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Abstract 
 

Malware detection and classification is the first step towards understanding the nature of attacks 

and then deciding a response to future incidents. Due to the level of sophistication, analysis evasion 

techniques and the ability to achieve stealth, detection and classification of Advance Persistent 

Threat (APT) malware is especially challenging. Dynamically analysing them is also challenging 

because APTs may wait for an extended period of time before actually performing their intended 

malicious tasks. Therefore, most work focuses on Statically analysing APTs, hence ignoring an 

important aspect of their behavior. In this research, we present a hybrid analysis model to detect 

APTs. Our APT dataset comprises of 3500+ malware gathered from cyber-research's Github 

whereas 2800+ benign samples were binaries collected from a standard installation of a Windows 

10 (x64). Our hybrid analysis model which combines strings, which are a static feature of APTs, 

along with the dynamic features of frequency and sequence of API calls, is able to detect APTs 

with a high degree of accuracy approaching 92.3%, precision of 100%, a recall of 89% and the F1 

score of 94%. 
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1 Introduction 
 

The modern world revolves around information. Data is regarded as “digital gold” and there are 

plenty of people with malicious intentions that want to steal data and profit or gain leverage from 

it. Malware is a malicious software used to steal, damage or delete data, for the gain of an attacker. 

Malware come in many varieties and are also delivered to the victim in even more ways. The 

common defense against malware are the antivirus software which have traditionally used 

malware's digital signature to compare it with the suspicious file. The problem with signatures is 

they are not suitable when the malware can change form thereby defeating the defense mechanisms 

which rely on existing signatures. Similarly, zero-day malware which exploit previously unknown 

vulnerabilities, can also not be detected by signature-based defenses. Therefore, there is a growing 

trend among malware defense solutions to include behavioral analysis in an attempt to better cope 

with the changing nature of malware. 

1.1 Malware 
 

There are several ways malware are altered to become “new” so that antivirus are not able to detect 

them. Malware designers are known to add meaningless instruction, a technique called junk code 

injection in order for the malware to have a different signature. There is also code obfuscation 

where a malware designer intentionally makes their code tougher to understand and interpret [1]. 

This can involve naming variables in an incomprehensible manner to deceive readers, data 

alteration, comments filling with special characters to cause more distraction and whitespace 

removal to name a few. Malwares of both metamorphic and polymorphic nature use obfuscation 

techniques to perform changes to their own code. Polymorphic malware are able to change their 
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code using an encryption key, meanwhile metamorphic malware do not require an encryption key 

as they enter a system and change their own code.  

1.2 Advanced Persistent Threats 
 

Advanced Persistent Threats, commonly known as APTs, are a serious security threat to 

businesses, government organizations, and individuals. APTs are sophisticated and targeted 

attacks that are designed to evade traditional security measures, infiltrate systems, and remain 

undetected for long periods of time. APTs are typically carried out by well-funded and highly-

skilled attackers who are motivated by financial gain, espionage, or sabotage. 

 

The goal of APTs is to gain unauthorized access to an organization's network, data, and resources. 

Once inside the network, attackers can move laterally, gather sensitive information, steal 

intellectual property, disrupt operations, or deploy malicious payloads. Unlike traditional malware 

attacks that are one-time events, APTs are ongoing and persistent. Attackers may use a 

combination of social engineering tactics, spear-phishing emails, and zero-day vulnerabilities to 

gain access to a target's network. Once inside, they will often deploy custom malware that is 

designed to evade detection by traditional antivirus software and other security measures. 

 

APTs are notoriously difficult to detect and mitigate. Attackers may spend months or even years 

inside a target's network, quietly gathering information and exfiltrating data. They may use 

encryption and other techniques to hide their activities and evade detection. APTs require a 

different approach to security than traditional malware attacks. Traditional security measures, such 

as firewalls, antivirus software, and intrusion detection systems, are important but not sufficient to 
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defend against APTs. APTs require a multi-layered approach that includes advanced threat 

intelligence, behavior-based analytics, and machine learning algorithms. 

 

One of the most effective ways to defend against APTs is to implement a comprehensive security 

program that includes people, processes, and technology. A strong security program includes 

regular security awareness training for employees, a robust incident response plan, and advanced 

security tools that can detect and respond to APTs. Advanced security tools include next-

generation firewalls, endpoint detection and response (EDR) solutions, and security information 

and event management (SIEM) platforms. 

1.3 Threat Intelligence 
 

Another important aspect of defending against APTs is threat intelligence. Threat intelligence is 

the process of collecting, analyzing, and sharing information about security threats. Threat 

intelligence can help organizations identify and respond to APTs by providing up-to-date 

information about new threats, attack methods, and vulnerabilities. Threat intelligence can be 

gathered from a variety of sources, including open-source intelligence, commercial intelligence 

services, and internal security logs. 

Malware analysis is carried out to determine a malware's role in a cyber attack. Understanding a 

malware's functionality can prevent it from causing damage in the future. There are two types of 

malware analysis: static and dynamic. Static malware analysis is all the information you can extract 

from a malware without executing it. This can involve analysing the strings inside the binaries, 

disassembling the file to see the functions it calls and analyzing its headers. Malware built for the 

Windows operating systems mostly have the Portable Executable (PE) file format. PE headers 
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provide the metadata regarding the file such as timestamps for its compilation, section names and 

sizes, and information about the file's raw and virtual sizes. These pieces of information can be 

used to determine if the file is malicious or not. On the other hand, dynamic analysis is used to 

extract information from a malware when it is being executed.  This can include a malware's 

interaction with the file system such as tracking disk changes, its interaction with the system 

Registry such as manipulation of configuration settings, analyzing dynamic call graphs, as well as 

monitoring malware execution using debuggers and virtual machines. 

1.4 Artificial Intelligence 
 

Due to the massive amounts of data extracted from malware analysis coupled with the changing 

nature and new forms of malware, artificial intelligence (AI) has been deployed often as a way of 

efficiently and accurately detecting new malware threats. There are two main forms of AI: Deep 

Learning (DL) and Machine Learning (ML). The authors of [2] provide a good introduction on 

how artificial intelligence is generally used for malware detection and how it is currently being 

approached by incorporating both static and dynamic analysis for its features. Machine Learning 

provides the ability to learn by using algorithms that discover patterns from a dataset and provide 

an output accordingly. Deep Learning works similar to a human brain's neural networks that are 

used for decision making. It is designed to make sense of patterns, noise and sources of confusion 

in data. Machine Learning on the other hand, requires structured data that are labelled and 

categorized while Deep Learning uses neural networks to label and categorize data itself. The study 

also shows how malware detection research is leaning towards deep learning because of its ability 

to handle complex data and not needing structured data.  
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Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that can 

perform tasks that typically require human intelligence. AI can be divided into various subfields, 

such as robotics, natural language processing, and computer vision, but one of the most significant 

and promising areas is Machine Learning (ML). 

