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Abstract

The Internet traffic today is mostly multi-media traffic due to the exceptionally expand-

ing interest in Over The Top (OTT) services like Facebook, YouTube, Netflix etc. It

has proven to be extremely difficult for Internet service providers (ISPs) to meet their

customers’ needs in terms of Quality of Experience (QoE) because of the proliferation

of networking data, especially video streaming. Therefore, QoE modelling and measure-

ment of multimedia services is an open research area for the research community. Due

to ever-increasing user demand for multimedia services, ISPs and OTT providers require

innovative solutions for QoE prediction of HTTP Adaptive Video-streaming (HAS) ap-

plications as most of the video services over the internet are HAS-based. Therefore,

the QoE prediction model will lead towards identifying the root causes for QoE im-

pairments and understanding the impact of different Key Quality Indicators (KQIs).

The primary objective of this study is to propose supervised-learning-based QoE pre-

diction ensemble Voting Regression (VR) and Stacking Regression (SR) models based

on machine-learning algorithms such as Random Forests (RFs), Support Vector Re-

gression (SVRs), Stochastic Gradient Descent (SGD) and Multilayer Perceptron (NN)

models considering appropriate QoE influencing factors. We utilize Waterloo Streaming

Quality-of-Experience Database for more accurate prediction of QoE over the multi-

media video streaming services in this study. This work has a multi-fold contribution:

First, the data set was optimized using four feature selection techniques based on ma-

chine learning also including Principal Component Analysis (PCA) to investigate the

impact of different KQIs and retain the most appropriate ones in the feature-engineering

stage. Secondly, making k-fold validations and hyper-parameter tuning of standalone

ML models was adopted to check the accuracy of each model over the given data set

in the model optimization and training stage. Thirdly, upon these hyper-parameter-

tuned base ML models, ensemble VR and SR models were created. In the final stage,
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different ML models were evaluated based on learning curves, execution times, training

times and performance metrics for comparative analysis among various features obtained

from different feature selection techniques and then analyzed the algorithm which suits

best for estimated QoE prediction. The results show significantly higher scores of R2

i.e 0.852367 and a significant improvement of 4.64% in terms of R2 was observed as

compared to previous studies. Finally, the lower values of MAE, MSE and RMSE i.e

0.085513, 0.220756 and 0.469846 were obtained respectively, while showing the highest

PLCC value of 0.92539 and SRCC value of 0.875782 while predicting QoE.
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Chapter 1

Introduction

1.1 Background and Motivation

With the massive growth of networking data especially in video streaming over the past

few years, it has posed great challenges for Internet Service Providers (ISPs) to meet

the users’ demands, especially in terms of Quality of Experience (QoE) [2]. As per the

most recent Cisco Visual Networking Index (VNI) Forecast, 82% of all IP traffic will

be video by 2023 [3]. Delivering high video quality to the users is a major concern of

the ISPs to fulfil their customer’s needs and also to increase their revenue potential

nowadays [4]. For this purpose, ISPs need an efficient approach for accurate prediction

and measurement of QoE for video-streaming services (e.g., YouTube, Facebook and

Netflix), over the internet.

1.2 QoE in HTTP Adaptive Video-Streaming (HAS)

The International Telecommunication Union (ITU-T) has established a standard def-

inition, according to which QoE is defined as, "The degree of delight or annoyance of

the user of an application or service"[5]. The QoE is a multidisciplinary concept that

depends on multiple influencing factors such as application, business, context, network,

system and the users [6].

To reduce video playing interruptions and increase bandwidth consumption, most of

the video streaming services use HTTP Adaptive Video-Streaming (HAS), which is a

video-streaming technique that adjusts the video to the current network conditions. It
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Chapter 1: Introduction

allows service providers to optimise resource usage and Quality of Experience (QoE) by

including information from various network layers to provide and adjust video in the

highest possible quality based on client adaptation algorithm [7].

1.3 Issues in HTTP Adaptive Video-Streaming (HAS)

Multiple applications and network Key Quality Indicators (KQIs) e.g, video content,

stalling ratio, stalling duration, bit rate etc. affect the QoE for streaming videos using

HTTP Adaptive Streaming (HAS) [8]. Moreover, end-to-end encryption is used by Over

The Top (OTT) providers which means the ISPs do not have direct access to the end-

users devices, making it more difficult and challenging for ISPs to accurately predict

QoE and meet the QoE requirements of video streaming applications for end-users[9].

The QoE prediction of HAS is a complex, multivariate non-linear problem involving

multiple factors such as end-users devices, network Key Performance Indicators (KPIs)

such as bandwidth, throughput, end-to-end delay, etc., application-related KQIs such as

stalling events, video resolutions, frame rates, video quality layer switch, etc. Therefore,

both ISPs and OTTs need a novel solution to meet user-perceived quality which can be

achieved by accurate prediction of QoE using Machine-Learning (ML) approaches[10].

Although the studies in [10–12] offer QoE prediction for encrypted video streaming

services, it is still challenging to accurately forecast QoE from encrypted video streaming

data. The ML-based QoE prediction models for HAS found in the literature are limited

due to: the accuracy of predictive models, limited availability of data set with ground

truth, near-real-time requirement to be deployed in real networks/service management

and monitoring, complex multi-variate non-linear nature of quality perceived by the

users.

1.4 Research Objectives

The aim of this research is to propose an optimized ensemble ML-based QoE prediction

model for HAS video streaming. The objectives of this work are as follows:

• Understanding the impact of different KQIs on users’ QoE.

• Investigation and comparative analysis of QoE prediction of different ML models.

2



Chapter 1: Introduction

• Proposing an optimized ensemble ML-based QoE prediction model for HAS video

streaming services.

1.5 Research Contribution

This work has the following contributions:

1. We performed Principal Component Analysis (PCA) and feature selection tech-

niques to study the impact of dimensionality reduction and select important QoE

features of HAS.

2. We provide the learning curves, execution and training times of ML models over

the techniques applied in this literature and the comparative analysis is done on

the basis of performance of different standalone ML models and ensemble models

based on performance metrics.

3. We propose an optimal ensemble-based ML model for QoE prediction of HAS

video streaming.

1.6 Structure of Thesis

This thesis is organised as follows: Chapter 2 investigates state-of-the-art works pro-

posed in the literature. Chapter 3 explains the proposed methodology in which we have

provided the details on creating our ensemble ML models and discussed novel approaches

for QoE prediction of HAS. Chapter 4 covers details of the experimental results for this

study and provides a detailed comparative analysis of the techniques applied in this

study. While Chapter 5 provides a detailed discussion on comparative analysis done for

this study. Finally, Chapter 6 concludes and provides future work for this study.

1.7 Summary

In this chapter, we have given a brief overview of QoE, its definition in International

Telecommunication Union (ITU-T) [5] and its importance in video-streaming services

mentioned in Cisco Visual Networking Index (VNI) Forecast [3]. Further, we have

3



Chapter 1: Introduction

described various issues in arising for QoE prediction of HAS depending upon various

factors. Based on these issues we have further discussed our strategy for a more accurate

QoE prediction of HAS.

4



Chapter 2

Literature Review

Full Reference (FR), Reduced Reference (RR), and No Reference (NR) are the three

categories in which objective video quality metrics are categorised based on the material

they use to accomplish the assessment [13]. The best performance in terms of accu-

racy to human perception has been found with FR metrics, which do a frame-to-frame

comparison between the original and received (impaired) data. However, these metrics

demand access to the source data and are computationally intensive. As a result, they

are unsuitable for real-time evaluation and are better suited to benchmarking. RR and

NR metrics, on the other hand, evaluate simply the material that has been received and

the network conditions. As a result, in terms of timeliness and computing efficiency, they

are the best option [14]. NR video quality metrics have been classified into encoding

parameters, playstats, network-related bitrate parameters, users’ devices and content

type. Our work is also based upon NR metrics considering supervised learning models.

Table 2.1 shows parameters related to these categories

This chapter provides details of works related to QoE prediction of video streaming.

Using decision trees, Staehlens et al. [15] examined and modelled impaired visibility in

HD H.264/AVC encoded video sequences. They claim in their work that it is possible

to forecast the visibility of various impairments using only a few parameters (a total of

39 parameters were retrieved from the bitstream total parameters). They generated a

Mean Opinion Score (MOS) based on solely Decision Trees (DT) for binary classification

on their data set. Because of the increased complexity and time required for decision

tree training, it is inadequate for applying regression and predicting the exact score of

QoE.

5



Chapter 2: Literature Review

Table 2.1: Parametric Features for HAS Video Streaming

Encoding Playstat Bit Stream Network

KPIs

Users device Content type

Encoding

Codec e.g.

H.264 H.265

VP9

Initial loading

time

Bitrates Bandwidth Resolution e.g.

HDTV, smart-

phone

Animation

Frame Rate Number of

Stalling events

Average time

on highest

video quality

layer

End-to-End

Latency

Operating sys-

tem (Window,

Linux, An-

droid, iPhone)

Sport

Video Resolu-

tion

Average

stalling du-

ration

Switching be-

tween video

quality layers

Throughput Hardware

capabilities

(CPU, GPU,

RAM, Battery,

Hardisk)

News

Bitrates Stalling ratio Client adapta-

tion Algorithm

Narwaria et al. [16] compared the performance of Support Vector Regression against

eight different visual quality predictors on two video databases. They also calculated

execution time for different metrics. The results reveal that prediction accuracy has im-

proved significantly. However, due to higher computational complexity and overfitting,

both of which affect the evaluation performance of SVR, their study is constrained in

terms of the model employed.

A linear regression model based on bitstream and network characteristics was proposed

by Khan et al. [17]. They showed that movies subjected to a simulated (NS2) UMTS

situation had very good correlation values. This is the first time we’ve seen a method

that uses simulated impaired movies rather than synthetic solutions. However, they

only consider video spatial quality (the visual quality of a video frame) and disregard

temporal artifacts like stalls. Konuk et al. [18] used linear regression methods to extract

independent characteristics from spatial and temporal parameters derived from video

packet losses, bit rate, and spatio-temporal complexity. On the LIVE Video quality

database [40], they report correlations greater than 0.8 for spatio-temporal complexity.

However, their work does not take into account other encoding formats. Moreover, it

does not offer a comprehensive general-purpose solution: for different sorts of distortions,

6



Chapter 2: Literature Review

Table 2.2: Comparative Analysis of state-of-the-art w.r.t consider parametric features

Parameteric no-reference Regressive Model
Considered Parametric Features

Encoding Playstat Bit Stream Network KPIs Users device Content type

Staehlens et al. [15] X X X X X

Narwaria et al. [16] X X X

Khan et al. [17] X X X X X

Konuk et al. [18] X X X X

Staelens et al. [19] X X X X X

Zhu et al. [20] X X X X X

Sogaard et al. [21] X X X X

Shahid et al. [22] X X X

Pandremmenou et al. [23] X X X X

Huang et al. [24] X X X X X

Torres Vega et al. [25] X X X X X

Shalala et al. [26] X X X X X

Duc et al. [27] X X X X X X

Liu et al. [28] X X X X X

Qian et al. [29] X X X X

Ahmad et al. [10] X X X X X X

Zhou et al. [30] X X X X X

Taha et al. [31] X X X X X

Kang et al. [32] X X X X X

Danish et al. [33] X X X X

Youssef et al. [34] X X X X X

Minovski et al. [35] X X X X X

Tao et al. [36] X X X X X

Zhang et al. [37] X X X X X X

Laiche et al. [38] X X X X X X

Youssef et al. [39] X X X X

Our Work X X X X X X

7



Chapter 2: Literature Review

four alternative evaluation functions are utilised.

Staelens et al. [19] described a method for estimating NR video quality that leverages a

symbolic regression framework trained on a wide collection of codec parameters. While

their approach has a strong correlation with subjective assessments, it is only suitable

for H.264 compressed streams, limiting its generality.

To forecast the quality of a video sequence, Zhu et al. [20] proposed using neural networks

and features extracted from the study of Discrete Cosine Transform (DCT) coefficients

of each decoded frame. In compressed movies from four separate well-known datasets,

their method produced good correlation findings. However, due to its complexity, the

method is unsuited for real-time deployments. Using features collected from specific

codecs (MPEG or H.264/AVC), the analysis of DCT coefficients, and the calculation of

the quantization level employed in the I-frames to gauge the quality of videos warped by

the compression process, similar methods were given in [21]. They correlate better with

subjective studies than several state-of-the-art metrics (FR, RR, and NR), making this

a very promising solution for H.264/AVC compressed streams. However, the approach is

not suitable for modelling real video artifacts because it was created to assess compressed

video sequences. However, this conclusion is based on only one video content being tested

in each fold and without predicting subjective scores.

