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Abstract 

The aim of this study was to explore the use of data-driven approaches for designing net zero 

energy buildings using bifacial solar panels and deep learning models. The study utilized 

historical data on solar irradiance to forecast future irradiation levels, which were then used to 

optimize the tilt angle of bifacial solar panels for maximum energy collection. Two deep learning 

models, namely RNN-LSTM and transformers, were evaluated using various evaluation metrics, 

including MAE, RMSE, SMAPE, and R2. The results showed that both models were effective in 

forecasting irradiations with varying forecasting horizons, with the transformers model 

outperforming the RNN-LSTM model in terms of MAE values. The study provides insights into 

the use of data-driven approaches for designing net zero energy buildings, highlighting the 

potential of deep learning models in optimizing the use of renewable energy sources for 

sustainable development. The results show that both models were effective in forecasting 

irradiance, with R2 values of 0.927 for RNN-LSTM and 0.894 for Transformers. Additionally, 

the Transformers model outperformed the RNN-LSTM model with a lower range of MAE values 

from 0.05 to 0.03 across the same horizons. These findings suggest that deep learning models 

can effectively forecast solar irradiance and aid in optimizing the performance of net-zero energy 

buildings. 

 

Key Words: Net zero energy buildings, Solar irradiance forecasting, Deep learning, RNN-

LSTM, Transformer, Bayesian optimization



viii 
 

Table of Contents 

 
Plagiarism Certificate (Turnitin Report) ....................................................................................................................i 

Declaration .................................................................................................................................................................. ii 

Copyright Statement ................................................................................................................................................. iii 

Acknowledgements .....................................................................................................................................................iv 

Abstract ..................................................................................................................................................................... vii 

Table of Contents ..................................................................................................................................................... viii 

List of Figures .............................................................................................................................................................. x 

List of Tables ................................................................................................................................................................ 1 

CHAPTER 1: INTRODUCTION............................................................................................................................... 2 

 Background, Scope and Motivation ............................................................................................................. 8 

CHAPTER 2: LITERATURE REVIEW ................................................................................................................ 10 

CHAPTER 3: METHODOLOGY ........................................................................................................................... 16 

3.1   Experimental Setup .......................................................................................................................................... 16 

3.2   Process flow: .................................................................................................................................................... 18 

3.3   Data set collection: .......................................................................................................................................... 19 

3.4   Data Representation: ........................................................................................................................................ 20 

3.5   Data pre-processing: ........................................................................................................................................ 23 

3.6   Dataset distribution: ......................................................................................................................................... 23 

3.7   Forecasting Models:......................................................................................................................................... 23 

3.7.1 RNN-LSTM: ............................................................................................................................................... 24 

3.7.2 Transformers ............................................................................................................................................... 25 

3.7.3 Bayesian Optimization:............................................................................................................................... 26 

CHAPTER 4: RESULTS AND DISCUSSION ....................................................................................................... 29 

4.1    Evaluation Metrics: ......................................................................................................................................... 29 

4.2      Model Evaluation: ........................................................................................................................................ 29 

 ..................................................................................................................................................................................... 37 

CHAPTER 5: CONCLUSION ................................................................................................................................. 38 

APPENDIX A ............................................................................................................................................................. 39 

Cell A .......................................................................................................................................................................... 39 

Cell B .......................................................................................................................................................................... 39 

Cell C .......................................................................................................................................................................... 42 

REFERENCES .......................................................................................................................................................... 44 

 
 
 
 
 



ix 
 

 



x 
 

List of Figures 

 
Figure 1: Earth's rotational axis and representation of tilt ............................................................................................ 3 
Figure 2: Components of Radiation .............................................................................................................................. 3 
Figure 3: Southern and Northern Hemisphere .............................................................................................................. 4 
Figure 4: Effect of weather on tilt angle ....................................................................................................................... 5 
Figure 5: Bifacial Photovoltaic panels representation ................................................................................................ 12 
Figure 6: Computer Aided Design model ................................................................................................................... 16 
Figure 7: Demonstration of experimental setup ......................................................................................................... 17 
Figure 8. Correlation Plot of Features……………………………………………………………………………23 
Figure 9. Unrolled recurrent neural network……………………………………………………………………25 
Figure 10. RNN-LSTM Architecture example………………………………………………………………….26. 
Figure 11: Architecture diagram of transformer neural network representing the flow of input sequences through 
multiple layers…………………………………………………………………………………………………….28 
Figure 12. Complete process diagram…………………………………………………………………………….29 
Figure 13. RNN Training Graph with Forecasting Horizon 21 (No of Epoch Vs Validation Loss) ………………32. 
Figure 14. Transformers Training Graph with Forecasting Horizon 21 (No of Epoch Vs Validation Loss) …….33. 
Figure 15. RNN Training Graph with Forecasting Horizon 14 (No of Epoch Vs Validation Loss) ………………34. 
Figure 16. Transformers Training Graph with Forecasting Horizon 14 (No of Epoch Vs Validation Loss) ………35. 
Figure 17. RNN Training Graph with Forecasting Horizon 7 (No of Epoch Vs Validation Loss) ……………….36. 
Figure 18. Transformers Training Graph with Forecasting Horizon 7 (No of Epoch Vs Validation Loss) ……….36 
Figure 19. RNN Training Graph with Forecasting Horizon 2 (No of Epoch Vs Validation Loss) …………………37 
Figure 20. Transformers Training Graph with Forecasting Horizon 2 (No of Epoch Vs Validation Loss) ……….38 
 



1 

List of Tables 

 
Table 1: Nomenclature ............................................................................................................................................... 11 
Table 2: Details of Experiments. ................................................................................................................................ 18 
Table 3: Details of Instruments. .................................................................................................................................. 19 
Table 4: Data Description ........................................................................................................................................... 21 
Table 5 : Comparison of performance between RNN-LSTM and Transformers at multiple                               
Forecasting Horizons. .................................................................................................................................................. 30 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

CHAPTER 1: INTRODUCTION 

The global energy demand has been growing rapidly over the past few decades, and 

traditional energy sources such as fossil fuels have been the primary source to meet this demand. 

However, the use of fossil fuels has caused significant environmental damage due to the 

emission of greenhouse gases and other pollutants. The carbon emissions from burning fossil 

fuels are a major contributor to global warming and climate change, which is threatening the 

sustainability of the planet. The need to reduce carbon emissions has become a pressing issue, 

and many countries have taken steps to transition towards cleaner and more sustainable energy 

sources. 

The finite nature of fossil fuels has also highlighted the need for a more diverse and 

sustainable energy mix. The increasing demand for energy worldwide has led to the exploration 

of new and innovative technologies to meet this demand. Renewable energy sources, such as 

wind, solar, hydro, and geothermal energy, have emerged as a promising alternative to traditional 

energy sources. They are clean, abundant, and can be harnessed without depleting natural 

resources. 

Moreover, net-zero energy buildings have also emerged as a potential solution to 

contribute to a more sustainable future. These buildings are designed to generate as much energy 

as they consume, thus reducing their carbon footprint significantly. They use a combination of 

energy-efficient technologies and renewable energy sources to achieve this goal. The 

environmental impact of traditional energy sources and the need to combat climate change has 

highlighted the importance of a diverse and sustainable energy mix. The growing demand for 

energy worldwide, coupled with the limited availability of fossil fuels, has led to the exploration 

of renewable energy sources. In practical applications, Electromagnetic Radiation encompasses a 

broad spectrum of wavelengths. This spectrum, known as the Electromagnetic Spectrum, 

includes gamma rays, X-rays, ultraviolet radiation, visible light, infrared radiation, thermal 

radiation, microwaves, and radio waves. Gamma rays are generated through nuclear reactions, 

while X-rays are produced by bombarding metals with high-energy electrons. Special types of 

electron tubes such as klystrons and magnetrons are used to detect microwaves. 
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Figure 1: Earth's rotational axis and representation of tilt 

The Earth's rotation axis shown in figure 1 is tilted at an angle of 23.45° with respect to 

the perpendicular to the ecliptic plane. As a result, the angle between the Sun and any given 

point on the Earth's surface varies throughout the year, leading to changes in the length of day. 

The rotation of the Earth is responsible for the occurrence of day and night, while its tilt is 

responsible for the change of seasons. 

