

Selecting Software Development Life

Cycle (SDLC) Models from Requirement

Documents Using NLP

By

Mahira Gul

00000329238

Supervisor

Asst Prof Dr. Yawar Abbas Bangash

A thesis submitted to the Department of Computer Software Engineering, Military

College of Signals (MCS), National University of Sciences and Technology (NUST),

Islamabad, Pakistan, in partial fulfilment of the requirements for the degree of MS in

Software Engineering.

February 2023

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS thesis written by Ms Mahira Gul, Registration No.

00000329238 of Military College of Signals has been vetted by undersigned, found complete

in all respect as per NUST Statues/Regulations, is free of plagiarism, errors and mistakes and

is accepted as partial fulfillment for award of MS degree. It is further certified that necessary

amendments as pointed out by GEC members of the student have been also incorporated in

the said thesis.

 Signature: __

Name of Supervisor: Asst Prof Dr. Yawar Abbas Bangash

Date: __________________

Signature (HOD): __________________

Date: __________________

Signature (Dean): __________________

Date: _________________

i

 Declaration

I, Mahira Gul declare that this thesis titled “Selecting Software Development Life Cycle

(SDLC) Models from Requirement Documents Using NLP” and the work presented in

it is my own and has been generated by me as a result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a Master of Software

Engineering degree in MCS NUST.

2. Where any part of this thesis has previously been submitted for a degree or any other

qualification at NUST or any other qualification at NUST or any other institution this

has been clearly stated.

3. Where I have consulted the published work of others, this is always clearly attributed.

4. Where I have quoted from the published work of others the source is always given.

With the exception of such quotations this thesis is entirely my own work.

5. I have acknowledged all main sources of help.

6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Mahira Gul

00000329238

MSSE27

ii

 Dedication

“Starting with the name of Allah, who is the most Beneficent and the most Merciful.”

I dedicate this thesis to my parents, supervisor, and co-supervisor, who supported and

guided me in each step of this journey of thesis.

iii

Acknowledgments

Firstly, I would like to express my sincere gratitude to my supervisor Dr. Yawar Abbas

Bangash for his patience, motivation, and immense knowledge. His guidance carried me

through all the stages of research and writing this thesis.

My sincere thanks also go to my co-supervisor Lt. Col. Khawir and committee member Dr.

Hammad Afzal who had their continuous support throughout my research and thesis.

Without the guidance of these gentlemen, I would not have been able to conduct this

research.

Last, but not least, I would like to thank my parents and siblings who helped me maintain

the motivation to complete this thesis.

iv

Abstract

The success of software system depends on many factors among which the selection of

most suitable Software development life cycle (SDLC) model is the most significant.

SDLC represents a framework to develop a software system through planning, analysis,

design, implementation, testing, deployment, and maintenance. These activities are carried

out in different series of steps and depend on the context and characteristics of the software

project [1]. In this research, we will provide a view of different SDLC models with their

important factors that need to be considered for their selection. Then we will propose a

system to analyze the software charter document to extract useful information using NLP

techniques like regular expressions. At the end, the most suitable SDLC model will be

recommended for software practitioners to carry out the development process by using

machine learning algorithms. We have applied 11 machine learning algorithms and

achieved the highest accuracy of 90.909% with Naïve Bayes Algorithm.

v

Table of Contents

Declaration...i

Dedication …………………………………………….…………………….…......................ii

Acknowledgements ………………………………………….…………………....…............iii

Abstract ……………………………………….……………………......................................iv

Table of Contents …………………………………..………………………………...............v

List of Figures ……………………………………………………..…………………….....viii

List of Table……………………………………………………..…………………...............xi

Chapter

Introduction ... 1

1.1. Overview .. 1

1.2. Motivation and Problem Statement .. 3

1.3. Objectives ... 3

1.4. Thesis Contribution .. 3

1.5. Thesis Organization.. 4

Literature Review.. 6

2.1. Overview .. 6

2.1.1. Waterfall model: ... 6

2.1.2. Incremental model: ... 7

2.1.3. Evolutionary model: ... 8

2.1.4. Hybrid Model: .. 9

2.2. Selection of SDLC model: ... 11

2.3. Natural Language processing (NLP): ... 13

2.4. NLP in Software engineering: .. 17

vi

Proposed methodology.. 22

3.1. Proposed Architecture: ... 22

3.2. Survey: ... 23

3.2.1. Research Questions: ... 23

3.2.2. Participants: .. 24

3.2.3. Inclusion and exclusion criteria: ... 24

3.2.4. Statistical analysis: ... 24

3.3. Software Project charter: .. 26

3.4. Dataset: ... 27

3.5. Dataset cross-evaluation:.. 29

3.5.1. NCSAEL:.. 29

3.5.2. TechEase: .. 29

3.6. Data in Charter to support SDLC models: ... 30

3.7. Feature Extraction: ... 33

Results ... 40

4.1. Ordinal Encoder: .. 40

4.2. Training dataset: ... 40

4.3. Machine Learning Models ... 41

4.3.1. KNN: .. 41

4.3.2. Gradient Boost classifier: ... 41

4.3.3. SVM: .. 42

4.3.4. Naïve Bayes: ... 43

4.3.5. Random Forest Classifier: .. 44

4.3.6. Ada Boost classifier: ... 45

4.3.7. Linear Discriminant analysis: ... 46

vii

4.3.8. Ridge Classifier: ... 47

4.3.9. Decision tree classifier: .. 48

4.3.10. Light gradient boost classifier:.. 49

4.3.11. Extra Tree classifier: ... 50

4.4. Comparison Table: ... 51

Conclusion and Future work ... 53

5.1. Challenges: ... 53

5.2. Future Work: .. 54

5.3. Discussion: ... 54

5.4. Conclusion:... 55

References ... 56

Appendix A ... 64

Appendix B ... 65

Appendix C ... 66

Appendix D ... 67

Appendix E ... 68

Appendix F.. 69

viii

List of Figures

Fig 1. 1: A detailed block diagram to illustrate the high-level scope and workflow of the

thesis, starting from problem statement to the software development life cycle model

prediction for any project. ... 2

Fig 1.5. 1. Thesis organization in five chapters, comprising of Introduction, Literature

Review, Proposed Methodology, Results, Conclusion and Future work............................4

Fig 2.1. 1: Waterfall Model in which software development is carried out in a linear way

which means one activity needs to be completed before the next activity starts.................7

Fig 2.1. 2: Incremental model in which project is divided into multiple increments with the

goal to complete the most important and core functionality first. 8

Fig 2.1. 3: Evolutionary model in which system is divided into the smaller work products

and the feedback given by customer as well as the change is welcomed. 9

Fig 2.1.4. 1: Prototype and Spiral model as Hybrid model in which customer specify

requirements in each module which is further divided into design, coding, and

testing...10

Fig 2.1.4. 2: V&V and Prototype model in which developers and testers work in parallel to

deliver the high-quality product .. 11

Fig 2.3. 1: A pipeline of Natural language processing tasks that helps to understand human

language in artificial intelligence...16

Fig 3. 1: Overall Architecture diagram of the proposed work in which software charter

documents are fed as an input, then regular expressions are used to extract information

which is stored in excel file along with the user input. After that, machine learning models

are applied to predict SDLC models...22

Fig 3. 2: Software project identification phase, where software project charter creation is

the first activity before proceeding further with the project. .. 26

Fig 3.3. 1: Length of the charter documents in dataset with respect to the number of pages.

Maximum length of 7, minimum 3 and average of 4 pages exist in this

dataset..28

ix

Fig 3.3. 2: Source documents that are referred for the project charter creation where P

stands for Pure dataset, N stands for NCSAEL and O stands for other online resources. 29

Fig 4.1. 1: Confusion matrix to display true labels and predicted labels for KNN, where the

values in diagonal represents the elements that are predicted true by the

classifier...41

Fig 4.1. 2: Confusion matrix to display true labels and predicted labels for Gradient boost

classifier, where the values in diagonal represents the elements that are predicted true by

the classifier. ... 42

Fig 4.1. 3: Confusion matrix to display true labels and predicted labels for Support vector

machine (SVM), where the values in diagonal represents the elements that are predicted

true by the classifier. ... 43

Fig 4.1. 4: Confusion matrix to display true labels and predicted labels for Naive Bayes

algorithm, where the values in diagonal represents the elements that are predicted true by

the classifier. ... 44

Fig 4.1. 5: Confusion matrix to display true labels and predicted labels for Random Forest

classifier, where the values in diagonal represents the elements that are predicted true by

the classifier. ... 45

Fig 4.1. 6: Confusion matrix to display true labels and predicted labels for Ada boost

classifier, where the values in diagonal represents the elements that are predicted true by

the classifier. ... 46

Fig 4.1. 7: Confusion matrix to display true labels and predicted labels for Linear

discriminant analysis, where the values in diagonal represents the elements that are

predicted true by the classifier. ... 47

Fig 4.1. 8: Confusion matrix to display true labels and predicted labels for Linear

discriminant analysis, where the values in diagonal represents the elements that are

predicted true by the classifier. ... 48

Fig 4.1. 9: Confusion matrix to display true labels and predicted labels for Decision Tree

classifier, where the values in diagonal represents the elements that are predicted true by

the classifier. ... 49

x

Fig 4.1. 10: Confusion matrix to display true labels and predicted labels for Light gradient

boost classifier, where the values in diagonal represents the elements that are predicted true

by the classifier. .. 50

Fig 4.1. 11: Confusion matrix to display true labels and predicted labels for Extra Tree

classifier, where the values in diagonal represents the elements that are predicted true by

the classifier. ... 51

xi

List of Tables

Table 2. 1: Literature review of NLP tools, Techniques, and development characteristics

in Software engineering .. 17

Table 3.5. 1: Criteria to select Waterfall model based on project characteristics where

V1, V2 and V3 specifies the characteristic to be Simple, Complex and difficult. 30

Table 3.5. 2: Criteria to select Incremental model based on project characteristics where

V1, V2 and V3 specifies the characteristic to be Simple, Complex and difficult. 31

Table 3.5. 3: Criteria to select Evolutionary model based on project characteristics where

V1, V2 and V3 specifies the characteristic to be Simple, Complex and difficult. 32

Table 3.5. 4: Criteria to select Hybrid model based on project characteristics where V1,

V2 and V3 specifies the characteristic to be Simple, Complex and difficult. 32

Table 3.6. 1: Five supported formats/templates for table header in software charter

document to extract developer experience .. 35

Table 3.6. 2: Sample examples to extract developer experience from Software project

charter document with regular expressions ... 35

Table 3.6. 3: Tables format # 1 that is supported by our code to calculate availability of

team members ... 36

Table 3.6. 4: Table format # 2 that is supported by our code to calculate availability of

team members ... 36

Table 3.6. 5: Features to select SDLC models in excel file with their column no and Data

type .. 38

Table 4.2. 1: Comparison of 11 different Machine learning models based on Accuracy,

Precision, Recall, F1 score and Accuracy score with K-fold cross validation 51

1

Chapter 1

 Introduction

1.1. Overview

Software engineering is an approach to apply systematic procedures in design and

implementation of a quality and reliable software product as per the need of the customers.