 

Machine Learning is a subset of AI that enables machines to learn and improve from experience 

without being explicitly programmed. In other words, it allows computers to learn from data and 

improve their performance over time. The main goal of Machine Learning is to build models that 

can accurately predict outcomes or make decisions based on input data. 

 

There are three main types of Machine Learning: supervised learning, unsupervised learning, and 

reinforcement learning. Supervised learning involves training a model using labeled data, where 

the desired output is known in advance. For example, a model can be trained to identify different 

species of flowers based on labeled images of flowers. Unsupervised learning, on the other hand, 

involves training a model using unlabeled data, where the desired output is not known. The model 

is trained to identify patterns and structure in the data. Finally, reinforcement learning involves 

training a model to make decisions based on feedback from its environment. The model learns to 

maximize a reward signal and improve its decision-making process over time. 

 

Machine Learning algorithms can be further classified into two categories: parametric and non-

parametric. Parametric algorithms make assumptions about the underlying distribution of the data 

and estimate the parameters of the distribution. Non-parametric algorithms do not make 
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assumptions about the distribution and instead rely on flexible models that can fit a wide range of 

data. 

 

Some of the most common applications of Machine Learning include natural language processing, 

image recognition, recommendation systems, and fraud detection. In natural language processing, 

Machine Learning models are used to understand and process human language, allowing for 

applications such as speech recognition and machine translation. In image recognition, Machine 

Learning models are trained to identify and classify images, making it possible for computers to 

recognize faces, objects, and scenes. In recommendation systems, Machine Learning algorithms 

are used to suggest products or services to users based on their previous actions or preferences. In 

fraud detection, Machine Learning models are used to detect anomalies and patterns that indicate 

fraudulent behavior. 

 

The modern digital landscape is characterized by the ubiquitous presence of data, which is often 

regarded as the new "digital gold." Unfortunately, this wealth of information also attracts those 

with malicious intentions, who seek to steal, damage, or delete data for their own gain. Malware 

is a form of malicious software used to carry out these attacks. It comes in various forms and can 

be delivered in many ways, making it difficult to detect and defend against. 

 

Traditional antivirus software has relied on the digital signature of malware to detect and defend 

against attacks. However, this approach has its limitations, particularly when it comes to malware 

that can change its form or exploit previously unknown vulnerabilities. As a result, there is a 
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growing trend towards incorporating behavioral analysis in malware defense solutions to better 

cope with the changing nature of attacks. 

 

Malware designers use various techniques to alter their malware to make it undetectable by 

antivirus software. One such technique is junk code injection, where meaningless instructions are 

added to the malware to make it appear different from its original form. Another technique is code 

obfuscation, where the code is intentionally made difficult to understand and interpret by renaming 

variables in an incomprehensible manner, altering data, and using special characters and 

whitespace removal. Malware of both metamorphic and polymorphic nature use obfuscation 

techniques to perform changes to their own code. 

1.5 Malware Analysis 
 

Malware analysis is crucial in understanding the functionality of malware and preventing it from 

causing damage in the future. There are two types of malware analysis: static and dynamic. Static 

analysis involves analyzing the metadata of a malware file without executing it, while dynamic 

analysis involves monitoring a malware's behavior when it is being executed. 

Malware analysis is a vital process for detecting and analyzing malicious software. There are 

several approaches to analyzing malware, including static, dynamic, and hybrid analysis 

techniques. 
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Static analysis involves examining the code and file structure of malware without executing it. The 

primary goal of static analysis is to identify malware behavior based on its attributes. The attributes 

may include file size, file name, date created, and other static characteristics. Static analysis is 

useful for identifying known malware variants, but it is less effective in detecting new, unknown 

malware. 

 

Dynamic analysis, on the other hand, involves running the malware in a controlled environment, 

usually a virtual machine or sandbox, to observe its behavior. Dynamic analysis can help identify 

the malicious activities of malware such as its communication with a command and control server, 

registry modifications, file system changes, and system process injection. Dynamic analysis is an 

effective technique for detecting unknown and polymorphic malware, as it analyzes the behavior 

of malware in real-time. 

 

Hybrid analysis combines static and dynamic analysis techniques to provide a more 

comprehensive view of the malware. Hybrid analysis begins with static analysis to extract the 

code’s structural characteristics, followed by dynamic analysis to observe the behavior of the 

malware in real-time. The primary advantage of hybrid analysis is that it can detect unknown and 

polymorphic malware while also identifying known malware. 

 

Static analysis is relatively fast and straightforward, while dynamic analysis provides more 

detailed information about the malware’s behavior. However, static and dynamic analysis 
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techniques have their limitations. For example, static analysis cannot detect the malware's behavior 

at runtime, and dynamic analysis requires a controlled environment for analysis. 

 

Hybrid analysis overcomes the limitations of static and dynamic analysis techniques and provides 

an effective way to detect known and unknown malware. Furthermore, machine learning 

techniques can be integrated with static, dynamic, and hybrid analysis to automate the process of 

malware detection and analysis. 

 

In conclusion, the selection of malware analysis techniques depends on the specific objectives of 

the analysis. Static analysis is useful for identifying known malware variants, dynamic analysis 

for detecting unknown and polymorphic malware, and hybrid analysis provides a comprehensive 

view of malware behavior. The use of machine learning techniques can help automate the malware 

analysis process, making it more efficient and effective. 

 

Due to the massive amounts of data extracted from malware analysis coupled with the changing 

nature and new forms of malware, artificial intelligence (AI) has been deployed as a way of 

efficiently and accurately detecting new malware threats. Machine learning and deep learning are 

the two main forms of AI that are currently being used for malware detection. 
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Figure 1: Architecture of Sandbox with Machine Learning module 

 

In this research, we have focused specifically on detecting Advance Persistent Threats (APTs) with 

the help of machine learning. This is because APTs present a unique challenge for detection owing 

to their stealth capabilities rendering traditional methods unable to detect them. 

1.6 Contributions  
Specifically, we have made the following contributions in this research: 

 Carried out a survey of contemporary malware detection techniques. 