Shahid et al. [22] suggested a model for estimating quality that included several bitstream-

layer features with an Artificial Neural Network. Moreover, they put their method to

the test on compressed videos and compared it to PSNR. For measuring the correctness

of bitstream parameters to full reference metrics and subjective assessments in videos

affected by compression and synthetic impairments, Pandremmenou et al. [23] used the

Least Absolute Shrinkage and Selection Operator (LASSO) regression technique. NR),

making it a suitable alternative for only compressed H.264/AVC streams.

The NR metric proposed by Huang et al. [24] focuses on the impairments resulting from

compressing videos into HEVC. They proposed using pixel-level characteristics to build

Elastic Nets [41] to measure the perceived degradation when using HEVC compression.

They tested their network on the SJTU videoset after training it on the LIVE [40].

To subjective research, they got a 90 percent spearman correlation. They demonstrate

a viable method for detecting video degradation caused by HEVC videos. Though

learning a specific codec can help such algorithms work well, combining them into a

8
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single general-purpose model or extending them to new codecs is difficult.

In order to construct a representative feature set, the authors in Torres Vega et al. [25]

extracted eight NR video features (which occur at the bit-stream and pixel level) and

combine them with the nominal bit-rate and anticipated level of packet loss. This

feature set is then fed into regression-based predictive algorithms, which determine the

quality of experience. They tested 9 models (ranging from linear regression to support

vector machines) in a network-impaired video set and compared the performance of their

NR predictive technique to VQM [42]. With ensemble regression trees, they were able

to achieve near-perfect accuracy. However, they focused mostly on transmission and

compression video artifacts.

Similarly, Shalala et al. [26] worked on QoE prediction of HAS video streaming consid-

ering user profile bitrate, FPS, resolution and device application. They considered six

different models i.e LR, linear discriminant analysis, KNN, DT, Gaussian naive Bayes

and SVM. They also considered three different feature selection techniques i.e Recursive

Feature Elimination (RFE), Univariate Feature selection and Model-based Feature se-

lection using Decision Trees (DT) with a prediction accuracy of about 73.37 to 87.63%

based on SL techniques. Their work is limited, however, because it is based on a fea-

ture selection technique that ignored the temporal artifacts like stalls etc. which are

important parameters considered in ITU-T P.1203 [1].

Duc et al. [27] considered Bidirectional LSTM: is a unified end-to-end prediction ap-

proach that uses the MOS measure to assess QoE and is built on deep learning (DL)

as a combination of CNN and LSTM, which focuses on both forward and backward de-

pendencies in accordance with bitrate changes and rebuffering information, can capture

the memory-related temporal impacts of QoE for continuously predicting QoE in HTTP

adaptive streaming. Similarly, in the extension of their work Liu et al. [28] proposed

a deep learning approach by combining CNN and LSTM for QoE prediction of HAS.

The assessment metric considered was the Mean Opinion Score (MOS) with a prediction

accuracy of 88.74%. Because the CNN architecture was created to combine various sorts

of multimedia input and forecast QoS/QoE values. As a result, their next work focuses

on a deep reinforcement learning-based framework for bitrate change based on viewer

interest. They evaluated the perceived video quality at a specific time; it simply reflects

the quality assessment locally within a specific time period, without taking into account

9
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the cumulative effects of previous occurrences. As a result, their work is highly prone

to spatio-temporal impairments.

In Qian et al. [29] used SVM to predict MOS with a 91.3 PLCC, taking into account

colour information (CI), frames per second (FPS), encoding bitrate (EBR), resolution,

initial buffering delay, and rebuffering time ratio (RTR), among other variables. How-

ever, SVMs based models take longer to train and are difficult to adapt to different

conditions, they also discovered that an SVM-based model with low computing com-

plexity can be utilised to estimate QoE in real time for HTTP video streaming services.

Also Ahmad et al. [10] used supervised learning techniques for QoE prediction of HAS

considering seven different ML models i.e, SVR, RF, GB, SGD, NN, KNN and DT and

also provided their comparative analysis. They computed MOS with an accuracy of

80.6%. They also discussed the importance of learning curves and the execution time of

ML approaches used in their work. Their comparative study’s experiments are based on

a Waterloo QoE dataset [43] of short video sequences (average duration of 13 seconds),

which may limit the comparison to simply brief video clips. As a result, more effort is

needed in the future in order to build a large video sequence dataset for the development

and comparison of ML-based QoE prediction models according to their studies. Besides

state-of-the-art methods Zhou et al. [30] worked on deep feature representations using

off-the-shelf DCNN models based on spatio-temporal human visual perception for qual-

ity of video-streaming were used, and the findings were encouraging. Their future work

considers the investigation of adaptive video streaming quality assessment where deep

neural networks were used to build immersive 3D/stereoscopic video streaming QoE

assessment techniques. For more accurate adaptive video streaming QoE assessments,

Taha et al. [31] created the LASSO regression method to predict a correlation between

network parameters, video quality, and end-user QoE device capacity. While predicting

the Degradation Mean Opinion Score (DMOS), their Mean Squared Error (MSE) was

minimised using the LASSO regression model, reaching 0.0036, which is closer to zero.

Their future advice considers to plan using the proposed method on a more sophisticated

system, such as a mobile video streaming service, and study utilising a deep learning

model to train to acquire data on the parameters to measure QoE, as well as employing

other devices and video codecs.

For H.264/AVC video streaming services over wireless networks Kang et al. [32] pro-

posed a no-reference, content-based QoE estimation approach using Radial Basis Func-
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tion Network (RBFN), a type of artificial neural network (ANN) with subjective and

objective metrics predicting MOS with 0.89 Pearson’s Linear Correlation Coefficient

(PLCC) and 0.28 Root Mean Square Error (RMSE) claiming that the model’s compu-

tational complexity is low. The application layer, network layer, and user equipment

content features and parameters are utilised. However, the playstats buffer metrics for

HAS video streaming services, on the other hand, are not taken into account.

The studies in [33–37] use prediction models for mobile video streaming to assess the

influence of cross-layer Influencing Factors (IFs), such as QoS components from the ap-

plication and physical layers. Danish et al. [33] suggested a cross-layer prediction model

based on Random Neural Networks (RNN) for estimating the perceptual quality of mo-

bile video in no reference mode. The model takes advantage of crucial video quality

characteristics. The simulation results reveal a high level of predictability, with (R2)

correlation of 0.90 and a root mean squared error of 0.39. However, additional QoS

parameters are not included in their study. Also, Youssef et al. [34] investigated the

efficiency of incremental learning to predict QoE of mobile video streaming considering

MOS using the incremental multiclass SVM approach (multiclass-iSVM) with a classifi-

cation accuracy of 89% with execution time of 60 milli-seconds (ms). Their future work

focuses on verifying these results on larger datasets. However, their solutions rely on

single learners who have a limited understanding of the QoE data. With an accuracy

of 85% R2, Minovski et al. [35] used the RF regression model to measure video QoE

for mobile networks and predicted video QoE related to MOS. Their future work is to

figure out how service providers might use these estimates to improve their service qual-

ity. Their model, however, performed poorly, with a regression error (RMSE) of more

than 10%, which is clearly unsatisfactory for QoE prediction at any time. Similarly,

Tao et al. [36] investigated the relationship between network parameters and subjective

QoE scores for mobile video transmission using a deep neural network approach for QoE

prediction on a large-scale QoE dataset, which has around 80000 pieces of data regard-

ing four types of subjective scores and 89 network metrics. They also found that their

proposed approach has a 0.8686 RMSE and a 0.7609 MAE. However, they don’t examine

the link between prediction accuracy and dimensionality reduction. Zhang et al. [37] also

developed a deep learning approach called DeepQoE which uses DL as a combination of

word embedding, 3D convolutional neural network (C3D) and representation learning

and predicted QoE with a classification accuracy of 90.94% for mobile video streaming
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on VideoSet dataset. However, their study does not account for the impact of changing

bitrates during playback.

The works in [38, 39] describe the link between social context elements, user engage-

ment characteristics, and QoE, as well as evaluated the influence of QoS and Quality of

Application (QoA) factors, to predict YouTube video streaming QoE. Laiche et al. [38]

predicted QoE for YouTube video streaming using 3 SL models i.e, KNN, DT and RF.

They predicted MOS with a maximum PLCC value of 0.864 for DT. Similarly, In exten-

sion to their previous work in [34] Youssef et al. [39] suggested model uses boosting sup-

port vector regression (BSVR) to investigate the efficacy of integrating several learners

rather than a single learner for improving QoE prediction performance. They Boost-

ing Support Vector Regression (BSVR) based QoE ensembling model using 10 SVRs

with RBF kernel with RMSE value of 0.475 which provides the least prediction error.

However, these studies don’t look at the cost-effective analysis of prediction accuracy as

compared to our studies.

2.1 Research Gap

After the literature review, we found that previous researchers were applying single

learning algorithms to predict QoE. Also, they did not cover important parametric

playstat features like initial loading time, stalling events etc. while ignoring the spatio-

temporal artifacts which are important aspects of HAS video-streaming services. Most

of them generated their own data set over the video-streaming on the same device and

did not accompany the various client-side adaptation algorithms while working on only

a few key quality factors to predict QoE which did not give us the whole picture to

measure QoE in real-time scenario.

Another important missing aspect of measuring QoE is model’s execution/training times

to predict QoE in a timely fashion to avoid users’ grief which was missing while predicting

QoE in real-life scenarios in previous studies. Moreover, the models in the previous

literature are limited due to the accuracy of the predictive models, limited availability

of the dataset with ground truth and the models proposed in the literature can not meet

the near-real-time requirement to be deployed in real networks while measuring QoE.
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2.2 Summary

In this chapter, we have provided the details of previous works for measuring and pre-

dicting QoE using various models and techniques. We further concluded that supervised

learning algorithms produce better results. Depending upon the models’ performance,

we observed that ensemble models provide more accurate results for QoE prediction as

compared to single learners.
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Proposed Methodology

Our goal is to develop a powerful QoE estimation model that takes into account multi-

ple influencing factors and investigate the complex relationship between an application,

network parameters, and user perception in the context of HAS video streaming ser-

vices based on ensemble learning methods for QoE modeling. To improve generalizabil-

ity/robustness over a single estimator, ensemble ML techniques combine the predictions

of multiple base models created with a given learning algorithm in order to create a

single best prediction model [44]. The proposed methodology in Fig. 3.1 represents the

detailed pipeline of our QoE model which consists of five different stages. The stages

include data collection/readiness, feature engineering, model optimization and training,

model testing/prediction and model evaluation based on QoE performance metric(s)

stages. These stages further consist of several steps.

3.1 Data Collection/Readiness

In the data collection/readiness stage, the data set is collected from the world’s largest

QoE publicly available database, as well as ground truth provided by Duanmu et al. [43]

in order to construct a pipeline for our video streaming QoE estimation model. The

sample size in this database is 450 with each sample representing the QoE feature vector,

including the key influencing factors of QoE HAS video streaming with a subjective score

of ground truth labels (reality), with a video streaming session of 13 seconds on average,

objective QoE metrics, and subjective test scores. The video streaming sessions are

generated within the database by six main client-side adaptive algorithms performing
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Figure 3.1: Proposed Methodology

under 13 different network bandwidth conditions as evaluated by 34 subjects under

realistic conditions. The database is based on a thorough evaluation of objective QoE

models. Regarding correlation with human perception, 15 QoE algorithms from four

categories are evaluated: signal fidelity-based, network QoS-based, application QoS-

based, and hybrid QoE models. There were no missing values, so data cleansing was

unnecessary.

3.2 Feature Engineering

The features we employed in our experiments from Waterloo QoE video streaming

database [43], are based on the QoE parameters in ITU-T P.1203 [1], which is a paramet-

ric bit-stream-based quality assessment/prediction model for HAS. The ITU-T P.1203

standard offers four modes of operation that take into account several QoE KQIs for

HAS such as video coding quality, stalling duration, the total number of stalling events,

and so on. Table 3.1 lists all of the extracted features indicated by QoE/KQIs. In the

feature engineering stage, feature scaling is done for all the input variables in our dataset

so that all the variables take on a comparable range of values. We have employed stan-

dardization, which is also known as z-score normalization for feature scaling for more

accurate results. Standardization scales each input element of the variable separately
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Table 3.1: QoE Features of HAS video streaming according to ITU-T P.1203 Standards

[1]

Type of features (QoE/KQIs) Description

Initial video loading time Before starting playback, the video streaming service takes some time to load

video segments into the client buffer.

Total number of stalling events

(except initial video loading)

During HAS video streaming, player buffer starvation occurs, causing video

playback to be interrupted.

Total stalling duration The total length in seconds of all stalling events that occur during video play-

back.