The main constraints to consider for developing a software project are time, budget, and

requirements. The project should be on time, within the specified budget and as per the

requirements mentioned by the clients in project scope [45]. To manage a software project,

a proper methodology is needed that helps manager to divide the task and to assign the

roles. Before resource allocation, it is important to understand the project characteristics

and to divide in into different phases. These phases may vary based on the type of the

project. Software development life cycle (SDLC) model is a methodology that is followed

by the project managers to plan and execute a project from start to end. The main phases

of SDLC are requirement identification and analysis, software design, software

implementation, testing, deployment, and maintenance. The model selected by project

manager specifies the sequence of steps carried out in the project development. No one

model is fit for all projects as it varies based on the conditions.

With the advancement in information technology, software applications have now become

a part of everyday life. Millions of applications and software products exist, but still the

success rate is low. One of the many reasons of the failed projects is the inappropriate

methodology being followed by the software companies. With new problems arising these

methodologies evolve from traditional to more iterative methods. At first, the traditional

waterfall model was used for all kind of projects in which the requirements of the project

were collected, analyzed, and locked at the start of the project. Once the requirements are

fixed, the implementation was carried out. No change in the requirements was supported

by this model. Later, with the urge to deliver more quality products and to satisfy end users,

iterative methodologies were introduced to incorporate changes. Over the time, bundle of

SDLC models came into existence. Due to the factor of diversity and multiple

methodologies, it might would have been difficult for the project to select the appropriate

2

methodology for their projects. Using the most suitable SDLC model can help to increase

the success rate of the project and decrease the time and effort needed for the development.

With suitable model, the risks related to the project and uncertainty are minimized and

managed, respectively. Along with this, quality of the project is improved, and project can

be better tracked and controlled.

This research will help analysts to perform documents analysis task more efficiently. For

document analysis, software project charter is selected. To select this document as an input,

we conducted a survey from students and employees working in different software houses

and companies. Based on this survey, we have identified that charter is the first document

that is created at the project initiation phase. Based on this document, the stakeholder and

the project manager specify if the project needs to be carried out or not. So, this research

is the contribution in the field of Software project management where the most suitable

SDLC model will be selected, according to the project characteristics that are derived from

the software project charter.

Fig 1. 1: A detailed block diagram to illustrate the high-level scope and workflow of the

thesis, starting from problem statement to the software development life cycle model

prediction for any project.

3

1.2. Motivation and Problem Statement

In software engineering, one of the major issues is the selection of best SDLC model as it

depends on various factors. It may affect the success of the project as all stages of software

development process are based on the type of model selected. For this, not only a wide

range of knowledge is required, but also the input from experience experts, software

practitioners and developers are considered. This research will help to minimize the manual

efforts and time needed for the prediction of SDLC model. It will focus on text analysis of

charter document to identify the important factors that can aid in this selection process.

1.3. Objectives

Following are the main objectives of this research:

• To process and evaluate Software project charter document to extract useful

information needed for the SDLC model prediction.

• To recommend the most suitable SDLC models based on the extracted project

characteristics.

• To minimize the time and efforts wasted for the manual documents analysis.

1.4. Thesis Contribution

As per the best of our knowledge, no prior work is done by the researchers to extract

features from software project charter, that can help to predict the software development

life cycle model for that project.

The main contributions of this work are stated below:

• We conducted a survey to get experts opinion on the dataset creation. Based on the

survey results, we selected software project document as an input.

• We developed a dataset comprising of 71 software project charter documents. Prior

to this, no dataset for software project charter exists.

• We have cross-verified the dataset from two software houses before

implementation.

• We have worked on information extraction and applied 11 different machine

learning algorithms to compare the results.

4

• Finally, we developed a semi-automatic system to predict SDLC models based on

software charter document.

1.5. Thesis Organization

We have organized our thesis into the following main sections:

Fig 1.5. 1. Thesis organization in five chapters, comprising of

Introduction, Literature Review, Proposed Methodology,

Results, Conclusion and Future work.

• Chapter 1 contains the introduction of the thesis which contains the problem

statement, our contribution in this thesis along with the proposed objectives of

the thesis.

• Chapter 2 contains literature review that is carried out during this research work.

In this chapter, we have included the Software development life cycle models

along with the work done in past to predict suitable SDLC model. The NLP

techniques and ML algorithms that are used in this research are discussed.

5

• Chapter 3 includes the proposed solution and the methodology used to predict

the suitable SDLC model along with the working. The dataset that is used in

this research is also explained in detail.

• Chapter 4 covers the brief description of each ML algorithm and the achieved

results.

• Chapter 5 contains the conclusion of the work done, challenges faced while

working on it, followed by the future work.

6

Chapter 2

Literature Review

2.1. Overview

Software development life cycle (SDLC) model is a methodology that is followed by the

project managers to plan and execute a project from start to end. There are various

approaches of SDLC that exist in the literature. One of them is Traditional models where

sequential series of steps are carried out. These traditional models are linear, rigid, and less

flexible. In Iterative models, all the stages are designed in a way that they shall be revisited

again to adapt any required changes. Some of the important SDLC models are Waterfall,

Agile, V-Model, Extreme Programming, Evolutionary and Incremental [2].

2.1.1. Waterfall model:

Waterfall is a traditional, structural, and static approach in which the development is carried

out in a linear manner. One activity needs to be completed before the next activity starts

which means that one cannot go back to the previous phase as it does not support

overlapping. To make one adjustment, all phases need to be changed, making it more

expensive. It supports extensive documentation and is used in critical projects where

changes are not welcomed, and all the requirements are specified and locked before the

implementation. One of the major disadvantages of this system is that, if the client is not

sure about the system requirements at the start, it does not support amendments and

enhancements [8].

In the first phase of requirement identification and analysis, requirements are collected

from the customers and are refined. These requirements are stored in the repository and act

as an input for the later stages of implementation. In second phase, system architecture

design is created for the actual implementation of the system. Third phase is system

development, where the actual implementation of the project occurs. Software developers

perform unit testing of the modules before the testing of the system occurs in forth phase.

In this phase, software testers check the quality and check if the system is implemented as

per the specifications or not. Test cases are developed to check the functional aspects of

7

the system as per the checklist and to measure expected and actual outcomes. In the last

phase, the system is deployed into the real world for the actuals users. Maintenance is the

last phase; the product maintenance is given by the company. In this phase, the customers

report any problem that is faced by them to the development team, and they fix it. Along

with this, system updates are also included in Maintenance [7].

Fig 2.1. 1: Waterfall Model in which software development is carried out in a linear way which

means one activity needs to be completed before the next activity starts.

2.1.2. Incremental model:

Incremental model is the modification in waterfall model to improve the functionality. In

incremental model, the functionality that is more important, core or that is risky, is

developed first. Project is divided into different increments, combining linear model with

iterative model; thus, risk is also distributed across. In the first increment, the basic and

main requirements are fulfilled. Other supplementary requirements are addressed in the

next increment [5]. The results and feedback of one increment are used as feedback for the

next increment along with the customer’s input. Their involvement can help to identify the

risks in advance as customers perform a detailed review. For incremental project

development, a proper planning is needed and the functionality that is more needed is

8

delivered first. It does not support frequent change in functionalities but accept seldom or

slow changes. Customer involvement is high and complete project is delivered at the end.

It is iterative in nature and can need fewer people at the start of the project [12].

Fig 2.1. 2: Incremental model in which project is divided into multiple increments with the goal

to complete the most important and core functionality first.

2.1.3. Evolutionary model:

Evolutionary model is like iterative model but except it does not expect a product that is

useable for the users in each iteration. Development of the product per iteration is based on

the specified categories instead of the importance of features. If the technology is not well

understood by the practitioners, then this model is preferred. If the requirements are not

well understood at the beginning of the project, then this technology is preferred. With user

involvement and feedback, the system features can be improved. A strong management is

needed in this model as developers are not much sure about the architecture and algorithm

so, it involves high risk [13]. Thus, evolutionary model is used when details of the project

are not well defined and can be understood later based on the basic objectives specified by

the customer. The system is divided into the smaller work products or chunks, and then it

is delivered to the user which in return validates the system. Change is requirements are

welcomed and can be handled well [14].

9

Fig 2.1. 3: Evolutionary model in which system is divided into the smaller work products

and the feedback given by customer as well as the change is welcomed.

2.1.4. Hybrid Model:

Two or more Software development life cycle models are combined to create a Hybrid

model. According to the customer requirements and need, these models can be adjusted.

If we need the combined effect of two models to be implemented in our system, we go for

hybrid model. It can be used for any project, either its small, medium, or large. Following

are the two major SDLC models that can be used together as Hybrid model:

1. Prototype and Spiral model

When there is dependency and requirements are specified in each phase as customer

or developer is new to the market and is unfamiliar with the technology and

software requirements, then this combination of models is used. Customers specify

the requirements per module, and prototype of the first module is created. Testing

is done for that prototype, and after testing, customer approval is needed. Once the

customer approve, design is created followed by development, and testing by the

tester. This process continues till all the modules are developed.