 The Solar Constant 𝐺௦ refers to the amount of energy that is received from the Sun, per 

unit time, on a unit area of surface that is maintained perpendicular to the direction of radiation. 

This occurs at a mean Earth-Sun distance, outside of the Earth's atmosphere. 

 
Figure 2: Components of Radiation 
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Direct Radiation or Beam Radiation are Solar radiation that reaches the Earth's surface 

directly without being scattered by the atmosphere is known as Direct Radiation. Diffuse 

Radiation, on the other hand, occurs when radiation is reflected, absorbed, or scattered, but not 

completely lost in the atmosphere, and is thus able to reach the Earth's surface in the Short 

Wavelength Region. Global or Total Radiation refers to the sum of diffuse and direct radiation 

that reaches the Earth's surface. Reflected Radiation, on the other hand, consists of shortwave 

radiation that is reflected from other surfaces as shown in figure c. Our focus is on the portion of 

Electromagnetic Radiation emitted from the Sun within the wavelength range of 0.25 – 

3.0micron. This is affected by Solar Geometry, which refers to the position of the Sun in the sky 

and the direction of direct (beam radiation) on various inclined and oriented surfaces. 

Extraterrestrial radiation on a horizontal surface represents the limit of solar radiation that can be 

received on the Earth's surface. The Availability of solar radiation is also affected by Earth 

motion, orientation, and tilt with respect to the Sun. The Earth's atmosphere plays a critical role 

in reducing solar radiation through Absorption, Scattering, and Reflection. 

Angle between the sun’s rays or Beam Radiation and the normal to the surface is under 

our consideration which is known as incidence angle. The angle of incidence θ depends on 

various factors such as the location on Earth, time of day, day of the year, and surface tilt. When 

the surface area is not perpendicular to the sunbeam (i.e., zenith angle is not zero), a larger area 

is needed to catch the same flow as the cross-section of the sunbeam. The amount of solar energy 

collected in the collectors is strongly influenced by the β values. Optimum slopes for surfaces are 

affected by different declinations experienced throughout the year. The best slopes are obtained 

when the solar incidence angle θ is zero at solar noon, as the Sun's rays are normal to the surface. 

Our goal is to receive the maximum amount of sunlight each day and throughout the year. 

 

Figure 3: Southern and Northern Hemisphere 
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The angle and direction of installation of a solar panel is crucial as it greatly impacts the 

efficiency of solar energy collection. The fixed surface tilt should be oriented correctly to ensure 

maximum energy collection. For locations in the Northern Hemisphere, the surface should face 

South while for locations in the Southern Hemisphere, the surface should face North. If the 

surface is not facing due South, the highest amount of collection will occur either in the morning 

or afternoon rather than at solar noon, leading to a reduction in the daily total of collected energy 

as shown in figure 3. 

 

Figure 4: Effect of weather on tilt angle 
Slopes for maximizing energy capture for Northern Hemisphere latitudes when (φ – δ) > 

0 are in such a way that if declination angle is positive than the tilt angle will be the difference of 

the latitude and declination angle, if the declination angle is zero than the tilt angle will be 

simply equal to the latitude in figure 4. 

Bifacial solar modules, also known as double-sided solar panels, are photovoltaic (PV) 

panels that can generate electricity from sunlight on both their front and back sides. Unlike 

traditional monofacial solar panels, which are designed to only capture sunlight from one side, 

bifacial modules are designed to capture sunlight from both the front and the back, increasing 

their overall efficiency and power output. The increase in efficiency is achieved by the use of 

transparent backsheets and the reflection of sunlight from the ground or other surfaces onto the 
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back side of the panel. Bifacial modules are often used in large-scale solar projects and are well-

suited to environments with high levels of diffuse radiation, such as cloudy or overcast 

conditions. However, they are also more expensive than traditional monofacial panels, so the 

increased efficiency must be weighed against the higher cost. 

These panels are designed to capture light from both the front and the back, increasing 

their overall efficiency and power output. Bifacial modules use transparent backsheets to allow 

light to reach the back side of the panel, which can then be reflected from the ground or other 

surfaces to generate additional electricity. This makes them well-suited for large-scale solar 

projects and environments with high levels of diffuse radiation, such as cloudy or overcast 

conditions. However, bifacial modules are often more expensive than traditional monofacial 

solar panels, so the increased efficiency must be weighed against the higher cost. 

The tilt angle of bifacial solar panels is a critical factor that affects their power output and 

efficiency. The optimal tilt angle for bifacial solar panels depends on several factors, including 

the geographic location, the time of year, and the orientation of the panels. The optimal tilt angle 

for bifacial solar panels depends on several factors, including the location, climate, and the 

intended use of the panels. In general, a tilt angle that is close to the latitude of the location is 

recommended, as this will maximize the amount of solar radiation that the panels receive 

throughout the year. 

In general, a tilt angle that is equal to the latitude of the installation location is considered 

optimal for maximizing the power output of bifacial solar panels. For example, if the installation 

is located at a latitude of 35°, a tilt angle of 35° would be optimal. However, this may not always 

be the most practical or efficient solution, as the optimal tilt angle can vary depending on the 

specific circumstances of the installation. For example, in the Northern Hemisphere, a tilt angle 

of around latitude +15° is recommended, while in the Southern Hemisphere, a tilt angle of 

around latitude -15° is recommended. The tilt angle can be adjusted to optimize the panels for 

specific seasons or conditions, such as the winter solstice or the summer solstice. The tilt angle 

of bifacial solar panels can also be adjusted to optimize their performance throughout the year. 

For example, a steeper tilt angle may be used during the summer months to maximize power 

output, while a shallower tilt angle may be used during the winter months to reduce shading and 

maximize the amount of reflected light that reaches the back of the panels. It is important to note 

that the back side of bifacial solar panels is also exposed to light, so the panels must be installed 
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in a way that allows for unobstructed access to the light on both the front and the back. This may 

require additional considerations, such as shading from nearby buildings or trees, which can 

affect the performance of the panels. An experienced solar installer can provide guidance on the 

best tilt angle for a specific installation and help ensure that the panels are installed for optimal 

performance. 

Ultimately, the best tilt angle for bifacial solar panels is one that provides a balance 

between maximum power output and minimized shading, taking into account the specific 

requirements of the installation and the local climate conditions. 

Artificial intelligence (AI) can play an important role in the prediction of the optimal tilt 

angle for bifacial solar panels. By using machine learning algorithms, AI can analyze large 

amounts of data, including weather patterns, solar radiation levels, and energy consumption data, 

to identify patterns and make predictions about the performance of solar panels at different tilt 

angles. Artificial intelligence (AI) can play a significant role in predicting the optimal tilt angle 

for bifacial solar panels, as it can help to analyze large amounts of data and make accurate 

predictions based on complex patterns and relationships. 

For example, AI can be used to predict the amount of solar radiation that a panel will 

receive at a given tilt angle, taking into account factors such as the location, time of year, and 

cloud cover. This information can be used to determine the optimal tilt angle for a specific 

installation. AI algorithms can be trained on historical weather data and satellite imagery to 

accurately predict the amount of diffuse radiation and direct sunlight that a specific location will 

receive throughout the year. This information can then be used to determine the best tilt angle for 

the panels to optimize their performance and maximize their power output. 

In addition, AI can also be used to monitor the performance of solar panels in real-time, 

allowing for adjustments to be made to the tilt angle and other factors to optimize performance 

and increase energy efficiency. The use of AI in the prediction of the tilt angle of bifacial solar 

panels can help increase the overall efficiency and effectiveness of solar energy systems, 

reducing costs and increasing the amount of clean energy generated. The use of AI in predicting 

the tilt angle of bifacial solar panels can play a critical role in ensuring that the panels are 

installed and operated for optimal performance, and can help to maximize the investment in 

renewable energy 



8 

 Background, Scope and Motivation 

There is an increasing concern in recent times about the adverse effects of conventional 

energy sources on the environment. The utilization of fossil fuels like coal, oil, and gas has 

resulted in elevated levels of carbon emissions, which in turn are contributing to climate change. 