Stalling frequency A metric for how frequently video playback is stalled.

Stalling ratio The user’s perception of quality degradation based on the total duration of

stalling events across the duration of video playback.

Time of the last stalling from

playback end

The human perception’s recency influence on QoE degradation, calculated by

using the time stamp difference between the video playback length and the last

stalling event’s occurrence time.

Playback bitrates The video representation’s visual quality. The average playback bitrate is

thought to be strongly linked to user-perceived QoE.

Video quality layer Due to the adaptive nature of HAS video streaming, the median of the video

quality layers being played during video playback is taken into account.

Visual Quality Index To calculate the visual quality index over the course of a video session using the

ITU-T ACR scale (1–5) as a function of playback bitrates, device resolutions,

and video encoding resolutions.

Content The content type of video e.g, animation, sports, news etc.

Frame rate The number of frames delivered each second.

Bitstream Switching The bit rate of encoded video after switching between different video quality

layers (240p,360p,480p,540p,720p) depending upon bandwidth.

by calculating the mean µ and standard deviation σ of that variable and subtracting

the mean µ from each element of that variable and then dividing it by the standard

deviation σ to shift the distribution of a variable to a normal range. This is shown by

equation (3.2.1), where x is the value of a particular feature, µ points towards the mean

and σ points towards the standard deviation of the particular feature [45].

z − score = (x− µ)
σ

(3.2.1)

This is done for all the input variables involved in our dataset to normalize each input

QoE feature vector. Moreover, we have also performed Principal Component Analysis
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(PCA), to observe the impact of dimensionality reduction of those features on training

and execution time of our QoE models [46]. Similarly, for feature selection, to optimise

the features set, removing redundant features and incorporating appropriate ones, also

to improve the model’s computational efficiency and reduce generalisation error in our

models, we have used 4 different types of feature selection algorithms [47] from the

Python Scikit-Learn module [48].

Univariate Feature Selection

Univariate feature selection uses univariate statistical tests to evaluate each feature

independently to determine the strength of the feature’s relationship with the response

variable. These results are evaluated based on F-score and p-values [48].

Recursive Feature Elimination

The concept behind recursive feature elimination is to continually build a model, select

the best or worst performing features, set them aside, and then repeat the process

with the remaining features. This procedure is carried out up until all dataset features

have been used. Then, features are sorted in order of when they were dropped. In

our research, this has been done using Gradient Boosting Regressor (GB) with 5-fold

cross-validations to find the optimal QoE features from data set [48, 49].

Select From Model

For this feature selection technique, we have employed Random Forest (RF) as a meta-

estimator to find the optimal numbers of features from our data set. Random Forest

algorithm creates decision trees on different samples and averages them in the case of

regression [50]. In this case, it offers a feature scoring system, based on that, which is

used to analyse and optimise our data set [48].

Sequential Feature Selection

Sequential Feature Selection (SFS) is a greedy algorithm that takes multiple features

from a set of features and then evaluates them for model iteration, reducing and en-

hancing the number of features in order for the model to achieve optimal performance
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and results. For this purpose we have employed Random Forest regressor (RF) and

employed Forward-SFS to select the most appropriate features for our models [48].

3.3 Model Optimization and Training

Lets suppose we have set of n training samples

X = {(x1, y1) , ..., (xn, yn)} .

Where xi = {QoE_KQIs} ϵ Rm, i = 1, ..., n are the input QoE key quality indicators,

yi = MOS ϵ R is the target label which represents the Mean Opinion Score (MOS)

and m is the number of input QoE feature vectors. The regression function which is

common for all the models is defined as:

f (x) =
n∑

i=1
ϕ (xi)w + b (3.3.1)

Where w is the weight vector, ϕ is the non-linear mapping and b is the bias of the

regression function

In this stage, we have considered the following four well-known supervised ML algorithms

as our base models: Random Forest (RF), Support Vector Regression (SVR), Stochastic

Gradient Descent (SGD) and Multi-Layer Perceptron (MLP) based Neural Network.

Hyper-parameter optimization of base models is performed in the training stage with

the 5-fold cross-validations using grid search CV algorithm [51]. The data set is divided

into k = 5 subsets using this technique. The model is then trained using k − 1 of the

subsets and tested using the last one. The testing is repeated k = 5 times for all subset

combinations to get the best hyper-parameters for each model. Our four trained ML-

based QoE prediction models are tested on a testing subset and the predictions made

by these base models are then fed to our ensemble models discussed in Chapter 3.4 to

get final predictions. The details about our base models are described in this chapter:

Random Forest (RF)

Random Forest (RF) is an ensemble machine learning technique, that combines several

base models (Decision Trees) trained on random samples obtained as subsets of original

data. In the case of regression, the output of the base models is averaged on different

samples to predict the final output. The pros of Random Forest are based on the
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idea that even though a decision tree’s predictions might not be accurate, utilising a

combination of them will increase prediction accuracy and it also covers the problem of

overfitting [50].

Support Vector Regressor (SVR)

Since Support Vector Machines (SVM) and logistic regression are related to each other,

they are frequently and widely utilised for classification issues in machine learning [52].

However, we have used its regression model in our study. SVR minimises the norm

of the squared weight vector ∥w∥2 to a quadratic problem by reducing the issue of

locating the ideal hyperplane, which is a best-fit line used to predict continuous output

for regression that has a maximum number of points within a decision boundary in the

training samples [53]. The main advantage of SVM is its low computational cost.

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent algorithm updates the parameters w and b of the regression

model by minimizing the cost function for every single observation instead of updating

the entire data set. The parameters w and b are updated on each iteration simultaneously

until convergence to the global minimum [54].

Multilayer Perceptron Regressor (NN)

In our work, we have also employed a deep learning technique called Multilayer Percep-

tron Regressor which is a feed-forward artificial neural network model, also called Deep

Neural Networks (DNNs) to measure QoE based on human perception. An MLP Neural

Network (NN) typically consists of an input layer, a number of hidden layers, and an

output layer. It propagates an input through hidden layers using weights, biases, and

activation functions to produce an output [55].

Voting Regressor (VR)

A voting ensemble is a machine learning ensemble technique that optimizes the perfor-

mance of the system by using many models rather than just one model. By combining

the outputs of various techniques, this strategy can be used to address classification and
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regression problems. The estimators of all models are averaged to obtain a final esti-

mate for regression problems, for which the ensembles are referred to as voting regressors

(VRs) [56]. We have used weighted average (WA) by further adjusting the weights of

our base models to overcome the issue of average voting (AV); in which all of the base

models in the ensemble are accepted as equally effective in spite of their performance.

A weight coefficient is assigned to each ensemble member in a weighted average. The

weight can either be a floating-point number between 0 and 1, in which case the sum is

equal to 1, or an integer starting at 1, which indicates the number of votes given to the

associated ensemble member [57].

As discussed earlier RF, SVR, SGD and NN hyper-parameter tuned ML algorithms

were chosen as base learners to form the ensemble VR to estimate the QoE. These ML

approaches were chosen on the basis of their outstanding performance in the previous lit-

erature. Voting regression and the base learners used in the ensemble learning employed

in this study improved the performance and outperformed conventional techniques. ŷRF ,

ŷSV R, ŷSGD and ŷNN denote the predictions of each single base learner in Figure 3.2.

Instead of using average voting in which all the models are accepted as equally effec-

tive regardless of their performance, the ranking method, a type of weighted voting,

was utilised to modify the weights. The procedure uses a ranking to show how many

votes each ensemble received in the weighted average. For instance, if there are four

ensemble learners, the best model receives four votes, the second-best receives three, the

third-best receives 2 votes, and the worst receives one vote based on their performance.

The votes based on performance are represented by w1, w2, w3 and w4. The final step

was to get and evaluate the suggested model’s performance in predicting QoE to that

of standalone ML techniques. An illustration approach for finding the optimal weights

of the base regressors by the ranking method can be found in Algorithm 1.

Stacking CV Regressor (SR)

Stacking is another technique that outperforms VR for predicting an output. In general,

stacking is a method for creating a new model by combining the predictions from multiple

base models. The base models are the ones from which the new model is constructed

[58]. It is constructed on two levels, also called layers, namely Level-0 and Level-1 which

is illustrated in Fig 3.3. In Level-0, we used RF, SVR, SGD and NN as our base models.
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Algorithm 1 Find the optimal weights of the base regressors
Input:The labels predicted by the base regressors ŷRF , ŷSV R, ŷSGD and ŷNN

Output: The optimal values of the weights W = {w1, w2, w3, w4}

1: max_rsquare← 0

2:

3: for i ∈ {1, . . . , 4} do

4: for j ∈ {1, . . . , 4} do

5: for k ∈ {1, . . . , 4} do

6: for l ∈ {1, . . . , 4} do

7: Combine the labels of the base regressors

8: using these weights

9: Calculate the R2 using actual labels

10: if rsq > max_rsquare then

11: max_rsquare ←rsq

12:13: weight_vector ← {w1, w2, w3, w4}

14: end if

15: end for

16: end for

17: end for

18: end for

19: return weight_vector
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Figure 3.2: Voting Regressor block diagram.

There are two limitations to the traditional stacking procedure. The first limitation of

stacking is that the final prediction is equally influenced by each of the base models.
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Therefore cross-validation is necessary for each of the base estimators. The second is, the

second-level regressor’s inputs are prepared using the same training set as the first-level

regressors, which could result in overfitting.

To address these issues we have used StackingCVRegressor which provides stacking

with cross-validation for base models along with meta-model, also known as a final

model, which combines these base models that were learned in parallel to provide the

final prediction [59]. For this scenario, we used the Gradient Boosting algorithm (GB)

as a meta-model in Level-1 which we will further discuss in detail in this chapter [49].

Secondly, to overcome the issue of overfitting, the StackingCVRegressor, however, makes

use of out-of-fold predictions. The dataset is divided into k folds, and in k subsequent

rounds, k− 1 folds are used to fit the first level regressor where k = 5. The last 1 subset

that was not used for model fitting in each iteration receives the first-level regressors

in each round. The predictions made by the first level regressors RF, SVR, SGD and

NN be ŷRF , ŷSV R, ŷSGD and ŷNN respectively. The second-level regressor, that is, GB

receives the stacked predictions as input data after they have been made. The first-level

regressors are fitted to the full dataset for the best predictions following the training of

the StackingCVRegressor. The final prediction produced by SR after training on the

predictions of base model is denoted by ŷSR.

The reason behind choosing GB as a meta-estimator is because of its prediction speed

and accuracy. GB algorithm combines individual decision trees by generating simpler

(weak) decision trees sequentially and using the boosting approach to predict the error

left behind by the prior model. Moreover, it also helps to minimize the bias error of the

base models, which in case of regression is MSE, thus improving the performance in

terms of accuracy for this study.

Let’s suppose for Level-0 regressors we have a set of n training samples

X = {(x1, y1) , ..., (xn, yn)} .

Where xi = {QoE_KQIs} ϵ Rm, i = 1, ..., n are the input QoE key quality indicators,

yi = MOS ϵ R is the target label which represents the Mean Opinion Score (MOS) and

m is the number of input QoE feature vectors.

Let’s suppose the new data set that is formed after the predictions made by base models

be:
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P = {(p1, y1) , ..., (pn, yn)} .

Where pi = {QoE_Predictions} ϵ Rd, i = 1, ..., n are the input QoE predictions by

base models. yi = MOS ϵ R is the target label which represents the Mean Opinion

Score (MOS) and d is the number of input QoE prediction vectors.

Let ψ (y, F (b)) be the loss function. The five steps of the GB algorithm are as follows

[60]:

1. Using β as an initial constant value, the following is how it is calculated:

F0 (p) = argminβ

n∑
i=1

ψ (yi, β) . (3.3.2)

2. The gradient loss function is as follows for k = 1, 2, . . . ,K iterations:

yi* = ∂ψ (yi, F (pi))
∂ψF (pi) F (p)=Fk−1(p)

, i = {1, 2 . . . , n} . (3.3.3)

3. The initial model h (pi; θk) is created by fitting the predicted data in the manner

described below; and the parameter θk is calculated using the method of least

squares in the following manner:

θk = argminθ,β

n∑
i=1

[yi*− βh (pi; θ)]2 (3.3.4)

4. The loss function is minimised to obtain the new model weight:

γk=argminγ

n∑
i=1

ψ (yi, Fk−1 (p) + γh (pi; θk)) (3.3.5)

5. The optimized model is obtained as:

Fk (p) = Fk−1 (p) + γkh (pi;k ) . (3.3.6)

This loop continues to run until a predefined number of iterations are reached or con-

vergence conditions are met. Thus, the computational complexity of SR is reduced due

to reduction in the dimensionality of the original data set, fitting to the predictions of

the base models and accuracy is improved in terms of R2. Also, the issue of overfitting

is resolved.
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Figure 3.3: Stacking CV Regressor block diagram.