10

Fig 2.1.4. 1: Prototype and Spiral model as Hybrid model in which customer specify

requirements in each module which is further divided into design, coding, and testing

2. Verification and Validation model and Prototype model

This Hybrid model is used when the customer and developer are not much familiar

with the technology, but the customer expects a high-quality product. In it,

developers and testers work in parallel to deliver the high-quality product. In this

model, business needs are recorded in CRS which is then evaluated by tested along

with acceptance testing. This CRS is then converted into a proper SRS document

followed by creating the Prototype designs. Tester will then check SRS document

and make test cases for the system testing. They also prototype to identify bugs if

exists and send back the bug report to the developers. Customers are also involved

here for the review of prototypes. After their approval, High level system design is

generated, and integration testing documents are generated by testing team. In next

step, low level design of the system is created by the developers and reviewed by

testers with functional test cases. Finally, the developer do the implementation per

prototype and perform white box testing before delivering it to the testing team.

This process continues until the prototypes are complete and stable [15].

11

Fig 2.1.4. 2: V&V and Prototype model in which developers and testers work in parallel to

deliver the high-quality product

2.2. Selection of SDLC model:

In literature, various approaches exist to select the most suitable SDLC model based on the

current project characteristics. Kuldeep et al. proposed a rule-based recommendation

system that recommend the most suitable SDLC model based on various product’s

characteristics [3]. Various questions to the developer regarding size, risk, complexity,

standard, reliability, customers, networks, and time are asked to the developer. Production

rules are defined as a set of ‘If…Then’ rules and are stored in rule repository. Another

module of this system is knowledge acquisition module that acquire new rules form the

expert if required. Models that are being discussed by this study are iterative waterfall, XP,

Scrum, RAD, prototyping, incremental and spiral. Based on the answers given by the

12

developer, the system makes recommendation for the best suited SDLC model. This system

is semi-automatic where the input from developer is mandatory for the model prediction.

Mumtaz et al. proposed a method for the selection of suitable Software development life

cycle models using Analytic Hierarchy Process. Different selection criteria’s that can

influence the decision of choosing the most suitable SDLC model are identified. These

factors are set of requirements, development time and cost, changes in requirements and

complexity of the system. At next step, a hierarchical structure of SDLC model

incorporating these factors into Traditional, agile and hybrid models, was presented. After

that a decision matrix is needed to calculate ranking values, and a Binary search tree needs

to be constructed to apply the in-order tree traversal technique to get the prioritized list of

SDLC models. In this method, for pair wise comparison, decisions like which criteria is

more important and should have more value are taken manually [4].

A Alshamrani et al. compared three SDLC models waterfall, spiral and incremental

considering Requirement specification, Time, complexity, change in requirements, cost,

flexibility, simplicity, risk, customer involvement, testing, maintenance, and ease of

implementation [5]. Their strengths, weaknesses and where they should be used is also

discussed. In waterfall model, the requirement specifications are known at the beginning.

They are inflexible, with less customer involvement. This model is inappropriate when the

project is long, complex and where the requirements change frequently. In this model,

Testing is not done frequently, but is carried out at the end. In Spiral model, not all

requirements are known at the beginning. This model is appropriate when the project is

long, complex and where the requirements change frequently. It is a little bit more flexible

than waterfall model. Customer involvement is low, but after each iteration and testing is

done at the end of each phase. In incremental model, not all requirements are known at the

beginning. This model should be used when the project is long, complex and where the

requirements change frequently. It is more flexible than Spiral model. Customer

involvement is high and is after each iteration. In this model, testing is done at the end of

each iteration.

P.M.Khan et al. [6] proposed a selection matrix to choose the best SDLC model for

different Projects. They classified various models under the umbrella of Traditional and

Agile methodologies and identified the risks that can occur due to the wrong SDLC model

https://scholar.google.com/citations?user=7iRxITcAAAAJ&hl=en&oi=sra

13

in business-critical software Projects. They considered Waterfall, 2I-Process models

(Iterative/incremental) and V-Process in traditional models and XP and RUP in Agile

process. A survey was conducted from 59 IT professionals to explore the real-life

experience of management over the wrong selection of SDLC model. Along with this, they

also studied 11 real life projects from various organizations to evaluate right selection of

SDLC model selection and consequences of choosing the wrong one. Based on the

perceived results, decision support matrix was developed to aid in the suitable selection of

SDLC model.

2.3. Natural Language processing (NLP):

Natural language processing (NLP) is an approach of artificial intelligence that is widely

used to extract useful information from plain text documents and raw text [39]. To make

machine understand human language, NLP came into existence. It is widely used in

Artificial intelligence, data mining, information retrieval, Linguistics, and text analysis. It

helps to ease the human computer interaction by learning the syntax and context of natural

language. A quick and efficient information retrieval is possible by natural language

processing techniques and tools from a repository of millions of documents, text and

images. One of the areas where Natural language is mostly used is to perform tasks with

natural language. As natural language is ambiguous, semantic based textual information

retrieval is now also supported by NLP algorithms [48]. Output of NLP systems can be text

as well as image, depending upon the user requirements. Some of the text processing

algorithms used in NLP are Seq2Seq Model, named entity recognition Model, User

preference graph, Word Embedding, Phrase Based Machine Translation, and Neural

Machine Translation (NMT) [47].

Following are the main NLP techniques that are frequently used in text analysis and data

mining.

• Sentence Segmentation definition:

To understand human language better, sentence segmentation is the first step where

whole text, comprising of different paragraphs are broken down into sentences [40].

The breakdown is done by identifying the boundaries between the sentences, which

is mostly the punctuation mark [41].

14

Example:

Paragraph:

Selection of SDLC model is important for the success of the project. No one model

is fit for all types of projects. The choice of SDLC selection varies according to the

characteristics of the project.

Sentence Segmentation:

1. Selection of SDLC model is important for the success of the project.

2. No one model is fit for all types of projects.

3. The choice of SDLC selection varies according to the characteristics of the

project.

• Word tokenization definition:

After the sentence segmentation, the next mostly used step is word tokenization

where the sentence is further split into separate words, referred as tokens. These

tokens are identified by word boundaries instead of sentence boundaries and are

also termed as word segmentation.

Example:

Sentence:

No one model is fit for all types of projects.

Tokens:

“No”

“one”

“model”,

“is”

“fit”

“for”

“all”

“types”

“of”

“projects”

• Stemming definition:

15

Stemming in natural language processing refers to the conversion of a word into its

root word or base form. It helps in analyzing the token to understand what the text

is about to improve indexing and searching. Context or part of speech of the

sentence is not understood by stemming [42].

Example:

Words:

change, changes, changing

Stemming:

chang

• Lemmatization definition:

It returns the lemma, comparing to stemming, which is an actual word. Text with

the same meaning is connected through lemmatization [43].

Example:

Words:

plays, play, playing

Lemma:

play

• Stop words analysis definition:

The words that appear more often or more frequently are of least importance and

are terms as stop words. They are removed from the text to do the processing to the

only important terms.

Example:

Sentence:

Selection of SDLC model is important for the success of the project.

Stop words:

of, is, for, the

• Dependency parsing definition:

This NLP technique is used to analyze how each word in the sentence is related to

the other word. It is done by tree structure named as dependency tree, where a word

can be assigned as a parent term and the relationship of all other terms is identified

[44].

16

• Part of speech tagging definition:

In this approach, each term is assigned the part of speech that is belonged to it, to

understand its meaning.

Example:

Sentence:

Islamabad is the capital and most crowded city.

POS tagging:

Islamabad -> Proper noun

is -> verb

the -> determiner

capital -> noun

and -> conjunction

most -> adverb

crowded -> adjective

city -> noun

Fig 2.3. 1: A pipeline of Natural language processing tasks that helps to understand

human language in artificial intelligence

17

2.4. NLP in Software engineering:

Right requirement engineering led to the right software project development. Different

NLP tools and techniques are used in Software Engineering to extract the elements of

interest, that can help to accelerate and improve the processes. We can classify NLP

approaches into symbolic NLP and statistical NLP.

In Symbolic NLP, deep linguistic analysis is done through algorithms and approaches that

use rule-based systems or semantic networks. Issue of Symbolic NLP is this, that is it is

inflexible to adopt new languages since explicit human handwritten rules are used in it.

They do not work well with unfamiliar inputs also. POS tagger is an example of the NLP

tool that is based on Statistical NLP.

In Statistical NLP, a large linguistic corpus is used along with various Machine learning

algorithms. It is simple, robust and helps to develop probabilistic model. As these models

learn through data and trained over the large set data so they produce good results NLP can

solve the issues in requirement specifications that are ambiguous, unnecessarily

complicated, missing, wrong, duplicated, or conflicting. In this regard, researchers have

proposed different NLP tools, libraries and techniques that improve Software engineering

processes. Table 2.1 shows how different practitioners use NLP in various Software

engineering phase.

Table 2. 1: Literature review of NLP tools, Techniques, and development characteristics in

Software engineering

Sr.

No

Research

paper’s

name

Observations NLP

Techniques

Development

1 Generating

UML Class

Diagram

from

Natural

Language

Requiremen

-Aids in requirement

analysis and Design.

-Create UML class

diagram from textual

requirements using Natural

Language processing,

Sentence

Tokenization,

Word

Tokenization,

stop words

removal,

System Name:

Requirement

engineering

analysis and

design (READ)

Language:

Python

18

ts: A Survey

of

Approaches

and

Techniques

historic rules, and domain

ontology techniques.

-Class diagram generated

as a result includes class

name, attributes, methods,

and relationships [16].

Stemming, POS

Tagging

IDE: Visual

Studio

Library: NLTK

GUI: Tkinter

library

2 A Novel

Framework

to

Automaticall

y Generate

IFML

Models from

Plain Text

Requiremen

ts

-Automate the

development of Interaction

Flow Modeling Language

(IFML) models.

-IFML Domain and Core

models are generated from

initial plain text

requirements by using

NLP.

-Identified set of rules to

obtain important elements

and information from the

requirement document

[17].

POS Tagging,

sentence

splitting,

tokenization.