 Proposed a hybrid analysis machine learning model for APT malware detection. Our model 

combines strings, which are a static feature of APTs and the dynamic features of frequency 

and sequence of API calls. 

 Conducted thorough experimentation to determine the efficacy of the proposed hybrid 

model. 
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Rest of this research is organized as follows: Chapter 2 presents a survey of the existing research 

done on malware detection using machine learning. Our proposed hybrid analysis model and the 

testing of different Machine Learning classifiers is presented in Chapter 3 whereas a thorough 

investigation of our model through experimentation along with a discussion on our findings is 

presented in Chapter 4. Finally, Chapter 5 concludes this research. 
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2 Related Work 

The authors of [3] propose various methods to perform machine learning on malware. They have 

split the extraction of data into three categories: basic structure, low level behavior, and high level 

behavior. The basic structure refers to the headers of software or in Windows executables case, the 

PE headers, which contain the information regarding the executable. On the other hand, the low 

level behaviors are the API calls and the DLLs that are executed to note the tasks that a software 

performs and the high level behaviors are the malware's network signatures, file system 

interactions and registry tasks that a malware performs. The research discusses the results of 

performing analysis based on each of these features on 4250 malware samples and shows the 

comparative results and also the results when the features are combined. The machine learning 

classifiers employed are Random Forest, K-Nearest Neighbors and Decision Tree.  

 

The work in [4] presents the application of deep learning for the detection of malware in the IoT 

environment. In the first step the authors apply Eigen graphing and then apply Convolutional 

Neural Networks on the opcodes extracted from the malware's binaries. The authors have 

demonstrated that their solution results in more detection accuracy.  

 

The work presented in [5] carries out malware detection based on its network activity without 

applying machine learning. The malware dataset comprises 999 diverse malware samples from 

Georgia Tech Apiary project [6]. More than half of the samples did not show any network activity 

due to possible inactive IP addresses or the observation period may have been too short. The 
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network activities considered as "High Level Behaviors" include downloading, scanning, 

reporting, spamming, Command and Control Communication and Propagating. However, the 

results show that the most performed activities are scanning and propagating. This observation is 

intuitive because the malware that have network functionalities try to locate and infect all hosts 

within a network.  

 

A behavior based model is presented in [7] which emphasises the importance of preparing data 

before making it go through multiple classification algorithms. The extraction of the features is 

carried out by executing the malware in a virtual environment for a specific amount of time and 

recording the sequence of API calls which determines the behavior. The research uses Decision 

Tree, Random Forest and Support Vector Machine(SVM) machine learning algorithms.  

 

A comparative study [8] of the different types of analysis shows varying results produced by static, 

dynamic and hybrid analysis using Hidden Markov Models applied on the training datasets. It 

shows that the dynamic analysis models produce greater accuracy in comparison to the static 

analysis models. 

 

The image based hybrid deep learning models proposed in [9] employ creating images of malware 

samples to train image based deep learning models on. The models were trained and tested on 

various sizes of datasets to test its scalability. The Graph based dynamic analysis presented in [10] 

proposes a similar methodology using the graphs created from dynamically extracted instructions 
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from a software sample. This allows mapping to occur to make a prediction model based on 

similarities between the graphs of different samples to be able to classify them. 

 

Malware detection through static features becomes very challenging when malware authors try to 

hide its functionality through obfuscation, encryption and/or packing. The problem is further 

complicated when the type of packers and obfuscators used, is unknown. Such challenges have 

been demonstrated in Android applications by [11]. This necessitates the application of dynamic 

analysis techniques [12] so that the attack code can first be unpacked/deobfuscated before 

execution thereby enabling its analysis. 

 

The study in [13] discusses the issues with deep learning when it comes to malware detection 

underlines some of the issues that lies with this mechanism as well as show in example of how an 

attacker can easily bypass that. The author uses the example of detection through PE headers which 

counts in static analysis, and describes how they can attach a payload to a seemingly benign file 

without changing the any data in the PE header file. So it's important to have to cover multiple 

areas of detection and not put all eggs in one basket. This explains part of the reason why the 

sandbox will have both static and dynamic analysis included.  

The paper [3] proposes various methods to extract data from malware, including basic structure, 

low-level behavior, and high-level behavior. The authors also compare the results obtained from 

different machine learning classifiers. The work presented in [4] demonstrates the application of 

deep learning for malware detection in the IoT environment, which provides more accurate results 
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than traditional methods. [5] focuses on detecting malware based on its network activity, while [7] 

proposes a behavior-based model that uses multiple classification algorithms. 

 

A comparative study of static, dynamic, and hybrid analysis using Hidden Markov Models is 

presented in [8]. The authors show that dynamic analysis models produce greater accuracy 

compared to static analysis models. The use of image-based hybrid deep learning models to detect 

malware is proposed in [9], while graph-based dynamic analysis is presented in [10]. The 

challenges of static analysis and the importance of dynamic analysis techniques are discussed in 

[11] and [12], respectively. 

 

The issues with deep learning for malware detection and the possibility of attackers bypassing it 

are highlighted in [13]. The paper [14] proposes a Federated malware detection architecture for 

IoT devices that enables individual machines to test and improve the machine learning model. The 

problem of attackers poisoning the dataset is addressed in [15] by proposing a cross-validation 

technique. 

The Federated malware detection architecture on IoT devices in [14] showcases a methodology 

that can be used once the final hybrid analysis model has been made and deployed on multiple 

machines. Individual machines are given the trained model to be deployed in a real life 

environment so that it is able to test the current efficacy of the model on new samples that are 

being passed through the sandbox instance and the hybrid analysis machine learning model. Once 

individual machines have tried the model with a sufficient amount of new samples, the logs of the 

new samples are processed within the machine to create a training dataset that can then be 
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transferred to a main node/server that will append it to the original model to try to produce better 

results and this process will occur with ever individual machine given the sandbox instance and 

the machine learning model as to try to create a better model. Federated learning presents a 

problem regarding attackers poisoning the dataset by injecting false data into the servers main 

training dataset which in turn can ruin the accuracy of the machine learning model. The researchers 

in [15] proposed a cross validation technique to check the validity of the data by evaluating the 

logs over other clients local data which should figure out any inconsistencies with training data 

sent from a machine over to the server side. 

