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Abstract

Resolvability in graphs has appeared in numerous applications of graph theory, e.g. in pattern

recognition, image processing, robot navigation in networks, computer sciences, combinatorial opti-

mization, mastermind games, coin-weighing problems, etc. It is well known fact that computing the

metric dimension for an arbitrary graph is an NP -complete problem. Therefore, a lot of research

has been done in order to compute the metric dimension of several classes of graphs. Apart from

calculating the metric dimension of graphs, it is natural to ask for the characterization of graph

families with respect to the nature of their metric dimension.

In this thesis, we study two important parameters of resolvability, namely the metric dimension and

partition dimension. Partition dimension is a natural generalization of metric dimension as well as

a standard graph decomposition problem where we require that distance code of each vertex in a

partition set is distinct with respect to the other partition sets.

The main objective of this thesis is to study the resolving properties of wheel related graphs, certain

nanostructures and to characterize these classes of graphs with respect to the nature of their metric

dimension. We prove that certain wheel related graphs and convex polytopes generated by wheel

related graphs have unbounded metric dimension and an exact value of their metric dimension is

determined in most of the cases.

We also study the metric dimension and partition dimension of 2-dimensional lattices of certain nan-

otubes generated by the tiling of the plane and prove that these 2-dimensional lattices of nanotubes

have discrepancies between their metric dimension and partition dimension. We also compute the

exact value of metric dimension for an infinite class of generalized Petersen networks denoted by

P (n, 3) by giving answer to an open problem raised by Imran et al. in 2014, which complete the

study of metric dimension for the class of generalized Petersen networks P (n, 3).
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Introduction

A fundamental problem in chemistry is to give mathematical representations to a set of chemical

compounds in such a manner that gives distinct representations to distinct compounds. The struc-

ture of a chemical compound can be represented by a labeled graph whose vertex and edge labels

specify the atom and bond types, respectively. Thus, a graph-theoretic interpretation of this prob-

lem is to provide representations to the vertices of a graph in such a manner that distinct vertices

have distinct representations.

This dissertation is divided into six chapters. The first chapter deals with the basic concepts,

notion and terminologies of the graphs, distances in the graphs and related notions. In the second

chapter, the concept of resolvability in graphs, characterization of graphs with respect to the metric

dimension and some well known results of the metric dimension and partition dimension are pre-

sented. The concept of discrepancy between metric dimension and partition dimension of graphs is

also discussed in this chapter.

In the third chapter, we define m-level wheel and antiweb-gear graphs generated by wheel Wn

of order n + 1 and prove that their metric dimension is unbounded by providing an exact formula.

The metric dimension of convex polytopes generated by some wheel related graphs is also presented

and we prove that the metric dimension is unbounded by presenting a precise formula which gives

a negative answer to an open problem raised in [30]. Therefore, it shows that not all the convex

polytopes are the graphs with constant metric dimension.

In the fourth chapter, we compute the exact value of the metric dimension of the class of gener-

alized Petersen graphs P (n, 3) for n ≡ 2, 3, 4, 5 (mod 6) which gives the answer to an open problem

raised by Imran et al. in [28] and the partial answer to an open problem raised by Javaid et al.

in [36]. Thus, we complete the study of a class of generalized Petersen graphs P (n, 3). We prove

that the metric dimension of P (n, 3) is 3 when n ≡ 1 (mod 6) and 4 otherwise.

In the fifth chapter, we study the metric dimension and partition dimension of some infinite

regular graphs generated by the tiling of the plane, e.g. 2-dimensional lattices of some carbon nan-

otubes. We prove that the metric dimension of these carbon nanotubes is no more finite but the

partition dimension is finite. Therefore, these nanotubes have discrepancies between their metric

dimension and partition dimension.
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In the sixth chapter, we present the conclusion of the research work which has been done so far

and included in this dissertation. Moreover, some open problems for further study in this area of

research are also included.
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Chapter 1

Preliminaries and Basic Concepts

In this chapter, some basic concepts related to graph theory will be presented. It incorporates the

concept of distances in graphs and some pertinent definitions. In the first part, some basic notions,

definitions and terminologies in graph theory are introduced that will be used throughout this thesis.

In the second section, the planarity of graphs is presented. In the third section, some distance related

definitions and properties are presented.

1.1 Preliminaries

A graph G consists of a nonempty set V (G) of objects called vertices (the singular is vertex) and a

set E(G) of 2-element subsets of V called edges. The sets V (G) and E(G) are the vertex set and

edge set of a graph G, respectively. So a graph G is an ordered pair of the vertex set V (G) and

the edge set E(G). For this reason, a graph is symbolically represented as G = (V (G), E(G)). Two

graphs G and K are equal if they have same vertex sets and edge sets, i.e., V (G) = V (K) and

E(G) = E(K). The order of a graph G is the number of its vertices and the size is the number of

its edges denoted by |V (G)| and |E(G)|, respectively. If x and y are two vertices of a graph and if

the unordered pair {x, y} is an edge denoted by e = xy, we say that e joins x and y or that it is

an edge between x and y. So the vertices x and y are said to be incident on e and e is incident to

both x and y. Since the vertex set of a graph G is nonempty, the order of every graph is at least

1. A graph with exactly one vertex is called a trivial graph, implying that the order of a nontrivial

graph is at least 2. Two or more edges that joins the same pair of distinct vertices are called parallel

edges. An edge represented by an unordered pair in which two elements are not distinct is known as

a loop. A simple graph is a graph having no parallel edges and loops. Throughout this dissertation

we are considering simple, connected and undirected graphs only.

If u and v are two distinct adjacent vertices in a graph G then in this case, u is said to be a neighbor

of v, and vice versa. The set of neighbors of a vertex u in a graph G is denoted by NG(u) and is

called neighbourhood of u in G. The degree of a vertex is the number of its neighbors and is denoted
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as dG(u) or simply d(u). More generally, the degree of a vertex u in a graph G is the number of

edges incident on u in G. The minimum degree of a graph G is the minimum degree among the

vertices of G and is denoted by δ(G); the maximum degree of a graph G is the maximum degree

among the vertices of G and is denoted by ∆(G) and the average degree of a graph G is denoted by

d(G) and is defined as d(G) =
∑n

i=1 d(vi)
n , where n is the order of the graph. So if G is a graph of

order n and u is any vertex of the graph G, then

0 ≤ δ(G) ≤ d(u) ≤ ∆(G) ≤ n− 1.

An isolated and an end vertex have degrees 0 and 1, respectively. A vertex is said to be an even or

odd vertex if its degree is even or odd, respectively. The complement of a simple graph G = (V,E)

is the simple graph G = (V,E), where the edge set E contains all those edges which are not in

G. A graph which is isomorphic to its complement is known as self-complementary graph. If G

is a self-complementary graph on n vertices, then |E(G)| = n(n−1)
4 , and n ≡ 0, 1 (mod 4). The

G: H:

F: K:

Figure 1.1: A graph G and some of its subgraphs

graph K = (U,F1) is a subgraph of the graph G = (V,E) if U and F1 are the subsets of V and

E, respectively. So the graph K of Fig. 1.1 is a subgraph of the graph G. A subgraph H of a

graph G is said to be an induced subgraph (or full) if, for any pair of vertices u and v of H, uv is

an edge of H if and only if uv is an edge of G. In other words, H is an induced subgraph of G

if it has exactly the edges that appear in G over the same vertex set. Therefore, the graph H of

Fig. 1.1 is an induced subgraph of the graph G. If a subgraph F of a graph G has the same vertex

set as G, then F is said to be a spanning subgraph of G. Therefore, the graph F of Fig. 1.1 is a

spanning subgraph of the graph G. A spanning subgraph with at least one edge is known as a factor

of a graph. Any two graphs G = (V,E) and G′ = (V ′, E′) are said to be isomorphic if there are

bijections ϕ : V (G) → V ′(G′) and ψ : E(G) → E′(G′) such that vertex u and edge e are incident
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in G if and only if vertex ϕ(u) and edge ψ(e) are incident in G′. The pair of mappings (ϕ,ψ) is an

isomorphism from G to G′ and is written as G ∼= G′. A matching in a graph G is the set M of edges

in which no two edges have a vertex in common. The vertices that are incident to an edge of M are

said be matched. A perfect matching in a graph G is a matching which matches all the vertices of

G. A clique of a graph G is a complete subgraph of G. A maximum clique of a graph G is a clique,

such that there is no clique with more vertices. The number of vertices in a maximum clique in a

graph G is known as clique number and is denoted by ω(G).

1.1.1 Well-known classes of graphs

A walk from u to v in a graph G is a finite alternating sequence v0e1v1e2v2 · · · vn−1envn of vertices

and edges, where vi’s and ei’s represents vertices and edges, respectively, v0 = u and vn = v. The

vertices and edges of the walk need not to be distinct. A walk in which no edge is repeated is called

a trail. A closed walk in which no edge is repeated is called a circuit.

A path from u to v is a walk from u to v in which no edge and no vertex is repeated. The length

of walk or a path is the number of edges traversed. Moreover, A path of length n− 1 is denoted by

Pn. A cycle is a circuit in which no vertex is repeated. The length of a cycle is the number of edges

traversed. A cycle of length n is denoted by Cn. In a simple graph G, a cycle containing k vertices

is called a k-cycle in G. The cycle is even or odd accordingly as k is even or odd.

The complete graph denoted by Kn is a graph with n vertices in which every pair of vertices is

joined by a single edge. The graph K1 is known as trivial graph having single vertex and no edge.

Figure 1.2: Complete graph K5

Kn has the maximum possible size for a graph with n vertices. Since every two distinct vertices are

joined by an edge, the number of pair of vertices in Kn is
(
n
2

)
and the size of the complete graph

Kn is
(
n
2

)
=n(n−1)

2 .

A graph G is a bipartite graph if V (G) can be partitioned into two subsets U and W , called partite

sets, such that every edge of G joins a vertex of U and a vertex of W . It is represented by (U,W,E).

The complete bipartite graph Km,n is a graph having m and n vertices in the partite sets U and W ,
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Figure 1.3: A bipartite graph

respectively and in which very vertex of U is adjacent to every vertex in W . The complete bipartite

graph K1,n is known as a star graph. The following theorem provides a necessary and sufficient

condition for a graph to be bipartite.

Theorem 1.1.1. [15] A nontrivial graph G is a bipartite graph if and only if G contains no odd

cycle.

Bipartite graphs belongs to a more general class of graphs. A graph G is a k-partite graph if

V (G) can be partitioned into k sets U1, U2, · · · , Uk (once again known as partite sets) such that xy is

an edge of G if x and y are from different partite sets. Moreover, if every pair of vertices in different

partite sets is joined by an edge, then G is complete k-partite graph. If |Ui| = ni for 1 ≤ i ≤ k,

then this complete graph is denoted as Kn1,n2,··· ,nk
. The complete k-partite graphs are also known

as complete multipartite graphs.

A graph G is called regular if the degree of each of its vertex is same. A graph G is called a k-regular

if the degree of each vertex in G is k.

Theorem 1.1.2. [15] Every r-regular bipartite graph (r ≥ 1) has a perfect matching.

The hypercube or n-cube graph Qn is defined as the graph whose vertex set is the set of ordered

n-tuples of 0s and 1s (commonly called n-bit strings) and where two vertices are adjacent if their

ordered n-tuples differ in exactly one position (coordinate). The n-cubes for n = 1, 2, 3 are given in

the Fig. 1.4, where the vertices are labeled by n-bit strings.

Let n,m and a1, a2, ..., am be positive integers, 1 ≤ ai ≤ bn2 c and ai 6= aj for all 1 ≤ i, j ≤ m

and i 6= j. An undirected graph with set of vertices V = {v1, v2, ..., vn} and the set of edges

E = {vivi+aj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}, the indices being taken modulo n, is called a circulant graph

and it is denoted by Cn(a1, a2, ..., am). The numbers a1, a2, ..., am are called the generators and we

say that the edge vivi+aj is of type aj .

It is easy to see that the circulant graph Cn(a1, a2, ..., am) is a regular graph of degree r, where

r=

{
2m− 1, if n

2 ∈ {a1, a2, ..., am};
2m, otherwise.

7
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2

Figure 1.4: The n-cubes for 1 ≤ n ≤ 3

The circulant graph Cn(a1, a2, ..., am) is connected if and only if gcd(a1, a2, ..., am, n) = 1.

The Harary graph Hn,k is a graph on the n vertices {v1, v2, · · · , vn} defined by the following

construction:

• If k is even, then each vertex vi is adjacent to vi±1, vi±2, · · · , vi± k
2
, where the indices are

subjected to the wraparound convention that vi ≡ vi+n (e.g. vn+3 represents v3).

• If k is odd and n is even, then Hn,k is Hn,k−1 with additional adjacencies between each vi and

vi+n
2
for each i.

• If k and n are both odd, then Hn,k is Hn,k−1 with additional adjacencies {v1, v1+n−1
2
},

{v1, v1+n+1
2
}, {v2, v2+n+1

2
}, {v3, v3+n+1

2
}, · · · , {vn−1

2
, vn}.

1.1.2 Graph operations

Let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs of order n1 and n2, respectively:

• The union of G1 and G2 is denoted by G1∪G2 and is defined as the graph with set of vertices

and edges V1 ∪ V2 and E1 ∪ E2, respectively.

• The intersection of G1 and G2 is G1 ∩G2 = (V1 ∩ V2, E1 ∩ E2).

• The join G1 +G2 of two graphs G1 and G2 is the graph having vertex set

V (G1 +G2) = V1(G1) ∪ V2(G2)

and the edge set

E(G1 +G2) = E1(G1) ∪ E2(G2) ∪ {xy : x ∈ V1(G1), y ∈ V2(G2)}.

• The cartesian product G1�G2 of graphs G1 and G2 is a graph with vertex set of G1�G2 is

V (G1)× V (G2); and any two vertices (x1, x2) and (y1, y2) are adjacent in G1�G2 if and only

if either x1 = y1 and x2 is adjacent with y2 in G2, or x2 = y2 and x1 is adjacent with y1 in
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G1. The Hamming graphs, Hypercubes, the grid graphs and the torus graphs are some simple

cases of cartesian product graphs. The cartesian product of graphs is connected if and only if

each of its factor is connected.

• The direct product G1 ×G2 of two graphs G1 and G2 is a graph with vertex set

V (G1 ×G2) = V (G1)× V (G2) = {(x1, x2)| x1 ∈ G1 and x2 ∈ G2}
and edge set

E(G1 ×G2) = {(x1, x2)(y1, y2)| x1y1 ∈ E(G1) and x2y2 ∈ E(G2)}
The direct product is also named in literature as kronecker product, the categorical product, the

tensor product, the cardinal product, the cross product, the conjunction, the relational product

and the weak direct product. This product is associative and commutative in a natural fashion.

The direct product of nontrivial connected graphs is connected if and only if each of its factor

is connected and at least one of them is nonbipartite.

• The strong product of two graphs G1 and G2 is the graph G1 �G2, such that V (G1 �G2) =

V (G1) × V (G2) and two vertices (x1, x2) and (y1, y2) are adjacent in G1 � G2 if and only if

either

1. x1 = y1 and x2y2 ∈ E(G2), or

2. x1y1 ∈ E(G1) and x2 = y2, or

3. x1y1 ∈ E(G1) and x2y2 ∈ E(G2).

The strong product is also known as the strong direct product or the symmetric composition.

Also note that G1�G2 and G1 × G2 are subgraphs of the strong product G1 � G2. A graph

obtained from the strong product is connected if and only if each of its factor is connected.

• The laxicographic product of two graphs G1 and G2 is the graph G1◦G2, such that V (G1◦G2) =

V (G1) × V (G2) and two vertices (x1, x2) and (y1, y2) are adjacent in G1 ◦ G2 if and only if

either

1. x1y1 ∈ E(G1), or

2. x1 = y1 and x2y2 ∈ E(G2).

The lexicographic product also named as composition or the substitution. A lexicographic

product G1 ◦G2 of the graphs G1 and G2 is connected if and only, if G1 is connected.

• The corona product G1�G2 of two graphs G1 and G2 is the graph obtained from G1 and G2 by

considering one copy of G1 and n1 copies of G2 and joining by an edge each vertex from the jth-

copy of G2 with jth vertex of G1. The vertex set of G1 is denoted as V (G1) = u1, u2, · · · , un1

9



while G2j = (Vj , Ej) denotes the jth-copy of G2 such that xj ∼ x for every x ∈ Vj . The

product graph G1 �G2 is connected if and only if G1 is connected. Moreover, this product is

neither an associative nor a commutative operation.

1
G

G2

1
G G

2

1
G G

2
1

G G2

1
G G

2

Figure 1.5: Some product graphs

• The Cartesian sum G1
⊕
G2 of two graphsG1 andG2 is the graph with vertex set V (G1

⊕
G2) =

V (G1)×V (G2) and any two vertices (x1, x2) and (y1, y2) are adjacent in G1
⊕
G2 if and only

if either

1. x1y1 ∈ E(G1), or

2. x2y2 ∈ E(G2).

The cartesian sum is also referred in literature as the disjunctive product and the inclusive

product. This product graph is associative and commutative operation. Moreover, G1 × G2,

G1�G2, and G1 �G2 are subgraphs of G1
⊕
G2.

1.1.3 Connectivity

Any two vertices u and v are said to be connected in a graph G if there is a path between them.

A graph G is a connected graph if there is a path between every pair of vertices of the graph G;

otherwise, it is a disconnected graph. A maximal connected subgraph of G is known as component

of the graph G. A graph is connected if and only if it has only one component. Let S be a set of

edges in a graph G = (V,E), then the graph G−S can be obtained from G by deleting all the edges

of S. If S is a singleton set having edge e then G − S can be written as G − e. A set S is said to

be a disconnecting set of the graph G if G − S has more than one component. A singleton edge
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disconnecting set S is known as bridge. The following theorem provides a necessary and sufficient

condition for an edge of a graph G to be bridge.

Theorem 1.1.3. [15] An edge e of a graph G is a bridge if and only if e lies on no cycle of G.

If every disconnecting set of a graph G has at least k elements then the graph is said to be k-edge

connected. The edge disconnecting set having minimum cardinality is known as edge connectivity

number of the graph G and is denoted by λ(G). A disconnecting set S is said to be a cut set if no

proper subset of S is a disconnecting set. The concept of vertex disconnecting set can be defined

analogously, if H is a set of vertices of a graph G = (V,E), then the graph obtained by deleting all

the vertices belonging to H as well as the edges incident to the vertices in H is denoted by G−H.

If H is a singleton set with vertex v, then graph G −H is denoted by G − v. A set H of vertices

in a connected graph G is known as separating set (also known as the vertex cut) in G if G − H
has more than one component. A separating set having single vertex v is known as cut vertex. The

cardinality of a separating set of minimum size is the connectivity number κ(G) of a graph G. Since

a complete graph has no separating set, we say by convention that the connectivity number of the

complete graph of order n is n − 1 for all n. The following theorem provides us the relation in

terms of inequalities concerning the vertex connectivity, edge-connectivity and minimum degree of

a graph.

Theorem 1.1.4. [15] For any graph G,

κ(G) ≤ λ(G) ≤ δ(G).

Some facts about cut-vertex are established in the following results.

Theorem 1.1.5. [15] Let w be a vertex incident with a bridge in a connected graph G. Then w is

a cut-vertex of G if and only if d(w) ≥ 2.

Theorem 1.1.6. [15] Let w be a cut-vertex in a connected graph G, and let v and u be vertices in

distinct components of G− w. Then w lies on every v − u path in G.

A nontrivial connected graph having no cut-vertex is known as nonseparable graph.

Theorem 1.1.7. [15] A graph of order at least 3 is nonseparable if and only if every two vertices

lie on a common cycle.

A graph G is said to be k-connected if κ(G) ≥ k. Thus Kn is (n − 1)-connected for all n, and

a graph that is not complete is k-connected if and only if every separating set in it has at least k

vertices. The graph G has connectivity number zero if and only if G is either the trivial graph K1

or is a disconnected graph. A cyclic graph is 2-connected.

Both the inequalities in Theorem 1.1.4 can be strict as the graph G in the Figure 1.6 shows.

The following theorem shows the equality relation between edge connectivity and vertex connectivity.

11



G:

Figure 1.6: A graph G with k(G) = 1, λ(G) = 2, and δ(G) = 3

Theorem 1.1.8. [15] If G is a cubic graph, then λ(G) = k(G).

The following theorem provides a sharp upper bound for κ(G).

Theorem 1.1.9. [15] Let G be a graph of order n and size m ≥ n− 1, then

κ(G) ≤ b2mn c.

A vertex set H of a graph G is said to separate two vertices w and v of a graph G if G−H is no

more a connected graph and the vertices w and v belong to different components of G−H. Thus, if

H separates w and v, then w and v are nonadjacent vertices and H is a vertex cut of the graph G.

