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Abstract

In this thesis Noether symmetries are used for the classification of plane symmetric, cylin-

drically symmetric and spherically symmetric static spacetimes. We consider general met-

rics for these spacetimes and use their general arc length minimizing Lagrangian densities

for the classification purpose. The coefficients of the metric in case of plane symmetric

static spacetime are general functions of x while the coefficients of cylindrically symmetric

and spherically symmetric static spacetimes are general functions of the radial coordinate r.

The famous Noether symmetry equation is used for the arc length minimizing Lagrangian

densities of these spacetimes. Noether symmetries and particular arc length minimizing

Lagrangian densities of plane symmetric, cylindrically symmetric and spherically symmet-

ric static spacetimes are obtained. Once we get the particular Lagrangian densities, we

can obtain the corresponding particular spacetimes easily. This thesis not only provides

classification of the spacetimes but we can also obtain first integrals corresponding to each

Noether symmetry. These first integrals can be used to define conservation laws in each

spacetime.

By using general arc length minimizing Lagrangian for plane symmetric, cylindrically

symmetric and spherically symmetric static spacetimes in the Noether symmetry equation

a system of 19 partial differential equations is obtained in each case. The solution of the

system in each case provides us three important things; the classification of the spacetimes,

the Noether symmetries and the corresponding first integrals which can be used for the

conservation laws relative to each spacetime.

Energy and momentum, the definitions of which are the focus of many investigations

in general relativity, are important quantities in physics. Since there is no invariant defi-

nitions of energy and momentum in general relativity to define these quantities we use the
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approximate Noether symmetries of the general geodesic Lagrangian density of the general

time conformal plane symmetric spacetime. We use approximate Noether symmetry con-

dition for this purpose to calculate the approximate Noether symmetries of the action of

the Lagrangian density of time conformal plane symmetric spacetime. From this approach,

those spacetimes are obtained the actions of which admit the first order approximation.

The corresponding spacetimes are the approximate gravitational wave spacetimes which

give us information and insights for the exact gravitational wave spacetimes. Some of the

Noether symmetries obtained here carry approximate parts. These approximate Noether

symmetries can further be used to find the corresponding first integrals which describe the

conservation laws in the respective spacetimes.

Some of the vacuum solutions of Einstein field equations for plane symmetric, cylindri-

cally symmetric and spherically symmetric static spacetimes have also been explored.



Dedicated to

My Mother

and

My Father Muhammad Gul (late)

iv



Acknowledgments

First and foremost, I am thankful to Allah Almighty Who blessed me with health and the

ability to complete this labyrinthine work.

This work was completed under the supervision of Dr. Tooba Feroze. I am grateful

to her for her affectionate guidance and help. I am really short of words of gratitude to

her for her encouragement and positive criticism. I would like to extend my thanks to my

GEC members, Prof. Asghar Qadir, Prof. Azad Akhter Siddiqui and Dr. Sajid

Ali for helpful discussions and suggestions.

I am highly indebted to the Higher Education Commission (HEC) of Pakistan

for the financial support without which this work was not possible.

I would also like to thank Prof. Azad Akhter Siddiqui, the Principal School of Nat-

ural Sciences (SNS), National University of Sciences and Technology (NUST), for providing

an excellent research-friendly environment as well as to all my respected teachers, espe-

cially Prof. Muneer Ahmad Rashid of SNS for providing me direction, encouragement

and motivation.

I am thankful to my brothers Pir Muhammad, Yar Muhammad, Wajid Ali,

Sajid Ali and my friend Rasheed Ahmad for their patience and moral support.

This acknowledgment will be incomplete if I do not thank my family members, my

wife and children Amna, Fateh, Hassant, and Zulqarnain, who were the most effected

during my Ph.D. research work, but have always given me ground for my passion.

Finally, I would like to extend a word of thanks to all my friends and colleagues for

their encouragement and help.

Farhad Ali

v



vi

List of Publications from This Thesis

[1] Ali, F. and Feroze, T., Classification of plane symmetric static spacetimes according

to Noether’s symmetries, Int. J. Theor. Phys. 52, 3329-3342, (2013).

[2] Feroze, T. and Ali, F., Corrigendum to Noether’s symmetries and conserved quantities

for spaces with a section of zero curvature [J. Geom. Phys. 61, 658-662, (2011)], J.

Geom and Phys. 80, 88-89, (2014).

[3] Ali, F., Conservation laws of cylindrically symmetric vacuum solution of Einstein field

equations, Applied Mathematical Sciences, 8, 4697-4702, (2014).

[4] Ali, F., Feroze, T. and Ali, S., Complete classification of spherically symmetric static

spacetimes via Noether’s symmetries accepted in Theor. Mathe. Phys.

List of Submitted Papers from This Thesis

[5] Ali, F. and Feroze, T., Approximate Noether symmetries of time conformal plane

symmetric spacetimes, a minor revision is submitted.

[6] Ali, F. and Feroze, T., Noether’s symmetries of the Lagrangian of cylindrically sym-

metric static spacetimes, (submitted).



Contents

1 Introduction 1

1.1 Sophus Lie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Manifold, Tangent Space and Tangent Bundle . . . . . . . . . . . . . . . . . 4

1.3.1 Lie Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Lie algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.3 Lie Derivative, Isometry and Homothety . . . . . . . . . . . . . . . . 9

1.4 Lie Point Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Particular Cases of Lie Point Transformations . . . . . . . . . . . . . 10

1.4.2 General Lie Point Transformation . . . . . . . . . . . . . . . . . . . 11

1.5 Jet Space and Lie Symmetry Generators for Differential Equations . . . . . 12

1.5.1 Jet Space and Lie Symmetry Generator for Ordinary Differential

Equations (ODEs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.2 Jet Space and Lie Symmetry Generator for Partial Differential Equa-

tions (PDEs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Symmetries More General than Point Symmetries . . . . . . . . . . . . . . . 16

1.6.1 Contact Transformation and Lie-Backlund Transformation . . . . . . 16

1.6.2 Approximate Lie Group and Lie Symmetry Generator . . . . . . . . 18

1.7 Plan of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Preliminaries 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 A Short Review of Noether Variational Problem and Euler-Lagrange Equations 25

vii



CONTENTS viii

2.2.1 Noether Variational Problem . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Noether Variational Problem in General Coordinates . . . . . . . . . 30

2.2.3 Noether Symmetry Equation . . . . . . . . . . . . . . . . . . . . . . 33

2.2.4 Noether’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Approximate Noether Symmetry . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 First Order Approximation . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Kth Order Approximate Noether Symmetry . . . . . . . . . . . . . . 35

3 Plane Symmetric Static Spacetimes 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 The Noether Symmetry Governing Equations . . . . . . . . . . . . . . . . . 39

3.3 Determining PDEs System . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Five Noether Symmetries and their First Integrals . . . . . . . . . . . . . . 41

3.5 Six Noether Symmetries and First Integrals . . . . . . . . . . . . . . . . . . 42

3.6 Seven Noether Symmetries and First Integrals . . . . . . . . . . . . . . . . . 46

3.7 Eight Noether Symmetries and First Integrals . . . . . . . . . . . . . . . . . 48

3.8 Nine Noether Symmetries and First Integrals . . . . . . . . . . . . . . . . . 51

3.9 Eleven Noether symmetries and First Integrals . . . . . . . . . . . . . . . . 56

3.10 Seventeen Noether Symmetries and First Integrals . . . . . . . . . . . . . . 58

4 Time Conformal Plane Symmetric Spacetimes 60

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Perturbed Plane Symmetric Spacetime and its Lagrangian . . . . . . 61

4.1.2 First Order Approximate Noether Symmetry and Noether Symmetry

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.3 Determining PDEs for Approximate Noether Symmetries . . . . . . 63

4.2 Solutions of the Perturbed System Given in Equations (4.1.13) . . . . . . . 63

4.2.1 Five Noether Symmetries and Time Conformal Spacetime . . . . . . 63

4.2.2 Six Noether Symmetries and Time Conformal Spacetimes . . . . . . 64

4.2.3 Eight Noether Symmetries and Time Conformal Spacetime . . . . . 67

4.2.4 Nine Noether Symmetries and Time Conformal Spacetime . . . . . . 69



CONTENTS ix

5 Cylindrically Symmetric Static Spacetimes 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Determining PDEs Of Cylindrically Symmetric Static Spacetimes . . . . . . 73

5.3 Five Noether Symmetries and First Integrals . . . . . . . . . . . . . . . . . 74

5.4 Six Noether Symmetries and First Integrals . . . . . . . . . . . . . . . . . . 75

5.5 Seven Noether Symmetries and First Integrals . . . . . . . . . . . . . . . . . 76

5.6 Eight Noether Symmetries and First Integrals . . . . . . . . . . . . . . . . . 81

5.7 Nine Noether Symmetries and First Integrals . . . . . . . . . . . . . . . . . 86

5.8 Eleven Noether symmetries and First Integrals . . . . . . . . . . . . . . . . 90

5.9 Seventeen Noether Symmetries and First Integrals . . . . . . . . . . . . . . 91

6 Spherically Symmetric Static Spacetimes 98

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Determining PDEs and Computational Remarks . . . . . . . . . . . . . . . 100

6.4 Five Noether Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Six Noether Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6 Seven Noether Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.7 Nine Noether Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.8 Eleven Noether Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.9 Seventeen Noether Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Conclusion 114

7.1 Plane Symmetric Spacetimes and Noether Symmetries . . . . . . . . . . . . 115

7.2 Time Conformal Plane Symmetric Spacetime and Noether Symmetries . . . 116

7.2.1 Plane symmetric Static Vacuum Solutions of EFEs . . . . . . . . . . 116

7.3 Cylindrically Symmetric Spacetimes and Noether Symmetries . . . . . . . . 117

7.3.1 Some Cases of Cylindrically Symmetric Vacuum Solutions . . . . . . 118

7.4 Spherically Symmetric Spacetime and Noether Symmetries . . . . . . . . . 119

7.5 Spherically Symmetric Vacuum Solutions of EFEs . . . . . . . . . . . . . . 120

References 122



Chapter 1

Introduction

In 1867, a Norwegian mathematician, Sophus Lie, introduced a powerful technique for the

solutions of differential equations [8,10,11,36,42,59]. The beauty of his technique is that it is

applicable to all types of differential equations i.e. homogenous, non-homogeneous, linear,

non-linear, ordinary and partial differential equations of order n. Later on, he used this

technique for the linearization of non-linear differential equations, group classification of

differential equations, and for finding the invariants corresponding to differential equations.

1.1 Sophus Lie

Sophus Lie was born on 17 December 1842 at Nordfjordeid Norway [81]. He joined a

school in the town of Moss, which is a port in the south east of Norway. In 1857, he

joined Nessen’s Private Latin school in Christiania, where he decided to join army, but

due to his weak eye-sight he gave up this idea and got admission in the university of

Christiania. In the university, he studied a broad science course. There he attended the

lectures of Ludwig Sylow on the work of Galois on algebraic equations and the lectures

given by Carl Bjerknes. Sophus Lie graduated in 1865 from the same university, without

showing any great ability for Mathematics or any liking for this subject. But afterward

he made a mathematical career. The first brilliant idea that came to his mind in 1867

was to develop new geometries by considering curves rather than points only. This idea

was further developed after he studied papers on geometry by Pluker and Poncelet. Lie

composed a short scientific paper on this new idea in 1869, and published it at his own
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CHAPTER 1. INTRODUCTION 2

expense. He wrote a more definitive work but the Academy of Science in Christiania did

not publish it. Later he submitted it to the Crelle Journal where it was accepted. He sent

letters to two Prussian mathematicians, Reye and Clebsch, about his work. For the paper

in Crelle Journal, Lie won a grant to travel and meet the leading mathematicians. By the

end of the year 1869, Lie went to Prussia, then Gottingen, and after that to Berlin. In

Berlin, he met Kronecker, Kummer and Weierstrass. He was not attracted by the style

of Weierstrass who was the leading mathematician of Berlin, but his ideas matched with

that of Kummer. Lie presented his research work in Kummer’s workshop and was able to

revise a few lapses that Kummer had made in his work on line congruences of degree three.

The most important to Lie was, that in Berlin he met Felix Klein. It was not difficult to

see that these two (Lie and Klein) would in fact have the same mathematical background,

since Klein had been a student of Plucker, and Lie, despite the fact that he never met

Plucker, always said that he felt like a Plucker-student. Regardless of the basic connection

through Plucker’s line geometry, Lie and Klein were somewhat distinctive characters as

humans and mathematicians. The algebraist Klein was fascinated by the peculiarities of

charming problems; the analyst Lie, parting from special cases, sought to understand a

problem in its appropriate generalisation [81].

In Berlin Lie gained confidence in his research. He received high appreciation from

Kummer, and he also got answers from Reye and Clebsch to his prior letters which signif-

icantly encouraged him. In the spring of 1870 Lie and Klein met in Paris. There they met

Darboux, Chasles and Camille Jordan who were the leading mathematicians at the time,

especially Jordan was an expert in Galois theory.

Lie started to examine these new plans on groups and geometry with Klein and they

wrote many papers in this area of research. It was the winter of 1873-74 that Lie developed

effectively what is called Lie Group Transformation. Later on, Killing independently inves-

tigated the algebra corresponding to these groups and Cartan completed the classification

of semi-simple Lie algebras in 1900.

In short, Sophus Lie was a great mathematician and known as the founder of Lie group

analysis. This analysis unified three branches of Mathematics namely algebra, analysis

and geometry. Lie gained the idea of transformation groups from Galois Theory, which
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is the group theoretic approach to the solution of algebraic equations. Galois Theory

associates permutation groups to the solution of algebraic equations. Lie applied this

idea to the solution of differential equations and he claimed that there will be groups of

transformations associated to the solution of differential equations.

1.2 Symmetries

The meaning of symmetry, in a vague sense is the “harmonious, beautiful proportion and

balance” of a body. The reflection symmetry is the simplest one which in the language

of Mathematics is called line symmetry or mirror symmetry. As an example, it is easy

to observe that apparently one half of a body is exactly equal and of the same shape as

the other half of the body. In mathematical language beautiful proportion and balance is

“patterned self similarity” that can be written in some formal mathematical expression.

Formally, symmetry in mathematics is a transformation that leaves the object unchanged.

For example, symmetries of functions, differential equations, integral equations etc. are

transformations of the variables which leave the functions, differential equations, integral

equations, etc. unchanged. In the following table a simple examples for each case are

given.

Table 1.1: Examples of symmetries

S.N Types Examples Symmetry Transformation

1 Algebraic expression x2 + y2 (x, y)→ (x cos ε− y sin ε, x sin ε+ y cos ε)

2 Differential equation dy
dx = x− y (x, y)→ (x+ ε, y + ε)

3 Integral equation I =
∫ √

1 + (ux)2dx (x, u)→ (x cos ε− u sin ε, x sin ε+ u cos ε)

All the transformations given in the above table depend upon a parameter ε ∈ R, and are

called Lie groups of point transformations.

In the last decade of the nineteenth century Sophus Lie presented the idea of continuous

groups. He proved that the order of differential equations can be reduced by one if it is

invariant under a one parameter Lie group of point transformations. Lie developed these
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continuous Lie groups, which are now used as a mathematical tool for the solution of

differential equations and symmetry based mathematical sciences. Lie point symmetry of

a system is a symmetry transformation that maps solutions of the system on to solutions of

the system, i.e. it maps the set of solutions of the system to itself. Translations, rotations

and scaling are examples of the Lie point symmetry transformation. For an object O [42],

the set S which contains all invertible transformations T leaving O invariant is called

symmetry group of the object O that is

T : O → O,

such that the set S contains identity, I, the inverse transformations T−1, for all T ∈ S and

the composition T1T2 ∈ S of the transformations T1, T2∈ S.

Lie used Galois’s idea of groups and developed his group theoretic technique for the

solution of differential equations. Galois groups are finite but Lie symmetry groups contain

infinitely many transformations that depend upon continuous parameters. The main idea

of a Lie group of transformations is that it employs infinitesimal transformations which form

a vector space closed under a Lie algebra. Lie groups are smooth and twice differentiable

manifolds which can be studied using differential calculus in contrast to the case of more

general topological groups. One of the key ideas in the theory of Lie groups is to replace the

global object, that is the group, with its local or linearized version which Lie himself called

its “infinitesimal group” and which has become known as its Lie algebra. To understand

Lie groups and Lie algebras, it is necessary to understand the concepts of manifold, tangent

space, tangent bundle, etc., for which a brief introduction to all these concepts are given

below.

1.3 Manifold, Tangent Space and Tangent Bundle

Manifold: The manifold is one of the most basic concept in mathematical physics [59]. It

bears the idea of the space which may be curved and has some complicated topology, but

it looks like Euclidean space Rn locally (it does not mean that both have the same metric).

To apply calculus, a manifold is divided into coordinate charts which form an atlas. Union

of these coordinate charts form the manifold back.
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Definition: An n−dimensional manifold is a non empty set S, with countable subsets

si ⊂ S, called the coordinate charts, and one to one functions fi : si → vi onto connected

subsets vi ⊂ Rn, called local coordinate mapping which satisfy the following conditions.

(1): The coordinate charts cover S; that is

⋃
i

si = S.

(2): On the intersection of coordinate charts, si
⋂
sj , the composition function

fiof
−1
j : fi(si

⋂
sj)→ fj(si

⋂
sj),

is smooth (infinitely differentiable).

(3): For distinct points p ∈ si, q ∈ sj in S, there exist open subsets w ⊂ vi, y ⊂ vj , with

the property fi(p) ∈ w, fj(q) ∈ y, satisfying

f−1i (w)
⋂
f−1j (y) = φ.

Example 1: The simplest m-dimensional manifold is the Euclidean space Rm. It is covered

by a single coordinate chart U = Rm, with local coordinate identity map given by

I : U = Rm → Rm.

More generally, any open subset U of Rm is an m-dimensional manifold with a coordinate

chart given by U itself, and with local coordinate identity map

I : U → U ⊂ Rm.

Sub-manifold: Given a smooth manifold S, a sub-manifold N ⊂ S should be a subset of

S satisfying all the conditions of a manifold. The unit circle S1 := x2 + y2 = 1 and the

unit sphere S2 = x2 + y2 + z2 = 1 are examples of 1-dimensional and 2-dimensional sub-

manifolds of Rm,m ≥ 2, respectively. More specifically we have the following definition of

sub-manifold.

Definition: Let S be a smooth manifold. A sub-manifold is subset N ⊂ S, along with a

smooth one to one map,

φ : Ñ → N ⊂ S,
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satisfying the maximal rank condition every where, and Ñ is another manifold such that

N = φ(Ñ). In particular, the dimension of N is the same as of Ñ , and does not exceed

the dimension of S. Here the maximal rank of the map mean that there is no singularity

on the manifold N .

Tangent space to a manifold: The collection of all tangent vectors at point p ∈ S to

all possible curves passing through this point is called the tangent space to S at point p

denoted by TS|p. If S is an n dimensional manifold then TS|p is also an n dimensional

space generated by the basis vectors

∂

∂x1
,
∂

∂x2
, .....,

∂

∂xn
.

Tangent bundle: The union of all possible tangent spaces over the manifold S is called

the tangent bundle of S that is

TS :=
⋃
p∈S

TS|p.

Vector field: A vector field X on S is a function that assigns a tangent vector X|p to

each point p ∈ S, where X|p varies smoothly form point to point on the manifold S. If we

have the local coordinates x := (x1, x2, ..., xn), then the vector field takes the form

X|p = ξ1(x)
∂

∂x1
+ ξ2(x)

∂

∂x2
+ ....+ ξn(x)

∂

∂xn
,

where all ξi(x) are smooth functions of x.

Lie Brackets: For the vector fields X1 and X2 on the manifold S, the Lie bracket is

defined as

[X1,X2].φ = X1(X2.φ)−X2(X1.φ),

for all smooth function

φ : S → R.

The Lie bracket satisfied the following properties,

(1): Bilinearity: For vector fields X1, X2, X3, X4 on any manifold and constants c1, c2,

c3, c4 the bilinearity condition is

[c1X1 + c2X2, c3X3 + c4X4] = c1c3[X1,X3] + c1c4[X1,X4] + c2c3[X2,X3] + c2c4[X2,X4].
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(2): Skew symmetry: For vector fields X1 and X2 on a manifold the condition

[X1,X2] = −[X2,X1],

holds and is called skew symmetry.

(3): Jacobi identity: If X1, X2 and X3 are vector fields on a manifold then they satisfy

the condition

[X1, [X2,X3]] + [X2, [X3,X1]] + [X3, [X1,X2]] = 0,

which is called the Jacobi identity.

1.3.1 Lie Group

Lie groups are in fact manifolds, they satisfy all the conditions of the manifolds. These

groups arise as an algebraic abstraction of the notion of symmetry transformations called

Lie symmetry transformations; an important example is the group of rotations in the plane

or three-dimensional space. Manifolds, which form the fundamental objects in the field

of differential geometry, generalize the familiar concepts of curves and surfaces in three-

dimensional space. In general, a manifold is a space that locally looks like Euclidean space

Rm, but the global character of which might be quite different. The conjunction of these

two seemingly disparate mathematical ideas combines, and significantly extends, both the

algebraic methods of group theory and the multi-variable calculus used in analytic geom-

etry. This resulting theory, particularly the powerful infinitesimal symmetry generators

techniques, can then be applied to a wide range of physical and mathematical problems.

Definition: An r-dimensional Lie group is defined as a group G which carries the struc-

ture of an r-dimensional manifold in such a way that the following composition function

f and inversion function k are smooth for all elements of G

f : G×G→ G, f(g, h) = g.h, g, h ∈ G,

k : G→ G, k(g) = g−1, g ∈ G.

Example 2: (i) G = R is the set all real numbers which satisfy all the conditions of Lie

groups under addition, it is a simple example of a Lie group.

(ii) The group G = GL(n,R) is the set of all n×n non singular matrices with real entries.
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These matrices form a Lie group under matrix multiplication. The product of two non

singular matrices is again a non singular matrix, the inverse of each matrix exists as it is

non singular, the identity matrix is the identity of the group and matrix multiplication is

always associative.

(iii): The set SO(2,R) is the set of 2× 2 special orthogonal matrices of the form

G :=

 cos θ − sin θ

sin θ cos θ

 0 ≤ θ ≤ 2π

which is the rotation group in R2. These matrices form Lie group.

Lie subgroup: Most often Lie group arises as subgroup of a larger group, for example the

orthogonal group SO(2,R) of 2× 2 matrices with determinant equal to 1, is the subgroup

of the general linear group GL(2,R) of all invertible 2×2 matrices, similarly the orthogonal

group SO(n,R) is subgroup of of group GL(n,R) of general linear invertible matrices. Lie

sub groups are groups in their own right.

1.3.2 Lie algebra

For Lie group G, there are certain distinguished vector fields on G characterized by their

invariance under the group multiplication. These invariant vector fields form a finite-

dimensional vector space, called the Lie algebra of G denoted by g, which are in a precise

sense the “infinitesimal generators” of G. Almost all the information in the group G is

contained in its Lie algebra. This fundamental observation is the cornerstone of Lie group

theory; for example, it enables us to replace complicated nonlinear conditions of invariance

under a group action by relatively simple linear infinitesimal conditions. The power of

this method cannot be overestimated indeed almost the entire range of applications of Lie

groups to differential equations ultimately rests on this one construction.

Definition: An r-parameter Lie group G has an r-dimensional Lie algebra forming a

vector space and denoted by “g” which contains all the generators of an r-dimensional Lie

group, satisfying the conditions of bilinearity, skew symmetry and Jacobi identity

defined above. This algebra is said to be abelian if [Xi,Xj] = 0 for all Xi,Xj ∈ g.
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1.3.3 Lie Derivative, Isometry and Homothety

Let v be a vector field on a manifold S [59]. We are often interested in how certain geometric

objects on S, such as functions, tensor, differential forms and other vector fields, vary under

the flow exp(εv) induced by v. The Lie derivative of such an object will in effect tell us

its infinitesimal change when acted on by the flow. (Our standard integration procedures

will tell us how to reconstruct the variation under the flow from this infinitesimal version.)

For instance, the behaviour of a function f under the flow induced by a vector field v is

v(f), and will be the ”Lie derivative” of the function f with respect to v.

More specifically let X be a vector field on the manifold S and υ is another field or

differential form then the Lie derivative of υ with respect to X at point p ∈ S such that

the following limit holds is

LX(υ) = X(υ)|p = lim
ε→0

φ(υ|exp(εX)p)− υ|p
ε

.

For two vector fields X1 and X2 the Lie derivative of X2 with respect to X1 is in fact the

Lie bracket

[X1,X2] = X1(X2)−X2(X1).

Isometry: [56] The field X on the manifold S is an isometry if the Lie derivative of the

metric tensor gµν of S with respect to the field X vanishes, that is

LX(gµν) := gµν,λX
λ + gµλX

λ
ν + gνλX

λ
µ = 0, (µ, ν, λ = 0, 1, 2, 3),

where gµν are the coefficient of the metric

ds2 = gµνdx
µdxν ,

called the metric tensor.

Homothety: [56] The field X on the manifold S is a homothety if the Lie derivative of

the metric tensor gµν of S with respect to the field X is equal to constant time gµν , that is

LX(gµν) := gµν,λX
λ + gµλX

λ
ν + gνλX

λ
µ = cgµν , (µ, ν, λ = 0, 1, 2, 3).

where c is a constant.
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1.4 Lie Point Transformation

1.4.1 Particular Cases of Lie Point Transformations

(i): Translation: The transformation of the form

x̃ = x+ a, ỹ = y + b,

is called translation in x and y axis, these transformations form groups called Lie groups

of point transformation.

(ii): Rotation: The transformation of the form

x̃ = x cos(t)− y sin(t), ỹ = x sin(t) + y cos(t),

is called rotation. The area of geometric objects remain invariant under translation and

rotation.

(iii): Scaling: The transformation

x̃ = eax, ỹ = eby,

is called scaling, similarity transformation or dilation. This type of transformation expands

or contracts the geometrical objects. The expansion or contruction is said to be uniform

if a = b and non-uniform otherwise.

Definition: Two geometrical figures are said to be similar if one is obtained from the

other by translation, rotation or scaling transformation on the plane [56].

Example 3: Any rectangle {0 ≤ x ≤ a, 0 ≤ y ≤ b} is similar to the unit square:

{0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. We can see that the stretching

x̃ =
x

a
, ỹ =

y

b
, (1.4.1)

converts the rectangular region {0 ≤ x ≤ a, 0 ≤ y ≤ b} into the unit square

{0 ≤ x̃ ≤ 1, 0 ≤ ỹ ≤ 1}. Using the transformation given by equations (1.4.1) one can

find the relation between the areas of the two figures as

x̃ỹ =
xy

ab
⇒ 1 =

xy

ab
⇒ ab = xy.

Similarly the ellipse

x2

a2
+
y2

b2
= 1,
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can be transformed into the unit circle

x̃2 + ỹ2 = 1,

by the similarity transformation given by equations (1.4.1) and their areas are related by

Ã =
A

ab
⇒ abÃ = A⇒ abπ = A,

where Ã = π is the area of the unit circle and A is the area of the ellipse.

1.4.2 General Lie Point Transformation

For coordinates (x, y) where x is independent and y is dependent variables the transfor-

mation of the form

x̃ = x̃(x, y) = x+ εξ(x, y),

ỹ = ỹ(x, y) = y + εη(x, y),

is called a Lie point transformation, theses transformation can be extend to the order of

differential equation. For example if we have a differential equation of the form

f(x, y, y
′
, y
′′
, ..., yk) = 0,

where yk denotes kth derivative with respect to x, then the Lie point transformation takes

the form

x̃ = x̃(x, y) = x+ εξ(x, y),

ỹ = ỹ(x, y) = y(x, y) + εη(x, y),

˜́y = ˜́y(x, y, y
′
) = y

′
(x, y, y

′
) + εη1(x, y, y

′
),

...

ỹk = ỹk(x, y, y
′
, ..., yk) = yk(x, y, y

′
, ..., yk) + εηk(x, y, y

′
, ..., yk).
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If we have n independent variables x = (x1, x2, ..., xn) and m dependent variables

y = (y1, y2, ..., ym) then the above transformation takes the form

x̃i = x̃i(x, y) = xi + εξi(x, y),

ỹj = ỹj(x, y) = yj + εηj(x, y),

ỹji1 = ỹji1(x, y, yi1) = yji1(x, y, yi1) + εηji1(x, y, yi1),

...

ỹji1,i2,...,ik = ỹji1,i2,...,ik(x, y, yi1 , ..., yi1,i2,...,ik) =

yji1,i2,...,ik(x, y, yi1 , ..., yi1,i2,...,ik) + εηji1,i2,...,ik(x, y, yi1 , ..., yi1,i2,...,ik),

where the subscripts denote derivatives and superscripts denote coordinations.

1.5 Jet Space and Lie Symmetry Generators for Differential

Equations

1.5.1 Jet Space and Lie Symmetry Generator for Ordinary Differential

Equations (ODEs)

If x is the independent variable and y the dependent variable then the space underlying it

is X × Y ∼= R2 with coordinate (x, y), the corresponding jet space of order n for nth order

differential equation

f(x, y, y
′
, y
′′
, .....yn) = 0, (1.5.1)

is X×Y n+1 ∼= Rn+2 with coordinate (x, y, y
′
, y
′′
, .....yn), where yn denote the nth derivative

of y with respective x.

The Lie symmetry generator for the space X × Y = R2 is

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
,

while the corresponding Lie generator for the space X × Y n+1 ∼= Rn+2 for any nth order

ODE will be

X[n] = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ ηx(x, y, y

′
)
∂

∂y′
+ ηx,x(x, y, y

′
, y
′′
)
∂

∂y′′
+ ..+ ηx, x, .., x︸ ︷︷ ︸

n−times

(x, y′, .., yn)
∂

∂yn
,

(1.5.2)
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where

ηx(x, y.y
′
) =

d

dx
η(x, y)− y′ d

dx
ξ(x, y),

ηx,x(x, y, y
′
, y
′′
) =

d

dx
ηx(x, y, y

′
)− y′′ d

dx
ξ(x, y),

...

ηx, x, .., x︸ ︷︷ ︸
n−times

(x, y, y
′
, .., yn) =

d

dx
η x, x, .., x︸ ︷︷ ︸
(n−1)−times

(x, y, y
′
, .., yn−1)− yn d

dx
ξ(x, y),

and the total derivative operator is

d

dx
=

∂

∂x
+ y

′ ∂

∂y
+ y

′′
+ ...+ yn

∂

∂yn−1
.

Example 4: Consider the example

y
′′
(x) + y(x) = 0. (1.5.3)

The jet space for this differential equation is X×Y 3 = R4 with jet coordinate (x, y, y
′
, y
′′
).

The Lie symmetry generator takes the form

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
,

and the corresponding second order extended generator is

X[2] = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ ηx(x, y, y

′
)
∂

∂y′
+ ηxx(x, y, y

′
, y
′′
)
∂

∂y′′
. (1.5.4)

Apply the generator given by equation (1.5.4) on the ODE given by equation(1.5.3) and

using the values of ηx and ηxx in terms of η we have the following system of determining

equations,

ξyy = 0, ξxxy + ξy = 0, ξxxx − 3ξxyy + 4ξx = 0,

ηyy − 2ξxy = 0, ηxy + 3ξyy − ξxx = 0,

ηxx − ηyy + 2ξxy + η = 0.

(1.5.5)

Solution of system given in equations (1.5.5) is

ξ(x, y) = c1y sin(x) + c2y cos(x) + c4 sin(2x) + c5 cos(2x) + c3,

η(x, y) = c1y
2 cos(x)− c2y2 sin(x) + c4y cos(2x)− c5y sin(2x) + c6y + c7 sin(x) + c8 cos(x).