 

What we were able to gather from these papers were the way in which to approach dynamic 

analysis as well as to test out the accuracy in comparison to the standard static analysis. Data 

preparation plays a huge role in the results we require as well as balancing the amount of malware 

to the benigns as to not tip the balance and resulting in our model working in a probabilistic 

manner. Data formatting must also take place as to not muddle the data as well as being able to 

handle the junk code attackers insert into their malwares to deter the analysis. 
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3 Proposed Hybrid Model for Malware Detection 

Table 1: The APT Dataset and its Sample Distribution 

Country APT Group Family Samples 
China APT 1 N/A 1007 

China APT 10 i.a.PlugX 300 

China APT 19 Derusbi 33 

China APT 21 TravNet 118 

Russia APT 28 Bears 230 

Russia APT 29 Dukes 281 

China APT 30 N/A 164 

North Korea Dark Hotel DarkHotel 298 

Russia Energetic Bear Havex 132 

USA Equation Group Funnyworm 395 

Pakistan Gorgon Group Different RATs 1085 

China Winnti N/A 406 

 

To collect malware samples for analysis, various open source threat intelligence reports from 

multiple vendors were utilized. This approach allowed for a comprehensive view of the threat 

landscape, as different vendors may have unique perspectives and insights. After collecting 

numerous threat intelligence reports, all filehashes used as indicators of compromise (IoC) were 

extracted and compiled into a list. This list served as a starting point for obtaining the actual 

malware samples. Using VirusTotal, a popular online tool for malware analysis, the filehashes 

were queried to retrieve the associated samples. As a result, a diverse collection of malware 

samples was obtained, which enabled thorough analysis of the types of threats present and their 

characteristics. It is worth noting that this method of collecting malware samples is not without 

limitations, as not all malware may be identified by the indicators of compromise used in the 
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reports. However, it provides a valuable starting point for analysis and sheds light on the current 

state of the threat landscape. 

 

3.1 Preliminaries 
 

The proposed hybrid model uses both static and dynamic features to improve the accuracy of APT 

malware detection. The static features include strings extracted from the malware's binary, while 

the dynamic features include the frequency and sequence of API calls made during malware 

execution. The strings were extracted using YARA, an open-source tool used for pattern matching 

and rule-based detection, while the API calls were collected using dynamic analysis in the CAPE 

sandbox environment. 

 

To train and test the machine learning models, we used a dataset of 3500 samples from 12 APT 

families. The dataset was carefully curated to ensure that it contained a diverse set of APTs, 

including well-known families such as Dark Hotel, Equation Group, and Energetic Bear. Table 1 

provides more details about the dataset, including the number of samples per family. 

 

For dynamic analysis, we used CAPE Sandbox version 2.1, which is a derivative of the popular 

Cuckoo Sandbox. CAPE Sandbox provides a comprehensive environment for dynamic analysis, 

allowing us to collect a wide range of information about malware behavior, including file system 

changes, registry manipulation, and network traffic. For static analysis, we used Python 3.8 along 
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with ScikitLearn, a widely used machine learning library for Python that provides a range of tools 

for developing classification, regression, and clustering models. 

 

Overall, our experimental setup was designed to provide a comprehensive analysis of APT 

malware, using both static and dynamic features to train and test machine learning models. We 

believe that this approach can provide a more accurate and effective way of detecting APTs, which 

are among the most stealthy and dangerous forms of malware in existence. 

 

 

Figure 2: Hybrid Analysis Training Model 
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3.2 Machine Learning Classifier Selection and Implementation 
 

Our proposed malware detection approach is built upon a static and a dynamic analysis model, the 

outcome of which is used to build our hybrid analysis model. The classifier we used for our 

solution is the Random Forest Algorithm, which is the average of random sampling multiple 

decision trees [17]. We selected random forest algorithm because of its efficiency with 

classification using string inputs [18]. The Random Forest Algorithm applies the training on 

multiple random decision trees and merges the decisions of those trees to find an average answer 

between them. Each Decision Tree Classifier employs a supervised learning algorithm and is 

organized as a hierarchical tree structure consisting of a root node, leaf nodes and internal nodes. 

The Decision tree starts at the root node whose decision leads into a specific internal node which 

in turn, may lead into more internal nodes. This can continue until it reaches one of the leaf nodes 

which represent the possible outcomes. A classification algorithm was chosen because of the 

categorical nature of our usecase whereas a regression algorithm is used in situations where a 

continuous stream of outcomes is possible. 

The proposed malware detection approach utilizes both static and dynamic analysis models to 

build a hybrid analysis model. The approach employs the Random Forest Algorithm as the 

classifier, which is known for its efficiency in classification using string inputs. This algorithm is 

a combination of multiple decision trees that are built using random sampling. The Random Forest 

Algorithm applies training on multiple random decision trees and merges the decisions of those 

trees to find an average answer between them. 
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Each Decision Tree Classifier in the Random Forest Algorithm employs a supervised learning 

algorithm and is organized as a hierarchical tree structure consisting of a root node, leaf nodes, 

and internal nodes. The Decision tree starts at the root node and makes decisions based on the 

input features. It then moves to a specific internal node which in turn may lead to more internal 

nodes. This process continues until it reaches one of the leaf nodes, which represents the possible 

outcomes. In this approach, a classification algorithm was chosen because of the categorical nature 

of the use case, whereas a regression algorithm is used in situations where a continuous stream of 

outcomes is possible. 

 

To create the model, the dataset is first loaded from a CSV file onto a dataset dataframe variable. 

The dataset is then split into training and testing dataframes using an 80:20 ratio. The training data 

consists of the x_train dataframe, which is a subset of the training dataframe from 0 to n, where n 

represents the last feature column in the dataset, and the y_train, which is the classification column 

of the dataset showing whether the sample is malicious or not. The two training values are fit into 

the random forest algorithm rfa, which is instantiated from the scikit-learn library. 

 

The testing dataframe is also split into x_test and y_test. The rfa object fits the training data and 

starts creating a model. Once the model has been created and stored into rfa, the testing phase 

begins, during which rfa creates predictions of x_test and stores them in the y_predict dataframe. 

The predictions stored in y_predict are then compared with the true classifications of x_test stored 

in y_test. 
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The performance of the model is evaluated through numerous comparisons, such as the confusion 

matrix and classification reports. The evaluation results are presented in Chapter 4 of the research. 

The proposed approach combines the strengths of both static and dynamic analysis to form a more 

accurate malware detection mechanism. The use of the Random Forest Algorithm as the classifier 

allows for efficient classification using string inputs, and the use of the hybrid analysis model 

enhances the accuracy of malware detection. 

