u
∂v

∂r
+
uv

r
+ w

∂v

∂z
= ν

[
∂2v

∂r2
+

∂

∂r

(v
r

)
+
∂2v

∂z2

]
, (3.3)

u
∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

[
∂2w

∂r2
+

1

r

(
∂w

∂r

)
+
∂2w

∂z2

]
, (3.4)

where the velocity components are (u, v, w) and they are in the radial, circumferential
and axial directions respectively. The kinematic viscosity of the fluid is ν. There is an
assumption of rotational symmetry about the vertical z − axis, i.e. ∂

∂θ
= 0.

For such kind of flows the favorable boundary conditions are:

u = 0, v = 0, w = 0 at z = 0,

u = 0, v = rΩ, p =
r2Ω2

2
as z →∞,

(3.5)

in which Ω is the angular velocity of revolving fluid at some distance from the surface.

3.2 Reduction to a Nonlinear System of ODEs

Conversion of system of nonlinear partial differential equations into a system of ordi-
nary differential equations requires similarity transformations. Following are the simi-
larity transformations for the above mentioned system of nonlinear partial differential
equations [4]

u(r, z) = rΩF (η), (3.6)

v(r, z) = rΩG(η), (3.7)

w(r, z) =
√
νΩH(η), (3.8)

p(r, z) = −ρνΩP (η) +
ρr2Ω2

2
, (3.9)

where η is a dimensionless variable defined by

η = z

√
Ω

ν
. (3.10)
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To get the simplified version of the above nonlinear PDEs in the form of reduced
ODEs, the next step would be taking the partial derivatives of the similarity trans-
formations (3.6)-(3.9) in accordance with the system of PDEs (3.1)-(3.4). By taking
partial derivatives of Eqs. (3.6)-(3.9) with respect to r and z respectively, we get

∂u

∂r
= ΩF (η), (3.11)

∂u

∂z
= rΩF ′(η)

√
Ω

ν
, (3.12)

∂v

∂r
= ΩG(η), (3.13)

∂v

∂z
= rΩG′(η)

√
Ω

ν
, (3.14)

∂w

∂r
= 0, (3.15)

∂w

∂z
= ΩH ′(η), (3.16)

∂p

∂r
= rρΩ2, (3.17)

∂p

∂z
= νρΩ

√
Ω

ν
P ′(η). (3.18)

Differentiating (3.11)-(3.16) with respect to r and z, we get

∂

∂r

(
∂u

∂r

)
=

∂

∂r

(
ΩF (η)

)
,

∂2u

∂r2
= 0.

(3.19)
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∂

∂z

(
∂u

∂z

)
=

∂

∂z

(
rΩF ′(η)

√
Ω

ν

)
,

∂2u

∂z2
= r

Ω2

ν2
F ′′(η).

(3.20)

∂

∂r

(
∂v

∂r

)
=

∂

∂r

(
ΩG(η)

)
,

∂2v

∂r2
= 0.

(3.21)

∂

∂z

(
∂v

∂z

)
=

∂

∂z

(
rΩG′(η)

√
Ω

ν

)
,

∂2v

∂z2
= r

Ω2

ν2
G′′(η).

(3.22)

∂

∂z

(
∂w

∂z

)
=

∂

∂z

(
ΩH ′(η)

)
,

∂2w

∂z2
= Ω

√
Ω

ν
H ′′(η).

(3.23)

Now, using Eqs. (3.11) and (3.15), the PDE (3.1) reduces to the following non linear
ODE

2F +H ′ = 0. (3.24)

Then, using Eqs. (3.11), (3.12), (3.17) and (3.18), the PDE (3.2) reduces to the
following non linear ODE

F ′′ −HF ′ − F 2 +G2 = 1. (3.25)

Again, using Eqs. (3.13), (3.14), (3.19) and (3.20), the PDE (3.3) reduces to the
following non linear ODE

G′′ −HG′ − 2F ′ = 0. (3.26)
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Finally, using Eqs. (3.16), (3.18) and (3.23), the PDE (3.4) reduces to the follow-
ing non linear ODE

P ′ + 2FH − 2F ′ = 0. (3.27)

The corresponding boundary conditions specified in (3.4) are transformed as

F = 0, G = 0, H = 0 at η = 0,

F = 0, G = 1, P = 0 as η →∞.
(3.28)

Now, from Eq. (3.24), we obtained value of

F (η) = −H
′(η)

2
,

and by substituting the value of F (η) in the Eqs. (3.25), (3.26) and (3.27), we get
more simplified system of ODEs with new boundary conditions given below:

2H ′′′ − 2HH ′′ +H ′2 − 4G2 = −4, (3.29)

G′′ −HG′ +H ′G = 0, (3.30)

P ′ +H ′′ −HH ′ = 0, (3.31)

where prime shows differentiation with respect to η and the boundary conditions are:

H = 0, H ′ = 0, G = 0 at η = 0,

H ′ = 0, G = 1 as η →∞.
(3.32)

Furthermore, the pressure P from Eq. (3.31) can be calculated, once H is determined.
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3.3 Numerical Solution of the Reduced Nonlinear

System of Ordinary Differential Equations

The above ODEs are nonlinear. It is difficult to solve reduced nonlinear system of
ODEs analytically, so a MATLAB built in function bvp4c has been used to get numer-
ical solutions.
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Figure 3.1: Numerical solution of the function G

Graph of numerical solution of G, denoted as Gnum is shown in Figure 3.1 and
graph of numerical solution of H, denoted as Hnum is shown in Figure 3.2.
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Figure 3.2: Numerical solution of the function H

3.3.1 Approximation of Numerical Solution of the Function G

The graph of numerical solution of the function G, in Figure 3.1 resembles the graph
of function

G1 = 1− e−aη + bηe−aη. (3.33)

By putting different data points in the function G1, we get values of a and b as 1.3333
and 0.99668 respectively which gives a reduction in the difference of graphs of numer-
ical solution G and G1. So

G1 = 1− e−1.3333η + 0.99668ηe−1.3333η. (3.34)

Figure 3.3 shows graph of G1, whereas, Figure 3.4 shows the correspondence between
Gnum and G1. The difference between Gnum and G1 and is shown in Figure 3.5.
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Figure 3.3: Graph of G1
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Figure 3.4: Graph of difference between Gnum and G1
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Figure 3.5: Graph of G2

The graph of difference shows resemblance to the graph of function

G2 = a sin(bη − Π)e−cη. (3.35)

We have use different data points in G2 to get the values of a, b and c which are 0.70753,
1.43753 and 0.46539 respectively. We get the following function that approximates the
differencce curve:

G2 = 0.70753 sin(1.43753η − Π)e−0.46539η. (3.36)

The approximation, G2, of the difference between Gnum and G1 is illustrated in Figure
3.6.
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Figure 3.6: Graph of difference alongwith its approximation G2
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Figure 3.7: Graph of Gapprox
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Figure 3.8: Graph of Gnum and Gapprox

The approximate solution, Gapprox is

Gapprox = G1 +G2,

or

Gapprox = 1−e−1.3333η +0.99668ηe−1.3333η +0.70753 sin(1.43753η−Π)e−0.46539η. (3.37)

Figure 3.7 shows the graph of Gapprox. Figure 3.8 shows the graph of Gnum and
Gapprox. The maximum error 0.3623 reduces to 0.2395.

3.3.2 Approximation of Numerical Solution of the Function
H

The graph of numerical solution of the function H, in Figure 3.2 resembles the graph
of function

H1 = (cη − 1.344)e−dη + 1.344. (3.38)

Using different data points in the function H1, we get values of c and d as 0.91 and
0.657 respectively which gives a reduction in the difference of graphs of Hnum and H1.
So

H1 = (0.91η − 1.344)e−0.657η + 1.344. (3.39)
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Figure 3.9: Graph of H1
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Figure 3.10: Graph of Hnum and H1
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Figure 3.11: Graph of difference between Hnum and H1

Figure 3.9 shows graph of H1, whereas, Figure 3.10 shows the correspondence be-
tween Hnum and H1. The difference between Hnum and H1 and is shown in Figure 3.11.
The graph of difference shows resemblance to the graph of function

H2 = m sin(kη − Π)e−lη. (3.40)

We have use different data points in H2 to get the values of m, k and l which are
0.955, 1.29576 and 0.36862 respectively. Finally, we get the following function that
approximates the difference curve. The approximation, H2, of the difference between
Hnum and H1 is illustrated in Figure 3.12.

H2 = 0.955 sin(1.29576η − Π)e−0.36862η. (3.41)

The approximate solution, Happrox is
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Figure 3.12: Graph of difference along with its approximation H2
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Figure 3.13: Graph of Happrox
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Figure 3.14: Graph of Hnum and Happrox

The approximation is
Happrox = H1 +H2,

or

Happrox = (0.91η − 1.344)e−0.657η + 1.344 + 0.955 sin(1.29576η − Π)e−0.36862η. (3.42)

Figure 3.13 shows the graph of Happrox. Figure 3.14 shows the graph of Hnum and
Happrox. The maximum error 0.5477 reduces to 0.2726.