Climate change is a global issue that poses a threat to human health, the environment, and 

economic growth. The need to reduce carbon emissions and combat climate change has become 

a pressing issue for governments, businesses, and individuals worldwide. 

The demand for energy continues to grow, driven by population growth, industrialization, 

and technological advancements. As the world becomes more urbanized and industrialized, the 

demand for energy will continue to rise. However, fossil fuels, which have been the primary 

source of energy for decades, are finite and limited in availability. The continued use of fossil 

fuels is unsustainable in the long term, and alternative sources of energy are needed to meet the 

growing demand for energy. 

Renewable energy sources, such as solar, wind, and hydropower, offer a sustainable and 

diverse source of energy. Unlike fossil fuels, these sources of energy are not finite and do not 

contribute to carbon emissions. The need for a diverse and sustainable energy mix, including 

renewable energy sources, has become increasingly important as the world seeks to reduce 

carbon emissions and combat climate change. 

One of the most promising developments in sustainable energy is the potential of net-zero 

energy buildings. These buildings are designed to generate as much energy as they consume, 

resulting in zero net energy consumption. The potential of net-zero energy buildings to 

contribute to a more sustainable future cannot be overstated. As the world becomes more 

urbanized and the demand for energy continues to grow, net-zero energy buildings offer a 

promising solution to the challenges posed by climate change and limited fossil fuel resources. 

 The environmental impact of traditional energy sources, the need to reduce carbon 

emissions and combat climate change, the growing demand for energy worldwide, the limited 

availability and finite nature of fossil fuels, the need for a diverse and sustainable energy mix, 

including renewable energy sources, and the potential of net-zero energy buildings to contribute 

to a more sustainable future are all critical issues that need to be addressed. It is essential that 

governments, businesses, and individuals work together to transition to a more sustainable 
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energy system that will meet the energy needs of the future while protecting the environment and 

promoting economic growth.  
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CHAPTER 2: LITERATURE REVIEW 

As the global economy continues to expand rapidly, the supply and demand of energy 

have significant effects on social, economic, and environmental factors. Due to the necessity of 

achieving sustainable outcomes, policymakers have been obliged to set sustainable targets to 

steer economic policies in the direction of sustainability. This process is commonly known as the 

Sustainable Development Goals (SDGs), which were put forward by the United Nations. The 

energy sector is a crucial area with immense potential for advancements in technology and 

regulations. Solar energy is one of the most effective solutions suggested for reducing the 

economic and environmental impacts of energy use [1]. Rapid population growth and increasing 

living standards lead to a higher demand for energy across the world. However, traditional 

energy sources like fossil fuels are limited and have negative environmental impacts, such as 

greenhouse gas emissions, air pollution, and water pollution. Therefore, there is an urgent need 

to shift towards sustainable energy sources such as solar, wind, hydropower, geothermal, and 

biomass energy. These renewable energy sources are abundant, widely distributed, and do not 

release harmful emissions into the atmosphere. Moreover, renewable energy technologies have 

become more cost-effective and efficient over time, making them a viable alternative to fossil 

fuels [2].  

Fossil fuels are finite resources and their use contributes significantly to greenhouse gas 

emissions and climate change [3]. The continued reliance on these fuels also poses risks to 

human health and the environment through air pollution, water pollution, and the risk of oil spills 

[4]. In contrast, renewable energy sources, such as solar, wind, hydro, geothermal, and biomass, 

offer clean and sustainable sources of energy that have the potential to mitigate these negative 

impacts [5]. Additionally, renewable energy technologies are becoming more cost-effective and 

are rapidly growing, making them a viable alternative to traditional fossil fuels [6]. 

For the past few decades, renewable energy has been widely recognized as a powerful 

remedy for the energy crisis [7]. Solar energy is considered one of the cleanest and most 

sustainable sources of energy among the available options, and it has the potential to 

significantly reduce or even eliminate carbon emissions [8]. Solar energy is a highly accessible 

and abundant source of renewable energy, as it is available in most parts of the world. In fact, in 

just 90 minutes, the earth receives enough solar energy from the sun to meet the world's energy 
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needs for an entire year. Additionally, the amount of solar energy that reaches the earth is 4200 

times greater than the projected global energy demand for the year 2035 [9]. Solar energy 

systems that are intelligent and have a high capacity for collecting solar energy hold the promise 

of fulfilling the world's energy requirements without relying on any other energy sources [10]. 

Compared to fossil fuels, solar energy offers substantial environmental advantages since the 

carbon emissions during the lifecycle of solar panels are 95% lower than those of coal [11].  

Table 1: Nomenclature 

Nomenclature 

LSTM Long Short-Term Memory 
   RNN Recurrent Neural Network 

CNN Relative Humidity 
BP Barometric Pressure 
WD Wind direction 
WS Wind Speed 
PV Photo-Voltaic 
RH Relative Humidity 
Tair Ambient Air Temperature 
R2 Coefficient of Determination 

MAE Mean Absolute Error 
MSE Mean Squared Error 

RMSE Root Mean Squared Error 
BO Bayesian optimization 

 

Moreover, the Photovoltaic system has demonstrated a significant advantage over other 

energy sources, as it produces virtually no carbon emissions. Despite the enormous potential of 

solar energy to meet the world's energy needs, it currently accounts for a small fraction of the 

world's overall energy mix [12]. Likewise, Previous research suggests that solar photovoltaic 

technology can effectively utilize the power of the sun to produce environment friendly 

electricity on a large scale using local resources [13]. The production of electricity through solar 

energy is considered a renewable alternative to non-renewable technologies. Hence, it is fair to 

assert that the implementation of solar energy is eco-friendly compared to any other energy 

source and promotes the conservation of natural resources [14]. In addition, there have been 

efforts to forecast the potential of Solar Hydrogen production in the Islamabad region of Pakistan 

using Machine Learning methods. To accomplish this task, the Photovoltaic-Electrolytic (PV-E) 

system was selected to predict both electricity and hydrogen production [15]. 
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The rapid increase in population and urbanization is driving up energy demands as shown 

in figure 1. Building electricity consumption accounts for around 40% of global energy 

consumption, as per the International Energy Agency's Energy Statistics 2019. Numerous 

countries have taken steps to tackle this issue by enacting policies and regulations that aim to 

enhance the energy efficiency of buildings and encourage the adoption of renewable energy 

sources (RES) to attain Zero-energy buildings. Net Zero Energy (NZE) buildings, which are both 

energy-efficient and sustainable, produce renewable energy on-site to meet or surpass the 

building's yearly local energy consumption. Solar energy is one of the most popular RES due to 

its widespread availability [16]. However, solar PV panels can be unreliable due to non-

uniformity of irradiance and climate conditions. Bifacial PV panels have gained attention due to 

their complementary nature. 

 
Figure 5: Bifacial Photovoltaic panels representation 

Bifacial solar modules have the ability to collect sunlight from both sides, resulting in 

higher energy generation within the same surface area as monoracial modules as shown in figure 

5. This makes bifacial technology an attractive option for the solar photovoltaic (PV) industry. A 

recent analysis conducted by Guerrero-Lemus and colleagues provides an overview of the 

evolution of bifacial technology from its early stages in the 1960s to its current practical 

applications and scalability. Despite the potential for increased energy output with the same 
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footprint, the widespread deployment of bifacial PV technology had to wait for recent 

advancements in technology [17]. 

Commercial PV cells are typically rated to have an efficiency range between 10% to 

20%, with an associated cost of $0.1-0.24 per kilowatt-hour. However, the remaining solar 

energy that is not converted to electricity is mostly dissipated as heat, leading to a decrease in the 

voltage generated and therefore a decrease in the overall efficiency of the cell [18]. Furthermore, 

shading losses can occur in a solar panel when shaded cells force every cell in the panel to 

operate at a reduced current. This issue can be resolved by placing the panels on the roof or in 

open lots [19]. On the other hand, it is possible to enhance the total energy output of solar panels. 

Bifacial solar module technology is a promising emerging trend in rooftop PV systems for 

energy generation, which is expected to dominate PV installations in the near future due to its 

technological and economic feasibility [20]. Optimal planning strategy for distributed rooftop 

photovoltaic systems in high-density cities using integer learning programming and high-

accuracy solar energy potentials characterization was proposed [21]. It has been reported that 

highly reflective and light-colored surfaces can enhance the energy output of bifacial solar panels 

by 10% to 30% [22]. 