The cardinality of the set H must be as at least as large as κ(G). Such a vertex set H is known as

w − v Separating Set. A w − v Separating Set of minimum cardinality is known as minimum w − v
Separating Set. An internal vertex of a w − v path Q is a vertex of Q different from w and v. A

collection {Q1, Q2, · · · , Qk} of w−v paths is known as internally disjoint if every two of these paths

have no vertices in common other than w and v.

There are many theorems in mathematics which state the minimum number of elements in some

set equals the maximum number of elements in some other set. The following theorem is such a

“min-max” theorem. It is referred to as Menger’s Theorem.

Theorem 1.1.10. [15] Let w and v be two nonadjacent vertices in a graph G. The minimum

number of vertices in a w− v separating set equals the maximum number of internally disjoint w− v
paths in G.

With the aid of Menger’s Theorem, Hassler Whitney was able to give a characterization of

k-connected graphs.

Theorem 1.1.11. [15] A nontrivial graph G is k-connected for some integer k ≥ 2 if and only if

for each pair w, v of distinct vertices of G there are at least k internally disjoint w − v paths in G.

The following theorem is a generalization of the Theorem 1.1.7 for k-connected graphs.

Theorem 1.1.12. [15] If G is a k-connected graph, k ≥ 2, then every k vertices of G lie on a

common cycle of G
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There are also edge-connectivity analogues of both Theorems 1.2.1 and 1.2.2. We state the

followings.

Theorem 1.1.13. [15] For distinct vertices v and w in a graph G, the minimum number of edges

of G that separate v and w equals the maximum number of pairwise edge-disjoint v −w paths in G.

Theorem 1.1.14. [15] A nontrivial graph G is k-edge-connected if and only if G contains k pairwise

edge-disjoint v − w paths for each pair v, w of distinct vertices of a graph G.

1.1.4 Trees and spanning trees

Trees find applications in many diverse fields, including computer science, the enumeration of sat-

urated hydrocarbons, the study of electrical circuits, road networks and communication networks.

The spanning trees are used to find minimum cost. The spanning trees are also used to find the

shortest roots among the cities in a road network problem.

A cycle free graph is known as acyclic graph. A tree is a connected acyclic graph. If the spanning

subgraph K of a connected graph G is a tree, then K is called a spanning tree. In a tree the vertices

of degree 1 are called end vertices or leaves (singular is leaf).

The following theorem gives some properties of a tree.

Theorem 1.1.15. [17] The following statements are equivalent for a graph G of order n.

(i) G is a tree.

(ii) There is a unique path between every pair of distinct vertices in G.

(iii) G is connected and every edge in G is a bridge.

(iv) G is connected, and has n− 1 edges.

(v) G is acyclic, and has n− 1 edges.

(vi) G is acyclic, and whenever any two arbitrary nonadjacent vertices in G are joined by an edge,

the resulting enlarged graph has a unique cycle.

The following theorem gives a characterization of connected graphs in terms of its spanning trees.

Theorem 1.1.16. [17] A graph is connected if and only if it has a spanning tree.

All the nontrivial trees of a connected graph G have the following property.

Theorem 1.1.17. [15] Every nontrivial tree has at least two end-vertices.

If T is a tree of order k, then it should be clear that T is isomorphic to a subgraph of Kk. Of

course, δ(Kk) = k− 1. Not only is T isomorphic to a subgraph of Kk, the tree T is isomorphic to a

subgraph of every graph having minimum degree at least k − 1.

Theorem 1.1.18. [17] Let T be a tree of order k. If G is a graph with δ(G) ≥ k − 1, then T is

isomorphic to some subgraph of G.
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1.2 Planarity

There is a well known problem that has appeared in many practical situations. There are three

different utilities (water, gas, and electricity) that need to be connected to three different houses

by water mains, gas lines, and electricity lines. Can this be done without any of the lines or mains

crossing each other? This problem is known as Three Houses and Three Utilities Problem. This

situation can be modeled by the graph as shown in Figure 1.7, which, in fact, the complete bipartite

graph K3,3.

1 HHH

EWG

32

Figure 1.7: The Three Houses and Three Utilities Problem

The concept of the planar graphs is used to provide the answer of such kind of problems.

A graph G is called a planar graph if it can be drawn on the plane without edge crossing as shown

in Figure 1.8.

tw

uv

tw

uv

G H

R
R

R

R4

3
2

1

Figure 1.8: The graph G is planar and H is its plane drawing

A graph that is not planar is known as nonplanar. A graph G is called a plane graph if it is drawn

in the plane so that no two edges of G cross. Thus, while a graph may be planar, as drawn it may

not be a planar graph, such as Figure 1.8, graph G. A plane graph divides the plane into different

connected pieces called regions. For example, in the case of plane graph H of Figure 1.8, there

are four different regions labelled as R1, R2, R3 (interior regions) and R4 (exterior region). These
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regions also known as faces. Letting n,m, f denote the order, size and the number of regions or

faces, respectively. So in this case, n−m+ f = 2. Leonhard Euler observed that this is always true.

The following property for a planar graph is known as the Euler Identity.

Theorem 1.2.1. (The Euler Identity) [15] If G is a connected graph of order n, size m and having

f regions, then n−m+ f = 2.

The Euler Identity has many useful and interesting consequences. One of these (which will allow

us to prove that some graphs are not planar) tells us that the planar graphs cannot have too many

edges.

Theorem 1.2.2. [15] If G is a planar graph of order n ≥ 3 and size m, then m ≤ 3n− 6.

Theorem 1.2.2 provides a necessary condition for a graph to be planar and so provides a sufficient

condition for a graph to be nonplanar. In particular, the contrapositive of Theorem 1.2.2 gives the

following:

If G is a graph of order n ≥ 3 and size m such that m > 3n− 6, then G is nonplanar.

A graph G is called a maximal planar if G is planar but the addition of an edge between any two

nonadjacent vertices of G results in a nonplanar graph. A graph G′ is known as a subdivision of a

graph G if one or more vertices of degree two are inserted into one or more edges of the graph G.

Theorem 1.2.3. (Kuratowski’s Theorem) [15] A graph G is planar if and only if G does not contain

K5, K3,3 or a subdivision of K5 or K3,3 as subgraph.

The crossing number of a graph G is the smallest number of pairwise crossings of edges among all

drawings of G in the plane. In the last decade, there has been significant progress on a true theory

of crossing numbers. There are now many theorems on the crossing number of a general graph and

the structure of crossing-critical graphs, whereas in the past, most results were about the crossing

numbers of either individual graphs or the members of special families of graphs.

The study of crossing numbers began during the Second World War with Paul Turán. He tells

the story of working in a brickyard and wondering about how to design an efficient rail system from

the ‘kilns’to the ‘storage yards’. For each kiln and each storage yard, there was a track directly

connecting them. The problem he considered was how to lay the rails to reduce the number of

crossings, where the cars tended to fall off the tracks, requiring the workers to reload the bricks onto

the cars. This is the problem of finding the crossing number of the complete bipartite graph.

1.3 Distances in Graphs

Let us suppose that we are building a city. We must be interested in placing emergency facilities

where the response time should be minimum furthermore, we can not have all facilities at one place.
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Providing we account for all possible emergency situations simultaneously, we must locate all pos-

sible points where we can approach to any place of city in minimum time. In this section, we give

the definitions of different kinds of centers and others.

Let’s review the definition of distance in a connected graph G. The distance d(x, y) between any

two vertices x and y in a connected graph G is the length of a shortest path between them. The

term distance that we just defined satisfies the following properties in a connected graph G.

1. d(x, y) ≥ 0 for all x, y ∈ V (G).

2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x) for all x, y ∈ V (G).

4. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ V (G).

The ordered pair (V (G), d) is a metric space as the distance d satisfies the properties 1− 4.

The eccentricity e(x) of a vertex x ∈ V (G) is the distance to a vertex farthest from x. Thus

e(x) = max{d(x, y) : y ∈ V }. The radius rad(G) is the minimum eccentricity among the vertices of

G while the diameter diam(G) is the maximum eccentricity among the vertices of G.

A vertex x is a central vertex of G if e(x) = rad(G) and the center denoted by Cen(G) of G is

a subgraph induced by all the central vertices. Thus the center contains all vertices of G having

minimum eccentricity. If every vertex of a graph G is a central vertex, then G is known as self-

centered. A vertex x ∈ V (G) is called peripheral vertex if e(x) = diam(G) and periphery Per(G) is

the subgraph induced by the set of all such vertices.

The following theorem describe the relation between radius and the diameter of the graph.

Theorem 1.3.1. [15] If G be a nontrivial connected graph then

rad(G) ≤ diam(G) ≤ 2rad(G).

The set of all vertices at distances e(x) from x are called eccentric vertices. For a given vertex

x in a graph G, we have studied seeking a vertex x such that d(x, y) = e(x), that is, the vertex x

is farthest from y. Such a vertex x is known as an eccentric vertex of y. A vertex x is an eccentric

vertex of the graph G if x is an eccentric vertex of some vertex of G. If every vertex of a graph G

is an eccentric vertex then G is called an eccentric graph. The eccentric subgraph Ecc(G) of G is

the subgraph of G induced by the set of eccentric vertices of G. The following theorem [15] gives

a necessary and sufficient condition for a connected graph G to be an eccentric subgraph of some

graph.

Theorem 1.3.2. [15] A nontrivial graph G is an eccentric subgraph of some graph if and only if

every vertex of G has eccentricity 1 or no vertex of G has eccentricity 1.
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Figure 1.9: The eccentricities of the vertices of a graph

A tree is known as a central tree or bicentral if it contains one vertex or two central vertices,

respectively. A graph G is a unique eccentric vertex graph if each vertex in G has only one eccentric

vertex.

The following theorem gives a property for the center of a tree.

Theorem 1.3.3. [6] The center of a tree consists of either a single vertex or a pair of adjacent

vertices.

Theorem 1.3.4. [6] A unique eccentric vertex graph is self-centered if and only if each node of G

is eccentric.

The center of a graph is an important factor in the applications involving emergency facilities

where response time (distance) to each single location (vertex) in the region (graph) is critical.

Suppose instead we consider a service facility such as shopping mall, post office, bank, or power

station. When deciding where to locate a post office, we are interested to minimize the average

distance that a person being serviced by the post office must travel. This is equivalent to minimizing

the total distance traveled by all people within the city. In this situations, the concept of median is

described.

Let G be a simple connected graph. The status s(u) of a vertex u in a graph G is the sum of the

distances from u to each other vertex in a graph G. This concept was introduced by Harary [22]. The

set of vertices having minimum status is known as the median M(G) of a graph G. The minimum

status ms(G) of a graph G is the value of the minimum status; the sum of all the status values is

known as total status ts(G) of a graph G.
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Chapter 2

Resolvability in graphs

In this chapter, we discuss the definition of resolving sets, metric dimension (metric generator),

resolving partition, and partition dimension which are the major notions of this dissertation. We

discuss some known results of these resolvability parameters and relation between them. We also

write about the applications of these parameters in the different branches of applied sciences.

2.1 Resolving Sets and Metric Dimension

Suppose a facility consists of seven rooms R1, R2, R3, R4, R5, R6 and R7 as shown in Fig. 2.1. The

R

R

R

R

R

R
2

6

5

4 3

1

R
7

Figure 2.1: A facility consists of seven rooms

distance between rooms R1 and R3, R4 or R5 is 2, and the distance between R2 and R4, R5 or R6

is 2. The distance between rooms R3 and R5 or R6 is 2, and distance between R4 and R6 is also 2.

The distance between a room and itself is 0. The distance between all other pairs of distinct rooms

is 1. Suppose that a certain red sensor is placed in one of the rooms. If a fire takes place in one of

the rooms, then the sensor is able to detect the distance from the room with the red sensor to the
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room containing the fire. Suppose, for example, that the red sensor is placed in R1. If fire takes

place in R4, then the red sensor alerts us that a room at distance 2 from R1 is on fire; that is, any of

the room R3, R4 or R5 is on fire since these are the only rooms at distance 2 from R1. If the room

R1 is on fire, then the red sensor indicates that the fire has occurred in a room at distance 0 from

R1; that is the fire is in R1. However, if the fire is in any of the rooms R2, R6 or R7 then the sensor

tells us that there is fire in a room at distance 1 from R1. But with this information we can not tell

exactly in which room the fire has occurred. In fact, there is no room in which the red sensor can

be placed to identify the exact location of a fire in every instance.

Similarly, If we place the red sensor in R1 and a blue senor in any of the neighboring room R2,

R6 or R7, then there are pair of rooms {R4, R5}, {R3, R4} and {R2, R6} with the same distance,

respectively. If we place the red sensor in R1 and a blue senor in any of the room R3, R4 or R5, then

the pair of neighboring rooms of one of these rooms have the same distance. On the other hand, if

we place the red sensor in R1, a blue sensor in R3, and a yellow sensor in R5, and if the room R4 is

on fire, then the red sensor tells us that the fire is in a room at distance 2 from R1, while the blue

sensor and yellow senor tell us that the fire is in a room at a distance 1 from R3 and from room R5,

that is, R4 has the code (2,1,1). Since the codes are distinct for all rooms, the minimum number of

sensors required to detect the exact location of the fire in any room is three. Even though three is

the answer, care must be taken as to where the three sensors are placed. For example, we can not

place sensors in R1, R2, and in R7 since, in this case, the codes of R4 and R5 are (2, 2, 1) and we

can not distinguish the precise location of the fire. The facility that we have just described can be

represented by a graph, whose vertices are the rooms and such that two vertices in this graph are

adjacent if the corresponding two rooms are adjacent. This gives rise to a problem involving graphs.
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Figure 2.2: A graph model of seven rooms

Let G be a simple connected, and undirected graph, the distance d(x, y) between any two vertices x, y

of the graph G is the length of the shortest path between them. Any two vertices x, y ∈ V (G) of a

simple connected graphG are said to be resolved or distinguished by a vertex z ∈ V (G) if the distance
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between x and z is not same as between y and z, i.e., d(x, z) 6= d(y, z). A resolving set or metric

generator for G is the set W ⊆ V (G), if any two distinct vertices of G are distinguished by some

elements of W . A minimum resolving set is known as metric basis and its cardinality is known as

metric dimension of the graph G, denoted by dim(G). Let W = {w1, w2, · · · , wk} be an ordered set

of V (G), we mention to the k-vector (ordered k-tuple) code(z|W ) = (d(z, w1), d(z, w2)), · · · , d(z, wk)

as the code (or representation) of z with respect to W . We have another equivalent definition. We

can say thatW is a metric generator or resolving set if distinct vertices of G have distinct codes with

respect to the ordered set W and its cardinality is the metric dimension of the graph. Moreover,

the metric dimension is also known as location number and denoted by loc(G).

For an ordered setW of a graph G, the j-th component of code(z|W ) is 0 if and only if z = wj . Thus,

to show that W is a resolving set it is suffices to verify that code(u|W ) 6= code(v|W ) for every pair

of vertices u, v ∈ V (G) \W . For example, consider the graph G of Figure 2.3. The set W = {v, v1}

v2

v1

v3
v4

v5

v

Figure 2.3: A graph with dim(G) = 2

is not a resolving set of the graph G since the code(v2|W ) = (1, 1) = code(v5|W ). But if we

consider the set W1 = {v, v1, v2} then W1 is the resolving set of G with codes code(v|W1) = (0, 1, 1),

code(v1|W1) = (1, 0, 1), code(v2|W1) = (1, 1, 0), code(v3|W1) = (1, 2, 1), code(v4|W1) = (1, 2, 2), and

code(v5|W1) = (1, 1, 2). However, W1 is not a minimum resolving set since W2 = {v1, v2} is also

a resolving set having only two vertices. As there is no single vertex which resolves the graph G.

Therefore, it follows that W2 is a minimum resolving set for the graph G and hence dim(G) = 2.

In the following lemma, a useful property to find the metric dimension of G is presented:

Lemma 2.1.1. [59] Let W be a resolving set for a connected graph G and u, v ∈ V (G). If d(u,w) =

d(v, w) for all vertices w ∈ V (G) \ {u, v}, then {u, v} ∩W 6= ∅.

Let F denotes a family of connected graphs Gn : F = (Gn)n≥1 depending on n as follows: the

order |V (Gn)| = ϕ(n) and lim
n→∞

ϕ(n) =∞. If there exists a constant C > 0 such that dim(Gn) ≤ C
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for every n ≥ 1, then we shall say that F has bounded metric dimension; otherwise F has unbounded

metric dimension. If all graphs in F have the same metric dimension (which does not depend on n),

F is called a family with constant metric dimension.

A model application of these distance related parameters to robot navigation in networks [39], the

robot proceed from node to node of a graph and can locate itself throughout a uniquely exclusive

labelled “landmarks" node set of the graph. It is assume that a robot moving over the graph is

using the distances to the landmarks to “knows" its position in each moment, i.e., if a robot knows

the distances to the vertices of the node set, then its position on the graph is uniquely determined.

With this purpose, the set of landmarks is the metric generator for the graph modeling the network

topology. A very important goal is then to minimize the number of landmarks needed, and to deter-

mine where they should be located, so that the distances to the landmarks uniquely determine the

robot’s position on the graph. Solutions to these questions are produced by the metric dimension

and some metric basis of the graph, respectively.

The concept of metric dimension was first introduced by Slater in [55,56], and then studied indepen-

dently by Harary and Melter in [21]. Slater refereed to the metric dimension of a simple connected

graph as its “location number" and motivated the study of this invariant by its application to the

placement of a minimum number of sonar/loran detecting devices in a network so that the position

of every vertex in the network can be uniquely described in terms of its distances to the devices in

the set.

2.2 Resolving Partitions and Partition Dimension

The concept of metric dimension was further generalized in the following fashion. Let S ⊂ V (G)

be a proper subset of the set of vertices V (G) of the graph G and w ∈ V (G) be any vertex

of the graph G, then we define the distance d(w, S) between the vertex w and the set S, by

d(w, S) = min{d(w, v)|v ∈ S}. If the set Π = {S1, S2, · · · , Sk} is an ordered k-partition of ver-

tices of G and let w be any vertex of G. The representation or code code(w|Π) of w with respect to

Π is the k-tuple (d(w, S1), d(W,S2), · · · , d(w, Sk)). If the distinct vertices of the graph G have dis-

tinct codes or representation with respect to the set Π, then Π is called a resolving partition for V (G)

and the minimum cardinality of the resolving partition of V (G) is called partition dimension of G,

denoted by pd(G). This concept was introduced in [13,14]. Let Π = {S1, S2, · · · , Sk} be an ordered

k-partition of V (G). If v ∈ Si, w ∈ Sj where 1 ≤ i, j ≤ k and i 6= j, then code(v|Π) 6= code(w|Π)

since d(w, Sj) = 0 but d(v, Sj) 6= 0. Thus, in order to determine whether a given partition Π of

V (G) is a resolving partition for V (G), it is suffices to verify that if the vertices of G belonging to

the same class of Π have distinct codes with respect to Π. When d(v, Sj) 6= d(w, Sj) we can say

that the class Sj distinguishes vertices w and v.

To illustrate these concepts, consider the graph G of order 5 in Figure 2.4.

21



a b

d c

e

G:

Figure 2.4: A graph with pd(G) = 3

Let Π = {S1, S2, S3} be an ordered 3-partition of G, Where S1 = {a, b}, S2 = {d, e}, and S3 =

{c}. Then the five codes (3-vectors) are code(b|Π) = (0, 1, 1), code(d|Π) = (1, 0, 1), code(a|Π) =

(0, 1, 2), code(e|Π) = (1, 0, 1), code(c|Π) = (1, 1, 0).

Since code(d|Π) = (1, 0, 1) = code(e|Π) = (1, 0, 1), this shows that Π is not a resolving par-

tition of the graph G. Next, let Π1 = {S1, S2, S3, S4} be an ordered 4-partition of G, Where

S1 = {a, b}, S2 = {d}, S3 = {e}, and S4 = {c}. Then the five codes (4-vectors) are code(b|Π1) =

(0, 2, 1, 1), code(d|Π1) = (1, 0, 1, 1), code(a|Π1) = (0, 1, 1, 2), code(e|Π1) = (1, 1, 0, 1),

code(c|Π1) = (1, 1, 1, 0).

Since the five codes are distinct, Π1 is a resolving partition of G. However, Π1 is not a minimum re-

solving partition of the graph G. To find the minimum resolving partition of G, let Π2 = {S1, S2, S3}
be an ordered 3-partition of G, Where S1 = {a}, S2 = {b}, and S3 = {c, d, e}. Then the corre-

sponding five codes (3-vectors) are code(b|Π2) = (1, 0, 1), code(d|Π2) = (1, 2, 0), code(a|Π2) =

(0, 1, 1), code(e|Π2) = (1, 1, 0), code(c|Π2) = (2, 1, 0).

It follows that Π2 is a resolving partition of G. Since, there is no 2-partition of G which resolves the

graph G, hence Π2 is a minimum resolving partition of the graph G and so pd(G) = 3

A useful property to determine the pd(G) is the following lemma [14].

Lemma 2.2.1. [14] Let Π be a resolving partition of V (G) and v, w ∈ V (G). If d(v, u) = d(w, u)

for all vertices u ∈ V (G) \ {v, w}, then v and w belong to different classes of Π.