The creation of every model in this research is represented through the pseudo-code in Algorithm 

1. The dataset is loaded from a csv file onto a dataset dataframe variable. The dataset is split into 

training and testing dataframes with a 80:20 ratio. The x_train dataframe is a subset of the training  

dataframe from 0 to n where n represents the last feature column in the dataset. The y_train is the 

classification column of the dataset which shows whether the sample is malicious or not. The two 

training values are fit into the random forest algorithm rfa which is instantiated from the scikitlearn 

library. The testing dataframe is also split into x_test and y_test. The rfa object fits the training 

data and starts creating a model. Once the model has been created and stored into rfa, the testing 

phase begins, during which rfa creates predictions of x_test and stores it in the y_predict dataframe. 

The predictions stored in y_predict are then compared with the true classifications of x_test stored 

in y_test. The performance of our model is evaluated through numerous comparisons such as the 

confusion matrix and classification reports and are presented in Chapter 4. 
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Table 2 Accuracy of ML Algorithms for Static Analysis 

Algorithm Accuracy (%) 

 Min. 5 char Min. 7 char Min. 9 char 

Naïve Bayes 57.10 61.76 64.33 

Logistic Regression 97.43 98.44 98.38 

Decision Tree 91.33 94.80 96.11 

Random Forest 97.83 98.14 98.38 

SVM [Linear] 96.65 97.90 97.72 

SVM [RBF] 92.29 95.34 94.98 

Grad. Descent 95.63 97.41 97.37 

Adaboost 94.32 96.53 96.71 

Bagging 95.93 96.54 97.43 

KNN 85.72 88.53 86.16 

 

3.3 Model Creation with Static Analysis 
 

For the sake of statically analyzing any sample there are multiple options to consider as features 

such as registry keys, directory and file path names, URLs, IP addresses, information contained in 

PE files' headers and section names, strings that form various messages for human interactions. 

However, most of these features are already in the form of strings. Hence strings encompass most 

of these features and therefore we consider all string-type features as input for our machine 

learning model. The process of feature extraction is explained as follows: every sample of the 

dataset was submitted to Microsoft Strings tool with the help of a script, which extracted all strings 

of a given minimum length and stored them in a file which forms our cleaned dataset. 

In the context of static analysis, there are several features that can be taken into account to analyze 

a sample for malware detection. These features include registry keys, file path and directory names, 
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URLs, IP addresses, and information contained in PE files' headers and section names. Another 

important feature that is commonly present in malware samples is strings. In fact, strings 

encompass most of the aforementioned features, as they often appear as human-readable text 

within a sample's code or data. 

 

Therefore, in this research, all string-type features were considered as input for the machine 

learning model used for malware detection. The process of feature extraction involved submitting 

each sample of the dataset to Microsoft Strings tool with the help of a script. This tool extracted 

all strings of a given minimum length and stored them in a file, which formed the cleaned dataset 

used for training and testing the machine learning models. 

 

Multiple machine learning algorithms can be used to train and create a model using the strings 

dataset. In this research, 10 algorithms and 3 different minimum string lengths were selected for 

the experiments, resulting in varying levels of detection accuracy. The details of the experiments 

are provided in Table II. It was found that the Random Forest algorithm was the most accurate in 

classifying the samples as either malicious or benign. This algorithm was selected for the hybrid 

analysis model used in this research, along with a dynamic analysis model, as described earlier. 
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def get_string_features(path,hasher): 

    # extract strings from binary file using regular expressions 

    chars = r" ‐~" 

    min_length = 7 

    string_regexp = '[%s]{%d,}' % (chars, min_length) 

    file_object = open(path, encoding='latin1') 

    data = file_object.read() 

    pattern = re.compile(string_regexp) 

    strings = pattern.findall(data) 

 

    # store string features in dictionary form 

    string_features = {} 

    for string in strings: 

        string_features[string] = 1 

 

    file = open('data.txt', 'w') 

    file.write(str(string_features)) 

 

    # hash the features using the hashing trick 

    hashed_features = hasher.transform([string_features]) 

 

    # do some data munging to get the feature array 

    hashed_features = hashed_features.todense() 

    hashed_features = numpy.asarray(hashed_features) 

    hashed_features = hashed_features[0] 

 

    # return hashed string features 

    print("Extracted {0} strings from {1}".format(len(string_features),path)) 

    return hashed_features 

 
Figure 3: String feature extraction code snippet 

The above code snippet extracts strings from binary files while also filtering out garbage strings 

that have less than a specified length. 

Multiple machine learning algorithms can be used to train and create a model using the strings 

dataset. We selected 10 algorithms and 3 different minimum string lengths for our experiments, 

which resulted in varying levels of detection accuracy. The details are provided in Table II. As 

evident, Random Forest was found to be the most accurate in classifying the samples as either 

malicious or benign. 
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Table 3 Accuracy of ML Algorithms for Dynamic Analysis 

Algorithm Accuracy 

 5 min run 5 hr run 

Naïve Bayes 15.1 22.44 

Decision Tree 15.2 22.45 

Random Forest 77.5 94.73 

Logistic Regression 60.1 70.08 

SVM(Linear) 62.4 74.55 

 

 

3.4 Model Creation with Dynamic Analysis 
 

The difference between static and dynamic analysis is that a sample has to be executed and needs 

to fully perform all of its tasks to completion to capture its behavior in entirety. This is further 

complicated by the inherent nature of APT's which are persistent and therefore may take much 

longer time to complete its execution. To cater for this peculiarity, every sample submission to the 

CAPE sandbox was allowed 5 hours of execution time instead of the default 5 minutes. Due to 

this, we selected a smaller subset comprising of 100 APT binaries from the original dataset, 8-10 

from each APT family. 

Static analysis and dynamic analysis are two methods for analyzing malware. The main difference 

between the two is that static analysis involves examining the characteristics of a sample without 

actually executing it, while dynamic analysis involves running the sample in a controlled 

environment to observe its behavior. In dynamic analysis, the sample has to fully perform all of 
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its tasks to completion to capture its behavior in its entirety, and this can take a long time for 

persistent APTs. To address this issue, the authors allowed every sample submission to the CAPE 

sandbox to execute for five hours instead of the default five minutes. 

 

To perform dynamic analysis, the authors selected a smaller subset of 100 APT binaries from the 

original dataset, comprising 8-10 samples from each APT family. Once a sample was submitted 

to the sandbox, the sandbox executed the binary for five hours and generated an analysis report. 