Tool name:

Text to IFML

(T2IF)

IDE: Visual

Studio

Language:

C#

Database:

SQL Server

2008

Framework:

SharpNLP

Library:

Regular

expression

library

3 Generating

UML Class

Diagram

using NLP

Techniques

and

-Generate class diagram

from Software

requirements

Specifications

-Classes, attributes,

methods, association,

aggregation, composition,

Sentence and

Word

Tokenization,

POS Tagging,

Lemmatization

and Stemming,

Parse Trees and

Framework/To

ol: Stanford

CoreNLP

Library: NLTK

19

Heuristic

Rules

dependency, and recursive

relationships are extracted.

-Use NLP and set of

heuristics.

-Reduce cost and time

required for manual and

design processes [18].

Type

dependencies,

Open

Information

Extraction

4 SDLC Model

Selection

Tool and

Risk

Incorporatio

n

-This tool consists of two

main components.

-The first component is

called “Comparison metric

generation”, in which past

organization’s projects

data is used, SDLC model

are derived and then a

comparison metric is

generated.

-The second component is

called “SDLC Model

selection”, that fetch the

project priorities, calculate

score of SDLC models and

then select suitable SDLC

model [19].

Not specified Not specified

20

5 Identifying

Non-

functional

Requiremen

ts from

Unconstrain

ed

Documents

using

Natural

Language

Processing

and Machine

Learning

Approaches

-Automatic approach to

identify and classify five

Non-Functional

Requirements from

Software Requirement

documents.

-NLP techniques and ML

algorithms are used with

semantic and syntactic

analysis.

-CNN Approach and Word

embedded models are best

among others for NFR

identification/classification

and requirement sentence

representation,

respectively.

-Classification accuracy

can be improved by the

fusion of multiple NLP

techniques [20].

Tokenization,

Punctuation

Removal, Stop

word Removal,

Case folding,

Parts of Speech

tagging(POS) ,

Lemmatization,

TF-IDF,

Word2Vec,

BERT

Library: NLTK

Dataset: PURE

Environment

Cloud service:

Google Colab 9

Pro-Language

Python 3.7

In IT industry, the skilled and experience software project managers and developers are

costly human resources and dependency on such resources should be less. One way to cope

with this factor and to save cost is a step towards automation of various tasks related to

Software engineering. Globalization of the IT industry has increased the pressure on

business enterprises [55]. Over the past few years, the demand of minimum time spent on

manual processing and analysis of the requirement documents is of great importance in the

IT industry. There is a strong need for the techniques that use different levels of detail in

the requirement specification to bring out the required results.

21

In software engineering, one of the major issues is the selection of best SDLC model as it

depends on various factors. It may affect the success of the project as all stages of software

development process are based on the type of model selected [56]. For this, not only a wide

range of knowledge is required, but also the input from experience experts, software

practitioners and developers are considered. This research will help to minimize the manual

efforts and time needed for the prediction of SDLC model. It will focus on text analysis of

available documents to identify the important factors that can aid in this selection process.

This research will also be a good step towards automation and will help software

practitioner in decision making process. It will also produce the initiative among graduates

to produce and develop expert systems that can help to catch up the pace with rest of the

world in software engineering domain.

22

Chapter 3

Proposed methodology

3.1. Proposed Architecture:

We have divided this project into the four major sections. The first section is document

selection for input. For this purpose, we have conducted an online survey from software

practitioners and researchers. The result of this survey is used in the second section which

is the dataset generation. At this section, 71 software charter documents are created

manually. The third section is information extraction, where python language is used for

the required data extraction from the dataset. The last section is for training different

Machine learning models on the dataset. The broader overview of the project is specified

as follows: The system will take software project charter as an input. Tokenization is

performed to split the document into sentences and regular expressions are applied to

extract the characteristics needed. After that, those extracted information is fed into the

excel file along with the expert input. Different Machine learning algorithms are trained

over it to predict most suitable SDLC model for the Project.

Fig 3. 1: Proposed Architecture diagram of the proposed work in which software charter

documents are fed as an input, then regular expressions are used to extract information

which is stored in excel file along with the user input. After that, machine learning

models are applied to predict SDLC models.

23

3.2. Survey:

To select which document should be considered as an input, we have conducted a survey

from students and employees working in different software houses and companies. This

was an important step as, as per the best of our knowledge, no literature exists where the

researchers have specified the document that should be created before SDLC model

selection. This selection process in still done manually by organizations even with the

excessive documentation. As documentation is mandatory for a successful software

project, it is also important to consider a document as a base for SDLC model. That

document will be helpful to extract project characteristics based on which the selection of

model depends. The survey that we have conducted was solely for research purpose and a

brief description of the project was also specified in it.

3.2.1. Research Questions:

We prepared a survey form, comprising of 5 questions that we asked from the Software

experts and the students of software engineering field. The detail of each question is stated

as follows:

• Profession

- Student

- Employee

• Company/ Institute name

• Email

• Company's CMM Level (Software Capability Maturity Model)

- CMM Level 1

- CMM Level 2

- CMM Level 3

- CMM Level 4

- CMM Level 5

- Not specified

Note: Leave this part if you are filling this survey as a student

• Which document/documents do you consider before selecting any particular SDLC

model for your Project?

24

- Software project charter

- Domain Analysis Document

- Feasibility Study

- Scope Document

- Risk Management Plan

- Stakeholder Analysis Document

- Business Requirement Document

- Cost Benefit Analysis document

- Concept note.

- Software project plan.

3.2.2. Participants:

The total of 84 participants were involved in this research, out of which 46 participants

were students with the major of software engineering and 38 responses were collected from

the employees of different software houses. We have collected this data by creating the

online survey in Google forms and distributed it across different online channels including

Facebook, WhatsApp, Instagram, and LinkedIn.

3.2.3. Inclusion and exclusion criteria:

We have included only those participants in this research who have an IT background. The

survey form is distributed among students and researchers who are enrolled in the

discipline of Software engineering, computer science, Information technology or computer

engineering, in a reputed university.

Secondly, we have distributed it across the employees who are working in any software

house or are a part of any IT project. All other individuals and professionals are excluded

from this study.

3.2.4. Statistical analysis:

The data from the google forms was exported in .xlxs file. Then we used excel tools and

techniques to generate graphs. Some of the graphs are directly exported as image from the

from the Summary section in google forms.

According to the data analysis, 45.2% of the responses were collected from Employees,

working in different software houses across Pakistan and 54.8% of the responses are

25

collected from the students of different reputed universities. The response is illustrated in

Appendix A.

45 responses were collected from the companies regarding Software capability maturity

model level of their organization. In 48.9% of the companies, CMM is not specified, or the

employees are unfamiliar with it. 8.9% of the companies are at CMM level 1, 6.6% of the

companies are at CMM level 2, 17.8% of the companies are at CMM level 3, 8.9% of the

companies are at CMM level 4 and 8.9% of them are at CMM level 5. The response is

illustrated in Appendix B.

For the main question for which we conducted this survey that which document should act

as input for SDLC model for your project, we received 84 responses. 77.4% of the

participants believe that Software project charter should be the document that we should

consider for selecting SDLC model. 20.2% selected Domain analysis document, 32.1%

voted for Business requirement document,34.5% of them selected Scope document, 31%

selected Risk management plan, 40.5% preferred software project plan, Feasibility study

was selected from 29.8% of the respondents, 25% of the participants selected Cost benefit

analysis document, and 11.9% of them went with concept note. Most of the people selected

Software charter document, so we selected it as a base document. The detailed illustration

of the response from this survey question is shown in Appendix C.

To make our survey more helpful and realistic, we took the response of just employees and

filtered out the responses of students. The reason of applying this filter was to get the

response from the people who are working in IT industries, instead of the people who are

a bit naïve to the practical work. 81.5% of the Employees suggested to take software charter

documents as an input to the SDLC model selection process. 26.3% of them agreed on

Domain analysis document, 31.6% selected Feasibility Study, 44.7% of them selected

Scope Document, 26.3% of them selected risk management plan, 36.8% of them selected

Stakeholder analysis document, 39.5% of them selected the business requirement

document, 26.31% of them selected the cost benefit analysis document, 7.8% of them

selected the concept note and 34.2% of the experts selected software project plan.

According to this statistic, the document with the major outputs was also software project

charter. The bar graph representing these values is shown is Appendix E.

26

3.3. Software Project charter:

Based on the studies and survey results, Software project charter is selected as an input

document for SDLC model selection. The first phase to start any project is Identification

phase [22]. In this phase, business problem is stated, and opportunities are identified in a

project charter. Project charter and Risk matrix are the two main deliverables of Project

charter activity in the first phase, after project charter is developed, the Stakeholder analysis

and Project plan are created simultaneously.

Fig 3. 2: Software project identification phase, where software project charter creation is

the first activity before proceeding further with the project.

Software Project charter is the high-level document with the project overview which states

what needs to be done in a project, why it should be done and how it will be done. Business

case of the Project is also presented in it. Project charter helps to make it clear to the

business developers and sponsors to have a view on the project goal dates, its estimated

cost and other important factors before proceeding forward [21]. All the stakeholders agree

on the project on this charter document. It is different from project plan where the project

and its characteristics, resources and estimations are specified in detail. Charter is created

at the start of the project and is not changed through out the project unless al stakeholders

are agreed to. It is a foundation to structure and kickoff any software project [46].

27

Some of the main elements of project charter are:

• Project name

• Purpose of the project

• Project Team

• Roles and Responsibilities

• Project sponsor

• Project scope

• Objectives of the project

• Goals of the Project

• Milestones

• Project completion date

• Cost assumptions

• Communication plan

• Approval from stakeholders

3.4. Dataset:

This dataset consists of Software charter documents that are used as basis to start a new

project. The dataset is created from the public Software requirements related documents

that are open to use and are available online. We extracted Software scope documents,

Software requirement specification documents (PURE Dataset) and some documents are

collected from the NCSAEL (Cyber security research lab, Military college of Signals,

NUST). Then we convert those documents into Software charter document. We collected

71 requirement documents after all the research and created our dataset of pdf files.

