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Abstract 

Hydrogen production from the supercritical water gasification (SCWG) of sewage 

sludge (SS) is a sustainable and efficient process. However, the challenging and 

intricate task for the experimental technique is to find out the correlation between 

proximate, ultimate analysis and gasification conditions with Hydrogen production. 

This process is complicated, expensive and requires many experimental techniques. 

To accurately predict and analyze the effect of input parameters on SCWG of SS 

process economically, an efficient model must be developed. Considering economic 

viability and ensuring optimization of hydrogen yield, this study considers four 

different machine learning (ML) models (Support Vector Machine, Ensembled Tree, 

Gaussian Process Regression (GPR), Artificial Neural Network) to predict, analyze 

the optimal model, and evaluate SCWG performance. The results suggests that GPR 

is favored for predicting Hydrogen yield (R2 > 0.997, RMSE 0.093), and is highly 

recommended for dealing with complex variable-target correlation. The partial 

dependence plot shows that temperature, moisture content and pressure are among the 

effective parameters of SCWG. Furthermore, optimization techniques such as genetic 

algorithms are incorporated to optimize hydrogen production by tuning the ML 

hyperparameters. Additionally, a Graphical User Interface was developed by utilizing 

the optimized GPR model for ease in computing Hydrogen yield.  
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1. Chapter 1:  

                         Introduction 

1.1. Sewage Sludge 

Wastewater treatment produces sewage sludge, which can be utilized to generate 

power and heat [1]. Concerns about socio-economic and environmental issues are 

driving interest in alternative sewage sludge treatment and disposal [2]. Also, sewage 

sludge contains several organic and inorganic toxic chemicals that require long-term 

treatment [3]. Handling and disposal are expected to account for around half of the 

costs of operating secondary sewage sludge treatment processes in Europe [4]. The 

volume and tonnages of sewage sludge produced annually in the USA, China, and 

Europe were calculated at 240 MT (2010) [5]. In 2013, China produced 6.25 MT of 

dry solids sewage sludge, of which only 25% was correctly processed. Globally 

sewage sludge production was 45 dry MT in 2017 [1, 6-8]. In 2015, five EU nations 

(Spain, Italy, Germany, France, and UK) produced 75% of all sewage sludge [4]. In 

the same year, China and Taiwan produced up to 40 MT and 77,000 T sewage sludge, 

respectively [8, 9]. Its high moisture content (almost 98 wt%) prevents its use in 

many applications. However, thermal processing requires moisture content below 

15% [10]. Before using thermochemical techniques, different drying processes are 

dependent on the moisture content and operational cost. Thermal drying, 

natural drying, bio drying, and mechanical drying [11] are all available options. In 

contrast to thermal drying, natural drying can use solar energy to minimize moisture 

content. A bio-drying process is analogous to composting, which takes days to 

dehydrate. Sludge's significant heavy metal content is a second important 

trait.  Sludge is rich in nitrogen and phosphorus, which can be used as fertilizer in 

agriculture and land applications. A study shown in Figure 1 by the EU, Japan, Chine 

and U.S countries found that sewage sludge might be used in building materials, 

incineration, anaerobic digestion, and land applications depending on moisture 

content, contaminants, and socio-economic considerations. Incorrect dumping might 

also result in considerable sewage sludge disposal. Globally, the economic 

development of countries is linked to the disposal and treatment of sewage sludge 

[12, 13] . 
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Figure 1: Sewage sludge usage in different countries [13] 

Thermochemical conversion processes like pyrolysis and gasification have been 

recommended as alternatives to the present most effective approaches [14].  While 

thermo-chemical conversion requires complex equipment and processes, it may be 

more efficient and reduce volume than other methods of treatment. Recent research 

compared the benefits and drawbacks of microbiological and thermochemical 

approaches. Compared to thermochemical methods, anaerobic digestion demands a 

longer solids retention time, more room for the digesters, a smaller product diversity, 

and more capital investment [15]. Process intensification, sludge pollutants, resource 

recovery, new treatment procedures, and costs are now influencing sewage sludge 

management [16]. Different processes for sewage sludge gasification treatment is 
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shown in Figure 2 [17].  

 

Figure 2: Sewage Sludge formation during wastewater treatment [17] 

 

1.2. Characteristic of Sewage Sludge 

1.2.1. Moisture Content 

Three types of sewage sludge that can be used to generate energy: primary, waste 

activated, and digested [18]. In water treatment facilities, the cleaned water is 

extracted from the sewage sludge, which is slurry with high water content. The 

moisture content of sewage sludge must be reduced to a minimum before it can be 

used for disposal or energy recovery. Different drying processes are used sewage 

sludge including bio-drying, mechanical drying, and thermal drying.  Tertiary thermal 

dryers include rotary and tunnel dryers. For mechanical dryer filter presses with belt 

or vacuum dryer are used [11, 19] . Wood, pre-dried feed stocks, cotton, and straws 

are widely used as bulking agents in co-processing sludge. Bio drying is also utilized 

for sewage sludge, where fungi and bacteria help remove water. The air flow rate, 

initial moisture content, temperature, time, and process are critical. However, it takes 

longer than thermal drying and removes less moisture than thermal drying [20, 21]. 

Under ideal processing conditions, electro-osmotic dewatering with bio drying could 

decrease water content from 83 to 60% in minutes [22]. Wet-drying methods can 

minimize pathogens in sewage sludge [23]. Solar radiation can be used to dry sewage 

sludge, however it requires exposure of several days and is dependent on weather. 



4 
 

Also, closed solar drying outperforms open solar drying [24]. Thermal drying is the 

best method for producing energy and fuels from sewage sludge [11]. Thermal drying 

is clearly advantageous for decreasing harmful pathogens and other toxic pollutants 

as well as increasing drying rate. Nitrogen may be recovered through continuous 

thermal drying at temperatures between 160 and 200 °C [25]. Water removal 

efficiency can be determined using energy and mass balances, which can suggest the 

drying process's feasibility. Conditioners or additions like CaO are widely used to dry 

and condition sewage sludge before employing it in thermochemical processes. 

1.2.2. Heavy Metals and Organic Pollutants 

Heavy metals as well as other harmful organic pollutants in sewage sludge 

present significant potential barriers to consumption. Industrial and municipal 

wastewater is treated to remove toxins, but sewage sludge continues polluted by a 

wide spectrum of organic micro contaminants [26]. SS is a mixture of bacteria, 

inorganic components, and water. Many countries have legislation to manage 

pathogens in sewage sludge. Undigested organic elements include protein, peptide, 

lipid, polysaccharide, plant polysaccharides with aliphatic structures or phenolic, and 

organic pollutants [27, 28]. Toxic alkyl-phenol ethoxylates are widely employed as 

detergents in industrial and commercial products in the United States [29]. Most 

research on sewage sludge's environmental impact focuses on a few chemicals or 

families of compounds. Some researchers have examined major extraction, cleaning, 

and instrumental approaches used to identify new poisons [30, 31]. So, before 

dumping sewage sludge or using it in agriculture, it must be thoroughly tested for 

developing pollutants. However, only a few countries have stringent limits for these 

contaminants. The heating values of activated and raw sludge were reported to be 16-

23 MJ/kg and 23-29 MJ/kg, respectively [32]. The data of primary and secondary 

SS illustrate that energy-rich products can be produced. 
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2. Chapter 2:  

                         Literature review 

2.1. Literature Review 

In recent decades, public awareness of the benefits of renewable energy sources has 

grown fast to fulfill the world's growing energy demand as a foundation for the 

development of modern world and the rapid growth of the world’s population [33, 

34]. Inadequate conventional production fuel supply to satisfy increasing energy 

demands, as well as a variety of other concerns affecting the global population have 

sparked considerable international interest in developing new solutions for energy 

conservation and environmental preservation in power generating. According to Olabi 

et al. [35] using renewable energy resources to reduce reliance on conventional fuel 

resources and provide a variety of energy demands for larger and smaller scale energy 

conversion systems is the most important solution. 