3.4 Model Testing and Prediction

In this stage, we have employed two well know ensemble learning techniques for more

accurate predictions: Voting Regressor (VR) and Stacked CV Regressor (SR). In order

to get the final QoE prediction, the predictions made by our optimized base models

discussed in Chapter 3.3 are fed to our ensemble models to get the final predictions.

3.5 Model Evaluation based on QoE performance met-

ric(s)

In this research, we have employed regression models described in Chapter 3.3 because

the subjective test score i.e, MOS is a continuous value with a range of 1 to 5 [1]. In

this context, we have considered five different performance indicators for our supervised

ML models including Coefficient of Determination (R2) as an objective criterion for

measuring accuracy for each model along with Mean Squared Error (MSE), Root Mean

Squared Error (RMSE), Mean Absolute Error (MAE), Pearson’s Linear Correlation

Coefficient (PLCC) and Spearman’s Rank Correlation Coefficient (SRCC) performance

measures whose details are briefly described in this chapter.
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Coefficient of Determination (R2)

The coefficient of determination, frequently abbreviated as R2, assesses how well the

model fits the data. It specifically explains the part of the dependent variable’s variance

that the independent variable can explain for, as shown in Equation (3.5.1). The de-

pendent variable’s variation is more accurately explained by the independent variables

when the R2 values are higher [61].

R2 = 1−
∑n

i=1(ŷi − yi)2∑n
i=1(yi − ȳi)2 (3.5.1)

Where yi are the actual values, ŷi are the predicted values and n are the total number

of samples considered.

Mean Square Error (MSE)

The sum of squared errors divided by the total number of predicted values is known as

the Mean Squared Error (MSE). This gives larger errors more weight. This is especially

helpful in situations when a larger weight for larger errors is desired. Equation (3.5.2)

is used to measure it [62].

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (3.5.2)

Root Mean Square Error (RMSE)

Root mean squared error (RMSE), which scales (MSE) values to be close to the ranges

of observed values, is nothing more than the square root of (MSE) [62]. It is calculated

using Equation (3.5.3).

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (3.5.3)

Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is another metric used for model evaluation for regression

purposes. The average of each individual prediction error’s absolute value over all the

test set occurrences is the mean absolute error of a model with regard to that test set.

Each prediction error represents the difference between the instance’s true value and the

predicted value. Equation (3.5.4) is used to measure it [62].
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MAE = 1
n

n∑
i=1
|yi − ŷi| (3.5.4)

Pearson’s Linear Correlation Coefficient (PLCC)

The strength of a linear correlation between two variables is judged by Pearson’s Linear

Correlation Coefficient (PLCC). It tries to fit a line through the data of two variables

and shows how far away from this line of best fit all these data points are. Equation

(3.5.5) is used to measure it [63].

PLCC =
∑n

i=1 (xi − x̄) (yi − ȳ)√∑n
i=1 (xi − x̄)2

√∑n
i=1 (yi − ȳ)2

(3.5.5)

Where xi are the values of the x-variable in samples, x̄ is the mean of the values of the

x-variable and n are the total number of samples considered.

Spearman’s Rank Correlation Coefficient (SRCC)

The strength and direction (positive or negative) of a relationship between two variables

can be described using Spearman’s Rank Coefficient of Correlation (SRCC), a non-

parametric measure of rank correlation. Equation (3.5.6 is used to measure it [64].

SRCC = 1− 6
∑n

i=1 d
2
i

n (n2 − 1) (3.5.6)

Where d2
i is the difference between the two ranks or dimensions of each observation in

samples, and n is the total number of samples considered.

Finally, we have compared and discussed in detail the performance of our base models

and ensemble models based on these performance metrics separately in Chapter 4.4 of

this literature.

3.6 Summary

In this chapter, we provided a detailed description of our methodology and discussed

its various stages for QoE prediction of HAS. We discussed the features in our data set

according to ITU-T P.1203 standards [1] and optimization techniques for the data set.

We further provided the details of the models we used in this research and performance
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metrics on the basis of which the performance of the models will be observed and

compared to each other combining with various feature selection techniques.
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Chapter 4

Experiments and Results

This chapter provides the details of experiments done for this study. Here the first

experiment provides the details about QoE optimization using all the features in our

data set [43]. The second experiment provides a detailed analysis of the dimensional-

ity reduction using PCA. In the third experiment, for further optimization of QoE, we

have provided the details of experiments for various QoE feature selection techniques

discussed in Chapter 3, to optimize our data set for various ML algorithms. The results

obtained in the form of heat maps, joint plots and residual plots are further evaluated

on the basis of performance metrics discussed previously in Chapter 3 of this litera-

ture. Further, we have provided the comparative analysis of ML models by providing

the training and testing times of various ML models used for QoE optimization and

also provided their learning curves in each experiment. For further evaluation, we have

provided a comparison of ML models and the impact of these techniques on the per-

formance of those models on the basis of performance metrics. In Chapter 6 we have

provided conclusion and future works for this study.

As mentioned earlier that an ensemble voting regression and stacking cross-validation

regression that utilized RF, SVR, SGD and NN to estimate QoE was developed in this

work and shown in Fig 3.2 and Fig 3.3 respectively. Combining ML algorithms to

provide the capability to effectively predict MOS was the critical factor in the success of

the proposed models, which is why they are superior as compared to standalone models.

All analyses were performed on a desktop computer with the following configuration:

using Python version 3.9.10 and Jupyter Notebook. 16.0 GB RAM, Intel(R) Core(TM)

i7CPU processor based on x64 architecture, and a 64-bit operating system. There is a
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5-fold cross-validation of all the results.

4.1 All QoE Features

Experiments done for QoE prediction for all the features are discussed and results are

displayed in this study without using any dimensionality reduction technique in our data

set. First of all, the dataset is imported using Pandas Python library [65].

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
MOS

0

10

20

30

40

MOS distribution plot (Left-skewed)
Average MOS
Median MOS

Figure 4.1: Distribution Plot showing the distribution of MOS on the scale of (1-5)

For the purpose of data visualization, we refer to Fig 4.1, which shows the distribution

of subjective MOS for both training and testing data sets which is our target label to

predict QoE. The histogram’s distribution is left-skewed, where the red line represents

the average (mean) at 3.38 and the green line represents the median, both lying towards

the left side of the peak value which is 4.85.
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Figure 4.2: QoE features of HAS with correlation existing between various features and

MOS using all features

For data exploration, Fig 4.2 shows the heatmap indicating a correlation between all

QoE features of HAS including MOS. The colours closer to red represent a strong pos-

itive correlation and the colours closer to blue represent a strong negative correlation

while the colours closer to grey represent less correlation among the features and so

on. From there, it can be seen that video content is strongly negatively correlated with

frames/sec; frames/sec itself is negatively correlated with MOS and is also less nega-

tively correlated with all the features. Although changing video content for HAS is an

important feature according to ITU-T recommendation [1]. Stalling count and stalling

frequency are strongly positively correlated with each other and strongly negatively cor-

related to switching rate where the media adaptation algorithm switches video playback

between a known set of media quality levels, that is layer 3 (480p). Stalling frequency
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is strongly positively correlated with stalling count whereas the stalling ratio is strongly

positively correlated with stalling duration. Stalling ratio is strongly negatively cor-

related with bitrate switching at layer 3. Time of the last stalling event is positively

correlated with playstat features, that is, the number of stalling events, stalling dura-

tion, stalling frequency, stalling ratio etc. while being negatively correlated with MOS.

Bitrate at layers 1, 2 and 3 are positively correlated with playstat feature while being

strongly positively correlated with video quality layers and also negatively correlated

with bitrate switching at layer 3. Bitrates at layer 4 and layer 5 are strongly negatively

correlated with stalling duration and stalling ratio while being positively correlated with

MOS. Video quality layers 1, 2, 3, 4 and 5 are strongly positively correlated with bi-

trates at layers 1, 2, 3, 4 and 5 respectively while showing positive correlation with 022

i.e, that is, video quality index, which is a function of bitrates and video quality layers

[66]. Bitrate switching at layer 3 is strongly negatively correlated with playstat features

which indicates that most of the stalling events occur at layer 3 while being negatively

correlated with bitrates at layers 1, 2, 3 and video quality layers 1, 2, 3 respectively. 022

being a function of bitrates and video quality layers is positively correlated with these

features and also strongly positively correlated with MOS as indicated by the heatmap

shown in Fig 4.2. Fig A.1 represents heatmap using 8 principal components from 0 to 7

showing correlation between various features and principal components themselves; with

the first principal component, that is, 0 having greater significance after feature scaling

is performed. Similarly, Fig A.2, Fig A.3, Fig A.4 and Fig A.5 represent heatmaps of

retained features after performing various feature selection techniques.

For all QoE features, after feature scaling is performed, datasets were divided into train-

ing (75% of samples) and testing (25% of samples) sets for the purposes of training and

evaluating. Samples were considered at 0 random state, which is common for all feature

selection techniques and PCA. Using training data, the individual machine learning algo-

rithms RF, SVR, SGD, and NN were fitted. Each model has been trained utilising a grid

search method and five-fold cross-validation considering R2 as an objective criterion for

hyperparameter optimization. In addition to the ML models’ default parameters listed

in the Scikit-Learn documentation [48], the hyper-parameter optimization employing all

QoE features results in the selection of the following parameters:

• For RF, the number of trees (n-estimators) in the forest was 500 and the maximum
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features of each tree (max_features) was ’log2’

• SVR has a coefficient of regularization (C) equal to 1 with RBF kernel and type

is epsilon which is equal to 0.1

• SGD has maximum epochs(max_iter) equal to 1000 with tolerance limit equal to

1e− 3

• For NN, the learning rate is ’constant’ by default while the activation function is

rectified linear unit (relu) and maximum iterations are 100 for ’lbfgs’ solver for

weights optimization with 20 hidden layers.

By combining these four ML algorithms, an ensemble voting regressor (VR) was created

using weighted averages based on the results of the individual ML methods. The trained

ensemble VR was then fitted. As discussed previously, (ŷRF , ŷSV R, ŷSGD, ŷNN ) denote

the predictions of each single ML algorithm.

• For all features, weights assigned to each prediction results in (w1 = 3, w2 = 1, w3 = 3, w4 = 1)

for VR including all features, respectively.

• For PCA, weights assigned to each prediction results in (w1 = 4, w2 = 2, w3 = 2, w4 = 1)

for VR, respectively.

• For univariate feature selection, weights assigned to each prediction results in

(w1 = 3, w2 = 2, w3 = 3, w4 = 1) for VR including all features, respectively.

• For univariate feature selection technique, weights assigned to each prediction re-

sults in (w1 = 3, w2 = 2, w3 = 3, w4 = 1) for VR including all features, respectively.

• For univariate feature selection, weights assigned to each prediction results in

(w1 = 3, w2 = 2, w3 = 3, w4 = 1) for VR including all features, respectively.

• For recursive feature elimination technique, weights assigned to each prediction

results in (w1 = 4, w2 = 1, w3 = 4, w4 = 1) for VR including all features, respec-

tively.

• For select from model technique, weights assigned to each prediction results in

(w1 = 4, w2 = 2, w3 = 2, w4 = 1) for VR including all features, respectively.
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• For sequential feature selection technique, weights assigned to each prediction re-

sults in (w1 = 3, w2 = 2, w3 = 3, w4 = 1) for VR including all features, respectively.

SR has meta_regressor equals to GB while the predictions (ŷRF , ŷSV R, ŷSGD, ŷNN )

with 5-fold cross-validations for each of the individual base models (RF, SVR, SGD,

NN), respectively, are fed to GB. GB utilizes these predictions as training data set while

giving parameter use_features_in_secondary equals to ’True’, enabling it to train on

both base models’ predictions and corresponding features data sets, and parameter

store_train_meta_features equals to ’True’ for storing predictions data set features in

the form of array for training purposes. The above parameters are common for all the

experiments done for this study.

In section 4.4 we have provided the comparison of results for this experiment.

4.2 Dimensionality Reduction using PCA

In this study we investigated the impact of dimensionality reduction of QoE features

using PCA.
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Figure 4.3: MOS visualization using Principal Components

In Fig 4.3a and Fig 4.3b MOS can be visualized in 2D and 3D using 2 and 3 princi-

pal components, respectively. For this technique, we divided the scaled dataset into 8

principal components.
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Figure 4.4: Bar charts showing the variance covered by each component and their cu-

mulative variance respectively.