To further improve the energy harvesting efficiency, an effective Maximum Power Point 

Tracking (MPPT) algorithm such as learning-based real-time hybrid global search adaptive 

approach can be employed this approach can lead to even greater energy extraction efficiency 

[23]. Photovoltaic Maximum Power Point Tracking also been done by Artificial Neural 

Networks [24]. A set of empirical design rules was developed to evaluate the efficiency of 

bifacial modules in various regions worldwide. These rules are designed to optimize bifacial 

solar modules and enable rapid assessment of location-specific performance. It was also 

concluded that for actual installation, detailed local meteorological data is essential, whereas the 

NASA satellite-derived insolation database is only suitable for preliminary estimation [25]. A 

coupled optical-electrical-thermal model of bifacial solar panels was introduced, utilizing a 

solarGIS database to acquire Global Horizontal Irradiance (GHI) and Diffuse Horizontal 

Irradiance (DHI) data [26]. The prediction of short- and long-term solar irradiance using deep 

learning algorithms has been the focus of research conducted by Haider et al., while various 

studies have also investigated ways to evaluate and improve the performance of solar panels, 

including the development of different types of solar simulators [27]. A solar simulator was 
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designed by utilizing a 1,000 W metal halide lamp coupled with a truncated ellipsoidal reflector 

optimized through parametric iterations, as reported by Shah et al. (2020) [28]. When evaluating 

solar load using bifacial solar panels in a humid sub-tropical region during the monsoon season, 

on-site data from mid-June to mid-August was utilized as an input for solar ray tracing. Due to 

the large temperature variations and extended cloud cover, the effect of changing weather 

patterns was observed. A comparative analysis of the SOPLOS and ASHRAE models with the 

in-situ model was conducted, revealing that both models overestimate front side solar load, with 

only 0.5% and 13% of their estimations aligning with in situ data respectively. In contrast, both 

models underestimate rear side solar load during the studied time period, with only 2% and 24% 

of their estimations matching with in situ data respectively [29]. 

In recent years, there has been a significant increase in the development of solar 

modelling and ray tracing tools, which has led to a more accurate and reliable assessment of 

solar energy potential. These tools utilize various algorithms and techniques, like acceleration 

strategies were utilized to reduce heavy ray tracing requirements by almost 90% for modeling 

bifacial illumination of full photovoltaic systems annually using ray tracing, as reported in a 

study [30]. In 2020, an open-source python toolkit named bifacial radiance was created to 

automate the performance assessment of PV systems within the ray tracing software tool 

RADIANCE [31], these techniques provide detailed information on solar irradiance, panel 

performance, and energy yield. Other researchers have also explored the concept of net-zero 

energy solar greenhouses (NZESGs), such as a study that investigated the potential for 

integrating vertical bifacial photovoltaic panels into a greenhouse structure to achieve near-zero 

energy consumption in tomato production. Another study proposed a design for an NZESG that 

utilizes a solar wall and earth-tube heat exchanger system to improve energy efficiency and 

reduce heating costs [32]. Despite the availability of these tools, there remains a clear research 

gap in terms of experiment validation. Many of these tools lack real-world validation, which 

means that their accuracy and reliability have not been fully tested in practice. Without proper 

validation, there is a risk of inaccurate predictions and unreliable assessments, which could result 

in significant financial losses for solar energy projects. Therefore, there is a pressing need for 

more research to validate the accuracy and reliability of these tools in real-world conditions. 

The focus of this study is to gather data through experimentation on solar bifacial panels. 

Specifically, the study will collect data on the half-hourly front-side radiative flux (qr) and its 
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variation in relation to both the tilt angle of the panels and the prevailing weather conditions. 

This research is significant because it can provide insights into how solar bifacial panels perform 

under different circumstances, and it can help to optimize their performance in real-world 

applications. The data collected in this study can also inform future research and development in 

the field of solar energy, which is becoming increasingly important as the world seeks to 

transition to more sustainable forms of energy production. The collected data on the half-hourly 

front-side radiative flux (qr) and its variation in relation to the tilt angle and weather conditions 

can also be used to develop machine learning models that can predict the optimum tilt angle for 

solar bifacial panels. By using this data to train a machine learning algorithm, the algorithm can 

learn the patterns and relationships that exist between the tilt angle, weather conditions, and 

radiative flux, and then use this information to predict the optimal tilt angle for a given set of 

conditions. This approach has the potential to improve the accuracy and efficiency of optimizing 

the tilt angle for solar bifacial panels, which can lead to more effective use of solar energy and 

greater energy savings. Furthermore, by integrating machine learning models into solar energy 

systems, it can be possible to develop more intelligent and autonomous solar energy systems that 

can optimize their performance in real-time based on changing environmental conditions. 
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CHAPTER 3: METHODOLOGY 

An unsteady flow varies in time as either random or periodic manner The aim is to gather 

data through experimentation on solar bifacial panels, specifically focusing on the half-hourly 

front-side radiative flux and its relationship to the tilt angle of the panels and prevailing weather 

conditions. The collected data can also be used to develop machine learning models that can 

predict the optimum tilt angle for solar bifacial panels. By using this data to train an algorithm, 

the model can learn patterns and relationships between the tilt angle, weather conditions, and 

radiative flux. This approach can improve the accuracy and efficiency of optimizing the tilt angle 

for solar bifacial panels, leading to more effective use of solar energy and greater energy savings. 

Furthermore, integrating machine learning models into solar energy systems can develop more 

intelligent and autonomous systems that optimize their performance based on changing 

environmental conditions in real-time. 

 

3.1   Experimental Setup 

In our study, we aimed to collect data for forecasting bifacial solar panel irradiance based 

on climate parameters and tilt angle. To achieve this, we employed a data collection plan that 

involved the use of various sensors commonly used in weather stations to collect data on 

temperature, relative humidity, pressure, and wind speed. However, for irradiance data, we 

developed a prototype using a two-axis rotation system. This system allowed us to measure the 

Figure 6: Computer Aided Design model 
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irradiance at different tilt angles and sun-facing angles, which we recorded alongside the other 

climate parameters. By using this innovative approach, we were able to collect more accurate 

and detailed data on irradiance, which is a critical factor in forecasting solar panel performance. 

This data can be used to develop more accurate models for forecasting solar panel irradiance, 

ultimately contributing to the development of more efficient and effective solar energy systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Our prototype for measuring bifacial solar panel irradiance consisted of several key  

 

components, including a Circular Protractor for axial Rotation, a Protractor for Tilt angle, a 

Rotatable Stand, a Stand Height Adjuster, and a Concrete Reflecting surface as shown in figure 

3. These parts were carefully selected to provide a flexible and reliable platform for measuring 

irradiance data at different tilt angles and sun-facing angles. To record the half-hourly radiative 

flux data, we also attached a solar power meter to the prototype. This device allowed us to 

accurately measure the electrical output of the solar panel and record the irradiance data at 
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Figure 7: Demonstration of experimental setup 
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regular intervals. The Rotatable Stand allowed us to rotate the solar panel along its horizontal 

axis, while the Stand Height Adjuster enabled us to adjust the height of the stand to suit different 

measurement scenarios. Both the Circular Protractor and the tilt angle Protractor were used to 

measure the tilt angle and sun-facing angle of the solar panel. These angles were critical in 

determining the irradiance on the bifacial solar panel.  

 
Table 2: Details of Experiments. 

Time Environmental 
parameters 

Sun Facing 
Angle Ø 

Tilt Angle β Side 

t0 e0 Ø0  β0 s0 

t1 e1 Ø1  β1 s1 

t2 e2 Ø2  β2  
t3 e3 Ø3  β3  
t4 e4 Ø4  β4  
t5 e5 Ø5  β5  
t6 e6 Ø6  β6  
t7 e7 Ø7   
t8 e8 Ø8 

t9 e9 Ø9 

t10 e10 Ø10   
t11 e11 Ø11   
t12 e12 Ø12   
t13 e13 Ø13   
t14 e14 Ø14   

 

3.2   Process flow: 

Due to the urban environment where the experimentation was conducted and in support 

of the zero-energy building concept, we used a Concrete Reflecting surface to reflect sunlight 

back onto the solar panel during measurement. This surface helped to maximize the amount of 

available sunlight for the solar panel, thereby increasing the accuracy of the irradiance 

measurements. By using this prototype, we were able to collect precise and reliable data on 

irradiance in an urban environment, which is essential for forecasting solar panel performance in 

such settings. This data can be used to develop more accurate models for forecasting solar panel 



19 

irradiance in urban areas, ultimately contributing to the development of more efficient and 

effective solar energy systems for zero energy buildings. 