Evidently, in the future, fossil fuel availability will be a global issue since the 

terminal decline in its resources and current higher investment risks caused by 

competition from clean renewable energy resources, tough government, and security 

targets as shown in Figure 3 [36] . To avoid the use of fossil fuel, an increasing trend 

has been observed, in which resources like waste biomass from different sectors 

including, food, agriculture and industrial have been used [37]. Renewable energy has 

recently remained the most preferred alternative for reducing reliance on non - 

renewable fuels. In the context of renewable energy, biomass belongs to any organic 

matter that is recyclable and sustainable, such as animal manure, plants, agriculture 

fruits and vegetables, food processing by-products, and municipal waste. Because of 

the focus on biomass in the power mix, it is now the world's fourth largest contributor 

to energy supply, behind oil, coal, and natural gas [38]. According to Khan [39], 

biomass is currently an significant renewable energy resource. Because biomass may 

be turned into gas, liquid, and solid fuels, it offers several distinct advantages. Apart 

from electricity generation, biomass may be used to make a wide range of chemicals, 

and biomass has a lot of promise because of its abundance and reasonably high 

heating value. Furthermore, substituting biomass for fossil fuels as a renewable 

resource may be an option for reducing net CO2 pollution in the environment. 
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Biomass is carbon-neutral, which means that the net CO2 released during combustion 

is used by plants through photosynthesis [40]. 

 

Figure 3: challenges to the use of renewable energy sources [36] . 

Sewage Sludge, which is generally appeared as by-product from wastewater 

treatment plant, contain high calorific value organics [41], if not, timely managed can 

readily cause secondary pollution, such as unwanted emissions (leachate and odor) 

into the atmosphere, and heavy metal accumulation in soil due to high moisture 

contents and complex organic composition [42, 43]. The deposits of SS will continue 

to rise in coming decades due to factors like urbanization, industrialization, and 

population growth [44]. However, if biologically treated sewer sludge can have a high 

calorific value depending on the processed wastewater [45]. Common SS treatment 

procedures in past were incineration, composting and most common landfills [41]. 

Although most of these traditional techniques allow for a partial recovery of nutrients 

and energy, they fall short of fully using the sludge's potential as shown in Figure 4 

[46] . However, recently different technological approaches have being established in 

which green hydrogen have been produced from renewable sources including 

Electrolysis, Photocatalysis, Thermochemical cycles, Plasmolysis and Bio H2. 

However, their current productivity and cost competitiveness for downstream 

applications are still lacking due to its high energy requirement, also these method 

accounts for a very small portion of global hydrogen generation [47]. 
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Figure 4: Conventional vs alternative processes for conversion of sludge [46] 

An organic solid or liquid component is transformed into a solid phase, gas or vapor 

phase during gasification process of biomass. Gas phase, normally described as 

"syngas," has a higher heating value that can be used to produce electricity or 

biofuels. The organic unconverted portion and inert material left in the processed 

biomass make up the solid phase known as "char." This process, which involves an 

oxidation process of the carbon in the feeding material, is often carried out by means 

of a gasifying carrier such as oxygen, steam, air, N2 flow or carbon dioxide. A 

strategy to increase the conversion of biomass to produce energy and enable biomass 

utilization is gasification of biomass. As people become more aware of the potential 

consequences of fossil energy on the climate and as oil costs continue to rise, biomass 

gasification methods are being developed at a faster rate. [48]. Sewage sludge 

thermochemical conversion is given in Figure 5 [13].   
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Figure 5: Thermochemical Conversion of sewage sludge into valuable products [13] 

Raising the operating temperature during biomass thermal conversion processes 

(typically above 900 °C) allows tars to be broken down into lighter species. Between 

700 and 1000 °C, CH4 and Co concentrations rise linearly whereas H2 concentrations 

rise exponentially [49]. It is possible to gasify organic feed in a hydrothermal medium 

at various temperatures, pressures, or even in the presence of catalysts. If the 

temperature and pressure are subcritical (225-265 °C and 2.9-5.6 MPa), it can be a 

catalyzed gasification process [50]. When the feedstocks' moisture content surpasses 

30% weight percent, it has distinct advantages against the other conversion pathways 

in terms of heat consumption. On the basis of heat consumption efficiency, Figure 6 

adapted from [51] compare other biomass conversion processes 

with SCWG methods. 
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Figure 6: Moisture contents effects on total efficiency for different process [51] 

Compared to other gasification techniques, SCWG of SS is an efficient process which 

not only reduces the need of drying but also regulates heavy metals using compressed 

and hot water at critical or near-critical temperatures (374.3 °C and 22.1 MPa) [52]. 

Biomass can be super critically gasified using various feedstocks and under various 

processing conditions. From minimal biomass feedstocks to complicated biomass 

feedstocks with or without a catalyst can be used as the feedstock under batch or 

continuous procedures [51]. 

 In SCWG of SS, water acts as a reaction medium and shift the equilibrium towards 

H2 production in water-gas shift reactions [53, 54]. The advantageous physical 

characteristics of water and how they adjust in the supercritical area, which triggers 

water to serve as a catalyst and as a solvent, are the primary drivers of research 

interest on supercritical water. Additionally, water serves as a reactant in hydrolysis 

processes [55]. The dielectric constant, density, and viscosity of the water have a 

significant impact on biomass gasification. Water's physical characteristics 

substantially change above critical point, where it behaves like a homogenous fluid 

phase. the viscosity of water become like gas viscosity and density become like liquid 

at its supercritical condition, these are the two characteristics that improve mass 

transport and solvation qualities, respectively as shown in Figure 8 and 9 adapted 

from [51, 56]. Because of its dielectric constant, liquid water performs well as a polar 

solvent at normal test conditions (25 °C and 0.1 MPa). It is highly soluble in a wide 
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range of substances, including electrolytes, but poorly miscible with gases and 

hydrocarbons. The dielectric constant dramatically drops as water hits its supercritical 

phase. As a result, water begins to act like that of an organic, non-polar solvent, 

which has the effect of making inorganics poorly soluble and completely miscible 

with vapors and many hydrocarbons. Phase boundaries are no longer present due to 

its miscibility. Because of this lack, water and organic chemicals react quickly and 

completely in homogeneous phase [57]. 

Sludge gasification is modelled using three basic types of modelling approaches: 

kinetic models, equilibrium models, and computational fluid dynamic models [58].  

CFD models may replicate a variety of physical processes, but they demand a lot of 

processing power and very specific data (geometry, materials, and boundary 

conditions). Kinetic models are suitable for simulating the effects of reactors process 

development parameters, but their conceptual modelling is significantly more difficult 

[59]. In a fluidized gasifier, petersen et al. [60] established a kinetic model for 

gasification of sludge that took into account both the fluid mechanics of the 

circulating bed and a wide range of gasification processes. kinetic rate equations for 

this model required axial gas concentration and temperature measurements.  