These concepts have some applications in chemistry for representing chemical compounds in a

way that gives distinct representations to distinct compounds [37] as well as in problems of pattern

recognition and image processing, some of which involve the use of hierarchical data structures [40].
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2.3 Some Known Results on Metric Dimension and Partition Di-

mension

If G is a nontrivial simple connected k-dimensional graph of order n, then 1 ≤ k ≤ n− 1.

Some important results are presented over here which have been established in the literature. The

following result states that for every 1 ≤ k ≤ n− 1, there exists a k-dimensional connected graph of

order n.

Theorem 2.3.1. [11] For every pair n, k of integers with 1 ≤ k ≤ n−1, there exists a k-dimensional

connected graph of order n.

The following theorems characterize simple connected graphs of order n having dimension 1, n−1

or n− 2 and give the dimensions of some well-known classes of graphs.

For two vertex-disjoint connected graphs G and K, G∪K is a disconnected graph having vertex set

V (G) ∪ V (K) and edge the set E(G) ∪E(K). The join G+K consists of all vertices of G ∪K and

all edges joining a vertex of G and a vertex of K.

Theorem 2.3.2. [11] Let G be a simple connected graph of order n ≥ 2. Then

(a) dim(G) = 1 if and only if G = Pn.

(b) dim(G) = n− 1 if and only if G = Kn.

(c) for n ≥ 4, dim(G) = n − 2 if and only if G = Kr,s ,r, s ≥ 1, G = Kr + K̄s, r ≥ 1, s ≥ 2 or

G = Kr + (K1 ∪Ks), r, s ≥ 1.

There is no characterization available for the graphs with metric dimension 2. The next two

theorems [57] gives properties of simple connected graphs with metric dimension 2.

Theorem 2.3.3. [57] Let G be a simple connected graph with metric dimension 2 and let {u1, u2} ⊆
V (G) be a metric basis in G, then the degree of both u1 and u2 is at most 3 and there exists a unique

path between u1 and u2.

Theorem 2.3.4. [57] A simple connected graph G with dim(G) = 2 can not have following:

• K5 as a subgraph.

• K5 − e as a subgraph, where e is an edge.

• K3,3 as a subgraph.

• The Petersen graph as a subgraph.

Metric dimension of some families of circulant graphs denoted by G ∼= C(n,±{1, 2, · · · , j}),
1 ≤ j ≤ bn2 c and n ≥ 3 is stated in the following theorem.

Theorem 2.3.5. [20] Let G ∼= C(n,±{1, 2, · · · , j}), then

dim(G)

{
= j + 1, when n ≡ i(mod 2j); 2 ≤ i ≤ j + 2;

≤ i− 1, when n ≡ i(mod 2j); 2 + j ≤ i ≤ 2j + 1.
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Metric dimension of some families of Harary graphs denoted byG ∼= H(r, n) ∼= C(n,±{1, 2, · · · , r−12 , n2 }),
when r is odd, n is even and j = r−1

2 is stated in the following theorem.

Theorem 2.3.6. [20] Let G ∼= C(n,±{1, 2, · · · , j, n2 }), then

dim(G)

{
= j + 2, when n ≡ 2j + 2i(mod 4j); 2 ≤ i ≤ j + 1;

≤ i− 1, when n ≡ 2j + 2i(mod 4j); 2 + j ≤ i ≤ 2j + 1.

We would like to use the terminology given in [11], [47] and [50]. A vertex of degree at least

3 will be known as a major vertex. An end-vertex w of a graph T is said to be a terminal vertex

of a major vertex u of T if d(w, u) < d(w, v) for every other major vertex v of T . The terminal

degree ter(u) of a major vertex u is the number of terminal vertices of u. A major vertex u of T

is an exterior major vertex of T if it has a positive terminal degree. Let σ(T ) denote the sum of

the terminal degrees of the major vertices of T and let ex(T ) denote the number of exterior major

vertices of T .

Theorem 2.3.7. [21] If T is a tree that is not a path, then

dim(T ) = σ(T )− ex(T ).

A fundamental question in graph theory concerns how the value of a parameter is affected by

making a small change in the graph. The dimension of a simple connected graph G is also affected

by the addition of an edge. It has been established in [11] that the dimension of a tree is also affected

by the addition of an edge. The result suggests that the dimension can increase by at most 1 or

decrease by at most 2. We state the result in the following theorem.

Theorem 2.3.8. [11] Let T be a tree of order at least 3 and let f be an edge in its complement T̄

of T . Then

dim(T )− 2 ≤ dim(T + f) ≤ dim(T ) + 1.

Moreover, for each integer j with −2 ≤ j ≤ 1, there exists a tree Tj and an edge fj in T̄j such that

dim(Tj + fj) = dim(Tj) + j.

The relationship between the dimension of cartesian product H�K2 of a simple connected graph

H and complete graph K2 and the dimension of H was also proved in [11].

Theorem 2.3.9. [11] For every nontrivial simple connected graph H,

dim(H) ≤ dim(H�K2) ≤ dim(H) + 1.

The metric dimension of cartesian product of connected graphs has been studied in [9] and [43].

The following result in [11] provides bounds for the dimension of a graph in terms of its order and

diameter.
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Theorem 2.3.10. [11] For any positive integers D = diam(G) and n with D < n, define f(n,D)

as the least positive integer k such that k +Dk ≥ n. Then for a simple connected graph G of order

n ≥ 2 and diameter D,

f(n,D) ≤ dim(G) ≤ n−D.

A sharp lower bound for the metric dimension of a simple connected graph G in terms of its

maximum degree ∆(G) is presented in the following theorem.

Theorem 2.3.11. [12] Let G be a nontrivial simple connected graph. Then

dim(G) ≥ dlog3(∆(G) + 1)e

and this bound is sharp.

In fact, for each pair k,4 of integers such that 3k = 4+1, there exists a simple connected graph

Gk,4 such that dim(Gk,4) = k and 4(Gk,4) = 4.

Now we present some results about the partition dimension of simple connected graphs. If G is a

simple connected graph of order n ≥ 2, then certainly 2 ≤ pd(G) ≤ n. It was also proved in [14]

that every pair k, n of integers with 2 ≤ k ≤ n is realizable as the partition dimension and order of

some simple connected graph.

Theorem 2.3.12. [14] For each pair k, n of integers with 2 ≤ k ≤ n, there exists a simple connected

graph of order n with partition dimension k.

The metric dimension and partition dimension of a simple connected graph are related. In [14],

the following theorem has been established.

Theorem 2.3.13. [14] If G is a nontrivial simple connected graph, then

pd(G) ≤ dim(G) + 1.

Moreover, for each pair b, a of positive integers with da2e + 1 ≤ b ≤ a + 1, there exists a simple

connected graph G such that pd(G) = b and dim(G) = a.

However, the metric dimension may be much larger than the partition dimension and this phe-

nomena is known as discrepancy between metric dimension and partition dimension of simple con-

nected graphs. The discrepancies between metric dimension and partition dimension of a connected

graph G have already been subject of the following papers [40, 58, 59]. The metric dimension of

infinite graphs is studied in [10]. The detailed discussion about the discrepancies between metric

dimension and partition dimension is given in chapter 5.
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In [14], an open problem was proposed focusing the Theorem 2.3.13. Is it the case that pd(G) ≥
ddim(G)

2 e + 1 for every nontrivial simple connected graph G? Tomescu provided a negative answer

to this question in [58].

Chartrand and Zhang established an improved upper bound for pd(G) in terms of order and

diameter of the connected graph G in [14].

Theorem 2.3.14. [14] If G is a simple connected graph of order n ≥ 3 and diameter D, then

pd(G) ≤ n−D + 1.

Chartrand, Salehi and Zhang computed the partition dimension of some well known classes of

simple connected graphs in [14], where the simple connected graphs of order n with pd(G) = 2, n−1, n

are characterized.

Theorem 2.3.15. [14] Let G be a nontrivial simple connected graph of order n. Then

(a) pd(G) = 2 if and only if G = Pn

(b) pd(G) = n if and only if G = Kn and

(c) for n ≥ 3, pd(G) = n− 1 if and only if

G ∈ {K1,n−1,Kn − e,K1 + (K1 ∪Kn−1)}.

Tomescu [58] characterized all the graphs of order n ≥ 9 with partition dimension n − 2, thus

completing the characterization of graphs of order n with partition dimension 2, n − 2, n − 1 or n

given by Chartrand, Salehi and Zhang. The list of such graphs includes 23 members.

Chartrand, Salehi and Zhang also studied the partition dimension of a tree in [16]. Although, the

partition dimension of some special types of trees, such as stars, paths, double stars and caterpillars

have been computed, but a general formula for the partition dimension of a tree is still an open

question. However, it was proved that there is no tree of order n having partition dimension n− 2.

The partition dimension as well as the connected partition dimension of the wheelWn with n spokes

has been computed in [61]. The metric dimension and partition dimension of Cayley digraphs have

been determined in [18] and [19].

A connected graph G is called unicyclic graph if it contains only one cycle. The following theorem

provides the upper bound for partition dimension of unicyclic graphs in terms of the partition

dimension of spanning trees.

Theorem 2.3.16. [48] Let T be a spanning tree of a unicyclic graph G, then pd(G) ≤ pd(T ) + 3.

The partition dimension of some products of graphs are presented in the following theorems.

In the following theorem, the upper bound and lower bound for the partition dimension of strong

product of graphs is presented.
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Theorem 2.3.17. [63] For any two nontrivial connected graphs G and H, we have

4 ≤ pd(G�H) ≤ pd(G).pd(H).

In the following theorem the lower bound for the partition dimension of strong product of graphs

is presented.

Theorem 2.3.18. [63] For any connected non-complete graph G of order t ≥ 3 and any integer

n ≥ 2, we have

pd(G�Kn) ≥ n+ 2.

In the following theorem the upper bound for the partition dimension of cartesian product of

graphs is presented.

Theorem 2.3.19. [63] For any two nontrivial connected graphs G and H, we have

pd(G�H) ≤ pd(G) + pd(H)− 1.

In the following theorem the upper bound for partition dimension of corona product of graphs

in terms of the metric dimension of the corona product of graphs is presented.

Theorem 2.3.20. [49] For any two nontrivial connected graphs G and H, we have

pd(G�H) ≤ dim(G�H) + 1.

Theorem 2.3.21. [49] If G and H are two simple connected graphs of order n1 ≥ 2 and n2 ≥ 2,

respectively. If D(H) ≤ 2, then

pd(G�H) ≤ pd(G) + pd(H).
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Chapter 3

Metric Dimension of Wheel Related

Graphs

In this chapter, we study the metric dimension of certain wheel related graphs, namely m-level

wheel, an infinite class of convex polytopes defined in [2] and antiweb-gear graphs denoted by Wn,m,

Qn and AWJ2n, respectively. The study of this infinite class of convex polytopes gives a negative

answer to an open problem proposed in [30].

Open Problem [30]: Is it the case that graph of every convex polytope has constant metric dimen-

sion? We prove that these infinite classes of wheel related graphs have unbounded metric dimension.

Moreover, we extend this study to infinite classes of convex polytopes Qm
n , Dn, and Bn generated by

wheel related graphs.

We prove that these infinite classes of convex polytopes generated by wheel related graphs have un-

bounded metric dimension which further supports the negative answer to the open problem raised

in [30]. It is natural to ask for the characterization of graphs with unbounded metric dimension.

3.1 Introduction and preliminary results

A polytope is a geometric object with flat sides and may exist in any general number of dimensions

d as a d-dimensional polytope or d-polytope. For example, a 2-dimensional polygon is a 2-polytope

and a 3-dimensional polyhedron is a 3-polytope. A d-polytope is called simple polytope if each vertex

is contained in exactly d faces. A convex polytope is a special case of polytopes, having the additional

property that it is also a convex set of points in the d-dimensional space Rd. Convex polytopes play

an important role in various branches of mathematics, applied sciences and most notably in linear

programming.

The families of graphs with constant metric dimension were discussed previously in [24, 26, 30, 36].

The metric dimension of several classes of convex polytopes has been studied in [24, 27, 29] and it

was proved that the metric dimension of those convex polytopes is constant.
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By denoting G + H the join of two graphs G and H, a fan is defined as fn = K1 + Pn, for n ≥ 1.

Caceres et al. [8] determined the metric dimension of fan graph as given in the following theorem.

Theorem 3.1.1. [8] Let fn be a fan of order n ≥ 1. Then

dim(fn) = b2n+2
5 c, for n ≥ 7.

The helm graph Hn is a graph obtained by adding a pendant edge on each rim vertex of the

wheel graph Wn. In [34], it was proved that the metric dimension of the helm graph is unbounded,

i.e. dim(Hn) = b2n+2
5 c.

In this chapter, the metric dimension of certain wheel related graphs has been computed. Moreover,

we extend this study to infinite classes of convex polytopes generated by wheel or gear graphs. These

results add further support to the negative answer of an open problem raised in [30].

We show that these infinite classes of convex polytopes generated by wheel related graphs have

unbounded metric dimension.

3.2 Metric dimension of m-level wheels

Denoting by G + H as join of two graphs, a wheel graph denoted by Wn,1 is defined as Wn,1
∼=

Cn,1 + K1, where Cn,1 : v1, v2, · · · , vn, v1 for n ≥ 3 is a cycle of length n. For our convenience, we

denote the outer cycle of the wheel by Cn,1. Moreover, the vertices lying on cycle(s) are known as

rim vertices and the edges incident on the central vertex of a wheel are known as spokes. It was

proved in [7] that dim(Wn,1) = b2n+2
5 c for n ≥ 7, implying that wheels have unbounded metric

dimension.

Suppose Cn,1 is an outer cycle of length n of Wn,1. If B is a basis of Wn,1 then it contains r ≥ 2

vertices on Cn,1 for n ≥ 3 and we can order the vertices of B = {vi1 , vi2 , · · · , vir} so that i1 < i2 <

· · · , ir. We shall say that the pairs of vertices {via , via+1} for 1 ≤ a ≤ r − 1 and {vir , vi1} are pairs

of neighboring vertices. Given such an ordering, as in [7], we will define the gap ga for 1 ≤ a ≤ r− 1

as the set of vertices {vj |ia < j < ia+1} and gr = {vj |1 ≤ j < i1 or ir < j ≤ n}. Thus we have

r gaps, some of which may be empty. We will say that gaps ga and gb are neighboring gaps when

|a− b| = 1 or r − 1.

It was shown in [7] that if B is a basis for Wn,1 then B consists of only those vertices of Cn,1 that

satisfy the following properties:

(a) Every gap of B contains at most three vertices.

(b) At most one gap of B contains three vertices.

(c) If a gap of B contains at least two vertices, then both of its neighboring gaps contain at most one

vertex.

Definition 3.2.1. A double-wheel graphWn,2 can be obtained as a join of 2Cn+K1, and inductively

we can construct an m-level wheel graph denoted by Wn,m as Wn,m
∼= mCn +K1.
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Figure 3.1: An m-level wheel W12,m

Let Cn,1, · · · , Cn,m represent the cycles of Wn,m at levels 1, · · · ,m, respectively, as shown in Fig.

3.1. We want to compute the metric dimensions of Wn,2, · · · ,Wn,m. For this, we first study the

metric dimension of Wn,2.

Suppose that Wn,2
∼= 2Cn,1 +K1 for n ≥ 3, then the central vertex v does not belong to any basis.

Since diam(Wn,2) = 2, so if v belongs to any metric basis, say B, then there must exist two distinct

vertices vi and vj , for 1 ≤ i 6= j ≤ n such that code(vi|B) = code(vj |B). Consequently, the basis

vertices belong to the rim vertices ofWn,2 only. If B is a basis ofWn,2, then B contains only vertices

from the cycle induced by Cn,1 and Cn,2. We have the following gap conditions for the selection of

basis vertices:

(i) Every gap of B for the vertices of Cn,1 must satisfy conditions (a)-(c) presented for Wn,1.

(ii) Every gap of B may have at most three vertices of Cn,1 or Cn,2. Otherwise, there may be a gap

having three vertices, say, wi, wi+1, wi+2 (1 ≤ i ≤ n) of Cn,2 and addition performed modulo n such

that code(wi+1|B) = code(vi+1|B), where vi, vi+1, vi+2 are the vertices of the gap of Cn,1. In other

words, we can say that at most one gap of B have three vertices.

(iii) If a gap of B have two vertices; then its neighboring gap contains at most one vertex. Otherwise,

there exists five consecutive vertices, say, wi, wi+1, wi+2, wi+3, wi+4 such that wi+2 ∈ B (1 ≤ i ≤ n).

However, then we have code(wi+1|B) = code(wi+3|B).

Now suppose that B is any set of vertices of Cn,1 and Cn,2 that satisfies conditions (i)-(iii) and let

y ∈ V (Wn,2) \B. There are following possibilities to be discussed:
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(1) If y belongs to a gap of B of vertices of Cn,1 then it must satisfy the following conditions:

(a’) y belongs to a gap of size one of B. Suppose vi and vj be the neighboring vertices of B that

determine this gap. Then y is adjacent to vi and vj and has distance two from all other vertices of

B. Since n ≥ 7, no other vertex of Wn,1 has this property and so code(y|B) 6= code(x|B) for x 6= y,

where x, y ∈ V (G) \B.

(b’) y belongs to a gap of size two of B. Then we may assume that vj , vj+1 = y, vj+2, vj+3 are

vertices of Cn,1, where vj+1, vj+3 ∈ B and vj+2 /∈ B. Then y is adjacent to vj and has distance 2

from all other vertices of B. By property (c), only y has this property and so code(y|B) 6= code(x|B)

for x 6= y, where x, y ∈ V (G) \B.

(c’) y belongs to a gap of size three of B. Then there exists vertices vj , vj+1, vj+2,

vj+3, vj+4 of Cn,1, where only vj+1, vj+4 ∈ B. Assume first that y = vj+1. Then y is adjacent to vj
and has distance 2 from all other vertices of B. By property (c), y is the only vertex of Wn,1 with

this property and so code(y|B) 6= code(x|B) for x 6= y, where x, y ∈ V (G) \B.

Next, we assume that y = vj+2. Then code(y|B) = (2, 2, · · · , 2). By properties (a) and (b), no other

vertex of Wn,1 has this representation.

(d’) y = v be a central vertex. Then code(y|B) = (1, 1, · · · , 1) and y is the only vertex of Wn,1 with

this representation.

(2) Similarly, one can show that if either y belongs to a gap of size one, two, or three of B of vertices

of cycle induced by Cn,2 or if y is a central vertex of Wn,2; then we have code(y|B) 6= code(x|B) for

x 6= y; x, y ∈ V (Wn,2).

Therefore, any set B having properties (i)-(iii) is a resolving set for Wn,2.

In the next theorem, we give a precise formula for computing the metric dimension of double wheel

Wn,2 for n ≥ 7. This result provides a base for extending the result to the metric dimension of

m-level wheels.

Theorem 3.2.2. If n ≥ 7, then we have dim(Wn,2) = dim(Wn,1) + b2n+4
5 c.

Proof. Let Wn,1
∼= Cn,1 + K1 and Wn,2

∼= 2Cn,1 + K1, where v is the central vertex of Wn,2 and

Cn,1 : v1, · · · , vn, v1 and Cn,2 : w1, · · · , wn, w1 be the outer cycles of Wn,2 at levels 1 and 2, respec-

tively. First we prove that dim(Wn,2) ≤ dim(Wn,1) + b2n+4
5 c by constructing a resolving set in Wn,2

having dim(Wn,1) + b2n+4
5 c vertices. We assume the following cases according to the residue class

modulo 5 to which n belongs.

Case 1: When n ≡ 0 (mod 5), then we may write n = 5k, where k ≥ 2, and dim(Wn,1) + b2n+4
5 c =

4k. Since B = {v5i+1, v5i+4, w5j+1, w5j+4 : 0 ≤ i, j ≤ k − 1}, it is a resolving set having 4k vertices

as it satisfies conditions (i)-(iii).

Case 2: When n ≡ 1 (mod 5), then we may write n = 5k+1, where k ≥ 2, and dim(Wn,1)+b2n+4
5 c =
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4k + 1. Since B = {v5i+1, v5i+4 : 0 ≤ i ≤ k − 2} ∪ {v5k−4, v5k} ∪ {w5j+1, w5j+4 : 0 ≤ j ≤
k − 1} ∪ {w5k+1}, it is a resolving set having 4k + 1 vertices as it satisfies conditions (i)-(iii).

Case 3: When n ≡ 2 (mod 5), then we may write n = 5k+2, where k ≥ 1, and dim(Wn,1)+b2n+4
5 c =

4k + 2. Since B = {v5i+1, v5i+4, w5j+1, w5j+4 : 0 ≤ i, j ≤ k − 1} ∪ {v5k+1, w5k+1}, it is a resolving

set having 4k + 2 vertices as it satisfies conditions (i)-(iii).