(1.5.6)
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This solution represents eight parameter Lie group and hence forms eight dimensional Lie

algebra. The symmetry generators are

X1 = y sin(x)
∂

∂x
+ y2 cos(x)

∂

∂y
, X2 = y cos(x)

∂

∂x
− y2 sin(x)

∂

∂y
,

X3 = sin(2x)
∂

∂x
+ y cos(2x)

∂

∂y
, X4 = cos(2x)

∂

∂x
− y sin(2x)

∂

∂y
,

X5 = cos(x)
∂

∂y
, X6 = sin(x)

∂

∂y
,X7 = y

∂

∂y
, X8 =

∂

∂x
.

(1.5.7)

The Lie algebra is

[X1,X3] = −X1, [X1,X3] = −X2, [X1,X5] = −1

2
X3 −

3

2
X7

[X1,X6] =
1

2
X4 −

1

2
X8, [X1,X7] = −X1, [X1,X8] = −X2,

[X2,X3] = X2, [X2,X4] = −X1, [X2,X5] = −1

2
X4 −

1

2
X8,

[X2,X6] = −3

2
X7 −

1

2
X3, [X2,X7] = X2, [X2,X8] = −X1,

[X3,X4] = −X8, [X3,X5] = −X5, [X3,X6] = X6,

[X3,X8] = −2X4, [X4, X5] = X6, [X4,X6] = X5,

[X4,X8] = 2X3, [X5,X7] = X5, [X5,X8] = X6,

[X6,X7] = X6, [X6,X8] = X5, [Xi,Xj] = 0, otherwise.

The corresponding one parameter Lie groups are (a is the parameter)

G1 :

[
x+ ay sin(x),

y

1− ay cos(x)

]
,

G2 :

[
x+ ay cos(x),

y

1 + ay sin(x)

]
,

G3 : [arctan(tan(x). exp(2a)), y exp(a cos(2x))] ,

G4 :
[
arctan(tan(x− π

4
) exp(2a)) +

π

4
, y exp(−a sin(2x))

]
,

G5 : [x, y + a cos(x)] ,

G6 : [x, y + a sin(x)] ,

G7 : [x, exp(a)y] ,

G8 : [x+ a, y] .
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1.5.2 Jet Space and Lie Symmetry Generator for Partial Differential

Equations (PDEs)

For x = (x1, x2, ..., xn) independent and u = (u1, u2, .., um) dependent variables the Eu-

clidian space is x×u = Rn+m and, in coordinate notation it is (x,u) and its corresponding

kth order jet space is x × ui1i2,...ik with coordinate (x, u, ui1 , ui1i2 , ..., ui1i2...ik), where the

subscript denotes the derivatives. The kth order partial differential equation will be of the

form

f(x, u, ui1 , ui1i2 , ..., ui1i2...ik) = 0.

The Lie generator for this PDE is

X = ξi
∂

∂xi
+ ηj

∂

∂uj
,

and its kth order prolongation is

X[k] = ξi
∂

∂xi
+ ηj

∂

∂uj
+ ηji1

∂

∂uji1

+ ηji1i2
∂

∂uji1i2

+ ...+ ηji1...ik
∂

∂uji1...ik

.

Example 5: Consider the following heat equation

φt(t, x)− φxx(t, x) = 0. (1.5.8)

It is second order linear PDE, its solution space is X×Φ with coordinates (t, x, φ) and the

corresponding jet space is X× Φ2 with jet coordinates (t, x, φ, φt, φx, φtt, φtx, φxx).

The symmetry generator for the solution space is

X = ξ1
∂

∂t
+ ξ2

∂

∂x
+ η

∂

∂φ
,

and the second order prolonged generator is

X[2] = ξ1
∂

∂t
+ ξ2

∂

∂x
+ η

∂

∂φ
+ ηt

∂

∂φt
+ ηx

∂

∂φx
+ ηtt

∂

∂φtt
+ ηtx

∂

∂φtx
+ ηxx

∂

∂φxx
. (1.5.9)

Apply the generator given by equation (1.5.9) on equation (1.5.8) and inserting the values

of ηt, ηxx in term of η and ξi we get the following system of determining equations

ξ2φ = 0, ξ2x = 0, ξ2φφ = 0, ξ1φ − 2ξ2xφ − 3ξ1φ = 0, ξ1φφ = 0,

2ξ1x − ξ2t + ξ2xx − ηφ = 0, 2ξ2xφ − ηφφ = 0,

ξ1xx − ξ1t − 2ηxφ = 0, ηt − ηxx = 0.

(1.5.10)
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The solution of this system is

ξ1 = 2c1t+ 4c3t
2 + c4,

ξ2 = c1x+ 2c2t+ 4c3xt+ c5,

η = −c2xφ− 2c3tφ− c3φx2 + c6φ+ β(t, x).

(1.5.11)

As we have an arbitrary function β(t, x) in the solution so the algebra is infinite dimensional

here. The Lie symmetry generators are

X1 = x
∂

∂x
+ 2t

∂

∂t
, X2 = 2t

∂

∂x
− xφ ∂

∂φ
, X3 = 4tx

∂

∂x
+ 4t2

∂

∂t
− φ(2t+ x2)

∂

∂φ
,

X4 =
∂

∂t
, X5 =

∂

∂x
, X6 = φ

∂

∂φ
, Xβ = β(t, x)

∂

∂φ
.

(1.5.12)

The corresponding Lie groups are

G1 : [exp(2a)t, exp(a)x, φ] ,

G2 :
[
t, x+ 2at, φ exp(−ax− a2t)

]
,

G3 :

[
t

1− 4at
,

x

1− 4ax
, φ

√
1− 4at exp(

−ax2

1− 4at
)

]
,

G4 : [t+ a, x, φ] ,

G5 : [t, x+ a, φ] ,

G6 : [t, x, exp(a)φ] ,

Gβ : [t, x, φ+ aβ(t, x)] .

(1.5.13)

1.6 Symmetries More General than Point Symmetries

1.6.1 Contact Transformation and Lie-Backlund Transformation

Contact Transformation: The transformation in which ξ and η are function of x, y, y
′

are called contact transformations [8, 10,11,36]. Consider the differential equation

y
′′
(x) + y

′
(x) + y2(x) = 0.

This differential equation admits the only symmetry

X =
∂

∂x
.
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Now taking the transformation

ỹ = y
′

= ν, x̃ = y = µ,

the given differential equation takes the form

(ν + 1)
dν

dµ
+ µ2 = 0.

This is first order differential equation, so it has infinitely many symmetries of the form

X1 = m(µ, ν)
∂

∂µ
+ n(µ, ν)

∂

∂ν
.

Transforming back this symmetry generator into the original coordinate (x, y) we have

X1 = X1(x)
∂

∂x
+ X1(y)

∂

∂y
+ X1(y

′
)
∂

∂y′

= m(µ, ν)
∂

∂µ
+ n(µ, ν)

∂

∂ν

= m(y, y
′
)
∂

∂y
+ n(y, y

′
)
∂

∂y′
.

Now we see that the symmetry generator X1 is not a Lie point symmetry generator for

the point transformation because the coefficient of ∂
∂y depends upon y

′
, and similarly

the transformation we have taken here is not the point transformation, that is why the

symmetry X1 is not show up for the given differential equation. This type of transformation

which depends upon x, y and the first derivative of y is called a contact transformation.

Lie-Bäcklund Transformation: This is the most general form of the transformation

in which the transformation depends upon n independent variables x = (x1, x2, ..., xn), m

dependent variables u = (u1, u2, ..., um) and up to kth derivative of the dependent variables,

that is

x̃ = x̃(x, u, ui1 , ui1i2 , ....ui1i2...ik),

ũ = ũ(x, u, ui1 , ui1i2 ....ui1i2...ik),

ũi1 = ũi1(x, u, ui1 , ui1i2 , ....ui1i2...ik),

...

ũi1i2...ik = ũi1i2...ik(x, u, ui1 , ui1i2 , ....ui1i2...ik).

(1.6.1)

This type of transformation is also called higher order tangent transformation.



CHAPTER 1. INTRODUCTION 18

1.6.2 Approximate Lie Group and Lie Symmetry Generator

Physical problems some times admit approximation. For example we ignore the air friction

in free fall. Similarly the simple pendulum is effected by the air friction which dies away the

motion of pendulum, the simple harmonic motion of a body attached to a spring is reduce

by the friction of the surface on which it moves. These small perturbations in physical

systems (here of the air resistance and friction between the spring and the surface on which

it moves) are very sensitive to the exact Lie group theoretic approach to the solution of

differential equations [31]. Consequently the application of the Lie group technique to the

solution of differential equations reduces much in such physical problems. Fortunately an

approximate Lie group technique were developed [4,5,64] and used to reduce the instability

of the Lie group theoretic method to the solution of differential equations.

Definition: An approximate transformation of order p in Rn can be written as [42]

xi → x̃i ≈ x̃i0(xi, a) + εx̃i1(x
i, a) + ....+ εpx̃ip(x

i, a), (1.6.2)

which obey the initial conditions

x̃ij |a=0 ≈ xij ,∀i.

Approximate symmetry group generator of order p: The generator of the approx-

imate transformation given in equation (1.6.2) is of the form

X = ξi(x, ε)
∂

∂xi
, (1.6.3)

such that

ξi(x, ε) ≈ ξi0(x) + εξi1(x) + ....εpξip(x), ξij(x) =
∂

∂a
x̃ij |a=0, (1.6.4)

then the generator given in equation (1.6.3) takes the form

X = (ξi0(x) + εξi1(x) + ....εpξip(x))
∂

∂xi
. (1.6.5)

First order approximation: The symmetry generator of the form

X = ξi
∂

∂xi
, (1.6.6)
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is said to be of the first order if ξi = ξi0 + εξi1, where ε is a small arbitrary parameter. The

generator in equation (1.6.6) splits into two parts as

X0 = ξi0
∂

∂xi
, X1 = ξi1

∂

∂xi
, (1.6.7)

where X0 is the exact and X1 is the approximate part of the symmetry generator given in

equation (1.6.6).

The corresponding approximate transformation group of point x into x̃ is

xi → x̃i(xi, a) = x̃i0(x
i, a) + εx̃i1(x

i, a). (1.6.8)

Example 6: The one dimensional symmetry generator

X = (x2 + εx)
∂

∂x
, (1.6.9)

splits into two parts as

X0 = x2
∂

∂x
, X1 = x

∂

∂x
,

where X0 is the exact and X1 is the approximate symmetry. Here ξ0 = x2 and ξ1 = x.

The corresponding approximate Lie equations are

dx̃0
da

= x2, x̃0|a=0 = x,

dx̃1
da

= x̃0, x̃1|a=0 = 0.

The solution to this system is

x̃0 = ax2 + x, x̃1 =
a2x2

2
+ ax.

The approximate group is

x̃ = ax2 + x+ ε

(
a2x2

2
+ ax

)
.

Example 7: Now consider a two dimensional symmetry generator

X = (1 + εx)
∂

∂x
+ εy

∂

∂y
,

which can be splits into two parts as

X0 =
∂

∂x
, X1 = x

∂

∂x
+ y

∂

∂y
,
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where X0 is the exact and X1 is the approximate symmetry. The corresponding approxi-

mate Lie differential equations are

dx̃0
da

= 1,
dỹ0
da

= 0, x̃0|a=0 = x, ỹ0|a=0 = y,

dx̃1
da

= x̃0,
dỹ0
da

= ỹ0, x̃1|a=0 = 0, ỹ1|a=0 = 0.

The solution of this system is

x̃0 = x+ a, x̃1 = ax+
a2

2
, ỹ0 = y, ỹ1 = ay,

the approximate group corresponding to the above solution is

x̃ = x+ a+ ε

(
ax+

a2

2

)
, ỹ = y + ε(ay).

Example 8: Consider the following second order differential equation

y
′′

= 0. (1.6.10)

Using the symmetry generator

X[2] = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂x
+ η1(x, y, y

′
)
∂

∂y′
+ η2(x, y, y

′
, y
′′
)
∂

∂y′′
.

We have the following system of determining partial differential equations

ξyy = 0, ξxx = 2ηxy, ξxy =
1

2
ηyy, ηxx = 0.

The solution of this system is

ξ = c1 + c2x+ c3y + c4x
2 + c5

xy

2
,

η = c4xy + c5
y2

2
+ c6x+ c7y + c8.

The symmetry generators are

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = y

∂

∂x
, X4 = x2

∂

∂x
+ xy

∂

∂y
,

X5 = xy
∂

∂x
+ y2

∂

∂y
, X6 = y

∂

∂y
, X7 = x

∂

∂y
, X8 =

∂

∂y
.

Perturbing the differential equation given in equation (1.6.10) as

y
′′

+ εy = 0, (1.6.11)
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where ε is a small parameter and applying the approximate symmetry

X[2] = (ξ0 + εξ1)
∂

∂x
+ (η0 + εη1)

∂

∂y
+ (η

′
0 + εη

′
1)

∂

∂y′
+ (η

′′
0 + εη

′′
1 )

∂

∂y′′
, (1.6.12)

on differential equation (1.6.11) getting the terms of order one in ε and solving the system

we have the following solution,

ξ0 + εξ1 = c1(1− 2εx2) + c2

(
x− ε2x3

3

)
+ c3

(
y − εx

2y

2

)
+ c4

(
x2 − εx

4

2

)
+

c5

(
xy − εx

3y

6

)
+ c6ε+ c7εx+ c8εxy + c9ε2x+ c10εy + c11εx

2,

η0 + εη1 = −2c1εxy + c2ε(y − yx2)− c3εxy2 + c4

(
yx− ε2yx3

3

)
+ c5

(
y2 − εy

2x2

2

)
+

c8εy
2 + c9εy + c11εxy + c12

(
x− εx

3

6

)
+ c13y + c14

(
1− εx

2

2

)
+ c15εx+ c16ε.

The corresponding symmetry generators are

X1 = (1− 2εx2)
∂

∂x
− 2εxy

∂

∂y
, X2 =

(
x− ε2x3

3

)
∂

∂x
+ ε(y − x2y)

∂

∂y
,

X3 =

(
y − εx

2y

2

)
∂

∂x
− εxy2 ∂

∂y
, X4 =

(
x2 − εx

4

2

)
∂

∂x
−
(
xy − ε2x3y

3

)
∂

∂y
,

X5 =

(
xy − εx

3y

6

)
∂

∂x
−
(
y2 − εx

2y2

2

)
∂

∂y
, X6 = ε

∂

∂x,
, X7 = εx

∂

∂x
,

X8 = ε

(
xy

∂

∂x
+ y2

∂

∂y

)
, X9 = ε

(
2x

∂

∂x
+ y

∂

∂y

)
,

X10 = ε

(
x2

∂

∂x
+ xy

∂

∂y

)
, X11 = εy

∂

∂x
, X12 = ε

(
x− x3

6

)
∂

∂x
,

X13 = y
∂

∂y
, X14 =

(
1− εx

2

2

)
∂

∂y
, X15 = εx

∂

∂y
, X16 = ε

∂

∂y
.

1.7 Plan of the Thesis

This thesis is organized in the following way. A brief introduction to Euler-Lagrange

equations and Noether variational problem is given in Chapter 2. We begin calculation

from an action of a first order Lagrangian for relativistic field theories, where φi(xµ),

i = 1, 2, 3..., N , are functions, which play the role of dependent variables and xµ, µ =

0, 1, 2, 3 are the independent variables. We derive the Euler-Lagrange equations and the

corresponding conserved quantities for the action, and generalize this calculation for n

independent and m dependent variables and Lagrangian of order k.
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The Noether symmetries, using the arc length minimizing Lagrangian of plane sym-

metric static spacetimes are given in Chapter 3. An introduction to Noether symmetry

equation and metric of general plane symmetric static spacetimes are given, and the remain-

der of the chapter consists of many sections. Each section contains Noether symmetries,

metric of the spacetimes and the corresponding first integrals.

In Chapter 4 approximate Noether symmetries of the arc length minimizing Lagrangian

of time conformal plane symmetric spacetimes are presented. This chapter consists of four

sections. In section one, the definition of approximate Noether symmetry and perturbed

Lagrangian for the time conformal plane symmetric spacetimes along with a system of 19

PDEs are given. The remaining three sections consist of those cases where the approximate

symmetry(ies) exist(s) and list all those time conformal plane symmetric spacetimes where

the approximate Noether symmetries exist. The approximate first integrals are also given

in this chapter.

The Noether symmetries of the arc length minimizing Lagrangian of cylindrically sym-

metric static spacetimes are given in Chapter 5. Different sections consist of different num-

bers of Noether symmetries along with the corresponding cylindrically symmetric static

spacetimes and first integrals.

Chapter 6 consists of the complete classification of spherically symmetric static space-

times according to Noether symmetries.

The conclusion of the thesis, discussion on some new cases of plane symmetric static,

spherically symmetric static spacetimes and vacuum solutions are given in Chapter 7.



Chapter 2

Preliminaries

2.1 Introduction

The symmetries of a variational problem are called Noether symmetries. A variational

problem describes a physical system and can be written in an integral form which is called

the action of the problem. For example consider length of a curve of function f(t), from a

point (a, f(a)) to another point (b, f(b)) that is

S =

∫ b

a

√
1 + ˙f(t)

2
dt, (2.1.1)

where “ ˙ ” denotes differentiation with respect to t. For minimum value of S, f(t) must

be a straight line, which is the extremal value of f(t). To show that f(t) is a straight line

we shift f(t) from its minimum value by εv(t) that is

f(t)→ f(t) + εv(t), (2.1.2)

where v(t) is arbitrary function satisfying v(a) = v(b) = 0 and ε is an arbitrary small

parameter. The integral given in equation (2.1.1) takes the form

Sv =

∫ b

a

√
1 + (ḟ(t) + εv̇(t))2dt. (2.1.3)

23
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Differentiating with respect to ε we have

d

dε
Sv =

d

dε

∫ b

a

√
1 + (ḟ(t) + εv̇(t))2dt,

=

∫ b

a

ḟ + εv̇√
1 + (ḟ(t) + εv̇(t))2

v̇|ε=0dt,

=

∫ b

a

ḟ(t)√
1 + ḟ(t)2

v̇dt.

(2.1.4)

Integrating the right hand side with respect to t we have

d

dε
Sv =

ḟ√
1 + ḟ(t)2

v|ba −
∫ b

a

d

dt

 ḟ√
1 + ḟ(t)2

 vdt,
= −

∫ b

a

d

dt

 ḟ√
1 + ḟ(t)2

 vdt.
(2.1.5)

For extremal values of S the variation vanishes which imposes condition on the function

f(t). That is

d

dε
Sv = −

∫ b

a

d

dt

 ḟ√
1 + ḟ(t)2

 vdt = 0, (2.1.6)

since v(t) is arbitrary, therefore,

− d

dt

 ḟ√
1 + ḟ(t)2

 = 0, (2.1.7)

which implies that f(t) must be a straight line. If we take

L(t, f(t), ḟ(t)) =

√
1 + ḟ2(t),

then equation (2.1.7) can be written as

∂L
∂f(t)

− d

dt

∂L
∂ḟ(t)

= 0, (2.1.8)

which is the Euler-Lagrange equation for the action given by equation (2.1.1), where the

function L is called Lagrangian density. This is a specific variational problem, the calcu-

lation could be extended to any general Lagrangian depending on general coordinates and

derivatives of any order.

The Euler-Lagrange equations are the restriction on the variables involved in the action.

These equations could be obtained from the variation in the action. The solution of
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these equations give the extremal values of the action. In the following sections a brief

introduction to Noether variational problem and Euler-Lagrange equations are given. At

the end of this chapter the definitions of first order and kth order approximate Noether

symmetries are given.

2.2 A Short Review of Noether Variational Problem and

Euler-Lagrange Equations

Emmy Noether: Emmy Noether was born on 23 March 1882 in Erlangen, Bavaria,

Germany [82]. She was named Amalie, but always called “Emmy”. Emmy Noether’s

father Max Noether was a recognized mathematician and a teacher at Erlangen. Her

mother was Ida Kaufmann, from a well known and wealthy family of Erlangen. Both

Emmy’s parents were of Jewish cast and Emmy was the eldest of their four children. Emmy

Noether went to the Hohere Tochter School in Erlangen from 1889 until 1897. She studied

German, English, French, along with arithmetics and was given piano lessons. At this

stage she wanted to become a language teacher, and after further investigation of English

and French she took the examinations of the State of Bavaria and, in 1900, turned into a

certificated instructor of English and French in Bavarian girls school. However, Noether

never turned into a language instructor, rather she chose to take the troublesome course

for a lady of that time and studied mathematics at university. Ladies were permitted to

study at German institutions informally and every teacher allowed the female to attend

his lecture. Noether was allowed to sit in courses at the University of Erlangen throughout

1900 to 1902. Having taken and passed the registration examination in Nurnberg in 1903,

she went to the University of Gottingen. From 1903 to 1904 she attended the lectures given

by Blumenthal, Hilbert, Klein and Minkowski. She got her PhD degree in mathematics

under the supervision of Paul Gordan. Having finished her doctorate, the typical movement

to a scholarly post might have been the habilitation. However, this route was not open

to ladies so Noether stayed at Erlangen, helping her father who, especially on account of

his own incapacities, was appreciative for his daughter’s assistance. Noether additionally

continued her research, during this period she was affected by Fischer who had succeeded
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Gordan in 1911. This impact took Noether towards Hilbert’s conceptual methodology to

the subject. In 1915 Hilbert and Klein welcomed Noether to come back to Gottingen [82].

They convinced her to stay at Gottingen while they battled a fight to have her on the

faculty of the university. In a long fight with the university administration, to permit

Noether to get her habilitation there, she got the permission in 1919 after four years of

struggle. Throughout this time Hilbert had permitted Noether to lecture by publicizing

her courses under his own particular name. For instance a course given in the winter

semester of 1916-17 shows up in the index as:

Mathematical Physics Seminar: Professor Hilbert, with the assistance of Dr. E Noether,

Mondays from 4-6, no tuition.

Emmy Noether’s first excellent work, when she was in Gottingen in 1915 is an outcome

in theoretical physics [18, 52, 53], known as Noether’s theorem, which demonstrates a re-

lationship between symmetries in physics and conservation laws. This basic result in the

general theory of relativity was praised by Albert Einstein in a letter to Hilbert when he

referred to Noether’s penetrating mathematical thinking.

Noether published this paper called “Invariant variational problem”, now famous for

connecting symmetries with conservation laws. This paper was presented to the Royal

Society in Gottingen on July 17, 1918 by Felix Klein [58]. Her discussion begins with a

variational problem and its solution. Noether’s paper concerns theories that can be given

in a Lagrangian formulation. We begin with basic features of such theories. For relativistic

field theories, we take the Lagrangian density [19,46]

L = L(xµ, φi, ∂µφ
i), (2.2.1)

where φi (i = 1, 2..., N) are fields (dependent variables) depending on independent variables

xµ (µ = 0, 1, 2, 3). The action S is defined in terms of the Lagrangian density as

S =

∫
R
L(xµ, φi, ∂µφi)d4x, (2.2.2)

and the corresponding Euler-Lagrange equations take the form

∂L
∂φi
− ∂µ

∂L
∂(∂µφi)

= 0. (2.2.3)

To discuss Noether variational problem, we first need to understand in more detail the

variations that we are considering. Consider one of the dependent variable, say φk =
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φ. The total variation in φ and the independent variable xµ, gives rise to the following

transformation of φ:

δφ = φ̃(x̃)− φ(x). (2.2.4)

Here the variation consist of two parts. The first is the variation in the function φ at a

fixed coordinate, which is given by

δoφ = φ̃(x)− φ(x). (2.2.5)

The second variation in φ is due to change in independent variable x, that is

δxφ = φ(x̃)− φ(x). (2.2.6)

From equation (2.2.4) we have

δφ = φ̃(x̃)− φ(x) = δ0φ(x̃) + φ(x̃)− φ(x),

= δ0φ(x+ δx) + φ(x+ δx)− φ(x),

= δ0φ(x) + δxµ∂µδ0φ+ φ(x) + δxµ∂µφ(x)− φ(x),

= δ0φ(x) + δxµ∂µφ(x).

(2.2.7)

This important relation will be used in the solution of Noether variational problem. The

operator ∂µ commutes with δ0 as (we need this commutation relation in the proof of

Noether variational problem)

∂µδoφ = ∂µ{φ̃(x)− φ(x)} = ∂µφ̃(x)− ∂µφ(x) = δo∂µφ(x), (2.2.8)

while the variation δ does not commute with the ordinary derivative operator ∂µ

∂µδφ(x) = ∂µ{φ̃(x̃)− φ(x)},

= ∂µφ̃(x̃)− ∂µφ(x) =
∂x̃ν

∂xµ
∂ν̃ φ̃(x̃)− ∂µφ(x).

(2.2.9)

This reduces to

∂µδφ(x) = δ∂µφ(x), (2.2.10)

if and only if

∂x̃ν

∂xµ
= δνµ, (2.2.11)

and that is possible only when xµ are fixed.
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2.2.1 Noether Variational Problem

For Noether variational problem we take variations in the dependent, independent, and

the derivatives of the dependent variables [17,68] that is

xµ → x̃µ(xµ, φi) = xµ + εξµ(xµ, φi) + ...,

φi(xµ)→ φ̃i(xµ, φi) = φi(xµ) + εηi(xµ, φi)...,

∂µφ
i(xµ)→ ∂µφ̃

i(xµ, φi) = ∂µφ
i(xµ) + ε∂µη

i(xµ, φi)....

(2.2.12)

In order to derive the general solution to the Noether variational problem, consider the

variation given in equations (2.2.12) in the corresponding action we have

δS =

∫
R
L(x̃µ, φ̃i, ∂µφ̃

i)d4x̃−
∫
R
L(xµ, φi, ∂µφ

i)d4x, (2.2.13)

where the integration is taken over spacetimes region R. The second order tensors play a

fundamental role in the mechanics of deformable bodies because deformation and internal

forces characterizing the behaviour of deformable bodies are described mathematically by

second order tensors such as strain and stress tensors. The second order tensors satisfy all

the axioms of a vector space. We denote the vector space of all second order tensors by L.

Then equation (2.2.13) takes the form

δS =

∫
R

[L(xµ, φi, ∂µφ
i)+δL(xµ, φi, ∂µφ

i)][1 + ∂µ(δxµ)]d4x

−
∫
R

L(xµ, φi, ∂µφ
i)dx4,

(2.2.14)

where the transformation of the volume element proceeds with respect to the Jacobian ∂x̃
∂x

and is corrected to the first order in ε hence we have

δS =

∫
<

[
δL(xµ, φi, ∂µφ

i) + L(xµ, φi, ∂µφ
i)∂µ(δxµ)

]
d4x. (2.2.15)

Equation (2.2.15) can be written as

δS =

∫
<

[
∂L
∂φi

δoφ
i +

∂L
∂(∂µφi)

δo(∂µφ
i) + (∂µL)δxµ + L∂µ(δxµ)

]
d4x, (2.2.16)

δS =

∫
<

[
∂L
∂φi

δoφ
i +

∂L
∂(∂µφi)

δo(∂µφ
i) + ∂µ(Lδxµ)

]
d4x. (2.2.17)

We know that δo(∂µφ
i) = ∂µ(δoφ

i), then equation (2.2.17) leads to

δS =

∫
<

[
∂L
∂φi

δoφ
i +

∂L
∂(∂µφi)

∂µ(δoφ
i) + ∂µ(Lδxµ)

]
d4x, (2.2.18)
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δS =

∫
<

[
∂L
∂φi

δoφ
i + ∂µ

(
∂L

∂(∂µφi)
δoφ

i

)
− ∂µ

(
∂L

∂(∂µφi)

)
δoφ

i + ∂µ(Lδxµ)

]
d4x. (2.2.19)

Rearranging the terms we have

δS =

∫
<

[(
∂L
∂φi
− ∂µ

∂L
∂(∂µφi)

)
δoφ

i + ∂µ

(
∂L

∂(∂µφi)
δoφ

i + Lδxµ
)]

d4x, (2.2.20)

which implies that if the first order variation in the action vanishes (δS = 0) for arbitrary

region of integration, then we have the following solution to the Noether variational problem(
∂L
∂φi
− ∂µ

∂L
∂(∂µφi)

)
δoφ

i + ∂µ

(
∂L

∂(∂µφi)
δoφ

i + Lδxµ
)

= 0. (2.2.21)

This equation is a restriction on the Lagrangian that must be satisfied. If the Euler-

Lagrange equations are satisfied then we have

∂µ

(
∂L

∂(∂µφi)
δoφ

i + Lδxµ
)

= 0. (2.2.22)

Equations (2.2.21) and (2.2.22) are the crucial results from which Noether’s theorem fol-

lows. These equations are often quoted as Noether’s theorem. According to equation

(2.2.22) the quantity

Φ =
∂L

∂(∂µφi)
δoφ

i + Lδxµ, (2.2.23)

is conserved. Now if instead of δS = 0, we take the divergence term

δS =

∫
∂µδA

µd4x, (2.2.24)

in equation (2.2.20) it would not change the Euler-Lagrange equations

∂L
∂φi
− ∂µ

∂L
∂(∂µφi)

= 0. (2.2.25)

In such a situation equation (2.2.21) takes the form(
∂L
∂φi
− ∂µ

∂L
∂(∂µφi)

)
δoφ

i + ∂µ

(
∂L

∂(∂µφi)
δoφ

i + Lδxµ
)

= ∂µδA
µ,(

∂L
∂φi
− ∂µ

∂L
∂(∂µφi)

)
δoφ

i + ∂µ

(
∂L

∂(∂µφi)
δoφ

i + Lδxµ − δAµ
)

= 0.

(2.2.26)

If the Euler-Lagrange equations are satisfied then the conserved quantity becomes

Φ =
∂L

∂(∂µφi)
δoφ

i + Lδxµ − δAµ, (2.2.27)
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where Aµ is called the gauge function. Introducing

δoφ
i = δφi − δxν∂νφi,

from equation (2.2.7) in equation (2.2.27), we have

Φ =
∂L

∂(∂µφi)
(δφi − δxν∂νφi) + Lδxµ − δAµ. (2.2.28)

Now using the transformation given by equations (2.2.12) the conserved quantity takes the

usual form

Φ =
∂L

∂(∂µφi)
(ηi − ξν∂νφi) + Lξµ − δAµ. (2.2.29)

2.2.2 Noether Variational Problem in General Coordinates

For one independent variable t and m dependent variables qi, where i = 1, 2, ...,m, the

second order Lagrangian density takes the form L(t, qi, q̇i, q̈i), using this Lagrangian density

then equation (2.2.26) takes the form [7,69,70][
∂L
∂qi
−D∂L

∂q̇i
+D2 ∂L

∂q̈i

]
δoq

i+

D

[(
∂L
∂q̇i
−D∂L

∂q̇i

)
δoq

i +
∂L
∂q̈i

δoq̇
i + Lδt− δA

]
= 0.

Where (D = d
dt). Let us see this equation for Lagrangian density of order three that is

L(t, qi, qit, q
i
tt, q

i
ttt).

The above equation (2.2.26) takes the form[
∂L
∂qi
−D∂L

∂qit
+D2 ∂L

∂qitt
−D3 ∂L

∂qittt

]
δoq

i+

D

[(
∂L
∂qit
−D ∂L

∂qitt
+D2 ∂L

∂qittt

)
δoq

i+(
∂L
∂qitt
−D ∂L

∂qittt

)
δoq

i
t +

∂L
∂qittt

δoq
i
tt + Lδt− δA

]
= 0.