Different studies were carried out to show the impact of parameters on SCWG of SS, 

including an experimental study discusses the effect of different catalysts, 

temperature and feed concentration on SCWG of SS [61]  . Thermodynamic study 

illustrates the effect of feed concentration and temperature on the process [62]. The 

thermodynamical study is easy and economical, but it is difficult to achieve the 

condition in practical gasifiers, ultimately resulting in low prediction accuracy. Also, 

the Kinetic study needs a significant amount of time in formulation. However, ML 

models as compared to kinetic and thermodynamical studies uses the actual 

conditions of an experiment to show the effect of input parameters on the SCWG, but 

also predict the hydrogen yield accurately without taking assumptions and too much 

time [63]. Elmaz et al. [64] in his study collected data from the fixed bed gasifier and 

utilized four regression model (Multilayer perceptron, polynomial regression, Support 

vector regression, and decision tree) on the gasification process of biomass to predict 

five output (𝐻𝐻𝑉, 𝐶𝑂2, 𝐶𝑂, 𝐶𝐻4, 𝑎𝑛𝑑 𝐻2) and compared the results of non-

stoichiometric and stoichiometric studies. Decision tree and multilayer perceptron 

were among the best model with R2 ~ 0.9. Tang et al. [65] successfully predicted the 

composition and gas yield by utilizing support vector machine and random forest and 
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was recorded that biomass composition can contribute more than pyrolysis condition 

in case of CO and CH4 prediction. Additionally, pearson coefficients map shows the 

non-linear correlation between different feature as shown in Figure 7 adapted from 

[65]. Balsora et al. [66] have developed artificial neural network model from 704 data 

point for the prediction of pyrolysis kinetic utilizing the biomass composition as 

inputs and Garson equation was used to study the relative significance of input 

features on pyrolysis kinetics. 

 

 

Figure 7: Pearson coefficients between variables [65] 
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Figure 8: Dielectric constant of water at different temperature and pressure [51] 

 

Figure 9: Density of water at different pressure and temperature [51] 

To determine H2 yield output and its relationship to input parameters (proximate, 

ultimate composition and gasification conditions) through the conventional methods 

requires extensive trailing, which is time consuming, labor-intensive, and expensive. 

To effectively study their combine effects on the H2, it is essential to study the 
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behavior of supercritical water gasification parameters with integrated consideration 

of SS composition utilizing artificial intelligence techniques that is machine learning 

(ML), deep learning (DL),  and data mining. Machine learning-based models offer a 

practical solution in which process data is utilized to develop a model that is used for 

optimizing, automation, and surveillance [67]. Also, in comparison to relying on 

complex rule-based programs, machine learning model is based on experimental data 

and is a highly developed approach established on scientific computation and uses a 

data driven technique for learning and detecting patterns [63]. 

 

2.2. Problem Statement 

Despite the fact that there are numerous study papers on gasification of sewage 

sludge to produce hydrogen gas. But the majority of the literature is concerned with 

designing and perfecting the gasification process through various experimental and 

mathematical techniques. The modelling of hydrogen production from sewage sludge 

integrated with machine learning models has not yet been covered in any literature. In 

a similar vein, no one has concentrated on the hybrid approach of the machine 

learning models integrated with optimization technique to predict the hydrogen yield. 

Intelligent systems have therefore been very interested in predicting the yield and 

increasing the effectiveness of energy management systems. 

 

2.3. Objectives 

The following will be primary contribution of this work: 

 

• Genetic algorithm-based features selection 

• Prediction of Hydrogen yield using machine learning methods. 

• Optimization of model 

• Influence of various parameters on hydrogen yield 
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3. Chapter 3:  

            Overview of developed models 

 

This section provides a broad review of all the modelling techniques developed for 

this thesis. These modelling techniques include machine learning (ML) models, 

genetic algorithms (GA), and artificial neural network (ANN). 

3.1. Genetic Algorithm 

An evolutionary algorithm called a genetic algorithm (GA) imitates the course 

of biological evolution. In 1975, Holland proposed a theory for genetic algorithms. 

Darwin's theory of evolution, which simulated the preservation of better species and 

their genes, had an impact on GA. Numerous researchers have utilized generalized 

estimating equations [20] to assess the resolution of challenging issues whose 

performance parameters lack the qualities of continuity and differentiability [68, 69]. 

A genetic algorithm is a population-based feature selection algorithm that works with 

a group of solutions rather than selecting a single solution. Initially, the population is 

chosen, and each solution is encoded as a chromosome of Genes or bits. Every single 

chromosome has its fitness value and when combined they are called a population- 

the population is a set of solutions. A generation is a population at a certain time. The 

fitness function is a key parameter in the Genetic Algorithm as it specifies the 

problem to be optimized. The fitness of a chromosomal pair is employed to reproduce 

offspring [70]. 

It is an inhabitant’s algorithm that is built on the ideas of genetic inheritance and 

natural selection. Each solution stands in for a chromosome, and each parameter 

denotes a gene. GA measures each population member's fitness using an objective 

function called fitness. A selection technique is used to arbitrarily select the best 

options in order to enhance poor solutions. Because probability and fitness are 

related, this operator is a little more likely to choose the optimal options (objective 

value). Additionally, there is a higher likelihood to avoid local optima while choosing 

incorrect answers. It suggests that excellent alternatives can be removed with the aid 

of other solutions if they get trapped in a local solution. Until an optimal solution is 

established, an extreme integer of repetitions or population is comprehended, or a 

https://www.sciencedirect.com/topics/engineering/selection-algorithm
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variation between solutions is smaller than a predetermined limit, this process is 

repeated [71, 72]. Given that the GA approach is stochastic, one can question its 

validity. This method is reliable and capable of calculating global optimum 

solution for a specific problem since it keeps the best solutions in each iteration and 

uses them to improve subsequent options. As a result, with each succeeding 

generation, the entire population gets better. This strategy benefits from mutation as 

well. This operator modifies the chromosomes' genes at random, maintaining 

population diversity and enhancing GA's enquiring nature [73]. Genetic Algorithm 

process flow diagram is shown in Figure 10.  

 

Figure 10: Genetic Algorithm workflow 

3.1.1. Genetic Algorithm Methodology 

3.1.1.1: Gene Representation: 

Every chromosome relates to a potential answer to the specific optimization problem, 

as was previously stated. A chromosome is made up of many genes, which illustrates 
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how the parameters of the optimization problem change over time. The problem must 

first be stated before the vectors can be established when using the GA approach. 

There are two GA variants: a binary variation and a continuous form. A binary 

version could take two values as parameters (e.g., 0 or 1). Continuous values are used 

when there are upper and lower constraints on the value. Binary GA is the term used 

when many values need to be chosen. The variables here require the allocation of 

additional bits. For instance, in a problem with two parameters, each parameter can 

have eight different values, and each parameter will need three genes [74, 75]. In 

order to calculate the set of genes for choosing n discrete values, log2n is used. It has 

been demonstrated that real value number encoding of chromosomes leads to more 

effective GAs and superior solutions. It's important to remember that genes can also 

be objects or components of a story. As long as genes are included in a fitness 

equation and produce a fitness value, the GA algorithm can use them. The term 

"genetic programming" describes separate computer programs for each gene [76]. 

Initialization: A large number of distinct solutions are initially generated at random 

to create an initial population. The population varies in size based on the 

circumstance, but it typically consists from several hundred to thousands of solutions. 

In most cases, the population is generated at random and includes all possible 

outcomes. Sometimes, the best answers are "planted" where they are most probable to 

occur [77].  

Selection: Natural range is the key driving force behind this GA algorithm element. 

The most physically fit people have a greater chance to find food and mates in the 

environment. As a possible consequence, their genes promote more to the 

development of the next generation of animals that are comparable [78]. 

The Roulette Wheel Selection is the most basic GA. This operator divides a circle 

into N equal parts. The ith member of the population is represented by the ith section 

in the circle. This sector's breadth is equivalent to the likelihood that the same person 

will be chosen. In this instance, the total width of the circle's intervals is one. At the 

selection stage, the circle is rotated N times. Each time the roulette wheel turns, a new 

population is created using the individual that is indicated [79] . 