Fig 4.4 shows the explained variance score with the first principal component explain-

ing maximum variance of about 0.42 % approximately, the second principal component

explaining 0.19% variance of the dataset and so on. The graph below represents cumu-

lative explained variance by adding the explained variance of each principal component

to another, starting from the first principal component and so on. The datasets were

divided into training (75% of samples) and testing (25% of samples) sets for the purposes

of training and evaluating. Using training data, the individual machine learning algo-

rithms RF, SVR, SGD, and NN were fitted. Each model has been trained utilising a grid

search method and five-fold cross-validation considering R2 as an objective criterion for

hyperparameter optimization. In addition to the ML models’ default parameters listed

in the Scikit-Learn documentation [48], the hyper-parameter optimization employing

all QoE features results in the selection of the following parameters using 8 principal

components:

• For RF, the number of trees (n-estimators) in the forest was 500 and the maximum

features of each tree (max_features) was ’log2’
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• SVR has coefficient of regularization (C) equal to 1 with RBF kernel and type is

epsilon which is equal to 0.1

• SGD has maximum epochs(max_iter) equal to 1000 with tolerance limit equal to

1e− 3

• For NN, the learning rate is ’constant’ by default while the activation function is

rectified linear unit (relu) and maximum iterations are 100 for ’lbfgs’ solver for

weights optimization with 20 hidden layers.

In section 4.4 we have provided the comparison of results for this experiment.

4.3 Feature Selection Techniques

Univariate Feature Selection (UFS)

In this study, we will discuss the experiments done for univariate feature selection tech-

nique. For this technique, after feature scaling is performed and 17 features are obtained

after selection by setting a parameter percentile equal to 80. The features obtained are

shown in Fig A.2. After feature selection is performed, the datasets were divided into

training (75% of samples) and testing (25% of samples) sets for the purposes of train-

ing and evaluating with 0 random state. Using training data, the individual machine

learning algorithms RF, SVR, SGD, and NN were fitted. Each model has been trained

utilising a grid search method and five-fold cross-validation considering R2 as an objec-

tive criterion for hyperparameter optimization. In addition to the ML models’ default

parameters listed in the Scikit-Learn documentation [48], the hyper-parameter optimiza-

tion employing all QoE features results in the selection of the following parameters:

• For RF, the number of trees (n-estimators) in the forest was 500 and the maximum

features of each tree (max_features) was ’log2’

• SVR has a coefficient of regularization (C) equal to 1 with RBF kernel and type

is epsilon which is equal to 0.1

• SGD has maximum epochs(max_iter) equal to 1000 with tolerance limit equal to

1e− 3
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• For NN, the learning rate is ’constant’ by default while the activation function is

rectified linear unit (relu) and maximum iterations are 100 for ’lbfgs’ solver for

weights optimization with 20 hidden layers.

In section 4.4 we have provided the comparison of results for this experiment.

Recursive Feature Elimination (RFE)

In this study, we will discuss the experiments done for recursive feature elimination

technique. For this technique, after feature scaling is performed, GB is used with 5-

fold cross-validation considering R2 as an objective criterion for feature selection, each

tree’s shrinkage coefficient (learning rate) was 0.1, the number of trees (n_estimators)

was 100, loss function (estimator_loss) is ’ls’ which refers to least squares error to

be optimized, with number of features to eliminate recursively after giving parameter

’step’ equals to 1 to eliminate one feature with least importance recursively after each

iteration while giving 17 features to select. The features obtained are shown in Fig A.3.

After feature selection is performed, the datasets were divided into training (75% of

samples) and testing (25% of samples) sets for the purposes of training and evaluating

with 0 random state. Using training data, the individual machine learning algorithms

RF, SVR, SGD, and NN were fitted. Each model has been trained utilising a grid

search method and five-fold cross-validation considering R2 as an objective criterion for

hyperparameter optimization. In addition to the ML models’ default parameters listed

in the Scikit-Learn documentation [48], the hyper-parameter optimization employing all

QoE features results in the selection of the following parameters:

• For RF, the number of trees (n-estimators) in the forest was 300 and the maximum

features of each tree (max_features) was ’log2’

• SVR has a coefficient of regularization (C) equal to 1 with RBF kernel and type

is epsilon which is equal to 0.1

• SGD has maximum epochs(max_iter) equal to 1000 with tolerance limit equal to

1e− 3

• For NN, the learning rate is ’constant’ by default while the activation function is

rectified linear unit (relu) and maximum iterations are 500 for ’lbfgs’ solver for

weights optimization with 20 hidden layers.
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In section 4.4 we have provided the comparison of results for this experiment.

Select From Model (SFM)

In this study, we will discuss the experiments done for select from model technique

using RF. For this technique, after feature scaling is performed, while utilizing RF

for feature selection purposes with parameter max_features equals to 17 to select a

maximum of 17 features. The features obtained are shown in Fig A.4. After feature

selection is performed, the datasets were divided into training (75% of samples) and

testing (25% of samples) sets for the purposes of training and evaluating with 0 random

state. Using training data, the individual machine learning algorithms RF, SVR, SGD,

and NN were fitted. Each model has been trained utilising a grid search method and

five-fold cross-validation considering R2 as an objective criterion for hyperparameter

optimization.In addition to the ML models’ default parameters listed in the Scikit-

Learn documentation [48], the hyper-parameter optimization employing all QoE features

results in the selection of the following parameters:

• For RF, the number of trees (n-estimators) in the forest was 500 and the maximum

features of each tree (max_features) was ’sqrt’

• SVR has a coefficient of regularization (C) equal to 1 with RBF kernel and type

is epsilon which is equal to 0.1

• SGD has maximum epochs(max_iter) equal to 1000 with tolerance limit equal to

1e− 3

• For NN, the learning rate is ’constant’ by default while the activation function is

rectified linear unit (relu) and maximum iterations are 500 for ’lbfgs’ solver for

weights optimization with 20 hidden layers.

In section 4.4 we have provided the comparison of results for this experiment.

Sequential Feature Selection (SFS)

In this study, we will discuss the experiments done for the sequential feature selection

technique. For this technique, after feature scaling is performed, RF for feature selection

purposes with parameter max_features equal to 17 to select a maximum of 17 features
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is used along with 5 fold cross-validation to select best features considering R2 as an

objective criterion for the model. The features with best cross-validation score are se-

lected. The features obtained are shown in Fig A.5. After feature selection is performed,

the datasets were divided into training (75% of samples) and testing (25% of samples)

sets for the purposes of training and evaluating with 0 random state. Using training

data, the individual machine learning algorithms RF, SVR, SGD, and NN were fitted.

Each model has been trained utilising a grid search method and five-fold cross-validation

considering R2 as an objective criterion for hyperparameter optimization.In addition to

the ML models’ default parameters listed in the Scikit-Learn documentation [48], the

hyper-parameter optimization employing all QoE features results in the selection of the

following parameters:

• For RF, the number of trees (n-estimators) in the forest was 300 and the maximum

features of each tree (max_features) was ’log2’

• SVR has a coefficient of regularization (C) equal to 1 with RBF kernel and type

is epsilon which is equal to 0.2

• SGD has maximum epochs(max_iter) equal to 1000 with tolerance limit equal to

1e− 3

• For NN, the learning rate is ’constant’ by default while the activation function is

rectified linear unit (relu) and maximum iterations are 100 for ’lbfgs’ solver for

weights optimization with 20 hidden layers.

In section 4.4 we have provided the comparison of results for this experiment.

4.4 Comparative Analysis and Discussion

Our ML-based QoE prediction models are compared in this chapter. Further, we have

provided the comparative analysis of the single ML models with ensemble ML models in

each technique used in this literature and also compared it with the previous literature.

Joint Plots

In this study, we will discuss the comparison of joint plots referred to Fig 4.5, Fig 4.6,

Fig 4.7, Fig 4.8, Fig 4.9 and Fig 4.10 represents the joint plots of ML models.
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Figure 4.5: Joint plots of Supervised-Learning models applied on all QoE features
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(c) Joint plot SGD
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Figure 4.6: Joint plots of Supervised-Learning models applied on QoE Principal Com-

ponents
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(c) Joint plot SGD
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Figure 4.7: Joint plots of Supervised-Learning models applied on all QoE features (Uni-

variate Feature Selection)
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(c) Joint plot SGD
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(f) Joint plot SR

Figure 4.8: Joint plots of Supervised-Learning models applied on all QoE features (Re-

cursive Feature Elimination)
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(b) Joint plot SVR
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(c) Joint plot SGD
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(f) Joint plot SR

Figure 4.9: Joint plots of Supervised-Learning models applied on all QoE features (Select

From Model)
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(f) Joint plot SR

Figure 4.10: Joint plots of Supervised-Learning models applied on all QoE features

(Sequential Feature Selection)
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In the joint plots shown above, scatterplots are displayed together with two histograms.

We observe in the scatterplots, the predicted MOS and subjected MOS (Test Labels)

appear to have a positive correlation because they both rise in value as one variable’s

values do. Because the graph’s points are dispersed for the lower values of MOS, the

strength of the association appears to be lower for low subjective scores as the Waterloo

video-streaming database has fewer samples for low subjective scores. For higher values

of subjective scores (MOS), the graph’s points are gathered closely or even merged

together for higher values of MOS, the strength of the association appears to be stronger

for higher subjective scores as the database has more samples for high subjective scores.

Both of the marginal histograms are left-skewed because the majority of data are centred

on the right side of the distribution while the left side is longer. The graph contains

outliers in both the scatterplot and the histogram, which are defined as data points that

are significantly different from the other data values. Regression lines or "lines of best fit"

illustrate the relationship between a dependent variable and one or more independent

variables graphically. The line is drawn in the graphs such that it is as close as feasible

to each data point. We can predict the dependent variable for a range of independent

variable values by computing the regression line using mathematical equations. Here

we have considered values PLCC and p-values for each graph. The regression line on a

scatter plot can be used to spot outliers. The data points that deviate most from the

regression line are the outliers. The scatterplots shown above have very few outliers. The

points are scattered for the worst-performing model and less scattered or even merged

for better-performing models.

Residual Plots

In this study, we will discuss the comparison of residual plots refers to Fig A.6, Fig A.6,

Fig A.6, Fig A.6, Fig A.6 and Fig A.6 represents the residual plots of ML models used

for prediction of QoE using various techniques.

Residual plots show the difference between the actual values of MOS (Test Labels) and

predicted MOS. As shown in the above graphs, it can be seen as the histograms of the

residuals.
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Learning Curves

In this study, we will discuss the comparison of learning curves refers to Fig 4.11, Fig

4.12, Fig 4.13, Fig 4.14, Fig 4.15 and Fig 4.16 for further analysis of the performance

of ML models used for prediction of QoE using various techniques. The learning curve

describes the model’s behaviour in terms of convergence based on the minimization of

loss function. Here we have considered MSE as an objective loss function which is to

be minimized over the increasing number of training samples with a step size of 10%

which is common for all the models with 10-fold cross-validation for training data.
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Figure 4.11: Learning curves of ML models (All Features): MSE vs training size.

Learning curves of ML models for all QoE features are shown in Fig 4.11. NN and

SGD models show higher values of MSE at the beginning which decrease exponentially

with the increase in the training size while RF and SVR show minimum MSE even for

smaller training sizes which keeps on decreasing for further increasing the training sample

sizes. Similarly, VR and SR models have shown minimum MSE for small training sizes

which keep on decreasing further with increasing training step size until convergence is

achieved after 240 training samples. So, given the little training data size, ML models

like RF, SVR, VR and SR will be a decent option for predicting the QoE of HAS video

streaming.

47



Chapter 4: Experiments and Results

50 100 150 200 250 300
Train size

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
SE

Learning curves
RF
SVR
SGD
NN
VR
SR

Figure 4.12: Learning curves of ML models (Principal Components): MSE vs training

size.

For PCA using 8 principle components, learning curves of ML models are shown in

Fig 4.12. NN shows relatively higher values of MSE at the beginning and converges

to lower values exponentially while increasing the training sample size. While, RF,

SGD, and SR show minimum MSE even for smaller training sizes which keeps on

decreasing for further increasing the training sample sizes. Similarly, VR and SVR

models performed approximately equal to each other and have shown relatively minimum

MSE as compared to other models for small training sizes which keep on decreasing

further with increasing training step size until convergence is achieved after 270 training

samples.
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Figure 4.13: Learning curves of ML models (Univariate Feature Selection): MSE vs

training size.

For univariate feature selection using 17 features, learning curves of ML models are
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shown in Fig 4.13. NN shows relatively higher values of MSE at the beginning and

converges to lower values exponentially while increasing the training sample sizes. While,

SGD, as compared to NN, has lower MSE values at the beginning and converges to

minimum MSE values by further increasing the training sample sizes. Similarly, SVR,

VR and SR models have shown relatively minimum MSE as compared to other models

for small training size which keep on decreasing further with increasing training step

size until convergence is achieved after 270 training samples.
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Figure 4.14: Learning curves of ML models (Recursive Feature Elimination): MSE vs

training size.