(2.2.30)

Looking equation (2.2.30), we are in the position to write it for the Lagrangian density of

order k

L(t, qi, qit, q
i
tt, ....., q

i
tt...t︸︷︷︸
k−times

). (2.2.31)
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For Lagrangian density given in equation (2.2.31), equation (2.2.26) becomes[
∂L
∂qi
−D∂L

∂qit
+D2 ∂L

∂qitt
−D3 ∂L

∂qittt
+ ...(−1)kDk ∂L

∂qitt...t︸︷︷︸
k−times

]
δoq

i+

D

[(
∂L
∂qit
−D ∂L

∂qitt
+D2 ∂L

∂qittt
+ ...(−1)k−1Dk−1 ∂L

∂qitt...t︸︷︷︸
k−times

)
δoq

i+

(
∂L
∂qitt
−D ∂L

∂qittt
+D2 ∂L

∂qitttt
+ ...(−1)k−2Dk−2 ∂L

∂qitt...t︸︷︷︸
k−times

)
δoq

i
t+

(
∂L
∂qittt

−D ∂L
∂qitttt

+D2 ∂L
∂qittttt

+ ...(−1)k−3Dk−3 ∂L
∂qitt...t︸︷︷︸

k−times

)
δqitt+

......+
∂L

∂qitt...t︸︷︷︸
k−times

δoq
i
tt...t︸︷︷︸

(k−1)−times

+ Lδt− δA
]

= 0.

The Euler-Lagrange equations are

∂L
∂qi
−D∂L

∂qit
+D2 ∂L

∂qitt
−D3 ∂L

∂qittt
+ ...(−1)kDk ∂L

∂qitt...t︸︷︷︸
k−times

= 0.

The corresponding conservation laws are

D

[(
∂L
∂qit
−D ∂L

∂qitt
+D2 ∂L

∂qittt
+ ...(−1)k−1Dk−1 ∂L

∂qitt...t︸︷︷︸
k−times

)
δoq

i+

(
∂L
∂qitt
−D ∂L

∂qittt
+D2 ∂L

∂qitttt
+ ...(−1)k−2Dk−2 ∂L

∂(qitt...t︸︷︷︸
k−times

)

)
δoq

i
t+

(
∂L
∂qittt

−D ∂L
∂qitttt

+D2 ∂L
∂qittttt

+ ...(−1)k−3Dk−3 ∂L
∂qitt...t︸︷︷︸

k−times

)
δoq

i
2+

......+
∂L

∂qitt...t︸︷︷︸
k−times

δoq
i
tt...t︸︷︷︸

(k−1)−times

+ Lδt− δA
]

= 0.

Now we want to write these equations for n independent and m dependent variables and

Lagrangian of order k [10] that is

x = (x1, x2, ...., xn), q = (q1, q2, ...., qm),

L(x, q, qi1 , qi1i2 , ..., qi1i2...ik).

(2.2.32)
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For Lagrangian given in equation (2.2.32), the equation (2.2.26) takes the form[
∂L
∂qi
−Di1

∂L
∂qii1

+Di1Di2

∂L
∂qii1i2

−Di1Di2Di3

∂L
∂qii1i2i3

+ ..(−1)kDi1 ..Dik

∂L
∂qii1i2..ik

]
δoq

i+

Di1

[(
∂L
∂qii1

−Di2

∂L
∂qii1i2

+Di2Di3

∂L
∂qii1i2i3

+ ...(−1)k−1Di2Di3 ...Dik

∂L
∂qii1i2..ik

)
δoq

i+(
∂L
∂qii1i2

−Di3

∂L
∂qii1i2i3

+Di3Di4

∂L
∂qii1i2i3i4

+ ...(−1)k−2Di3Di4 ...Dik

∂L
∂qii1i2i3..ik

)
δoq

i
i2+(

∂L
∂qii1i2i3

−Di4

∂L
∂qii1i2i3i4

+Di4Di5

∂L
∂qii1i2i3i4i5

+ ...(−1)k−3Di4Di5 ...Dik

∂L
∂qii1i2i3..ik

)
δoq

i
i2i3

+ ......+
∂L

∂qii1i2i3..ik
δoq

i
i2i3i4..ik

+ Lδxi1 − δAi1
]

= 0.

The corresponding Euler-Lagrange equations are

∂L
∂qi
−Di1

∂L
∂qii1

+Di1Di2

∂L
∂qii1i2

−Di1Di2Di3

∂L
∂qii1i2i3

+ ..(−1)kDi1 ..Dik

∂L
∂qii1i2..ik

= 0. (2.2.33)

And the conservation laws take the form

Di1

[(
∂L
∂qii1

−Di2

∂L
∂qii1i2

+Di2Di3

∂L
∂qii1i2i3

+ ...(−1)k−1Di2Di3 ...Dik

∂L
∂qii1i2..ik

)
δoq

i+(
∂L
∂qii1i2

−Di3

∂L
∂qii1i2i3

+Di3Di4

∂L
∂qii1i2i3i4

+ ...(−1)k−2Di3Di4 ...Dik

∂L
∂qii1i2i3..ik

)
δoq

i
i2+(

∂L
∂qii1i2i3

−Di4

∂L
∂qii1i2i3i4

+Di4Di5

∂L
∂qii1i2i3i4i5

+ ...(−1)k−3Di4Di5 ...Dik

∂L
∂qii1i2i3..ik

)
δoq

i
i2i3

+ ......+
∂L

∂qii1i2i3..ik
δoq

i
i2i3i4..ik

+ Lδxi1 − δAi1
]

= 0.

If the action

S =

∫
R
L(x, q, qi1 , qi1i2 , ..., qi1i2...ik)dx, (2.2.34)

is invariant under the symmetry transformations

x∗ → x+ εξ(x, q, qi1 , qi1i2 ...qi1i2...ip) + ...,

q∗ → q + εη(x, q, qi1 , qi1i2 ...qi1i2...ip) + ...,

q∗i1 → qi1 + εηi1(x, q, qi1 , qi1i2 ...qi1i2...ip) + ...,

...

q∗i1i2...ik → qi1i2...ik + εηi1i2...ik(x, q, qi1 , qi1i2 ...qi1i2...ip) + ....

(2.2.35)
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then the quantity[
∂L
∂qii1

−Di2

∂L
∂qii1i2

+Di2Di3

∂L
∂qii1i2i3

+ ...(−1)k−1Di2Di3 ...Dik

∂L
∂qii1i2..ik

]
δoq

i+(
∂L
∂qii1i2

−Di3

∂L
∂qii1i2i3

+Di3Di4

∂L
∂qii1i2i3i4

+ ...(−1)k−2Di3Di4 ...Dik

∂L
∂qii1i2i3..ik

)
δoq

i
i2+(

∂L
∂qii1i2i3

−Di4

∂L
∂qii1i2i3i4

+Di4Di5

∂L
∂qii1i2i3i4i5

+ ...(−1)k−3Di4Di5 ...Dik

∂L
∂qii1i2i3..ik

)
δoq

i
i2i3

+ ......+
∂L

∂qii1i2i3..ik
δoq

i
i2i3i4..ik

+ Lδxi1 − δAi1 ,

is conserved.

2.2.3 Noether Symmetry Equation

For action defined in equation (2.2.34) and transformations given by equations (2.2.35),

equation (2.2.26) takes the form

∂L
∂x

δx+
∂L
∂q
δoq +

∂L
∂qi1

δoqi1 + ....+
∂L

∂qi1i2...ik
δoqi1i2...ik + LDδx−DA = 0. (2.2.36)

Now using the notation of transformations given by equations (2.2.35), we have

ξ
∂L
∂x

+ η
∂L
∂q

+ ηi1
∂L
∂qi1

+ ....+ ηi1i2...ik
∂L

∂qi1i2...ik
+ LDξ −DA = 0 > (2.2.37)

This equation can be written as[
ξ
∂

∂x
+ η

∂

∂q
+ ηi1

∂

∂qi1
+ ....+ ηi1i2...ik

∂

∂qi1,i2...ik

]
L+ LDξ = DA. (2.2.38)

This is the most general form of Noether symmetry equation or Noether symmetry condi-

tion. If we define

X = ξ
∂

∂x
+ η

∂

∂q
, (2.2.39)

and its kth order prolongation

X[k] = ξ
∂

∂x
+ η

∂

∂q
+ ηi1

∂

∂qi1
+ ....+ ηi1i2...ik

∂

∂qi1,i2...ik
, (2.2.40)

then equation (2.2.38) takes the form

X[k]L+ LDξ = DA. (2.2.41)
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X defined in equation (2.2.39) is called Noether symmetry generator, and the equation

(2.2.41) is compact form of Noether symmetry equation. The operator D is the total

derivative operator defined by the equation

D =
∂

∂x
+ qi1

∂

∂q
+ qi1i2

∂

∂qi1
+ ....+ qi1i2...ik

∂

∂qi1,i2...ik−1

.

2.2.4 Noether’s Theorem

If X defined in equation (2.2.39) generates the variational symmetry for action defined in

equation (2.2.34) then the quantity [45,50]

I = δAi1 −

[
∂L
∂qi1i

−Di2

∂L
∂qii1i2

+Di2Di3

∂L
∂qii1i2i3

+ ...(−1)k−1Di2Di3 ...Dik

∂L
∂qii1i2..ik

]
δoq

i −(
∂L
∂qii1i2

−Di3

∂L
∂qii1i2i3

+Di3Di4

∂L
∂qii1i2i3i4

+ ...(−1)k−2Di3Di4 ...Dik

∂L
∂qii1i2i3..ik

)
δoq

i
i2

−

(
∂L

∂qii1i2i3
−Di4

∂L
∂qii1i2i3i4

+Di4Di5

∂L
∂qii1i2i3i4i5

+ ...(−1)k−3Di4Di5 ...Dik

∂L
∂qii1i2i3..ik

)
δoq

i
i2i3

−......− ∂L
∂qii1i2i3..ik

δoq
i
i2i3i4..ik

− Lδxi1 , (2.2.42)

is conserved corresponding to the Euler-Lagrange equations [68]

∂L
∂qi
−Di1

∂L
∂qii1

+Di1Di2

∂L
∂qii1i2

−Di1Di2Di3

∂L
∂qii1i2i3

+ ..(−1)kDi1 ..Dik

∂L
∂qii1i2..ik

= 0. (2.2.43)

2.3 Approximate Noether Symmetry

2.3.1 First Order Approximation

The first order approximate Noether symmetry generator for x = (x1, x2, ..., xn) and u =

(u1, u2, ..., um) is defined as [42]

X = X0 + εX1. (2.3.1)

Explicitly we can write

X = (ξi0 + εξi1)
∂

∂xi
+ (ηj0 + εηj1)

∂

∂uj
, (2.3.2)

and its first order prolongation is

X[1] = (ξi0 + εξi1)
∂

∂xi
+ (ηj0 + εηj1)

∂

∂uj
+ (ηj0 + εηj1)i1

∂

∂uji1

. (2.3.3)
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The Lagrangian density perturbed up to the first order in ε is

L = L0(x, u, ui1) + εL1(x, u, ui1). (2.3.4)

Then the approximate Noether symmetry equation reads

X[1]L+ (Diξ
i)L = DiA

i, (2.3.5)

which splits into two equations

X0
[1]L+ (Diξ

i)L = DiA
i
0,

X
[1]
0 L1 + X

[1]
1 L0 + (Diξ

i
0)L1 + (Diξ

i
1)L0 = DiA

i
1.

(2.3.6)

The second part of equations (2.3.6) gives the first order approximate Noether symmetry

corresponding to the given Lagrangian.

2.3.2 Kth Order Approximate Noether Symmetry

The approximate Noether symmetry generator of order k in ε for x = (x1, x2, ..., xn) and

u = (u1, u2, ..., um) is defined as [42]

X = X0 + εX1 + ε2X2 + ...+ +εkXk. (2.3.7)

Explicitly we can write

X = (ξi0 + εξi1 + ...+ εkξik)
∂

∂xi
+ (ηj0 + εηj1 + ...+ εkηjk)

∂

∂uj
, (2.3.8)

and its pth order prolongation is

X[p] = (ξi0 + εξi1 + ...+ εkξik)
∂

∂xi
+ (ηj0 + εηj1 + ...+ εkηjk)

∂

∂uj

+ (η0j + εηj1 + ...+ εkηjk)i1
∂

∂uji1

+ ...+ (ηj0 + εηj1 + ...+ εkηjk)i1i2...ip
∂

∂uji1i2...ip
.

(2.3.9)

The perturbed Lagrangian of order k in ε is

L = L0(x, u, ui1 , ..., ui1i2...ip) + εL1(x, u, ui1 , ..., ui1,i2...ip)

+ ε2L2(x, u, ui1 , ..., ui1i2...ip) + ...+ εkLk(x, u, ui1 , ..., ui1i2...ip).
(2.3.10)

Then the approximate Noether symmetry equation reads

X[p]L+ (Diξ
i)L = DiA

i, (2.3.11)



CHAPTER 2. PRELIMINARIES 36

where

Ai = Ai0 + εAi1 + ε2Ai2 + ...+ εkAik. (2.3.12)

Equation (2.3.11) splits into (k + 1) equations.

Example 9: The Lagrangian density corresponding to differential equation (1.6.10) is

L =
y
′2

2
, (2.3.13)

and the first order prolonged symmetry generator for this Lagrangian density is

X[1] = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ η

′
(x, y, y

′
)
∂

∂y′
. (2.3.14)

Using equations (2.3.13) and (2.3.14) in equation (2.3.5), we have the following system of

determining PDEs,

ξy(x, y) = 0, Ax(x, y) = 0, ηx(x, y)−Ay = 0, 2ηy(x, y)− ξx(x, y) = 0. (2.3.15)

The solution of this system is

A(x, y) =
c1y

2

2
+ c2y + c3, ξ(x, y) = c1x

2 + c4x+ c5,

η(x, y) = c1xy +
c4y

2
+ c2x+ c6.

The Noether symmetry generators, gauge functions and first integrals are given below

No. N. Symmetry Gauge Functions First Integral

1. X1 = ∂
∂x A1 = 0 φ1 = y

′2

2

2. X2 = 2x ∂
∂x + y ∂

∂y A2 = 0 φ2 = y
′
(xy

′ − y)

3. X3 = ∂
∂y A3 = 0 φ3 = y

′

4. x4 = x ∂
∂y A4 = y φ4 = y − xy′

5. X5 = x2 ∂
∂x + xy ∂

∂y A5 = y2

2 φ5 = y2

2 + x2y
′2

2 − xyy′

Now consider the first order perturbed Lagrangian density [55]

L =
y
′2 − εy2

2
, (2.3.16)

corresponding to differential equation (1.6.11) and the approximate symmetry generator

X[1] = (ξ0 + εξ1)
∂

∂x
+ (η0 + εη1)

∂

∂y
+ (η

′
0 + εη

′
1)

∂

∂y′
. (2.3.17)
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Using equations (2.3.16) and (2.3.17) in equation (2.3.5) and collecting the system of PDEs

up to first order in ε, then solving it we get Noether symmetries with approximate parts,

along with approximate gauge functions, and approximate first integrals, which are given

in the following table

No. N. Symmetry Gauge Functions First Integral

1. X1 = ∂
∂x A1 = 0 φ1 = y

′2+εy2

2

2. X2 = (2x− ε4x33 ) ∂
∂x + (y − ε2x2) ∂∂y A2 = −2εxy2 φ2 = y

′
[xy

′ − y] − εx(y2 − 2xyy
′

+

2x2y2

3 )

3. X3 = (1− εx22 ) ∂∂y A3 = −εxy φ3 = (1− εx22 )y
′
+ εxy

4. X4 = (x− εx36 ) ∂∂y A4 = (1− εx22 )y φ4 = (1− εx22 )y − (x− εx36 )y
′

5. X5 = (2x2−ε2x43 ) ∂
∂x+y(2x−ε4x33 ) ∂∂y A5 = (1− ε2x2)y2 φ5 = (y − xy′)2 − εx23 (3y − xy′)(y −

xy
′
)

6. X6 = ε ∂∂x A6 = 0 φ6 = εy
′2

2

7. X7 = ε(2x ∂
∂x + y ∂

∂y ) A7 = 0 φ7 = εy
′
(xy

′ − y)

8. X8 = ε ∂∂y A8 = 0 φ8 = εy
′

9. X9 = εx ∂
∂y A9 = εy φ9 = ε(y − xy′)

10. X10 = ε(2x ∂
∂x + xy ∂

∂y ) A = εy2 φ10 = ε(y − xy′)2



Chapter 3

Noether Symmetries of the Arc

Length Minimizing Lagrangian of

Plane Symmetric Static

Spacetimes

3.1 Introduction

In this chapter we find symmetries of the arc length minimizing Lagrangian of plane sym-

metric static spacetimes [12–15, 32, 35, 61, 62, 72, 73]. These are the spacetimes admitting

[SO(2)
⊗

sR2]
⊗

R as the minimal isometry group in such a way that the group orbits are

two dimensional hypersurfaces of zero curvature. Here SO(2) corresponds to rotation and

R2 to translations along spatial directions y and z,
⊗

s and
⊗

stand for the semidirect

product and the direct product respectively. Noether proved [17,58] that for every Noether

symmetry there is a conservation law (conserved quantity). For example, symmetries under

spatial translations imply conservation of linear momentums, symmetry under time trans-

lation implies conservation of energy, and symmetry under rotation implies conservation

of angular momentum.

The solution of EFEs in closed analytic form is impossible. Different methods are

used to find the exact solutions of EFEs [66]. We use Noether symmetries to classify the

38
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spacetimes and find all plane symmetric static solutions of EFEs [21]. Using the Noether’s

theorem the first integrals corresponding to Noether symmetries are also calculated in this

chapter and chapters 4, 5 and 6.

For the general plane symmetric static spacetime [13]

ds2 = eν(x)dt2 − dx2 − eµ(x)(dy2 + dz2), (3.1.1)

the corresponding arc length minimizing Lagrangian density takes the form [25]

L = eν(x)ṫ2 − ẋ2 − eµ(x)(ẏ2 + ż2), (3.1.2)

where “ ˙ ” denotes differentiation with respect to s and the metric coefficients ν(x) and

µ(x) are arbitrary functions of x. We intend to find all possible values for these arbitrary

functions ν(x) and µ(x). For this purpose we use Noether symmetry condition given

by equation (2.2.41) and find the Noether symmetries of the action corresponding to the

Lagrangian given by equation (3.1.2). Other than the cases that give minimal set of Noether

symmetries, different ν(x) and µ(x) correspond to a different sets of Noether symmetries.

Hence for each set of ν(x) and µ(x) we have a unique set of Noether symmetries. Therefore,

from this procedure we get classification of the geodesic Lagrangians of the plane symmetric

static spacetimes. Once we know the geodesic Lagrangian, we can write the corresponding

spacetime easily. This classification recovers the existing cases of plane symmetric static

spacetime [21,32,51] along with first integrals corresponding to each Noether symmetry.

3.2 The Noether Symmetry Governing Equations

The first order prolonged generator X[1] in the Noether symmetry equation (2.2.41) takes

the form

X[1] = X + ηis
∂

∂ẋi
, (3.2.1)

where xi refers to the dependent variables (t, x, y, z) and

X = ξ
∂

∂t
+ ηi

∂

∂xi
, (3.2.2)

where, ξ and ηi are functions of s, t, x, y, z and ηis are functions of s, t, x, y, z, ṫ, ẋ, ẏ.ż [3,16,

38,63] and determined by

ηis = D(ηi)− ẋiD(ξ). (3.2.3)



CHAPTER 3. PLANE SYMMETRIC STATIC SPACETIMES 40

The differential operator D in equation (2.2.41) becomes

D =
∂

∂s
+ ẋi

∂

∂xi
. (3.2.4)

The conservation law or the first integral given in equation (2.2.42), for the first order

Lagrangian given by equation (3.1.2) takes the form

I = A− ∂L

∂(ẋi)
(ηi − ξẋi)− Lξ. (3.2.5)

The expression given in equation (3.2.5) will be used to find first integrals corresponding

to each Noether symmetry.

3.3 Determining PDEs System

Using the first order prolonged symmetry generator given by equation (3.2.1), Lagrangian

given by equation (3.1.2), and differential operator given by equation (3.2.4), in equation

(2.2.41), we get the following system of 19 PDEs

ξt = 0, ξx = 0, ξy = 0, ξz = 0, As = 0,

2eν(x)η0s = At, −2η1s = Ax,

− 2eµ(x)η2s = Ay, −2eµ(x)η3s = Az,

2η1x − ξs = 0, η2z + η3y = 0,

η1y + eµ(x)η2x = 0, η1z + eµ(x)η3x = 0,

− η1t + eν(x)η0x = 0, eν(x)η0y − eµ(x)η2t = 0,

eν(x)η0z − eµ(x)η3t = 0, ν
′
(x)η1 + 2η0t − ξs = 0,

µ
′
(x)η1 + 2η2y − ξs = 0, µ

′
(x)η1 + 2η3z − ξs = 0,

(3.3.1)

where “ ′ ” is the derivative with respect to x.

In this system, ν(x), µ(x), ξ(s, t, x, y, z), A(s, t, x, y, z), and ηi(s, t, x, y, z), i = 0, 1, 2, 3 are

unknown functions. ν(x) and µ(x) are the metric coefficients of the plane symmetric static

spacetimes, ξ(s, t, x, y, z), ηi(s, t, x, y, z), i = 0, 1, 2, 3 are components of Noether symmetry

generators and A(s, t, x, y, z) is the gauge function.

Lists of solutions of the above system are given in different sections with respect to

different number of Noether symmetries along with the corresponding spacetimes. In each
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case the first integral corresponding to each Noether symmetry is also given. For the

distinction between isometries and other Noether symmetries we use different notation,

that is Xi for isometries and Yj for non-isometries.

3.4 Five Noether Symmetries and their First Integrals

It is well known that the group of Killng vectors is a subgroup of the group of Noether

symmetries. For plane symmetric static spacetimes the minimal set of Killing vectors

contains four elements. Further, as ∂
∂s satisfies the Noether symmetry equation (2.2.41), it

is also a Noether symmetry generator. Therefore, the minimal set of Noether symmetries

for action of the arc length minimizing Lagrangian given by equation (3.1.2) for plane

symmetric static spacetime consists of 5 Noether symmetry generators, and they are

X0 =
∂

∂t
, X1 =

∂

∂y
, X2 =

∂

∂z
, X3 = y

∂

∂z
− z ∂

∂y
, Y0 =

∂

∂s
, (3.4.1)

where X0, X1, X2 and X3 are Killing vector fields admitted by the spacetime given in

equation (3.1.1) and Y0 is the Noether symmetry which leaves the arc length minimiz-

ing Lagrangian invariant. There are infinitely many spacetimes admitting minimal set of

Killing vectors. Therefore, there are infinitely many number of Lagrangian of plane sym-

metric static spacetime admitting minimal set of Noether symmetries, i.e. five Noether

symmetries. All of them cannot be listed, however some of them, which appear in our

calculation are given in Table 3.2. The first integrals corresponding to the set of Noether

symmetries given by equations (3.4.1) are given in Table 3.1.

Table 3.1: First Integrals for the minimal set

Gen First Integrals

X0 φ0 = −2eν(x)ṫ

X1 φ1 = 2eµ(x)ẏ

X2 φ2 = 2eµ(x)ż

X3 φ3 = 2eµ(x)(yż − zẏ)

Y0 φ4 = eν(x)ṫ2−ẋ2−eµ(x)(ẏ2+ż2) = L



CHAPTER 3. PLANE SYMMETRIC STATIC SPACETIMES 42

The Lie algebra of the Noether symmetry generators given in equations (3.4.1) is

[X1,X3] = X2, [X2,X3] = −X1, [Xi,Xj] = 0 and [Xi,Y0] = 0 otherwise.

Table 3.2: Metric coefficients for five symmetries

No. ν(x) µ(x)

1. 2 ln( xα) x
α

2. x
α 2 ln ( xα)

3. 2 ln( xα) 2 ln cosh( xα)

4. 2 ln( xα) 2 ln cos( xα)

5. 2 ln cosh( xα) 2 ln( xα)

6. 2 ln cos( xα) 2 ln( xα)

7. 2 ln cosh( xα) x
α

8. 2 ln cos( xα) x
α

9. ν
′
(x) 6= 0, ν(x) 6= µ(x) 2 ln cosh( xα), 2 ln cos( xα)

10. 2 ln cosh( xα), 2 ln cos( xα) ν(x) 6= µ(x), µ
′
(x) 6= 0

11. ν
′′
(x) 6= 0 x

α

12. 2 ln x
α µ

′′
(x) 6= 0, µ(x) 6= a ln x

α

13. ν(x) 6= µ(x), ν
′
(x) 6= 0 µ

′′
(x) 6= 0, µ(x) 6= a ln x

α

14. ν
′′
(x) 6= 0, ν(x) 6= a ln x

α ν(x) 6= µ(x), µ
′
(x) 6= 0

3.5 Six Noether Symmetries and First Integrals

Solutions of the system of equations (3.3.1) for action with geodesic Lagrangian given by

equation (3.1.2) admitting six Noether symmetries are given bellow in this section:

Solution-I:

The metric coefficients are

ν(x) =
x

α
, µ(x) =

x

β
, α 6= β.
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Components of the Noether symmetry generators are

ξ = c1, η0 = −c4
t

2α
+ c2, η1 = c4, η2 = −c4

y

2β
− c3z + c7,

η3 = −c4
z

2β
+ c3y + c5, A = c6.

The corresponding metric is

ds2 = e
x
αdt2 − dx2 − e

x
β (dy2 + dz2), α, β 6= 0. (3.5.1)

The additional Noether symmetry to the set given by equations (3.4.1) is

X4 =
∂

∂x
− t

2α

∂

∂t
− y

2β

∂

∂y
− z

2β

∂

∂z
.

It is an isometry of metric given by equation (3.5.1). The corresponding first integral is

φ5 =
tṫ

α
e
x
α + 2ẋ− e

x
α

β
(yẏ + zż).

The Lie algebra of X4 along with the symmetries given in equations (3.4.1) is

[X1,X3] = X2, [X2,X3] = −X1, [X0,X4] = − 1
2αX0, [X1,X4] = − 1

2βX1,

[X2,X4] = − 1
2βX2, [Xi,Xj] = 0 and [Xi,Y0] = 0 otherwise.

Solution-II:

Coefficients of the metric are

ν(x) = c, µ(x) = 2 ln cosh
(x
α

)
, or µ(x) = 2 ln cos

(x
α

)
.

Components of the Noether symmetry generators are

ξ = c1, η0 = c2s+ c3, η1 = 0, η2 = −c4z + c5,

η3 = c4y + c6, A = 2c2t+ c7.

The spacetimes in this case are

ds2 = dt2 − dx2 − cosh2
(x
α

)
(dy2 + dz2), α 6= 0, (3.5.2)

ds2 = dt2 − dx2 − cos2
(x
α

)
(dy2 + dz2), α 6= 0. (3.5.3)

The symmetry other than the minimal set is

Y1 = s
∂

∂t
, A = 2t. (3.5.4)
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It is neither Killing vector nor homothetic vector. First integral corresponding to Y1 is

φ5 = 2(t− sṫ).

The Lie algebra of Y1 along with symmetries of equation (3.4.1) is

[X1,X3] = X2, [X2,X3] = −X1, [Y0,Y1] = X0, [Xi,Xj] = 0 and [Xi,Yj] = 0 otherwise.

Solution-III:

The spacetime coefficients are

ν(x) = 2 ln
(x
α

)
, µ(x) = b ln

(x
α

)
,

and the values of the functions ξ, ηi and A are

ξ = c1s+ c2, η0 = c6, η1 = c1
x

2
, η2 = c1

2− a
4

y − c3z + c4,

η3 = c1
2− a

4
z + c3y + c5, A = c7.

The spacetime takes the form

ds2 =
(x
α

)2
dt2 − dx2 −

(x
α

)b
(dy2 + dz2), b 6= 0, 2, α 6= 0. (3.5.5)

The additional symmetry to the set given in equations (3.4.1) is

Y1 = s
∂

∂s
+
x

2

∂

∂x
+

(
2− b

4

)
y
∂

∂y
+

(
2− b

4

)
z
∂

∂z
.

It is a homothetic vector. The corresponding first integral is

φ5 = sL+ xẋ+
2− b

2

(x
α

)b
(yẏ + zż).

The Lie algebra of Y1 with the set of Noether symmetries given in equation (3.4.1) is

[X1,X3] = X2, [X2,X3] = −X1, [X1,Y1] = 2−a
4 X1,

[X2,Y1] = 2−b
4 X2, [Y0,Y1] = Y0, [Xi,Xj] = 0 and [Xi,Yj] = 0 otherwise.

Solution-IV:

Coefficients of the spacetime are

ν(x) = a ln
(x
α

)
, µ(x) = 2 ln

(x
α

)
.

Components of the Noether symmetry generators are

ξ = c1s+ c2, η0 = c1
2− a

4
t+ c6, η1 = c1

x

2
,

η2 = −c3z + c4, η3 = c3y + c5, A = c7.



CHAPTER 3. PLANE SYMMETRIC STATIC SPACETIMES 45

The spacetime in this case is

ds2 =
(x
α

)a
dt2 − dx2 −

(x
α

)2
(dy2 + dz2), a 6= 0, 2, α 6= 0. (3.5.6)

The additional Noether symmetry is

Y1 = s
∂

∂s
+
x

2

∂

∂x
+

(
2− a

4

)
t
∂

∂t
.

It is a homothetic vector. The first integral corresponding to the symmetry generator Y1

is

φ5 = sL+ xẋ−
(

2− a
2

)(x
α

)a
tṫ.

The Lie algebra is

[X1,X3] = X2, [X2,X3] = −X1, [X0,Y1] = 2−a
4 X0,

[Y0,Y1] = Y0, [Xi,Xj] = 0 and [Xi,Yj] = 0 otherwise.

Solution-V:

The spacetime coefficients are

ν(x) = b ln

(
x

α

)
, µ(x) = a ln

(
x

α

)
.

Components of the Noether symmetry generators are

ξ = c1s+ c2, η0 = c1
2− b

4
t+ c6, η1 = c1

x

2
,

η2 = c1
2− a

4
y − c3z + c4, η3 = c1

2− a
4

z + c3y + c5, A = c7.

We have the following spacetime

ds2 = (
x

α
)bdt2 − dx2 − (

x

α
)a(dy2 + dz2), 2 6= a 6= b 6= 2, α 6= 0. (3.5.7)

The following symmetry along with equations (3.4.1) form a six dimensional algebra

Y1 = s
∂

∂s
+
x

2

∂

∂x
+

(
2− b

4

)
t
∂

∂t
+

(
2− a

4

)
y
∂

∂y
+

(
2− a

4

)
z
∂

∂z
. (3.5.8)

It is a homothety. The first integral corresponding to Noether symmetry given in equation

(3.5.8) is

φ5 = sL+ xẋ− 2− b
2

(x
α

)a
tṫ+

2− a
2

(x
α

)a
(yẏ + zż).

The Lie algebra is

[X1,X3] = X2, [X2,X3] = −X1, [X0,Y1] = 2−a
4 X0, [X1, Y1] = 2−b

4 X1,

[X2,Y1] = 2−b
4 X2, [Y0,Y1] = Y0, [Xi,Xj] = 0 and [Xi,Yj] = 0 otherwise.
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3.6 Seven Noether Symmetries and First Integrals

Solutions of the system given in equations (3.3.1) for which we get seven Noether symme-

tries are given in this section:

Solution-I:

The spacetime coefficients are

ν(x) = µ(x), ν(x) 6= a ln
(x
α

)
, a 6= 0 6= α.

The values of the functions ξ, ηi and A are

ξ = c1, η0 = c2y + c3z + c4, η1 = 0, η2 = c2t− c5z + c6,

η3 = c3t+ c5y + c7, A = c8.

Generally the spacetime takes the form

ds2 = eν(x)dt2 − dx2 − eν(x)(dy2 + dz2), (3.6.1)

some examples are

(i) : ds2 = cosh2
(x
α

)
dt2 − dx2 − cosh2

(x
α

)
(dy2 + dz2), α 6= 0, (3.6.2)

(ii) : ds2 = cos2
(x
α

)
dt2 − dx2 − cos2

(x
α

)
(dy2 + dz2), α 6= 0. (3.6.3)

The additional symmetries are

X4 = y
∂

∂t
+ t

∂

∂y
, X5 = z

∂

∂t
+ t

∂

∂z
. (3.6.4)

Both X4 and X5 are isometries. The first integrals are given in Table 3.3.