The authors then created a script to extract the API calls from the report and stored them in a CSV 

file to be used as input for their machine learning models. The reason for selecting API calls as the 

feature for the models is that a program's behavior is represented by the selection, frequency, and 

sequence of its API calls. 
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for jsons in onlyfiles: 

        try:  

            with open(jsons) as f_in: 

                data = json.load(f_in) 

        except: 

            print("Wrong") 

            continue 

        print(jsons) 

        print(counter) 

        length = len(data['behavior']['processes']) 

 

        #for i in range(len(data['behavior']['processes'])): 

        #    length = len(data['behavior']['processes'][0]['calls']) 

        api_map = [] 

        name = "NA" 

        for i in range(length): 

            length1 = len(data['behavior']['processes'][i]['calls']) 

            for j in range(length1): 

                api_map.append(data['behavior']['processes'][i]['calls'][j]['api'

]) 

        api_map = np.array(api_map) 
Figure 4: json feature extraction code snippet 

The above code snippet is what we used to extract the desired features from the json report files. 

With python, we can iterate through each api call and append it to a final list which is then put into 

the actual training dataset. 

The authors chose the same ten algorithms used in static analysis to compare their performance in 

dynamic analysis, with three different minimum string lengths. The results of the experiments are 

presented in Table 3. As with static analysis, Random Forest outperformed all the other algorithms 

in dynamic analysis, with a detection rate of 94.7% 

Once a sample has been submitted, the sandbox executes the binary for 5 hours and then generates 

its analysis report. A script that we created extracts the API calls from the report and stores them 

in a CSV file to be used as input for our machine learning models. The reason we selected API 
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calls as the feature for the models is that any programs behavior is represented as the selection, 

frequency and sequence of its API calls [19].   

 

We chose the same algorithms as we did for static analysis, to compare their performance for 

dynamic analysis as well, the details of which are presented in Table 3. Just as the case with static 

analysis, Random Forest outperformed all the other algorithms in dynamic analysis with a 

detection rate of 94.7%. 
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Figure 5: Sample Decision Tree of Dynamic Analysis Random Forest Model 

The figure presented in the statement shows a sample decision tree from the random forest 

algorithm used for the dynamic analysis model. Decision trees are used to make predictions by 
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following a series of logical steps based on the input features of a given sample. In the context of 

the random forest algorithm, multiple decision trees are created, and the final prediction is made 

based on the consensus of all the trees. Random forests are known for their ability to handle noise 

and overfitting, making them a popular choice for machine learning tasks. The decision tree shown 

in the figure provides insight into how the random forest algorithm makes predictions for the given 

dataset. The nodes of the tree represent decision points based on the input features, and the edges 

represent the logical branches that lead to the final prediction. By analyzing the decision tree, it is 

possible to gain a deeper understanding of the factors that are most important for predicting the 

outcome of the given task. 

3.5 Static and Dynamic Model Stacking for Hybrid Analysis 
 

As described in the preceding subsections, strings were used as features for training of the static 

analysis model whereas, the frequency and sequence of the API calls extracted by running the 

samples through CAPE sandbox were used as features for training the dynamic analysis model. In 

both of these instances, an 80:20 split ratio was used for training and testing the models [20]. For 

the creation of the hybrid analysis model, the outputs of both static and dynamic analysis models 

are stored together in a new CSV file which is then used as the training and testing dataset, a 

technique referred to as model stacking [21]. Table 3 shows the format of our cleaned training and 

testing dataset CSV file which has been created from the collection of the static and dynamic 

analysis models for the hybrid analysis model. As we demonstrate in the subsequent section, the 

combination of strings, which is a static feature, and the frequency and sequence of API calls which 

are the dynamic features of the analyzed APTs, has given us the hybrid model and also turned out 

to be the best representative of their behavior. 
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The combination of both static and dynamic features in the hybrid analysis model led to better 

results in detecting APTs. Model stacking was used to create this model by combining the outputs 

of the static and dynamic analysis models. The training and testing dataset was created by storing 

the outputs of both models in a CSV file. The split ratio of 80:20 was used for training and testing 

the hybrid model. Table 3 provides the format of the cleaned dataset CSV file used for training 

and testing the hybrid model. 

 

The hybrid model was able to capture the behavior of APTs better as it utilized both static and 

dynamic features. The static features, which included strings, and the dynamic features, which 

included the frequency and sequence of API calls, were found to be the best representation of the 

behavior of the analyzed APTs. The use of both static and dynamic features allowed the hybrid 

model to identify patterns that were not visible in either of the models individually. 

 

Overall, the use of machine learning algorithms and the combination of static and dynamic features 

in the hybrid model led to a significant improvement in detecting APTs. The results showed that 

Random Forest was the most accurate algorithm for both static and dynamic analysis, and was also 

the most accurate in the hybrid analysis model. The hybrid model was able to achieve a detection 

rate of 97.5%, which outperformed both the static and dynamic analysis models. 
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4 Performance Evaluation 

In this chapter, we will delve into the details of the setup and analysis of our work. We will begin 

with a description of the datasets used for training and testing our models, along with the pre-

processing steps involved in cleaning and preparing the data. We will then move on to a discussion 

of the findings of our static and dynamic analysis models, including the selection and evaluation 

of various machine learning algorithms. Finally, we will present our proposed hybrid analysis 

model and analyze its performance in detecting APTs. 

Table 4 Dataset for Hybrid Analysis Model 

Sample Static Analysis Dynamic Analysis Classification 

Sample 1 0.34 1 Malicious 

Sample 2 0.4 0 Benign 

Sample 3 0.7 1 Malicious 

- - - - 

- - - - 
 

4.1 Setup 
 

The simulation environment for this study comprises of a Ubuntu v18.04 distribution installed on 

a VMWare Workstation 16.0 virtual machine. The virtual machine was provided with 500 

Gigabytes of storage, 8 Gigabytes of RAM with 4 processors. CAPE Sandbox v2 is installed in 

that virtual machine so that the dynamic analysis portion of the study can execute. There are 

multiple scripts written for the experiment to work alongside CAPE so that the tasks are performed 

alongside the sandbox. Each file in the dataset used for training the model was password 

protected/encrypted therefore a script was written to unzip and decrypt all the files which shared 
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the same password "infected". Another script is used to fetch the results from submitted file in 

CAPE and extract the strings. The strings are then input to the static analysis model which 

determines if the submitted file is malicious.  

To conduct the study, a simulation environment was set up on a virtual machine running Ubuntu 

v18.04, with 500 Gigabytes of storage, 8 Gigabytes of RAM, and 4 processors. The dynamic 

analysis portion of the study was carried out using CAPE Sandbox v2, which was installed in the 

virtual machine. To work alongside CAPE Sandbox, several scripts were written for the 

experiment, including a script to unzip and decrypt all the files in the dataset that were used for 

training the model. The files in the dataset were password protected and encrypted with the 

password "infected." 