3.3.3 Residual analysis for the Approximate Solution of Re-
duced ODEs

The residues of the ODEs (3.29) and (3.30) with respect to approximate solutions given
by Eqs. (3.37) and (3.42) are shown in Figures (3.15) and (3.16).
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Table 3.1: The Residuals for 2H
′′′ − 2HH

′′
+ (H

′
)2 − 4G2 = −4

η Residues
0.000 10.94
0.1414 9.628
0.5657 5.6
0.848 3.43
1.13 1.783
1.838 -0.1594
1.98 -0.23
2.12 -0.2227
2.54 0.1641
2.97 0.7864
3.11 0.9796
3.677 1.411
3.96 1.369
4.10 1.288
4.667 0.6954
4.94 0.331
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Figure 3.15: Residuals for 2H
′′′ − 2HH

′′
+ (H

′
)2 − 4G2 = −4
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Table 3.2: The Residuals for 2H
′′′ − 2HH

′′
+ (H

′
)2 − 4G2 = −4

η Residues
6.222 -0.6497
6.92 -0.4499
7.07 -0.3682
7.63 -0.0197
7.77 0.0564
8.061 -0.178
9.758 0.0497
10.04 -0.024
10.89 -0.1395
11.03 -0.1398
11.88 -0.0639
12.02 -0.0452
12.44 0.0067
13.15 0.0538
13.43 0.0556

14 0.0372
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Figure 3.16: Residuals for G
′′ −HG′ +H

′
G = 0
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Table 3.3: The Residuals for G
′′ −HG′ +H

′
G = 0

η Residues
0.0000 -3.489
0.1414 -2.342
0.4242 -0.7854
0.5657 -0.3016
0.9899 0.3396
1.131 0.3695
1.697 0.1141
1.98 -0.04514
2.121 -0.104
2.687 -0.1645
2.97 -0.1154
3.111 -0.08226
3.535 0.01505
4.101 0.07362
4.525 0.05478
4.949 0.00758

Tables (3.1)-(3.4) show the values of residuals for Eqs. (3.29) and (3.30), respec-
tively for different values of η.

3.4 Approximation for the System of Nonlinear PDEs

By putting the expressions of G from Eq. (3.37) and H from Eq. (3.42) in the
transformations given by Eqs. (3.7) and (3.8), the approximate solution for the system
of PDEs is given by

v = rΩ

(
1− e−1.3333η + 0.99668ηe−1.3333η + 0.70753 sin(1.43753η − Π)e−0.46539η

)
,

(3.43)

w =
√
νΩ

(
(0.91η − 1.344)e−0.657η + 1.344 + 0.955 sin(1.29576η − Π)e−0.36862η

)
.

(3.44)
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Table 3.4: The Residuals for G
′′ −HG′ +H

′
G = 0

η Residues
5.091 -0.00923
5.515 -0.05029
5.939 -0.06713
6.081 -0.00667
6.505 -0.05133
6.929 -0.02413
7.071 -0.01486
7.495 0.007468
7.919 0.01656
8.485 0.00798
8.909 -0.00681
9.616 -0.02664
10.04 -0.02864
11.03 -0.00874
12.59 0.00949
13.43 0.00015
13.86 -0.00418

14 -0.00521
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The velocity components v and w satisfy the boundary conditions given in Eq. (3.4).

lim
z→0

v(r, z) = rΩ

(
1− e−1.3333z

√
Ω
ν + 0.99668z

√
Ω

ν
e−1.3333z

√
Ω
ν

+ 0.70753 sin(1.43753z

√
Ω

ν
− Π)e−0.46539z

√
Ω
ν

)
.

After applying limit, the resulting equation is

lim
z→0

v(r, z) = 0. (3.45)

Also,

lim
z→∞

v(r, z) = rΩ

(
1− e−1.3333z

√
Ω
ν + 0.99668z

√
Ω

ν
e−1.3333z

√
Ω
ν

+ 0.70753 sin(1.43753z

√
Ω

ν
− Π)e−0.46539z

√
Ω
ν

)
.

Again by applying the limit, we get

lim
z→∞

v(r, z) = rΩ. (3.46)

The boundary condition for w is also satisfied

lim
z→0

w(r, z) =
√
νΩ

(
(0.91z

√
Ω

ν
− 1.344)e−0.657z

√
Ω
ν + 1.344

+ 0.955 sin(1.29576z

√
Ω

ν
− Π)e−0.36862z

√
Ω
ν

)
.