For recursive feature elimination, learning curves of ML models are shown in Fig 4.14.

NN shows relatively higher values of MSE at the beginning and converges to lower val-

ues exponentially while increasing the training sample sizes. While, RF, SVR, SGD, VR

and SR show minimum MSE even for smaller training sizes which keeps on decreasing

for further increasing the training samples size. Similarly, VR and SVR models per-

formed approximately equal to each other and have shown relatively minimum MSE as

compared to other models for small training sizes which keep on decreasing further with

increasing training step size until convergence is achieved after 270 training samples.
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Figure 4.15: Learning curves of ML models (Select From Model): MSE vs training size.

For select from model using 17 features, learning curves of ML models are shown in

Fig 4.15. NN shows relatively higher values of MSE at the beginning and converges

to lower values exponentially while increasing the training sample sizes. While SGD

has comparatively larger MSE at the beginning as compared to RF, SVR, VR and

SR models which keeps on decreasing for further increasing the training sample sizes.

Whereas, RF, SVR, VR and SR models performed better and have shown relatively

minimum MSE as compared to other models for small training sizes which keep on

decreasing further with increasing training step size until convergence is achieved after

210 training samples.
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Figure 4.16: Learning curves of ML models (Sequential Feature Selection): MSE vs

training size.

For sequential feature selection using 17 features, learning curves of ML models are

shown in Fig 4.16. NN shows relatively higher values of MSE at the beginning and
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converges to lower values exponentially while increasing the training sample sizes. While

SGD has comparatively larger MSE at the beginning as compared to RF, SVR, VR and

SR models which keeps on decreasing for further increasing the training samples size.

MSE for RF, SVR, VR and SR is smaller for smaller training sample sizes where SR has

shown significantly lower MSE values as compared to other models until convergence

is achieved after 240 training samples.

Execution/Testing Time vs Training Time

In this study, we will discuss the comparison of execution and training time where Fig

4.17 and Fig 4.18, Fig 4.19 and Fig 4.20, Fig 4.21 and Fig 4.22, Fig 4.23 and Fig

4.24, Fig 4.25 and Fig 4.26, Fig 4.27 and Fig 4.28represents the execution and training

times of ML models used for prediction of QoE using various techniques. For real-time

applications, execution time is still crucial, particularly the solution must be scalable

and cost-effective to run when it comes to real-time QoE prediction.
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Figure 4.17: Execution (testing) time - All QoE Features.
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Figure 4.18: Training time - All QoE Features.

Fig 4.17 and 4.18 compare ML models based on the execution time for both the testing

and training phases respectively, for all QoE features. For the computation of both

training and testing times the tests are repeated 10 times, and 4.17, it is shown how

long the ML models typically take to run. In this case, the execution time of SVR, SGD

and NN is lowest while VR and RF have the highest execution times with increasing

testing data set size. Whereas SR has slightly less execution time as compared to

other ensemble models which increases with increment in testing samples. VR and RF

models are computationally as costly as other ML models due to longer execution times.

However, SR model due to its scalability and accuracy has the advantage of being less

computationally expensive in the testing phase for unseen complex data as compared

to other ensemble models. For the training time of the ML models in Fig 4.18, SR

has maximum training time which keeps on increasing for increasing number of training

samples while NN, SVR and SGD models take minimum time for increment in training

samples. RF and VR take slightly more time as compared to SGD and NN and less

time as compared to SR for model training. However, SR model’s computational cost

is greater due to its complexity as compared to other models which is a cost-accuracy

tradeoff for training purposes.

52



Chapter 4: Experiments and Results

20 40 60 80 100
Testing size (samples)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ti
m

e 
(s

ec
on

ds
)

Execution Time

RF (test)
SVR (test)
SGD (test)
NN (test)
VR (test)
SR (test)

20 40 60 80 100
Training size (samples)

0.0

0.5

1.0

1.5

2.0

Ti
m

e 
(s

ec
on

ds
)

Training Time
RF (train)
SVR (train)
SGD (train)
NN (train)
VR (train)
SR (train)

Figure 4.19: Execution (testing) time - Principal Component Analysis.
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Figure 4.20: Training time - Principal Component Analysis.

Fig 4.19 and Fig 4.20 show the execution/testing and training times of ML models for

PCA, respectively. In this case, the execution time of SVR, SGD and NN is the lowest

while VR and RF have the highest execution times with increasing testing data set size.

Whereas SR has slightly less execution time as compared to other ensemble models which

increases with increment in testing samples. VR and RF models are computationally as

costly as other ML models due to longer execution times. However, SR model due to its

scalability and accuracy has the advantage of being less computationally expensive in

testing phase for unseen complex data as compared to other ensemble models. For the

training time of the ML models in Fig 4.20, SR has maximum training time which keeps

on increasing for the increasing number of training samples while NN, SVR and SGD
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models take minimum time for increment in training samples. RF and VR take slightly

more time as compared to SGD and NN and less time as compared to SR for model

training. However, SR model’s computational cost is greater due to its complexity as

compared to other models which is a cost-accuracy tradeoff for training purposes.
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Figure 4.21: Execution (testing) time - Univariate Feature Selection.
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Figure 4.22: Training time - Univariate Feature Selection.

Fig 4.21 and Fig 4.22 show execution/testing and training times of ML models for

univariate feature selection, respectively. In this case, the execution time of SVR, SGD

and NN is lowest while VR and RF have the highest execution times with RF requiring

slightly more time as compared to VR with increasing testing data set size. Whereas SR

has slightly less execution time as compared to other ensemble models which increases

with increment in testing samples. VR and RF models are computationally as costly
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as other ML models due to longer execution times. However, SR model due to its

scalability and accuracy has the advantage of being less computationally expensive in

the testing phase for unseen complex data as compared to other ensemble models. For

the training time of the ML models in Fig 4.22, SR has maximum training time which

keeps on increasing for increasing number of training samples while NN, SVR and SGD

models take minimum time for increment in training samples. RF and VR take slightly

more time as compared to SGD and NN and less time as compared to SR for model

training. However, SR model’s computational cost is greater due to its complexity as

compared to other models which is a cost-accuracy tradeoff for training purposes.
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Figure 4.23: Execution (testing) time - Recursive Feature Elimination.
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Figure 4.24: Training time - Recursive Feature Elimination.

Fig 4.23 and Fig 4.24 show execution/testing and training times of ML models for
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recursive feature elimination, respectively. In this case, the execution time of SVR, SGD

and NN is lowest while VR and RF have the highest execution times with increasing

testing data set size. Whereas SR has slightly less execution time as compared to

other ensemble models which increases with increment in testing samples. VR and RF

models are comparatively computationally expensive to other ML models because of

higher execution times. However, SR model due to its scalability and accuracy has the

advantage of being less computationally expensive in testing phase for unseen complex

data as compared to other ensemble models. For the training time of the ML models

in Fig 4.24, SR has maximum training time which keeps on increasing for increasing

number of training samples while NN, SVR and SGD models take minimum time for

increment in training samples. RF and VR take slightly more time as compared to SGD

and NN and less time as compared to SR for model training. However, SR model’s

computational cost is greater due to its complexity as compared to other models which

is a cost-accuracy tradeoff for training purposes.
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Figure 4.25: Execution (testing) time - Select From Model.
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Figure 4.26: Training time - Select From Model.

Fig 4.25 and Fig 4.26 show execution/testing and training times of ML models for select

from model, respectively. In this case, the execution time of SVR, SGD and NN is low-

est while VR and RF have the highest execution times with increasing testing data set

size. Whereas SR has slightly less execution time as compared to other ensemble models

which increases with increment in testing samples. VR and RF models are compara-

tively computationally expensive to other ML models because of higher execution times.

However, SR model due to its scalability and accuracy has the advantage of being less

computationally expensive in the testing phase for unseen complex data as compared

to other ensemble models. For the training time of the ML models in Fig 4.26, SR

has maximum training time which keeps on increasing for increasing number of training

samples while NN, SVR and SGD models take minimum time for increment in training

samples. RF and VR take slightly more time as compared to SGD and NN and less

time as compared to SR for model training. However, SR model’s computational cost

is greater due to its complexity as compared to other models which is a cost-accuracy

tradeoff for training purposes.
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Figure 4.27: Execution (testing) time - Sequential Feature Selection.
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Figure 4.28: Training time - Sequential Feature Selection.

Fig 4.27 and Fig 4.28 show execution/testing and training times of ML models for

sequential feature selection, respectively. In this case, the execution time of SVR, SGD

and NN is lowest while VR and RF have highest execution times with increasing testing

data set size. Whereas SR has slightly less execution time as compared to other ensemble

models which increases with increment in testing samples.For the training time of the

ML models in Fig 4.28, SR has maximum training time which keeps on increasing for

increasing number of training samples while NN, SVR and SGD models take minimum

time for increment in training samples. RF and VR take slightly more time as compared

to SGD and NN and less time as compared to SR for model training. However, SR

model’s computational cost is greater due to its complexity as compared to other models
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which is a cost-accuracy tradeoff for training purposes.

Performance Metric(s)

In this study, we will discuss the comparison of performance metric(s) refers to Table 4.1,

Table 4.2, Table 4.3, Table 4.4, Table 4.5 and Table 4.6 represent the comparison of ML

models used for prediction of QoE using various techniques on the basis of performance

metric(s).

Table 4.1: Comparison of the supervised learning models (all features).

Metric RF SVR SGD NN VR SR

R2 0.799837 0.794165 0.786429 0.786028 0.802913 0.841003

MAE 0.11594 0.119225 0.123706 0.123938 0.114158 0.092095

MSE 0.272041 0.266696 0.279948 0.269443 0.2651 0.24256

RMSE 0.521575 0.516426 0.529101 0.519078 0.51487 0.49250

PLCC 0.897722 0.893425 0.891015 0.889805 0.900185 0.918927

SRCC 0.89398 0.894121 0.889006 0.882877 0.898313 0.882877

Table 4.1 presents an overview of a comparison of machine learning methods based

on performance measures for all QoE features. In terms of MSE, RMSE and MAE,

SR predicts QoE with the minimum MSE, RMSE and MAE values respectively while

NN shows the highest MAE value whereas SGD shows the highest MSE and RMSE

values. MAE of RF is less as compared to SVR and SGD while MSE and RMSE

values are greater as compared to SVR and less as compared to SGD. We noticed

that our ensemble models, VR and SR, performed better as compared to standalone

models (RF, SVR, SGD and NN models etc.). Similarly, in the case of R2, SR model

outperformed standalone models with a significantly highest score as compared to other

models while VR model scored the highest score after SR model. However, in the case

of standalone models, RF also being an ensemble of bagged decision trees also better

comparably in terms of R2. The primary cause is that QoE prediction is a challenging

non-linear and complicated problem, and our complex machine learning models based

on ensemble methods outperformed other models. Moreover, the QoE predicted by the

SR algorithm has the highest PLCC and SRCC scores among all taken-into-account ML

methods, whereas NN gives the lowest scores for PLCC and SRCC comparably. The
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PLCC and SRCC scores depicted by RF, SVR and SGD models are also high for QoE

prediction of HAS.

Table 4.2: Comparison of the supervised learning models (principal component analysis).

Metric RF SVR SGD NN VR SR

R2 0.718058 0.786145 0.698732 0.768799 0.748197 0.756119

MAE 0.163308 0.12387 0.174502 0.133917 0.145851 0.141262

MSE 0.323927 0.278463 0.342297 0.289424 0.309571 0.297128

RMSE 0.569145 0.527695 0.585061 0.537981 0.556391 0.545094

PLCC 0.853197 0.891549 0.841005 0.880659 0.8831 0.874672

SRCC 0.846497 0.8921 0.842588 0.879441 0.88172 0.879441

Table 4.2 presents an overview of a comparison of machine learning methods based on

performance measures for principal components. In this case, SVR model combined with

principal components outperformed other ML models with considerably lowest values

in terms of MAE, MSE and RMSE while SGD showed the highest MAE, MSE and

RMSE values, respectively. However, NN also performed better in conjunction with

principal components with lower values of MAE, MSE and RMSE after SVR. VR and

SR models as compared to RF and SGD models performed better with lower values

of MAE, MSE and RMSE, respectively. In the same manner, it can also be noticed

that while predicting QoE, R2 scores of SVR are significantly greater as compared to

other ML models with NN predicting the second largest scores of R2. However, SGD

model showed a minimum score in terms of R2. VR and SR models performed better as

compared to RF and SGD models with higher scores ofR2. While predicting QoE, PLCC

and SRCC values of SVR are also significantly greater as compared to other ML models

with NN having the second highest values of PLCC and SRCC, respectively. Similarly,

VR and SR algorithms show high values of PLCC and SRCC as compared to RF and

SGD algorithms in QoE prediction of HAS. Here we noticed that our ensemble models

did not perform better in conjunction with principal components. We further assume 8

principal components to observe their significance based on SVR model performance.
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Figure 4.29: Principal component analysis using SVR.