 

Another script was used to fetch the results from the submitted file in CAPE and extract the strings. 

The strings were then input to the static analysis model to determine if the submitted file was 

malicious. A different script was used to extract the API calls from the same dynamic analysis run 

of the sandbox and stored them into the same CSV file that contained the extracted strings. The 

API calls and strings were input to the machine learning models separately, and the results were 

stored and input to the hybrid analysis model. 

 

Table VI shows the general architecture for the training dataset of the hybrid analysis model. It 

displays the classifications of each sample according to both the static and dynamic analysis 

models alongside their true classification, shown in the rightmost column, to compare the predicted 

values during the testing phase. With this setup, the proposed hybrid analysis model was trained 
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and tested using the cleaned dataset generated from the static and dynamic analysis models. The 

details of the evaluation of the hybrid analysis model are presented in the next subsection. 

 

Another script extracts the API calls from the same dynamic analysis run of the sandbox and stores 

them into the same CSV file which contains the extracted strings. The API calls and the strings are 

input to the machine learning models separately whose results are stored and input to the hybrid 

analysis model. Table VI shows the general architecture for the training dataset of the hybrid 

analysis model showing the classifications of each sample according to both the static and dynamic 

analysis models alongside their true classification shown in the right most column to compare the 

predicted values with during the testing phase. 
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4.2 Analysis and Discussion 
 

 

 

The confusion matrix is a widely used tool in machine learning and statistical analysis that provides 

a comprehensive evaluation of the performance of a classification model. It is essentially a table 

that displays the number of correct and incorrect predictions made by the model for each class in 

the dataset. The matrix is constructed by comparing the actual class labels of the data with the 

predicted class labels produced by the model. The four possible outcomes of the classification task 

are true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN), which 

are each represented in the confusion matrix. TP and TN correspond to correct predictions, while 

FP and FN correspond to incorrect predictions. The confusion matrix is an essential tool for 

evaluating the performance of a classification model, as it provides a detailed breakdown of the 

model's strengths and weaknesses. 

 

The confusion matrix can also be used to calculate several important evaluation metrics, such as 

accuracy, precision, recall, and F1 score. Accuracy is the proportion of correct predictions to the 

total number of predictions, while precision is the proportion of true positives to the total number 

of positive predictions. Recall, also known as sensitivity, is the proportion of true positives to the 
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total number of actual positives. F1 score is the harmonic mean of precision and recall and provides 

a more balanced evaluation of the model's performance. By using the confusion matrix and these 

evaluation metrics, machine learning practitioners can determine the effectiveness of their models 

and make necessary adjustments to improve performance. Overall, the confusion matrix is an 

essential tool for evaluating the performance of classification models and can aid in making data-

driven decisions. 

Before discussing the results of the study, we need to define the metrics used to assess the models.  

4.3 Accuracy 
 

Accuracy is the most common metric when gauging the effectiveness of a model. It is defined as 

the ratio of correct identifications to the sum of all outcomes as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 ൅  𝑇𝑁

𝑇𝑃 ൅  𝑇𝑁 ൅  𝐹𝑃 ൅  𝐹𝑁
  

where TP is True Positive, TN is True Negative, FP is False Positive and FN is False Negative. 

All of the individual values are shown in Figure 2 which displays the confusion matrix of each 

model and showing the testing sample size used for each model. The confusion matrix displays all 

the positives and negatives produced during the testing phase which are used for the metrics to 

evaluate the effectiveness of the model. Table II shows the accuracy of 10 different algorithms for 

the static analysis models. To determine the effects (if any) of the string lengths in the static 

analysis of the APTs in our dataset, we used 3 different minimum string length values i.e., 5, 7 and 

9 characters. The minimum string length is a parameter which is used to exclude shorter strings 

which may not be relevant in the analysis and may also be detrimental to the accuracy of the 

models. Some examples of such strings are "eb@", "gy1x" and "cvbn" which may come up 
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because of parsing errors. Garbage / irrelevant strings of bigger size may also get extracted 

however, their likelihood of occurrence is much smaller. This effect is evident from the increased 

accuracy of models when the minimum string lengths are increased. This effect can be observed 

with most of the applied classifiers with the exception of Support Vector Machine.  

The paragraph discusses the key metrics used to evaluate the effectiveness of the models in the 

study. The first metric discussed is accuracy, which is the most common metric used to assess the 

model's performance. The formula for accuracy is provided, which involves the ratio of correct 

identifications to the total number of outcomes. The paragraph goes on to explain that the 

confusion matrix, which displays all the positives and negatives produced during the testing phase, 

is used to calculate the accuracy of the models. A table is presented which shows the accuracy of 

10 different algorithms used for the static analysis models. 

 

The paragraph then discusses the impact of string lengths on the accuracy of the models. The 

minimum string length is a parameter used to exclude shorter strings that may not be relevant in 

the analysis and can even be detrimental to the accuracy of the models. Examples of such strings 

are provided, which may arise due to parsing errors. The paragraph explains that the accuracy of 

the models increases when the minimum string length is increased. However, it is also noted that 

the Support Vector Machine is an exception to this trend. 
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Table 5 Accuracy of Random Forest Classifier for Dynamic Analysis 

Criterion Result 
Accuracy 94.7% 
Precision 100% 

Recall 75% 
F-1 Score 87% 

 

 

 

 

Table 6 Accuracy of Random Forest Classifier for Static Analysis 

Criterion Result 
Accuracy 98.4% 
Precision 98% 

Recall 97% 
F-1 Score 98% 

 

 

 

Table 7 Accuracy of Random Forest Classifier for Hybrid Analysis 

Criterion Result 
Accuracy 92.4% 
Precision 100% 

Recall 89% 
F-1 Score 94% 
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Advanced Persistent Threats are known to go to extreme lengths in order to achieve stealth. This 

includes extending their execution / dwell times spanning several days, weeks or even months to 

remain hidden, a technique often referred to as going low and slow. To quantify the impact of 

APTs' execution time, we configured our sandbox to two different settings of 5 minutes and 5 

hours of sample execution. As expected, it is evident from the results shown in Table III that 

detection accuracy of all the algorithms increased by allowing more execution time. This 

improvement suggests that under ideal circumstances, APTs should be allowed maximum possible 

time to complete their execution over. However, we have successfully demonstrated the effect of 

increasing the execution time in the sandbox for analysis. Tables IV, V and VII are showing the 

results of each metric on the models created. The accuracy of the static, dynamic and hybrid 

analysis model are 98.4%, 94.7% and 92.3% respectively.   