Case 4: When n ≡ 3 (mod 5), then we may write n = 5k+3, where k ≥ 1, and dim(Wn,1)+b2n+4
5 c =

4k + 3. Since B = {v5i+1, v5i+4 : 0 ≤ i ≤ k − 2} ∪ {v5k−4, v5k,v5k+2
} ∪ {w5j+4, w5j+6 : 0 ≤ j ≤

k − 1} ∪ {w1, w5k+3}, it is a resolving set having 4k + 3 vertices as it satisfies conditions (i)-(iii).

Case 5: When n ≡ 4 (mod 5), then we may write n = 5k+4, where k ≥ 1, and dim(Wn,1)+b2n+4
5 c =

4k + 4. Since B = {v5i+1, v5i+4, w5j+1, w5j+4 : 0 ≤ i, j ≤ k}, it is a resolving set having 4k + 4

vertices as it satisfies conditions (i)-(iii).

Hence, it follows from above discussion that dim(Wn,2) ≤ dim(Wn,1) + b2n+4
5 c.

Next, we show that dim(Wn,2) ≥ dim(Wn,1) + b2n+4
5 c. Let B be a basis for Wn,2. We consider the

following cases:

Case(a). subcase(a1): | B1 |= 2l for some integer l ≥ 1, where B1 is the basis for Wn,1 as

obtained in [7], i.e. | B1 |≥ dim(Wn,1) = b2n+2
5 c.

subcase(a2): | B2 |= 2t for some integer t ≥ 1, where B2 represents the resolving vertices lying on

Cn,2 in presence of vertices of B1. The conditions (i)-(iii) imply that at most t gaps of B2 contain

two vertices. So the number of vertices that belong to different gaps of B2 are at most 3t. Therefore

we get, n− 2t ≤ 3t which implies that | B2 |= 2t ≥ d2n5 e ≥ b
2n+4

5 c.
subcase(a3): | B2 |= 2t+ 1 for some integer t ≥ 1, where B2 represents the resolving vertices lying

on Cn,2 in presence of vertices B1. Condition (i)-(iii) imply that at most t gaps of B2 contain two

vertices. So the number of vertices that belong to different gaps of B2 are at most 3t+ 1. Therefore

we get, n − 2t − 1 ≤ 3t + 1 which implies that | B2 |= 2t + 1 ≥ d2n+1
5 e ≥ b

2n+4
5 c. Hence by com-

bining subcase(a1) with subcase(a2) or subcase(a3), we obtain that | B |=| B1 | + | B2 |≥ 2l+ 2t ≥
dim(Wn,1) + b2n+4

5 c.

Case(b). subcase(b1): | B1 |= 2l + 1 for some integer l ≥ 1, where B1 is the basis for Wn,1

as obtained in [7], i.e. | B1 |≥ dim(Wn,1).

subcase(b2): | B2 |= 2t + 1 for some integer t ≥ 1, where B2 represents the resolving vertices

lying on Cn,2 in presence of vertices B1. Condition (i)-(iii) imply that at most t gaps of B2 contain

two vertices. So the number of vertices that belong to different gaps of B2 are at most 3t + 1.
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Therefore we get, n− 2t− 1 ≤ 3t+ 1 which implies that | B2 |= 2t+ 1 ≥ d2n+1
5 e ≥ b

2n+4
5 c

subcase(b3): This case is similar to the subcase(a2). Hence by combining subcase(b1) with subcase(b2)

or subcase(b3), we obtain that | B |=| B1 | + | B2 |≥ 2l + 1 + 2t+ 1 ≥ dim(Wn,1) + b2n+4
5 c, which

completes the proof.

We now extend our result to m-level wheel denoted by Wn,m. In the next theorem, we apply

mathematical induction on the number of levels of wheel to prove the result.

Theorem 3.2.3. We have dim(Wn,m) = dim(Wn,1) + (m − 1)b2n+4
5 c for every integer n ≥ 7 and

m ≥ 3.

Proof. We will prove this result by induction on the number of levels of wheel denoted by m.

When m = 1, then dim(Wn,1) = b2n+2
5 c is obtained in [7]. When m = 2, then dim(Wn,2) =

dim(Wn,1) + b2n+4
5 c by Theorem 3.2.2. Now we assume that the assertion is true for m = k, i.e.,

dim(Wn,k) = dim(Wn,1) + (k − 1)b2n+ 4

5
c. (3.2.1)

We will show that it is true for m = k + 1. Suppose dim(Wn,k+1) = dim(Wn,k) + b2n+4
5 c, then by

using equation (3.2.1), we have dim(Wn,k+1) = {dim(Wn,1)+(k−1)b2n+4
5 c}+b

2n+4
5 c = dim(Wn,1)+

(k)b2n+4
5 c. Hence the result is true for all positive integers m ≥ 3.

3.3 Metric dimension of antiweb-gear graphs

The gear graph denoted by J2n is defined as follows: Consider an even cycle C2n : v1, v2, · · · , v2n, v1,
where n ≥ 2 and a new vertex v is adjacent to n vertices of C2n : v2, v4, · · · , v2n. The gear graph J2n
can be obtained from the wheel W2n by alternately deleting n spokes. Tomescu et al. [60] proved

that dim(J2n) = b2n3 c for n ≥ 4.

The square of a cycle Cn is denoted by C2
n and it is isomorphic to circulant graph Cn(1, 2), i.e.

C2
n
∼= Cn(1, 2). An antiweb-wheel denoted by AWWn can be defined as AWWn

∼= C2
n + K1. We

have V (AWWn) = V (Wn) and E(AWWn) = E(Wn) ∪ {vivi+2 : 0 ≤ i ≤ n}, where the indices are

taken modulo n. In [41], it was proved that

dim(AWWn) =

{
dn+1

3 e : if n is odd;

dn3 e : otherwise.

The antiweb-gear graph can be obtained from gear graph J2n by replacing C2n by C2
2n and is denoted

by AWJ2n. We have V (AWJ2n) = V (J2n) and E(AWJ2n) = E(J2n) ∪ {vivi+2 : 0 ≤ i ≤ n}, where
the indices are taken modulo n. In this section, we study the metric dimension of antiweb-gear

graphs and we prove that this class has unbounded metric dimension.

Suppose that AWJ2n for n ≥ 3, then the central vertex v does not belong to any basis. Since

diam(AWJ2n) = 4, if v belongs to any metric basis, say B, then there must exist two distinct
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Figure 3.2: An antiweb-gear graph AWJ12

vertices vi and vj , for 1 ≤ i 6= j ≤ n such that code(vi|B) = code(vj |B). Consequently, the basis

vertices belong to the rim vertices of AWJ2n only.

A gap determined by neighboring vertices vi and vj will be called an α − β gap with α ≥ β when

d(vi) = α and d(vj) = β or when d(vi) = β and d(vj) = α. Hence we have three kinds of gaps in

AWJ2n, i.e. 4− 4, 5− 4 and 5− 5 gaps.

Lemma 3.3.1. Let B be a basis of AWJ2n n ≥ 6, then every 4 − 4, 5 − 4 and 5 − 5 gap of B

contains at most 9, 8 and 7 vertices, respectively.

Proof. On contrary, suppose that there is a 4−4 gap of B having 11 vertices v1, · · · , v11 of C2n such

that deg(v1) = deg(v11) = 5. For this case, code(v5|B) = code(v7|B), a contradiction. Similarly, if

there is a 5− 4 having 10 vertices of C2n say, v1, · · · , v10 such that deg(v1) = 5 and deg(v10) = 4. In

this case, we get code(v5|B) = code(v7|B), a contradiction. If there is a 5− 5 gap having 9 vertices

say, v1, · · · , v9 such that deg(v1) = deg(v9) = 4, then code(v5|B) = code(v7|B), a contradiction.

From now on, the 4 − 4, 5 − 4 and 5 − 5 gaps having 9, 8 and 7 vertices, respectively will be

referred as major gaps, while the rest of all will be referred as minor gaps. The vertices having

degree 5 and 4 are known as major (labeled by star) and minor vertices, respectively.

Lemma 3.3.2. Any basis B of AWJ2n (n ≥ 6) contains at most one major 4− 4 or 5− 4 gap.

Proof. On contrary, suppose that B contains two distinct major gaps of kind 4 − 4 or 5 − 4, then

we have the following cases:

• 4 − 4 and 4 − 4 gaps: ∗v1, v2,
∗
v3, v4,

∗
v5, v6,

∗
v7, v8,

∗
v9 and ∗

u1, u2,
∗
u3, u4,

∗
u5, u6,

∗
u7, u8,

∗
u9; in this case

we have code( ∗v5|B) = code(
∗
v7|B).
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• 4 − 4 and 5 − 4 gaps: ∗v1, v2,
∗
v3, v4,

∗
v5, v6,

∗
v7, v8,

∗
v9 and u1,

∗
u2, u3,

∗
u4, u5,

∗
u6, u7,

∗
u8; in this case we

have code( ∗v5|B) = code(
∗
u4|B).

• 5− 4 and 5− 4 gaps: u1,
∗
u2, u3,

∗
u4, u5,

∗
u6, u7,

∗
u8 and v1,

∗
v2, v3,

∗
v4, v5,

∗
v6, v7,

∗
v8; in this case we have

code(
∗
v4|B) = code(

∗
u4|B).

In the next lemma, we will prove that any two neighboring gaps, one of which being major gap

may contain together at most 12 vertices.

Lemma 3.3.3. For any basis B of AWJ2n (n ≥ 6), any two neighboring gaps, one of which being

major gap of kind 4− 4, 5− 4 or 5− 5 contain together at most 12 vertices.

Proof. If the major gap is a 4 − 4 gap (with 9) vertices, then by Lemma 3.3.2 its neighboring

gap can neither be a 4 − 4 gap having 5 vertices nor be a 5 − 4 gap having 4 vertices. If it is

true, consider a path: ∗
v1, v2,

∗
v3, v4,

∗
v5, v6,

∗
v7, v8,

∗
v9, v10,

∗
v11, v12,

∗
v13, v14,

∗
v15 on C2n where v10 ∈ B

such that code(v9|B) = code(v11|B), a contradiction. If the major gap is a 5 − 4 gap (with 8)

vertices; then by Lemma 4.3.2, its neighboring gap can’t be a 4 − 4 gap having 5 vertices. If it

is true, consider a path v1,
∗
v2, v3,

∗
v4, v5,

∗
v6, v7,

∗
v8, v9,

∗
v10, v11,

∗
v12, v13,

∗
v14 on C2n where ∗v9 ∈ B such

that code(v8|B) = code(v10|B), a contradiction. If the major gap is a 5 − 5 gap having 7 vertices

then its neighboring gap can’t be a minor 5 − 5 gap having 5 vertices. If it is true; consider a

path: v1,
∗
v2, v3,

∗
v4, v5,

∗
v6, v7,

∗
v8, v9,

∗
v10, v11,

∗
v12, v13 on C2n where ∗

v8 ∈ B such that code( ∗v6|B) =

code(
∗
v10|B), a contradiction.

In the next lemma, we will prove that any two minor neighboring gaps may contain together at

most ten vertices.

Lemma 3.3.4. If B is any basis of AWJ2n (n ≥ 6), then any two minor neighboring gaps contain

together at most 10 vertices.

Proof. By Lemma 3.3.1, any minor 4−4, 5−4, and 5−5 gap contains 7, 6 and 5 vertices, respectively.

It suffices to prove the following cases:

• Any minor 4 − 4 gap having 5 or 7 vertices has a neighboring 4 − 4 or 5 − 4 gaps with at most

3 and 2 vertices, respectively. Otherwise, there is a neighboring 4 − 4 or 5 − 4 gap having 5 and 4

vertices, respectively. In this case, consider a path: ∗v1, v2,
∗
v3, v4,

∗
v5, v6,

∗
v7, v8,

∗
v9, v10,

∗
v11, v12,

∗
v13 on

C2n, where v8 ∈ B such that code( ∗v7|B) = code(
∗
v9|B), a contradiction.

• Any minor 5 − 4 gap having 6 or 4 vertices has a neighboring 4 − 4 or 5 − 4 gaps with at most

3 and 4 vertices, respectively. Otherwise, there is a neighboring 4 − 4 or 5 − 4 gap having 5 and 6

vertices, respectively. In this case, consider a path: v1,
∗
v2, v3,

∗
v4, v5,

∗
v6, v7,

∗
v8, v9,

∗
v10, v11,

∗
v12 on C2n,

where v7 ∈ B such that code( ∗v6|B) = code(
∗
v8|B), or ∗v1, v2,

∗
v3, v4,

∗
v5, v6,

∗
v7, v8,

∗
v9, v10,

∗
v11, v12,

∗
v13 on

C2n, where
∗
v7 ∈ B such that code(v6|B) = code(v8|B), a contradiction.

• Any 5− 5 gap having 5 vertices has a neighboring 5− 5 or 5− 4 gap with at most 3 and 4 vertices,
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respectively. Otherwise, the neighboring gaps may contain 5 and 6 vertices, respectively. In this

case, consider a path: v1,
∗
v2, v3,

∗
v4, v5,

∗
v6, v7,

∗
v8, v9,

∗
v10, v11,

∗
v12, v13 on C2n, where

∗
v7 ∈ B such that

code(v5|B) = code(v7|B), a contradiction.

In the next theorem, we compute the exact value of metric dimension for antiweb-gear graphs.

Theorem 3.3.5. For every integer n ≥ 15, we have dim(AWJ2n) = d2n+1
6 e.

Proof. Consider the antiweb-gear graphs AWJ2n, then we have dim(AWJ2n) = 3, for all 2 ≤ n ≤ 8

and W1 = {v1, v2, v3} and W2 = {v1, v4, v9} being metric basis for all 2 ≤ n ≤ 6 and n = 7, 8,

respectively. dim(AWJ2n) = 4, for all 9 ≤ n ≤ 12 andW3 = {v1, v4, v8, v15}, W4 = {v1, v2, v10, v12},
W5 = {v1, v2, v10, v14} and W6 = {v1, v4, v12, v16} being metric basis for n = 9, 10, 11, 12, respec-

tively. dim(AWJ2n) = 5 andW7 = {v1, v5, v12, v15, v20} andW8 = {v1, v4, v12, v16, v20} being metric

basis for n = 13, 14, respectively. However for n ≥ 15, the dimension of AWJ2n increases with num-

ber of vertices n. We also know that the central vertex cannot belong to any basis of AWJ2n. For

n ≥ 15, we prove the result by double inequality. First we show that dim(AWJ2n) ≤ d2n+1
6 e by

constructing a resolving set M in AWJ2n having d2n+1
6 e vertices. For this we consider the following

cases:

Case 1: When n ≡ 0(mod 6), then we may write 2n = 6k, where k ≥ 6 and d2n+1
6 e = k + 1.

In this case, M = {v1, v10} ∪ {v12i+14, v12i+18 : 0 ≤ i ≤ k−4
2 } ∪ {v2n−2}.

Case 2: When n ≡ 1(mod 6), then we may write 2n = 6k+ 2, where k ≥ 6 and d2n+1
6 e = k+ 1. In

this case, M = {v1, v10} ∪ {v12i+14, v12i+18 : 0 ≤ i ≤ k−4
2 } ∪ {v2n−2} is a resolving set.

Case 3: When n ≡ 2(mod 6), then we may write 2n = 6k+ 4, where k ≥ 6 and d2n+1
6 e = k+ 1. In

this case, M = {v1, v10} ∪ {v12i+14, v12i+18 : 0 ≤ i ≤ k−4
2 } ∪ {v2n−2} is a resolving set.

Case 4: When n ≡ 3(mod 6), then we may write 2n = 6k, where k ≥ 5 and d2n+1
6 e = k + 1.

In this case, M = {v1, v10} ∪ {v12i+14, v12i+18 : 0 ≤ i ≤ k−5
2 } ∪ {v2n−4, v2n} is a resolving set.

Case 5: When n ≡ 4(mod 6), then we may write 2n = 6k+ 2, where k ≥ 5 and d2n+1
6 e = k+ 1. In

this case, M = {v1, v10} ∪ {v12i+14, v12i+18 : 0 ≤ i ≤ k−3
2 } is a resolving set.

Case 6: When n ≡ 5(mod 6), then we may write 2n = 6k + 4, where k ≥ 5 and d2n+1
6 e = k + 1.

We define M = {v1, v10} ∪ {v12i+14, v12i+18 : 0 ≤ i ≤ k−3
2 } is a resolving set.

The set M contains only one major vertex, rest of the vertices are all minor vertices. So there

is a unique 5− 4 major and 5− 4 minor gap, and rest of all are minor 4− 4 gaps containing seven
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and three, one and three or three and three vertices alternatively. M is a resolving set of AWJ2n,

since any two minor or any two major vertices, respectively, lying in different gaps (neighboring

or not) are separated by at least one vertex in the set of three or four vertices of M determining

these two gaps. This property is true for the vertices lying in the same gap. Also we note that

code(v|S) = (1, 2, 2, · · · , 2) and code(v|S) 6= code(x|S), for every x ∈ V (AWJ2n) where v is a cen-

tral vertex and x 6= v.

To prove that dim(AWJ2n) ≥ d2n+1
6 e, let B be a basis of AWJ2n and | B |= l. Then B induces l

gaps on C2n, namely g1, · · · , gl such that gj and gj+1 are neighboring gaps for every 1 ≤ j ≤ l − 1,

and also g1 and gl are neighboring gaps. By Lemma 3.3.2, at most one of the gaps is major, say g1.

By Lemma 3.3.3, and Lemma 3.3.4, we can write

| g1 | + | g2 |≤ 11;

| g2 | + | g3 |≤ 6;

| gj | + | gj+1 |≤ 10;

for every j = 3, · · · , l − 2

| gl−1 | + | gl |≤ 9

and

| gl | + | g1 |≤ 12.

By adding these inequalities, we get

2(2n− l) = 2
l∑

j=1

| gj |≤ 10l − 2.

It follows that l ≥ d2n+1
6 e. Since l is an integer, for each 2n ≡ 0, 2, 4(mod 6), we have l ≥ d2n+1

6 e,
which completes the proof.

3.4 Metric Dimension of an Infinite Class of Convex Polytopes Qn

Let I = {1, · · · , n} be an indexed set and Qn be the graph of an antiprism. The antiprism

Qn, n ≥ 3 is defined in [36] as a plane regular graph. Let us denote the vertex set of Qn by

V (Qn) = {y1, y2, · · · , yn, z1, z2, · · · , zn} and the edge set by E(Qn) = {yiyi+1 : i ∈ I} ∪ {zizi+1 :

i ∈ I} ∪ {yizi+1 : i ∈ I}. We make the convention that yn+1 = y1 and zn+1 = z1 to simplify

later notations. The face set F (Qn) contains 2n 3-sided faces and two n-sided faces (internal

and external). We insert exactly one vertex x (t) into the internal (external) n-sided face of

Qn and consider the graph Qn with the vertex set V (Qn) = V (Qn) ∪ {x, t} and the edge set

E(Qn) = E(Qn)∪ {xyi : i ∈ I} ∪ {zit : i ∈ I}. The Qn is the plane graph consisting of 3-sided faces

and constitutes an infinite class of convex polytopes.

37



t

x

z

zz

z

z

z

y

yy

y

y
y

1

2 

2 

3 

1 

n 

n 

n-1 

Figure 3.3: An infinite class of convex polytopes Qn

The metric dimension of several classes of graphs was studied in [24–27,29–31,34,36], and was proved

that the classes of convex polytopes have constant metric dimension. The following open problem

was proposed in [30].

Open Problem [30]: Is it the case that graph of every convex polytope has constant metric dimen-

sion?

In this section, we study the metric dimension of the class of convex polytopes denoted by Qn and

we prove that this class of graph has unbounded metric dimension, thus giving a negative answer

to the open problem proposed in [30]. Let y1, y2, · · · , yn and z1, z2, · · · , zn represents the vertices of

inner cycle Cn,1 and outer cycle Cn,2 of Qn, respectively, as shown in Fig. 3.3. Suppose that Qn for

n ≥ 3 be an infinite class of convex polytopes, then the central vertices x and t do not belong to

any basis. Since diam(Qn) = 3, so if one of x and t belongs to any metric basis, say B, then there

must exist two distinct vertices vi and vj , for 1 ≤ i 6= j ≤ n such that code(vi|B) = code(vj |B).

consequently, the basis vertices belong to the rim vertices of Qn only.

If B is a basis of Qn, then B contains only vertices of inner cycle of Qn. We have the following gap

conditions for the selection of the basis vertices:

(i) Every gap of B may have at most two vertices of Cn,1. Otherwise there exist a gap of B having

three vertices yp, yp+1, yp+2, yp+3 and yp+4 with yp, yp+4 ∈ B such that code(yp+2|B) = code(t|B) =

(2, 2, · · · , 2).

(ii) If a gap of B contains two vertices of Cn,1, then its neighboring gaps may contain at most one
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vertex. Otherwise, there exist five consecutive vertices yp, yp+1, yp+2, yp+3 and yp+4, with yp+2 ∈ B
such that code(yp+1|B) = code(yp+3|B).