Fig 4.29 shows the R2 and MSE criterion is used to check SVR model performance by

accumulating various principal components one by one at a time and observing their

training time. Here we observe that the model is converged after 4 principal components.

So it would not be necessary to combine all the principal components which will give the

same results. However, by combining 5 principal components we observe the training

time is minimum. Thereby, using only five principal components we would predict QoE

more accurately instead of nine principal components. Further, in this context, we

notice that SVR predicts more accurately on all scaled features as compared to PCA

with greater R2 and minimum MSE values. Therefore, in case of the above findings, we

can say that PCA does not work well for QoE prediction of HAS.

Table 4.3: Comparison of the supervised learning models (univariate feature selection).

Metric RF SVR SGD NN VR SR

R2 0.79058 0.760581 0.767288 0.756542 0.787851 0.798917

MAE 0.121302 0.138678 0.134792 0.141017 0.122882 0.116472

MSE 0.279837 0.29124 0.293485 0.294923 0.278551 0.275831

RMSE 0.528996 0.53966 0.541742 0.543068 0.527779 0.525196

PLCC 0.89135 0.87703 0.879798 0.873233 0.891608 0.897526

SRCC 0.886045 0.875075 0.874534 0.872455 0.889123 0.872455

Table 4.3 presents an overview of a comparison of machine learning methods based on

performance measures using univariate feature selection technique. In terms of MSE,

RMSE and MAE, SR predicts QoE with the minimum MSE, RMSE and MAE values

respectively while NN shows the highest MSE, RMSE and MAE values. MAE of RF is

less as compared to SVR, SGD and VR while MSE and RMSE values of RF are less as
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compared to SVR and SGD but greater than that of VR model. Similarly, in case of R2,

SR model outperformed standalone models with significantly highest score as compared

to other models while RF model scored highest R2 score after SR model. However,

in case of standalone models, RF also being an ensemble of bagged decision trees also

better comparably in terms of R2. Moreover, the QoE predicted by the SR algorithm

has the highest PLCC scores among all taken-into-account ML methods while SRCC

scores of SR and NN are the same and are less as compared to RF, SVR, SGD and

VR algorithms respectively whereas both SR and NN give the lowest scores for SRCC

comparably. VR scored highest PLCC values for QoE prediction after SR algorithm.

The PLCC and SRCC scores depicted by SVR and SGD models are also high for QoE

prediction of HAS.

Table 4.4: Comparison of the supervised learning models (recursive feature elimination).

Metric RF SVR SGD NN VR SR

R2 0.802934 0.771016 0.769729 0.770756 0.806548 0.843597

MAE 0.114146 0.132633 0.133379 0.132784 0.112052 0.090593

MSE 0.271839 0.287215 0.290941 0.291571 0.267207 0.244069

RMSE 0.521381 0.535924 0.539389 0.539973 0.516920 0.494033

PLCC 0.899373 0.881299 0.881738 0.883211 0.902098 0.921864

SRCC 0.89398 0.878834 0.877113 0.876713 0.898762 0.876713

Table 4.4 presents an overview of a comparison of machine learning methods based

on performance measures using recursive feature elimination technique. In terms of

MSE, RMSE and MAE, SR predicts QoE with the minimum MSE, RMSE and MAE

values respectively while SGD shows the highest MAE values whereas NN shows the

highest MSE and RMSE values. MAE of RF is less as compared to SVR and SGD but

greater than MAE of VR while MSE and RMSE values are less as compared to SVR

and SGD but greater as compared to VR. We noticed that our ensemble models, VR

and SR, performed better as compared to standalone models (RF, SVR, SGD and NN

models etc.) in this case. Similarly, in case of R2, SR model outperformed standalone

models with the significantly highest score as compared to other models while VR model

depicted the highest R2 score after SR model. However, in case of standalone models,

RF also performed better comparably in terms of R2. Moreover, the QoE predicted
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by the SR algorithm has the highest PLCC scores among all taken-into-account ML

methods, while SRCC scores of SR and NN are the same and are less as compared to

RF, SVR, SGD and VR algorithms respectively whereas both SR and NN give the lowest

scores for SRCC comparably. VR scored highest PLCC values for QoE prediction after

SR algorithm. The PLCC and SRCC scores depicted by RF, SVR and SGD models are

also high for QoE prediction of HAS.

Table 4.5: Comparison of the supervised learning models (select from model).

Metric RF SVR SGD NN VR SR

R2 0.803886 0.769724 0.768008 0.752673 0.796213 0.835644

MAE 0.113595 0.133382 0.134376 0.143258 0.118038 0.095199

MSE 0.271052 0.285102 0.289761 0.301012 0.272054 0.24944

RMSE 0.520626 0.533949 0.538294 0.548645 0.521587 0.499439

PLCC 0.899618 0.878825 0.879614 0.873878 0.895832 0.916807

SRCC 0.896251 0.877628 0.876347 0.877472 0.892059 0.877472

Table 4.5 presents an overview of a comparison of machine learning methods based on

performance measures using select from model technique. In terms of MSE, RMSE and

MAE, SR predicts QoE with the minimum MSE, RMSE and MAE values respectively

while NN shows the highest MAE, MSE and RMSE values. MAE, MSE and RMSE

values of RF are less as compared to SVR, SGD and VR. Similarly, in case of R2, SR

model outperformed standalone models with significantly highest score as compared to

other models while RF model scored the highest R2 score after SR model. However, RF

also being an ensemble of bagged decision trees performed better than other standalone

models and VR comparably in terms of R2. The VR model predicted less R2 score

as compared to RF because the features were selected based on RF feature importance

criterion where RF algorithm gives more importance to the features with high cardinality

as trees are biased towards those features while giving lower importance to correlated

ones and neglecting them at once. Also, VR model assigns weights to other models’

predictions and takes a weighted average of their predictions. In this case, if one model

does not perform well, then its prediction would affect the prediction of VR model in a

slight manner. However, our ensemble SR model still outperformed other ML models

when combined with this technique because its prone to overfitting. Moreover, the
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QoE predicted by the SR algorithm has the highest PLCC scores among all taken-into-

account ML methods while NN depicts lower values in terms of PLCC. The VR model

scored a slightly lower value of PLCC as compared to RF while scoring a greater value

of PLCC as compared to SVR, SGD and NN. Moreover, RF scored higher values of

SRCC while SGD scored the lowest values. The SRCC scores of SR and NN are the

same while are less as compared to RF, SVR and VR algorithms respectively.

Table 4.6: Comparison of the supervised learning models (sequential feature selection).

Metric RF SVR SGD NN VR SR

R2 0.793077 0.769265 0.769563 0.772611 0.797436 0.852367

MAE 0.119855 0.133648 0.133475 0.131709 0.11733 0.085513

MSE 0.270159 0.287553 0.289872 0.286551 0.271276 0.220756

RMSE 0.519768 0.536239 0.538397 0.535304 0.520841 0.469846

PLCC 0.893041 0.879208 0.881242 0.884022 0.896844 0.92539

SRCC 0.887825 0.878543 0.875116 0.875782 0.894629 0.875782

Table 4.6 presents an overview of a comparison of machine learning methods based on

performance measures using sequential feature selection technique. In terms of MSE,

RMSE and MAE, SR predicts QoE with the minimum MSE, RMSE and MAE values

respectively while SVR shows the highest MAE value whereas SGD shows the highest

MSE and RMSE values. MAE of RF is less as compared to SVR, SGD and NN while

greater as compared to VR. Our VR model has a slightly greater value of MSE and

RMSE as compared to RF for this technique. Whereas MSE and RMSE values of VR

are less as compared to SVR, SGD and NN models. Similarly, in case of R2, SR model

outperformed standalone models with significantly highest score as compared to other

models while VR model scored the highest R2 score after SR model. However, in case of

standalone models, RF also being an ensemble of bagged decision trees also scored better

comparably in terms of R2. The primary cause is that QoE prediction is a challenging

non-linear and complicated problem, and our complex machine learning models based

on ensemble methods outperformed other models. Moreover, the QoE predicted by the

SR algorithm has the highest PLCC scores among all taken-into-account ML methods,

whereas SVR gives the lowest scores for PLCC comparably. The PLCC scores depicted

by VR model are greater as compared to RF, SVR, SGD and NN models and are also
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high for QoE prediction of HAS. Moreover, VR scored higher values of SRCC while

SGD scored the lowest values. The SRCC scores of SR and NN are the same while are

less as compared to RF, SVR and VR algorithms respectively.

Further, we noted that except for univariate feature selection, all other techniques in-

cluded video content which is an important parameter mentioned in ITU-T P.1203

standard [1] while all the feature selection techniques ignored the frames per second

parameter which is considered to be less important in our study. However, playstats

features such as stalling duration, stalling frequency and also bitrates at layer 3 (480p),

layer 4 (540p) and layer 5 (720p) are commonly retained in all feature selection tech-

niques. Similarly, video quality layers 2, 5 and O22 are commonly considered which

shows the importance of these parameters which must be included while predicting

QoE.

The proposed ensemble VR model outperformed standalone models i.e, RF, SVR, SGD

and NN models in terms of R2 for all the feature selection techniques except PCA and

select from model. However, SR algorithm outperformed VR and standalone algorithms

in all the techniques except PCA in terms of R2, MAE, MSE, RMSE and PLCC metrics.

We also noted that SRCC scores of SR and NN models are the same in all the scenarios.

Moreover, another interesting observation we found that in sequential feature selection

technique the SR model has shown significantly higher scores of R2 i.e 0.852367 and

significantly lower values of MAE, MSE, RMSE i.e 0.085513, 0.220756, 0.469846 respec-

tively while showing highest PLCC value of 0.92539 as compared to other ML models.

Comparisons with prior studies are not possible because there haven’t been any studies

that used the VR and SR approach. However, the proposed approach performed more

effectively and outperformed other machine learning methods in the literature for QoE

prediction of HAS [10, 19, 27, 29, 32, 34, 35, 38, 39] with less number of features. As

previously mentioned, it is difficult to evaluate and predict QoE because the variety of

factors might have an impact. The study’s findings suggested that the proposed model

for calculating QoE performed well even though it used minimal actual data and just

provided the most important input variables. Additionally, the VR and SR algorithms

did not call for any realistically challenging assumptions, unlike statistical models.
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4.5 Summary

In this chapter, we provided the details of the experiments done for this research. For

data visualization, we provided a distribution plot of MOS which is our target variable

for predicting QoE. Also provided a detailed principal component analysis. Heatmaps,

joint plots, residual plots, learning curves of various ML model and their training and

execution times were plotted in each technique to evaluate the results based on perfor-

mance metrics. We also compared the importance of the features retained in various

feature selection techniques based on heatmaps. Further the results obtained from those

techniques were compared accordingly.
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Discussion

In Chapter 4 we provided a detailed comparative analysis based on learning curves,

execution/training times and performance metrics. In this chapter, we provide further

provide discussion based on our experiments while predicting QoE. In the distribution

plot in Fig 4.1, we observed that the data is not normally distributed but it is biased

towards higher MOS values. As discussed earlier, the red line represents the average

(mean) and the green line represents the median, both of which are located to the left

of the peak value, which is 4.85. The histogram’s distribution is negatively skewed.

This is because the number of samples obtained for higher values of MOS is greater

as compared to lower values, so there will be a bias-variance trade-off in our models.