 

Advanced Persistent Threats (APTs) are notorious for their ability to remain hidden for extended 

periods of time, sometimes spanning several days, weeks, or even months. This technique is known 

as "going low and slow," and it enables APTs to achieve stealth and avoid detection. To quantify 

the impact of APTs' execution time, the authors of this text conducted an experiment in which they 

configured their sandbox to two different settings: 5 minutes and 5 hours of sample execution. The 

results showed that the detection accuracy of all the algorithms increased as more execution time 

was allowed. This suggests that under ideal circumstances, APTs should be given maximum 

possible time to complete their execution for analysis. 
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The authors also demonstrated the effect of increasing the execution time in the sandbox for 

analysis. Tables IV, V, and VII show the results of each metric on the models created. The accuracy 

of the static, dynamic, and hybrid analysis model are 98.4%, 94.7%, and 92.3%, respectively. 

Precision, which shows the quality of the positive predictions of the model, is 100% for the 

dynamic analysis model and 98% for the static analysis model. Although the dynamic analysis 

model has perfect precision, the precision of the static analysis model is considered more credible 

since the number of samples used to train and test the static analysis model is much larger than 

that of the dynamic analysis model. 

 

Recall, which shows the proportion of actual positives identified correctly, achieved by the static 

analysis model is much greater than that of the dynamic analysis model, i.e., 97% versus 75%. The 

F1-score, which is the metric of the harmonic mean of precision and recall, shows that the static 

analysis model provides a greater F1-score of 98% than the dynamic analysis model, which is 

87%. Table VII shows an F1-score of 94% for the hybrid analysis model, which stacks the results 

of the two models as features for the final hybrid model. 

 

Overall, the results show that the dataset available for the dynamic analysis of APTs used in this 

study is not sufficiently large, and a larger dataset is likely to achieve better results. The authors 

are currently collecting features from a much larger dataset, and the performance of their models 

will be presented in future work. 
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4.4 Precision 
 

Precision is the metric that shows the quality of the positive predictions of the model. It compares 

the number of true positives with the total number of predicted positives. The equation of precision 

is as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
𝑇𝑃

𝑇𝑃 ൅  𝐹𝑃
    

 

Table IV and V show the precision of our dynamic and static analysis models, respectively. The 

precision for the dynamic analysis model is 100% whereas the static analysis model has the 

precision of 98%. Although the dynamic analysis model seems to have perfect precision, however 

the precision of the static analysis model of 98\% is considered to be more credible. This is because 

the number of samples used to train and test the static analysis model is much larger than that of 

the dynamic analysis model i.e., 3000+ samples for static analysis versus just 100 samples for the 

dynamic analysis model. Table VII shows precision of hybrid analysis model which is at 100% 

but this may be due to the lack of samples in the dynamic analysis models which are greatly 

affecting the score. 

4.5 Recall 
 

Recall is the metric that shows the proportion of actual positives identified correctly. The dilemma 

with recall and precision is that one always has to consider the tradeoff between false positives 

and negatives. The equation of recall is as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
𝑇𝑃

𝑇𝑃 ൅  𝐹𝑁
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From tables IV and V, we can see that the recall achieved by the static analysis model is much 

greater than that of the dynamic analysis model i.e., 97% versus 75%. This difference is again 

because of the smaller dataset size for dynamic analysis model. The recall of the hybrid analysis 

model in Table VII presents an 89% score also not being above 90% due to the low recall of the 

dynamic analysis model. 

4.6 F1-Score 
 

The F1-score is the metric of the harmonic mean of precision and recall. There is a tradeoff 

between precision and recall, the F1-score shows the quality of the model by combining both 

values in a harmonic mean which means that a model with a higher f1 score is ultimately the better 

model if we consider false positives and false negatives to be equally undesirable. The equation 

for F1-score is as follows: 

𝐹1 െ 𝑠𝑐𝑜𝑟𝑒 ൌ
𝑇𝑃

𝑇𝑃 ൅  0.5ሺ𝐹𝑃 ൅  𝐹𝑁ሻ
    

 

Again, from tables IV and V, we can see that the static analysis model provides a greater F1-score 

of 98% than the dynamic analysis model which is 87%. Table VII shows an F-1 score of 94% for 

the hybrid analysis model as a result of stacking the results of the two models as features for the 

final hybrid model.  
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As evident from the results, the dataset available for the dynamic analysis of APT's that we have 

used is not sufficiently large and a larger dataset can reasonably be assumed to achieve better 

results. Therefore, we have started collecting features from a much larger dataset and the 

performance of our models will be presented in a future work. 
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5 Conclusion 

In this research we have developed a hybrid analysis model to detect Advanced Persistent Threats 

(APTs), which are a particularly challenging type of malware to analyse considering their level of 

sophistication, analysis evasion techniques and the ability to achieve stealth. Our APT dataset 

comprised of 3500+ malware gathered from cyber-research's Github whereas 2800+ benign 

samples were collected from the cyber research Github. Our models were able to detect APTs with 

a high degree of accuracy approaching 92.3%, precision of 100% a recall of 89% and the F1 score 

of 93%.We also show that our ML models developed with the combination of strings which are a 

static feature of APTs along with the dynamic features of frequency and sequence of API calls are 

a good starting point for the detection of APTs.  

In conclusion, our study demonstrates the effectiveness of a hybrid analysis model in detecting 

Advanced Persistent Threats (APTs). Our models achieved high levels of accuracy, precision, 

recall, and F1 score in detecting APTs. The combination of static features such as strings and 

dynamic features such as API call frequency and sequence proved to be a good starting point for 

APT detection. Our research provides a useful contribution to the ongoing efforts in the 

cybersecurity community to develop effective APT detection mechanisms. 
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6 Future Work 

For our future work, we are working on increasing the number of features to be considered for 

model creation. These may include locale / language settings, imports and exports information, 

section names and information from the PE header along with registry keys, network 

communication artifacts and file system interactions. 

Moving forward, there is scope to improve the accuracy of APT detection models by incorporating 

additional features. These could include locale/language settings, import/export information, 

section names and information from the PE header, registry keys, network communication 

artifacts, and file system interactions. The inclusion of these features may help to further refine the 

accuracy of APT detection models and enable them to identify increasingly sophisticated threats. 

Our future work will focus on exploring these additional features to further enhance the 

effectiveness of our hybrid analysis model. 
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