3.3   Data set collection: 

In this study, we used a variety of sensors to collect data on the different climate parameters that may 

impact bifacial solar panel performance. The sensors we used, along with their corresponding variables, 

descriptions, instruments, and accuracy, are presented in the table 3. 

 
Table 3: Details of Instruments. 
Variable DESCRIPTION Instrument Range & Accuracy 

I Irradiance  Solar Power Meter TES 132 ±10 W/m² at 25°C 

𝑻𝒂𝒊𝒓 Air Temperature Campbell CS215 ±0.3 °C at 25 °C  

RH Relative Humidity Campbell CS215 @ 25𝐶, ±2%  

𝑾𝑺 Wind Speed in m/s NRG 40H Anemometer 0.2 m/s range 6 m/s to 25 m/s  

𝑾𝑺_𝑴𝒂𝒙 WS maximum within 
the time interval 

NRG 40H Anemometer 0.2 m/s range 6 m/s to 25 m/s 

WD Wind direction in ◦N 
(to East) 

NRG 200 Wind Direction 
Sensor 

 ±1.6° and dead band region is ±4.3° 

𝑾𝑺_𝒔𝒕𝒅 Wind Standard 
Deviation 

Na Na 

BP Barometric Pressure Campbell CS100 Barometric 
Pressure Sensor 

 ±0.5 hPa 20°C 

 
The meteorological data was collected for a duration of four weeks, covering two weeks 

before and after the winter solstice. The measurements were taken at half-hour intervals using 

accurate meteorological instruments, which were placed in the EMAP Tier 1 Meteorological 

station located in Islamabad at coordinates 33.64◦N 72.98◦E, and an altitude of 500 meters above 
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sea level. The experimental setup used to collect the data is illustrated in Figure 1, while Table 3 

provides a comprehensive description of the variables in the dataset and the corresponding 

instruments used for their recording. 

The irradiance values of cloudy days are absorbed to be relatively low, indicating the 

impact of weather conditions on the performance of bifacial solar panels. we observed that the 

effect of weather conditions is more significant on the front side of the solar panel than on the 

back side. This finding is consistent with previous studies on bifacial solar panels. Furthermore, 

the selection of dates for experiments before and after winter solstice allowed us to capture the 

variation in weather conditions over time. The collected data and the observed patterns will help 

us in developing an accurate forecasting model for irradiance values based on climate parameters 

and tilt angle, which is crucial for the optimal operation of bifacial solar panels. 

3.4   Data Representation: 

By using the above-described sensors, we were able to collect highly accurate and precise 

data on the climate parameters affecting the performance of bifacial solar panels. This data will 

enable us to better understand how solar panel performance is influenced by these parameters 

and ultimately improve the forecasting of solar irradiance. In the experimentation section, we 

collected time-series data that included several parameters such as air temperature, relative 

humidity, barometric pressure, wind speed, sun-facing angle, tilt angle, radiation on the front of 

the solar panel, radiation on the back of the solar panel, the ratio of back to front radiation, and 

the total radiations. These data were collected at half-hourly intervals using the sensors 

mentioned earlier. The data were recorded with a time step and the values for each parameter 

were noted accordingly. The data were collected over a period of time and recorded in a table 

with columns for each parameter. The datetime column contained the time at which the data 

were recorded. The remaining columns contained the values for air temperature, relative 

humidity, barometric pressure, wind speed, sun-facing angle, tilt angle, wind direction, wind 

speed standard deviation, wind speed maximum   and the total radiations 
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SR 

No: 

Date Time Air 

Temperature 

(𝑪𝒐ሻ 

Relative 

Humidity 

(%) 

Pressure 

(mbar) 

Wind 

Speed 

m/s 

Wind 

direction 

in °N (to 

East) 

Wind 

speed 

Standard 

Deviation 

Wind 

Speed 

maximum  

Sun Facing 

Angle (°) 

Tilt angle 

(°) 

Radiations 

(W/𝒎𝟐) 

 
Week 1                  

1 07/12/2022 

09:00 

12.67 61.25 938.1916 1.375 96.8 0.031 1.375 0 90 906 

… … … … … … … … … … … … 

100 07/12/2022 

16:00 

19.1 35.65 967.4251 6.905 268.8 15.51 6.905 115 45 586.7 

… … … … … … … … … … … … 

110 08/12/2022 

09:00 

13.28 56.32 937.1371 0.749 28.47 0.002 0.749 0 45 1026 

… … … … … … … … … … … … 

 Week 2           

930 15/12/2022 

12:00 

19.87 31.62 974.5694 4.643 265.6 23.95 4.643 42 90 1110 

… … … … … … … … … … … … 

 Week 4 
    

   
   

2295 01/01/2023 

13:30 

17.33 35.76 965.2537 3.135 178.4 13.36 3.135 65 75 1256 

… … … … … … … … … … … … 

 

 
 

 

 

 

 

 

 

 

 

 
In our study, we analyzed the relationship between solar irradiation and climate 

parameters using Python. The correlation plot in figure 4 illustrates the degree of correlation 

between each variable and solar irradiation. Based on the correlation plot, we observe a high 

dependency of solar irradiation on tilt angle, sun-facing angle, and relative humidity. This 

suggests that these variables play a significant role in predicting solar irradiation levels on 

bifacial solar panels. We can see that as tilt angle increase, solar irradiation also increases. 

Additionally, we see a negative correlation of relative humidity and sun-facing angle on solar 

Table 4: Data Description 
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Figure 8. Correlation Plot of Features 

irradiation, indicating that higher relative humidity and sun-facing angle levels result in lower 

solar irradiation levels. 

 

 
 
 

On the other hand, the correlation between solar irradiation and wind speed and air 

temperature is relatively low. This implies that these variables may not be as significant in 

predicting solar irradiation levels on bifacial solar panels. The correlation plot provides valuable 

insights into the relationship between solar irradiation and climate parameters. These findings 

can be used to optimize the placement and positioning of bifacial solar panels to maximize their 

efficiency in different climates. 
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3.5   Data pre-processing: 

To ensure data quality, all datasets are initially inspected for any anomalies before they 

are used to train or test the models. During exploratory data analysis, it was discovered that a 

significant number of solar irradiation readings were recorded as zero or extremely low, which 

can be attributed to rainy days. However, the presence of these values can interfere with model 

fitting, as it turns out that out of 3,234 total records, 442 solar irradiation values were equal to 

zero. To overcome this issue, all readings corresponding to rainy days were removed from the 

dataset, resulting in 2,792 valid records for further analysis. 

3.6   Dataset distribution: 

The dataset for Deep Learning methods was divided into three subsets, namely Training, 

Validation, and Test sets. The Training set consisted of 70% of the dataset, which corresponds to 

1955 records. The Validation set included 15% of the total data, equivalent to 418 records, while 

the Test set also had 15% of the total data, which amounts to 418 records.  

3.7   Forecasting Models: 

Deep Learning is a powerful tool that can handle various types of data, whereas LSTM 

(Long Short-Term Memory) is a specialized type of network within Deep Learning that is 

designed for processing sequential and time-series data. Predicting solar irradiance is crucial for 

power system generation and planning. Traditional statistical methods like autoregressive 

moving average, support vector machine, and artificial neural network have limitations like low 

accuracy, scalability issues, and inability to capture long-term dependencies. To overcome these, 

a deep recurrent neural network is proposed and tested using real data from the National 

Resources in Canada, demonstrating improved accuracy and advantages over existing methods 

[33]. 