After applying limit, the result is

lim
z→0

w(r, z) = 0. (3.47)

Thus we have substantiate that approximate solutions given by Eqs. (3.44) and (3.45)
satisfy the boundary conditions mentioned in Eq. (3.5).
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3.4.1 Residual Analysis of Approximate Solutions of PDEs

Using approximate solutions given in Eqs. (3.43) and (3.44), we get the residuals of
the original system of nonlinear PDEs which is given by Eqs. (3.29) and (3.30). The
residual surfaces for Eqs. (3.44) and (3.45) are shown in Figures 3.18 and 3.19 respec-
tively.
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Figure 3.17: Residual for system of second PDE (3.2)
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Figure 3.18: Residual for system of third PDE (3.3)
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Chapter 4

Similarity Transformations by
Using Lie Symmetry Method for
System of Nonlinear PDEs

A symmetry is transformation which leaves the geometry of an object apparently un-
changed. The transformation which maps each point to itself is known as trivial sym-
metry of an object and the transformation which maps solution of the system onto
a solution of same system is known as continuous symmetry. The symmetry group
of a system of a differential equation is a group of transformations of dependent and
independent variables leaving the set of all solution invariant [22].

Differential equations are also solved by using symmetry method. Lie symmetry tech-
nique is a powerful way of reducing PDEs into ODEs. Lie symmetry method takes
advantage of inherit symmetries in PDEs from the physical system and as a result, we
get similarity variables which lead to the reduction of PDEs to the ODEs. Both linear
and nonlinear differential equations can be solved by using similarity method which
is also recognized as symmetry method. In this method, according to the symmetries
available for differential equations one can

• Reduced the number of independent variables involved in differential equation.

• Find the exact solution.

• Decrease the order of differential equation.
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4.1 Algorithm for Obtaining Similarity Transfor-

mations of PDEs by Lie Symmetry Method

Consider a system of partial differential equations of kth order in l and m independent
variables and s dependent variables defined as x = (x1, x2, ..., xl), t = (t1, t2, ..., tm)
and v = (v1, v2, ..., vs).

G(x, t,v,v1, ...,vn) = 0, (4.1)

x̄ = x+ εξ(x, t,v), (4.2)

t̄ = t+ εδ(x, t,v), (4.3)

v̄ = v + εζ(x, t,v), (4.4)

v̄i = vi + εζi(x, t, v, v1), (4.5)

.

.

.

v̄i1i2...in = vi1i2...in + εζi1i2...in(x, t, v, v1, ..., vn), n = 1, 2, ... (4.6)

where ε is the group parameter and vi represents the derivatives of v with respect to x
and t. The kth order prolonged infinitesimal generator is

X(k) = ξ
∂

∂x
+ δ

∂

∂t
+ ζ

∂

∂v
+ ζi(x, t, v, v1)

∂

∂vi
+ ...

+ ζi1i2...in(x, t, v, v1, ..., vn)
∂

∂vi1,i2,...,in
, (4.7)

where prolongation coefficients are ζi,...ζi1 ... ζi1i2...in and given as

ζi = Diζ − (Diξ)
∂

∂vx
− (Diδ)

∂

∂vt
, (4.8)
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and

ζi1i2...in = Dinζi1i2...in−1 − (Dinξ)vi1i2...in−1x − (Dikδ)vi1i2...in−1t (4.9)

The condition given below must satisfy

X(k)G(x, t, v, v1, ..., vn) = 0, (4.10)

by using the following theorem

Theorem 1. Let

X = ξ(x, t,v)
∂

∂x
+ δ(x, t,v)

∂

∂t
+ ζ(x, t,v)

∂

∂v
,

be the infinitesimal generator, and X(k) be the kth extended infinitesimal generator

X(k) = ξ(x, t,v)
∂

∂x
+ δ(x, t,v)

∂

∂t
+ ζ(x, t,v)

∂

∂v
+ ζi(x, t,v,v1)

∂

∂vi

+...+ ζi1i2...in(x, t,v,v1, ...,vn)
∂

∂vi1,i2,...,in
,

then the one-parameter Lie group of transformations is admitted by the system of PDEs
if and only if

X(k)G(x, t, v, v1, ..., vn) = 0,

when

G(x, t, v, v1, ..., vn) = 0,

which is an infinitesimal criterion for invariance of a system of PDEs [23].