Crossover: Individuals who have been chosen using a selection operator must then 

be utilized develop new generation. Naturally, a new chromosome is generated by 

joining the chromosomes of the parents' genes [80]. The GA algorithm emulates it by 

integrating the two new solutions produced by the two answers selected by the 
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roulette. wheel. There are other crossover operator strategies published in the 

literature as well. In a single-point crossover, the genetic mutations of two parent 

solutions are transferred both before and after the single point. In contrast, just the 

chromosomes between two crossing points in a double point crossover are swapped 

[81].  

The following additional crossover strategies are listed in the literature: 

1. Standard Crossovers 

a. Uniform crossover 

b. Reduced surrogate crossover 

c. 1-Point crossover 

d. Discrete crossover 

e. Flat crossover 

f. K-point crossover 

g. Shuffle crossover 

h. Average crossover 

i. Intermediate crossover 

2. Binary crossovers 

a. Random respectful crossover 

b. Elistist crossover 

c. Count preserving crossover 

d. 1-Bit adaptation crossover 

e. Homologous crossover 

f. Masked crossover 

g. Multivariate crossover 

 

The main goal of crossover is to ensure that genes are passed, and that the progeny 

inherit the DNA of their parents. Crossover is the primary exploitation method in the 

GA. The program will attempt to validate and look for alternate combinations of 

genes from the parents if the crossover is carried out using a randomized pivot point 

for two specified parents. Therefore, without adding a single new gene, those 

workable methods are utilized. Notably, the GA Possibility of a Crossover (Pc) 

parameter depicts the likelihood of accepting a new child. A similar range of random 

variables is generated for each child. If this number is less than Pc, the child is passed 

onto next generation. In the absence of this, the parents will be transferred. When 
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some of the offspring do not survive, this also happens in nature [74, 82]. 

Mutation: Genes are altered in the ultimate evolutionary process once offspring's 

solutions are produced. Because substantial genetic mutations reduce GA to a crude 

random search, GA has a lower mutation rate. The mutation operator keeps the 

inhabitants diversified by establishing a further degree of uncertainty [83]. In 

practice, this operator increases the likelihood of eliminating local solutions and 

avoids alternatives from becoming similar in the GA algorithm [78].  

The following list includes some of the most popular mutation strategies: 

• Variable mutation probability 

• Individuality mutation 

selection rates, crossovers, and mutation operators are used by the majority of EAs. 

These operators have been used to every single generation in order to improve the 

supremacy of genes in the next cohort. When good solutions are preserved and 

handed on to the next batch intact, elitism is the norm. The main objective when 

utilizing the crossovers or mutation operators is to prevent deteriorating such 

solutions (elites). Starting with an arbitrary population of entities, the GA algorithm 

runs. This strategy improves the population all the way to the finish by utilizing the 

three operators mentioned above. The best estimate of the global optimal for a given 

task is taken to be the best solution in the preceding population. The selection, 

mutation, and crossover can all be shifted or ready to fix values throughout the 

optimization process. The sections that follow examine the influence of changing on 

GA presentation [84, 85]. 

The genetic operators change the population throughout generations, searching for a 

desirable or optimal result as shown in Fig. 8. It is vital that the population is 

diversified and retains adaptive traits from past generations. The selection operator 

seeks to select parents who are more likely to have offspring of the population with 

good fitting values. Selection is a key GA step used for the selection of those 

individual having good fitness value. Chromosomes which have higher fitting values 

are more likely to be picked for reproduction while Individuals with low fitting values 

are ignored because of the disturbance to local optima. Selection of chromosomes for 

reproduction is directly proportional to the fitness value [70]. Along with selection, 

Crossover is an important genetic algorithm operator involved in the pairing of 

parental features during reproduction, and as a result offspring is born, each of which 

contains features inherited from both of its parents. One-point, two-point, or 
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homologous crossover operators exchange genes between two chromosomes. 

Mutation operators are used for the introduction of new individuals to the populations 

and to prevent the loss of important information from the string. It is required to 

ensure population genetic variety by randomly altering one or more individual of a 

given population. Moreover, by altering gene code from 0 to 1 will yield binary coded 

gene [70]. 

Genetic Algorithm (GA) is  population-based stochastic algorithm, which is optimize 

the searching tool for difficult problems on the basis of genetic selection principle 

[86]. It is also use for the purpose of research and development as well as for machine 

learning. The objective is to produce solutions to potential generations. GA 

stimulates the biological evolution process and is founded on genetic inheritance 

and natural selection.[87]. It is used to calculate the fitness of each member of the 

population by employing fitness function. Then, selection, mutations and crossover 

are used to create future populations. [88].  

A genetic algorithm can vigorously change the search process in order to find the best 

possible solution by utilizing the probability of genetic crossing and mutation. GA 

has the power to modify the encoded genes. GA can analyze numerous individuals 

and produce multiple optimum solution. Consequently, GA offers superior worldwide 

search capabilities. The babies resulting from chromosomal exchange between 

parents are likely to destroy the admirable genetic structures and the formula of 

crossover is as follow 𝐾 =
𝐺+2√𝒈

3𝐺
    (1) 

𝐾

= 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑎𝑙𝑙𝑦 𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔, 𝑎𝑛𝑑 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

𝑔 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 

𝐺  =  𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠.[89]. 

• Initially a random population set was generated. 

𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 } … … … . (2) 

𝑝𝑖 = [𝑝𝑖1
 𝑝𝑖2

 ⋯ 𝑝𝑖𝑗
 ⋯ 𝑝𝑖𝑛𝑜−𝑣𝑎𝑟𝑠 

 ]  𝑖 = 1,2, … ,  𝑝𝑜𝑝_𝑠𝑖𝑧𝑒  

𝑗 = 1,2, … ,  𝑛𝑜_𝑣𝑎𝑟𝑠  … … … . (3) 𝑝𝑎𝑟𝑎 𝑚𝑖𝑛
𝑗

≤ 𝑝𝑖𝑗
≤  𝑝𝑎𝑟𝑎 𝑚𝑎𝑥

𝑗
 … … … . (4) 

𝑝𝑜𝑝 𝑠𝑖𝑧𝑒 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 

𝑛𝑜 𝑜𝑓 𝑣𝑎𝑟𝑠 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑡𝑢𝑛𝑒𝑑 

𝑝𝑖𝑗
, 𝑖 = 1,2, … 
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• A fitness function was used to evaluate the features. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓(𝑝𝑖) … … … . (5) 

• Where objective function criterion was not met, a new set of population was 

generated by resetting the algorithm. Genetic operators (selection, mutation and 

crossover) were used to generate the population. 

 

3.2. Machine Learning Models 

In this study Gaussian Process Regression, Artificial Neural Network, 

Ensembled Tree, and Support Vector machine were utilized to create models for 

precisely estimating H2 yield via SCWG of SS based on proximate, ultimate analysis 

and gasification conditions. The ML models in this study were built, trained, and 

tested using MATLAB software. The best possible GPR and Ensembled hyper-

parameters were chosen using the Bayesian optimization method. Figure 11 shows 

the schematics of the machine learning methods. 

3.2.1. Support Vector Machine  

The SVM is a computer-based ML algorithm that is treated for both 

classification and regression tasks [90]. The kernel function is utilized by the support 

vector machine to develop a mathematical correlation amongst input and output in 

both regression and classification problems. The kernel function is very useful when 

the task is difficult as it entails nonlinearities. The kernel function transfers model 

parameters into high-dimensional vector to linearly split variable quantity that are not 

linear in nature in the lower-dimensional vector [91]. For SVM decision processes, 

kernel functions can be defined, and MATLAB enables users to set custom kernels. 