This dataset can be used in various Natural language processing, Software project

management, and Software Requirement engineering tasks. We have included multiple

domains in this dataset and different project charter templates. We do not claim that we

have used all the documents that are there in PURE dataset [9]. The characteristics that are

needed to select most suitable SDLC model are filled by referring to the work done by

Linda C. Alexander et al. who presented a criterion that aids to select most suitable software

development life cycle model [10].

Some statistics on the content are stated as follows:

28

• Name: Each document is identified by the unique name given to it

• Number of pages: Number of pages per document are shown in Figure.1. The

document with a greater number of pages is 7 and we have minimum of 3 pages.

Average no of pages is 4.

Fig 3.3. 1: Length of the charter documents in dataset with respect to the number of

pages. Maximum length of 7, minimum 3 and average of 4 pages exist in this dataset.

• Language: As requirements are expressed in Natural language, so the language of

this dataset is English in compliance with the domain specific acronyms.

• Format: The document in this dataset is in both word and pdf format, with the .docx

and .pdf extension, respectively. For this project, we used documents with .pdf

extension.

• Source: It indicates from what source the base document is the retrieved, based on

which the new dataset is created. Letter P indicates the Pure dataset, letter N

indicates NCSAEL, and letter O indicates other online resources.

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

29

Fig 3.3. 2: Source documents that are referred for the project charter creation

where P stands for Pure dataset, N stands for NCSAEL and O stands for other

online resources.

3.5. Dataset cross-evaluation:

We performed dataset evaluation from two software houses before working on the project.

They checked the project characteristics, their values and model predictions based on those

project characteristics. The proof of dataset evaluation is attached for reference.

3.5.1. NCSAEL:

NCSAEL is a cyber security lab that is sponsored by Planning Commission and Higher

Education Commission of Pakistan. We have contacted Maliha Safdar, who is working as

a team lead and got our dataset verified. She checked the characteristics that we have used

as an input and verified the output model per characteristic. This helped us to use

supervised learning algorithms at our dataset.

The certificate of verification by NCSAEL is attached in Appendix E.

3.5.2. TechEase:

TechEase is a computer software company, providing services since past 6 years. We have

contacted Allaudin, who is working as a Chief Technology officer in TechEase and got our

dataset verified. He checked the characteristics that we have used as an input and verified

68%
1%

31%

P N O

30

the output model. This helped us to use supervised machine learning models at our dataset.

The certificate of verification is attached in Appendix F.

3.6. Data in Charter to support SDLC models:

We refer the work done by Alexander et al. to define the criteria on the basis of which a

practitioner can choose the most suitable Software development lifecycle model for their

Project [10]. They identified the following criteria for SLDC model selection where V1,

V2 and V3 specifies Simple, complex, and difficult for Problem complexity, Seldom, Slow

and Rapid for Frequency of change, Small, Large and medium for Project size and so on.

For Waterfall model:

In waterfall model, one activity needs to be completed before the next activity starts which

means that one cannot go back to the previous phase as it does not support overlapping.

Entry 1 means, for that value and characteristic against it, the project model is suitable and

0 means the SDLC model is in-appropriate for that entry. Factors that are necessary to

consider for selecting Waterfall model are specified in the Table 3.5.1.

Table 3.5. 1: Criteria to select Waterfall model based on project characteristics where

V1, V2 and V3 specifies the characteristic to be Simple, Complex and difficult.

Criteria V1 V2 V3

Problem Complexity 1 0 0

Frequency of change 1 0 0

Product size 0 0 0

Interface requirements 1 0 0

Funds availability 0 0 0

Staff availability 0 0 0

Time schedule 1 1 0

Developer experience 1 1 1

31

For Incremental model:

In incremental model, the functionality that is more important and core or that is risky, is

developed first. This model divides the project into different increments. Entry 1 in the

table means, for that value and characteristic against it, the project model is suitable and 0

means the SDLC model is in-appropriate for that entry. Table 3.5.2 specified the factors

that are necessary to consider for the selection of incremental model.

Table 3.5. 2: Criteria to select Incremental model based on project characteristics where

V1, V2 and V3 specifies the characteristic to be Simple, Complex and difficult.

Criteria V1 V2 V3

Problem Complexity 1 1 0

Frequency of change 1 1 0

Product size 1 1 1

Interface requirements 1 1 0

Funds availability 0 1 1

Staff availability 0 1 1

Time schedule 1 1 0

Developer experience 0 1 1

For Evolutionary model:

In Evolutionary model, development of the product per iteration is based on the specified

categories instead of the importance of features. Entry 1 in the table means, for that value

and characteristic against it, the project model is suitable and 0 means the SDLC model is

in-appropriate for that entry. Factors that are necessary to consider for selecting

Evolutionary model are specified in the Table 3.5.3.

32

Table 3.5. 3: Criteria to select Evolutionary model based on project characteristics where

V1, V2 and V3 specifies the characteristic to be Simple, Complex and difficult.

Criteria V1 V2 V3

Problem Complexity 1 1 1

Frequency of change 1 1 1

Product size 1 1 1

Interface requirements 1 1 1

Funds availability 1 1 1

Staff availability 1 1 1

Time schedule 1 1 1

Developer experience 0 1 1

For Hybrid model:

Hybrid model is the combination of two models. Entry 1 in the table means, for that value

and characteristic against it, the project model is suitable and 0 means the SDLC model is

in-appropriate for that entry. Factors that are necessary to consider for selecting Hybrid

model are specified in the Table 3.5.4.

Table 3.5. 4: Criteria to select Hybrid model based on project characteristics where V1,

V2 and V3 specifies the characteristic to be Simple, Complex and difficult.

Criteria V1 V2 V3

Problem Complexity 1 1 1

Frequency of change 1 1 0

Product size 0 0 0

Interface requirements 1 1 1

Funds availability 0 0 0

Staff availability 0 0 0

Time schedule 1 1 1

33

Developer experience 0 1 1

3.7. Feature Extraction:

Once the dataset is generated, the next step is feature extraction from pdf files. Natural

language processing (NLP) is used along with the Regular expressions to extract the

elements of choice. We have extracted the following characteristics:

Month calculation:

We focused on three main formats to calculate the total no of months required to complete

any project.

Syntax 1: If the time is specified in months.

This supports the words that end with any of the following words (month, months, months.,

month.)

Following can be some of the possible sentences that can match this regular expression:

• The project will be finished in 3 month

• The project will be finished in 14 months

• The project will be finished in 14 months.

• The project will be finished in 3 month.

• The project will be completed in 3 month

• The project will be completed in 14 months

• The project will be completed in 14 months.

• The project will be completed in 3 month.

• The project needs 3 month to finish.

• The project needs 14 months to finish.

• Total time required for this project is 14 months

• Total time required for this project is 14 months.

• Total time required for this project is 3 month.

• Total time required for this project is 3 month

• This project has the total duration of 14 months

• This project has the total duration of 14 months.

• This project has the total duration of 3 month.

34

• This project has the total duration of 3 month

• For this project, 14 months are required.

• For this project, 3 month is required.

Syntax 2: If the project starts and end date is specified.

For start date, it supports the words like start on, start at, starts on, and starts at. For end

date, it supports the words like finish on, finish in, finished on, finished in, complete on,

and complete in.

Some of the possible formats are:

• The project will start on 18/06/2020 and will finish on 18/04/2022.

• The project will start on 18/06/2020 and will finish in 18/04/2022.

• The project will start on 18/06/2020 and will be finished on 18/04/2022.

• The project will start on 18/06/2020 and will be finished in 18/04/2022.

• The project will start on 18/06/2020 and will be complete in 18/04/2022.

• The project will start on 18/06/2020 and will be complete on18/04/2022.

• The project will start at 18/06/2020 and will finish on 18/04/2022.

• The project will start at 18/06/2020 and will finish in 18/04/2022.

• The project will start at 18/06/2020 and will be finished on 18/04/2022.

• The project will start at 18/06/2020 and will be finished in 18/04/2022.

• The project will start at 18/06/2020 and will be complete in 18/04/2022.

• The project will start at 18/06/2020 and will be complete on18/04/2022.

• The project starts on 18/06/2020 and will finish on 18/04/2022.

• The project starts on 18/06/2020 and will finish in 18/04/2022.

• The project starts on 18/06/2020 and will be finished on 18/04/2022.

• The project starts on 18/06/2020 and will be finished in 18/04/2022.

• The project starts on 18/06/2020 and will be complete in 18/04/2022.

• The project starts on 18/06/2020 and will be complete on18/04/2022.

• The project starts at 18/06/2020 and will finish on 18/04/2022.

• The project starts at 18/06/2020 and will finish in 18/04/2022.

• The project starts at 18/06/2020 and will be finished on 18/04/2022.

• The project starts at 18/06/2020 and will be finished in 18/04/2022.

35

• The project starts at 18/06/2020 and will be complete in 18/04/2022.

• The project starts at 18/06/2020 and will be complete on18/04/2022.

Calculate Experience:

For this, we need developer experience. The words use for Resources can be Software

developers, Senior developer, Senior Programmer, Junior developers, Junior Programmer,

Developer, and Programmer.

It supports the five table header formats from where information can be extracted which is

specified in the Table 3.6.1.

Table 3.6. 1: Five supported formats/templates for table header in software charter document to

extract developer experience

Resources Required Average Experience

Resources Required Average Experience in years

Role Average Experience

Roles Experience (in years)

Roles Experience

Some of the possible formats with examples are shown in Table 3.6.2:

Table 3.6. 2: Sample examples to extract developer experience from Software project charter

document with regular expressions

Resources Required Average Experience

Software developers 13 years

Resources Required Average Experience in years

Software developers 11

Role No of resources

Senior Programmer 10

Junior Programmer 7

Role Average Experience

Senior developer 10 years

Junior developers 7 years

36

Roles Experience (in years)

Developer 10 years

Roles Experience

Programmer 10

Calculate team members availability:

Table 3.6.3 and table 3.6.4 specify the header formats that are supported by the project to

calculate team members availability.

For example, the total number of team required in this case is 78.