Table 3.3: First Integrals

Gen First Integrals

X4(i) φ5 = 2 cosh2
(
x
α

)
(ẏt− yṫ)

X5(i) φ6 = 2 cosh2
(
x
α

)
(żt− zṫ)

X4(ii) φ7 = 2 cos2
(
x
α

)
(ẏt− yṫ)

X5(ii) φ8 = 2 cos2
(
x
α

)
(żt− zṫ)
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The Lie algebra of X4 and X5 along with the symmetries of equation (3.4.1) is

[X1,X3] = X2, [X2,X3] = −X1, [X0,X4] = X1, [X1,X4] = X0, [X3,X4] = −X5,

[X0,X5] = X2, [X2,X5] = X0, [X3,X5] = X4, [X4,X5] = X3,

[Xi,Xj] = 0 and [Xi,Y0] = 0 otherwise.

Solution-II:

The metric coefficients are

ν(x) = c, µ(x) = a ln
(x
α

)
.

Components of the Noether symmetry generators are

ξ = c1s+ c2, η0 = c1
t

2
+ c3s+ c4, η1 = c1

x

2
,

η2 = c1
2− a

4
y − c5z + c6, η3 = c1

2− a
4

z + c5y + c7, A = c8.

The spacetime takes the form

ds2 = dt2 − dx2 −
(x
α

)a
(dy2 + dz2), 2 6= a 6= 0 6= α. (3.6.5)

The symmetries are

Y1 = s
∂

∂s
+
x

2

∂

∂x
+
t

2

∂

∂t
+

(
2− a

4

)
y
∂

∂y
+

(
2− a

4

)
z
∂

∂z
, Y2 = s

∂

∂t
, A = 2t. (3.6.6)

Y1 is homothety and Y2 is neither homothety nor isometry. The first integrals are given

in Table 3.4.

Table 3.4: First Integrals

Gen First Integrals

Y1 φ5 = sL+ xẋ+ tṫ+ 2−a
2

(
x
α

)a
(yẏ + zż)

Y2 φ6 = 2(t− sṫ)

The Lie algebra of Y1 and Y2 and equation (3.4.1) is

[X1,X3] = X2, [X2,X3] = −X1, [X0,Y1] = 1
2X0, [X1,Y1] = 2−a

4 X1, [X2,Y1] = 2−a
4 X2,

[Y0,Y1] = Y0, [Y1,Y2] = 1
2Y2, [Xi,Xj] = 0 and [Xi,Yj] = 0 otherwise.

Solution-III:

Values of ν(x) and µ(x) are

ν = ν(x), µ(x) = c.
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Components of the Noether symmetry generators are

ξ = c1, η0 = c2, η1 = 0, η2 = c3s− c4z + c5,

η3 = c6s+ c4y + c7, A = c8.

Here the spacetime is

ds2 = eν(x)dt2 − dx2 − (dy2 + dz2), ν(x) 6= a ln
(x
α

)
, a 6= 0 6= α, ν

′′
(x) 6= 0. (3.6.7)

The additional symmetries are

Y1 = s
∂

∂y
, A1 = −2y, Y2 = s

∂

∂z
, A2 = −2z. (3.6.8)

Both Y1 and Y2 are neither homothety nor isometry. The corresponding first integrals

are given in Table 3.5.

Table 3.5: First Integrals

Gen First Integrals

Y1 φ5 = 2(sẏ − y)

Y2 φ6 = 2(sż − z)

The Lie algebra of the Noether symmetry generators is

[X1,X3] = X2, [X2,X3] = −X1, [Y0,Y1] = X1, [Y0,Y2] = X2,

[Xi,Xj] = 0, [Xi,Yj] = 0 and [Yi,Yj] = 0 otherwise.

3.7 Eight Noether Symmetries and First Integrals

In this section all those solutions are given where the system given by equations (3.3.1)

gives eight Noether symmetries:

Solution-I:

The metric coefficients in this case are

ν(x) = a ln
(x
α

)
= µ(x).
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Components of the Noether symmetry generators are

ξ = c1s+ c2, η0 = c1
2− a

4
t+ c3y + c4z + c5, η1 = c1

x

2
,

η2 = c3t+ c1
2− a

4
y − c6z + c7, η3 = c4t+ c1

2− a
4

z + c6y + c8, A = c9.

We get the following spacetime here

ds2 =
(x
α

)a
dt2 − dx2 −

(x
α

)a
(dy2 + dz2), a 6= 0, 2 α 6= 0. (3.7.1)

The additional Noether symmetries are

X4 = y
∂

∂t
+ t

∂

∂y
, X5 = z

∂

∂t
+ t

∂

∂z
, (3.7.2)

Y1 = s
∂

∂s
+
x

2

∂

∂x
+

(
2− a

4

)
t
∂

∂t
+

(
2− a

4

)
y
∂

∂y
+

(
2− a

4

)
z
∂

∂z
. (3.7.3)

X4, X5 are isometries and Y1 is homothety. The first integrals are given in Table 3.6.

Table 3.6: First Integrals

Gen First Integrals

X4 φ5 = 2
(
x
α

)a
(ẏt− yṫ)

X5 φ6 = 2
(
x
α

)a
(żt− zṫ)

Y1 φ7 = sL+xẋ−2−a
2

(
x
α

)a
tṫ+2−a

2

(
x
α

)a
(yẏ+zż)

The Lie algebra is

[X1,X3] = X2, [X2,X3] = −X1, [X0,X4] = X1, [X1,X4] = X0, [X3,X4] = −X5,

[X0,X5] = X2, [X2,X5] = X0, [X3,X5] = X4, [X4,X5] = X3, [X0,Y2] = 2−a
4 X0,

[X1,Y1] = 2−a
4 X1, [X2,Y1] = 2−a

4 X2, [Y0,Y1] = Y0, [Xi,Xj] = 0, [Xi,Yj] = 0

and [Yi,Yj] = 0 otherwise.

Solution-II:

Coefficients of the spacetime are

ν(x) = c, µ(x) = 2 ln
(x
α

)
.

The values of the functions ξ, ηi and A are

ξ = c1s
2 + c2s+ c3, η0 = c1ts+ c2

t

2
+ c8s+ c4, η1 = c1

xs

2
+ c2

x

2
,

η2 = −c5z + c6, η3 = c5y + c7, A = c1t
2 − x2 + c9.
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The spacetime takes the form

ds2 = dt2 − dx2 −
(x
α

)2
(dy2 + dz2), α 6= 0, (3.7.4)

and the additional Noether symmetry generators are

Y1 = s
∂

∂t
, A1 = 2t, Y2 = s

∂

∂s
+
t

2

∂

∂t
+
x

2

∂

∂x
,

Y3 = s2
∂

∂s
+ st

∂

∂t
+ sx

∂

∂x
, A3 = t2 − x2.

Y2 is homothety and Y1, Y3 are neither homothety nor isometry. Table 3.7 contains the

corresponding first integrals.

Table 3.7: First Integrals

Gen First Integrals

Y1 φ5 = 2(t− sṫ)

Y2 φ6 = sL+ xẋ− tṫ

Y3 φ7 = s2L+ 2sxẋ− 2stṫ+ t2 − x2

The Lie algebra of the Noether symmetries is

[X1,X3] = X2, [X2,X3] = −X1, [Y0,Y1] = X0, [X0,Y2] = 1
2X0, [Y0,Y2] = Y0,

[X0,Y3] = Y1, [Y0,Y3] = 2Y2, [Y1,Y2] = −1
2Y1, [Y2,Y3] = Y3,

[Xi,Xj] = 0, [Xi,Yj] = 0 and [Yi,Yj] = 0 otherwise.

Solution-III:

Coefficients of the metric are

ν(x) = a ln
(x
α

)
, µ(x) = c.

Components of the Noether symmetry generators are

ξ = c1s+ c2, η0 = c1
2− a

4
t+ c3, η1 = c1

x

2
,

η2 = c1
y

2
+ c4s− c5z + c6, η3 = c1

z

2
+ c7s+ c5y + c8, A = −2c4y − 2c7z + c9.

The corresponding metric is

ds2 =
(x
α

)a
dt2 − dx2 − (dy2 + dz2), a 6= 0, 2, α 6= 0. (3.7.5)



CHAPTER 3. PLANE SYMMETRIC STATIC SPACETIMES 51

The symmetries other than the minimal set are,

Y1 = s
∂

∂s
+

(
2− a

4

)
t
∂

∂t
+
x

2

∂

∂x
+
y

2

∂

∂y
+
z

2

∂

∂z
, (3.7.6)

Y2 = s
∂

∂y
, A2 = −2y, Y3 = s

∂

∂z
, A3 = −2z. (3.7.7)

Y1 is homothetic vector while Y2 and Y3 are neither homothety nor isometry. The first

integrals are given in the following table.

Table 3.8: First Integrals

Gen First Integrals

Y1 φ5 = sL+ xẋ−
(
2−a
2

) (
x
α

)a
tṫ+ (yẏ + zż)

Y2 φ6 = 2(sẏ − y)

Y3 φ7 = 2(sż − z)

The Lie algebra of Y1, Y2 and Y3 along with the symmetries of equation (3.4.1) is

[X1,X3] = X2, [X2,X3] = −X1, [Y0,Y2] = X1, [Y0,Y3] = X2,

[Y2,Y1] = −1
2 Y2, [Y1,Y3] = −1

2 Y3, [X0,Y1] = 2−a
4 X0, [X1,Y1] = 1

2X1,

[X2,Y1] = 1
2X2, [Y0,Y1] = Y0, [Xi,Xj] = 0 and [Xi,Yj] = 0 otherwise.

3.8 Nine Noether Symmetries and First Integrals

We have the following solutions with nine Noether symmetries:

Solution-I:

Coefficients of the spacetime are

ν(x) = c, µ(x) =
x

α
.

Values of the functions ξ, ηi, and A are

ξ = c1, η0 = c2s+ c3, η1 = c4y + c5z + c6,

η2 = −c6
( y

2α

)
+ c4

(
−y2

4α
+
z2

4a
+ αe

−x
α

)
− c5

( yz
2α

)
− c7z + c8,

η3 = −c6
( z

2α

)
+ c5

(
y2

4α
− z2

4α
+ αe

−x
α

)
− c4

(yz
2a

)
+ c7y + c9, A = 2c2t+ c10.
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The metric of the spacetime is

ds2 = dt2 − dx2 − e
x
α (dy2 + dz2), α 6= 0. (3.8.1)

The additional Noether symmetry generators are

X4 =
∂

∂x
− y

2α

∂

∂y
− z

2α

∂

∂z
, X5 = y

∂

∂x
+

(
− y

2

4α
+
z2

4α
+ ae−

x
α

)
∂

∂y
− yz

2α

∂

∂z
, (3.8.2)

X6 = z
∂

∂x
+

(
− z

2

4α
+
y2

4α
+ ae−

x
α

)
∂

∂z
− yz

2α

∂

∂y
, Y1 = s

∂

∂t
, A1 = 2t. (3.8.3)

X4, X5 and X6 are isometries. The first integrals are given in Table 3.9.

Table 3.9: First Integrals

Gen First Integrals

X4 φ5 = 2ẋ− e
x
α

α (yẏ + zż)

X5 φ6 = 2ẋy + e
x
α

2α [ẏ(z2 − y2 + 4α2e
−x
α )− yzż]

X6 φ7 = 2ẋz + e
x
α

2α [ż(−z2 + y2 + 4α2e
−x
α )− yzẏ]

Y1 φ8 = 2(t− sṫ)

The Lie algebra of X4, X5, X6 and Y1 along with the generators of equation (3.4.1) is

[X1,X3] = X2, [X2,X3] = −X1, [X1,X4] = −1
2αX1, [X1,X4] = −1

2αX2, [X1,X5] = X4,

[X2,X5] = −1
2αX3, [X3,X5] = −X6, [X1,X6] = 1

2αX3, [X2,X6] = X4,

[X3,X6] = X5, [X4,X6] = −1
2αX5, [X4,X5] = −1

2αX6, [Y0,Y1] = X0,

[Xi,Xj] = 0, [Xi,Yj] = 0 and [Yi,Yj] = 0 otherwise.

Solution-II:

Values of the fuctions ν(x) and µ(x) are

ν(x) =
x

α
, µ(x) = c.

Components of the Noether symmetry generators are

ξ = c1, η0 = −c2
t

2α
− c3

(
t2

4α
+ αe

−x
α

)
+ c4, η1 = c2 + c3t,

η2 = c5s− c6z + c7, η3 = c8s+ c6y + c9, A = c5y + c8z + c10.

The spacetime takes the form

ds2 = e
x
αdt2 − dx2 − (dy2 + dz2), α 6= 0. (3.8.4)
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The symmetries other than given by equations (3.4.1) are

X4 =
∂

∂x
− t

2α

∂

∂t
, X5 = t

∂

∂x
−
(
t2

4α
+ αe−

x
α

)
∂

∂t
,

Y1 = s
∂

∂y
, A1 = −2y, Y2 = s

∂

∂z
, A1 = −2z.

X4, X5 are isometries. The first integrals are given in Table 3.10.

Table 3.10: First Integrals

Gen First Integrals

X4 φ5 = tṫe
x
α

α + 2ẋ

X5 φ6 = 2ẋt+ (t2e
x
α + 4α2) ṫ

2α

Y1 φ7 = 2(sẏ − y)

Y2 φ8 = 2(sż − z)

The Lie algebra of X4, X5, Y1, and Y2 and symmetries of equation (3.4.1) is

[X1,X3] = X2, [X2,X3] = −X1, [X0,X4] = −1
2αX0, [X0,X5] = X4,

[X2,Y1] = X4, [Y0,Y1] = X1, [Y0,Y2] = X2, [X4,X5] = −1
2αX5,

[Xi,Xj] = 0, [Xi,Yj] = 0 and [Yi,Yj] = 0 otherwise.

Solution-III:

The metric coefficients are

ν(x) = 2 ln cosh
(x
α

)
, µ(x) = c.

The values of ξ, ηi and A are

ξ = c1, η0 = −c2 tanh
(x
α

)
sin

(
t

α

)
+ c3 tanh

(x
α

)
cos

(
t

α

)
+ c4,

η1 = c2 cos

(
t

α

)
+ c3 sin

(
t

α

)
, η2 = c5s− c6z + c7,

η3 = c8s+ c6y + c9, A = c5y + c8z + c10.

The metric in this case is

ds2 = cosh2
(x
α

)
dt2 − dx2 − (dy2 + dz2), α 6= 0. (3.8.5)
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The additional Noether symmetry generators are

X4 = − tanh
(x
α

)
sin

(
t

α

)
∂

∂t
+ cos

(
t

α

)
∂

∂x
,

X5 = tanh
(x
α

)
cos

(
t

α

)
∂

∂t
+ sin

(
t

α

)
∂

∂x
,

(3.8.6)

Y1 = s
∂

∂y
, A1 = −2y, Y2 = s

∂

∂z
, A2 = −2z. (3.8.7)

X4, X5 are isometries. Table 3.11 contains the corresponding first integrals.

Table 3.11: First Integrals

Gen First Integrals

X4 φ5 = 2
(
ṫ sinh

(
x
α

)
sin
(
t
α

)
cosh

(
x
α

)
+ ẋ cos

(
t
α

))
X5 φ6 = 2

(
−ṫ sinh

(
x
α

)
cos
(
t
α

)
cosh

(
x
α

)
+ ẋ sin

(
t
α

))
Y1 φ7 = 2(sẏ − y)

Y2 φ8 = 2(sż − z)

The Lie Algebra for this case is

[X1,X3] = X2, [X2,X3] = −X1, [X0,X4] = 1
αX5, [X0,X5] = 1

aX4, [Y0,Y1] = X1,

[Y0,Y2] = X2, [Xi,Xj] = 0, [Xi,Yj] = 0,and [Yi,Yj] = 0 otherwise.

Solution-IV:

Coefficients of the spacetime are

ν(x) = 2 ln cos
(x
α

)
, µ(x) = c.

Components of the Noether symmetry generators are

ξ = c1, η0 = −c2 tan
(x
α

)
sin

(
t

α

)
+ c3 tan

(x
α

)
cos

(
t

α

)
+ c4,

η1 = c2 cos

(
t

α

)
+ c3 sin

(
t

α

)
, η2 = c5s− c6z + c7,

η3 = c8s+ c6y + c9, A = c5y + c8z + c10.

The spacetime takes the from

ds2 = cos2
(x
α

)
dt2 − dx2 − (dy2 + dz2), α 6= 0. (3.8.8)
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The additional symmetries are

X4 = − tan
(x
α

)
sin

(
t

α

)
∂

∂t
+ cos

(
t

α

)
∂

∂x
,

X5 = tan
(x
α

)
cos

(
t

α

)
∂

∂t
+ sin

(
t

α

)
∂

∂x
,

(3.8.9)

Y1 = s
∂

∂y
, A1 = −2y, Y2 = s

∂

∂z
, A2 = −2z. (3.8.10)

X4, X5 are isometries. The first integrals are given in Table 3.12.

Table 3.12: First Integrals

Gen First Integrals

X4 φ5 = 2
(
ṫ sin

(
x
α

)
sin
(
t
α

)
cos
(
x
α

)
+ ẋ cos

(
t
α

))
X5 φ6 = 2

(
−ṫ sin

(
x
α

)
cos
(
t
α

)
cos
(
x
α

)
+ ẋ sin

(
t
α

))
Y1 φ7 = 2(sẏ − y)

Y2 φ8 = 2(sż − z)

The Lie algebra of X4, X5, Y1 and Y2 along with the generators of equation (3.4.1) is

[X1,X3] = X2, [X2,X3] = −X1, [X0,X4] = −1
α X5, [X0,X5] = 1

αX4, [Y0,Y1] = X1,

[Y0,Y2] = X2, [Xi,Xj] = 0, [Xi,Yj] = 0 and [Yi,Yj] = 0 otherwise.

Solution-V:

Coefficients of the metric are

ν(x) = 2 ln
(x
α

)
= µ(x).

Components of the Noethter symmetries are

ξ = c1s
2 + c2s+ c3, η0 = c4y + c5z + c6, η1 = c1xs+ c2

x

2
,

η2 = c4t− c7z + c8, η3 = c5t+ c7y + c9, A = −c1x2 + c10.

The metric for this solution is

ds2 =
(x
α

)2
dt2 − dx2 −

(x
α

)2
(dy2 + dz2), α 6= 0. (3.8.11)

The symmetries other than given in equations (3.4.1) are

X4 = y
∂

∂t
+ t

∂

∂y
, X5 = z

∂

∂t
+ t

∂

∂z
, Y1 = s

∂

∂s
+
x

2

∂

∂x
, (3.8.12)
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Y2 = s2
∂

∂s
+ sx

∂

∂x
, A = −x2. (3.8.13)

X4, X5 are isometries and Y1 is a homothety. The first integrals are given in Table 3.13.

Table 3.13: First Integrals

Gen First Integrals

X4 φ5 = 2
(
x
α

)2
(ẏt− yṫ)

X5 φ6 = 2
(
x
α

)2
(żt− zṫ)

Y1 φ7 = sL+ xẋ

Y2 φ8 = s2L+ 2sxẋ− 2x2

The Lie algebra of X4, X5, Y1 and Y2 along with the generators of equation (3.4.1) is

[X1,X3] = X2, [X2,X3] = −X1, [X0,X4] = X1, [X3,X4] = −X5, [X0,X5] = X2,

[X3,X5] = X4, [X4,X5] = X3, [Y0,Y5] = 2Y2, [Y2,Y2] = Y2, [Xi,Xj] = 0,

[Xi,Yj] = 0 and [Yi,Yj] = 0 otherwise.

3.9 Eleven Noether symmetries and First Integrals

We get only one solution for eleven Noether symmetries:

Solution:

Coefficients of the metric are

ν(x) =
x

α
= µ(x).

Components of the Noether symmetry generators are

ξ = c1, η1 = c2 + c5y + c6z + c7t, A = c12,

η0 = −c2
t

2α
+ c3z + c4y − c5

yt

2α
− c6

zt

2α
− c7

(
t2

4α
+
y2

4α
+
z2

4α
+ αe

−x
α

)
+ c8,

η2 = −c2
y

2α
+ c4t− c6

yz

2α
− c7

yt

2α
− c5

(
t2

4α
+
y2

4α
− z2

4α
− ae

−x
α

)
− c9z + c10,

η3 = −c2
z

2α
+ c3t− c5

yz

2α
− c7

zt

2α
− c6

(
t2

4α
− y2

4α
+
z2

4α
− αe

−x
α

)
+ c9y + c11.

The metric of the spacetime takes the form

ds2 = e
x
αdt2 − dx2 − e

x
α (dy2 + dz2), α 6= 0, (3.9.1)
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which is the famous anti de-Sitter spacetime. Symmetries other than the minimal set given

in equations (3.4.1) are

X4 =
∂

∂x
− t

2α

∂

∂t
− y

2α

∂

∂y
− z

2α

∂

∂z
, X5 = z

∂

∂t
+ t

∂

∂z
, X6 = y

∂

∂t
+ t

∂

∂y
,

X7 = y
∂

∂x
− yt

2α

∂

∂t
− yz

2α

∂

∂z
−
(
t2

4α
+
y2

4α
− z2

4α
− αe−

x
α

)
∂

∂y
,

X8 = z
∂

∂x
− zt

2α

∂

∂t
− yz

2α

∂

∂y
−
(
t2

4α
− y2

4α
+
z2

4α
− αe−

x
α

)
∂

∂z
,

X9 = t
∂

∂x
− yt

2α

∂

∂y
− zt

2α

∂

∂z
−
(
t2

4α
+
y2

4α
+
z2

4α
+ αe−

x
α

)
∂

∂t
.

In this case all Noether symmetries are isometries except Y0, which is given in equation

(3.4.1). The first integrals are given in Table 3.14.

Table 3.14: First Integrals

Gen First Integrals

X4 φ5 = 2ẋ+
e x
α
α (tṫ− yẏ − zż)

X5 φ6 = 2e
x
α (tż − ṫz)

X6 φ7 = 2e
x
α (tẏ − ṫy)

X7 φ8 = 2ẋy + e
x
α

2α

[
2ytṫ− 2yzż + (z2 − y2 − t2 + 4α2e

−x
α )ẏ

]
X8 φ9 = 2ẋz + e

x
α

2α

[
2ztṫ− 2yzẏ + (y2 − z2 − t2 + 4α2e

−x
α )ż

]
X9 φ10 = 2ẋt+ e

x
α

2α

[
−2yẏt− 2zżt+ (z2 + y2 + t2 + 4α2e

−x
α )ṫ
]

The Lie algebra of X4, X5, X6, X7, X8, and X9 along with the Noether symmetry

generators of equation (3.4.1) is

[X1,X3] = X2, [X2,X3] = −X1, [X0,X6] = X1, [X1,X6] = X0, [X3,X6] = −X5,

[X0,X5] = X2, [X2,X5] = X0, [X3,X5] = X6, [X6,X5] = X3, [X0,X4] = −1
2αX0,

[X1,X4] = −1
2αX1, [X2,X4] = −1

2aX2, [X0,X7] = −1
2αX3, [X0,X4] = X4,

[X2,X7] = −1
2αX3, [X3,X7] = −X8, [X0,X4] = −1

2αX0, [X0,X8] = −1
2αX5,

[X1,X8] = 1
2αX3, [X2,X8] = X4, [X0,X4] = −X8, [X0,X9] = X4,

[X1,X9] = −1
2αX6, [X2,X9] = −1

2αX5, [X6,X7] = X9, [X6,X9] = X7,

[X5,X8] = X9, [X4,X7] = −1
2αX7, [X4,X8] = −1

2αX8, [X4,X9] = −1
2αX9,

[Xi,Xj] = 0 and [Xi,Y0] = 0 otherwise.
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3.10 Seventeen Noether Symmetries and First Integrals

We get only one solution where 17 Noether symmetries exist:

Solution:

Coefficients of the spacetimes are

ν(x) = µ(x) = c.

Components of the Noether symmetry generators are

ξ = c1s
2 + c2s+ c3,

η0 = c4y + c5z + c6x+ c10s+ c2
t

2
+ c1st+ c17,

η1 = c6t− c7y − c8z + c9 + c2
x

2
+ c1sx− c13s,

η2 = c4t+ c7x+ c2
y

2
− c11s+ c1sy − c14z + c15,

η3 = c5t+ c8x+ c2
z

2
− c12s+ c1sz + c14y + c16,

A = c1(t
2 − x2 − y2 − z2) + 2c10t+ 2c13x+ 2c11y + 2c12z + c18.

The spacetime in this is the famous Minkowski spacetime

ds2 = dt2 − dx2 − dy2 − dz2. (3.10.1)

The Noether symmetry generators other than the minimal set are

X4 = y
∂

∂t
+ t

∂

∂y
, X5 = z

∂

∂t
+ t

∂

∂z
, X6 = x

∂

∂t
+ t

∂

∂x
,

X7 = x
∂

∂y
− y ∂

∂x
, X8 = x

∂

∂z
− z ∂

∂x
, X9 =

∂

∂x
,

Y1 = s
∂

∂t
, A1 = 2t, Y2 = 2s

∂

∂s
+ t

∂

∂t
+ x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
,

Y3 = s
∂

∂y
, A3 = −2y, Y4 = s

∂

∂z
, A4 = −2z,Y6 = s

∂

∂x
, A6 = −2x

Y5 = s2
∂

∂s
+ st

∂

∂t
+ sx

∂

∂x
+ sy

∂

∂y
+ sz

∂

∂z
, A5 = t2 − x2 − y2 − z2. (3.10.2)

The symmetries X4 to X9 are isometries and Y2 is homothety. The first integrals are

given in Table 3.15.
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Table 3.15: First Integrals

Gen First Integrals

X4 φ5 = 2(tẏ − ṫy)

X5 φ6 = 2(tż − ṫz)

X6 φ7 = 2(tẋ− ṫx)

X7 φ8 = 2(xẏ − ẋy)

X8 φ9 = 2(xż − ẋz)

X9 φ10 = 2ẋ

Y1 φ11 = 2(t− sṫ)

Y2 φ12 = 2sL − 2[tṫ− xẋ− yẏ − zż]

Y3 φ13 = 2(sẏ − y)

Y4 φ14 = 2(sż − z)

Y5 φ15 = s2L − s[tṫ+ xẋ+ yẏ + zż] + t2 − x2 − y2 − z2

Y6 φ16 = 2(sẋ− x)

The Lie algebra of X4, X5, X6, X7, X8, X9, Y1, Y2, Y3, Y4, Y5 and Y6 along with the

symmetry generators of equation (3.4.1) is

[X1,X3] = X2, [X2,X3] = −X1, [X0,X4] = X1, [X1,X4] = X0, [X3,X4] = −X5,

[X0,X5] = X2, [X2,X5] = X0, [X3,X5] = X4, [X4,X5] = X3, [X0,X6] = X9,

[X1,X7] = −X9, [X3,X7] = X8, [X2,X8] = −X9, [X3,X8] = X7, [Y0,Y3] = −X1,

[Y0,Y4] = −X2, [Y0,Y1] = X0, [X0,Y2] = X0, [X1,Y2] = X1, [Y0,Y6] = −X0,

[X0,Y5] = Y1, [X1,Y5] = Y3, [X2,Y5] = Y4, [Y0,Y5] = Y2, [X2,Y2] = X2,

[Y0,Y2] = 2Y0, [X4,X6] = −X7, [X4,X7] = −X6, [X5,X6] = −X8, [X5,X8] = −X6,

[X5,Y4] = −Y1, [X5,Y1] = Y4, [X6,X7] = X4, [X6,X8] = X5, [X6,X9] = −X0,

[X6,Y1] = −Y6, [X6,Y6] = Y1, [X7,X8] = −X3, [X7,X9] = X2, [X7,Y3] = X9,

[X7,Y6] = −Y3, [X8,X9] = −X2, [X8,Y4] = Y6, [X8,Y6] = −Y4, [X9,Y5] = −Y6,

[X9,Y2] = X9, [Y3,Y2] = −Y3, [Y4,Y2] = −Y4, [Y1,Y2] = −Y1, [Y2,Y5] = Y5,

[Xi,Xj] = 0, [Xi,Yj] = 0 and [Yi,Yj] = 0 otherwise.



Chapter 4

Approximate Noether Symmetries

of Arc Length Minimizing

Lagrangian of Time Conformal

Plane Symmetric Spacetimes

4.1 Introduction

Energy and momentum are important quantities whose definitions have been a focus of

many investigations in general relativity. Although several attempts are made to define

them [40,41,65], unfortunately, there are no accepted definitions so for.

In 1915, Emmy Noether [58] proved that there is one to one correspondence between

the symmetries of the action (Noether symmetries) and conservation laws [6, 48, 54, 57].

That is for every Noether symmetry, there exists a conservation law (conserved quantity).

Here we find the approximate Noether symmetries of the action of time conformal plane

symmetric spacetime for the investigation of energy and momentum [37, 47, 55, 71, 79].

Fortunately, we find three different approximate Noether symmetries, one corresponds to

the energy, the second one corresponds to scaling and the third one corresponds to the

Lorentz transformation.

For this purpose we take first order perturbed plane symmetric metric, find its arc

60
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length minimizing Lagrangian density and use it in the approximate Noether symmetry

equation. We obtain a system of 19 PDEs. The solutions of this system give us all

those spacetimes which admit approximate Noether symmetry/symmetries. These space-

times are not the exact gravitational wave spacetimes, but will help us understanding these

spacetimes [24,77,78,80]. The approximate Noether symmetries correspond to the approxi-

mate first integrals which define the conservation laws in the respective spacetimes [74–76].

These are the approximate gravitational wave spacetimes which provide us the insight and

information about the exact gravitational wave spacetimes [26–30, 39]. We present here

only those cases where the approximate Noether symmetry(ies) exist(s).

4.1.1 Perturbed Plane Symmetric Spacetime and its Lagrangian

We take the plane symmetric static spacetime as

ds2e = eν(x)dt2 − dx2 − eµ(x)(dy2 + dz2), (4.1.1)

and the corresponding Lagrangian density is

Le = eν(x)ṫ2 − ẋ2 − eµ(x)(ẏ2 + ż2), (4.1.2)

where “ ˙ ” denotes differentiation with respect to s. We perturb the metric given by

equation (4.1.1) by using the general time conformal factor eεf(t), which gives

ds2 = eεf(t)ds2e, (4.1.3)

and the corresponding perturbed Lagrangian density takes the form

L = eεf(t)Le. (4.1.4)

The first order perturbed plane symmetric metric and its Lagrangian density, in expanded

form are

ds2 = eν(x)dt2 − dx2 − eµ(x)(dy2 + dz2) + εf(t){eν(x)dt2 − dx2 − eµ(x)(dy2 + dz2)},

L = eν(x)ṫ2 − ẋ2 − eµ(x)(ẏ2 + ż2) + εf(t){eν(x)ṫ2 − ẋ2 − eµ(x)(ẏ2 + ż2)}.

(4.1.5)
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4.1.2 First Order Approximate Noether Symmetry and Noether Sym-

metry Equation

The operator

Xe = ξe
∂

∂s
+ ηie

∂

∂xi
, (4.1.6)

is the Noether symmetry generator if it satisfies equation (2.2.41) for first order extension

X[1]
e = Xe + ηies

∂

∂ẋi
, (4.1.7)

first order Lagrangian density given in equation (4.1.2) and differential operator (3.2.4),

where the subscript ‘e’ denotes the exactness of the generator and xi refer to the dependent

variables t, x, y, z.

The first order approximate Noether symmetry is defined as

X = Xe + εXa, (4.1.8)

up to the gauge A = Ae + εAa, where

Xa = ξa
∂

∂s
+ ηia

∂

∂xi
, (4.1.9)

is the approximate Noether symmetry andAa is the approximate part of the gauge function.