Now we assume that B is any set of vertices of Cn,1 that satisfies condition (i) and (ii) and let

y ∈ V (Qn). There are following possibilities to be discussed:

• If y belongs to a gap of size two of B with vertices yp, yp+1 = y, yp+2, yp+3 such that yp, yp+3 ∈ B,

then code(y|B) = (1, 2, · · · , 2).

• If y belongs to a gap of size one of B with vertices yp, yp+1 = y, yp+2 such that yp, yp+2 ∈ B, then

code(y|B) = (1, 1, 2, · · · , 2).

• If y = t, then code(y|B) = (2, 2, · · · , 2).

• If y = x, then code(y|B) = (1, 1, · · · , 1).

• If y = zp ∈ V (Cn,2) and y is adjacent to yp and yp+n−1 with yp, yp+3, yp+n−1 ∈ B, then

code(y|B) = (1, 3, · · · , 3, 1).

• If y = zp ∈ V (Cn,2) and y is adjacent to yp and yp+n−1 with yp, yp+3, yp+n−2 ∈ B, then

code(y|B) = (1, 3, · · · , 3, 2).

• If y = zp ∈ V (Cn,2) and y is adjacent to yp and yp+n−1 with yp+1, yp+n−2 ∈ B, then code(y|B) =

(2, 3, · · · , 3, 2).

• If y = zp ∈ V (Cn,2) and y is adjacent to yp and yp+n−1 with yp+1, yp+n−3, yp+n−1 ∈ B, then

code(y|B) = (2, 3, · · · , 3, 1).

Therefore, any set B having properties (i) and (ii) is a resolving set of Qn. We now present an exact

formula for computing the metric dimension of Qn for every integer n ≥ 6.

Theorem 3.4.1. If n ≥ 6, then we have dim(Qn) = b2n+4
5 c.

Proof. We prove this result by double inequality. First we prove that dim(Qn) ≤ b2n+4
5 c by con-

structing a resolving set in Qn with b2n+4
5 c vertices. We consider the following cases according to

the residue class modulo 5 to which n belongs.

Case 1: When n ≡ 0 (mod 5), then we may write n = 5k, where k ≥ 2, and b2n+4
5 c = 2k.

Since B = {y5i+1, y5i+4 : 0 ≤ i ≤ k − 1}, it is a resolving set having 2k vertices as it satisfies

conditions (i) and (ii).

Case 2: When n ≡ 1 (mod 5), then we may write n = 5k + 1, where k ≥ 1, and b2n+4
5 c = 2k + 1.

Since B = {y5i+1, y5i+4 : 0 ≤ i ≤ k − 1} ∪ {y5k+1}, it is a resolving set having 2k + 1 vertices as it

satisfies conditions (i) and (ii).

Case 3: When n ≡ 2 (mod 5), then we may write n = 5k + 2, where k ≥ 1, and b2n+4
5 c = 2k + 1.

Since B = {y5i+1, y5i+4 : 0 ≤ i ≤ k − 1} ∪ {w5k+1}, it is a resolving set having 2k + 1 vertices as it

satisfies conditions (i) and (ii).
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Case 4: When n ≡ 3 (mod 5), then we may write n = 5k + 3, where k ≥ 1, and b2n+4
5 c = 2k + 2.

Since B = {y5i+4, y5i+6 : 0 ≤ i ≤ k − 1} ∪ {y1, y5k+3}, it is a resolving set having 2k + 2 vertices as

it satisfies conditions (i) and (ii).

Case 5: When n ≡ 4 (mod 5), then we may write n = 5k + 4, where k ≥ 1, and b2n+4
5 c = 2k + 2.

Since B = {y5i+1, y5i+4 : 0 ≤ i ≤ k}, it is a resolving set having 2k + 2 vertices as it satisfies

conditions (i) and (ii). Hence, from above it follows that dim(Qn) ≤ b2n+4
5 c.

Next we show that dim(Qn) ≥ b2n+4
5 c. Let B be a basis of Qn. We consider the following cases:

Case (a): |B| = 2t for some integer t ≥ 1. The conditions (i) and (ii) imply that at most t

gaps of B contains two vertices. So the number of vertices that belong to different gaps of B are at

most 3t. Therefore n− 2t ≤ 3t, which implies that |B| = 2t ≥ d2n5 e ≥ b
2n+4

5 c.

Case (b): |B| = 2t + 1 for some integer t ≥ 1. The conditions (i) and (ii) imply that at most

t gaps of B contain two vertices. So the number of vertices that belong to different gaps of B are

at most 3t+ 1. Therefore n− 2t− 1 ≤ 3t+ 1, which implies that |B| = 2t+ 1 ≥ d2n+1
5 e ≥ b

2n+4
5 c,

which complete the proof.

3.5 Metric Dimension of an Infinite Class of Convex Polytopes Qm
n

The antiprism Qn, n ≥ 3 is defined in [36], is a 4-regular plane graph and also known as Archimedean

convex polytope. Let I = {1, · · · , n} and J = {1, · · · ,m} be index sets. For n ≥ 3 and m ≥ 1

we denote by Qm
n the plane graph of convex polytope, which is obtained as a combination of m

antiprisms Qn. Let us denote the vertex set of Qm
n by V (Qm

n ) = {yj,i : i ∈ I and j ∈ J ∪ {m+ 1}}
and the edge set by E(Qm

n ) = {yj,iyj,i+1 : i ∈ I and j ∈ J ∪ {m + 1}} ∪ {yj,iyj+1,i : i ∈ I and

j ∈ J}∪{yj,i+1yj+1,i : i ∈ I and j ∈ J, j odd}∪{yj,iyj+1,i+1 : i ∈ I and j ∈ J, j even}. We make the

convention that yj,n+1 = yj,1 for j ∈ J∪{m+1}. The face set F (Qm
n ) contains 2mn 3-sided faces, an

internal n-sided face and an external n-sided face. We insert exactly one vertex x (z) into the internal

(external) n-sided face ofQm
n and connect the vertex x (z) with the vertices y1,i (ym+1,i), i ∈ I. Thus,

we obtain the plane graph Qm
n [5] (labelled as in Fig. 3.4), consisting of 3-sided faces with the vertex

set V (Qm
n ) = V (Qn) ∪ {x, z} and the edge set E(Qm

n ) = E(Qn) ∪ {xy1,i : i ∈ I} ∪ {ym+1,iz : i ∈ I}
where |V (Qm

n )| = (m+ 1)n+ 2, |E(Qm
n )| = 3n(m+ 1) and |F (Qm

n )| = 2n(m+ 1).

The metric dimension of several classes of graphs was studied in [24,26,27,29,30,34,36], and it was

proved that these classes of convex polytopes have constant metric dimension. The metric dimension

of convex polytope Qn has been computed in the Theorem 3.4.1 in the section 3.4.

In this section, we extend the result proved in 3.4 for the convex polytope Qm
n for m ≥ 2
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and we prove that this class of graph has unbounded metric dimension. Let y1,1, y1,2, · · · , y1,n and
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Figure 3.4: An infinite class of convex polytopes Qm
n

ym+1,1, ym+1,2,

· · · , ym+1,n represents the vertices of inner cycle Cn,1 and outer cycle Cn,m+1 of Qm
n , respectively, as

shown in Fig. 3.4. Suppose that Qm
n for n ≥ 3 and m ≥ 1 be an infinite class of convex polytopes,

then the central vertices x and z do not belong to any basis. Since diam(Qm
n ) = m + 2, so if one

of x and z belongs to any metric basis, say B, then there must exist two distinct vertices yj,i and

yj,k (1 ≤ i 6= k ≤ n) and (1 ≤ j ≤ m + 1) such that code(yj,i|B) = code(yj,k|B), a contradiction.

Consequently, the basis vertices belong to the rim vertices of the convex polytope graph Qm
n only.

Suppose B be a basis of Qm
n and if it contains s(≥ 2) vertices on Cn,1. Consider the inner cy-

cle Cn,1 of Qm
n with n vertices. We can order the vertices of B = {y1,j1 , y1,j2 , · · · , y1,js} on Cn,1 so

that j1 < j2 < · · · < js. We will say that the pairs of vertices {y1,ja , y1,ja+1} for 1 ≤ a ≤ s − 1

and {y1,js , y1,j1} are pairs of neighboring vertices. For such type of ordering, we can define the gap

ga for 1 ≤ a ≤ s − 1 as the set of vertices {y1,j |ja < j < ja+1} and gs = {y1,j |1 ≤ j < j1 or

js < j ≤ n}. Thus we have s gaps on Cn,1, some of which may be empty. We will say that gt and

gr are neighboring gaps when |t− r| = 1 or s− 1.

Now, if B is a basis of Q2
n, then B contains only vertices of inner cycles of Q2

n. We have the following
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gap conditions for the selection of the basis vertices:

(i) Every gap of B may have at most two vertices of Cn,1. Otherwise, there exist a gap of B

having three vertices, say, y1,p, y1,p+1, y1,p+2, y1,p+3 and y1,p+4 with y1,p, y1,p+4 ∈ B such that

code(y3,p+2|B) = code(z|B) = (3, 3, · · · , 3).

(ii) If a gap of B contains two vertices of Cn,1, then its neighboring gaps may contain at most one

vertex. Otherwise, there exist five consecutive vertices, say, y1,p+1, y1,p+2, y1,p+3, y1,p+4 and y1,p+5,

with y1,p+3 ∈ B such that code(y1,p+2|B) = code(y1,p+4|B).

(iii) If a gap of B contains two vertices of Cn,1 and n ≡ 4(mod 5), then one of its neighboring gaps

may not be empty gap. Otherwise, there is an empty gap with y1,p+n−1, y1,p, y1,p+3 ∈ B such that

code(y3,p|B) = code(y3,p+n−1|B).

Now we assume that B is any set of vertices of Cn,1 that satisfies condition (i)-(iii) and let y ∈ V (Q2
n).

There are following possibilities to be discussed:

• If y belongs to a gap of size two of B with vertices y1,p, y1,p+1 = y, y1,p+2, y1,p+3 such that

y1,p, y1,p+3 ∈ B, then code(y|B) = (1, 2, · · · , 2).

• If y belongs to a gap of size one of B with vertices y1,p, y1,p+1 = y, y1,p+2 such that y1,p, y1,p+2 ∈ B,

then code(y|B) = (1, 1, 2, · · · , 2).

• If y = z, then code(y|B) = (3, 3, · · · , 3).

• If y = x, then r(y|B) = (1, 1, · · · , 1).

• If y = y2,p+n−1 ∈ V (Cn,2) and y is adjacent to y1,p and y1,p+n−1 with y1,p, y1,p+3, y1,p+n−1 ∈ B,

then code(y|B) = (1, 3, · · · , 3, 1).

• If y = y2,p+n−1 ∈ V (Cn,2) and y is adjacent to y1,p and y1,p+n−1 with y1,p, y1,p+3, y1,p+n−2 ∈ B,

then code(y|B) = (1, 3, · · · , 3, 2).

• If y = y2,p+n−1 ∈ V (Cn,2) and y is adjacent to y1,p and y1,p+n−1 with y1,p+1, y1,p+n−2 ∈ B, then

code(y|B) = (2, 3, · · · , 3, 2).

• If y = y2,p+n−1 ∈ V (Cn,2) and y is adjacent to y1,p and y1,p+n−1 with y1,p+1, y1,p+n−3, y1,p+n−1 ∈ B,

then code(y|B) = (2, 3, · · · , 3, 1).

• If y = y3,p+n−1 ∈ V (Cn,3) and y is adjacent to y2,p and y2,p+n−1 with y1,p, y1,p+3, y1,p+n−2 ∈ B,

then code(y|B) = (2, 4, · · · , 4, 3).

• If y = y3,p+n−1 ∈ V (Cn,3) and y is adjacent to y2,p and y2,p+n−1 with y1,p, y1,p+1, y1,p+n−2 ∈ B,

then code(y|B) = (2, 2, 4, · · · , 4, 3).

• If y = y3,p+n−1 ∈ V (Cn,3) and y is adjacent to y2,p and y2,p+n−1 with y1,p, y1,p+2, y1,p+n−3 ∈ B,

then code(y|B) = (2, 3, 4, · · · , 4, 4).

• If y = y3,p+n−1 ∈ V (Cn,3) and y is adjacent to y2,p and y2,p+n−1 with y1,p, y1,p+1, y1,p+n−3 ∈ B,

then code(y|B) = (2, 2, 4, · · · , 4, 4).

• If y = y3,p+n−1 ∈ V (Cn,3) and y is adjacent to y2,p and y2,p+n−1 with y1,p+1, y1,p+n−3, y1,p+n−1 ∈ B,

then code(y|B) = (2, 4, · · · , 4, 2).

• If y = y3,p+n−1 ∈ V (Cn,3) and y is adjacent to y2,p and y2,p+n−1 with y1,p, y1,p+2, y1,p+n−1 ∈ B,
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then code(y|B) = (2, 3, 4, · · · , 4, 2).

• If y = y3,p+n−1 ∈ V (Cn,3) and y is adjacent to y2,p and y2,p+n−1 with y1,p+2, y1,p+n−1, y1,p+n−2 ∈ B,

then code(y|B) = (3, 4, 4, · · · , 4, 3, 2).

• If y = y3,p+n−1 ∈ V (Cn,3) and y is adjacent to y2,p and y2,p+n−1 with y1,p+2, y1,p+n−1, y1,p+n−3 ∈ B,

then code(y|B) = (2, 4, 4, · · · , 4, 2).

Therefore, any set B having properties (i)-(iii) is a resolving set of Q2
n. We now present an exact

formula for computing the metric dimension of Q2
n for every integer n ≥ 6. In fact, this formula is

same as we computed for Q1
n in Theorem 3.4.1, with a small change in the choice of basis vertices

when n ≡ 4 (mod 5).

Theorem 3.5.1. If n ≥ 6, then we have dim(Q2
n) = b2n+4

5 c.

Proof. We prove this result by double inequality. First we prove that dim(Q2
n) ≤ b2n+4

5 c by con-

structing a resolving set in Q2
n with b2n+4

5 c vertices. We consider the following cases according to

the residue class modulo 5 to which n belongs.

Case 1: When n ≡ 0 (mod 5), then we may write n = 5k, where k ≥ 2 and b2n+4
5 c = 2k.

Since B = {y5i+1, y5i+4 : 0 ≤ i ≤ k − 1}, it is a resolving set having 2k vertices as it satisfies

conditions (i)-(iii).

Case 2: When n ≡ 1, 2 (mod 5), then we may write n = 5k + 1, 5k + 2, respectively, where

k ≥ 1, and b2n+4
5 c = 2k + 1. Since B = {y5i+1, y5i+4 : 0 ≤ i ≤ k − 1} ∪ {y5k+1}, it is a resolving set

having 2k + 1 vertices as it satisfies conditions (i)-(iii).

Case 3: When n ≡ 3, 4 (mod 5), then we may write n = 5k + 3, 5k + 4, respectively, where

k ≥ 1, and b2n+4
5 c = 2k + 2. Since B = {y5i+4, y5i+6 : 0 ≤ i ≤ k − 1} ∪ {y1, y5k+3}, it is a resolving

set having 2k + 2 vertices as it satisfies conditions (i)-(iii).

The proof of the reverse inequality dim(Q2
n) ≥ b2n+4

5 c follows exactly on the same line as proof

of the Theorem 3.4.1, and is therefore omitted.

Now we will study the metric dimension of the convex polytope Q3
n. If B is a basis of Q3

n, then

B contains only vertices of inner cycles Cn,1 and Cn,4 of Q3
n. We have the following gap conditions

for the selection of the basis vertices:

(́i) The gap conditions (i)-(iii) must be satisfied.

The following conditions are only for the vertices of Cn,4:
´(ii) Every gap of B may have at most thirteen vertices of Cn,4. Otherwise, there is a gap having

fourteen vertices y4,1, y4,2, · · · , y4,15 with y4,1 ∈ B such that code(y4,9|B) = code(y4,10|B).
´(iii) At most one gap of B may have thirteen vertices.
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´(iv) If a gap of B have thirteen vertices, then its neighboring gaps may have at most five vertices.
´(v) Any gap of B may have thirteen vertices only if n ≡ 1, 2, 3, 4(mod 5). Otherwise, any gap of B

may have at most five vertices.
´(vi) If n ≡ 0(mod 5) and a gap of B have five vertices, then any of its neighboring gap may have at

most five vertices. Otherwise, there is a path of Cn,4 having eleven vertices y4,1, y4,2, · · · , y4,11 with

y4,5 ∈ B such that code(y4,9|B) = code(y4,10|B).

Now we assume that B is any set of vertices of Cn,1 and Cn,4 that satisfies condition (́i)- ´(vi) and let

y ∈ V (Q3
n). There are following possibilities to be discussed:

• If y belongs to a gap of size two of B with vertices y1,p, y1,p+1 = y, y1,p+2, y1,p+3 such that

y1,p, y1,p+3, y4,p+4, y4,p+n−1 ∈ B, then code(y|B) = (1, 2, · · · , 2, 5, · · · , 5, 3). By properties (́i)− ´(vi),

there exist no other vertex in Q3
n with this property. The overlined codes represent vertices of B on

Cn,4.

• If y belongs to a gap of size two of B with vertices y1,p, y1,p+1, y1,p+2 = y, y1,p+3 such that

y1,p, y1,p+3, y4,p+4, y4,p+n−1 ∈ B, then code(y|B) = (2, 1, 2, · · · , 2, 4, 5, · · · , 5, 4). By properties (́i) −
´(vi), there exist no other vertex in Q3

n with this property. The overlined codes represent vertices of

B on Cn,4.

• If y belongs to a gap of size one ofB with vertices y1,p, y1,p+1 = y, y1,p+2 such that y1,p, y1,p+2, y4,p+4,

y4,p+n−1 ∈ B, then code(y|B) = (1, 1, 2, · · · , 2, 5, · · · , 5, 3). By properties (́i) − ´(vi), there exist no

other vertex in Q3
n with this property. The overlined codes represent vertices of B on Cn,4.

• If y = z, then code(y|B) = (4, 4, · · · 4, 1, 1, · · · , 1). By properties (́i) − ´(vi), there exist no other

vertex in Q3
n with this property.

• If y = x, then code(y|B) = (1, 1, · · · 1, 4, 4, · · · , 4). By properties (́i) − ´(vi), there exist no other

vertex in Q3
n with this property.

• If y = y2,p+n−1 ∈ V (Cn,2) and y is adjacent to y1,p and y1,p+n−1 with y1,p, y1,p+3, y1,p+n−2, y4,p+n−1 ∈
B, then code(y|B) = (1, 3, · · · , 3, 2, 4, · · · , 4, 2). By properties (́i)− ´(vi), there exist no other vertex

in Q3
n with this property. The overlined codes represent vertices of B on Cn,4.

• If y = y2,p+n−1 ∈ V (Cn,2) and y is adjacent to y1,p and y1,p+n−1 with y1,p, y1,p+3y1,p+n−1, y1,p+n−3,

y4,p+n−2 ∈ B, then code(y|B) = (1, 3, · · · , 3, 4, · · · , 4, 2). By properties (́i)− ´(vi), there exist no other

vertex in Q3
n with this property.

• If y = y2,p+1 ∈ V (Cn,2) and y is adjacent to y1,p+1 and y1,p+2 with y1,p, y1,p+3, y4,5p ∈ B, then

code(y|B) = (2, 2, 3, · · · , 3, 4, · · · , 4). By properties (́i)− ´(vi), there exist no other vertex in Q3
n with

this property.

• If y = y3,p ∈ V (Cn,3) and y is adjacent to y2,p and y2,p+n−1 with y1,p, y1,p+3, y1,p+n−2, y4,p+n−1 ∈ B,

then code(y|B) = (2, 4, · · · , 4, 3, 3, · · · , 3, 1). By properties (́i)− ´(vi), there exist no other vertex in

Q3
n with this property.

• If y = y3,p ∈ V (Cn,3) and y is adjacent to y2,p and y2,p+n−1 with y1,p, y1,p+n−1, y1,p+n−3, y4,p+n−2 ∈
B, then code(y|B) = (2, 4, · · · , 4, 2, 3, · · · , 3, 2). By properties (́i)− ´(vi), there exist no other vertex
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in Q3
n with this property.

• If y = y3,p+n−1 ∈ V (Cn,3) and y is adjacent to y2,p+n−2 and y2,p+n−1 with y1,p, y1,p+n−2, y4,p+n−1 ∈
B, then code(y|B) = (2, 4, · · · , 4, 2, 3, · · · , 3, 1). By properties (́i)− ´(vi), there exist no other vertex

in Q3
n with this property.