This feature allows SVM algorithm to be used to solve linear classification and 

regression problems without the need for hyperparameter tuning. SVMs have a 

unique ability to provide balanced predicted results, even in studies with small sample 

numbers [92]. The yield of H2 is the optimization goal in this study. The optimization 

of SVM parameters is important for a target–optimization problem. The SVM 

parameter optimization performance evaluation index is first defined, and the optimal 

parameter is then solved by using the MATLAB application [93]. 

Supervised learning technique recognized as a support vector machine (SVM) was 

originally developed for solving classification problems and was then developed for 
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regression problems as well. To distinguish between different sets of data, this 

algorithm is dependent on the formation of a hyperplane in a space with a large (or an 

infinite) dimensionality [94]. To achieve the best separation, the hyperplane should be 

placed as far away from the nearest training data points as possible [95]. In the feature 

space, SVR generates the following linear regression function shown in an equation 

by given feature vectors dataset 𝑥 =  𝑥𝑖  ∈  𝑅𝑃;  𝑖 = 1, , , 𝑛, and a target value 𝑌 ∈

 𝑅𝑛. 

ƒ(𝑥)  = 𝑤𝑇𝜑(𝑥) + 𝑏                (6) 

w ~ weight vector and b ~ bias 

To determine these terms following equations are solved  

𝑚𝑖𝑛 
1

2
𝑤𝑇𝑤 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1        (7) 

Subject to constraints: 

𝑦𝑖 − 𝑤𝑇 Ф(𝑥𝑖) − 𝑏   ≤ 𝜉 +  𝜉𝑖        (8) 

𝑤𝑇 Ф(𝑥𝑖) + 𝑏   ≤  𝜉𝑖 + 𝜉𝑖
∗
 

𝜉𝑖, 𝜉𝑖
∗ ≥ 0 

ξ = error of models away from the hyperplane in which 𝜉𝑖
∗
, ξ depend on whether 

sample below or above the 𝞮 tube, C is the plenty term. The important 

hyperparameters are C and 𝞮,in which small value of C use fodatasetset having  a lot 

of noise.The rediction of SVR by the lagrangian dual technique can be analyzed by 

following equation. 

 ƒ(𝑥) =  ∑ (𝛼𝑖 + 𝛼𝑖
∗)𝑛

𝑖=1 𝐾(𝑥𝑖 + 𝑥𝑗) + 𝑏      (9) 

𝛼 = Lagrang multiplier of dual form, 

K = Kernel function [95]  

𝐾(𝑥𝑖 + 𝑥𝑗) = Ф(𝑥𝑖)
𝑇Ф(𝑥𝑗)                (10) 

3.2.2. Ensembled Learning Tree  

Decision tree is the most widely used machine learning technique, and it is 

built on tree-based models that predict output using logical principles. It creates a 

regression model based on the conditional statement's tree structure and does not rely 

on a preexisting correlation between the input and output features. DT makes 

decisions based on attributes in the dataset to split down data into smaller groupings. 

Decision nodes and leaf nodes are types of nodes present in a network. With the given 

'yes' or 'no' answers, it develops a set of queries including, 'is equal' or 'is greater,' and 
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then meets up with another question to answer. This process continues until all 

questions have been answered, and then result is obtained. The data is repeatedly 

divided into binary segments to grow DT [96, 97]. This process was performed unless 

perfect homogeneity was achieved, or a predefined maximum number of nodes was 

attained. Overfitting is an issue with the DT, as it is with other regression techniques. 

The DT algorithm uses a method called "pruning" to prevent overfitting. Because of 

outliers, pruning is a crucial method to apply in tree building. It also addresses the 

issue of overfitting. Small subsets of instances may exist in datasets that are not 

clearly characterized. Pruning can be used to appropriately categorize them. Pruning 

can be divided into two categories i) online pruning ii) post pruning [96]. 

Multi-decision tree (DT) was used to develop the advanced algorithm known as RF. 

Each DT expands independently after receiving a random set of the input data (also 

known as a bootstrap sample). Even if each decision tree in the random forest is 

regarded as a poor learner, the RF as a whole is able to gain higher levels of expertise 

and precision when they make a prediction collectively. As samples with goal values 

are grouped together, a decision tree iteratively partitions the feature space, (x), using 

a random set of data d(x,y). The data is represented by dm with nm samples at node 

(m). The equation is as follow 

𝑑𝑚
𝑙𝑒𝑓𝑡

 = {(𝑥, 𝑦)|𝑥𝑝  ≤    𝑡𝑚}                    (11) 

𝑑𝑚
𝑟𝑖𝑔ℎ𝑡

   = 𝑑𝑚/𝑑𝑚
𝑙𝑒𝑓𝑡                    (12) 

The data dm is split in to two subsets (𝑑𝑚
left, 𝑑𝑚

right). The candidate split into p and 

𝑡𝑚,in which p is feature and 𝑡𝑚 is thurshold. 

These subsets are rescued until the maximum depth is allowed to be reach. RF 

prediction progression is as follow 

ƒ(𝑥)  =
1

𝐾
  ∑ 𝐷𝐾

𝐾=1 𝑇𝑡(𝑥)                   (13) 

The ensemble learning method is a type of method that integrate many learners with 

specified combination strategies. In comparison to previous black-box algorithms, the 

tree-based ML models are simpler to perceive and understand and can tackle both 

linear and non - linear problems. [98]. The tree ensemble method utilized multi-

objective optimization to produce effective diagnostic rules. Two models are used in 

the proposed method: the base learners, which are used to forecast the posterior class 

probabilities of a sample, and a meta-learner, which is used to predict the label of the 

final class by integrating the basic learners. Model combination and model selection 
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are examined through a different angle during development of model. For an accurate 

and intelligible ensemble, we use a multi-objective approach to model selection in 

order to maximize both accuracy and ensemble complexity at the same time.  The tree 

ensemble method uses the hill-climbing method in order to find a stable set of rules 

and is based on rule selection and rule accuracy [99]. 

 

 

3.2.3. Gaussian Process Regression 

GPR is a Bayesian tool and an effective learning model used for nonlinear 

regression problems. Apart from predicting, this method can also provide the 

coefficient of determination for each prediction point, which measures the forecast's 

uncertainty. Probability distributions may be considered as Gaussian processes. The 

mean and variance of a Gaussian distribution are used to calculate the probability of 

an input vector. The GPR model produces a mean and correlation vector instead of a 

scalar mean and variance [100]. Williams et al. apply GPR to higher-dimensional 

regression problems that have typically been addressed using other approaches that 

include, neural networks and decision trees, with promising results [101]. GPR gives 

a way to adjust the interpolation’s locality directly and quantitatively, which is 

encoded in the assumption of smoothness. 

GPR is a non - parametric, Stochastic attitude towards regression that is used in 

machine learning to determine the probability distribution across all acceptable 

functions.[102]. Gaussian process prior is assumed in GPR, which can be specified by 

using a mean function m(x) and covariance function k (x, x’). GPR assumes a 

Gaussian process prior, which can be described by mean of covariance function k (x, 

x') and function m(x). 

ƒ (𝑥) ~ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′))                  (14) 

During model selection of Gaussian process prior, form of covariance kernel and 

mean function is chosen. There are various options for kernel functions such as 

square, linear, and constant with multiple kernels composition. The kernel 

composition is a constant kernel with the radial basis kernel function which encodes 

the smooth function. Equation used for the Constant times radial basis kernel function 

(RBF) is as  
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𝑘(𝑥, 𝑥/) = 𝜎𝑓
2 𝑒𝑥𝑝(−

1

2𝑙2
‖𝑥 − 𝑥/‖2)     (15) 

There are two hyperparameters of kernel length scale l. and signal variance σ², As we 

conclude that 

GPR has many advantages, including the ability to work with limited datasets and the 

ability to analyze prediction uncertainty. 