The flowchart for the deep learning algorithm used in this study is shown in figure 5. The 

first step in the process involves collecting the data, which was obtained from the 

experimentation. The data consists of solar irradiance values measured in watts per square meter 

(W/m2) at one-minute intervals. The data was then preprocessed, which included data cleaning 

and normalization. The cleaned data was then split into training, validation, and testing datasets, 

with 70% of the data used for training, and 15% each for testing and validation data. The training 
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Figure 9. Unrolled recurrent neural network. 

dataset was used to train the RNN-LSTM and Transformers deep learning models. The 

hyperparameters for the models were optimized using Bayesian optimization, which involves 

selecting the best set of hyperparameters based on the results of the previous iterations. 

After the models were trained, they were tested using the testing dataset to evaluate their 

performance. The performance of the models was measured using evaluation metrics. The 

models were then used to make predictions of solar irradiance values for a range of forecasting 

horizons, ranging from 10 minutes to 90 minutes into the future. The predictions were compared 

to the actual values using the evaluation metrics to assess the accuracy of the models. The 

flowchart shows the process of collecting and preprocessing the data, training the deep learning 

models using Bayesian optimization, testing the models using the testing dataset, and making 

predictions for different forecasting horizons. The use of Bayesian optimization to optimize the 

hyperparameters and the distribution of data into training, validation, and testing datasets helped 

to ensure the accuracy and reliability of the deep learning models in forecasting solar irradiance 

values.  

 
 
 
 
 

3.7.1 RNN-LSTM: 

Recurrent Neural Networks (RNNs) have been widely used in various fields for 

sequential data analysis, such as speech recognition, natural language processing, and time-series 

prediction. However, standard RNNs suffer from vanishing gradient problem which makes it 

difficult to capture long-term dependencies in the input sequences. Long Short-Term Memory 

(LSTM) is a type of RNN architecture that addresses this issue by introducing memory cells, 
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Figure 10. RNN-LSTM Architecture example. 

which allow information to be stored for long periods of time without being diluted or lost shown 

in figure 7. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

LSTM has proven to be a powerful tool for time-series forecasting and has been applied 

in various fields such as energy, finance, and weather forecasting. For instance, in a recent study, 

LSTM was used to forecast photovoltaic power output based on meteorological data, achieving 

high accuracy compared to traditional models. Another study utilized LSTM to forecast wind 

turbine power output, showing improved accuracy compared to other machine learning models 

[34]. LSTM models have been utilized in numerous studies for time-series forecasting, such as 

predicting solar power output, wind power generation, and energy demand. In recent years, with 

the advancement of deep learning and big data technologies, LSTM models have been further 

improved and optimized to achieve better performance in various applications. 

3.7.2 Transformers 

 
The Transformer model is a sequence-to-sequence architecture that can encode and 

decode input data to produce an output sequence [35]. To forecast Solar Irradiance, a four-block 

Transformer architecture with eight heads of size 256 is used, along with a position encoding 

layer to capture temporal patterns and dependencies in the input sequence. Multiple transformer 
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blocks, each with eight transformer heads, are used, and the output of the positional encoder is 

directed to them. Two 1d convolution layers with kernel sizes of 1 and filter sizes of 8 and 74 

(corresponding to the number of features in the dataset) are implemented in the feedforward 

layer. A dense layer with 256 units generates the final output after the output data passes through 

multiple transformer blocks. The Transformer model's self-attention mechanism, which allows 

the network to weigh input components when making predictions, is a defining characteristic 

[36]. This feature enables the Transformer to process input of varying lengths, unlike traditional 

RNNs, which are limited by a fixed-length context [37]. Additionally, the Transformer model's 

multi-head attention mechanism allows it to handle data from different representation subspaces 

at distinct positions. 

3.7.3 Bayesian Optimization: 

Bayesian optimization is a powerful optimization technique that is commonly used in 

machine learning algorithms such as Recurrent Neural Networks (RNNs) and Transformers. It is 

an approach that involves iteratively constructing a probabilistic model of the objective function 

and using it to select the next query point, which is then evaluated to update the model. The goal 

of Bayesian optimization is to find the global optimum of a function with a minimal number of 

evaluations. 

The novelty of Bayesian optimization lies in its ability to efficiently explore high-

dimensional search spaces with limited data. It employs a probabilistic model to capture the 

structure of the search space and uses it to guide the search towards promising regions of the 

space. Bayesian optimization has been shown to be effective in various applications, such as 

hyperparameter tuning and architecture search [38]. 
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Figure 11: Architecture diagram of transformer neural network representing the flow of input 
sequences through multiple layers. 

 

  

 

 

In the context of RNNs and Transformers, Bayesian optimization can be used to optimize 

hyperparameters such as learning rates, dropout rates, and the number of layers. This approach 

can significantly improve the performance of these models and reduce the time required for 

hyperparameter tuning. Additionally, Bayesian optimization can be combined with other 

optimization techniques such as gradient descent to further improve the optimization process. 

Overall, Bayesian optimization is a powerful and novel approach that can significantly enhance 

the performance of machine learning algorithms such as RNNs and Transformers. 
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Figure 12. Complete process diagram 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1    Evaluation Metrics: 

 

The evaluation of machine learning models is a crucial aspect of data science, and 

matrixes have been developed to facilitate this process. To evaluate the performance of 

regression models, several matrixes are commonly used, including MAE, RMSE, SMAPE, and 

R2. MAE measures the average absolute difference between the actual and predicted values, 

making it easy to interpret and robust to outliers. However, it doesn't indicate the direction of the 

error. RMSE, on the other hand, gives more weight to large errors, making it more sensitive to 

outliers than MAE. However, it is harder to interpret and compare between models. SMAPE is 

useful when the magnitude of errors is critical, and it is less sensitive to outliers. R2 measures the 

proportion of the variance in the dependent variable that is predictable from the independent 

variable, and it is widely used to evaluate regression models. The range of R2 is from 0 to 1, 

where 0 indicates no variation in the dependent variable explained by the model, and 1 indicates 

complete explanation. As machine learning evaluation techniques continue to evolve, it is crucial 

to select the appropriate evaluation metrics based on the problem statement and the data type. 

 

4.2      Model Evaluation: 

 

Different evaluation metrics were employed to assess the effectiveness of RNN-LSTM 

and transformers deep learning models in predicting irradiations across different forecasting 

horizons. The findings from the study indicated that both models were effective in forecasting 

irradiations at different horizons. However, the transformers model outperformed the RNN-

LSTM model as shown in Table 2 with lower Mean Absolute Error (MAE) values ranging from 

0.05 to 0.03 across the same horizons. In contrast, the Transformers model had a MAE ranging 

from 0.03 at a horizon of 10 minutes to 0.11 at a horizon of 90 minutes. The difference in MAE 

values between the two models implies that the RNN-LSTM model has a higher accuracy in 

forecasting irradiations compared to the transformers model. 
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Table 5 : Comparison of performance between RNN-LSTM and Transformers at multiple                               
Forecasting Horizons. 

Evaluation 
Metrics 

Forecasting 
Horizon 

RNN-
LSTM 

Transformer
s 

 10 minutes 0.05 0.03 

MAE 30 minutes 0.07 0.06 

 60 minutes 0.10 0.10 

 90 minutes 0.13 0.11 

 10 minutes 0.07 0.09 

RMSE 30 minutes 0.11 0.12 

 60 minutes 0.14 0.14 

 90 minutes 0.18 0.15 

 10 minutes 7.326 10.348 

SMAPE 30 minutes 10.8265 14.41 

 60 minutes 13.62 14.041 

 90 minutes 17.00 18.011 

 10 minutes 0.927 0.894 

R2 30 minutes 0.786 0.758 

 60 minutes 0.692 0.710 

 90 minutes 0.48 0.64 

 

The table provided shows the evaluation metrics for forecasting solar panel irradiance using two 

different deep learning models: RNN-LSTM and Transformers. The evaluation metrics used 

were MAE, RMSE, SMAPE, and R2. These metrics are commonly used to assess the accuracy 

and performance of forecasting models. In terms of MAE, both models performed similarly for 

shorter forecasting horizons of 10 and 30 minutes, with RNN-LSTM having slightly lower MAE 

values. However, as the forecasting horizon increased to 60 and 90 minutes, both models showed 

an increase in MAE, with Transformers having slightly higher MAE values than RNN-LSTM. 