• If y = y4,p, y4,p+1, y4,p+2 or y4,p+3 belongs to a gap of size four of B on Cn,4 with y4,p+4, y4,p+n−1 ∈
B, then code(y|B) = (3, 4, 5, · · · , 5, 4, 1, 2, · · · , 2), code(y|B) = (3, 3, 5, · · · , 5, 2, , · · · , 2), code(y|B) =

(4, 3, 4, 5, · · · , 5, 2, , · · · , 2), code(y|B) = (5, 3, 3, 5, · · · , 5, 2, 1, 2, · · · , 2), respectively. By properties

(́i)− ´(vi), there exist no other vertex in Q3
n with this property. The overlined codes represent vertices

of B on Cn,4.

• If y = y4,p, y4,p+1, y4,p+2,y4,p+3, y4,p+n−1, y4,p+n−2, y4,p+n−3,y4,p+n−4, y4,p+n−5 or y4,p+n−6 belongs

to a gap of size ten ofB on Cn,4 with y4,p+4, y4,p+n−7 ∈ B, then code(y|B) = (3, 4, 5, · · · , 5, 3, 2, · · · , 2),

code(y|B) = (3, 3, 5, · · · , 5, 4, 2, 2, · · · , 2), code(y|B) = (4, 3, 4, 5, · · · , 5, 2, 2, · · · , 2), code(y|B) =

(5, 3, 3, 5, · · · , 5, 1, 2, · · · , 2), code(y|B) = (3, 5, · · · , 4, 3, 2, 2, · · · , 2), code(y|B) = (3, 5, · · · , 5, 3, 3,
2, 2, · · · , 2), code(y|B) = (4, 5, · · · , 5, 3, 3, 2, 2, · · · , 2), code(y|B) = (5, 5, · · · , 5, 4, 3, 4, 2, 2, · · · , 2),

code(y|B) = (5, · · · , 5, 3, 3, 5, 2, · · · , 2) and code(y|B) = (5, · · · , 5, 4, 3, 4, 5, 2, · · · , 2, 1), respectively.

By properties (́i) − ´(vi), there exist no other vertex in Q3
n with this property. The overlined codes

represent vertices of B on Cn,4.

• If y = y4,p, y4,p+1, y4,p+2,y4,p+3, y4,p+n−1, y4,p+n−2, y4,p+n−3,y4,p+n−4, y4,p+n−5 y4,p+n−6 or y4,p+n−7

belongs to a gap of size eleven of B on Cn,4 with y4,p+4,

y4,p+n−8 ∈ B, then code(y|B) = (3, 4, 5, · · · , 5, 4, 2, 2, · · · , 2), code(y|B) = (3, 3, 5, · · · , 5, 2, 2, · · · , 2),

code(y|B) = (4, 3, 4, 5, · · · , 5, 2, 2, · · · , 2), code(y|B) = (5, 3, 3, 5, · · · , 5, 1, 2, · · · , 2), code(y|B) =

(3, 5, · · · , 5, , 3, 2, 2, · · · , 2), code(y|B) = (3, 5, · · · , 5, 4, 3, 2, 2, · · · , 2), code(y|B) = (4, 5, · · · , 5, 3, 3,
2, 2, · · · , 2), code(y|B) = (5, · · · , 5, 3, 3, 2, 2, · · · , 2, 2), code(y|B) = (5, 5, · · · , 5, 4, 3, 4, 2, 2, · · · , 2),

code(y|B) = (5, · · · , 5, 3, 3, 5, 2, 2, · · · , 2) and code(y|B) = (5, · · · , 5, 4, 3, 4, 5, 2, 2, · · · , 2, 1), respec-

tively. By properties (́i)− ´(vi), there exist no other vertex in Q3
n with this property. The overlined

codes represent vertices of B on Cn,4.

• If y = y4,p, y4,p+1, y4,p+2,y4,p+3, y4,p+n−1, y4,p+n−2, y4,p+n−3,y4,p+n−4, y4,p+n−5 y4,p+n−6,y4,p+n−7 or

y4,p+n−8 belongs to a gap of size twelve of B on Cn,4 with y4,p+4, y4,p+n−9 ∈ B, then code(y|B) =

(3, 4, 5, · · · , 5, 3, 2, 2, · · · , 2), code(y|B) = (3, 3, 5, · · · , 5, 3, 2, · · · , 2), code(y|B) = (4, 3, 4, 5, · · · , 5,
2, · · · , 2), code(y|B) = (5, 3, 3, 5, · · · , 5, 1, 2, · · · , 2), code(y|B) = (3, 5, · · · , 5, 4, 3, 2, · · · , 2), code(y|B)

= (3, 5, · · · , 5, 3, 3, 2, · · · , 2), code(y|B) = (4, 5, · · · , 5, 4, 3, 3, 2, · · · , 2), code(y|B) = (5, 5, · · · , 5, 3, 3,
4, 2, · · · , 2), code(y|B) = (5, · · · , 5, 3, 3, 5, 2, · · · , 2), code(y|B) = (5, 5, · · · , 5, 4, 3, 4, 5, 2, · · · , 2),

code(y|B) = (5, · · · , 5, 3, 3, 5, 5, 2, 2, · · · , 2) and code(y|B) = (5, · · · , 5, 4, 3, 4, 5, 5, 2, 2, · · · , 2, 1), re-

spectively. By properties (́i) − ´(vi), there exist no other vertex in Q3
n with this property. The

overlined codes represent vertices of B on Cn,4.

• If y = y4,p, y4,p+1, y4,p+2,y4,p+3, y4,p+n−1, y4,p+n−2, y4,p+n−3,y4,p+n−4, y4,p+n−5 y4,p+n−6,y4,p+n−7,

y4,p+n−8 or y4,p+n−9 belongs to a gap of size thirteen of B on Cn,4 with y4,p+4, y4,p+n−10 ∈ B, then
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code(y|B) = (3, 4, 5, · · · , 5, 4, 2, 2, · · · , 2), code(y|B) = (3, 3, 5, · · · , 5, 5, 2, 2, · · · , 2), code(y|B) =

(4, 3, 4, 5, · · · , 5, 2, 2, · · · , 2), code(y|B) = (5, 3, 3, 5, · · · , 5, 1, 2, · · · , 2), code(y|B) = (3, 5, · · · , 5, 3,
2, 2, · · · , 2), code(y|B) = (3, 5, · · · , 5, 4, 3, 2, 2, · · · , 2), code(y|B) = (4, 5, · · · , 5, 3, 3, 2, 2, · · · , 2),

code(y|B) = (5, 5, · · · , 5, 4, 3, 3, 2, 2, · · · , 2), code(y|B) = (5, · · · , 5, 3, 3, 4, 2, · · · , 2, 2), code(y|B) =

(5, 5, · · · , 5, 3, 3, 5, 2, 2, · · · , 2), code(y|B) = (5, · · · , 5, 4, 3, 4, 5, 2, 2, · · · , 2), code(y|B) = (5, · · · , 5, 3,
3, 5, 5, 2, 2, · · · , 2, 2) and code(y|B) = (5, · · · , 5, 4, 3, 4, 5, 5, 2, 2, · · · , 2, 1), respectively. By properties

(́i)− ´(vi), there exist no other vertex in Q3
n with this property. The overlined codes represent vertices

of B on Cn,4.

Therefore, any set B having properties (́i)− ´(vi) is a resolving set of the convex polytope graph Q3
n.

We now present a precise formula for computing the metric dimension of the convex polytope graph

Q3
n for every integer n ≥ 7.

Theorem 3.5.2. If n ≥ 7, then we have

dim(Q3
n) =


b3n5 c ;n ≡ 0(mod 5),

b3n−35 c ; otherwise

Proof. We prove this result by double inequality. First we prove that

dim(Q3
n) ≤


b3n5 c ;n ≡ 0(mod 5),

b3n−35 c ; otherwise

by constructing a resolving set in Q3
n with b3n5 c, b

3n−3
5 c vertices for n ≡ 0(mod 5) and n ≡

1, 2, 3, 4(mod 5), respectively. We consider the following cases according to the residue class modulo

5 to which n belongs.

Case 1: When n ≡ 0 (mod 5), then we may write n = 5k, where k ≥ 2, and b3n5 c = 3k. Since

B = {y1,5i+1, y1,5i+4 : 0 ≤ i ≤ k − 1} ∪ {y4,10i+5, y4,10i+10 : 0 ≤ i ≤ k−2
2 } and B = {y1,5i+1, y1,5i+4 :

0 ≤ i ≤ k − 1} ∪ {y4,10i+5, y4,10i+10 : 0 ≤ i ≤ k−3
3 } ∪ {y4,5k} for k even and odd, respectively, it is a

resolving set having 3k vertices as it satisfies conditions (́i)− ´(vi).

Case 2:

subcase(a)When n ≡ 1, 2 (mod 5), then we may write n = 5k+1, 5k+2, respectively, where k ≥ 3,

and b3n−35 c = 3k. Since B = {y5i+1, y5i+4 : 0 ≤ i ≤ k − 1} ∪ {y5k+1} ∪ {y4,10i+5, y4,10i+10 : 0 ≤ i ≤
k−3
2 } and B = {y5i+1, y5i+4 : 0 ≤ i ≤ k−1}∪{y5k+1}∪{y4,10i+5, y4,10i+10 : 0 ≤ i ≤ k−4

2 }∪{y4,5k} for
k odd and even, respectively, it is a resolving set having 3k vertices as it satisfies conditions (́i)− ´(vi).

subcase(b)When n ≡ 3, 4 (mod 5), then we may write n = 5k+3, 5k+4, respectively, where k ≥ 3,
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and b3n−35 c = 3k+1. Since B = {y1,5i+4, y1,5i+6 : 0 ≤ i ≤ k−1}∪{y1,1, y1,5k+3}∪{y4,10i+5, y4,10i+10 :

0 ≤ i ≤ k−3
2 } and B = {y1,5i+4, y1,5i+6 : 0 ≤ i ≤ k − 1} ∪ {y1,1, y5k+3} ∪ {y4,10i+5, y4,10i+10 : 0 ≤

i ≤ k−4
2 } ∪ {y4,5k} for k odd and even, respectively, it is a resolving set having 3k + 1 vertices as it

satisfies conditions (́i)− ´(vi).

Next we have to show that

dim(Q3
n) ≥


b3n5 c ;n ≡ 0(mod 5),

b3n−35 c ; otherwise

Let B be a basis of Q3
n. We consider the following cases:

Case (a): |B| = 3t for some integers t ≥ 1. The conditions (́i)− ´(vi) imply that at most t gaps of B

contains more than one vertex, and all of them contains two vertices on Cn,1 and at most t gaps of

B contains four vertices on Cn,4. So the number of vertices that belong to different gaps of B are at

most 3t+ 4t. Therefore 2n− 3t ≤ 3t+ 4t, this implies that 3n ≤ 15t. Hence |B| = 3t ≥ 3n
5 ≥ b

3n
5 c.

Case (b): |B| = 3t+ 1 for some integers t ≥ 1. The conditions (́i)− ´(vi) imply that at most t gaps

of B contains more than one vertex, and all of them contains two vertices on Cn,1 and at most t− 1

gaps of B contains four vertices on Cn,4. So the number of vertices that belong to different gaps of

B are at most 3t+ 4t− 3. Therefore 2n− 3t− 1 ≤ 3t+ 4t− 3, this implies that 3n+ 3 ≤ 15t. Hence

|B| = 3t+ 1 ≥ 3n+8
5 ≥ b3n−35 c, which completes the proof.

We believe that the above result is also true for every m ≥ 4 but we are not able to give a

rigorous proof. Here, we propose the following open problem.

Open Problem: Is it the case that the metric dimension of convex polytope Qm
n is given by the

following formula

dim(Qm
n ) =


b3n5 c ;n ≡ 0(mod 5),

b3n−35 c ; otherwise

for all n ≥ 7 and m ≥ 4?

3.6 Metric dimension of convex polytopes Dn and Bn

The gear graph denoted by Jn (n is even) is defined as follows: Consider an even cycle Cn :

v1, v2, · · · , vn, v1, where n ≥ 4 and a new vertex v is adjacent to n vertices of Cn : v2, v4, · · · , v2m.

The gear graph Jn can be obtained from the wheel Wn by alternately deleting n
2 spokes. Tomescu

and Javaid [60] proved that dim(Jn) = bn3 c for n ≥ 8.

Let I = {1, 2, · · · , n} and J = {1, 2} be indexed sets and Dn be the graph of a prism. The prism

Dn, (n ≥ 3), is a trivalent graph which can be defined as the Cartesian product P2�Cn of a path

on two vertices with a cycle on n vertices, embedded in the plane. Let us denote the vertex set
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of Dn by V (Dn) = {xj,i : j ∈ J and i ∈ I} and edge set by E(Dn) = {xj,ixj,i+1 : j ∈ J and

i ∈ I} ∪ {x1,ix2,i : i ∈ I}. We make the convention that xj,n+1 = xj,1 xj,n+2 = xj,2 for j ∈ J .
The face set F (Dn) contains n 4-sided faces and two n-sided faces (internal and external). We insert

exactly one vertex y(z) into the internal (external) n-sided faces of Dn. Suppose that n is even,

n ≥ 4, and consider the graph Dn with the vertex set V (Dn) = V (Dn) ∪ {y, z} and the edge set

E(Dn) = E(Dn) ∪ {x1,2k−1y : k = 1, 2, · · · , n2 } ∪ {x2,2kz : k = 1, 2, · · · , n2 }. The Dn, n ≥ 4, is

the plane graph on |V (Dn)| = 2n + 2 vertices, |E(Dn)| = 4n edges and consisting of |F (Dn)| = 2n

faces [3]. Let its vertices be labelled as in Fig. 3.5.
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Figure 3.5: The convex polytope graph Dn

In this section, we study the metric dimension of convex polytope graphs Dn and we prove that this

class of convex polytopes has unbounded metric dimension.

Suppose that Dn, for n ≥ 4, be an infinite class of convex polytopes, then any of the central vertices

z or y do not belong to any basis. Since diam(Dn) = 4, if z or y belong to any metric basis, say B,

then there must exist two distinct vertices vj,i and vj,k, for 1 ≤ i 6= k ≤ n and j ∈ {1, 2} such that

code(xj,i|B) = code(xj,k|B). Consequently, the basis vertices belong to the rim vertices of Dn only.

A gap determined by neighboring vertices xj,i and xj,k will be called an α−β gap with α ≤ β when
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d(xj,i) = α and d(xj,k) = β or when d(xj,i) = β and d(xj,k) = α. Hence we have three kinds of gaps

in Dn, i.e. 3− 3, 3− 4 and 4− 4 gaps.

Lemma 3.6.1. Let B be a basis of Dn for n even, n ≥ 12, then every 3− 3, 3− 4 and 4− 4 gap of

B contains at most 5, 4 and 3 vertices of Cn,1, respectively.

Proof. On contrary, suppose that there is a 3 − 3 gap of B having seven consecutive vertices

x1,1, x1,2, · · · , x1,7 of Cn,1 such that deg(x1,1) = deg(x1,7) = 4. For this case, code(x1,3|B) =

code(x1,5|B), a contradiction. Similarly, if there is a 3 − 4 gap having six vertices of Cn,1 say,

x1,1, · · · , x1,6 such that deg(x1,1) = 4 and deg(x1,6) = 3. In this case, we get code(x1,3|B) =

code(x1,5|B), a contradiction. If there is a 4 − 4 gap of B having five consecutive vertices of

Cn,1 say, x1,2, · · · , x1,6 such that deg(x1,2) = deg(x1,6) = 3, then code(x1,3|B) = code(x1,5|B), a

contradiction.

From now on, the 3− 3, 3− 4 and 4− 4 gaps of Cn,1 having 5, 4 and 3 vertices, respectively will

be referred as major gaps, while the rest of all will be referred as minor gaps. The vertices having

degrees 4 and 3 are known as major (labelled by star) and minor vertices, respectively.

Lemma 3.6.2. Any basis B of Dn for n even (n ≥ 12) contains at most one major 3− 3, 3− 4 or

4− 4 gap of Cn,1.

Proof. On contrary, suppose that B contains two distinct major gaps, then we have the following

cases:

• 4 − 4 and 4 − 4 gaps: x1,1,
∗
x1,2, x1,3 and y1,1,

∗
y1,2, y1,3; in this case we have code(∗x1,2|B) =

code(
∗
y1,2|B), a contradiction.

• 4−4 and 3−3 gaps: x1,1,
∗
x1,2, x1,3 and ∗y1,1, y1,2,

∗
y1,3, y1,4,

∗
y1,5; in this case we have code(∗x1,2|B) =

code(
∗
y1,3|B), a contradiction.

• 4 − 4 and 3 − 4 gaps: x1,1,
∗
x1,2, x1,3 and ∗y1,1, y1,2,

∗
y1,3, y1,4; in this case we have code(∗x1,2|B) =

code(
∗
y1,3|B), a contradiction.

• 3 − 3 and 3 − 3 gaps: ∗x1,1, x1,2,
∗
x1,3, x1,4,

∗
x1,5 and ∗y1,1, y1,2,

∗
y1,3, y1,4,

∗
y1,5; in this case we have

code(
∗
x1,3|B) = code(

∗
y1,3|B), a contradiction.

• 3−3 and 3−4 gaps: ∗x1,1, x1,2,
∗
x1,3, x1,4,

∗
x1,5 and

∗
y1,1, y1,2,

∗
y1,3, y1,4; in this case we have code(∗x1,3|B) =

code(
∗
y1,3|B), a contradiction.

• 3−4 and 3−4 gaps: ∗x1,1, x1,2,
∗
x1,3, x1,4 and ∗y1,1, y1,2,

∗
y1,3, y1,4; in this case we have code(∗x1,3|B) =

code(
∗
y1,3|B), which contradicts the hypothesis.

In the next lemma, we will prove that any two neighboring gaps, one of which being major may

contain together at most six vertices.

Lemma 3.6.3. For any basis B of Dn for n even (n ≥ 12), any two neighboring gaps, one of which

being major gap contain together at most six vertices of Cn,1.
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Proof. If the major gap is a 4 − 4 gap (with three vertices), then by Lemma 4.3.2 its neighboring

gap may be a minor 3− 3 or 3− 4 gap having at most three vertices, which concludes the proof in

this case.

If the major gap is a 3− 3 gap with five vertices, then we need to show that its neighboring gap can

neither be a minor 3−3 gap having three vertices, nor a minor 3−4 gap having two vertices. If a major

3− 3 gap has a neighboring 3− 3 gap with three vertices, we have the following path consisting of

consecutive vertices of Cn,1 :
∗
x1,1, x1,2,

∗
x1,3, x1,4,

∗
x1,5, x1,6,

∗
x1,7, x1,8,

∗
x1,9, where x1,4 ∈ B. In this case

code(
∗
x1,3|B) = code(

∗
x1,5|B), a contradiction. A similar conclusion can be obtained if a major 3− 3

gap has a neighboring 3−4 gap with two vertices. If the major gap is a 3−4 gap with four vertices,

by Lemma 4.3.2, it is sufficient to show that its neighboring gap cannot be a minor 3− 3 gap with

three vertices. If this is true, we consider the following path: ∗x1,1, x1,2,
∗
x1,3, x1,4,

∗
x1,5, x1,6,

∗
x1,7, x1,8,

where x1,4 ∈ B. In this case code(∗x1,3|B) = code(
∗
x1,5|B), a contradiction.

In the next lemma, we will prove that any two minor neighboring gaps may contain together at

most four vertices of Cn,1.

Lemma 3.6.4. If B is any basis of Dn for n even (n ≥ 12), then any two minor neighboring gaps

contain together at most four vertices.

Proof. By Lemma 4.3.1, any minor 3− 3, 3− 4, and 4− 4 gap contains three, two and one vertex,

respectively. It suffices to prove the following cases:

(1) A 3− 3 gap with three vertices has a neighboring 3− 3 gap with three vertices.

(2) A 3− 3 gap with three vertices has a neighboring 3− 4 gap with two vertices cannot occur.

If the case (1) is true, then there exists a path: ∗x1,1, x1,2,
∗
x1,3, x1,4,

∗
x1,5, x1,6,

∗
x1,7, on Cn,1, where

x1,4 ∈ B such that code(∗x1,3|B) = code(
∗
x1,5|B); If the case (2) is true, then there exists a

path: ∗x1,1, x1,2,
∗
x1,3, x1,4,

∗
x1,5, x1,6, on Cn,1, where x1,4 ∈ B, which implies that code(∗x1,3|B) =

code(
∗
x1,5|B), a contradiction.

For the selection of basis B of Dn, we also make the following claims.

Claim 1: The vertex x2,2 = x2,p+1 ∈ B. Otherwise, there are vertices x1,3 = x1,p+2, x1,p+1, x1,p+n−1,

x1,p+7 on cycle Cn,1 with x1,p+1, x1,p+n−1, x1,p+7 ∈ B, which implies that code(x2,p+1|B) =

code(x1,p+2|B).

Claim 2: There must exist a 4 − 4 gap of size three of B on Cn,2. Otherwise, there is a 4 − 4

gap of B on Cn,2 containing five vertices, namely x2,3 = x2,p+2, x2,p+3, x2,p+4, x2,p+5, x2,p+6 with

x1,p+1, x1,p+7, x1,p+9, x2,p+1, x2,p+7 ∈ B, which implies that code(x2,p+3|B) = code(x2,p+4|B) =

(3, 3, · · · , 3, 2, 2).