 

 

 

 

Artificial Neural Network 

The concept of artificial neural network was originally introduced in the field of 

biology, where neural networks play a key part in the human body. In 1949, Hebb's 

rule—which was founded on theories and observations of the neurophysiologic 

environment—was presented as the first method for training ANNs. Computer 

models called ANN are modeled upon nervous system of living things. They could 

pick up and retain knowledge (information-based). They can be viewed as a group of 

units represented by neurons, linked together by numerous interconnections, and 

operated by synaptic weight matrices and vectors [103, 104]. 

3.2.4. Artificial Neural Network 

ANN are advanced computing technologies that mimic functions to interpret 

data quantitatively through learning and training. The ANN learns and adapts itself 

until it meets the answer by processing data through a complicated network with 

feedback [105]. In Artificial neural network, neurons are the basic building blocks 

Figure 11: Schematics of Machine learning models 



25 
 

which act as a simple controller taking input data from one or more features to 

produce output. There are three main layers in a typical network: input, hidden, and 

output layer. The network's inputs are frequently mapped to its outputs via a directed 

graph with weighted nodes [106]. The input layer receives information, signals, 

features, or assessments from the outer environment. These inputs are typically 

normalized within a training algorithm. This normalization improves the network's 

numerical consistency. The hidden layer neurons pull information about the system. 

Each neuron input has a weight that defines the input's "intensity." A neuron 

multiplies each input by its weight, adds the results for all inputs, and determines the 

output based on the computation and an activation function [107, 108]. 

The human brain itself and already-existing biological neural system concepts were 

used to construct the ANN designs. Artificial neurons are tampered-with copies of 

actual neurons used as processing or calculation units. These ideas were inspired by 

research into how the cell membrane of a neuron generates and enhances electrical 

signals. Activation functions in ANN model are nonlinear, have continuous outputs, 

and perform basic tasks including gathering data from their inputs, merging it in 

accordance with their operational functions, and producing an output based on their 

Inherent activation functions as shown in Figure 12 [109, 110]. 

 

Figure 12: Artificial Neuron 

3.2.4.1: ANN architecture:  

Input layer, hidden layer, and output layers are typically included in ANN models, 

and they are described as follows: 

Input layer: The input layer manages of collecting information from the outside 

environment, such as data, signals, features, or evaluations. Within the parameters of 
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the activation functions, these inputs are frequently normalized. The network's 

mathematical computations are numerically more consistent as a result of this 

standardization. 

Hidden layer: Neurons of the hidden layers are responsible for extracting data about 

the system under inquiry. As much of the network's internal tasks are managed by 

these layers. 

Output layer: This layer, like the levels before it, is called neurons and is accountable 

for generating and presenting the network outputs that are the result of the processing 

carried out by the neuron in the layer before. Given that neurons are interconnected, 

and their layers are undisturbed, the major designs of ANNs can be divided under the 

following categories: Recurrent networks, mesh networks, and feedforward networks 

are the four different types. Networks with a single layer and multiple layers of 

feedforward [111-113] 

 In this ANN architecture, there is only one output layer and one input layer. Figure 

19 depicts a simple layer feed forward network with m inputs and n outputs. 

Information always moves from the source to the destination layer in a single 

direction (hence, unidirectional). As seen in Figure 19, networks using this 

architecture would always have the same set of network outputs as neurons. Solutions 

for these networks typically include linear filtering problems and pattern 

categorization [114]. 
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4. Chapter 4:  

                         Methodology 

4.1. Overview of Methodology 

In this work data for supercritical water gasification of sewage sludge were 

taken, and a machine learning models integrated with Genetic Algorithm was 

developed. Operational parameters include the Proximate, ultimate analysis and 

supercritical water gasification conditions.  

MATLAB was used to import the data from the excel sheet. A single objective GA  is 

utilized to define the importance feature and predict the hydrogen yield. The data set 

was also utilized to train an AI system to predict the hydrogen yield from sewage 

sludge under hypothetical parameters. 

In this work, an GPR-GA model was established to predict the hydrogen yield while 

using the proximate, ultimate and gasification conditions of sewage sludge 

supercritical water gasification. 

The present research's workflow is shown in Figure 13. 

 

Figure 13: Research workflow 
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The objective of using comparative analysis was to determine the best model for 

selecting input parameters and architecture of ML models, ultimately improving 

performance of the prediction model as shown in the Figure 14. 

 

Figure 14:Machine Learning workflow for Optimum coefficient of determination 
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4.2. Data collection 

In the present study, data is collected from comprehensive literature 

assessment of experimental studies reported for Supercritical water gasification 

(SCWG) from SS. The major criteria for the selection of the data included SS, 

Supercritical water gasification, and Hydrogen production. Various keywords such as 

hydrogen yield, supercritical water gasification, machine learning, sewage sludge, 

and biomass were used to search relevant articles in Web of Science, Google Scholar, 

and Science Direct. Following the reclamation of data from related papers, features 

data extraction and categorization were completed to build and test machine learning 

models. The data collection process used is outlined below. 

• A total of 125 hydrogen yield data points were collected from 21 published 

papers [61-63, 115-130]. 

• Data of the samples were taken from gasifier based on sewage sludge 

proximate and ultimate composition and super critical water gasification conditions. 

• Information was taken from related figures, tables, and Supplemental data in 

the literature. 

• Data was collected on biomass proximate and ultimate analysis which 

included carbon, Sulphur, nitrogen, and hydrogen, and oxygen while proximate 

analysis consisted of fixed carbon, moisture content, volatile matter, and ash. 

• Supercritical water gasification temperature, pressure, and residence time 

along with the proximate and ultimate analysis were used as input parameters in the 

super critical water gasification process. 

• Hydrogen yield considered as output parameter of the gasification process. 

• Table 1, 2, 3 show the data distribution of the data all. 
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Table 1: Proximate data distribution 

Parameters Min Q1 Median Mean Q3 Max 

Carbon 7.36 19.50 38.18 31.32 47.7 47.7 

Nitrogen 0.37 2.79 4.67 4.57 5.78 13 

Hydrogen 0.75 2.12 3.40 4.41 4.82 15.50 

Oxygen 4.24 14.27 23.74 24.61 28.3 55.66 

Sulphur 0 0.91 1.05 1.07 1.7 3.34 

 

Table 2: Ultimate data distribution 

Parameters Min Q1 Median Mean Q3 Max 

FC 0.78 4.40 9.41 16.77 45.10 73.02 

VM 23.97 52 61.63 55.81 78.80 78.8 

MC 0.66 79 84 77.38 87.37 97.20 

Ash 2.5 21.5 28.96 36.57 48.7 71.57 

 

Table 3: Supercritical water gasification data distribution 

 

 

  

Parameters Min Q1 Median Mean Q3 Max 

Temp (C)  350 400 420 465.4 450 873 

Time (min) 2.5 6 20 29.18 60 450 

P (MPa) 22.1 24 27 28.4 35 35 
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5. Chapter 5:  

                         Results and discussion 

Taking into account the afore mentioned information discussed in the final paragraph 

of section Literature review while formulating this study, different ML models 

including, Support Vector Machine (SVM), Gaussian Process Regression (GPR), 

Ensembled tree, and Artificial Neural Network (ANN) were used to predict H2 yield 

utilizing SS composition (proximate and ultimate analysis) and gasification 

conditions (temperature, pressure, and residence time). Figure 15 shows that ML 

models take the feed composition and gasification conditions as an input parameter 

that is carbon (C), Sulphur (S), Hydrogen (H), Oxygen (O),  Nitrogen (N), Fixed 

Carbon (FC), Volatile Matter (VM), Moisture Content (MC), Ash Content 

(Ash), Gasification temperature (Temp), Residence time (time) and Pressure (P). 