X is the first order approximate Noether symmetry if it satisfies the equation

X[1]L+ (Dξ)L = DA, (4.1.10)

where X[1] is the first order prolongation of the first order approximate Noether symmetry

X given in equation (4.1.8). Due to the first order approximation, the equation (4.1.10)

splits into two parts as follows

X[1]
e Le + (Dξe)Le = DAe, (4.1.11)

X[1]
a Le + X[1]

e La + (Dξe)La + (Dξa)Le = DAa. (4.1.12)

All ηie, η
i
a, ξe, ξa, Ae and Aa are the functions of s, t, x, y, z and ηies, η

i
as are functions

of s, t, x, y, z, ṫ, ẋ, ẏ, ż. Equation (4.1.11) is the exact Noether symmetry equation the

solution of which is given in Chapter 3. For the approximate Noether symmetries we will

solve equation (4.1.12) which provide a system of 19 PDEs whose solution provides us the

cases where the approximate Noether symmetry(ies) exist(s).
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4.1.3 Determining PDEs for Approximate Noether Symmetries

From equation (4.1.12) we obtain the following system of 19 PDEs.

ξa,t = 0, ξa,x = 0, ξa,y = 0, ξa,z = 0, Aa,s = 0,

2(η0a,s + f(t)η0e,s)e
ν(x) −Aa,t = 0, 2(η1a,s + f(t)η1e,s) +Aa,x = 0,

ft(t)η
0
e + (η1a + f(t)η1e)ν

′
(x) + 2(η0a,t + f(t)η0e,t)− f(t)ξe,s − ξa,s = 0,

ft(t)η
0
e + (η1a + f(t)η1e)µ

′
(x) + 2(η2a,y + f(t)η2e,y)− f(t)ξe,s − ξa,s = 0,

ft(t)η
0
e + (η1a + f(t)η1e)µ

′
(x) + 2(η3a,z + f(t)η3e,z)− f(t)ξe,s − ξa,s = 0,

ft(t)η
0
e + 2η1a,x + 2f(t)η1e,x − f(t)ξe,s − ξa,s = 0, (4.1.13)

2(η2a,s + f(t)η2e,s)e
µ(x) +Aa,y = 0, 2(η3a,s + f(t)η3e,s)e

µ(x) +Aa,z = 0,

η1a,y + f(t)η1e,y + (η2a,x + f(t)η2e,x)eµ(x) = 0, η1a,z + f(t)η1e,z + (η3a,x + f(t)η3e,x)eµ(x) = 0,

η1a,t + f(t)η1e,t − (η0a,x + f(t)η0e,x)eν(x) = 0, eν(x)(f(t)η0e,y + η0a,y)− eµ(x)(f(t)η2e,t + η2a,t) = 0,

eν(x)(f(t)η0e,z + η0a,z)− eµ(x)(f(t)η3e,t + η3a,t) = 0, (f(t)η2e,z + η2a,z) + (f(t)η3e,y + η3a,y) = 0.

Solutions of this system provide those spacetimes where the approximate Noether symme-

tries exist.

4.2 Solutions of the Perturbed System Given in Equations

(4.1.13)

4.2.1 Five Noether Symmetries and Time Conformal Spacetime

There are infinitely many plane symmetric metrics, the actions of the Lagrangian of which

admit only five (minimal set of) Noether symmetries. We list few of them in Table 4.1.

The exact Noether symmetry generators in these cases are

Y0 =
∂

∂s
, X1 =

∂

∂y
, X2 =

∂

∂z
, X3 = y

∂

∂z
− z ∂

∂y
, (4.2.1)

and the approximate Noether symmetry is

X0 =
∂

∂t
+
εs

α

∂

∂s
. (4.2.2)
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The approximate Noether symmetry generator given in equation (4.2.2) corresponds to

the energy in the given spacetime. The first integral corresponding to X0 is

φ0 = −2eν(x)ṫ− ε

α
(2tṫeν(x) − Ls).

Table 4.1: Metrics for five symmetries

No. ν(x) µ(x) f(t)

1. 2 ln( xα) x
α

t
α

2. x
α 2 ln ( xα) t

α

3. 2 ln( xα) 2 ln cosh( xα) t
α

4. 2 ln( xα) 2 ln cos( xα) t
α

5. x
α 2 ln cosh( xα) t

α

6. x
α 2 ln cos( xα) t

α

7. x
α non− linear t

α

8. a ln( xα) µ
′′
(x) 6= 0, µ(x) 6= a ln x

α
t
α

9. ν(x) 6= µ(x), ν
′
(x) 6= 0 µ

′′
(x) 6= 0, µ(x) 6= a ln x

α
t
α

10. ν
′′
(x) 6= 0, ν(x) 6= a ln x

α ν(x) 6= µ(x), µ
′
(x) 6= 0 t

α

All the ten classes given in Table 4.1 have five Noether symmetry generators in which only

one symmetry generator X0 has approximate part.

4.2.2 Six Noether Symmetries and Time Conformal Spacetimes

There are two classes of six Noether symmetries, where the approximate part(s) exist(s).

The action of the Lagrangians of the metrics given in this section admit six Noether

symmetries in which some of the symmetries admit approximation. The detail calculation

is given below:

Solution-I:

Using the exact solution

η0e = c3, η1e =
c1x

2
, η2e =

c1(2− k)y

4
− c4z + c5, η3e =

c1(2− k)z

4
− c4z + c6,

ξ0e = c1s+ c0, A = c, ν(x) = 2 ln
(x
α

)
, µ(x) = k ln

(x
α

)
,
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in system (4.1.13) we obtain the approximate system as

ξ0a,t = 0, ξ0a,x = 0, ξ0a,y = 0, ξ0a,z = 0, Aa,s = 0,

Aa,t − 2
x2

α2
η0a,s = 0, Aa,x + 2η1a,s = 0,

Aa,y + 2
xk

αk
η2a,s = 0, Aa,z + 2

xk

αk
η3a,s = 0,

η1a,t −
x2

α2
η0a,x = 0, η1a,y +

xk

αk
η2a,x = 0,

η1a,z +
xk

αk
η3a,x = 0, η2a,z + η3a,y = 0,

x2

α2
η0a,y −

xk

αk
η2a,t = 0,

x2

α2
η0a,z −

xk

αk
η3a,t = 0,

c3ft(t) + 2η1a,x − ξ0a,s = 0, c3ft(t) +
2

x
η1a + 2η0a,t − ξ0a,s = 0,

c3ft(t) +
k

x
η1a + 2η2a,y − ξ0a,s = 0, c3ft(t) +

k

x
η1a + 2η3a,z − ξ0a,s = 0.

(4.2.3)

Solving the above system the components of the Noether symmetry generators and the

value of f(t) become

η0a =
−c3t
2α

+
b1t

2
, η1a =

b1x

2
− c3x

2α
,

η2a =
c3(k − 2)y

4α
+
b1(2− k)y

4
− b2z + b3,

η3a =
c3(k − 2)z

4α
+
b1(2− k)z

4
+ b2y + b4,

Aa = b, ξ0a = b1s+ b0, f(t) =
t

α
.

Metric of the spacetime takes the form

ds2 =
(x
α

)2
dt2 − dx2 −

(x
α

)k
(dy2 + dz2)+

εt

α

((x
α

)2
dt2 − dx2 −

(x
α

)k
(dy2 + dz2)

)
, k 6= 0, 2, α 6= 0.

(4.2.4)

The approximate Noether symmetry generator in this case is

X0 =
∂

∂t
− ε

4α

(
2t
∂

∂t
+ 2x

∂

∂x
+ (2− k)y

∂

∂y
+ (2− k)y

∂

∂z

)
. (4.2.5)

The conservation law or first integral corresponding to the Noether symmetry generator

given in equation (4.2.5) is

φ0 = 2

[
−
(x
α

)2
ṫ+

ε

α

(
tṫ

2

(x
α

)2
+
xẋ

2
+ (2− k)

yẏ

4

(x
α

)k
+ (2− k)

zż

4

(x
α

)k)]
.
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Solution-II:

By substituting the exact solution

η0e = c1
2− k

4
y + c2, η1e =

c1x

2
, η2e = −c3z + c4, η3e = c3z + c5,

ξ0e = c1s+ c0, A = c, ν(x) = k ln
(x
α

)
, µ(x) = 2 ln

(x
α

)
,

in system given in equations (4.1.13) we get

ξ0a,t = 0, ξ0a,x = 0, ξ0a,y = 0, ξ0a,z = 0, Aa,s = 0,

Aa,t − 2
xk

αk
η0a,s = 0, Aa,x + 2η1a,s = 0,

Aa,y + 2
x2

α2
η2a,s = 0, Aa,z + 2

x2

α2
η3a,s = 0,

η1a,t −
xk

αk
η0a,x = 0, η1a,y +

x2

α2
η2a,x = 0,

η1a,z +
x2

α2
η3a,x = 0, η2a,z + η3a,y = 0,

x2

α2
η0a,y −

x2

α2
η2a,t = 0,

x2

α2
η0a,z −

x2

α2
η3a,t = 0,(

c1(2− k)t

4
+ c2

)
ft(t) + 2η1a,x − ξ0a,s = 0,(

c1(2− k)t

4
+ c2

)
ft(t) +

2

x
η1a + 2η0a,t − ξ0a,s = 0,(

c1(2− k)t

4
+ c2

)
ft(t) +

k

x
η1a + 2η2a,y − ξ0a,s = 0,(

c1(2− k)t

4
+ c2

)
ft(t) +

k

x
η1a + 2η3a,z − ξ0a,s = 0.

(4.2.6)

Solving this system we obtain the following solution

η0a = − c1α
2

8αxk−2
− c1t

2(2− k)2

32α
− c2t(2− k)

4α
+
b1t(2− k)

4
+ b4,

η1a =
b2xs

2
− c1(2− k)tx

8α
− c2x

2α
+
b1x

2
,

η2a = −b4z + b5, η3a = b4y + b6, Aa = b3,

ξ0a = b1s+ b0, f(t) =
t

α
.

(4.2.7)

The spacetime takes the form

ds2 =
(x
α

)k
dt2 − dx2 −

(x
α

)2
(dy2 + dz2)+

εt

α

((x
α

)k
dt2 − dx2 −

(x
α

)2
(dy2 + dz2)

)
, k 6= 0, 2, α 6= 0.

(4.2.8)
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The following two approximate Noether symmetry generators are obtained

X0 =
∂

∂t
− ε

4α

(
t(2− k)

∂

∂t
+ 2x

∂

∂x

)
, (4.2.9)

X1 = s
∂

∂s
+
t(2− k)

4

∂

∂t
+
x

2

∂

∂x
− ε
(

(
x2αk

8αxk
− t2(2− k)2

32α
)
∂

∂t
+

(2− k)tx

8α

∂

∂x

)
. (4.2.10)

The first integrals corresponding to X0 and X1 are given in the following table

Table 4.2: First integrals

Gen First integrals

X0 φ0 = 2
[
−
(
x
α

)k
ṫ− ε

α{
(
x
α

)k (
tṫ− (2−k)tṫ

4

)
+ xẋ

2 }
]

X1 φ1 = sL −
(
x
α

)k tṫ(2−k)
2 + xẋ

− ε
α

[
−x2 ṫ

4 +
(
x
α

)k ( t2 ṫ(2−k)2
16 + t2 ṫ(2−k)

2

)
− xtṫ(2+k)

4

]

4.2.3 Eight Noether Symmetries and Time Conformal Spacetime

We have only one spacetime, the action of the arc length minimizing Lagrangian of which

admits eight Noether symmetries in which four symmetries admit approximate parts:

Solution

Putting the exact solution

η0 =
c1(2− k)t

4
+ c2y + c3z + c4, η1 =

c1x

2
,

η2 =
c1(2− k)y

4
+ c2t− c5z + c6, η3 =

c1(2− k)z

4
+ c3t+ c5y + c7,

A = c, ξ0 = c1s+ c0, ν(x) = k ln
(x
α

)
= µ(x),

(4.2.11)

in system given in equations (4.1.13) we get the approximate system of 19 PDEs as

ξ0a,t = 0, ξ0a,x = 0, ξ0a,y = 0, ξ0a,z = 0, Aa,s = 0,

Aa,t − 2
xk

αk
η0a,s = 0, Aa,x + 2η1a,s = 0,

Aa,y + 2
xk

αk
η2a,s = 0, Aa,z + 2

xk

αk
η3a,s = 0,

η1a,t −
xk

αk
η0a,x = 0, η1a,y +

xk

αk
η2a,x = 0,

η1a,z +
xk

αk
η3a,x = 0, η2a,z + η3a,y = 0,

η0a,y − η2a,t = 0, η0a,z − η3a,t = 0,

(4.2.12)
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c1(2− k)t

4
+ c2y + c3z + c4

)
ft(t) + 2η1a,x − ξ0a,s = 0,(

c1(2− k)t

4
+ c2y + c3z + c4

)
ft(t) +

k

x
η1a + 2η0a,t − ξ0a,s = 0,(

c1(2− k)t

4
+ c2y + c3z + c4

)
ft(t) +

k

x
η1a + 2η2a,y − ξ0a,s = 0,(

c1(2− k)t

4
+ c2y + c3z + c4

)
ft(t) +

k

x
η1a + 2η3a,z − ξ0a,s = 0.

(4.2.13)

The solution of the system given in equations (4.2.12) and (4.2.13) takes the form

η0a =
c1α

kx2−k

8α(2− k)
+−c1t

2(2− k)2

32α
− c2ty(2− k)

4α
− c3tz(2− k)

4α
− c4t(2− k)

4α
+

b1t(2− k)

4
− c1y

2(2− k)2

32α
+ b6y −

c1z
2(2− k)2

32α
+ b7z + b8,

η1a = −c1tx(2− k)

8α
− c2xy

2α
− c3xz

2α
− c4x

2α
+
b1x

2
,

η2a =
c2α

kx2−k

2α(2− k)
− c1ty(2− k)2

16α
− c2y

2(2− k)

8α
− c3yz(2− k)

4α
− c4y(2− k)

4α
+

b1y(2− k)

4
− c2t

2(2− k)

8α
+ b6t+

c2z
2(2− k)

8α
− b9z + b11,

η3a =
c3α

kx2−k

2α(2− k)
− c1tz(2− k)2

16α
− c2yz(2− k)

8α
− c3z

2(2− k)

4α
− c4z(2− k)

4α
+

b1z(2− k)

4
− c3t

2(2− k)

8α
+ b7t+

c3y
2(2− k)

8α
+ b9y + b10,

Aa = b4, ξ0a = b1s+ b0, f(t) =
t

α
.

(4.2.14)

The metric in this case is

ds2 =
(x
α

)k
(dt2 − dy2 − dz2)− dx2+

εt

α

((x
α

)k
(dt2 − dy2 − dz2)− dx2

)
, k 6= 0, 2.

(4.2.15)

The Noether symmetry generators which have the approximate parts are

X0 =
∂

∂t
− ε

4α

(
(2− k)t

∂

∂t
+ 2x

∂

∂x
+ (2− k)y

∂

∂y
+ (2− k)z

∂

∂z

)
,

X1 = s
∂

∂s
+
t(2− k)

4

∂

∂t
+
x

2

∂

∂x
+
y(2− k)

4

∂

∂y
+
z(2− k)

4

∂

∂z
−

ε

8α

(
{x2(α

k

xk
) +

(2− k)2(t2 + y2 + z2)

4
} ∂
∂t

+ tx(2− k)
∂

∂x
+

ty(2− k)2

2

∂

∂y
+
tz(2− k)2

2

∂

∂z

)
,
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X2 = y
∂

∂t
+ t

∂

∂y
−

ε

2α

(
ty(2− k)

2

∂

∂t
+ xy

∂

∂x
+ {
−x2(αk

xk
)

2− k
+

(2− k)(t2 + y2 − z2)
4

} ∂
∂y

+
yz(2− k)

2

∂

∂z

)
,

X3 = z
∂

∂t
+ t

∂

∂z
−

ε

2α

(
tz(2− k)

2

∂

∂t
+ xz

∂

∂x
+
yz(2− k)

2

∂

∂y
+ {
−x2(αk

xk
)

2− k
+

(2− k)(t2 − y2 + z2)

4
} ∂
∂z

)
.

The corresponding first integrals are given in the following table

Table 4.3: First integrals

Gen First integrals

X0 φ0 = 2
[
−
(
x
α

)k
ṫ− ε

α

((
x
α

)k (
tṫ− (2−k)tṫ

4

)
+ xẋ

2 +
(
x
α

)k ( (2−k)yẏ
4 + (2−k)zż

4

))]
X1 φ1 = sL−

[
tṫ(2−k)

2

(
x
α

)k
− xẋ− yẏ(2−k)

2

(
x
α

)k
zż(2−k)

2

(
x
α

)k]
− ε

α

[
− x2 ṫ

4 + txẋ(2−k)
4 − txẋ+(

x
α

)k(
− ṫ(2−k)2(t2+y2+z2)

16 + tyẏ(2−k)2
8 + tzż(2−k)2

8 + t2 ṫ(2−k)
2 − t(2−k)(yẏ+zż)

2

)]
X2 φ2 = 2

(
x
α

)k (
ẏt− yṫ

)
− ε
α

[ (
x
α

)k (− tyṫ(2−k)
2 + ẏ(2−k)(t2+y2−z2)

4 +2(tyṫ− t2ẏ)

)
+xẋy− x2ẏ

2−k

]
X3 φ3 = 2

(
x
α

)k
(żt− zṫ)− ε

α

[ (
x
α

)k (− tzṫ(2−k)
2 + ż(2−k)(t2+z2−y2)

4 + 2(tzṫ− t2ż)
)

+xẋz− x2ż
2−k

]

4.2.4 Nine Noether Symmetries and Time Conformal Spacetime

We have only one class of nine Noether symmetries where the approximate symmetries

exist:

Solution:

Substituting the exact solution

η0 = c3y + c4z + c5, η1 =
c2xs

2
+
c1x

2
, η2 = c3t− c6z + c7,

η3 = c4t+ c6y + c8, ξ0 =
c2s

2

2
+ c1s+ c0, A =

−c2x2

2
+ c9,

ν(x) = µ(x) = 2 ln
(x
α

)
,
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in system given in equations (4.1.13) we the get the following system of determining PDEs

ξ0a,t = 0, ξ0a,x = 0, ξ0a,y = 0, ξ0a,z = 0, Aa,s = 0,

Aa,t − 2
x2

α2
η0a,s = 0,

c2tx

α
+Aa,x + 2η1a,s = 0,

Aa,y + 2
x2

α2
η2a,s = 0, Aa,z + 2

x2

α2
η3a,s = 0,

η1a,t −
x2

α2
η0a,x = 0, η1a,y +

x2

α2
η2a,x = 0,

η1a,z +
x2

α2
η3a,x = 0, η2a,z + η3a,y = 0,

η0a,y − η2a,t = 0, η0a,z − η3a,t = 0,(
c3y + c4z + c5

)
f(t) + 2η1a,x − ξ0a,s = 0,(

c3y + c4z + c5
)
ft(t) +

2

x
η1a + 2η0a,t − ξ0a,s = 0,(

c3y + c4z + c5
)
ft(t) +

2

x
η1a + 2η2a,y − ξ0a,s = 0,(

c3y + c4z + c5
)
ft(t) +

2

x
η1a + 2η3a,z − ξ0a,s = 0.

(4.2.16)

The solution of system given in equations (4.2.16) takes the form

η0a = −c2sα
2

4α
+ b4y + b5z + b6, η1a =

b2xs

2
− c3xy

2α
− c4xz

2α
− c5x

2α
+
b1x

2
+,

η2a =
c3α

2 ln x
α

2α
+ b4t− b7z + b8, η3a =

c4α
2 ln x

α

2α
+ b5t+ b7y + b9,

Aa = −(b2 +
c2t

α
)
x2

2
+ b3, ξ0a =

b2s
2

2
+ b1s+ b0, f(t) =

t

α
.

(4.2.17)

The spacetime in this case takes the form

ds2 =
(x
α

)2
(dt2 − dy2 − dz2)− dx2+

εt

α

((x
α

)2
(dt2 − dy2 − dz2)− dx2

)
, α 6= 0.

(4.2.18)

The approximate Noether symmetry generators are

X0 =
∂

∂t
− εx

2α

∂

∂x
, X1 = s2

∂

∂s
+ sx

∂

∂x
− εα2s

2α

∂

∂t
, A = −c2t

α
x2,

X2 = y
∂

∂t
+ t

∂

∂y
− ε

2α

(
xy

∂

∂x
− α2 ln

x

α

∂

∂y

)
,

X3 = z
∂

∂t
+ t

∂

∂z
− ε

2α

(
xz

∂

∂x
− α2 ln

x

α

∂

∂z

)
.

(4.2.19)

The first integrals corresponding to X0, X1, X2 and X3 are given in the following table
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Table 4.4: First integrals

Gen First integrals

X0 φ0 = −2

(
x
α

)2

ṫ− ε
α

[
2tṫ
α

(
x
α

)2

+ xẋ

]
X1 φ1 = s2L+ 2sxẋ+ ε

α

[
sα2ṫ

(
x
α

)2

+ 2sxtẋ

]
X2 φ2 = 2

(
x
α

)2

(ẏt− yṫ)− ε
α

[(
x
α

)2(
2tṫy + ẏα2 ln

(
x
α

)
− 2ẏt2

)
+ xẋy

]
X3 φ3 = 2

(
x
α

)2

(żt− zṫ)− ε
α

[(
x
α

)2(
2tṫz + żb2 ln

(
x
α

)
− 2żt2

)
+ xẋz

]



Chapter 5

Noether Symmetries of the Arc

Length Minimizing Lagrangian of

Cylindrically Symmetric Static

Spacetimes

5.1 Introduction

In this chapter symmetries of the arc length minimizing Lagrangian of cylindrically sym-

metric static spacetimes are given. These symmetries not only classify the spacetimes but

also provide us first integrals corresponding to each Noether symmetry [1,9,20,33,43]. The

first integrals give the conservation laws in the respective spacetimes. The classification of

the spacetimes is carried out on the basis of different number of Noether symmetries, that

action of the corresponding geodesic Lagrangian admit.

The most general form of cylindrically symmetric static spacetime is [14]

ds2 = eν(r)dt2 − dr2 − eµ(r)k2dθ2 − eλ(r)dz2. (5.1.1)

The corresponding arc length minimizing Lagrangian density takes the form

L = eν(r)ṫ2 − ṙ2 − eµ(r)k2θ̇2 − eλ(r)ż2, (5.1.2)

72
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where “ ˙ ” denotes differentiation with respect to s. We obtain symmetries for the corre-

sponding action of this Lagrangian density and then using the famous Noether’s theorem

we obtain first integral corresponding to each Noether symmetry.

5.2 Determining PDEs Of Cylindrically Symmetric Static

Spacetimes

The Noether symmetry generator for the action of the arc length minimizing Lagrangian

given by equation (5.1.2) is

X = ξ
∂

∂s
+ ηi

∂

∂xi
, (5.2.1)

and its first order prolongation is

X[1] = X + ηis
∂

∂xi
, (5.2.2)

where xi denote the dependent variables t, r, θ, z) and ξ, ηi [25] are functions of (s, t, r, θ, z.

The components of the extended generator, that is ηis are functions of s, t, r, θ, z, ṫ, ṙ, θ̇, ż.

Using the Lagrangian given by equation (5.1.2), symmetry generator given by equa-

tion (5.2.2) and differential operator given by equations (3.2.4) in the Noether symmetry

equation (2.2.41) we get the following system of 19 PDEs

ξt = 0, ξr = 0, ξθ = 0, ξz = 0, As = 0,

2eν(r)η0s = At, −2η1s = Ar,

− 2k2eµ(r)η2s = Aθ, −2eλ(r)η3s = Az,

µ
′
(r)η1 + 2η2θ − ξs = 0, k2eµ(r)η2z − eλ(r)η3θ = 0,

η1θ + eµ(r)k2η2r = 0, η1z + eλ(r)η3r = 0,

eν(r)η0r − η1t = 0, eν(r)η0θ − eµ(r)k2η2t = 0,

eν(r)η0z − eλ(r)η3t = 0, ν
′
(r)η1 + 2η0t − ξs = 0,

λ
′
(r)η1 + 2η3z − ξs = 0, 2η1r − ξs = 0.

(5.2.3)

Solutions of this system give us distinct arc length minimizing Lagrangian densities of

cylindrically symmetric static spacetimes along with distinct set of the Noether symmetries

and first integrals. In order to keep a distinction between Killing vector fields and Noether
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symmetries we use a different letter, namely, Y for those Noether symmetries which are

not Killing vector fields. It is also remarked that the Lagrangian given by equation (5.1.2)

is independent of s, t, θ and z, so the minimal set of the Noether symmetries admitting

by the action of the geodesic Lagrangian density given by equation (5.1.2) of cylindrically

symmetric static spacetime consists of four Noether symmetries which are

X0 =
∂

∂t
, X1 =

∂

∂θ
, X2 =

∂

∂z
, Y0 =

∂

∂s
. (5.2.4)

Here X0, X1, X2 are isometries and Y0 is the Noether symmetry under which the La-

grangian density remains invariant. For each Noether symmetry a first integral can be

obtained by equation (3.2.5), where xi denotes the dependent variables t, r, θ, z. First in-

tegrals corresponding to the minimal set of Noether symmetries for arc length minimizing

Lagrangian of cylindrically symmetric static spacetime are given in Table 5.1.

Table 5.1: First Integrals for the minimal set

Gen First Integrals

X0 φ0 = −2eν(r)ṫ

X1 φ1 = 2eµ(r)k2θ̇

X2 φ2 = 2eλ(r)ż

Y0 φ3 = eν(r)ṫ2− ṙ2− eµ(r)k2θ̇2− eλ(r)ż2 = L

5.3 Five Noether Symmetries and First Integrals

There are infinitely many classes of cylindrically symmetric static spacetimes for which

the action of the corresponding Lagrangians admit five Noether symmetries. We list some

of the classes of these spacetimes in Table 5.2. List of the fifth symmetry and the corre-

sponding first integrals for the classes given in Table 5.2 are given in Table 5.3.
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Table 5.2: Cases of Five symmetries

No. ν(r) µ(r) λ(r)

1. a ln
(
r
α

)
r
α const

2. a ln
(
r
α

)
µ(r) 6= b ln

(
r
α

)
const

3. r
α 2 ln

(
r
α

)
const

4. ν(r) 6= a ln
(
r
α

)
b ln

(
r
α

)
const

5. a ln
(
r
α

)
const r

α

6. a ln
(
r
α

)
const λ(r) 6= c ln

(
r
α

)
7. r

α const b ln
(
r
α

)
8. ν(r) 6= a ln

(
r
α

)
const c ln

(
r
α

)
9. const b ln

(
r
α

)
λ(r) 6= c ln

(
r
α

)
10. const b ln

(
r
α

)
r
α

11. const r
α c ln

(
r
α

)
12. r

α
r
β

r
γ

13. 2 ln
(
r
α

)
b ln

(
r
β

)
c ln

(
r
γ

)
14. a ln

(
r
α

)
2 ln

(
r
β

)
c ln

(
r
γ

)
15. a ln

(
r
α

)
b ln

(
r
β

)
2 ln

(
r
γ

)
16. a ln

(
r
α

)
b ln

(
r
β

)
c ln

(
r
γ

)

5.4 Six Noether Symmetries and First Integrals

In Table 5.4, a list of coefficients of cylindrically symmetric static spacetime, additional

Noether symmetries and gauge functions are given. There are 24 classes of cylindrically

symmetric static spacetimes the actions of the corresponding geodesic Lagrangians of which

admit six Noether symmetries. The first integrals or conservation laws corresponding to

the symmetries given in Table 5.4 are given in Table 5.5. It is evident form Table 5.3 that

the fifth Noether symmetry generator for arc length minimizing Lagrangian densities of

cylindrically symmetric static spacetimes is either a galilean symmetries or homothety. We

also see from Table 5.4 that the fifth and sixth Noether symmetries are homothety and
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galilean or homothety and rotations (pure rotation or boosts).