Table 3.6. 3: Tables format # 1 that is supported by our code to calculate availability of team

members

Resources Required No of resources Average Experience

Software developers 35 21 years

Software Tester 23 03 years

Software Analyst 10 05 years

Quality Assurance Lead 5 02 years

Training Leader 5 04 years3

Total number of team members required in this case are 21.

Table 3.6. 4: Table format # 2 that is supported by our code to calculate availability of team

members

No. Role Average

Experience

Personals Responsibility

1 Project Manager 11 years 1 Lead the project

2 Senior Programmer 6 years 4 Will do coding

3 Junior Programmer 4 years 7 Will do coding

4 Software Architect 3 years 3 Will design the

system

5 Quality assurance

engineer

3 years 2 Ensure quality

6 Software analyst 7 years 4 Analyze the system

37

Cost:

It supports any number followed by the word lac or lacs. Some of the possible supported

lines are:

• The project needs 12 lacs to finish.

• The approved budget for the Project is 82 lacs

• Total budget of the Project is 86 lacs.

• Total specified budget for the project is 8 lac.

• The cost to complete and deploy this project will be 22 lacs.

• According to the Estimate, The Overall cost of the Project is 20 lacs which

involve the cost of human resources, development cost and other required

material cost.

After the required features are extracted from this dataset, our system will generate a

dataset.xlsx file which contain different projects along with their extracted features in the

Excel file. This document will consist of 6 columns which are stated as below:

• Column 1: This column consists of Project name from which the project

characteristics are extracted. Datatype of this column in categorical.

• Column 2: This column contains the Time schedule which is categorized as Short,

Enough and Plenty. It is extracted as numeric datatype from the pdf (Number

months =3). After that, it is converted to either of the category. The project which

requires <6 months are categorized as Short, the project with the duration in

between 6-12 months are categorized as Enough and the project with >12 months

duration is categorized as Plenty [11].

• Column 3: This column contains Developer Experience in years. Developer can be

either Software developers, Senior developer, Senior Programmer, Junior

developers, Junior Programmer, Developer, or Programmer. It is divided into the

the categories of 1-5,5-10 and 15+ and its data type is numerical.

• Column 4: This column contains availability of staff members, with numeric data

type. The Staff members are categorized as 0-10, 10-50 and 50+ employees. These

employees include Project managers, developers, Software quality assurance

38

engineer, Tester, Testing lead, Project lead, System analyst or any other member

involved in the project.

• Column 5: This column contains project size, which is classified as small, medium,

and large. The data type of this column is categorical.

• Column 6: This column contains the extracted information of the funds available

for the Project. These funds are divided into three ranges, 1-10, 10-30 and 30+ lacs.

Datatype of this field is Numeric.

Once these features are extracted, we will add the user input. User can be project

manager, senior software developer or project lead. The characteristics that are needed in

by the user per software project are:

• Problem complexity specifies the degree of complexity of the project. It can be

either simple, complex, or difficult, based on the Project scope. The datatype of

this column is categorical.

• Frequency of changes specifies the degree of extend to which the problem might

change in the future. It can be categorized as seldom, slow, and rapid and its

datatype is Categorical.

• Interface requirements specifies whether the user interface is heavy or simple to

use. Interface requirements can be minor, significant, critical and its datatype is

Categorical.

After that, some preprocessing is done before applying Machine learning models. The

document name column is deleted, and other columns are re-arranged. The final excel file

before the ML implementation contains the information specified in the Table 3.6.5.

Table 3.6. 5: Features to select SDLC models in excel file with their column no and Data type

Column no Data/Parameters Data type

1 Time schedule Categorical

2 Developer Experience Numeric

3 Problem Complexity Categorical

4 Frequency of change Categorical

39

5 Project Size Categorical

6 Interface requirements Categorical

7 Funds Numeric

8 Availability of staff members Numeric

9 Model Label

40

Chapter 4

Results

4.1. Ordinal Encoder:

As our dataset contained categorical features, so they need to be converted into the

numerical columns for scikit-learn classifiers to work. With string data, machine learning

models tries to find any hierarchical relationship or preference and lead to the

misinterpretation [49]. So, we have applied Ordinal encoder to convert our categorical data

of Time schedule, Problem Complexity, Problem Complexity, Project Size, and Interface

requirements in numeric form [50].

Sample dataset:

Short 8 Simple Seldom Large Minor 82 69

Short 20 Simple Seldom Small Minor 86 37

Enough 8 Simple Seldom Small Minor 62 43

Dataset after Ordinal Encoding at first three column:

[‘0’, ‘8’,’0’,’0’,’2’, ‘0’,’82’,’69’],

[‘0’,’20’,’0’,’0’,’0’,’0’,’86’,’37’],

[‘1’,’8’,’0’,’0’,’0’,’0’,’62’,’43’]

In the above example, the first column which specifies Project time had the categorical

values. After one hot encoding, value 0 is given to Short, 0 to Simple, 0 to Seldom, 2 to

Large, and 0 to Minor. We applied the same technique to other column values as well.

4.2. Training dataset:

We split our dataset into training and testing data. The ratio of train, test split is 70:30

where 70% of the data is used for training and 30% of data is used for testing. For splitting,

we used train_test_split library from sklearn.

41

4.3. Machine Learning Models

4.3.1. KNN:

K-Nearest Neighbors algorithm is used for classification and regression problems and is a

nonparametric method with lazy learning. K closest examples in each space are used as an

input for a given N training vectors and neighbors are those objects with the closest or same

value. Distance function is used so each feature needs to be scaled in a same way and

Euclidean distance between two points are calculated with the following formula:

d(X, Y) = √(a1-a2)2+(b2-b1)2

Its performance mainly depends on training set [24]. Our accuracy at this model is 77.27%.

Misclassified sample in this algorithm are 4. Figure 4.1.1 shows the confusion matrix of

KNN with predicted and true labels.

Fig 4.1. 1: Confusion matrix to display true labels and predicted labels for KNN, where the

values in diagonal represents the elements that are predicted true by the classifier.

4.3.2. Gradient Boost classifier:

It contains a group of Machine learning algorithms that combine different machine learning

model to improve the strength. “Sklearn” machine learning library is used to implement

this algorithm. A weak hypothesis is chosen to make tweaks repeatedly to change it to a

strong model. It reduces the loss [25]. We got the accuracy of 86.363% in our problem by

42

using Gradient Boost classifier. Misclassified sample in this algorithm are 3. Figure 4.1.2

shows the confusion matrix of Gradient boost classifier with predicted and true labels.

Fig 4.1. 2: Confusion matrix to display true labels and predicted labels for Gradient boost

classifier, where the values in diagonal represents the elements that are predicted true by the

classifier.

4.3.3. SVM:

Support vector machine (SVM) is used for classification, regression and to detect outliers.

It supports both binary as well as multiclass classification [26]. Decision boundary is

created by SVM to segregate classes into n-dimensional space Extreme points, also known

as support vectors, are used to create the best decision boundary which is known as

hyperplane [27].

While using Support vector machine at our dataset, we got the accuracy of 77.272%.

Misclassified sample in this algorithm are 6. Figure 4.1.3 shows the confusion matrix of

Support Vector Machine with predicted and true labels.

43

Fig 4.1. 3: Confusion matrix to display true labels and predicted labels for Support vector

machine (SVM), where the values in diagonal represents the elements that are predicted true by

the classifier.

4.3.4. Naïve Bayes:

It is the most used algorithm in data mining that is used for classification problems. It

assumes that one feature that exists in the class is independent of the other features [23].

At out dataset, Naïve Bayes got the accuracy of 90.909%. Misclassified sample in this

algorithm are 4. Figure 4.1.4 shows the confusion matrix of Naïve Bayes with predicted

and true labels.

44

Fig 4.1. 4: Confusion matrix to display true labels and predicted labels for Naive Bayes, where

the values in diagonal represents the elements that are predicted true by the classifier.

4.3.5. Random Forest Classifier:

Random forest classifier is used for classification, prediction, and regression problems. It

is a combination of different tree classifiers, in which each tree vote for the most suitable

class and result is found after combining the results of all [28]. Its classification accuracy

is high and at our dataset, we got the accuracy of 86.363%. Misclassified sample in this

algorithm are 3. Figure 4.1.5 shows the confusion matrix of Random Forest classifier with

predicted and true labels.

45

Fig 4.1. 5: Confusion matrix to display true labels and predicted labels for Random Forest

classifier, where the values in diagonal represents the elements that are predicted true by the

classifier.

4.3.6. Ada Boost classifier:

In this algorithm, linear combination of member classifiers is used to reduce the changes

of error in each cycle in the process of training the dataset [54]. This combination of weak

classifiers is then used to make a stronger classifier, by adjusting the weights per iteration.

The weights of the sample with are classified correctly are decreased and misclassified

training data samples weights are increased [29]. In our project, we got the accuracy score

of 77.272%. Misclassified sample in this algorithm are 3. Figure 4.1.6 shows the confusion

matrix of Ada boost classifier with predicted and true labels.

46

Fig 4.1. 6: Confusion matrix to display true labels and predicted labels for Ada boost classifier,

where the values in diagonal represents the elements that are predicted true by the classifier.

4.3.7. Linear Discriminant analysis:

In linear discriminant analysis, maximum separability is achieved as the algorithm increase

the variance between and within class ratio. Its major application is speech recognition and

majorly used in data classification [53]. It draws the decision region between the classes

and the location of the original dataset does not changes [30]. We got 77.272% accuracy

by using this algorithm. Misclassified sample in this algorithm are 4. Figure 4.1.7 shows

the confusion matrix of Linear Discriminant analysis with predicted and true labels.

47

Fig 4.1. 7: Confusion matrix to display true labels and predicted labels for Linear discriminant

analysis, where the values in diagonal represents the elements that are predicted true by the

classifier.

4.3.8. Ridge Classifier:

It is a supervised classifier which is based on Ridge regression and is used to analyze linear

discriminant model [31]. It converts the sample data in [-1,1] form and reduce overfitting

by penalizing coefficients and reduce complexity [32]. To improve classification, and to

reduce variation, we have specified the value of alpha parameter to 10. The total accuracy

for Ridge classifier is 72.727%. Misclassified sample in this algorithm are 4. Figure 4.1.8

shows the confusion matrix of Ridge classifier with predicted and true labels.