These input parameters were used for data driven modeling and an optimized model 

is developed which is used for process validation and process prediction. 

The objective of this work is to develop a genetic algorithm (GA) based optimum ML 

model for the prediction and evaluation of H2 yield through SCWG using sewage 

sludge as a feed and to develop an intelligent GA based features selection model with 

improved accuracy in prediction of controlling reaction parameters. Consequently, 

the optimum ML method integrated with GA will be beneficial for researcher to 

predict the H2 yield for the experimental work. For the first objective, ML models 

including support vector machine, ensembled tree, gaussian process regression and 

artificial neural network are used for the prediction of H2 yield. Through genetic 

algorithm, parameters of ML models are tuned and optimized for the better prediction 

function. This integrated approach is applied on the ML models and the optimum 

ML model GPR is selected for the prediction of H2 yield. For the second objective, 

rather than resorting to conventional methods such as filter, and wrapper methods, a 

GA based feature selection model is utilized. The filter method is based entirely on 

correlation between input and output variables rather than cross validation 

performance which can falsely interpret various feature selection. While, in the 

wrapper technique Machine Learning model is educated on each set of the properties 

utilizing predefined classification algorithm to predict a feature with good results. 

However, this method is time consuming, and a model developed on various features 

https://www.sciencedirect.com/topics/engineering/gasification-temperature
https://www.sciencedirect.com/topics/engineering/machine-learning-method
https://www.sciencedirect.com/topics/engineering/gaussian-model
https://www.sciencedirect.com/topics/engineering/classification-algorithm
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might lead to over fitting. On the contrary, GA based feature selection is an advanced 

optimization tool which results in multiple solutions, allowing the selection of the 

best possible solution in a relatively less time. Finally, Graphical User Interface was 

developed, to predict H2 yield, using both optimum features and machine learning 

algorithm with the help of MATLAB. 

 

Figure 15: Process Flow Diagram for Hydrogen Prediction using Machine Learning. 

5.1. Box Plot Presentation 

Box Plot is a technique used to present dataset's distribution. It shows the 

maximum and minimum range, median, mode, tolerance, and lower and upper 

quartiles. Understanding the box plot's structure and origins facilitates the evaluation 

of data and its uses [131]. In box plot presentation, the proximate, ultimate and 

gasification condition were plotted against their distribution as shown in Figure 2. 

Ultimate analysis including Carbon (C), Sulphur (S),  Hydrogen (H), Oxygen (O), 

and Nitrogen (N), were in the ranges of 7.36%-47.7%,0.75%-15.5%, 0.37%-13%, 

4.24%-55.66%, 0%-3.34%, while in proximate analysis which included Fixed Carbon 

(FC), Ash, Moisture Content (MC), and Volatile Matter (VM) ranges from 0.78%-

73.02%, 23.9%-78.8%,0.66%-97.2%, and 2.5%-71.57% respectively. Also, 

Gasification reaction conditions (Temperature (T), Residence Time (Time), and 

Pressure (P)) were ranges from 350-873 0C, 2.5-120 min, 22.1-35 MPa, respectively. 

https://www.sciencedirect.com/topics/engineering/machine-learning-algorithm
https://www.sciencedirect.com/topics/engineering/machine-learning-algorithm
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Box plot presentation is given in Figure 16.  

 

 

Figure 16: Box Plot representation 
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5.2. Performance evaluation criteria 

GPR, SVM, Ensembled tree, and ANN from MATLAB library were pre-

processed using default hyperparameters. Preprocessing techniques were evaluated 

using MSE and R2. To pre-process and deeply model, the datasets were randomly 

divided into training (80%) and testing (20%) datasets. To minimize data wasting and 

overfitting, 5-fold cross-validation was employed to validate the created models. 

Ranges for the hyperparameters tuning were specified from the Regression model 

toolbox of each model and then optimize with the help of GA. These hyperparameters 

were then utilized to build and test models. The average values of the statistical 

indices were utilized to evaluate the validation phase's performance over the 

modelling procedure. 

The following two criteria were used for the prediction performance of each final ML 

model: 1) Root-mean-squared error (RMSE) and 2) Coefficient of determination (R2). 

Following are the R2 and RMSE equations: 

R2 = 1 −
∑ (𝑌𝑖

𝑒𝑥𝑝
− 𝑌𝑖)2

𝑛

𝑖=1

∑ (𝑌
𝑖
𝑒𝑥𝑝

− 𝑌
𝑖
𝑒𝑥𝑝

)2
𝑛

𝑖

                                                                      (16) 

𝑅𝑀𝑆𝐸 = √ 
1

𝑛
 ∑ (𝑌𝑖

𝑒𝑥𝑝
−  𝑌𝑖)

2
𝑛

𝑖=1
                                                         (17) 

𝑌𝑖
𝑒𝑥𝑝 𝑖𝑠 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒,   𝑌𝑖 𝑖𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑎𝑛𝑑 𝑛 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  

𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 

5.2.1. Hyperparameters Tuning 

Parameters selected for tuning from different ML models were specified from 

the regression model toolbox with a 5-fold cross validation and standardized data 

True. Table 4 shows the hyperparameters selected, their ranges and optimized values. 

These hyper parameters were tuned and optimized with the help of Genetic algorithm 

for SVM, GPR and Ensembled Tree. Optimized value for SVM were box constraint 

value of 214.055, Kernel Scale value 432.2483, Epsilon 0.7987, and Kernel function 

of linear. After applying the GA to the ensembled hyperparameters, optimum values 

for Ensembled model hyperparameter are reported as: Number of learning cycle 10, 

Learning rate 1 and Selected method was LSBoost. In GPR, optimized 

hyperparameter after applying genetic algorithm were Sigma 30.2724, kernel function 
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squared exponential, basic function none, and kernel parameters 

[1.017314230722229 3.89396463096418]. Finally, Artificial neural network model 

was trained from the regression model toolbox with optimized hyperparameter values 

of layer sizes [10 10 10], lambda 0, standardized true, and activations Sigmoid. 

 

Table 4: Ranges and Optimized Values for parameters selected 

ML 

Methods 

Parameters Ranges Optimized 

Values 

 

S
V

M
 

Box 

Constraint 

0.001-1000 214.055 

Kernel Scale 0.001-1000 432.2483 

Epsilon 0.0025686 – 256.8569 0.7987 

Kernel 

Function  

Gaussian, Linear, Quadratic, Cubic Linear  

E
n

se
m

b
le

d
 T

re
e Number of 

learning cycle 

10-500 10 

Learning rate 0.001-1 1 

Methods LSBoost, Bag LSBoost 

G
P

R
 

Sigma 0.0001-55.069 30.2724 

Kernel 

Function 

Non/iso-tropic Exponential, Non/iso-

tropic Matern 3/2, Non/iso-tropic 

Matern 5/2 Non/iso-tropic Rational 

Quadratic, Non/iso-tropic Squared 

Exponential,  

Squared 

Exponential 

Basic 

Function  

Constant, Zero, Linear Zero 

Kernel 

Parameters 

0.523-523 1.017314 

3.89396 
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5.2.2. Prediction Performance 

The Hydrogen yield was predicted using different ML models, such as GPR, 

Ensembled Tree, RF, SVM and ANN models. Based on GA-based features selection, 

all five machine learning models accurately predicted the Hydrogen yield. Figure 17 

shows the GPR R2 and RMSE value before feature selection which is 0.94 and 1.39 

respectively. After applying GA based feature selection, R2 value increased up to 

0.997 while RMSE value decreased to 0.093. Means that the irrelevant features were 

present in the models and were removed after applying GA. Comparison of all four 

ML models is listed in Table 5, which shows that the GPR, Ensemble Tree, 

ANN performance was satisfactory as compared to that SVM for hydrogen yield 

prediction. Training and testing coefficient of determination (R2) value for the GPR, 

Ensembled model, ANN were 0.997 and 0.994, 0.943, respectively. while RMSE 

values were 0.093, 0.560, and 1.521 as shown in Figure 18.  The non-linearity of 

hydrogen yield with respect to input features was the root cause of SVM low 

performance in comparison to other ML models. The SVM model performed poorly 

in both training and testing (Training R2 = 0.761 RMSE =2.479, Testing R2 = 0.692 

Testing RMSE = 2.966) compared to performance of other ML models, such as GPR, 

Ensembled Tree and ANN models. GPR model performed better than all other 

models in both training and testing. ML models have been evaluated based on 

coefficient of performance (R2) and RMSE values, the performance trends for 

training and testing as (GPR>Ensembled>ANN>SVM). Table 6 shows the 

experimental yield and GPR predicted yield. 