Table 5.3: Cases of Five Symmetries

No. Fifth symmetry Gauge

Functions

First Integral

1. Y1 = s ∂∂z A = −2z φ4 = 2[sż − z]

2. Y1 = s ∂∂z A = −2z φ4 = 2[sż − z]

3. Y1 = s ∂∂z A = −2z φ4 = 2[sż − z]

4. Y1 = s ∂∂z A = −2z φ4 = 2[sż − z]

5. Y1 = s ∂∂θ A = −2θ φ4 = 2k2[sθ̇ − θ]

6. Y1 = s ∂∂θ A = −2θ φ4 = 2k2[sθ̇ − θ]

7. Y1 = s ∂∂θ A = −2θ φ4 = 2k2[sθ̇ − θ]

8. Y1 = s ∂∂θ A = −2θ φ4 = 2k2[sθ̇ − θ]

9. Y1 = s ∂∂t A = 2t φ4 = 2[t− sṫ]

10. Y1 = s ∂∂t A = 2t φ4 = 2[t− sṫ]

11. Y1 = s ∂∂t A = 2t φ4 = 2[t− sṫ]

12. X3 = ∂
∂r −

t
2α

∂
∂t −

θ
2β

∂
∂θ −

z
2γ

∂
∂z A = 0 φ4 = 2ṙ + tṫe

r
α

α − θθ̇k2e
r
β

β − zże
r
γ

γ

13. Y1 = s ∂∂s + 2−b
4 θ ∂∂θ + 2−c

4 z ∂
∂z A = 0 φ4 = sL+ (2−b)θθ̇k2

2

(
r
α

)b
+ (2−c)zż

2

(
r
α

)c
14. Y1 = s ∂∂s + 2−a

4 t ∂∂t + 2−c
4 z ∂

∂z A = 0 φ4 = sL − (2−a)tṫ
2

(
r
α

)a
+ (2−c)zż

2

(
r
α

)c
15. Y1 = s ∂∂s + 2−a

4 t ∂∂t + 2−b
4 θ ∂∂θ A = 0 φ4 = sL − (2−a)tṫ

2

(
r
α

)a
+ (2−b)θθ̇k2

2

(
r
α

)b
16. Y1 = s ∂∂s + 2−a

4 t ∂∂t + 2−b
4 θ ∂∂θ + 2−c

4 z ∂
∂z A = 0 φ4 = sL − (2−a)tṫ

2

(
r
α

)a
+ (2−b)θθ̇k2

2

(
r
α

)b
+

(2−c)zż
2

(
r
α

)c

5.5 Seven Noether Symmetries and First Integrals

All classes of cylindrically symmetric static spacetimes for which the action of arc length

minimizing Lagrangians admit seven Noether symmetries are given in this section. There

are three classes of cylindrically symmetric static spacetime the actions of the Lagrangians

of which admit seven Noether symmetries, the detail of these spacetimes are as foolows :

Solution-I:

Coefficient of the metric are

ν(r) = c, µ(r) = b ln
( r
α

)
= λ(r).
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Table 5.4: Cases of Six Symmetries

No. Metrics Symmetries, Gauge Functions

1. ν(r) = r
α , µ(r) = const, λ(r) = r

β X3 = ∂
∂r −

t
2α

∂
∂t −

z
2β

∂
∂z ,Y1 = s ∂∂θ , A1 = −2k2θ

2. ν(r) = r
α , µ(r) = r

β , λ(r) = const X3 = ∂
∂r −

t
2α

∂
∂t −

θ
2β

∂
∂θ ,Y1 = s ∂∂z , A1 = −2z

3. ν(r) = const, µ(r) = r
α , λ(r) = r

β X3 = ∂
∂r −

θ
2α

∂
∂θ −

z
2α

∂
∂z ,Y1 = s ∂∂t , A1 = 2t

4. ν(r) = r
α , µ(r) = r

β , λ(r) = r
α X3 = ∂

∂r −
t
2α

∂
∂t −

θ
2β

∂
∂θ −

z
2α

∂
∂z ,X4 = z ∂∂t + t ∂∂z

5. ν(r) = r
α , µ(r) = r

β , λ(r) = r
β X3 = ∂

∂r −
t
2α

∂
∂t −

θ
2β

∂
∂θ −

z
2β

∂
∂z ,X4 = z ∂

∂θ − θk
2 ∂
∂z

6. ν(r) = r
α , µ(r) = r

α , λ(r) = r
β X3 = ∂

∂r −
t
2α

∂
∂t −

θ
2α

∂
∂θ −

z
2β

∂
∂z ,X4 = t ∂∂θ + θk2 ∂∂t

7. ν(r) = a ln r
α , µ(r) = 2 ln r

α , λ(r) = const Y1 = s ∂∂s + 2−a
4 t ∂∂t + r

2
∂
∂r + z

2
∂
∂z , Y2 = s ∂∂z , A2 = −2z

8. ν(r) = 2 ln r
α , µ(r) = b ln r

α , λ(r) = const Y1 = s ∂∂s + 2−b
4 θ ∂∂θ + r

2
∂
∂r + z

2
∂
∂z ,Y2 = s ∂∂z , A2 = −2z

9. ν(r) = a ln r
α , µ(r) = b ln r

α , λ(r) = const Y1 = s ∂∂s + 2−a
4 t ∂∂t + r

2
∂
∂r + 2−b

4 θ ∂∂θ + z
2
∂
∂z ,Y2 = s ∂∂z , A2 =

−2z

10. ν(r) = const, µ(r) = 2 ln r
α , λ(r) = c ln r

α Y1 = s ∂∂s + t
2
∂
∂t + r

2
∂
∂r + 2−c

4 z ∂
∂z ,Y2 = s ∂∂t , A2 = 2t

11. ν(r) = const, µ(r) = b ln r
α , λ(r) = 2 ln r

α Y1 = s ∂∂s + t
t
∂
∂t + r

2
∂
∂r + 2−b

4 θ ∂∂θ ,Y2 = s ∂∂t , A2 = 2t

12. ν(r) = const, µ(r) = b ln r
α , λ(r) = c ln r

α Y1 = s ∂∂s + t
2
∂
∂t + r

2
∂
∂r + 2−b

4 θ ∂∂θ + 2−c
4 z ∂

∂z ,Y2 = s ∂∂z , A2 =

2t

13. ν(r) = 2 ln r
α , µ(r) = const, λ(r) = c ln r

α Y1 = s ∂∂s + r
2
∂
∂r + θ

2
∂
∂θ + 2−c

4 z ∂
∂z ,Y2 = s ∂∂θ , A2 = −2k2θ

14. ν(r) = a ln r
α , µ(r) = const, λ(r) = 2 ln r

α Y1 = s ∂∂s + 2−a
4 t ∂∂t + r

2
∂
∂r + θ

2
∂
∂θ ,Y2 = s ∂∂θ , A2 = −2k2θ

15. ν(r) = a ln r
α , µ(r) = const, λ(r) = c ln r

α Y1 = s ∂∂s + 2−a
4 t ∂∂t + r

2
∂
∂r + θ

2
∂
∂θ + 2−c

4 z ∂
∂z ,Y2 = s ∂∂θ , A2 =

−2k2θ

16. ν(r) = a ln r
α , µ(r) = 2 ln r

α , λ(r) = a ln r
α Y1 = s ∂∂s + 2−a

4 t ∂∂t + r
2
∂
∂r + 2−a

4 z ∂
∂z , X3 = z ∂∂t + t ∂∂z

17. ν(r) = 2 ln r
α , µ(r) = b ln r

α , λ(r) = b ln r
α Y1 = s ∂∂s + r

2
∂
∂r + 2−b

4 θ ∂∂θ + 2−b
4 z ∂

∂z ,X3 = z ∂
∂θ − θk

2 ∂
∂z

18. ν(r) = a ln r
α , µ(r) = a ln r

α , λ(r) = 2 ln r
α Y1 = s ∂∂s + 2−a

4 t ∂∂t + r
2
∂
∂r + 2−a

4 θ ∂∂θ ,X3 = k2θ ∂∂θ + t ∂∂θ

19. ν(r) = 2 ln r
α , µ(r) = b ln r

α , λ(r) = 2 ln r
α Y1 = s ∂∂s + r

2
∂
∂r + 2−b

4 θ ∂∂θ ,X3 = z ∂∂t + t ∂∂z

20. ν(r) = 2 ln r
α , µ(r) = 2 ln r

α , λ(r) = c ln r
α Y1 = s ∂∂s + r

2
∂
∂r + 2−c

4 z ∂
∂z ,X3 = k2θ ∂∂t + t ∂∂θ

21. ν(r) = a ln r
α , µ(r) = 2 ln r

α , λ(r) = 2 ln r
α Y1 = s ∂∂s + r

2
∂
∂r + 2−a

4 t ∂∂t ,X3 = z ∂
∂θ − k

2θ ∂∂z

22. ν(r) = a ln r
α , µ(r) = a ln r

α , λ(r) = c ln r
α Y1 = s ∂∂s+ 2−a

4 t ∂∂t+
r
2
∂
∂r+ 2−a

4 θ ∂∂θ+ 2−c
4 z ∂

∂z ,X3 = k2θ ∂∂t+

t ∂∂θ

23. ν(r) = a ln r
α , µ(r) = b ln r

α , λ(r) = a ln r
α Y1 = s ∂∂s + 2−a

4 t ∂∂t + r
2
∂
∂r + 2−b

4 θ ∂∂θ + 2−a
4 z ∂

∂z ,X3 = z ∂∂t +

t ∂∂z

24. ν(r) = a ln r
α , µ(r) = b ln r

α , λ(r) = b ln r
α Y1 = s ∂∂s + 2−a

4 t ∂∂t + r
2
∂
∂r + 2−b

4 θ ∂∂θ + 2−b
4 z ∂

∂z ,X3 = z ∂
∂θ −

k2θ ∂∂z
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Table 5.5: First Integrals For Table 5.4

No. Generators First Integrals

1. X3, Y1 φ4 = 2ṙ + e
r
α tṫ
α − e

r
β zż
β , φ5 = 2k2[sθ̇ − θ]

2. X3, Y1 φ4 = 2ṙ + e
r
α tṫ
α − e

r
β θθ̇k2

β , φ5 = 2[sż − z]

3. X3, Y1 φ4 = 2ṙ − e
r
α θθ̇k2

α − e
r
β zż
β , φ5 = 2[t− sṫ]

4. X3, X4 φ4 = 2ṙ + e
r
β tṫ
β − e

r
β θθ̇k2

β − e
r
β zż
β , φ5 = 2e

r
α [tż − zṫ]

5. X3, X4 φ4 = 2ṙ + e
r
β tṫ
β − e

r
β θθ̇k2

β − e
r
β zż
β , φ5 = 2e

r
β k2[zθ̇ − θż]

6. X3, X4 φ4 = 2ṙ + e
r
β tṫ
β − e

r
α θθ̇k2

α − e
r
β zż
β , φ5 = 2e

r
α k2[tθ̇ − θṫ]

7. Y1, Y2 φ4 = sL − 2−a
2

(
r
α

)a
tṫ+ rṙ + zż, φ5 = 2[sż − z]

8. Y1, Y2 φ4 = sL+ 2−a
2

(
r
α

)a
θθ̇k2 + rṙ + zż, φ5 = 2[sż − z]

9. Y1, Y2 φ4 = sL − 2−a
2

(
r
α

)a
tṫ+ 2−l

2

(
r
α

)b
θθ̇k2 + rṙ + zż, φ5 = 2[sż − z]

10. Y1, Y2 φ4 = sL − tṫ+ rṙ + 2−c
2

(
r
α

)c
zż, φ5 = 2[t− sṫ]

11. Y1, Y2 φ4 = sL − tṫ+ rṙ + 2−b
2

(
r
α

)b
θθ̇k2, φ5 = 2[t− sṫ]

12. Y1, Y2 φ4 = sL − tṫ+ 2−b
2

(
r
α

)2
θθ̇k2 + rṙ + 2−c

2

(
r
α

)c
zż, φ5 = 2[−sṫ+ t]

13. Y1, Y2 φ4 = sL+ rṙ + θθ̇k2 + 2−c
2

(
r
α

)c
zż, φ5 = 2k2[sθ̇ − θ]

14. Y1, Y2 φ4 = sL − 2−a
2

(
r
α

)a
tṫ+ rṙ + θθ̇k2, φ5 = 2k2[sθ̇ − θ]

15. Y1, Y2 φ4 = sL − 2−a
2

(
r
α

)a
tṫ+ rṙ + θθ̇k2 + 2−c

2

(
r
α

)c
zż, φ5 = 2k2[sθ̇ − θ]

16. Y1, X3 φ4 = sL − 2−a
2

(
r
α

)a
tṫ+ rṙ, φ5 = 2[tż − zṫ]

17. Y1, X3 φ4 = sL+ rṙ +
(
r
α

)2
tṫ+ 2−b

2

(
r
α

)b
θθ̇k2 + 2−b

2

(
r
α

)b
zż, φ5 = 2k2[zθ̇ − θż]

18. Y1, X3 φ4 = sL − 2−a
2

(
r
α

)a
tṫ+ rṙ + 2−a

2

(
r
α

)a
θθ̇k2, φ5 = 2k2[tθ̇ − θṫ]

19. Y1, X3 φ4 = sL+ rṙ + 2−b
2

(
r
α

)b
θθ̇k2, φ5 = 2[tż − zṫ]

20. Y1, X3 φ4 = sL+ rṙ + 2−c
2

(
r
α

)c
zż, φ5 = 2k2[tθ̇ − θṫ]

21. Y1, X3 φ4 = sL+ rṙ − 2−a
2

(
r
α

)a
tṫ, φ5 = 2k2[zθ̇ − θż]

22. Y1, X3 φ4 = sL+ rṙ + 2−a
2

(
r
α

)a
tṫ+ 2−a

2

(
r
α

)a
θθ̇k2 + 2−c

2

(
r
α

)c
zż, φ5 = 2k2[tθ̇ − θṫ]

23. Y1, X3 φ4 = sL+ rṙ + 2−a
2

(
r
α

)a
tṫ+ 2−b

2

(
r
α

)b
θθ̇k2 + 2−a

2

(
r
α

)a
zż, φ5 = 2[tż − zṫ]

24. Y1, X3 φ4 = sL+ rṙ − 2−a
2

(
r
α

)a
tṫ+ 2−b

2

(
r
α

)b
θθ̇k2 + 2−c

2

(
r
α

)c
zż, φ5 = 2k2[zθ̇ − θż]

Components of the Noether symmetry generators are

ξ = c1s+ c2, η0 = c1
t

2
+ c3s+ c4, η1 = c1

r

2
, η2 = c1

2− b
4

θ − c5z + c6,

η3 = c1
2− b

4
z + c5k

2θ + c7, A = 2c3t+ c8.
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The spacetime for Solution-I above takes the form

ds2 = dt2 − dr2 −
( r
α

)b
k2dθ2 −

( r
α

)b
dz2, k 6= 0, 2, α 6= 0.

The additional symmetries along with set of symmetries in equation (5.2.4) are

Y1 = s
∂

∂s
+
t

2

∂

∂t
+
r

2

∂

∂r
+

2− b
4

θ
∂

∂θ
+

2− b
4

z
∂

∂z
,

Y2 = s
∂

∂t
, A2 = 2t, X3 = −z ∂

∂θ
+ k2θ

∂

∂z
.

(5.5.1)

The first integrals of these symmetries are given in Table 5.6.

Table 5.6: First Integrals

Gen First Integrals

X3 φ4 = 2
(
r
α

)b
k2[θż − zθ̇]

Y1 φ5 = sL − tṫ+ rṙ +
(
r
α

)b 2−b
2 θθ̇k2 +

(
r
α

)b 2−b
2 zż

Y2 φ6 = 2[t− sṫ]

Solution-II:

Coefficients of the metric are

ν(r) = µ(r) = a ln
( r
α

)
, λ(r) = c.

Components of the Noethter symmetry generators are

ξ = c1s+ c2, η0 = c1
2− a

4
t+ c3k

2θ + c4, η1 = c1
r

2
, η2 = c1

2− a
4

θ + c3t+ c6,

η2 = c5s+ c1
z

2
+ c7, A = −c52z + c8.

The spacetime takes the form

ds2 =
( r
α

)a
dt2 − dr2 −

( r
α

)a
k2dθ2 − dz2, k 6= 0, 2, α 6= 0.

Here we have the following three additional symmetries along with the minimal set.

Y1 = s
∂

∂s
+

2− a
4

t
∂

∂t
+
r

2

∂

∂r
+

2− a
4

θ
∂

∂θ
+
z

2

∂

∂z
,

Y2 = s
∂

∂z
, A2 = −2z, X3 = k2θ

∂

∂t
+ t

∂

∂θ
.

(5.5.2)

The first integrals are given in the following Table 5.7.
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Table 5.7: First Integrals

Gen First Integrals

X3 φ4 = 2
(
r
α

)a
k2[tθ̇ − θṫ]

Y1 φ5 = sL −
(
r
α

)a 2−k
2 tṫ+ rṙ +

(
r
α

)a 2−a
2 θθ̇k2 + zż

Y2 φ6 = 2[sż − z]

Solution-III:

The metric coefficients are

ν(r) = λ(r) = a ln
( r
α

)
, µ(r) = c.

Components of the Noethter symmetry generators are

ξ = c1s+ c2, η0 = c1
2− a

4
t+ c3z + c4, η1 = c1

r

2
, η2 = c1

θ

2
+ c5s+ c6,

η2 = c3t+ c1
2− a

4
z + c7, A = −c52k2θ + c8.

The spacetime takes the form

ds2 =
( r
α

)a
dt2 − dr2 − k2dθ2 −

( r
α

)a
dz2, a 6= 0, 2, α 6= 0. (5.5.3)

The following are the additional Noether symmetries

Y1 = s
∂

∂s
+

2− a
4

t
∂

∂t
+
r

2

∂

∂r
+
θ

2

∂

∂θ
+

2− a
4

z
∂

∂z
,

Y2 = s
∂

∂θ
, A2 = −2k2θ, X3 = z

∂

∂t
+ t

∂

∂z
.

(5.5.4)

The first integrals for these symmetries are given in Table 5.8.

Table 5.8: First integrals

Gen First Integrals

X3 φ4 = 2
(
r
α

)a
[tż − zṫ]

Y1 φ5 = sL −
(
r
α

)a 2−a
2 tṫ+ rṙ + θθ̇k2 +

(
r
α

)a 2−a
2 zż

Y2 φ6 = 2k2[sθ̇ − θ]
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5.6 Eight Noether Symmetries and First Integrals

There are seven different classes of cylindrically symmetric static spacetimes the actions of

the Lagrangians of which admit eight Noether symmetries. The detail of these spacetimes

is given in this section:

Solution-I:

The metric of the spacetime has the following coefficients

ν(r) = a ln
( r
α

)
, µ(r) = c, λ(r) = c0.

Components of the Noether symmetry generators are

ξ = c1s+ c2, η0 = c1
2− a

4
t+ c3, η1 = c1

r

2
, η2 = c1

θ

2
+ c4s− c5z + c6,

η3 = c1
z

2
+ c7s+ c5k

2θ + c8, A = −c42k2θ − c72z + c9.

The spacetime takes the form

ds2 =
( r
α

)a
dt2 − dr2 − k2dθ2 − dz2, a 6= 0, 2, α 6= 0. (5.6.1)

The additional symmetries are

Y1 = s
∂

∂s
+

2− a
4

t
∂

∂t
+
r

2

∂

∂r
+
θ

2

∂

∂θ
+
z

2

∂

∂z
, Y2 = s

∂

∂θ
, A2 = −2k2θ,

Y3 = s
∂

∂z
, A3 = −2z, X3 = z

∂

∂θ
− k2θ ∂

∂z
.

(5.6.2)

The corresponding first integral are given in Table 5.9.

Table 5.9: First Integrals

Gen First Integrals

X3 φ4 = 2k2[zθ̇ − θż]

Y1 φ5 = sL −
(
r
α

)a 2−a
2 tṫ+ rṙ + θθ̇k2 + zż

Y2 φ6 = 2k2[sθ̇ − θ]

Y3 φ7 = 2[sż − z]

Solution-II

Coefficients of the metric are

ν(r) = c, µ(r) = b ln
( r
α

)
, λ(r) = c0.
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Components of the Noether symmetry generators are

ξ = c1s+ c2, η0 = c1
t

2
+ c3s+ c4z + c5, η1 = c1

r

2
,

η2 = c1
2− b

4
θ + c6, η3 = c1

z

2
+ c7s+ c4t+ c8, A = 2c3t− 2c7z + c9.

The corresponding spacetime is

ds2 = dt2 − dr2 −
( r
α

)b
k2dθ2 − dz2, b 6= 0, 2, α 6= 0. (5.6.3)

The additional Noether symmetry generators are

Y1 = s
∂

∂s
+
t

2

∂

∂t
+
r

2

∂

∂r
+

2− b
4

θ
∂

∂θ
+
z

2

∂

∂z
, Y2 = s

∂

∂t
, A2 = 2t,

Y3 = s
∂

∂z
, A3 = −2z, X3 = z

∂

∂t
+ t

∂

∂z
.

(5.6.4)

The first integrals are given below in Table 5.10.

Table 5.10: First Integrals

Gen First Integrals

X3 φ4 = 2[tż − zṫ]

Y1 φ5 = sL − tṫ+ rṙ +
(
r
α

)b 2−b
2 θθ̇k2 + zż

Y2 φ6 = 2[t− sṫ]

Y3 φ7 = 2[sż − z]

Solution-III

The metric coefficients are

ν(r) = c, µ(r) = c0, λ(r) = c ln
( r
α

)
.

Components of Noether symmetry generators are

ξ = c1s+ c2, η0 = c1
t

2
+ c3s+ c4k

2θ + c5, η1 = c1
r

2
,

η2 = c1
θ

2
+ c4t+ c6s+ c7, η3 = c1

2− c
4

z + c8, A = 2c3t− 2c6k
2θ + c9.

The corresponding spacetime takes the form

ds2 = dt2 − dr2 − k2dθ2 −
( r
α

)c
dz2, c 6= 0, 2, α 6= 0. (5.6.5)
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The additional Noether symmetry generators are

Y1 = s
∂

∂s
+
t

2

∂

∂t
+
r

2

∂

∂r
+
θ

2

∂

∂θ
+

2− c
4

z
∂

∂z
, Y2 = s

∂

∂t
, A2 = 2t,

Y3 = s
∂

∂θ
, A3 = −2k2θ, X3 = k2θ

∂

∂t
+ t

∂

∂θ
.

(5.6.6)

The first integral for these symmetries are given in the following Table 5.11.

Table 5.11: First Integrals

Gen First Integrals

X3 φ4 = 2k2[tθ̇ − θṫ]

Y1 φ5 = sL − tṫ+ rṙ + θθ̇k2 + 2−c
2 zż

(
r
α

)c
Y2 φ6 = 2[t− sṫ]

Y3 φ7 = 2k2[sθ̇ − θ]

Solution-IV:

Coefficients of the metric are

ν(r) = c, µ(r) = 2 ln
( r
α

)
, λ(r) = 2 ln

( r
α

)
.

The values of ξ, ηj , j = 0, 1, 2, 3 and A are

ξ = c1s
2 + c2s+ c3, η0 = c1

ts

2
+ c2

t

2
+ c6s+ c5, η1 = c1

rs

2
+ c2

r

2
,

η2 = −c4z + c7, η3 = c4k
2θ + c8, A = c1

(t2 − r2)
2

+ 2c6t+ c9.

The metric in this case is

ds2 = dt2 − dr2 −
( r
α

)2
k2dθ2 −

( r
α

)2
dz2, α 6= 0. (5.6.7)

Here we have the following additional Noether symmetry generators

Y1 = s
∂

∂s
+
t

2

∂

∂t
+
r

2

∂

∂r
, Y2 = s2

∂

∂s
+ st

∂

∂t
+ sr

∂

∂r
, A2 = t2 − r2,

Y3 = s
∂

∂t
, A3 = 2t, X3 = −z ∂

∂θ
+ k2θ

∂

∂z
.

(5.6.8)

The first integrals are given here in Table 5.12.
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Table 5.12: First Integrals

Gen First Integrals

X3 φ4 = 2
(
r
α

)2
k2[θż − zθ̇]

Y1 φ5 = sL+ rṙ − tṫ

Y2 φ6 = s2L+ 2srṙ − 2stṫ+ t2 − r2

Y3 φ7 = 2[t− sṫ]

Solution-V:

The metric coefficients are

ν(r) = 2 ln
( r
α

)
, µ(r) = c, λ(r) = 2 ln

( r
α

)
.

Components of the Noether symmetry generators are

ξ = c1s
2 + c2s+ c3, η0 = c4z + c5, η1 = c1

rs

2
+ c2

r

2
,

η2 = c1
sθ

2
+ c2

θ

2
+ c8s+ c6, η3 = c4t+ c7, A = c1

(−r2 − k2θ2)
2

− 2c8k
2θ + c9.

The spacetime for this solution takes the form

ds2 =
( r
α

)2
dt2 − dr2 − k2dθ2 −

( r
α

)2
dz2, α 6= 0. (5.6.9)

The following four are the additional symmetries

Y1 = s
∂

∂s
+
r

2

∂

∂r
+
θ

2

∂

∂θ
, Y2 = s2

∂

∂s
+ sr

∂

∂r
+ sθ

∂

∂θ
, A2 = −r2 − k2θ2,

Y3 = s
∂

∂θ
, A3 = −2k2θ, X3 = z

∂

∂t
+ t

∂

∂z
.

(5.6.10)

Table 5.13 contains the invariants of these symmetries

Table 5.13: First Integrals

Gen First Integrals

X3 φ4 = 2
(
r
α

)2
[tż − zṫ]

Y1 φ5 = sL+ rṙ + θθ̇k2

Y2 φ6 = s2L+2srṙ+2sθθ̇k2−r2−k2θ2

Y3 φ7 = 2k2[sθ̇ − θ]
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Solution-VI:

Coefficients of the spacetime are

ν(r) = 2 ln
( r
α

)
, µ(r) = 2 ln

( r
α

)
, λ(r) = c.

Components of the Noether symmetry generators are

ξ = c1s
2 + c2s+ c3, η0 = c4k

2θ + c5, η1 = c1
rs

2
+ c2

r

2
,

η2 = c4t+ c6, η3 = c1
zs

2
+ c2

z

2
+ c8s+ c7, A = c1

(−z2 − r2)
2

− 2c8z + c9.

The corresponding spacetime is

ds2 =
( r
α

)2
dt2 − dr2 −

( r
α

)2
k2dθ2 − dz2, α 6= 0. (5.6.11)

The additional symmetries are

Y1 = s
∂

∂s
+
r

2

∂

∂r
+
z

2

∂

∂z
, Y2 = s2

∂

∂s
+ sr

∂

∂t
+ sz

∂

∂z
, A2 = −r2 − z2,

Y3 = s
∂

∂z
, A3 = −2z, X3 = k2θ

∂

∂t
+ t

∂

∂θ
.

(5.6.12)

The first integrals are given in Table 5.14.

Table 5.14: First Integrals

Gen First Integrals

X3 φ4 = 2
(
r
α

)2
k2[tθ̇ − θṫ]

Y1 φ6 = sL+ rṙ + zż

Y2 φ6 = s2L+ 2srṙ + 2szż − r2 − z2

Y3 φ7 = 2[sż − z]

Solution-VII:

Coefficients of the spacetime are

ν(r) = a ln
( r
α

)
, µ(r) = a ln

( r
α

)
, λ(r) = a ln

( r
α

)
.

Components of the symmetry generators are

ξ = c1s+ c2, η0 = c1
2− a

4
t+ c3k

2θ + c4z + c5, η1 = c1
r

2
,

η2 = c1
2− a

4
θ + c3t+ c6z + c7, η3 = c1

2− a
4

z + c4t− c6k2θ + c8, A = c9.



CHAPTER 5. CYLINDRICALLY SYMMETRIC STATIC SPACETIMES 86

The spacetime is

ds2 =
( r
α

)a
dt2 − dr2 −

( r
α

)a
k2dθ2 −

( r
α

)a
dz2, k 6= 0, 2, α 6= 0. (5.6.13)

The symmetries other than the minimal set are

Y1 = s
∂

∂s
+

2− a
4

t
∂

∂t
+
r

2

∂

∂r
+

2− a
4

θ
∂

∂θ
+

2− a
4

z
∂

∂z
,

X3 = z
∂

∂t
+ t

∂

∂z
, X4 = k2θ

∂

∂t
+ t

∂

∂θ
, X5 = z

∂

∂θ
− k2θ ∂

∂z
.

(5.6.14)

The first integrals are given in Table 5.15.

Table 5.15: First Integrals

Gen First Integrals

X3 φ4 = 2
(
r
α

)a
[tż − zṫ]

X4 φ5 = 2
(
r
α

)a
k2[tθ̇ − θṫ]

X5 φ6 = 2
(
r
α

)a
k2[zθ̇ − θż]

Y1 φ7 = sL+
(
r
α

)a (2−a)
2 [−tṫ+ θθ̇k2 + zż] + rṙ

5.7 Nine Noether Symmetries and First Integrals

The classes for nine Noether symmetries are given in this section. There are four classes

of the cylindrically symmetric static spacetimes the actions of the Lagrangians of which

admit nine Noether symmetries. The detail discussion on these spacetime is given below:

Solution-I:

The metric coefficients are

ν(r) = c, µ(r) =
r

α
= λ(r).

Components of the Noether symmetry generators are

ξ = c1, η0 = c4s+ c5, η1 = c2 + c6z + c7, A = 2c4t+ c10,

η2 = −c2
k2θ

2α
− c3z − c6

zθ

2α
+ c7

(−k2θ2 + z2 + 4α2e
−r
α )

4α
+ c8,

η3 = −c2
z

2α
+ c3k

2θ − c7
zk2θ

2α
+ c6

(k2θ2 − z2 + 4α2e
−r
α )

4α
+ c9.
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The spacetime takes the form

ds2 = dt2 − dr2 − e
r
αk2dθ2 − e

r
αdz2, α 6= 0. (5.7.1)

The Noether symmetry generators other than the minimal set are

X3 =
∂

∂r
− θ

2α

∂

∂θ
− z

2α

∂

∂z
,X4 = −z ∂

∂θ
+ k2θ

∂

∂z
,

X5 = z
∂

∂r
− zθ

2α

∂

∂θ
+ [

k2θ2 − z2 + 4α2e
−r
α

4α
]
∂

∂z
,

X6 = k2θ
∂

∂r
+ [
−k2θ2 + z2 + 4α2e

−r
α

4α
]
∂

∂θ
− k2zθ

2α

∂

∂z
,

Y1 = s
∂

∂t
, A = 2t.

(5.7.2)

Table 5.16 contains the corresponding first integrals.

Table 5.16: First Integrals

Gen First Integrals

X3 φ4 = −k2θθ̇e
r
α

α + 2ṙ − zże
r
α

α

X4 φ5 = 2e
r
αk2[θż − zθ̇]

X5 φ6 = [(k2θ2−z2)e
r
α+4α2]ż

2α + 2zṙ − θzθ̇k2e
r
α

α

X6 φ7 = [(−k2θ2+z2)e
r
α+4α2]θ̇

2α + 2θṙ − θzże
r
α

α

Y1 φ8 = 2[−sṫ+ t]

Solution-II:

Coefficients of the metrics are

ν(r) =
r

α
, µ(r) = c, λ(r) =

r

α
.

Components of the symmetry generators are

ξ = c1, η0 = −c2
t

2α
+ c3z + c4

−t2 + z2 + 4α2e
−r
α

4α
− c5

tz

2α
+ c6,

η1 = c2 + c4t+ c5z, η2 = c7s+ c8, A = −2c7k
2θ + c10,

η0 = −c2
z

2α
+ c3t+ c5

−t2 − z2 + 4α2e
−r
α

4α
− c4

tz

2α
+ c9.

The metric in this case is

ds2 = e
r
αdt2 − dr2 − k2dθ2 − e

r
αdz2, α 6= 0. (5.7.3)
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The symmetries other than the minimal set are

X3 =
∂

∂r
− t

2α

∂

∂t
− z

2α

∂

∂z
, X4 = z

∂

∂t
+ t

∂

∂z
,

X5 = t
∂

∂r
− [

t2 − z2 + 4α2e
−r
α

4α
]
∂

∂t
− zt

2α

∂

∂z
,

X6 = z
∂

∂r
− zt

2α

∂

∂t
− [

t2 + z2 − 4α2e
−r
α

4α
]
∂

∂z
,

Y1 = s
∂

∂θ
, A = −2k2θ.

(5.7.4)

The corresponding first integrals are given in Table 5.17.

Table 5.17: First Integrals

Gen First Integrals

X3 φ4 = tṫe
r
α

α + 2ṙ − zże
r
α

α

X4 φ5 = 2e
r
α [tż − zṫ]

X5 φ6 = [(t2−z2)e
r
α+4α2]ṫ

2α + 2tṙ − tzże
r
α

α

X6 φ7 = − [(t2+z2)e
r
α−4α2]ż

2α + 2zṙ − tzṫe
r
α

α

Y1 φ8 = 2k2[sθ̇ − θ]

Solution-III:

The metrics coefficients are

ν(r) =
r

α
, µ(r) =

r

α
, λ(r) = c.

Components of the Noether symmetry generators are

ξ = c1, η0 = −c2
t

2α
+ c3k

2θ + c4
−t2 + k2θ2 + 4α2e

−r
α

4α
− c5

k2tθ

2α
+ c6,

η1 = c2 + c4t+ c5k
2θ, η2 = −c2

θ

2α
+ c3t+ c5

−t2 + k2θ2 + 4α2e
−r
α

4α
− c4

tθ

2α
+ c7,

η3 = c8s+ c9, A = −2c8z + c10.

The metric takes the form

ds2 = e
r
αdt2 − dr2 − e

r
αk2dθ2 − dz2, α 6= 0. (5.7.5)
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The symmetries other than the minimal set are

X3 =
∂

∂r
− t

2α

∂

∂t
− θ

2α

∂

∂θ
, X4 = k2θ

∂

∂t
+ t

∂

∂θ
,

X5 = t
∂

∂r
− [

t2 − k2θ2 + 4α2e
−r
α

4α
]
∂

∂t
− tθ

2α

∂

∂θ
,

X6 = k2θ
∂

∂r
− k2tθ

2α

∂

∂t
− [

t2 − k2θ2 − 4α2e
−r
α

4α
]
∂

∂θ
,

Y1 = s
∂

∂z
, A = −2z.

(5.7.6)

The corresponding first integrals are given in Table 5.18.

Table 5.18: First Integrals

Gen First Integrals

X3 φ4 = tṫe
r
α

α + 2ṙ − θθ̇e
r
α k2

α

X4 φ5 = 2e
r
αk2[tθ̇ − θṫ]

X5 φ6 = [(t2−k2θ2)e
r
α+4α2]ṫ

2α + 2tṙ − tθθ̇k2e
r
α

α

X6 φ7 = − [(t2−k2θ2)e
r
α−4α2]θ̇

2α + 2θṙ + tθṫe
r
α

α

Y1 φ8 = 2[sż − z]

Solution-IV:

Coefficients of the metric are

ν(r) = µ(r) = λ(r) = 2 ln
( r
α

)
.

Components of the symmetry generators are

ξ = c1s
2 + c2s+ c3, η0 = c4z + c6k

2θ + c7, η1 = c1sr + c2
r

α
,

η2 = c5z + c6t+ c8, η3 = c4t− c5k2θ + c9, A = −c1r2 + c10.

The spacetime takes the form

ds2 =
( r
α

)2
dt2 − dr2 −

( r
α

)2
k2dθ2 −

( r
α

)2
dz2, α 6= 0. (5.7.7)

The following five are the additional symmetries

Y1 = s
∂

∂s
+
r

2

∂

∂r
, Y2 = s2

∂

∂s
+ sr

∂

∂t
, A2 = −r2,

X3 = z
∂

∂t
+ t

∂

∂z
, X4 = z

∂

∂θ
− k2θ ∂

∂z
, X5 = k2θ

∂

∂t
+ t

∂

∂θ
.