48

Fig 4.1. 8: Confusion matrix to display true labels and predicted labels for Linear discriminant

analysis, where the values in diagonal represents the elements that are predicted true by the

classifier.

4.3.9. Decision tree classifier:

It is a supervised learning technique, mostly used for classification problems. Decision

trees use decision functions to classify an unknown sample in a class. It consists of a root

node, and interior nodes that represents features, decisions rules are specified at the

branches and the terminal nodes that describe final classification or outcome [33]. Layer is

the nodes at a particular level with the same distance from the root node. Decision nodes

contains multiple branches while Leaf nodes represent output and are not used for decision

[34]. The accuracy of 81.818% is achieved by this algorithm. Misclassified sample in this

algorithm are 6. Figure 4.1.9 shows the confusion matrix of Decision tree classifier with

predicted and true labels.

49

Fig 4.1. 9: Confusion matrix to display true labels and predicted labels for Decision Tree

classifier, where the values in diagonal represents the elements that are predicted true by the

classifier.

4.3.10. Light gradient boost classifier:

Tree based learning algorithms are used by light gradient boost classifier with low memory

usage and high efficiency. It can easily handle large scale data [35]. It splits the tree by leaf

wise instead of level wise and expects less loss as compared to the level-wise algorithms

[36]. With our dataset, Light gradient boost classifier obtained the accuracy score of

81.818%. Misclassified sample in this algorithm are 5. Figure 4.1.1 shows the confusion

matrix of Light gradient boost classifier with predicted and true labels.

50

Fig 4.1. 10: Confusion matrix to display true labels and predicted labels for Light gradient boost

classifier, where the values in diagonal represents the elements that are predicted true by the

classifier.

4.3.11. Extra Tree classifier:

Extra Tree classifier is a machine learning algorithm that works on randomization of

decision trees to reduce reduction and it merge the results of various decision trees [37].

This algorithm is good to control overfitting problem. One of the parameters used in it is

n_estimator which refers to the number of trees in the algorithm and whose value ranged

from 10 to 100 [38]. With this algorithm, we got the accuracy of 81.818%.

In testing dataset, out of 22 samples, only 2 samples are misclassified by this algorithm.

Figure 4.1.1 shows the confusion matrix of Extra tree classifier with predicted and true

labels.

51

Fig 4.1. 11: Confusion matrix to display true labels and predicted labels for Extra Tree classifier,

where the values in diagonal represents the elements that are predicted true by the classifier.

4.4. Comparison Table:

To compare the results of eleven algorithms that we have applied at our dataset, we created

a comparison table. This table illustrates the Model name, Accuracy, precision, recall, F1

score and Accuracy with K-fold validation. For K-fold validation, we have used the value

of K=5 [52]. Without K-Fold validation, we get the best results with Naïve Bayes classifier

and with K-fold validation, we get the best results with SVM. The detail results are

specified in Table 4.2.1

Table 4.2. 1: Comparison of 11 different Machine learning models based on Accuracy, Precision,

Recall, F1 score and Accuracy score with K-fold cross validation

 ML Model Accuracy

(in %)

Precisio

n

Recall F1

Score

Accuracy

score-K-fold

cross validation

1 Gradient

Booster

Classifier

86.363 90.454 86.3636 86.338 77

2 Linear

Discriminant

Analysis

77.272 83.901 77.272 77.301 82

52

3 Naïve Bayes
90.909 93.506 90.909 91.207 78.06

4 Random Forest

Classifier 86.363 90.454 86.363 86.338 78

5 KNN
77.27 81.186 77.272 75.719 80.99

6 Light Gradient

Boosting

Machine

81.818 84.415 81.818 81.060 67.99

7 Ada Boost

Classifier 77.272 76.641 77.272 76.648 74

8 Ridge Classifier
72.7272 74.242 72.7272 73.195 67.99

9 Decision Tree

classifier 72.727 74.494 72.727 72.916 70

10 SVM- Linear

kernel 77.272 82.323 77.272 76.082 85

11 Extra Trees

Classifier 81.818 82.207 81.818 81.722 82

53

Chapter 5

Conclusion and Future work

5.1. Challenges:

During this research, following are the major challenges that we faced:

• Document selection:

As per the best of our knowledge, no such literature exist that specify which

document can act as an input to select SDLC model. Multiple software project

documents exist like Project scope document, Domain Analysis document,

Stakeholders Analysis document, and Business Requirement Documents. After

extensive study and conducting a survey, we selected Software project charter as

an input document for SDLC model prediction.

• Survey response collection:

We have created a survey form with five questions and distributed it across various

platforms to gather the results. We found it difficult to collect the response from

the target market and only managed to get 84 responses.

• Dataset availability:

No prior dataset of Software project charter was available. For algorithm to predict

the most suitable SDLC model, we needed a charter dataset on which our Machine

learning model had to train and predict the needed results.

• Dataset generation:

Creating charter documents from the scratch was a challenging task. We referred

to PURE dataset, NCSAEL, and online resources to generate documents from the

content of their SRS and other project documents.

• Dataset verification:

We found it difficult to verify our dataset from Software houses. At the end, we

managed to verify it from 2 Software houses named, NCSAEL and TechEase.

54

5.2. Future Work:
Software engineering is a vast field and continuous improvements can be done based on

expert opinions and user’s input. This work can be extended to incorporate the following

more things:

• Improvement in dataset:

The current dataset is for experimental purpose. It can be extended and further

enhanced with the help of industry survey and experts’ opinion. Successful and

failed software projects across the globe can be considered for dataset

improvement.

• Better data extraction:

Data extraction from the documents can be improved. We are using regular

expressions to extract the information of interest. The current regular expressions

cannot cover the typing mistakes that can be there in the charter document.

• Fully automation:

The project can be fully automated by applying more software engineering

approaches.

• SDLC models addition:

We are currently working on four SDLC models that are Waterfall, Incremental,

Evolutionary and Hybrid model. In future, we can add more SDLC models like

Agile, extreme programming, and Kanban etc.

• SDLC model selection characteristics:

We have used 8 project characteristics for the selection of SDLC model. In future,

after extensive study, we can add more characteristics that can be considered to

select SDLC model.

5.3. Discussion:

In this research, we have developed a semi automatic system that extract some information

from the charter document and consider manager input regarding the project for SDLC

model prediction. We have created the dataset of charter document after the response

collected from the industry survey as well as after the extensive study. We have applied

55

eleven ML models. With Extra Trees classifier, the accuracy to predict right SDLC model

is 81.818%. Along with this, we have used SVM with accuracy of 77.272%, Decision tree

classifier with accuracy of 77.72%, Ridge classifier with accuracy of 77.727%, Light

Gradient Boosting Machine with an accuracy of 81.818, KNN with an accuracy of 77.27,

Random Forest classifier with an accuracy of 86.363%, Naïve Bayes with an accuracy of

90.909%, Linear Discriminant Analysis with an accuracy of 77.272%, and Gradient

Booster Classifier with an accuracy of 86.363%.

5.4. Conclusion:

An appropriate SDLC model contributes majorly to the project success, yet its selection is

still a challenging task for the project managers. This thesis specifies NLP and machine

learning techniques to propose SDLC model for a project, based on its characteristics. We

have generated seventy-one software charter documents that act as an input to machine

learning algorithms. Then we have applied eleven different ML algorithm and found the

highest accuracy of 90.90% with Naïve Bayes classifier. The values of features that are

extracted and obtained as an input, are not definitive. This information is collected from

research and is verified by two software houses. The actual correlation between these

characteristics and their contribution in the SDLC selection can be done by formal surveys

and considering a large amount of successful and unsuccessful software projects.

56

References

[1] Ragunath, P. K., Velmourougan, S., Davachelvan, P., Kayalvizhi, S., &

Ravimohan, R. (2010). Evolving a new model (SDLC Model-2010) for software

development life cycle (SDLC). International Journal of Computer Science and

Network Security, 10(1), 112-119.

[2] Ruparelia, N. B. (2010). Software development lifecycle models. ACM

SIGSOFT Software Engineering Notes, 35(3), 8-13.

[3] Kumar, K., & Kumar, S. (2013). A rule-based recommendation system for

selection of software development life cycle models. ACM SIGSOFT Software

Engineering Notes, 38(4), 1-6.

[4] Khan, M. A., Parveen, A., & Sadiq, M. (2014, February). A method for the

selection of software development life cycle models using analytic hierarchy

process. In 2014 International Conference on Issues and Challenges in Intelligent

Computing Techniques (ICICT) (pp. 534-540). IEEE.

[5] Alshamrani, A., & Bahattab, A. (2015). A comparison between three SDLC

models waterfall model, spiral model, and Incremental/Iterative

model. International Journal of Computer Science Issues (IJCSI), 12(1), 106.

[6] Khan, P. M., & Beg, M. S. (2013, April). Extended decision support matrix for

selection of sdlc-models on traditional and agile software development projects.

In 2013 Third International Conference on Advanced Computing and

Communication Technologies (ACCT) (pp. 8-15). IEEE.

[7] Petersen, K., Wohlin, C., & Baca, D. (2009, June). The waterfall model in large-

scale development. In International Conference on Product-Focused Software

Process Improvement (pp. 386-400). Springer, Berlin, Heidelberg.

57

[8] Adenowo, A. A., & Adenowo, B. A. (2013). Software engineering

methodologies: a review of the waterfall model and object-oriented

approach. International Journal of Scientific & Engineering Research, 4(7), 427-

434.

[9] Ferrari, A., Spagnolo, G. O., & Gnesi, S. (2017, September). Pure: A dataset of

public requirements documents. In 2017 IEEE 25th International Requirements

Engineering Conference (RE) (pp. 502-505). IEEE.

[10] Alexander, L. C., & Davis, A. M. (1991, January). Criteria for selecting software

process models. In 1991 The Fifteenth Annual International Computer Software

& Applications Conference (pp. 521-522). IEEE Computer Society.