We find the determining equations by comparing coefficients of linearly independent
variables on both sides. The solution of determining equations provides the unknown
coefficients. Generators of transformations are obtained by the solutions of these deter-
mining equations. By using method of characteristics, we solve it to get the similarity
variables.

In this chapter, we find similarity variables using Lie symmetry technique of the Navier-
Stokes equations [4] given by Eqs. (3.1)-(3.4). We obtained the following symmetries
for Eqs. (3.1)-(3.4) by using Maple PDEtools

X1 =
∂

∂z
, (4.11)
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X2 =
∂

∂p
, (4.12)

X3 = r
∂

∂r
+ z

∂

∂z
− u ∂

∂u
− v ∂

∂v
− 2p

∂

∂p
− w ∂

∂w
. (4.13)

4.2 Solution of the System of Nonlinear PDEs by

using X3

Using the X3 symmetry, the characteristic equation is

dr

r
=
dz

z
=

du

−u
=

dv

−v
=

dp

−2p
=

dw

−w
. (4.14)

The following transformations are obtained from the solution of characteristic equation
given as

x =
z

r
, (4.15)

then

u =
g(x)

r
, (4.16)

v =
h(x)

r
, (4.17)

w =
f(x)

r
, (4.18)

p =
l(x)

r2
. (4.19)

4.3 Reduction of PDEs to ODEs

Using the similarity transformations given by Eqs. (4.16)-(4.19), the system of nonlin-
ear PDEs (3.1)-(3.4) is reduced to the system of ODEs. By taking partial derivatives
of Eqs. (4.16)-(4.19) with respect to r and z, we get

∂u

∂r
=
−xg′ − g

r2
, (4.20)
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∂u

∂z
=
g
′

r2
. (4.21)

∂v

∂r
=
−xh′ − h

r2
, (4.22)

∂v

∂z
=
h
′

r2
. (4.23)

∂w

∂r
=
−xf ′ − f

r2
, (4.24)

∂w

∂z
=
f
′

r2
. (4.25)

∂p

∂r
=
−xl′ − 2l

r3
, (4.26)

∂p

∂z
=

l
′

r3
. (4.27)

Differentiating Eqs. (4.20)-(4.25) with respect to r and z, we get

∂2u

∂r2
=

4xg′ + x2g′′ + 2g

r3
. (4.28)

∂2u

∂z2
=
g′′

r3
. (4.29)

∂2v

∂r2
=

4xh′ + x2h′′ + 2h

r3
. (4.30)
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∂2v

∂z2
=
h′′

r3
. (4.31)

∂2w

∂r2
=

4xf ′ + x2f ′′ + 2f

r3
. (4.32)

∂2w

∂z2
=
f ′′

r3
. (4.33)

By putting Eqs. (4.20)-(4.33) in system of nonlinear PDEs, we get the required system
of ODEs given as

f ′ − xg′ = 0. (4.34)

(x2 + 1)g′′ + (3x+ xg − f)g′ + g2 + h2 + xl′ + 2l = 0. (4.35)

(x2 + 1)h′′ + (3x+ xg − f)h′ = 0. (4.36)

(x2 + 1)f ′′ + (3x+ xg − f)f ′ + f − l′ + fg = 0. (4.37)

Thus, the system of nonlinear PDEs is reduced to the system of ODEs (4.34)-(4.37)
by using new transformation variables obtained from symmetry method. For future
work it will be better to find similarity transformations which can satisfy boundary
conditions and obtain required results.
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Conclusion

In this thesis, an approximate closed form solution of a system of nonlinear PDEs to a
boundary layer problem is obtained by a systematic procedure. Firstly, for such kind of
systems exact solutions are difficult to find. For this reason, similarity transformations
are used to get reduced ODEs from the given system of PDEs. Even it is not easy to
get exact solution for the reduced system of ODEs. So, we have used bvp4c which is a
MATLAB built-in function to get the numerical solution. After that, we approximated
our numerical solution by the suitable functions. Validation of approximate solution
for the system of ODEs is obtained by taking the difference of exact and approximate
solution which is analyzed by finding the residues with the help of approximate solution
for this system. Then, transformations have been considered to write approximate
solution of the original system of PDEs. We found the residuals using approximate
closed-form solution for this system which shows that our approximate solutions are
closed to exact solution near the boundary. Finally, we have discussed the algorithm
for finding similarity transformations of PDEs by Lie symmetry method and worked
out for new similarity transformations for the system of PDEs. Using X3, we get
transformations which converts system of nonlinear PDEs into ODEs but unable to
get transformed boundary conditions for ODEs.
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