(5.7.8)
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The corresponding first integrals or conservation laws are given in Table 5.19.

Table 5.19: First Integrals

Gen First Integrals

Y1 φ4 = sL+ rṙ

Y2 φ5 = s2L+ 2srṙ − r2

X3 φ6 = 2
(
r
α

)2
[tż − zṫ]

X4 φ7 = 2
(
r
α

)2
k2[zθ̇ − θż]

X5 φ8 = 2
(
r
α

)2
k2[tθ̇ − θṫ]

5.8 Eleven Noether symmetries and First Integrals

There is only one class of cylindrically symmetric static spacetime the action of the La-

grangian of which admits eleven Noether symmetries, the detail is given as follows:

Solution:

Coefficients of the metric for eleven Noether symmetries are

ν(r) = µ(r) = λ(r) =
r

α
.

Components of the Noether symmetry generators are

η0 = −c2
t

2α
+ c3k

2θ + c4z − c6
t2 + k2θ2 + z2 + 4α2e

−r
α

4α
+ c7

tz

2α
+ c8

k2tθ

2α
+ c9,

η1 = c2 + c6t+ c7z + c8k
2θ, ξ = c1, A = c12,

η2 = −c2
θ

2α
+ c3t+ c5z − c8

t2 + k2θ2 − z2 − 4α2e
−r
α

4α
− c6

tθ

2α
− c7

zθ

2α
+ c10,

η3 = −c2
z

2α
+ c4t− c5θ − c7

t2 − k2θ2 + z2 − 4α2e
−r
α

4α
− c6

tz

2α
− c8

k2zθ

2α
+ c11.

The spacetime takes the form

ds2 = e
r
αdt2 − dr2 − e

r
αk2dθ2 − e

r
αdz2, α 6= 0. (5.8.1)
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We get the following seven Noether symmetries along with the minimal set

X3 =
∂

∂r
− t

2α

∂

∂t
− θ

2α

∂

∂θ
− z

2α

∂

∂z
, X4 = k2θ

∂

∂t
+ t

∂

∂θ
,

X5 = z
∂

∂t
+ t

∂

∂z
, X6 = z

∂

∂θ
− k2θ ∂

∂z
,

X7 = t
∂

∂r
− [

t2 + k2θ2 + z2 + 4α2e
−r
α

4α
]
∂

∂t
− tθ

2α

∂

∂θ
− tz

2α

∂

∂z
,

X8 = z
∂

∂r
+
tz

2α

∂

∂t
− θz

2α

∂

∂θ
+ [
−t2 + k2θ2 − z2 + 4α2e

−r
α

4α
]
∂

∂z
,

X9 = k2θ
∂

∂r
+
k2tθ

2α

∂

∂t
+ [
−t2 − k2θ2 + z2 + 4α2e

−r
α

4α
]
∂

∂θ
− k2θz

2α

∂

∂z
.

(5.8.2)

The first integrals are given in Table 5.20.

Table 5.20: First Integrals

Gen First Integrals

X3 φ4 = 2ṙ + tṫe
r
α

α − θθ̇e
r
α k2

α − zże
r
α

α

X4 φ5 = 2e
r
αk2[tθ̇ − θṫ]

X5 φ6 = 2e
r
α [tż − zṫ]

X6 φ7 = 2e
r
αk2[zθ̇ − θż]

X7 φ8 = (t2+k2θ2+z2)e
r
α+4α2

2α ṫ+ 2tṙ − θtθ̇e
r
α k2

α − ztże
r
α

α

X8 φ9 = (−t2+k2θ2−z2)e
r
α+4α2

2α ż + 2zṙ − θzθ̇e
r
α k2

α − ztṫe
r
α

α

X9 φ10 = (−t2−k2θ2+z2)e
r
α+4α2

2α θ̇ + 2θṙ − θtṫe
r
α

α − zθże
r
α

α

5.9 Seventeen Noether Symmetries and First Integrals

There are four classes for seventeen Noether symmetries:

Solution-I:

The metric coefficients are

ν(r) = 2 ln
( r
α

)
, µ(r) = a, λ(r) = b.



CHAPTER 5. CYLINDRICALLY SYMMETRIC STATIC SPACETIMES 92

Components of the symmetry generators are

η0 = −c4
zαe

−t
α

r
+ c5

zαe
t
α

r
+ c6

k2θαe
−t
α

r
− c8

αe
−t
α

r
+ c9

αe
t
α

r
+ c10

k2θαe
t
α

r
−

c12
se
−t
α

r
+ c13

se
t
α

r
+ c2

t

2
+ c15,

η1 = −c4ze
−t
α − c5ze

t
α − c6k2θe

−t
α + c8e

−t
α − c9e

t
α − c10k2θe

t
α − c12se

−t
α − c13se

t
α + c2

r

2
,

η2 = c6re
−t
α + c7z + c10re

t
α + c2

θ

2
+ c11s+ c1sθ + c16,

η3 = c4re
−t
α − c7k2θ + c5re

t
α + c2

z

2
+ c14s+ c1sz + c17,

A = −2c11k
2θ − c1(r2 + k2θ2 + z2) + 2c12re

−t
α + 2c13re

t
α − 2c14z + c18,

ξ = c1s
2 + c2s+ c3.

The metric takes the form

ds2 =
( r
α

)2
dt2 − dr2 − k2dθ2 − dz2, α 6= 0. (5.9.1)

The additional symmetries are

X3 = −ze
−t
α α

r

∂

∂t
− ze

−t
α
∂

∂r
+ re

−t
α
∂

∂z
, X4 =

ze
t
αα

r

∂

∂t
− ze

t
α
∂

∂r
+ re

t
α
∂

∂z
,

X5 =
θe
−t
α α

r

∂

∂t
− θe

−t
α
∂

∂r
+
re
−t
α

k2
∂

∂θ
, X6 = z

∂

∂θ
− k2θ ∂

∂z
,

X7 = −e
−t
α α

r

∂

∂t
+ e

−t
α
∂

∂r
, X8 =

e
t
αα

r

∂

∂t
− e

t
α
∂

∂r
,

X9 =
θe

t
αα

r

∂

∂t
− θe

t
α
∂

∂r
+
re

t
α

k2
∂

∂θ
,

Y1 = 2s
∂

∂s
+ r

∂

∂r
+ θ

∂

∂θ
+ z

∂

∂z
, Y2 = s

∂

∂θ
, A2 = −2k2θ,

Y3 = s[s
∂

∂s
+ r

∂

∂r
+ θ

∂

∂θ
+ z

∂

∂z
], A3 = −r2 − k2θ2 − z2,

Y4 = −s[e
−t
α α

r

∂

∂t
+ e

−t
α
∂

∂r
], A4 = 2re

−t
α ,

Y5 = s[
e
t
αα

r

∂

∂t
− e

t
α
∂

∂r
], A5 = 2re

t
α , Y6 = s

∂

∂z
, A6 = −2z.

(5.9.2)

Table 5.21 contains the invariants of these symmetries



CHAPTER 5. CYLINDRICALLY SYMMETRIC STATIC SPACETIMES 93

Table 5.21: First Integrals

Gen First Integrals

X3 φ4 = 2e
−t
α [ rzṫα − zṙ + rż]

X4 φ5 = 2e
t
α [− rzṫ

α − zṙ + rż]

X5 φ6 = 2e
−t
α [− rθṫ

α − θṙ + rθ̇]

X6 φ7 = 2k2[zθ̇ − θż]

X7 φ8 = 2e
−t
α [ ṫrα + ṙ]

X8 φ9 = −2e
t
α [ ṫrα + ṙ]

X9 φ10 = 2e
t
α [− rθṫ

α − θṙ + rθ̇]

Y1 φ11 = 2[sL+ rṙ + k2θθ̇ + zż]

Y2 φ12 = 2k2[sθ̇ − θ]

Y3 φ13 = s2L+ 2s[rṙ + k2θθ̇ + zż]− r2 − k2θ2 − z2

Y4 φ14 = 2se
−t
α [ ṫrα − ṙ] + 2re

−t
α

Y5 φ15 = −2se
t
α [ ṫrα + ṙ] + 2re

t
α

Y6 φ16 = 2[sż − z]

Solution-II:

The metric coefficients are

ν(r) = a, µ(r) = 2 ln
( r
α

)
, λ(r) = b.

Components of the Noether symmetry generators are

η0 = c4r cos θ + c5r sin θ + c7z + c2
t

2
+ c11s+ c1ts+ c15,

η1 = c4t cos θ + c5t sin θ − c6z cos θ − c8z sin θ + c9 sin θ + c10 cos θ + c2
r

α
+

c1rs− c12s cos θ − c13s sin θ, ξ = c1s
2 + c2s+ c3

η2 = −c4
tα sin θ

kr
+ c5

tα cos θ

kr
+ c6

zα sin θ

kr
− c8

zα cos θ

kr
− c9

α cos θ

kr
−

c10
α sin θ

kr
+ c12

s sin θ

kr
− c13

s cos θ

kr
+ c16,

η3 = c6r cos θ + c8r sin θ + c7t+ c2
z

2
+ c1zs+ c14s+ c17,

A = 2c11t+ c1(t
2 − r2 − z2)− 2c12r cos θ − 2c13r cos θ − 2c14z + c18.
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The metric in this case is

ds2 = dt2 − dr2 −
( r
α

)2
k2dθ2 − dz2, α 6= 0. (5.9.3)

We get the following 13 additional Noether symmetry generators

X3 = r cos θ
∂

∂t
− αt sin θ

kr

∂

∂θ
+ t cos θ

∂

∂r
, X4 = r sin θ

∂

∂t
+
αt cos θ

kr

∂

∂θ
+ t sin θ

∂

∂r
,

X5 = −z cos θ
∂

∂r
+
αz sin θ

kr

∂

∂θ
+ r cos θ

∂

∂z
, X6 = z

∂

∂t
+ t

∂

∂z
,

X7 = −z sin θ
∂

∂r
− αz cos θ

kr

∂

∂θ
+ r sin θ

∂

∂z
, X8 = sin θ

∂

∂r
− α cos θ

kr

∂

∂θ
,

X9 = cos θ
∂

∂r
− α sin θ

kr

∂

∂θ
, Y1 = 2s

∂

∂s
+ t

∂

∂t
+ r

∂

∂r
+ z

∂

∂z
, (5.9.4)

Y2 = s
∂

∂t
, A2 = 2t, Y3 = s[s

∂

∂s
+ t

∂

∂t
+ r

∂

∂r
+ z

∂

∂z
], A3 = t2 − r2 − z2,

Y4 = s[− cos θ
∂

∂r
+
α sin θ

kr

∂

∂θ
], A4 = −2r cos

θ

r
, Y5 = −s[sin θ ∂

∂r
+
α cos θ

kr

∂

∂θ
],

A5 = −2r sin
θ

kr
, Y6 = s

∂

∂z
, A6 = −2z.

First integrals are given in the following Table 5.22.

Table 5.22: First Integrals

Gen First Integrals

X3 φ4 = 2[−rṫ cos θ − θ̇ktr sin θ
α + tṙ cos θ]

X4 φ5 = 2[−rṫ sin θ + θ̇ktr cos θ
α + tṙ sin θ]

X5 φ6 = 2[−zṙ cos θ + θ̇kzr sin θ
α + rθ̇ cos θ]

X6 φ7 = 2[tż − zṫ]

X7 φ8 = 2[−zṙ sin θ − θ̇krz cos θ
α + rż sin θ]

X8 φ9 = 2[ṙ sin θ − θ̇k r cos θα ]

X9 φ10 = 2[ṙ cos θ − θ̇k r sin θα ]

Y1 φ11 = 2[sL − tṫ+ rṙ + zż]

Y2 φ12 = 2[t− sṫ]

Y3 φ13 = s2L − 2s[tṫ− rṙ − zż] + t2 − r2 − z2

Y4 φ14 = 2s[−ṙ cos θ + θ̇kr sin θ
α ]− 2r cos θ

Y5 φ15 = −2s[ṙ sin θ + θ̇kr cos θ
α ] + 2r sin θ

Y6 φ16 = 2[sż − z]
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Solution-III:

The metric coefficients for seventeen Noether symmetries are

ν(r) = a, µ(r) = b, λ(r) = 2 ln
( r
α

)
.

The values of ξ, ηj , j = 0, 1, 2, 3 and A are

η0 = c4r cos(
z

α
) + c5r sin(

z

α
) + c7k

2θ + c2
t

2
+ c11s+ c1ts+ c15,

η1 = c4t cos(
z

α
) + c5t sin(

z

α
)− c6k2θ cos(

z

α
)− c8k2θ sin(

z

α
) + c9 sin(

z

α
) + c10 cos(

z

α
) + c2

r

α
+

c1rs− c12s cos(
z

α
)− c13 sin(

z

α
), ξ = c1s

2 + c2s+ c3.

η2 = c6r cos(
z

α
) + c8r sin(

z

α
) + c7t+ c2

θ

2
+ c1θs+ c14s+ c16

η3 = −c4
tα sin( zα)

r
+ c5

tα cos( zα)

r
+ c6

k2θα sin( zα)

r
− c8

k2θα cos( zα)

r
− c9

α cos( zα)

r
−

c10
α sin( zα)

r
+ c12

s sin( zα)

r
− c13

sα cos( zα)

r
+ c17,

A = 2c11t+ c1(t
2 − r2 − k2θ2) + 2c12r cos(

z

r
) + 2c13r sin(

z

r
)− 2c14θ + c18.

The spacetime takes the form

ds2 = dt2 − dr2 − k2dθ2 −
( r
α

)2
dz2, α 6= 0. (5.9.5)

The action of this spacetime have the following 13 additional Noether symmetry generators

other than the minimal set.

X3 = r cos
z

α

∂

∂t
−
αt sin z

α

r

∂

∂z
+ t cos

z

α

∂

∂r
, X4 = r sin

z

α

∂

∂t
+
αt cos z

α

r

∂

∂z
+ t sin

z

α

∂

∂r
,

X5 = −k2θ cos
z

α

∂

∂t
+
k2αθ sin z

α

r

∂

∂z
+ r cos

z

α

∂

∂θ
, X6 = k2θ

∂

∂t
+ t

∂

∂θ
,

X7 = −k2θ sin
z

α

∂

∂r
−
k2αθ cos z

α

r

∂

∂z
+ r sin

z

α

∂

∂θ
, X8 = sin

z

α

∂

∂r
+
α cos z

α

r

∂

∂z
, (5.9.6)

X9 = cos
z

α

∂

∂r
−
α sin z

α

r

∂

∂z
, Y1 = 2s

∂

∂s
+ t

∂

∂t
+ r

∂

∂r
+ θ

∂

∂θ
, Y2 = s

∂

∂t
, A2 = 2t,

Y3 = s[s
∂

∂s
+ t

∂

∂t
+ r

∂

∂r
+ θ

∂

∂θ
], A3 = t2 − r2 − k2θ2, Y4 = s[− cos

z

α

∂

∂r
+
α sin z

α

r

∂

∂z
],

A4 = 2r cos
z

α
, Y5 = −s[sin z

α

∂

∂r
+
α cos z

α

r

∂

∂z
], A5 = 2r sin

z

α
,

Y6 = s
∂

∂z
, A6 = −2k2θ.

Table 5.23 contains the invariants of the above symmetries
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Table 5.23: First Integrals

Gen First Integrals

X3 φ4 = 2[−rṫ cos z
α −

żtr sin z
α

α + tṙ cos z
α ]

X4 φ5 = 2[−rṫ sin z
α +

żtr cos z
α

α + tṙ sin z
α ]

X5 φ6 = 2k2[θṫ cos z
α +

żrθ sin z
α

α + rθ̇ cos z
α ]

X6 φ7 = 2k2[tθ̇ − θṫ]

X7 φ8 = 2k2[rṫ sin z
α −

żtr cos z
α

α + tθ̇ sin z
α ]

X8 φ9 = 2[ṙ sin z
α + ż

r cos z
α

α ]

X9 φ10 = 2[ṙ cos z
α − ż

r sin z
α

α ]

Y1 φ11 = 2[sL − tṫ+ rṙ + k2θθ̇]

Y2 φ12 = 2[t− sṫ]

Y3 φ13 = s2L − 2s[tṫ− rṙ − k2θθ̇] + t2 − r2 − k2θ2

Y4 φ14 = 2s[−ṙ cos z
α +

żr sin z
α

α ] + 2r cos z
α

Y5 φ15 = −2s[ṙ sin z
α +

żr cos z
α

α ] + 2r sin z
α

Y6 φ16 = 2k2[sθ̇ − θ]

Solution-IV:

All the coefficients of the metric are constant therefore it is the Minkowski spacetime.

Components of Noether symmetry generators are

η0 = c5r + c8z + c10k
2θ + c2

t

2
+ c1ts+ c12s+ c16,

η1 = c4 + c5t− c6k2θ + c9z + c2
r

2
+ c1rs+ c13s,

η2 = c6r + c7z + c10t+ c2
θ

2
+ c1θs+ c11s+ c16,

η3 = −c7k2θ + c8t− c9r + c2
z

2
+ c1zs+ c14s+ c17,

A = c1(t
2 − r2 − k2θ2 − z2)− 2c11θ + 2c12t− 2c13r − 2c14z + c18,

ξ = c1s
2 + c2s+ c3.

The metric in this case is

ds2 = dt2 − dr2 − k2dθ2 − dz2. (5.9.7)
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The additional Noether symmetry generators other than the minimal set are

X3 =
∂

∂r
, X4 = r

∂

∂t
+ t

∂

∂r
, X5 = −k2θ ∂

∂r
+ r

∂

∂θ
,

X6 = z
∂

∂θ
− k2θ ∂

∂z
, X7 = z

∂

∂t
+ t

∂

∂z
,

X8 = z
∂

∂r
− r ∂

∂z
, X9 = k2θ

∂

∂t
+ t

∂

∂θ
,

Y1 = 2s
∂

∂s
+ t

∂

∂t
+ r

∂

∂r
+ θ

∂

∂θ
+ z

∂

∂z
, Y2 = s

∂

∂θ
,A2 = −2k2θ, (5.9.8)

Y3 = s[s
∂

∂s
+ t

∂

∂t
+ r

∂

∂r
+ θ

∂

∂θ
+ z

∂

∂z
], A3 = t2 − r2 − k2θ2 − z2,

Y4 = s
∂

∂t
, A4 = 2t, Y5 = s

∂

∂r
, A5 = −2r, Y6 = s

∂

∂z
, A6 = −2z.

The first integrals corresponding to these Noether symmetry generators are given in Table

5.24.

Table 5.24: First Integrals

Gen First Integrals

X3 φ4 = 2ṙ

X4 φ5 = 2[tṙ − rṫ]

X5 φ6 = 2k2[rθ̇ − θṙ]

X6 φ7 = 2k2[zθ̇ − θż]

X7 φ8 = 2[tż − zṫ]

X8 φ9 = 2[zṙ − rż]

X9 φ10 = 2k2[tθ̇ − θṫ]

Y1 φ11 = 2[sL − tṫ+ rṙ + k2θθ̇ + zż]

Y2 φ12 = 2k2[sθ̇ − θ]

Y3 φ13 = s2L−2s[tṫ−rṙ−k2θθ̇−zż]+t2−r2−k2θ2−z2

Y4 φ14 = 2[t− sṫ]

Y5 φ15 = 2[sṙ − r]

Y6 φ16 = 2[sż − z]



Chapter 6

Noether Symmetries of the Arc

Length Minimizing Lagrangian of

Spherically Symmetric Static

Spacetimes

6.1 Introduction

A spherical symmetric static spacetime has exactly three rotational Killing vector fields

that preserve the metric forming SO(3) as the isometry group. The study of spherically

symmetric spacetimes is interesting as it helps in giving the understanding of phenomena

of gravitational collapse and black holes, widely known subjects in the literature. For

example the Schwarzschild solution is an exact solution of the Einstein field equations

which is spherically symmetric that describes the gravitational field exterior to a static,

spherical, uncharged point mass without angular momentum. The search for spherically

symmetric spacetimes is an important task and due to their significance in understanding

the dynamics around black holes, it is crucial to classify them with respect to their Noether

symmetries and first integrals (conservation laws). Hence it would be interesting to find

all these spacetimes along with a detailed characterization of the first integrals of the

corresponding geodesic equations [49]. Besides the quantities which remain invariant under

98
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the geodesic motions yield important physical informations [23, 34, 44]. Classifications

of plane symmetric, cylindrically symmetric and spherically symmetric spacetimes with

respect to their Killing vectors, homotheties, Ricci collineations, curvature collineations

have been done in references [13–15,32,35,61,62,73].

The general form of a spherically symmetric static spacetime is [51]

ds2 = eν(r)dt2 − eµ(r)dr2 − eλ(r)dΩ2, (6.1.1)

where dΩ2 = dθ2 +sin2 θdφ2, and both ν and µ are arbitrary functions of radial coordinate

‘r’. It is seen that eλ(r) can be one of the two forms (i) β2 or (ii) r2, where β is some

constant [51] and can be absorbed in the definition of dΩ2 . We write down the determining

equations using the corresponding Lagrangian density of the spacetime given in equation

(6.1.1) and study the complete integrability of those equations for each case. The plan

of the chapter is as follows. In Section 2 we discuss basic definitions and structure of

Noether symmetries. In Section 3 we write down the determining equations for spherically

symmetric static spacetimes which is a system of 19 linear PDEs. We obtain several cases

for different values of ‘ν’ and ‘µ’ while integrating the PDEs that classify completely the

spherically symmetric static spacetimes. We list different spacetimes according to different

number of Noether symmetries in different sections. The characterization of first integrals

along the geodesic motions is also carried out in each section.

6.2 Preliminaries

It is well-known that a general spherically symmetric static spacetime admits geodesic

Lagrangian density [56]

L = eν(r)ṫ2 − eµ(r)ṙ2 − eλ(r)(θ̇2 + sin2 θφ̇2), (6.2.1)

where “ ˙ ” denotes differentiation with respect to arc length parameter ‘s’.

For the Lagrangian given in equation (6.2.1) the Noether symmetry generator given in

equation (3.5.8) takes the form

X = ξ
∂

∂s
+ η0

∂

∂t
+ η1

∂

∂r
+ η2

∂

∂θ
+ η3

∂

∂φ
. (6.2.2)
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The Noether symmetry generator given in equation (6.2.2) leaves the action of a spherically

symmetric static spacetime invariant. The coefficients of Noether symmetry namely ξ and

ηi are functions of s, t, r, θ, φ. The coefficients of prolonged operator X[1] that is ηis are

functions of s, t, r, θ, φ, ṫ, ṙ, θ̇, φ̇.

6.3 Determining PDEs and Computational Remarks

By substituting the value of Lagrangian (6.2.1), the corresponding symmetry generator

and differential operator in equation (2.2.41) we obtained the following system of 19 PDEs

ξt = 0, ξr = 0, ξθ = 0, ξφ = 0,

As = 0, At − 2eν(r)η0s = 0, Ar + 2η1s = 0,

Aθ + 2eµ(x)η2s = 0, Aφ + 2eµ(r)η3s = 0,

ξs − µ
′
(r)η1 − 2η1r = 0, ξs − ν

′
(r)η1 − 2η0t = 0

ξs −
2

r
η1 − 2η2θ = 0, ξs −

2

r
η1 − 2 cot θη2 − 2η3φ = 0,

η2φ + sin2 θη3θ = 0, eν(r)η0r − eµ(x)η1t = 0,

eµ(r)η1θ + r2η2r = 0, eν(r)η0θ − r2η2t = 0,

eν(r)η0φ − r2 sin2 θη3t = 0, eµ(r)η1φ + r2 sin2 θη3r = 0.

(6.3.1)

We intend to classify all Lagrangians of spherically symmetric static spacetimes with re-

spect to their Noether symmetries by finding the solutions of the system of PDEs given

by equations (6.3.1). In the following sections we enlist spherically symmetric static

spacetimes, their Noether symmetries and relative first integrals. The Noether algebra

of Noether symmetries are also presented here in the cases that are not known in the

literature. In order to solve system of equations (6.3.1) of PDEs, it is noted that the

first equation of system (6.3.1), simply implies that ξ can only be a function of arc length

parameter s, i.e., ξ(s). Distinct letter Y is used for those Noether symmetries which

are not Killing vector fields. It is also remarked that a static spacetime always admits a

time-like Killing vector field. Moreover, the Lagrangian given by equation (6.2.1) does not

depend upon ‘t’ explicitly therefore the time-like Killing vector field appears as a Noether

symmetry in each case. Furthermore, the Lagrangian in equation (6.2.1) is spherically

symmetric, therefore, the Lie algebra of Killing vector fields so(3) corresponding to the Lie
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group SO(3) is intrinsically admitted by each spacetime. Hence, we have the following five

Noether symmetries as minimal set for spherically symmetric static spacetime

X0 =
∂

∂t
, Y0 =

∂

∂s
, (6.3.2)

X1 =
∂

∂φ
, X2 = cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ
, X3 = sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ
, (6.3.3)

which form the basis of minimal 5−dimensional Noether algebra, in which Y0 is not a

Killing vector field of spherically symmetric spacetime given in equation (6.1.1). The

commutators relations of these five Noether symmetries are,

[X1,X2] = −X3, [X1,X3] = X2, [X2,X3] = −X1, [Xi,Xj] = 0 and [Xi,Y0] = 0

otherwise, and is identified with the associated group SO(3)× R2.

6.4 Five Noether Symmetries

Some examples of spacetimes whose action admit minimal set of Noether symmetries (five

symmetries) appeared during the calculations for which λ(r) = 2 ln r are given in Table

6.1.

Table 6.1: Metrics

No. ν(r) µ(r)

1. ln
(
r
α

)2
arbitrary

2. ln
(
1− ( rα)2

)
arbitrary

3. ln( rα)2 − ln
(
1− ( rα)2

)
4. arbitrary − ln(1− ( rα)2)

5. ln(1− α
r ) − ln(1− α

r )

The Noether symmetries and corresponding first integrals are listed in the following Table

6.2.
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Table 6.2: First Integrals

Gen First Integrals

X0 φ0 = −2eν(r)ṫ

X1 φ1 = 2r2 sin2 θφ̇

X2 φ2 = 2r2
(

cosφθ̇ − cot θ sinφφ̇
)

X3 φ3 = 2r2
(

sinφθ̇ + cot θ cosφφ̇
)

Y0 φ4 = eν(r)ṫ2 − eµ(r)ṙ2 − r2
(
θ̇2 + sin2 θφ̇2

)
= L

with constant value of the gauge function, i.e., A = constant.

6.5 Six Noether Symmetries

There are two distinct classes of spherically symmetric static spacetimes, the actions of the

geodesic Lagrangians of which admit six Noether symmetries. The detail is given below in

this section:

Solution-I:

Coefficients of the spacetime are

ν(r) = k ln
r

α
, µ(r) = c.

Components of Noether symmetry generators are

η0 = c1
2− k

4
t+ c3, η1 = c1

r

2
, η2 = c4 cosφ+ c5 sinφ,

η3 = −c4 cot θ sinφ+ c5 cot θ cosφ+ c6, ξ = c1s+ c2, A = c7.

The spacetime takes the form

ds2 =
( r
α

)k
dt2 − dr2 − r2dΩ2, α 6= 0, k 6= 0, 2 (6.5.1)

which apart from minimal 5-dimensional Noether algebra also admit an additional Noether

symmetry corresponding to the scaling transformation (s, t, r) −→ (λs, λpt, λ1/2r), given

by

Y1 = s
∂

∂s
+ pt

∂

∂t
+
r

2

∂

∂r
, p =

2− k
4

(6.5.2)
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forming a 6−dimensional Noether algebra. This induces a scale-invariant spherically sym-

metric static spacetime. The corresponding first integral is

φ6 = sL − 2− k
2

(r
a

)k
tṫ+ rṙ. (6.5.3)

Solution-II:

The metric coefficients are

ν(r) = c, µ(r) 6= ln

(
1− r2

b2

)−1
, µ(r) 6= constant.

Components of Noether symmetry generators are

η0 = c2s+ c3, η1 = 0, η2 = c4 cosφ+ c5 sinφ,

η3 = −c4 cot θ sinφ+ c5 cot θ cosφ+ c6, ξ = c1, A = 2c2t+ c7.

The spacetime in this case is

ds2 = dt2 − eµ(r)dr2 − r2dΩ2, µ(r) 6= ln

(
1− r2

b2

)−1
, µ(r) 6= constant, b 6= 0. (6.5.4)

The additional Noether symmetry and the relative non-trivial gauge term are

Y1 = s
∂

∂t
, A = 2t. (6.5.5)

The first integral corresponding to Y1 is φ6 = 2(t− sṫ).

6.6 Seven Noether Symmetries

There are five classes of spacetimes. Their actions of the geodesic Lagrangians admit

seven Noether symmetries in which four classes admit the algebra of six Killing vector

fields whereas one class admits only the minimal set of Killing vectors while the other two

symmetries are Noether symmetries. We discuss them separately:

Solution-I:

Coefficients of the metric are

ν(r) =
r

b
, µ(r) = c.
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Components of Noether symmetry generators are

η0 = c2 − c6(e
−r
b +

t2

4b2
)− c7

t

2b
, η1 = c6t+ c7, η2 = c3 cosφ+ c4 sinφ,

η3 = −c3 cot θ sinφ+ c4 cot θ cosφ+ c5, ξ = c1, A = c8.

The metric takes the form

ds2 = er/bdt2 − dr2 − dΩ2, b 6= 0.

The additional Noether symmetry generators are

X4 = t
∂

∂r
− b

(
e−r/b +

t2

4b2

)
∂

∂t
, X5 =

∂

∂r
− t

2b

∂

∂t
.

The corresponding first integrals are

Table 6.3: First Integrals

Gen First Integrals

X4 φ5 = b
(

1 + t2er/b

4b2

)
ṫ+ tṙ

X5 φ6 = ter/b

b ṫ+ 2ṙ

Solution-II:

Coefficients of the metric are

ν(r) = 2 ln sec

(
r

a

)
= µ(r).

Components of symmetry generators are

η0 = c2 + c6 sin(
r

a
) cos(

t

a
) + c7 cos(

r

a
) cos(

t

a
), η1 = c6 sin(

t

a
) cos(

r

a
)− c7 sin(

r

a
) sin(

t

a
),

η2 = c3 cosφ+ c4 sinφ, η3 = −c3 cot θ sinφ+ c4 cot θ cosφ+ c5, ξ = c1, A = c8.

The metric in this case is

ds2 = sec2
(r
a

)
dt2 − sec2

(r
a

)
dr2 − dΩ2, a 6= 0. (6.6.1)

The symmetries other than the minimal set are

X4 = sin
(r
a

)
cos

(
t

a

)
∂

∂t
+ sin

(
t

a

)
cos
(r
a

) ∂

∂r
,

X5 = cos

(
t

a

)
cos
(r
a

) ∂

∂r
− sin

(r
a

)
sin

(
t

a

)
∂

∂t
.
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The first integrals are

Table 6.4: First Integrals

Gen First Integrals

X4 φ5 = sec2
(
r
a

)
[−ṫ sin

(
r
a

)
cos
(
t
a

)
+ ṙ sin

(
t
a

)
cos
(
r
a

)
]

X5 φ6 = sec2
(
r
a

)
[ṫ sin

(
r
a

)
sin
(
t
a

)
+ ṙ cos

(
t
a

)
cos
(
r
a

)
]

The corresponding Lie algebra is

[X1,X3] = X2, [X2,X3] = −X1, , [X0,X4,2] =
1

a
X5,2,

[X0,X5,2] = −1

a
X4,2, [Xi,Xj] = 0, [Xi,Y0] = 0, otherwise.

Solution-III:

Coefficients of the spacetime are

ν(r) = ln

(
1− r2

b2

)
, µ(r) = − ln

(
1− r2

b2

)
.