 

The RMSE metric also showed a similar trend, with both models having lower values for shorter 

forecasting horizons of 10 and 30 minutes, and higher values for longer forecasting horizons of 

60 and 90 minutes. Again, RNN-LSTM had slightly lower RMSE values than Transformers for 

shorter forecasting horizons, while Transformers had slightly higher RMSE values than RNN-
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Figure 13. RNN Training Graph with Forecasting Horizon 21 (No of Epoch Vs Validation Loss) 

LSTM for longer forecasting horizons. The SMAPE metric, which measures the relative 

percentage difference between the actual and predicted values, showed that both models had 

higher SMAPE values for longer forecasting horizons. However, Transformers had higher 

SMAPE values than RNN-LSTM for all forecasting horizons, indicating that RNN-LSTM 

performed better in terms of relative percentage difference. 

 

Finally, the R2 metric, which measures the goodness of fit of the model, showed that RNN-

LSTM had higher R2 values than Transformers for shorter forecasting horizons of 10 and 30 

minutes. However, as the forecasting horizon increased to 60 and 90 minutes, Transformers 

showed higher R2 values than RNN-LSTM. Overall, the results suggest that both RNN-LSTM 

and Transformers are capable of accurately forecasting solar panel irradiance, with RNN-LSTM 

having a slight advantage for shorter forecasting horizons, and Transformers having a slight 

advantage for longer forecasting horizons. The choice of model may ultimately depend on the 

specific needs and requirements of the forecasting application. 

 
RNN Training Graph with Forecasting Horizon 21 (No of Epoch Vs Validation Loss): 

 
RNN Training graph With Forecasting Horizon 21": This graph shows the validation loss of an 

RNN model trained to predict a 21step forecasting horizon. The x-axis represents the number of 

epochs during training, while the y-axis represents the validation loss. The validation loss starts 

high and gradually decreases with each epoch until it stabilizes at around 50 epochs. 
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Figure 14. Transformers Training (a) and Validation (b) Graph with Forecasting Horizon 21 (No of Epoch Vs 
Validation Loss) 

 
 

Transformers Training Graph with Forecasting Horizon 21 (No of Epoch Vs Validation Loss): 
 

TRANSFORMERS Training graph With Forecasting Horizon 21": This graph shows the 

validation loss of a Transformers model trained to predict a 21-step forecasting horizon. The x-

axis represents the number of epochs during training, while the y-axis represents the validation 

loss. The validation loss starts high and gradually decreases with each epoch until it stabilizes at 

around 50 epochs, similar to the RNN model. 
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Figure 15. RNN Training Graph with Forecasting Horizon 14 (No of Epoch Vs Validation Loss) 

RNN Training Graph with Forecasting Horizon 14 (No of Epoch Vs Validation Loss): 

 
RNN Training graph With Forecasting Horizon 14": This graph shows the validation loss of an 

RNN model trained to predict a 14-step forecasting horizon. The x-axis represents the number of 

epochs during training, while the y-axis represents the validation loss. The validation loss starts 

high and gradually decreases with each epoch until it stabilizes at around 50 epochs, but with a 

slightly lower final loss compared to the previous graph. 

 
 
 

Transformers Training Graph with Forecasting Horizon 14 (No of Epoch Vs Validation Loss): 

 
TRANSFORMERS Training graph With Forecasting Horizon 14": This graph shows the 

validation loss of a Transformers model trained to predict a 14-step forecasting horizon. The x-

axis represents the number of epochs during training, while the y-axis represents the validation 

loss. The validation loss starts high and gradually decreases with each epoch until it stabilizes at 

around 50 epochs, with a similar final loss as the RNN model. 
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Figure 16. Transformers Training (a) and Validation (b) Graph with Forecasting Horizon 14 (No of Epoch Vs 
Validation Loss) 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

RNN Training Graph with Forecasting Horizon 7 (No of Epoch Vs Validation Loss): 

 
RNN Training graph With Forecasting Horizon 7": This graph shows the validation loss of an 

RNN model trained to predict a 7-step forecasting horizon. The x-axis represents the number of 

epochs during training, while the y-axis represents the validation loss. The validation loss starts 
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Figure 17. RNN Training Graph with Forecasting Horizon 7 (No of Epoch Vs Validation Loss) 

high and gradually decreases with each epoch until it stabilizes at around 50 epochs, with a lower 

final loss than the previous two graphs. 

 

 

Transformers Training Graph with Forecasting Horizon 7 (No of Epoch Vs Validation Loss): 

 
TRANSFORMERS Training graph With Forecasting Horizon 7": This graph shows the 

validation loss of a Transformers model trained to predict a 7-step forecasting horizon. The x-

axis represents the number of epochs during training, while the y-axis represents the validation 

loss. The validation loss starts high and gradually decreases with each epoch until it stabilizes at 

around 50 epochs, with a similar final loss as the RNN model. 
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Figure 19. RNN Training Graph with Forecasting Horizon 2 (No of Epoch Vs Validation Loss) 

Figure 18. Transformers Training (a) and Validation (b) Graph with Forecasting Horizon 7 (No of Epoch Vs 
Validation Loss) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RNN Training Graph with Forecasting Horizon 2 (No of Epoch Vs Validation Loss): 

 
RNN Training graph With Forecasting Horizon 2": This graph shows the validation loss of an 

RNN model trained to predict a 2-step forecasting horizon. The x-axis represents the number of 

epochs during training, while the y-axis represents the validation loss. The validation loss starts 

high and gradually decreases with each epoch until it stabilizes at around 50 epochs, with the 

lowest final loss among all the graphs. 
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Figure 20. Transformers Training (a) and Validation (b) Graph with Forecasting Horizon 2 (No of Epoch Vs 
Validation Loss) 

 

Transformers Training Graph with Forecasting Horizon 2 (No of Epoch Vs Validation Loss): 

 
TRANSFORMERS Training graph With Forecasting Horizon 2": This graph shows the 

validation loss of a Transformers model trained to predict a 2-step forecasting horizon. The x-

axis represents the number of epochs during training, while the y-axis represents the validation 

loss. The validation loss starts high and gradually decreases with each epoch until it stabilizes at 

around 50 epochs, with a similar final loss as the RNN model. 
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CHAPTER 5: CONCLUSION 

In conclusion, the results of this study demonstrate the potential of using data-driven 

methods for forecasting the solar irradiance of bifacial panels in real-time. This approach is 

particularly useful for achieving the energy performance goals of Nearly Zero Energy Buildings 

(NZEBs). In the context of refurbishment of existing buildings for NZEBs, the forecasting of 

solar irradiance can be used to optimize the design and placement of bifacial solar panels. 

Similarly, in the case of new NZEBs, such forecasting can aid in the selection of sustainable 

energy technologies, such as bifacial panels, for optimal energy performance. The experimental 

data used in this study captures the seasonal non-linearity that cannot be accounted for by 

theoretical models. This is particularly relevant in the context of sustainable energy technologies 

for NZEBs, where accurate and real-time forecasting is critical for effective energy management. 

In addition, as urbanization continues to increase, the floor area of buildings increases while the 

roof area remains constant. This creates an opportunity for bifacial panels to capture more solar 

energy, making them a desirable technology for NZEBs. The data-driven approach utilized in 

this study provides a valuable tool for optimizing the energy performance of NZEBs, and can be 

integrated into the advanced design solutions, optimal control, energy performance assessment, 

and energy flexibility and demand response strategies of NZEBs. Furthermore, an inclusive 

approach that considers economic, social, and environmental dimensions of NZEBs can also 

benefit from accurate and real-time forecasting of solar irradiance for effective energy 

management. The study also demonstrated that both RNN-LSTM and Transformers models were 

effective in forecasting irradiance, as evident from the R2 values of 0.927 and 0.894, 

respectively. Furthermore, the Transformers model performed better than the RNN-LSTM 

model, with a lower range of MAE values across the same horizons. These results indicate that 

deep learning models can accurately forecast solar irradiance, which can potentially aid in 

optimizing the performance of net-zero energy buildings. 
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APPENDIX A 