[11] Dhami, J., Dave, N., Bagwe, O., Joshi, A., & Tawde, P. (2021, December). Deep

Learning Approach To Predict Software Development Life Cycle Model. In 2021

International Conference on Advances in Computing, Communication, and

Control (ICAC3) (pp. 1-7). IEEE.

[12] Kute, S. S., & Thorat, S. D. (2014). A review on various software development

life cycle (SDLC) models. International Journal of Research in Computer and

Communication Technology, 3(7), 778-779.

[13] Verma, S. (2014). Analysis of strengths and weakness of sdlc

models. International Journal of Advance Research in Computer Science and

Management Studies, 2(3).

[14] Salve, S. M., Samreen, S. N., & Khatri-Valmik, N. (2018). A Comparative Study

on Software Development Life Cycle Models. International Research Journal of

Engineering and Technology (IRJET), 5(2), 696-700.

58

[15] “Hybrid Model”, Java T point, [Online]. Available:

https://www.javatpoint.com/hybrid-model

[16] Bashir, N., Bilal, M., Liaqat, M., Marjani, M., Malik, N., & Ali, M. (2021,

March). Modeling Class Diagram using NLP in Object-Oriented Designing.

In 2021 National Computing Colleges Conference (NCCC) (pp. 1-6). IEEE.

[17] Hamdani, M., Butt, W. H., Anwar, M. W., Ahsan, I., Azam, F., & Ahmed, M. A.

(2019). A Novel Framework to Automatically Generate IFML Models From

Plain Text Requirements. IEEE Access, 7, 183489-183513.

[18] Abdelnabi, E. A., Maatuk, A. M., Abdelaziz, T. M., & Elakeili, S. M. (2020,

December). Generating UML Class Diagram using NLP Techniques and

Heuristic Rules. In 2020 20th International Conference on Sciences and

Techniques of Automatic Control and Computer Engineering (STA) (pp. 277-

282). IEEE.

[19] Agarwal, P., Singhal, A., & Garg, A. (2017). SDLC Model Selection Tool and

Risk Incorporation. International Journal of Computer Applications, 975, 8887.

[20] Shreda, Q. A., & Hanani, A. A. (2021). Identifying Non-functional Requirements

from Unconstrained Documents using Natural Language Processing and

Machine Learning Approaches. IEEE Access.

[21] Murray, A. (2016). The complete software project manager : mastering

technology from planning to launch and beyond. Wiley.

[22] Cudney, E. A., & Furterer, S. L. (2012). Design for Six Sigma in product and

service in development : applications and case studies. Crc Press.

https://www.javatpoint.com/hybrid-model

59

[23] Chen, S., Webb, G. I., Liu, L., & Ma, X. (2020). A novel selective naïve Bayes

algorithm. Knowledge-Based Systems, 192, 105361.

[24] Pandey, A., & Jain, A. (2017). Comparative analysis of KNN algorithm using

various normalization techniques. International Journal of Computer Network

and Information Security, 9(11), 36.

[25] Nelson, D. (2022, July 21). Gradient Boosting Classifiers in Python with Scikit-

Learn. Stack Abuse. https://stackabuse.com/gradient-boosting-classifiers-in-

python-with-scikit-learn/

[26] 1.4. Support Vector Machines. (n.d.-b). Scikit-learn. https://scikit-

learn.org/stable/modules/svm.html

[27] Support Vector Machine (SVM) Algorithm - Javatpoint. (n.d.).

www.javatpoint.com. https://www.javatpoint.com/machine-learning-support-

vector-machine-algorithm

[28] Liu, Y., Wang, Y., & Zhang, J. (2012, September). New machine learning

algorithm: Random forest. In International Conference on Information

Computing and Applications (pp. 246-252). Springer, Berlin, Heidelberg.

[29] An, T. K., & Kim, M. H. (2010, October). A new diverse AdaBoost classifier.

In 2010 International conference on artificial intelligence and computational

intelligence (Vol. 1, pp. 359-363). IEEE.

[30] Balakrishnama, S., & Ganapathiraju, A. (1998). Linear discriminant analysis-a

brief tutorial. Institute for Signal and information Processing, 18(1998), 1-8.

https://stackabuse.com/gradient-boosting-classifiers-in-python-with-scikit-learn/
https://stackabuse.com/gradient-boosting-classifiers-in-python-with-scikit-learn/
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm
https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm

60

[31] Kumar, A. (2022, October 3). Ridge Classification Concepts & Python

Examples. Data Analytics. https://vitalflux.com/ridge-classification-concepts-

python-examples/

[32] Singh, A., Prakash, B. S., & Chandrasekaran, K. (2016, April). A comparison of

linear discriminant analysis and ridge classifier on Twitter data. In 2016

International Conference on Computing, Communication and Automation

(ICCCA) (pp. 133-138). IEEE.

[33] Swain, P. H., & Hauska, H. (1977). The decision tree classifier: Design and

potential. IEEE Transactions on Geoscience Electronics, 15(3), 142-147.

[34] Decision Tree Algorithm in Machine Learning - Javatpoint. (n.d.).

www.javatpoint.com. https://www.javatpoint.com/machine-learning-decision-

tree-classification-algorithm

[35] Welcome to LightGBM’s documentation! — LightGBM 3.3.2 documentation.

(n.d.). https://lightgbm.readthedocs.io/en/v3.3.2/

[36] GeeksforGeeks. (2021, December 22). LightGBM (Light Gradient Boosting

Machine). https://www.geeksforgeeks.org/lightgbm-light-gradient-boosting-

machine/

[37] Majidi, S. H., Hadayeghparast, S., & Karimipour, H. (2022). FDI attack detection

using extra trees algorithm and deep learning algorithm-autoencoder in smart

grid. International Journal of Critical Infrastructure Protection, 37, 100508.

[38] sklearn.ensemble.ExtraTreesClassifier. (n.d.). Scikit-learn. https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html

https://vitalflux.com/ridge-classification-concepts-python-examples/
https://vitalflux.com/ridge-classification-concepts-python-examples/
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://lightgbm.readthedocs.io/en/v3.3.2/
https://www.geeksforgeeks.org/lightgbm-light-gradient-boosting-machine/
https://www.geeksforgeeks.org/lightgbm-light-gradient-boosting-machine/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html

61

[39] Turing. (2022, July 22). Natural language processing functionality in ai. Natural

Language Processing Functionality in AI. https://www.turing.com/kb/natural-

language-processing-function-in-ai

[40] Chowdhary, K. (2020). Natural language processing. Fundamentals of artificial

intelligence, 603-649.

[41] Palmer, D. D. (2000). Tokenisation and sentence segmentation. Handbook of

natural language processing, 11-35.

[42] Jivani, A. G. (2011). A comparative study of stemming algorithms. Int. J. Comp.

Tech. Appl, 2(6), 1930-1938.

[43] Khyani, D., Siddhartha, B. S., Niveditha, N. M., & Divya, B. M. (2021). An

Interpretation of Lemmatization and Stemming in Natural Language

Processing. Journal of University of Shanghai for Science and Technology.

[44] Covington, M. A. (2001). A fundamental algorithm for dependency parsing.

In Proceedings of the 39th annual ACM southeast conference (Vol. 1).

[45] Ian Somerville, Software Engineering ,Addison Wesley,9th ed,2010.

[46] McKeever, C. (2006). The project charter–blueprint for success. CrossTalk: The

Journal of Defense Software Engineering, 19(1), 6-9.

[47] Chowdhary, K. (2020). Natural language processing. Fundamentals of artificial

intelligence, 603-649.

62

[48] Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural

language processing: an introduction. Journal of the American Medical

Informatics Association, 18(5), 544-551.

[49] GeeksforGeeks. (2022, August 23). ML | One Hot Encoding to treat Categorical

data parameters. https://www.geeksforgeeks.org/ml-one-hot-encoding-of-

datasets-in-python/

[50] sklearn.preprocessing.OneHotEncoder. (n.d.). Scikit-learn. https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

[51] Nur Hidayati, S. (2020). Application of Waterfall Model In Development of

Work Training Acceptance System.

[52] Wong, T. T., & Yeh, P. Y. (2019). Reliable accuracy estimates from k-fold cross

validation. IEEE Transactions on Knowledge and Data Engineering, 32(8), 1586-

1594.

[53] Li, C. N., Shao, Y. H., Yin, W., & Liu, M. Z. (2019). Robust and sparse linear

discriminant analysis via an alternating direction method of multipliers. IEEE

transactions on neural networks and learning systems, 31(3), 915-926.

[54] Zhang, L., Wang, J., & An, Z. (2021). Vehicle recognition algorithm based on

Haar-like features and improved Adaboost classifier. Journal of Ambient

Intelligence and Humanized Computing, 1-9.

[55] Sinha, A., & Das, P. (2021, September). Agile Methodology Vs. Traditional

Waterfall SDLC: A case study on Quality Assurance process in Software

Industry. In 2021 5th International Conference on Electronics, Materials

Engineering & Nano-Technology (IEMENTech) (pp. 1-4). IEEE.

https://www.geeksforgeeks.org/ml-one-hot-encoding-of-datasets-in-python/
https://www.geeksforgeeks.org/ml-one-hot-encoding-of-datasets-in-python/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

63

[56] Duclervil, S. R., & Liou, J. C. (2019). The study of the effectiveness of the secure

software development life-cycle models in it project management. In 16th

International Conference on Information Technology-New Generations (ITNG

2019) (pp. 91-96). Springer, Cham.

64

Appendix A

65

Appendix B

66

Appendix C

0 10 20 30 40 50 60 70

Software project charter

Domain Analysis Document

Feasibility Study

Scope Document

Risk Management Plan

Business Requirement Document

Cost Benefit Analysis document

Software Project Plan

Stakeholder Analysis Document

Concept note

Which document/documents do you consider before selecting any particular SDLC
model for your Project?

67

Appendix D

0 5 10 15 20 25 30 35

Software project charter

Domain Analysis Document

Feasibility Study

Scope Document

Risk Management Plan

Stakeholder Analysis Document

Business Requirement Document

Cost Benefit Analysis document

Concept note

Software project plan

Company's Response

68

Appendix E

69

Appendix F

70