Components of Noether symmetry generators are

η0 = c2 − c6
rbe

t
b

√
r2 − b2

+ c7
rbe

−t
b

√
r2 − b2

, η1 = c6e
t
b

√
r2 − b2 + c7e

−t
b

√
r2 − b2,

η2 = c3 cosφ+ c4 sinφ, η3 = −c3 cot θ sinφ+ c4 cot θ cosφ+ c5, ξ = c1, A = c8.

The spacetime here is

ds2 =

(
1− r2

b2

)
dt2 −

(
1− r2

b2

)−1
dr2 − dΩ2, b 6= 0.

The additional Noether symmetry generators are

X4 = − rbe
t
b

√
r2 − b2

∂

∂t
+
√
r2 − b2e

t
b
∂

∂r
, X5 =

rbe−t/b√
r2 − b2

∂

∂t
+
√
r2 − b2e−t/b ∂

∂r
.

The first integrals are

Table 6.5: First Integrals

Gen First Integrals

X4 φ5 = e
t
b [ rṫ
√
r2−b2
b + b2ṙ√

r2−b2 ]

X5 φ6 = e
−t
b [− rṫ

√
r2−b2
b + b2ṙ√

r2−b2 ]



CHAPTER 6. SPHERICALLY SYMMETRIC STATIC SPACETIMES 106

Solution-IV:

Coefficients of the spacetime for seven Noether symmetries are

ν(r) = −2 ln

(
r

α

)
= µ(r).

Components of the Noether symmetry generators are

η0 = c2 − c6
r2 + t2

2
+ c7t, η1 = c6rt+ c7r, η2 = c3 cosφ+ c4 sinφ,

η3 = −c3 cot θ sinφ+ c4 cot θ cosφ+ c5, ξ = c1, A = c8.

The spacetime takes the form

ds2 =

(
α

r

)2

dt2 −
(
α

r

)2

dr2 − dΩ2, α 6= 0. (6.6.2)

The additional symmetries along with the minimal set of symmetries are

X4 =
t2 + r2

2

∂

∂t
+ rt

∂

∂r
, X5 = t

∂

∂t
+ r

∂

∂r
.

The first integral are given in the following table

Table 6.6: First Integrals

Gen First Integrals

X4 φ5 = − (t2+r2)ṫ
r2

+ tṙ
r

X5 φ6 = 2[− tṫ
r2

+ ṙr]

The Lie algebra in this case is

[X1,X2] = −X3, [X1,X3] = X2, [X2,X3] = −X1, , [X0,X4] = X5,

[X4,X5] = −X4, [X0,X5] = X0, [Xi,Xj] = 0, [Xi,Y0] = 0, otherwise.

Solution-V:

Coefficients of the spacetime are

ν(r) = 2 ln

(
r

α

)
, µ(r) = c.

Components of Noether symmetry generators are

η0 = c6, η1 = c0rs+ c1
r

2
, η2 = c3 cosφ+ c4 sinφ, A = −c0r2 + c8,

η3 = −c3 cot θ sinφ+ c4 cot θ cosφ+ c5, ξ = c0s
2 + c1s+ c2.
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The spacetime here is

ds2 =
(r
a

)2
dt2 − dr2 − r2dΩ2, a 6= 0. (6.6.3)

Here we have the following two additional Noether symmetry generators

Y1 = s
∂

∂s
+
r

2

∂

∂r
, Y2 =

s2

2

∂

∂s
+
rs

2

∂

∂r
, A =

−r2

2
.

First integrals corresponding Y1 and Y2 are given in Table 6.7.

Table 6.7: First Integrals

Gen First Integrals

Y1 φ5 = sL+ rṙ

Y2 φ6 = 1
2s

2L+ srṙ − 1
2r

2

6.7 Nine Noether Symmetries

This section contains some well known and important spacetimes. Here, we have four

different classes of spacetimes in which the action of the geodesic Lagrangians admit nine

Noether symmetries. Three classes contain two additional Noether symmetries and one

class contains one extra Noether symmetry besides others which are all Killing vector fields.

The detail of these spacetimes, their Noether symmetry generators and the corresponding

first integral are given in this section:

Solution-I:

Coefficients of the spacetime are

ν(r) = a, µ(r) = b.

Components of the Noether symmetry generators are

η0 = c2 + c6r + c7s, η1 = c6t+ c8s+ c9,

η2 = c3 cosφ+ c4 sinφ, A = 2c6t− 2c8r + c10,

η3 = −c3 cot θ sinφ+ c4 cot θ cosφ+ c5, ξ = c1.
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The metric takes the form

ds2 = dt2 − dr2 − dΩ2.

The four additional Noether symmetry generators are

X4 = r
∂

∂t
+ t

∂

∂r
, X5 =

∂

∂r
,

Y1 = s
∂

∂t
, A1 = 2t Y2 = s

∂

∂r
, A2 = −2r.

The first integrals corresponding to these Noether symmetry generators are

Table 6.8: First Integrals

Gen First Integrals

X4, X5 φ5 = 2(tṙ − rṫ), φ6 = 2ṙ

Y1, Y2 φ7 = 2(t− sṫ), φ8 = 2(sṙ − r)

Solution-II:

Coefficients of the spacetime are

ν(r) = 2 ln

(
β

r

)
, µ(r) = 4 ln

(
β

r

)
.

Components of symmetry generators are

η0 = c2 − c6βre
−t
β + c7βre

t
β − c8

rse
−t
β

β3
+ c9

rse
t
β

β3
,

η1 = c6r
2e
−t
β + c7r

2e
t
β + c8

r2se
−t
β

β4
+ c9

r2se
t
β

β4
,

η2 = c3 cosφ+ c4 sinφ, A = c8
e
−t
β

r
+ c9

e
t
β

r
+ c10,

η3 = −c3 cot θ sinφ+ c4 cot θ cosφ+ c5, ξ = c1.

The metric takes the form

ds2 =

(
β

r

)2

dt2 −
(
β

r

)4

dr2 − dΩ2, β 6= 0. (6.7.1)
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The four additional Noether symmetry generators are

X4 = −βre
−t
β
∂

∂t
+ r2e

−t
β
∂

∂r
, X5 = βre

t
β
∂

∂t
+ r2e

t
β
∂

∂r

Y1 = −rse
−t
β

β3
∂

∂t
+
r2se

−t
β

β4
∂

∂r
, A1 =

2e
−t
β

r

Y2 =
rse

t
β

β3
∂

∂t
+
r2se

t
β

β4
∂

∂r
, A2 =

2e
t
β

r
.

The first integrals are

Table 6.9: First Integrals

Gen First Integrals

X4, X5 φ5 = 2e
−t
β β3[ ṫr + βṙ

r2
], φ6 = 2e

t
β β3[− ṫ

r + βṙ
r2

]

Y1, Y2 φ7 = 2se
−t
β [ ṫrβ + ṙ

r2
] + 2e

−t
β

r , φ8 = 2se
t
β [− ṫ

βr + ṙ
r2

] + 2e
t
β

r

The Lie algebra is

[X1,X2] = −X3, [X1,X3] = X2, [X2,X3] = −X1, , [X0,X4] =
1

α
X4,

[X4,X5] = −X4 [X0,X5] =
1

α
X5, [X0,Y1] = − 1

α
Y1, [X0,Y2] =

1

α
Y2,

[Y0,Y1] =
1

α4
X4, [Y0,Y2] =

1

α4
X5, [Xi,Xj] = 0, [Xi,Y0] = 0,

[Yi,Yj] = 0, otherwise.

Solution-III:

Coefficients of the metric are

ν(r) = 2 ln

(
1 +

r

b

)
, µ(r) = c.

Components of the Noether symmetry generators are

η0 = c2 − c6
be
−t
b

b+ r
− c7

be
t
b

b+ r
− c8

bse
−t
b

2(b+ r)
+ c9

bse
t
b

2(b+ r)
,

η1 = c6e
−t
b + c7e

t
b − c8

se
−t
b

2
− c9

se
t
b

2
,

η2 = c3 cosφ+ c4 sinφ, A = c8e
−t
b (b+ r) + c9e

t
β (b+ r) + c10,

η3 = −c3 cot θ sinφ+ c4 cot θ cosφ+ c5, ξ = c1.
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The spacetime takes the form

ds2 =
(

1 +
r

b

)2
dt2 − dr2 − dΩ2, b 6= 0.

The Noether symmetry generators other than the minimal set are

X4 =
b

b+ r
e
−t
b
∂

∂t
+ e

−t
b
∂

∂r
, X5 = − b

b+ r
e
t
b
∂

∂t
+ e

t
b
∂

∂r
,

Y1 = − bs

2(b+ r)
e
−t
b
∂

∂t
− s

2
e
−t
b
∂

∂r
, A1 = (b+ r)e

−t
b

Y2 =
bs

2(b+ r)
e
t
b
∂

∂t
− s

2
e
t
b
∂

∂r
, A2 = (b+ r)e

t
b .

The corresponding first integrals are

Table 6.10: First Integrals

Gen First Integrals

X4, X5 φ5 = e
−t
b

(
− ṫ(b+r)

b + ṙ
)

, φ6 = e
t
b

(
ṫ(b+r)
b + ṙ

)
Y1, Y2 φ7 = e

−t
b { sṫ(b+r)b −sṙ+(b+r)}, φ8 = e

t
b {− sṫ(b+r)

b −sṙ+(b+r)}

Solution-IV:

Coefficients of the spacetime are

ν(r) = c, µ(r) = − ln

(
1− r2

b2

)
.

The values of functions ηi, i = 0, 1, 2, 3, ξ and A are

η0 = c2 + c9s, η1 = c6
√
b2 − r2 cos θ sinφ+ c7

√
b2 − r2 sin θ cosφ+ c8

√
b2 − r2 cos θ,

η2 = c3 cosφ+ c4 sinφ− c6
√
b2 − r2
r

cos θ sinφ− c7
√
b2 − r2
r

cos θ cosφ− c8
√
b2 − r2
r

sin θ,

η3 = −c3 cot θ sinφ+ c4 cot θ cosφ+ c6

√
b2 − r2
r sin θ

cosφ− c7
√
b2 − r2
r sin θ

sinφ+ c5,

ξ = c1, A = c9t+ c10.

The corresponding spacetime is

ds2 = dt2 − dr2

1− r2

b2

− r2dΩ2, b 6= 0.
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Which is the Einstein universe. The Noether symmetry generators other than the minimal

set are

X4 =
√
b2 − r2 sinφ sin θ

∂

∂r
−
√
b2 − r2
r

cos θ sinφ
∂

∂θ
+

√
b2 − r2
r sin θ

cosφ
∂

∂φ
,

X5 =
√
b2 − r2 cosφ sin θ

∂

∂r
−
√
b2 − r2
r

cos θ cosφ
∂

∂θ
−
√
b2 − r2
r sin θ

sinφ
∂

∂φ
,

X6 =
√
b2 − r2 cos θ

∂

∂r
−
√
b2 − r2
r

sin θ
∂

∂θ
, Y1 = s

∂

∂t
, A = 2t.

The first integrals are

Table 6.11: First Integrals

Gen First Integrals

X4 φ6 = b2ṙ sinφ sin θ√
b2−r2 − rθ̇

√
b2 − r2 cos θ sinφ+ rφ̇

√
b2 − r2 sin θ cosφ

X5 φ6 = b2ṙ cosφ sin θ√
b2−r2 − rθ̇

√
b2 − r2 cos θ cosφ− rφ̇

√
b2 − r2 sin θ sinφ

X6,Y1 φ7 = b2ṙ cos θ√
b2−r2 − rθ̇

√
b2 − r2 sin θ, φ8 = 2(t− sṫ)

6.8 Eleven Noether Symmetries

The famous de-Sitter metric turns out to be the only one, the action of the Lagrangian of

which admit eleven Noether symmetries. Except Y0 all others are the Killing vectors:

Solution:

the metric coefficients are

ν(r) = ln

(
1− r2

b2

)
, µ(r) = − ln

(
1− r2

b2

)
.

Coefficients of Noether symmetry generators are

η0 = c2 + c6
br sinφ sin θ cos(t/b)√

b2 − r2
+ c7

br cosφ sin θ cos(t/b)√
b2 − r2

− c8
br sinφ sin θ sin(t/b)√

b2 − r2

− c9
br cosφ sin θ sin(t/b)√

b2 − r2
+ c10

br cos θ cos(t/b)√
b2 − r2

− c11
br cos θ sin(t/b)√

b2 − r2
,

η1 = c6
√
b2 − r2 sin θ sinφ sin(t/b) + c7

√
b2 − r2 sin θ cosφ sin(t/b) + c8

√
b2 − r2 sin θ sinφ cos(t/b)

+ c9
√
b2 − r2 sin θ cosφ cos(t/b) + c10

√
b2 − r2 cos θ sin(t/b) + +c11

√
b2 − r2 cos θ cos(t/b),
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η2 = c3 cosφ+ c4 sinφ+ c6r
√
b2 − r2 cos θ sinφ sin(t/b)− c7

√
b2 − r2
r

cos θ cosφ sin(t/b)

− c8r
√
b2 − r2 cos θ sinφ cos(t/b) + c9

√
b2 − r2
r

cos θ cosφ cos(t/b)

− c10
√
b2 − r2
r

sin θ sin(t/b)− c11
√
b2 − r2
r

sin θ cos(t/b),

η3 = −c3 cot θ sinφ+ c4 cot θ cosφ+ c6

√
b2 − r2
r sin θ

cosφ sin(t/b)− c7
√
b2 − r2
r sin θ

sinφ sin(t/b)

+ c8

√
b2 − r2
r sin θ

cosφ cos(t/b)− c9
√
b2 − r2
r sin θ

sinφ cos(t/b) + c5, ξ = c1, A = c12.

The corresponding spacetime is

ds2 =

(
1− r2

b2

)
dt2 − dr2(

1− r2

b2

) − r2dΩ2, b 6= 0. (6.8.1)

We have the following Noether symmetry generators along with the minimal set of Noether

symmetries for the metric given by equations (6.8.1)

X4 =
br sinφ sin θ cos(t/b)√

b2 − r2
∂

∂t
+ sin(t/b)

√
b2 − r2

(
sin θ sinφ

∂

∂r
+ r cos θ sinφ

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

)
,

X5 =
br cosφ sin θ cos(t/b)√

b2 − r2
∂

∂t
+ sin(t/b)

√
b2 − r2

(
sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ

)
,

X6 =
−br sinφ sin θ sin(t/b)√

b2 − r2
∂

∂t
+ cos(t/b)

√
b2 − r2

(
sin θ sinφ

∂

∂r
+ r cos θ sinφ

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

)
,

X7 =
−br cosφ sin θ sin(t/b)√

b2 − r2
∂

∂t
+ cos(t/b)

√
b2 − r2

(
sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ

)
,

X8 =
br cos θ cos(t/b)√

b2 − r2
∂

∂t
+ sin(t/b)

√
b2 − r2

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
,

X9 =
−br cos θ sin(t/b)√

b2 − r2
∂

∂t
+ cos(t/b)

√
b2 − r2

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
.

The first integrals corresponding to these Noether symmetries are given in Table 6.12.

6.9 Seventeen Noether Symmetries

For seventeen Noether symmetry only one spherically symmetric static spacetime is obtain

which is the famous Minkowski metric

ds2 = dt2 − dr2 − r2(dθ2 + sin2 θdφ2),

that represents a flat spacetime and admits seventeen Noether symmetries. The list of all

Noether symmetries and the corresponding first integrals (cartesian coordinates) are given

in [1, 40].
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Table 6.12: First Integrals

Gen First Integrals

X4 φ5 = − r
b

√
b2 − r2 sinφ sin θ cos(t/b)ṫ+ b2√

b2−r2 sinφ sin θ sin(t/b)ṙ+

r
√
b2 − r2 cos θ sinφ sin(t/b)θ̇ + r

√
b2 − r2 sin θ cosφ sin(t/b)φ̇

X5 φ6 = − r
b

√
b2 − r2 cosφ sin θ cos(t/b)ṫ+ b2√

b2−r2 cosφ sin θ sin(t/b)ṙ+

r
√
b2 − r2 cos θ cosφ sin(t/b)θ̇ − r

√
b2 − r2 sin θ sinφ sin(t/b)φ̇

X6 φ7 = r
b

√
b2 − r2 sinφ sin θ sin(t/b)ṫ+ b2√

b2−r2 sinφ sin θ cos(t/b)ṙ+

r
√
b2 − r2 cos θ sinφ cos(t/b)θ̇ + r

√
b2 − r2 sin θ cosφ cos(t/b)φ̇

X7 φ8 = r
b

√
b2 − r2 cosφ sin θ cos(t/b)ṫ+ b2√

b2−r2 cosφ sin θ sin(t/b)ṙ+

r
√
b2 − r2 cos θ cosφ sin(t/b)θ̇ − r

√
b2 − r2 sin θ sinφ sin(t/b)φ̇

X8 φ9 = − r
b

√
b2 − r2 cos θ cos(t/b)ṫ + b2√

b2−r2 cos θ sin(t/b)ṙ −

r
√
b2 − r2 sin θ sin(t/b)θ̇

X9 φ10 = r
b

√
b2 − r2 cos θ sin(t/b)ṫ + b2√

b2−r2 cos θ cos(t/b)ṙ −

r
√
b2 − r2 sin θ cos(t/b)θ̇



Chapter 7

Conclusion

In this thesis Noether symmetries of the arc length minimizing Lagrangian densities of plane

symmetric, cylindrically symmetric and spherically symmetric static spacetimes were ob-

tained. For this purpose the general arc length minimizing Lagrangians of the general plane

symmetric, cylindrically symmetric and spherically symmetric static spacetimes were used

in the Noether symmetry equation to obtain systems of 19 PDEs in each case. Solutions of

these systems provided a classification of the arc length minimizing Lagrangians of plane

symmetric, cylindrically symmetric and spherically symmetric static spacetimes. This

classification provided us with exact solutions of Einstein’s field equations, the Noether

symmetries and the corresponding first integrals. The first integrals were further used to

investigate the conservation laws in each spacetime.

In Chapter 1, a brief introduction to Lie point symmetries of differential equations

was given. Concepts of the contact symmetry transformations, Lie Backlund symmetry

transformations and approximate Lie symmetry transformations were also given in the

same chapter. Introduction to variational problems, Noether symmetry transformations,

Noether symmetry equation and Euler-Lagrange equations were given in Chapter 2.

In Chapter 3, the classification of plane symmetric static spacetimes by Noether sym-

metries was presented. The approximate Noether symmetries and the corresponding ap-

proximate conservation laws of time conformal plane symmetric spacetimes were presented

in Chapter 4. The Noether symmetries and their first integrals of cylindrically symmetric

static spacetime were given in Chapter 5 while the Noether symmetries and the corre-

114
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sponding first integrals of spherically symmetric static spacetime were given in Chapter

6.

7.1 Plane Symmetric Spacetimes and Noether Symmetries

For the classification purpose the arc length minimizing Lagrangian density of the general

plane symmetric static spacetime is used in the Noether symmetry equation to get system

of 19 PDEs. Solutions of this system give us complete classification of plane symmetric

static spacetimes by Noether symmetries. It turns out that for the action of arc length

minimizing Lagrangian densities of plane symmetric static spacetimes, there exist 5, 6, 7,

8, 9, 11 or 17 Noether symmetries. Some cases having minimum number of the Noether

symmetries (5 Noether symmetries ) are given in Table 3.1. These metrics admit minimal

set of isometries (i.e. 4 isometries).

Metrics for which the corresponding actions admit 6 Noether symmetries are given

by equations (3.5.1), (3.5.2), (3.5.3), (3.5.5), (3.5.6) and (3.5.7). Metric given by equation

(3.5.1) has 5 isometries while others admit the minimal set of isometries. The metrics given

by equations (3.6.1), (3.6.5) and (3.6.7) admit different sets of 7 Noether symmetries. The

metric of equation (3.6.1) admits 6 isometries while equations (3.6.5) and (3.6.7) admit

only the minimal set of isometries. The spacetimes for which the actions admit 8 Noether

symmetries are given by equations (3.7.1), (3.7.4) and (3.7.5). The action of the arc

length minimizing Lagrangian densities of the Einstein spacetime, the Bertotti-Robinson

like spacetimes and the metric given by equation (3.8.11) admit 9 Noether symmetries.

These metrics respectively have 7, 6, and 4 isometries. The De-Sitter spacetime admits

11 Noether symmetries (10 isometries and Y0) and the maximum number (i.e. 17) of

Noether symmetries appears for the Minkowski spacetime. Tables (3.2)-(3.15) provide

conserved forms or first integrals corresponding to the Noether symmetries. Three cases

of plane symmetric static spacetime are obtained which are new in the literature. These

spacetimes are given in equations (3.5.5), (3.6.5) and (3.7.4). The list of their surviving

components of the Riemann curvature tensors, the Ricci curvature tensors and the Ricci
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scalars are given below:

(3.5.5) : R0202 = −
( xα)bb

2α2
= R0303, R1212 =

( xα)bb(b− 2)

4x2
= R1313, R2323 =

( xα)2bb2

4x2
;

R00 = − b

α2
, R11 =

b(b− 2)

2x2
, R22 =

( xα)bb2

2x2
= R33; Rs = − 3b2

2x2
,

(3.6.5) : R1212 =
( xα)bb(b− 2)

4x2
= R1313, R2323 =

( xα)2bb2

4x2
;

R11 =
b(b− 2)

2x2
, R22 =

( xα)2b(b− 1)

2x2
; Rs = −b(3b− 4)

2x2
,

(3.7.4) : R2323 =
x2

α4
; R22 =

1

α2
= R33; Rs = − 2

x2
.

7.2 Time Conformal Plane Symmetric Spacetime and Noether

Symmetries

In Chapter 4, approximate Noether symmetries of the action of time conformal plane sym-

metric spacetimes are given. Three types of approximate Noether symmetries are obtained.

The first one is time-like Killing vector field which corresponds to the energy content of

the given spacetimes. The second symmetry which carries approximate part is the scaling

symmetry, and the third one corresponds to the Lorentz transformations. Using these

approximate symmetries we also find the approximate first integrals which correspond to

the approximate conservation laws in the respective spacetimes. Although the spacetimes

given in this chapter are not the exact gravitational wave spacetimes but can be considered

approximate gravitational wave spacetimes. In this chapter the spacetimes which admit

the approximation along with approximate Noether symmetries and the corresponding first

integrals are presented.

7.2.1 Plane symmetric Static Vacuum Solutions of EFEs

Consider the following general plane symmetric static spacetime

ds2 = eν(x)dt2 − dx2 − eµ(x)(dy2 + dz2). (7.2.1)



CHAPTER 7. CONCLUSION 117

Equating the surviving components of the Ricci tensor for this spacetime to zero, we get

a system of three non-linear PDEs in two unknown functions ν(x) and µ(x),

R00 = 2ν
′′
(x) + 2ν

′
(x)µ

′
(x) + ν

′2(x) = 0,

R11 = 2ν
′′
(x) + 4µ

′′
(x) + ν

′2(x) + 2µ
′2(x) = 0,

R22 = 2µ
′′
(x) + 2µ

′2(x) + ν
′
(x)µ

′
(x) = 0.

(7.2.2)

The solution of this system is

ν(x) = −2

3
ln
(x
α

)
, µ(x) =

4

3
ln
(x
α

)
, (7.2.3)

which discribs the famous Taub spacetime having singularity at x = 0 [67]. This is a static

vacuum solution of EFEs and does not admit time conformal perturbation and hence is not

actual non-static gravitational wave spacetime [44]. The coefficients of the metric defined

in equation (7.2.3) is a special case of the metric given in equation (3.5.7).

7.3 Cylindrically Symmetric Spacetimes and Noether Sym-

metries

The Noether symmetries of the action of cylindrically symmetric static spacetimes are

given in Chapter 5. To get all possible metrics, geodesic Lagrangian density for the gen-

eral cylindrically symmetric static metric has been considered. It has been observed that

there may be 5, 6, 7, 8, 9, 11, and 17 Noether symmetries for the geodesic Lagrangian of

cylindrically symmetric static spacetimes. There are infinite number of metrics for which

the actions of the corresponding Lagrangians admit four or five Noether symmetries. We

have twenty four classes for six Noether symmetries, three classes for seven Noether sym-

metries, seven for eight Noether symmetries, four for nine Noether symmetries and one

for eleven Noether symmetries. There are 4 classes of 17 Noether symmetries in which

one spacetime is the Minkowaski spacetime. The first integrals in each case are also given

correspondingly in tabulated form. It is important to note that in this classification, all

the metrics given in [60,62] have been recovered.
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7.3.1 Some Cases of Cylindrically Symmetric Vacuum Solutions

We discuss two cylindrically symmetric static vacuum solutions of EFEs [2]:

(i): The metric

ds2 =
( r
α

) 1−
√
5

2
dt2 − dr2 −

( r
α

)
dθ2 −

( r
α

) 1+
√
5

2
dz2, α 6= 0, (7.3.1)

represent the vacuum solution. The corresponding geodesic Lagrangian density takes the

form

L =
( r
α

) 1−
√
5

2
ṫ2 − ṙ2 −

( r
α

)
θ̇2 −

( r
α

) 1+
√
5

2
ż2. (7.3.2)

The action of Lagrangian given in equation (7.3.2) admits five Noether symmetry genera-

tors

Y0 =
∂

∂s
, X0 =

∂

∂t
, X1 =

∂

∂θ
, X2 =

∂

∂z
,

X3 = s
∂

∂s
+
t(3 +

√
5)

8

∂

∂t
+
r

2

∂

∂r
+
θ

4

∂

∂θ
+
z(3−

√
5)

8

∂

∂z
.

(7.3.3)

Using these Noether symmetries in the expression given in equation (3.2.5), following table

of conservation laws is obtained [2, 22].

Table 7.1: First Integrals

Gen First Integrals

X0 φ1 = L

X0 φ1 = −2ṫ( rα)
1−
√
5

2

X1 φ1 = 2b2θ̇ rα

X2 φ1 = 2ż( rα)
1+
√
5

2

X3 φ1 = sL − tṫ(3+
√
5)

4 ( rα)
1+
√
5

2 + rṙ + b2rθθ̇
2α + zż(3−

√
5)

4 ( rα)
1−
√
5

2

The non-zero components of the Riemann curvature tensor for the spacetime given in

equation (7.3.1) are

R0101 = −
( rα)

1−
√
5

2 (1 +
√

5)

8r2
, R0202 =

( rα)
1−
√
5

2 (−1 +
√

5)

8αr
, R0303 =

1

4αr
,

R1212 = − 1

4αr
, R1313 =

( rα)
1−
√
5

2 (1 +
√

5)

8r2
, R2323 =

( rα)
1+
√
5

2 (1 +
√

5)

8αr
.

Another cylindrically symmetric static vacuum solution is

(ii) : ds2 =
( r
α

) 1+
√
5

2
dt2 − dr2 −

( r
α

)
dθ2 −

( r
α

) 1−
√
5

2
dz2, α 6= 0. (7.3.4)
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The corresponding geodesic Lagrangian density takes the form

L =
( r
α

) 1+
√
5

2
ṫ2 − ṙ2 −

( r
α

)
b2θ̇2 −

( r
α

) 1−
√
5

2
ż2. (7.3.5)

The Noether symmetry generators are

Y0 =
∂

∂s
, X0 =

∂

∂t
, X1 =

∂

∂θ
, X2 =

∂

∂z
,

X3 = s
∂

∂s
+
t(3−

√
5)

8

∂

∂t
+
r

2

∂

∂r
+
θ

4

∂

∂θ
+
z(3 +

√
5)

8

∂

∂z
.

(7.3.6)

The conservation laws corresponding to these Noether symmetries are given in Table 7.2.

Table 7.2: First Integrals

Gen First Integrals

Y0 φ0 = L

X0 φ1 = −2ṫ( rα)
1−
√
5

2

X1 φ2 = 2b2θ̇ rα

X2 φ3 = 2ż( rα)
1+
√
5

2

X3 φ4 = sL − tṫ(3−
√
5)

4 ( rα)
1−
√
5

2 + rṙ + b2rθθ̇
2α + zż(3+

√
5)

4 ( rα)
1+
√
5

2

The surviving components of the Riemann curvature tensor for spacetime given in equation

(7.3.4) are

R0101 = −
( rα)

1+
√
5

2 (1−
√

5)

8r2
, R0202 = −

( rα)
1+
√
5

2 (1 +
√

5)

8αr
, R0303 =

1

4αr
,

R1212 = − 1

4αr
, R1313 =

( rα)
1+
√
5

2 (1−
√

5)

8r2
, R2323 =

( rα)
1−
√
5

2 (1−
√

5)

8αr
.

7.4 Spherically Symmetric Spacetime and Noether Symme-

tries

In Chapter 6 a complete classification of spherically symmetric static spacetimes by Noether

symmetries is given. It is seen that the action of spherically symmetric static spacetimes

may have 5, 6, 7, 9, 11, or 17 Noether symmetries. A few examples of spacetimes for which

the action of Lagrangian having minimal (i.e. 5) Noether symmetries are given in Table

6.1. Briefly, there appear two classes admitting six, five classes having seven, four classes
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admitting nine (including the Bertotti-Robinson and the Einstein metrics), whereas only

one class of eleven (which is the famous de-Sitter spacetime) and one class of seventeen

(Minkowaski spacetime) Noether symmetries. Just like plane symmetric static spacetimes,

for spherically symmetric static spacetimes the minimum number of the Noether symme-

tries are five and the maximum number of the Noether symmetries are seventeen, while

the minimum number of isometries is four and the maximum number of isometries is ten.

There are three new cases of spherically symmetric static spacetimes that we have not

seen in the literature. These spacetimes are given by equations (6.6.1), (6.6.2) and (6.7.1).

The Ricci scalar, and non-vanishing components of the Ricci tensor and the Riemann

curvature are given below respectively:

(6.6.1) : Rs =
2(a2 − 1)

a2
; R00 = −

sec2 r
a

a2
, R11 =

sec2 r
a

a2
, R22 = −1, R33 = − sin2 θ;

R0101 = −
sec4 r

a

a2
, R2323 = − sin2 θ;

(6.6.2) : Rs =
(α2 − 1)

α2
; R00 = − 1

r2
, R11 =

1

r2
, R22 = −1, R33 = − sin2 θ;

R0101 = −α
2

r4
, R2323 = − sin2 θ.

(6.7.1) : Rs = 2; R22 = −1, R33 = − sin2 θ; R2323 = − sin2 θ.

7.5 Spherically Symmetric Vacuum Solutions of EFEs

The general metric for spherically symmetric static spacetime is

ds2 = eν(r)dt2 − eµ(r)dr2 − r2(dθ2 + sin2 θdφ2). (7.5.1)

Equating the non-vanishing components of Ricci curvature tensor to zero we have

R00 = µ
′
(r)ν

′
(r)r − ν ′

2
(r)r − 2ν

′′
(r)r − 4ν

′
(r) = 0,

R11 = µ
′
(r)ν

′
(r)r − ν ′

2
(r)r − 2ν

′′
(r)r + 4µ

′
(r) = 0,

R22 = µ
′
(r)r − ν ′(r)r + 2eµ(r) − 2 = 0,

R33 = sin2 θR22.

(7.5.2)

The solution of this system is

ν(r) = (1− m

r
), µ(r) =

1

(1− m
r )
. (7.5.3)
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These values of ν(r) and µ(r) defined the famous Schwarzschild spacetime.

During the classification of spacetimes by Noether symmetries it is observed that sym-

metries where arc length parameter “s” is not involved, are isometries and all the homoth-

etic vectors appear with an additional scaling term s ∂∂s . It is also observed here that the

only Noether symmetry, other than isometries and homotheties, that does not have any

gauge term is ∂
∂s which corresponds to the Lagrangian density of the metric in each case.

Further, in the absence of proper homothety, spacetimes with m−dimensional sections of

zero curvature admit m Noether symmetries of the form s ∂
∂xi
, i = 1, 2, ...,m, [33].
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