 

Model Training  

R2 

Testing  

R2 

Training 

RMSE 

Testing 

RMSE 

GPR 0.997 0.963 0.093 0.203 

Ensembled 

Tree 

0.994 0.921 0.560 1.232 

SVM 0.761 0.692 2.479 2.966 

ANN 0.943 0.861 1.521 1.987 

Table 5: Comparison of ML Methods 
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Figure 17: GPR Model before Feature Selection 

 

Figure 18: Comparison of the different ML models with the H2 yield (A) GPR, (B) 

Ensembled, (C) SVM and (D) ANN models. 
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Table 6: Validation of GPR Model 

S.NO Experimental 

Yield 

GPR 

Predicted 

Yield 

Difference References 

1 0.47 0.54 0.07 [116] 

2 9.3 8.68 0.62 [115] 

3 0.22 0.2054 0.014 [132] 

4 0.4872 0.49 0.028 [61] 

5 4.25 4.781 0.53 [122] 

 

 

5.2.3. Features Importance 

GPR model with Shapley method can accurately characterize the relationship 

between input parameters and H2 production. Shapley method works based on the 

magnitude of feature attribution. This was used to evaluate the relative significance of 

different inputs parameters on H2 yield in supercritical water gasification. Figure 19 

illustrates the impact of sewage sludge composition and gasification conditions on H2 

production. The MC, H and Ash contents had a significant effect on H2 yield, 

whereas the effect of C and VM concentrations on H2 yield was minor. MC shows 

high effect on the hydrogen yield because of its high composition as compared to 

other components in sewage sludge.  
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Figure 19: Feature importance of sewage sludge composition and gasification parameters on 

the H2 yield 

 

Gasification conditions Temp, and pressure had a noticeable effect on H2 yield but 

time showed a negligible effect as compared to other gasification conditions. Features 

impacts trends are T>MC>P>time. [133] et al used data of different biomasses, while 

in this work sewage sludge was used as a feedstock, and proximate, ultimate, and 

gasification conditions were used to build a machine learning model with feature 

importance. This study compared the impact on different parameters (H, N, O, C, 

MC, VM, Ash, Temp, Pressure, time) which effect the hydrogen yield prediction. 

 

5.3. Effect of Parameters  

5.3.1. Effect of parameters on Hydrogen Yield 

Partial dependence (PDPs) analysis helps to determine the impact of 

input data variables on output. In the PDPs, only those variables were selected 

which have influence on the output. Selected input parameters influence on hydrogen 

yield are shown in Figure 20. Temperature is one of the key essential determining 

factors for the reaction to occur in supercritical or near supercritical water. Figure 7 

demonstrates the influence of fixed carbon and temperature on sewage sludge 
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supercritical water gasification, Percentage yield of hydrogen shows an 

increasing trend as temperature was raised from 350 C to 760 C as reported by 

[134]. ML models suggest that gasification can be improved by raising the 

temperature as shown in figure 7 (A, B, and C). As a result, the gasification process 

was made more efficient using high temperatures. Hydrogen yield was primarily as a 

result of water-gas shift kinetics and steam-reforming, which were enhanced by high 

temperatures. Due to high temperature, hydrogen synthesis was facilitated. Heating 

the mixture to high temperatures improved gasification. The impact of pressure on 

Supercritical water gasification is difficult to predict. SCWG's key qualities must be 

explored in order to comprehend the impacts of pressure including dielectric constant, 

and density all rise with pressure. Water's ionic reaction mechanisms predominate at 

the critical point (22.1 MPa) due to larger densities than those found at supercritical 

temperatures. As a result, water's ionic product yield increases, speeding up the 

hydrolysis process for breaking down sewage sludge components. According to this, 

ionic reactions are preferred over free radical reactions at high pressures. The trend in 

figure (D), (E), and (F) reveals that at high pressure (30-32 MPa) hydrogen yield is 

optimum. Above the pressure range discussed earlier, little effect of pressure was 

detected on Hydrogen yield reported by [135]. As shown in Fig.7, some of 

the features have a minimal effect on GPR model predictions. According to the data, 

an increase in H2 was recorded with an increase in MC. Increasing time increased H2 

production only for a few minutes, owing to   the water-gas reaction. However, with 

time, the production decreases due to the methanation reaction. 
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Figure 20: Three-way Partial dependence plot for Hydrogen Yield using Proximate analysis 

and Gasification conditions 

 

5.4. Graphical User Interface 

Graphical User Interface (GUI) accepts users to interact with electronic 

equipment utilizing graphical icons, symbols, and user-friendly software with a 

command-driven interface. The GUI presented in this paper allowed users to input 

data of proximate, ultimate composition and gasification conditions. GUI uses the 
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GPR model prediction function to predict hydrogen yield. GUI was developed in 

MATLAB 2021b. Figure 21 illustrates GUI for two different sewage sludge 

composition and gasification conditions in which the proximate analysis (MC 

86.21%, VM 51.51% and Ash 47.29%), ultimate analysis (C 25.93%, N 4.58%, and S 

0.75%), and gasification condition (temp 400 C, P 24 MPa, time 30 min) were 

inserted as an input and model was operated with the help of push button. GUI 

predicted the hydrogen yield as 0.2054  

 

Figure 21: GUI for Hydrogen Yield Prediction 
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Conclusions 
 

Machine Learning models have being used in this research to 

predict hydrogen production from the proximate, ultimate and gasification conditions 

of sewage sludge. In comparison to Ensembled Tree (R2 0.994), ANN (R2 0.943), 

and SVM (R2 0.761), the Gaussian process regression model performed better in 

terms of prediction (R2 0.997). This study provided a more precise and 

understandable method for predicting hydrogen yield from sewage sludge using super 

critical water gasification. The important features for the hydrogen prediction while 

utilizing the GPR model were T > MC>P. At different proximate, ultimate and 

gasification condition the GPR model predicted values and experimental value were 

0.54–0.47, 8.68–9.3, 0.2054–0.22, 0.49–0.487, and 4.781–4.25 mol/kg respectively. 

GPR model suggests that gasification can be improved with high temperature (350–

750 °C), pressure in the range of 30–32 MPa, and high moisture content. 

 

Recommendations 
 

1. The proposed method might be extended to include other chemical 

experimental and industrial processes. 

2. To generate more accurate findings, a deep learning-based technique can 

potentially be implemented into the suggested framework by constructing a big 

database. 

3. The proposed methodology might be extended to some other biomass 

gasification processes. 

  

https://www.sciencedirect.com/topics/engineering/hydrogen-production
https://www.sciencedirect.com/topics/chemical-engineering/neural-network
https://www.sciencedirect.com/topics/engineering/support-vector-machine
https://www.sciencedirect.com/topics/engineering/supercritical-water-gasification
https://www.sciencedirect.com/topics/engineering/supercritical-water-gasification
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