Cell A 

import pandas as pd 
from sklearn.preprocessing import MinMaxScaler 
import tensorflow as tf 
import keras.backend as K 
import pandas as pd 
import numpy as np 
from matplotlib import pyplot as plt 
import os 
import glob 
from matplotlib import pyplot as plt 
import seaborn as sns 
from numpy import savetxt 
from sklearn.preprocessing import MinMaxScaler 
from datetime import datetime 
from time import time 
import json 
import logging 
 
import tensorflow as tf 
import keras 
from keras import layers 
from keras.models import Model 
from keras.models import load_model 
from keras.models import Sequential 
from keras.callbacks import EarlyStopping, TensorBoard, ModelCheckpoint 
from keras.callbacks import Callback 
 
from kerastuner.tuners import RandomSearch 
 
from sklearn.metrics import r2_score 
from datetime import datetime 
from time import time 
import json 
import logging 
 
from keras.utils.vis_utils import plot_model 
from keras.utils.vis_utils import model_to_dot 
 
from sklearn.metrics import r2_score 
 
from livelossplot import PlotLossesKeras 

 

Cell B 
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def mape(y_true, y_pred): 
    import keras.backend as K 
    """ 
    Returns the mean absolute percentage error. 
    For examples on losses see: 
    https://github.com/keras‐team/keras/blob/master/keras/losses.py 
    """ 
    return (K.abs(y_true ‐ y_pred) / K.abs(y_pred)) * 100 
    #diff = K.abs(y_true ‐ y_pred) / K.abs(y_true) 
    #return 100. * K.mean(diff)#, axis=‐1) 
 
def smape(y_true, y_pred): 
    import keras.backend as K 
    """ 
    Returns the Symmetric mean absolute percentage error. 
    For examples on losses see: 
    https://github.com/keras‐team/keras/blob/master/keras/losses.py 
    """ 
    return 100*K.mean(K.abs(y_pred ‐ y_true) / ((K.abs(y_true) + K.abs(y_pred))), 
axis=‐1) 
    #Symmetric mean absolute percentage error 
    #return 100 * K.mean(K.abs(y_pred ‐ y_true) / (K.abs(y_pred) + K.abs(y_true))
)#, axis=‐1) 
 
def rmse(y_true, y_pred): 
    return K.sqrt(K.mean(K.square(y_pred ‐ y_true))) 
 
 
def mae(y_true, y_pred): 
    n = len(y_pred) 
    sum_error = 0 
    for i in range(n): 
      sum_error += K.abs(y_pred[i] ‐ y_true[i]) 
    return sum_error / n 
         
def mase(y_true, y_pred): 
 
    sust = K.mean(K.abs(y_true[:,1:] ‐ y_true[:,:‐1])) 
    diff = K.mean(K.abs(y_pred ‐ y_true)) 
 
    return diff/sust 
 
def coeff_determination(y_true, y_pred): 
 
    SS_res =  K.sum(K.square( y_true‐y_pred )) 
    SS_tot = K.sum(K.square( y_true ‐ K.mean(y_true) ) ) 
    return ( 1 ‐ SS_res/(SS_tot + K.epsilon()) ) 
 
# convert time series to 2D data for supervised learning 
def series_to_supervised(data, train_size=0.5, n_in=1, n_out=1, target_column='ta
rget', dropnan=True, scale_X=True): 
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    df = data.copy() 
 
    # Make sure the target column is the last column in the dataframe 
    df['target'] = df[target_column] # Make a copy of the target column 
    df = df.drop(columns=[target_column]) # Drop the original target column 
 
    target_location = df.shape[1] ‐ 1 # column index number of target 
 
    # ...X 
    #X = df.iloc[:, :target_location] 
    X = df.iloc[:,:] 
 
    # ...y 
    y = df.iloc[:, [target_location]] 
 
    # Scale the features 
    if scale_X: 
        #col_names=['target'] 
        #features = X[col_names] 
        features = X[X.columns] 
        scalerX = MinMaxScaler().fit(features.values) 
        features = scalerX.transform(features.values) 
 
        #X['target'] = features 
        X[X.columns] = features 
 
    #n_vars_x = X.shape[1] 
    x_vars_labels = X.columns 
    y_vars_labels = y.columns 
 
    x_cols, x_names = list(), list() 
    y_cols, y_names = list(), list() 
 
    # input sequence (t‐n, ... t‐1) 
    for i in range(n_in, 0, ‐1): 
        x_cols.append(X.shift(i)) 
        x_names += [('%s(t‐%d)' % (j, i)) for j in x_vars_labels] 
 
    # forecast sequence (t, t+1, ... t+n) 
    for i in range(0, n_out): 
        y_cols.append(y.shift(‐i)) 
        if i == 0: 
            y_names += [('%s(t)' % (j)) for j in y_vars_labels] 
        else: 
            y_names += [('%s(t‐%d)' % (j, i)) for j in y_vars_labels] 
 
    # put it all together 
    x_agg = pd.concat(x_cols, axis=1) 
    x_agg.columns = x_names 
 
    y_agg = pd.concat(y_cols, axis=1) 
    y_agg.columns = y_names 
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    agg=pd.concat([x_agg,y_agg], axis=1) 
    agg.columns = x_names + y_names 
    #print(agg) 
 
 
    # drop rows with NaN values 
    if dropnan: 
        x_agg.dropna(inplace=True) 
        y_agg.dropna(inplace=True) 
 
    # drop rows with NaN values 
    if dropnan: 
        agg.dropna(inplace=True) 
 
    """ 
    diff = y_agg.shape[0] ‐ x_agg.shape[0] 
    idx = [i for i in range(0, diff)] 
    y_agg = y_agg.drop(df.index[idx])""" 
 
    nf = X.shape[1] 
    xx = agg.iloc[:,:n_in*nf] 
    yy = agg.iloc[:,‐n_out:] 
 
    split_index = int(xx.shape[0]*train_size) # the index at which to split df in
to train and test 
 
    # ...train 
    X_train = xx.iloc[:split_index, :] 
    y_train = yy.iloc[:split_index, ] 
 
    # ...test 
    X_test = xx.iloc[split_index:, :] # original is split_index:‐1 
    y_test = yy.iloc[split_index:, ] # original is split_index:‐1 
 
    # ...CV 
    split_cv = int(X_test.shape[0]*0.5) 
    x_cv = X_test.iloc[:split_cv,] 
    x_test = X_test.iloc[split_cv:,] 
    y_cv = y_test.iloc[:split_cv,] 
    y_test = y_test.iloc[split_cv:,]     
 
    return X_train, y_train, x_test, y_test, x_cv, y_cv, scale_X 

 

 

 

 

Cell C 
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callback_history = rnn.train(X_train_reshaped,y_train_reshaped,x_cv_reshaped, 
                            y_cv_reshaped, epochs=300 ,batch_size=51) 
 
_, rmse_result, mae_result, smape_result, r2_result, y_pred = rnn.evaluate(X_test_res
haped,y_test_reshaped) 
 
print('Result \n RMSE = %.2f [C] \n MAE = %.2f [C]\n R2 = %.1f [%%]' % (rmse_result, 
                                                                            mae_resul
t, 
                                                                            r2_result
*100)) 
 
plt.plot(callback_history.history['loss'], label='train') 
plt.plot(callback_history.history['val_loss'], label='validation') 
plt.legend() 
plt.show() 
 
plt.plot(callback_history.history['coeff_determination'], label='r2', color = 'y') 
plt.show() 
 
plt.plot(callback_history.history['rmse'], color = 'y') 
plt.show() 
 
plt.plot(callback_history.history['mae'], label='mae', color = 'y') 
plt.show() 
 
 
print(y_pred.shape) 
print(y_test.shape) 
 
test= np.array(y_test) 
pred = np.array(y_pred) 
 
plt.figure(figsize=(10,8),dpi=500) 
plt.plot( test[0:417,0], color='blue', label='Predicted') 
plt.plot( pred[0:417,0], color='orange', label='Actual') 
plt.xlabel('Time') 
plt.ylabel('Target Value') 
plt.legend() 
plt.show() 
 
 
 
plt.figure(figsize=(10,8),dpi=500) 
plt.plot( pred[0:417,0], color='orange', label='Actual') 
plt.plot( test[0:417,0], color='blue', label='Predicted') 
plt.xlabel('Time') 
plt.ylabel('Target Value') 
plt.legend() 
plt.show() 
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