Claim 3: One of the neighboring 4−4 gaps of B on Cn,2 contains at most five vertices and the other
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one contains at most seven vertices. Otherwise, there are 4−4 neighboring gaps of B on Cn,2 contain-

ing seven and nine vertices. Consider a path: x2,3,
∗
x2,4, x2,5,

∗
x2,6, x2,7,

∗
x2,8, x2,9,

∗
x2,10, x2,11,

∗
x2,12, x2,13

having eleven vertices with x1,2, x1,8, x1,10, x1,14,
∗
x2,2,

∗
x2,6,

∗
x2,14 ∈ B, which implies that code(x2,4|B) =

code(x2,12|B), a contradiction. Now consider a path: x2,n−7,
∗
x2,n−6, x2,n−5,

∗
x2,n−4, x2,n−3,

∗
x2,n−2,

x2,n−1,
∗
x2,n, x2,1,

∗
x2,22, x2,3,

∗
x2,4, x2,5 having thirteen vertices with x1,2,

x1,8, x1,n, x1,n−2, x1,n−4, x1,n−6, x1,n−8,
∗
x2,2,

∗
x2,6,

∗
x2,n−8 ∈ B, which implies that code(x2,4|B) =

code(x2,n−6|B), a contradiction.

Claim 4: At most one 4− 4 gap of B have seven vertices on Cn,2.

• If y belongs to a gap of size three of B on Cn,2 and y = x2,1,
∗
x2,n or x2,n−1 with x1,2, x1,8, x1,n−4,

x1,n,
∗
x2,2,

∗
x2,6,

∗
x2,n−2 ∈ B, then code(y|B) = (2, 4, · · · , 4, 2, 1, 3, · · · , 3), code(y|B) = (3, 3, · · · , 3, 1,

2, · · · , 2) and

code(y|B) = (4, 4, · · · , 4, 2, 3, · · · , 3, 1), respectively. Where overlined codes represent the vertices of

B on Cn,2. By Lemma 4.3.1 to Lemma 4.3.3 and by claims 1 − 4, there is no other vertex of Dn

having this property.

• If y belongs to a gap of size three ofB on Cn,2 and y = x2,3,
∗
x2,4 or x2,5 with x1,2, x1,8, x1,10, x1,n,

∗
x2,2,

∗
x2,6,

∗
x2,12 ∈ B, then code(y|B) = (2, 4, · · · , 4, 1, 3, · · · , 3), code(y|B) = (3, 3, · · · , 3, 2, · · · , 2) and

code(y|B) = (4, 4, · · · , 4, 3, 1, 3, · · · , 3), respectively. Where overlined codes represent the vertices of

B on Cn,2. By Lemmas 4.3.1-4.3.3 and by claims 1 − 4, there is no other vertex of Dn having this

property.

• If y belongs to a gap of size five of B on Cn,2 and y = x2,7,
∗
x2,8, x2,9,

∗
x2,10 or x2,11 with x1,2, x1,8,

x1,10, x1,14,
∗
x2,2,

∗
x2,6,

∗
x2,12 ∈ B, then code(y|B) = (4, 2, · · · , 4 3, 1, 3, · · · , 3), code(y|B) = (3, 1, 3, · · · ,

3, 2, · · · , 2), code(y|B) = (4, 2, 2, 4, · · · , 4, 3, · · · , 3), code(y|B) = (3, 3, 1, 3, · · · , 3, 2, · · · , 2) and

code(y|B) = (4, 4, 2, 3, 4 · · · , 4, 3, 3, 1, 3, · · · , 3), respectively. Where overlined codes represent the

vertices of B on Cn,2. Similarly, for other gaps of size five of B. By Lemmas 4.3.1-4.3.3 and by

claims 1− 4, there is no other vertex of Dn having this property.

• If y belongs to a gap of size seven of B on Cn,2 and y = x2,1,
∗
x2,n, x2,n−1,

∗
x2,n−2, x2,n−3,

∗
x2,n−4 or

x2,n−5, with x1,2, x1,8, x1,n, x1,n−2, x1,n−4, x1,n−8
∗
x2,2,

∗
x2,n−6,

∗
x2,n−12 ∈ B, then code(y|B) = (2, 4, · · · ,

4, 2, 1, 3, · · · , 3), r(y|B) = r(3, 3, · · · , 3, 1, 2, · · · , 2), code(y|B) = (4, 4, · · · , 4, 2, 2, 3, · · · , 3), r(y|B) =

r(3, 3, · · · , 3, 1, 3, 2, · · · , 2), code(y|B) = (4, 4, · · · , 4, 2, 2, 4, 3, · · · , 3), code(y|B) = (3, 3, · · · , 3, 1, 3, 3,
2, · · · , 2) and code(y|B) = (4, 4 · · · , 4, 2, 4, 4, 3, 3, · · · , 3, 1), respectively. Where overlined codes rep-

resent the vertices of B on Cn,2. By Lemmas 4.3.1, 4.3.2, 3.6.3 and 4.3.3 and by claims 1− 4, there

is no other vertex of Dn having this property.

In the next theorem, we compute the exact value of metric dimension for the convex polytope

graphs Dn for n even and n ≥ 8.

Theorem 3.6.5. For every even integer n ≥ 8, we have dim(Dn) = n
2 .
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Proof. Consider the convex polytope graphs Dn, then we have dim(Dn) = 4, for all 4 ≤ n ≤ 8 and

W2 = {x1,1, x1,2, x1,3, x2,1} and W3 = {x1,2, x1,4, x1,6, x2,3} and W4 = {x1,2, x1,4, x2,2, x2,6} being

metric basis for all 4 ≤ n ≤ 8, respectively. dim(Dn) = 5 and dim(Dn) = 4 being metric basis

for n = 10 and n = 12 W5 = {x1,2, x1,4, x1,6, x2,2, x2,8} and W6 = {x1,2, x1,8, x1,10, x1,12, x2,2, x2,6},
respectively. However for n ≥ 14, the dimension of Dn increases with number of vertices n. We also

know that the central vertex can’t belong to any basis of Dn. For n ≥ 14, we prove the result by

double inequality. First we show that dim(Dn) ≤ n
2 by constructing a resolving set B in Dn having

n
2 vertices. For this consider n = 2m, then we have the following cases to be discussed:

Case 1: m ≡ 0(mod 3). Let 2m = 3k, where k is even, k ≥ 4 and m = 3k
2 . In this case,

B = {x1,2, x1,n} ∪ {x1,6i+2, x1,6i+4 : 1 ≤ i ≤ k
2 − 1} ∪ {x2,10i+2, x2,12i+6 : 0 ≤ i ≤ k−4

4 for m

even} ∪ [{x2,2} ∪ {x2,12i+6, x2,12i+12 : 0 ≤ i ≤ k−6
6 } for m odd].

Case 2: m ≡ 1(mod 3). Let 2m = 3k + 2, where k is even, k ≥ 4 and m = 3k+2
2 . In this

case, B = {x1,2, x1,n} ∪ {x1,6i+2, x1,6i+4 : 1 ≤ i ≤ k
2 − 1} ∪ {x2,10i+2, x2,12i+6 : 0 ≤ i ≤ k−2

4 for m

even} ∪ [{x2,2} ∪ {x2,12i+6, x2,12i+12 : 0 ≤ i ≤ k−4
4 } for m odd].

Case 3: m ≡ 2(mod 3). Let 2m = 3k + 1, where k is odd, k ≥ 5 and m = 3k+1
2 . In this

case, B = {x1,2} ∪ {x1,6i+2, x1,6i+4 : 1 ≤ i ≤ k−1
2 } ∪ {x2,10i+2, x2,12i+6 : 0 ≤ i ≤ k−3

4 for m

odd} ∪ [{x2,2} ∪ {x2,12i+6, x2,12i+12 : 0 ≤ i ≤ k−5
4 } for m even].

To prove that dim(Dn) ≥ n
2 , let B be a basis of Dn and |B| = l + r, (l, r ≥ 1), where l and r

represent the number of vertices of B lying on Cn,1 and Cn,2, respectively. Then B induces l gaps

on Cn,1, namely g1, · · · , gl such that gj and gj+1 are neighboring gaps for every 1 ≤ j ≤ l − 1, and

also g1 and gl are neighboring gaps. By Lemma 4.3.2, at most one of the gaps is major, say g1. By

Lemma 3.6.3, and Lemma 4.3.3, we can write

| g1 | + | g2 |≤ 6;

| gl−1 | + | gl |≤ 6;

and

| gj | + | gj+1 |≤ 4,

for every j = 2, · · · , l − 2. Also B induces r gaps on Cn,2. By claims 1 − 4, at most r − 1 gaps

containing five vertices on Cn,2. By adding these inequalities and by the conditions for the gaps on

Cn,2, we get

2(n− l) + n− r = 2

l∑
j=1

| gj | +n− r ≤ 4l + 4 + 5(r − 1).
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⇒ 3n+ 1 ≤ 6l + 6r

⇒ n

2
≤ n

2
+

1

6
≤ l + r.

It follows that l+r ≥ n
2 . Since l+r is an integer, for eachm ≡ 0, 1, 2(mod 3), we have l+r ≥ n

2 ,which

completes the result.

Let I = {1, 2, · · · , n} and J = {1, 2, 3} be indexed sets and Bn be the graph of a biprism Bn

(n ≥ 3), which can be defined as the Cartesian product P3�Cn of a path on three vertices with a cycle

on n vertices, embedded in the plane. Let us denote the vertex set of Bn by V (Bn) = {zj,i : j ∈ J and

i ∈ I} and the edge set by E(Bn) = {zj,izj,i+1 : j ∈ J and i ∈ I}∪{z1,iz2,i : i ∈ I}∪{z2,iz3,i : i ∈ I}.
We make the convention that zj,n+1 = zj,1 for j ∈ J .
The face set F (Bn) contains 2n 4-sided faces and two n-sided faces (internal and external). We

insert exactly one vertex x into the internal n-sided face of Bn and exactly one vertex y into the

external n-sided face of Bn. Suppose that n is even, n ≥ 4, and consider the graph Bn with vertex set

V (Bn) = V (Bn)∪{x, y} and the edge set E(Bn) = E(Bn)∪{z1,2k−1x : k = 1, 2, · · · , n2 }∪{z3,2k−1y :

k = 1, 2, · · · , n2 }. Then Bn (n ≥ 4) is a graph of the convex polytope on |V (Bn)| = 3n+ 2 vertices,

|E(Bn)| = 6n edges and consisting of F (Bn) = 3n 4-sided faces [4]. Let the vertices of Bn be labelled

as in Fig. 3.6.
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Figure 3.6: The convex polytope graph Bn
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In the next Lemma, we will show that there must be a 4− 4 gap of B on Cn,2.

Lemma 3.6.6. Let B be a basis of Bn for even integer n ≥ 12, then there must be a 4− 4 gap of B

on Cn,2 having at most two vertices.

Proof. On contrary, suppose that B has a 4− 4 gap on Cn,2 having three vertices. Consider a path:
∗
z2,2,

∗
z2,3,

∗
z2,4,

∗
z2,5,

∗
z2,6, where ∗z2,2,

∗
z2,6 ∈ B, which implies that code(∗z2,3|B) = code(

∗
z3,2|B) and

code(y|B) = code(
∗
z2,4|B), a contradiction.

Remark 3.6.7. The Lemmas 4.3.1-4.3.3 can also be translated for the convex polytope Bn.

In the following theorem, we computed the metric dimension of convex polytope graph Bn. We

proved that this class of convex polytope has unbounded metric dimension.

Theorem 3.6.8. For every even integer n ≥ 12, we have dim(Bn) = dim(Jn) + 2 = bn3 c+ 2

Proof. Consider the convex polytope graphs Bn, then we have dim(Bn) = 4, for all 4 ≤ n ≤ 8

and W2 = {z1,1, z1,2, z1,4, z2,1} and W3 = {z1,2, x1,4, z2,3, x} and W4 = {z1,2, z1,4, z2,2, z2,7} being

metric basis for all 4 ≤ n ≤ 8, respectively. dim(Bn) = 5 being metric basis for n = 10 and

W5 = {z1,2, z1,4, z1,6, z2,1, z3,7}. However, for n ≥ 12, the dimension of Bn increases with number of

vertices n. We also know that the central vertex can’t belong to any basis of Bn. For n ≥ 12, we

prove the result by double inequality. First we show that dim(Bn) ≤ dim(Jn) + 2 by constructing a

resolving set W in Bn having bn3 c+2 vertices. For this we consider n = 2m, then there are following

cases to be discussed:

Case 1: m ≡ 0(mod 3). Let 2m = 3k, where k is even, k ≥ 4 and bn3 c + 2 = k + 2. In this

case, B = {z1,2, z1,n} ∪ {z1,6i+2, z1,6i+4 : 1 ≤ i ≤ k
2 − 1} ∪ {z2,2, z2,5}.

Case 2: m ≡ 1(mod 3). Let 2m = 3k + 2, where k is even, k ≥ 4 and bn3 c + 2 = k + 2. In

this case, B = {z1,2, z1,n} ∪ {z1,6i+2, z1,6i+4 : 1 ≤ i ≤ k
2 − 1} ∪ {z2,2, z2,5}.

Case 3: m ≡ 2(mod 3). Let 2m = 3k + 1, where k is odd, k ≥ 5 and bn3 c + 2 = k + 2. In

this case, B = {z1,2} ∪ {z1,6i+2, z1,6i+4 : 1 ≤ i ≤ k−1
2 } ∪ {z2,2, z2,5}.

The set B contains only three major vertices and the rest of the vertices are all minor vertices.

So there is a unique 3 − 3 major gap on Cn,1 and all other gaps are 3 − 3 minor gaps alternately

having one and three vertices on Cn,1. All the vertices contained in a 3−3 minor gap with one vertex

on Cn,1 are major vertices. The set B contains only two 4 − 4 gap on Cn,2 having two and n − 6

vertices. B is a resolving set of Bn, since any two minor or any two major vertices, respectively, lying

in different gaps (neighboring or not) are separated by at least one vertex in the set of three or four
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vertices of B determining these two gaps (neighboring or not). This property is true for the vertices

lying in the same gap. Also, we note that r(x|B) = (2, 2, · · · , 2, 2, 2), r(y|B) = (4, · · · , 4, 3, 2) and

r(y|B) 6= r(x|B) 6= r(zj,i|B), for every zj,i ∈ V (Bn), where x, y are central vertices and x 6= y 6= zj,i.

To prove that dim(Bn) ≥ bn3 c + 2 = dim(Jn) + 2, let B be a basis of Bn and |B| = l + 2. Then

B induces l gaps on Cn,1, namely g1, · · · , gl such that gj and gj+1 are neighboring gaps for every

1 ≤ j ≤ l − 1 and also g1 and gl are neighboring gaps, and there are two gaps on Cn,2 of size two

and n− 4. By Lemma 4.3.2, at most one of the gaps is major, say g1. By Lemma 3.6.3, and Lemma

4.3.3, we can write

|g1|+ |g2| ≤ 6;

|gl−1|+ |gl| ≤ 6;

and

|gj |+ |gj+1| ≤ 4,

for every j = 2, · · · , l − 2. By adding these inequalities and by Lemma 3.6.6 for the gaps on Cn,2,

we get

2(2n− l) + n− 2 = 2
l∑

j=1

|gj |+ n− 2 ≤ 4l + 4 + n− 4 + 2;

⇒ bn
3
c+

8

6
≤ bn

3
c+ 2 ≤ l + 2.

It follows that l + 2 ≥ bn3 c + 2. Since l is an integer, for each n = 2m and m ≡ 0, 1, 2(mod 3), we

have l + 2 ≥ bn3 c+ 2, which completes the result.
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Chapter 4

Further Results On Metric Dimension of

Generalized Petersen Networks

The Petersen graph has attracted a large number of graph theorists over the years because of its

appearance as a counter example in many places. Because of its ubiquity, it seemed a natural

graph to be used in many places. The Petersen graph is named after Julius Petersen, who in 1898

constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring. In 1950, H. S.

M. Coxeter introduced a family of graphs generalizing the Petersen graph. The generalized Petersen

graph is the most efficient small network in terms of node degree, diameter, and network size. Due

to its unique and optimal properties, several network topologies based on the generalized Petersen

graph have been proposed and investigated in the literature [44].

In 2005, Cáceres et al. [8] studied the metric dimension of generalized Petersen networks P (n,m),

for m = 1, and proved that this class of graphs have metric dimension 2 when n is odd and 3

otherwise. In 2008, Javaid et al. [36] studied the metric dimension of generalized Petersen networks

P (n,m), for m = 2, and proved that this class of graphs have constant metric dimension. In 2012,

Javaid et al. [35] also studied the metric dimension of P (n,m), for n = 2m+ 1 and m ≥ 1. In 2013,

Ahmad et al. [1] studied the metric dimension of P (n,m− 1), for n = 2m. In 2014, Imran et al. [28]

computed the metric dimension of a class of generalized Petersen networks P (n,m), for m = 3. In

2014, Naz et al. [42] studied the metric dimension of P (n,m), for m = 4.

In this chapter, we study the metric dimension of an infinite class of generalized Petersen net-

works. We compute the exact value of the metric dimension for generalized Petersen networks

P (n,m), for m = 3 and when n ≡ 2, 3, 4, 5 (mod 6), thus completing the study of a class of general-

ized Petersen networks P (n,m) for m = 3. We improve the upper bound for the metric dimension

of P (n, 3) when n ≡ 2 (mod 6) by providing answer to the open problem proposed in [28] and which

also gives a partial answer to an open problem raised in [36]: “Is it the case that the metric dimension

of generalized Petersen networks P (n,m), for n ≥ 7 and 3 ≤ m ≤ bn−12 c a class of networks with
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constant metric dimension? ”

We prove that the generalized Petersen network P (n,m), for m = 3, has metric dimension 3 when

n ≡ 1 (mod 6) and 4 otherwise.

4.1 Introduction and preliminary results

The metric dimension of graphs has found key importance in the evolution of cooperation [45,46].

The families of graphs with constant metric dimension were discussed previously in [24, 26, 28, 36].

The metric dimension of generalized Petersen networks P (n,m) has been subject of the many papers

in the literature. In [36], it was proved that the class of generalized Petersen networks P (n, 2) have

constant metric dimension and only 3 vertices suffices to resolve V (P (n, 2)), and raised an open

problem.

Open Problem [36]: Is P (n,m), for n ≥ 7 and 3 ≤ m ≤ bn−12 c, a family of networks with constant

metric dimension?

In [35], the metric dimension of generalized Petersen network P (n,m) for n = 2m + 1 and m ≥ 1

was studied and proved that this class has metric dimension 3, which also provides a partial answer

of an open problem raised in [36]. Ahmad et al. [1] studied the metric dimension of the generalized

Petersen networks P (n,m − 1) for n = 2m and gave a partial answer to an open problem raised

in [36]. They proved that this class of graphs has constant metric dimension and only 3 vertices are

suffice to resolve V (P (2m,m− 1)) for all odd m ≥ 3 and 4 vertices are suffices for all even m ≥ 3.

In [42], Naz et al. considered the family of generalized Petersen Networks P (n, 4) and proved that

this family also has constant metric dimension, i.e.,

dim(P (n, 4)) =


3 ; for n ≡ 0 (mod 4);

4 ; for n = 4k + 3 and k is even;

≤ 4 ; for n ≡ 1, 2 (mod 4) and n = 4k + 3 (k odd).

In this paper, we improve the bound for the metric dimension of P (n, 3) when n ≡ 2 (mod 6)

and provide answer to the open problem proposed in [28] and give a partial answer to an open

problem proposed in [36] and prove that the generalized Petersen networks P (n, 3) is a family of

regular networks having constant metric dimension and only 4 vertices appropriately chosen suffices

to resolve all the vertices of the generalized Petersen networks P (n, 3) when n ≡ 2, 3, 4, 5 (mod 6).

Thus we conclude that each network in the family of generalized Petersen networks P (n, 3) is a

network with constant metric dimension, which is

dim(P (n, 3)) =

{
3 ; for n ≡ 1(mod 6) and n ≥ 25;

4 ; otherwise, for n ≥ 24.
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4.2 Upper bound for metric dimension of the generalized Petersen

networks P (n, 3) when n ≡ 2(mod 6)

The generalized Petersen network denoted by P (n,m), where n ≥ 3 and 1 ≤ m ≤ bn−12 c, is a cubic

graph having vertex set

V (P (n,m)) = {u1, u2, · · · , un, v1, v2, · · · , vn}

and edge set

E(P (n,m)) = {uiui+1, uivi, vivi+m : 1 ≤ i ≤ n}.

Generalized Petersen networks were first defined by Watkins [62]. For m = 1, the generalized

Petersen network P (n, 1) is called prism, denoted by Dn. In [8], it was shown that

dim(Pm�Cn) =

{
2 ; if n is odd

3 ; otherwise.