Where bias is the difference between our model’s average forecast and the correct value

that we are attempting to predict and variance is the variability of model prediction

for a specific data point or value. A model with a large bias ignores the training data

and oversimplifies the model. This trade-off is further depicted by the joint plots of our

models. It can be seen in joint plots refer to Fig 4.5 for all QoE features, the predicted

MOS and the subjected MOS (Test Labels) appear to have a positive connection in the

scatterplots since their values both increase as one variable’s values do. The strength of

the correlation appears to be reduced for low subjective scores as the Waterloo video-

streaming database includes fewer samples for low subjective scores. We also observed

outliers in our data set for lower MOS values because of fewer samples of lower subjective

scores. Higher levels of subjective scores (MOS) cause the graph’s points to cluster closer

or even merge altogether. Since the dataset contains more samples for higher subjective

scores, the correlation seems to be stronger for higher subjective scores. It can also be
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seen that the models which performed better i.e, RF, VR and SR models, the data points

are closer to the regression line as compared to the models which performed worst i.e

SGD and NN models. Moreover the PLCC values of RF, VR and SR models shown in

these graphs are also greater which depicts that our ensemble models performed better

for QoE prediction as compared to other models. However, PLCC values are significantly

higher for SR model which outperformed other models. In Fig 4.6, SVR model in

conjunction with PCA outperformed other models and shows higher PLCC values among

other models. The data points are also closely merged about the regression line in case

of SVR model. But our ensemble models i.e RF, VR and SR did not show higher PLCC

values and data points are scattered around the regression line. So PCA does not work

with these models. In univariate feature selection technique refer to Fig 4.7, PLCC values

of SR model are greater as compared to other models and gives us best-fit regression line

between the predicted MOS and the subjected MOS (Test Labels). In recursive feature

elimination technique refer to Fig 4.8, we have also observed greater PLCC values of SR

model as compared to other models while predicting QoE. In select from model technique

refer to Fig 4.9, the SR model outperformed other models and shows higher values of

PLCC as compared to other models. Simlarly for sequential feature selection technique

refer to Fig 4.10 our SR model significantly outperformed other models and PLCC

values are also greater as compared to models and other techniques after performing

sequential feature selection technique on our data set which indicates that the features

obtained after sequential feature selection technique were more significant as compared

to features selected after performing other techniques and gives us best performance

while predicting QoE. As mentioned earlier, our goal is to make an optimized QoE

model that will minimize the prediction errors (bias and variance) and achieves a good

trade-off while still meeting the requirements of both goals. We have tried to overcome

the issue of bias-variance trade-off and computational cost by proposing cost-efficient

ensemble QoE models in the reference architecture for the ML-based QoE forecasting.

Experiments are conducted for the comparison analysis taking into account the main

QoE influencing parameters for video streaming. However, in the joint plots, we can

say that our state-of-the-art QoE models are overfitted for higher values of MOS and

underfitted for lower values of MOS to some extent depending upon the dataset that we

have employed in this research. As seen from these graphs, we notice that the points

are closely merged for sequential feature selection technique employed with Stacking
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Regressor (SR) model which shows our ensemble SR model outperforms other models

used in this research. Further, we observed that the residual errors of our ML model

in residual plots are normally distributed along the mean which validates that all our

regression models were the correct choice for the QoE prediction of HAS.

We further diagnosed the performance of ML models based on learning curves over the

training samples considering MSE as an objective criterion. The model’s current state

may be assessed at each stage of the training process when a machine learning model is

being trained. To evaluate how effectively the model is learning, we assessed each model

on the training dataset with a step size of 10% which is common for all the models. After

comparing the learning curves of ML models for various techniques, we noticed that our

models’ learning curves were smooth and did not show overfitting. Although all the

models converge to the minimum value of objective loss function MSE for increasing

training sample sizes, however, when comparing the learning curves of our models we

found that RF, SVR, VR and SR models perform comparatively better as compared

to NN and SGD model with SR model showing relatively less value for MSE until

convergence in all the techniques mentioned in this literature However for sequential

feature selection technique, SR model showed less value for MSE thus outperforming

other feature selection techniques. Thus, SR model will be a good choice for QoE

prediction of HAS video streaming.

For the real-time monitoring of QoE, our models’ execution times are considered an im-

portant aspect and it is necessary to predict QoE more accurately from devices installed

near the end-user, which do not necessarily belong to the ISP. So it’s necessary that our

models respond in a timely fashion for QoE prediction so that the users don’t suffer from

waiting times namely stalling caused by rebuffering events also considering the initial

delay, or the interval before playback, as well. While comparing the execution times

of our ML models, we observed that VR and RF models are computationally costly as

compared to other ML models because of higher execution times. However, SR model

due to its scalability and accuracy has the advantage of being less computationally ex-

pensive in the testing phase for unseen complex data as compared to other standalone

and ensemble models. Further regarding our ML models’ training times, as mentioned

earlier, SR model is trained on the predictions of other base models on each training

sample, therefore, it takes more training time with increments in train size. Whereas,

VR model takes less training time as compared to SR while it takes more training time
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as compared to other models because it assigns weights to other models’ predictions and

then predicts depending upon other models’ performance. From the graphs, we can say

that for the sequential feature selection technique, execution times for all the models,

especially SR model reduced as compared to all other ensemble techniques applied in

this literature. So combining the features retained after applying SFS with SR model

gives less computational cost as compared to other ensemble methods with an advantage

of more accurate real-time QoE predictions.

Further, we noted that except for univariate feature selection, all other techniques in-

cluded video content which is an important parameter mentioned in ITU-T P.1203

standard [1] while all the feature selection techniques ignored the frames per second pa-

rameter which is considered to be less important in our study. Instead of distinguishing

between low and high resolution, our study predicts the six most popular video reso-

lution classes: 144p, 240p, 360p, 480p and 720p. By utilising regression algorithms, it

also offers a continuous assessment of the typical video bitrate. The playstats features

such as stalling duration, stalling frequency and also bitrates at layer 3 (480p), layer

4 (540p) and layer 5 (720p) are commonly retained in all feature selection techniques.

Similarly, video quality layers 2, 5 and O22 are commonly considered which shows the

importance of these parameters which must be included while predicting QoE.

As mentioned previously, for our supervised ML models, we have taken into account

five different performance measures, including the Coefficient of Determination (R2)

as an objective criterion for measuring accuracy for each model, Mean Squared Error

(MSE), Root Mean Squared Error (RM SE), Mean Absolute Error (MAE), Pearson’s

Linear Correlation Coefficient (PLCC), and Spearman’s Rank Correlation Coefficient

(SRCC). Thus as far as the performance of ML models is concerned, we observed that

our proposed ensemble VR model outperformed standalone models i.e, RF, SVR, SGD

and NN models in terms of R2 for all the feature selection techniques except PCA and

select from model. However, SR algorithm outperformed VR and standalone algorithms

in all the techniques except PCA in terms of R2, MAE, MSE, RMSE and PLCC metrics.

We also noted that the SRCC scores of SR and NN models are the same in all the

scenarios. Moreover, another interesting observation we found that in the sequential

feature selection technique the SR model has shown significantly higher scores of R2

i.e 0.852367 and significantly lower values of MAE, MSE, RMSE i.e 0.085513, 0.220756,

0.469846 respectively while showing highest PLCC value of 0.92539 as compared to other
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ML models. Comparisons with prior studies are not possible because there haven’t been

any studies that used the VR and SR approach. However, the proposed approach

performed more effectively and outperformed other machine learning methods in the

literature for QoE prediction of HAS [10, 19, 27, 29, 32, 34, 35, 38, 39] with less number

of features. As previously mentioned, it is difficult to evaluate and predict QoE because

a variety of factors might have an impact. The study’s findings suggested that the

proposed model for calculating QoE performed well even though it used minimal actual

data and just provided the most important input variables. Additionally, the VR and

SR algorithms did not call for any realistically challenging assumptions, unlike other

statistical models.

5.1 Summary

In this chapter, we discussed the results obtained in detail from our comparative study

and compared them with previous literature to propose our optimized ensemble ML

model for QoE prediction of HAS.
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Conclusion and Future Work

A more accurate estimation of QoE is necessary from a business perspective for both

OTTs and ISPs to enhance users’ experience, particularly in video streaming to attract

more customers and meet their requirements in terms of QoE. Most video streaming

services employ HTTP Adaptive Streaming (HAS). We have outlined the specifics of

prior studies that used a variety of models and methodologies to assess and predict

QoE. We also came to the conclusion that algorithms for supervised learning yield su-

perior outcomes. Moreover, we found that ensemble models, when compared to single

learners, produce results for QoE prediction that are more accurate depending on the

performance of the models. We described our process in great depth and covered all

of its steps for QoE prediction of HAS. We discussed the features in our data set ac-

cording to ITU-T P.1203 standards and optimization methods for the data set. In this

research, we provided a comparative study of various ML models (RF, SVR, SGD, NN

models etc.) and our proposed ensemble VR model was then constructed using these

hyper-parameter tuned ML algorithms as base estimators as illustrated in Fig 3.2, which

employed the ranking approach to apply weights based on how well each individual ML

model performed as well as ensemble SR model which trained on the predictions made

by standalone models as illustrated in Fig 3.3, utilizing GB as meta-estimator along with

feature selection techniques and also included PCA. Moreover, the data set optimization

was done using four feature selection techniques and PCA. Based on learning curves,

training/testing execution times, R2, mean absolute error, mean square error, PLCC

and SRCC, the comparative study has offered performance comparison of the machine

learning models. RF predicted more accurately as compared to other standalone models
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while the overall prediction accuracy of SR model is comparatively greater as compared

to other models. Also, we see that SR model is prone to overfitting while predicting

QoE. We employed GB as our meta-estimator in SR model which minimizes the bias

error of the previous models predictions and provides an accurate measure of QoE. How-

ever in PCA, SVR model performed better but this approach does not work for more

accurate prediction of QoE. However, the training time of SVR model is lowest as com-

pared to other models but its R2 value is comparatively lower in other scenarios except

PCA. Due to reduction of redundant features in our data set, we have observed the

enhancement in the accuracy of all the models in SFS technique instead of utilizing all

QoE features. RFE technique also provided more accuracy in terms of R2 as compared

to all QoE features but the features employed in our SFS technique were more reliable

as compared to other features from various feature selection techniques and give us a

more accurate prediction of target label i.e, MOS. We presented a distribution plot of

MOS, which is our objective criteria for forecasting QoE, in order to visualise the data.

Detailed principal component analysis was also given. To assess the outcomes based on

performance measures, heatmaps, joint plots, residual plots, learning curves of several

ML models, and their training and execution times were plotted in each approach. Addi-

tionally, we contrasted the weighted value of the characteristics kept in different feature

selection methods based on heatmaps. We noticed that the strength of the correlation

appears to be smaller for low subjective scores since the graph’s points are spread for

lower MOS values and the Waterloo video-streaming database includes fewer samples for

low subjective scores in joint plots. We also reviewed the limitations of various feature

selection strategies for QoE optimization as well as the learning curves, training times,

and execution times of various ML models. When comparing the learning curves of ML

models for different techniques, we find that while all models converge to the minimum

value of the objective loss function MSE for larger training sample sizes, RF, SVR, VR,

and SR models perform comparably better than NN and SGD models, with SR showing

relatively less value for MSE for sequential feature selection (SFS) until convergence,

outperforming other ML models. Moreover, we noticed that SR model takes maximum

training time and less execution time as compared to other ensemble methods i.e, RF

and VR models. Based on its performance, we finally recommended the best ML model

for QoE prediction and concluded that the features retained by SFS technique were

most appropriate as compared to features retained after performing other feature selec-
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tion techniques because SR has shown significantly higher values of R2 and PLCC, and

lower values of MAE, MSE and RMSE, respectively. The experiments carried out for

the comparative study rely on a dataset of short video sequences (average duration: 13

seconds), obtaining less number of samples for lower MOS values, which can restrict the

comparative analysis to just brief video sequences and models will be undertrained for

samples containing the lower values of MOS. As a result, additional effort will be needed

to build long video sequence data sets and collect more samples of video sequences with

lower values of MOS from users’ perspectives for the development of ML-based QoE

prediction models and their comparison. In order to accurately predict QoE for video

streaming, data must be carefully gathered and taken into account at each stage of the

procedure shown in Fig. 3.1. These factors have been emphasised, and experiments have

shown that even when supervised, data-driven models are given identical data and fea-

tures, their robustness and accuracy can differ greatly. Although various algorithms may

be able to offer accuracy that is comparable, other factors like training and execution

times will affect the adoption of models in real-time QoE prediction.

6.1 Summary

In this chapter, we concluded our work for QoE prediction of HAS. We discussed each

model’s pros and cons for QoE prediction of HAS. We also discussed the limitations and

future works related to our research.
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Figure A.2: QoE features of HAS with correlation existing between various features and

MOS (Univariate Feature Selection)
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Figure A.3: QoE features of HAS with correlation existing between various features and

MOS (Recursive Feature Elimination)
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Figure A.4: QoE features of HAS with correlation existing between various features and

MOS (Select From Model)
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Figure A.6: Residual plots of Supervised-Learning models applied on all QoE features
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Figure A.7: Residual plots of Supervised-Learning models applied on QoE Principal

Components
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Figure A.8: Residual plots of Supervised-Learning models applied on QoE features

(Univariate Feature Selection)
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Figure A.9: Residual plots of Supervised-Learning models applied on QoE features

(Recursive Feature Elimination)
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Figure A.10: Residual plots of Supervised-Learning models applied on QoE features

(Select From Model)
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Figure A.11: Residual plots of Supervised-Learning models applied on QoE features

(Sequential Feature Selection)
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