Since the prism Dn is actually the cross product of path P2 with a cycle Cn, this implies that

dim(Dn) =

{
2 ; if n is odd

3 ; otherwise.

So, prisms constitute a family of 3-regular graphs having bounded metric dimension. In [36], this

study was extended and proved that dim(P (n, 2)) = 3 for every n ≥ 5 and following open problem

was raised.

Open Problem [36]: Is P (n,m), for n ≥ 7 and 3 ≤ m ≤ bn−12 c, a family of networks with constant

metric dimension?

Imran et al. [28] by giving a partial answer to the above open problem showed that

dim(P (n, 3)) =


3 ; for n ≡ 1 (mod 6) and n ≥ 25;

4 ; for n ≡ 0 (mod 6) and n ≥ 24;

≤ 4 ; for n ≡ 3, 4, 5 (mod 6) and n ≥ 17;

≤ 5 ; for n ≡ 2 (mod 6) and n ≥ 8.

(4.2.1)

They also proposed the following open problem in [28].

Open Problem [28]: Find the exact value of the metric dimension for generalized Petersen network

P (n, 3) when n ≡ 2, 3, 4, 5 (mod 6).

When m = 3, {u1, u2, · · · , un} induces a cycle in P (n, 3) with uiui+1(1 ≤ i ≤ n), as edges. If n = 3l

(l ≥ 3), then {v1, v2, · · · , vn} induces 3 cycles of length l, otherwise it induces a cycle of length n

with vivi+3 (1 ≤ i ≤ n), as edges. For example, P (8, 3) is the Möbius-Kantor graph.

In the sequel, we will compute the exact value of the metric dimension of P (n, 3) when n ≡
2, 3, 4, 5 (mod 6).

58



u

u

u
u

u

u

u

u

2

1

3

4

5

6

8 v1

v

v

v

v
v

v

v

3

4

5

6

7

8

2

7

u

u

u
u

u

u

u

u

2

1

3

4

5

6

8 v1

v

v

v

v

v

v

v

3

4

5

6

7

8

2

7
u

u

u
u

u

u

u

u

2

1

3

4

5

6

8 v1

v

v

v

v

v

v

v

3

4

5

6

7

8

2

7

P(8,1)

P(8,3)

P(8,2)

Figure 4.1: The generalized Petersen graphs P(8,1), P(8,2) and P(8,3)

Since generalized Petersen networks form an important class of 3-regular graphs with 2n vertices

and 3n edges, it is desirable to find their metric dimensions. For our convenience, we call the cycle

induced by {u1, u2, · · · , un} as outer cycle and cycle(s) induced by {v1, v2, · · · , vn} as inner cycle(s).
Note that the choice of appropriate basis vertices (also known as landmarks) is the core of the prob-

lem.

In this chapter, we solve the open problem proposed in [28] and give a partial answer to an open

problem proposed in [36], thus completing the study of the metric dimension of the generalized

Petersen network P (n, 3).
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In the following lemma, we improve the bound given in equation (4.2.1) for the metric dimension

of the generalized Petersen networks P (n, 3) when n ≡ 2(mod 6) by providing a resolving set of

cardinality 4.

Lemma 4.2.1. Let P (n, 3) be the generalized Petersen network, then dim(P (n, 3)) ≤ 4 when n ≡
2 (mod 6) and n ≥ 24.

Proof. When n ≡ 2 (mod 6) and n ≥ 24, we can write as n = 6k + 2 where k ≥ 4. Suppose that

W = {v1, v3k−2, u3k−1, un} be the subset of set of vertices of P (n, 3). We show that the set W

resolves the vertices of P (n, 3). The codes of the vertices in V (P (n, 3)) \W with respect W are

described in the following cases:

Case (i): Codes for the outer cycle vertices of P (n, 3), when n ≡ 2 (mod 6) and n ≥ 24 are given

as code(u1|W ) = (1, k, k + 2, 1), code(u2|W ) = (2, k + 1, k + 1, 2), code(u3|W ) = (2, k, k + 2, 3) and

those which are given in Table 4.1 and Table 4.2:

d(.,.) v1 v3k−2 u3k−1 un

u3i+1

i+ 1 k − i k − i+ 2 i+ 3 1 ≤ i ≤ k − 2

2k − i+ 3 i− k + 2 i− k + 4 2k − i+ 3 k + 1 ≤ i ≤ 2k − 2

u3i+2

i+ 2 k − i+ 1 k − i+ 1 i+ 4 1 ≤ i ≤ k − 2

2k − i+ 2 i− k + 3 i− k + 3 2k − i+ 2 k + 1 ≤ i ≤ 2k − 2

u3i+3

i+ 3 k − i k − i+ 2 i+ 3 1 ≤ i ≤ k − 3

2k − i+ 1 i− k + 4 i− k + 4 2k − i+ 3 k + 1 ≤ i ≤ 2k − 2

Table 4.1: Distinct codes of outer cycle vertices

Case (ii): Codes for the inner cycle(s) vertices are given as code(v2|W ) = (3, k+2, k, 3), code(v3|W ) =

(4, k + 1, k + 1, 2) and those which are given in Table 4.3 and Table 4.4.

We observe that there are no two vertices on the inner cycle(s) with same representations. Also

there are no two vertices on the inner cycle(s) and on the outer cycle having same represen-

tations and no two vertices on the outer cycle having same representations. This implies that

W = {v1, v3k−2, u3k−1, un} is a resolving set for V (P (n, 3)) when n ≡ 2 (mod 6) implying that

dim(P (n, 3)) ≤ 4, which completes the proof.

4.3 Metric dimension of P (n, 3) for n ≡ 2, 3, 4, 5 (mod 6)

In this section, we study the lower bound for the metric dimension of the generalized Petersen

networks P (n, 3). We prove that dim(P (n, 3)) ≥ 4 for n ≡ 2, 3, 4, 5 (mod 6) and n ≥ 24, giving

exact value of dim(P (n, 3)) in this case by Lemma 4.2.1 and equation (4.2.1). For this purpose we
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d(.,.) v1 v3k−2 u3k−1 un

u3k−3 k + 1 2 2 k + 1

u3k−2 k 1 1 k + 2

u3k k + 2 3 1 k + 2

u3k+1 k + 1 2 2 k + 3

u3k+2 k + 2 3 3 k + 2

u3k+3 k + 1 4 4 k + 3

u6k−2 4 k + 1 k + 3 4

u6k−1 3 k + 2 k + 2 3

u6k 2 k + 1 k + 3 2

u6k+1 3 k + 2 k + 2 1

Table 4.2: Distinct codes of outer cycle vertices

d(.,.) v1 v3k−2 u3k−1 un

v3i+1

i k − i− 1 k − i+ 1 i+ 2 1 ≤ i ≤ k − 2

i i− k + 1 i− k + 3 2k − i+ 2 k ≤ i ≤ 2k − 4

2k − i+ 4 i− k + 1 i− k + 3 2k − i+ 2 2k − 3 ≤ i ≤ 2k − 1

v3i+2

i+ 3 k − i+ 2 k − i i+ 3 1 ≤ i ≤ k − 1

2k − i+ 3 i− k + 4 i− k + 2 2k − i+ 1 k ≤ i ≤ 2k − 1

v3i+3

i+ 4 k − i+ 1 k − i+ 1 i+ 2 1 ≤ i ≤ k − 2

2k − i i− k + 5 i− k + 3 2k − i+ 2 k ≤ i ≤ 2k − 3

Table 4.3: Distinct codes of inner cycle(s) vertices

d(.,.) v1 v3k−2 u3k−1 un

v3k k + 1 4 2 k + 1

v6k−3 2 k + 1 k + 1 4

v6k 1 k + 1 k + 2 3

v6k+1 4 k + 1 k + 1 2

v6k+2 3 k + 2 k + 2 1

Table 4.4: Distinct codes of inner cycle(s) vertices

need few more notions and definitions. As we specified in section 4.2 that the vertices of the outer

cycle are labeled by u1, u2, · · · , un in the clockwise direction. For any two distinct vertices ui and

uj we would like to define the “clockwise distance" from ui to uj , denoted by d∗(ui, uj) the distance
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Figure 4.2: Good vertices for u1(n = 6k + 2)

measured in clockwise direction, from ui to uj in the subgraph induced by the outer cycle. For

instance, d∗(u1, uj) = j − 1 and d∗(uj , u1) = 1; in general we have d∗(u1, uj) + d∗(uj , u1) = j. This

definition can be extended to any two vertices of the generalized Petersen network P (n, 3) for i 6= j

by: d∗(ui, vj) = d∗(vi, uj) = d∗(vi, vj) = d∗(ui, uj).

Suppose that u1 is a vertex on outer cycle of P (n, 3). A vertex ui is said to be a good vertex for u1
if d(u1, ui) = d(u1, ui+2); otherwise ui is referred as a bad vertex for u1. This can be extended for

inner cycle(s) vertices as well: ui is a good vertex for v1 if d(v1, ui) = d(v1, ui+2) and bad otherwise.

In Fig. 4.2, we labeled by black dots all the good vertices for u1 when n = 6k + 2 ≥ 24.

It can be observed that the set of good vertices for v1 is deduced from the set of good vertices for u1
by adding 4 new vertices on the outer cycle, namely u2, u3, u6k−1 and u6k. Similarly, a vertex uk is

known to be a good vertex for the pair {u1, uj} if d(u1, uk) = d(u1, uk+2) and d(uj , uk) = d(uj , uk+2).

If ui is a good vertex for the pairs {u1, uj} and {u1, uk} then ui is also known as a good vertex for the

triplet {u1, uj , uk}, i.e., d(u1, ui) = d(u1, ui+2), d(uj , ui) = d(uj , ui+2) and d(uk, ui) = d(uk, ui+2).

Due to rotational symmetry of P (n, 3), we deduce the following results.

Lemma 4.3.1. If ui and uj are any two vertices on the outer cycle of P (n, 3) then we have

d(ui, uj) = d(ui+l, uj+l) for any 1 ≤ l ≤ n− 1.

The following lemma is quite useful to find the good vertices for the pair of vertices on the outer

cycle of P (n, 3).

Lemma 4.3.2. If ui is a good vertex for u1 and ui−j is also a good vertex for any u1 for 1 ≤ j ≤ n−5,

then ui is also a good vertex for the pair {u1, uj+1}.

Proof. By definition of good vertices we have d(u1, ui) = d(u1, ui+2) and d(u1, ui−j) = d(u1, ui−j+2).

By Lemma 4.3.1, we have from the last equality that d(uj+1, ui) = d(uj+1, ui+2).
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In the following lemma, we will prove that the dim(P (n, 3)) is bounded below by 4.

Lemma 4.3.3. If n = 6k + 2 and n ≥ 24 then dim(P (n, 3)) ≥ 4.

Proof. We shall prove that dim(P (n, 3)) ≥ 4, or there is no resolving set of V (P (n, 3)) having

three vertices X,Y and Z. It is sufficient to consider only the case when X,Y and Z belong to

the outer cycle. Since we can deduce the set of good vertices for v1 from the set of good vertices

for u1 (represented in Fig. 4.2) by adding new vertices u2, u3, u6k−1 and u6k. We can see that for

any three vertices X,Y and Z of V (P (n, 3)) such that d∗(X,Y ) < d∗(X,Z) it is possible to find a

pair of vertices at distance 2 on the outer cycle, {ui, ui+2} having equal distances to X,Y and Z,

respectively. If n = 6k + 2 and X,Y, Z are on the outer cycle, we can assume that X = u1. By

denoting (r, s) ≡ (x, y) (mod 3) if r ≡ x (mod 3) and s ≡ y (mod 3), the following nine cases occur:

(d∗(u1, Y ), d∗(u1, Z)) ≡ (x, y) (mod 3), where (x, y) can take the form

(1) (0, 0); (2) (1, 1); (3) (2, 2); (4) (0, 1) (5) (0, 2); (6) (1, 0); (7) (1, 2); (8) (2, 0); (9) (2, 1).

Due to rotational symmetry of P (n, 3) some of the cases reduced to other cases e.g., from case (2)

by permutation X → Y, Y → Z, Z → X we obtain case (4) and by permutation X → Z, Y →
X, Z → Y we get the case (7). The reducibility between the cases is illustrated with help of graphs

in the Fig. 4.3.
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8
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31

Figure 4.3: Reducibility between the cases

It follows that it is sufficient to consider only cases (1), (2) and (9).

Case 1: If we choose a good vertex u6 and we go in counter clockwise direction approaching ver-

tices u3, u6k, u6k−3, u6k−6, · · · , u9; we find only two bad vertices u3 and u6k for u1 with property

that d∗(u1, Y ) ≡ 2 (mod 3), where Y ∈ {u3, u6k, u6k−3, u6k−6, · · · , u9} (see Fig. 4.2). By Lemma

4.3.2, it follows that u6 is a good vertex for all pairs {u1, Y } where d∗(u1, Y ) ≡ 0 (mod 3) and

Y /∈ {u4, u10}. It follows that u6 is a good vertex for all triplets {u1, Y, Z}, unless Y = u4 and

Z ∈ {u7, u10, u13, · · · , u6k+1}; Y = u10 and Z ∈ {u7, u13, · · · , u6k+1}. For these triplets we must

find other good vertices on the outer cycle. In a similar way, u3k+6 is a good vertex for u1 since
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6k − 6 ≥ 3k + 6 and for all pairs {u1, Y } where d∗(u1, Y ) ≡ 0(mod 3) and Y /∈ {u3k+4, u3k+10}.
Consequently, we have found a good vertex (u6 or u3k+6) for all triplets {u1, Y, Z} such that

{Y, Z} 6= {u4, u3k+4}, {u4, u3k+10}, {u10, u3k+4}, {u10, u3k+10}. Finally u9 is a good vertex for all

pairs {u1, Y } where d∗(u1, Y ) ≡ 0 (mod 3) and Y /∈ {u7, u13}. Since k ≥ 4 we have 3k+4 ≥ 13 and u9
is a good vertex for the remaining triplets {u1, Y, Z}, where Y ∈ {u4, u10} and Z ∈ {u3k+4, u3k+10}.
Case 2: In a similar way we get that u5 is a good vertex for all pairs {u1, Y }, where d∗(u1, Y ) ≡
1 (mod 3) and Y /∈ {u2, u5, u8}. Therefore u5 is a good vertex for all triplets {u1, Y, Z}, unless
Y = u2 and Z ∈ {u5, u8, u3k−4, u3k−1, u3k+2, u3k+5, u3k+8, · · · , u6k−4, u6k−1, u6k+2}; Y = u5 and Z ∈
{u8, u3k−4, u3k−1, u3k+2, u3k+5, u3k+8, · · · , u6k−4, u6k−1, u6k+2}; Y = u8 and Z ∈ {u11, u3k−1, u3k+2,

u3k+5, u3k+8, · · · , u6k−4, u6k−1, u6k+2}. Since 6k−7 > 3k−1, it follows that u6k−7 is a good vertex for

u1 and for all pairs {u1, Y }, where d∗(u1, Y ) ≡ 1 (mod 3) and Y /∈ {u6k−7,u6k−4,u3k+5
}. We have found

a good vertex (u5 or u6k−7) for all triplets {u1, Y, Z} such that {Y,Z} 6= {u2, u3k+5}, {u2, u6k−7},
{u2, u6k−4}, {u5, u3k+5}, {u5, u6k−7}, {u5, u6k−4}, {u8, u3k+5}, {u8, u6k−7}, {u8, u6k−4}. Since k ≥ 4

we find for triplets {u1, u2, u3k+5}, {u1, u2, u6k−7}, {u1, u2, u6k−4}, {u1, u5, u3k+5}, {u1, u5, u6k−7},
{u1, u5, u6k−4}, {u1, u8, u3k+5}, {u1, u8, u6k−7}, {u1, u8, u6k−4} good vertices u3k−4 for first six triplets

and u3k−1 for last three triplets, respectively (e.g. by using Lemma 4.3.2).

Case 9: Similarly, u5 is a good vertex for all pairs {u1, Y } where d∗(u1, Y ) ≡ 2 (mod 3) and

Y /∈ {u3, u9}. It follows that u5 is a good vertex for all triplets {u1, Y, Z}, unless Y = u3 and

Z ∈ u6, u9, u3k−4, · · · , u6k; Y = u9 and Z ∈ u6, u3k−4, · · · , u6k. For these triplets we must find other

good vertices on the outer cycle. Similarly, u3k+5 is a good vertex for u1 since 6k − 7 ≥ 3k + 5

and for all pairs {u1, Y } where d∗(u1, Y ) ≡ 2 (mod 3) and Y /∈ {u3k+3, u6k−6}. Consequently, we

have found a good vertex (u5 or u3k+5) for all triplets {u1, Y, Z} such that {Y,Z} 6= {u3, u3k+3},
{u3, u6k−6}, {u9, u3k+3}, {u9, u6k−6}. Finally, u8 is a good vertex for all pairs {u1, Y } where

d∗(u1, Y ) ≡ 2 (mod 3) and Y /∈ {u6, u12}. Since k ≥ 4 we have 3k + 3 > 12 and u8 is a good

vertex for the remaining triplets {u1, Y, Z}, where Y ∈ {u3, u9} and Z ∈ {u3k+3, u6k−6}, which
completes the proof.

In a similar fashion as in Lemma 4.3.3, we can prove that dim(P (n, 3)) ≥ 4 when n ≡ 3, 4, 5 (mod 6)

and n ≥ 24, while the set of good vertices for u1 are shown by black dots in Fig. 4.4.

In the following theorem, we prove the exact value of P (n, 3) when n ≡ 2, 3, 4, 5 (mod 6).

Theorem 4.3.4. If n = 6k+ 2, 6k+ 3, 6k+ 4, 6k+ 5 and n ≥ 24 then we have dim(P (n, 3)) = 4.

Proof. To prove the theorem we use double inequality. First, we see that dim(P (n, 3)) ≤ 4 can be

followed from Lemma 4.2.1 and equation (4.2.1). The reverse inequality can be followed on the same

lines as in Lemma 4.3.3, which concludes the proof.

The following theorem can be deduced as an immediate consequence of the equation (4.2.1) and

Theorem 4.3.4, which completes the study of generalized Petersen networks P (n, 3).
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Figure 4.4: Good vertices for u1 (n = 6k + 3, 6k + 4, 6k + 5)

Theorem 4.3.5. For the generalized Petersen networks P (n,m) for m = 3, we have

dim(P (n, 3)) =

{
3 ; for n ≡ 1 (mod 6) and n ≥ 25;

4 ; otherwise, for n ≥ 24.
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Chapter 5

Metric Dimension and Partition

Dimension of Nanostructures

The metric dimension dim(G) and partition dimension pd(G) of a connected graph G are related as

pd(G) ≤ dim(G) + 1.

Moreover, there are some simple connected graphs having metric dimension much larger than the

partition dimension and this phenomena is called discrepancy between metric dimension and parti-

tion dimension. The discrepancies between metric dimension and partition dimension of a connected

graph G have already been subject of the following papers [40, 58, 59]. The metric dimension of in-

finite graphs is studied in [10].

In this chapter, we study the metric dimension and partition dimension of 2-dimensional lattices

of certain infinite nanotubes generated by the tiling of the plane. We prove that metric dimension

of these infinite nanotubes is not finite but their partition dimension is finite and is evaluated,

implying that these nanostructures are among the graphs having discrepancy between their metric

dimension and partition dimension. It is also proved that there exist some induced subgraphs of

2-dimensional lattices of these nanostructures having unbounded metric dimension as well as having

constant metric dimension.

5.1 Introduction and Preiminary Results

It is natural to think about the relation between metric dimension and partition dimension of con-

nected graphs and the characterization of the graphs having discrepancies between their metric

dimension and partition dimension. It was shown in [14] that metric dimension and partition di-

mension for any connected graph G are related as pd(G) ≤ 1 + dim(G).

Consider the infinite graphs (Z2, E4) and (Z2, E8) generated by two metrics
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d4[(x1, y1), (x2, y2)] = |x2 − x1|+ |y2 − y1|: (City block distance)

and

d8[(x1, y1), (x2, y2)] = max(|x2 − x1|, |y2 − y1|): (Chessboard distance)

on Z2 having the same vertex set Z2 and the set of edges consisting of all pairs of vertices whose

city block and chess board distances are 1.

In [40], it was proved that (Z2, E4) and (Z2, E8) have no finite metric bases, where (Z2, E4) and (Z2, E8)
are infinite graphs generated by tiling of the plane by integral lattice equipped with city block and

chessboard metric, respectively. Also for any natural number n ≥ 3 there exist induced subgraphs of

(Z2, E4) and (Z2, E8) having metric dimension equal to n, constant and bounded by 3. Also, in [58]

it was proved that pd(Z2, E4) = 3 and pd(Z2, E8) = 4, hence proving that (Z2, E4) and (Z2, E8) have

discrepancy between their metric dimension and partition dimension. The discrepancies between

the metric dimension and partition dimension of infinite regular graphs generated by tilings of the

plane by regular hexagons or equilateral triangles are also discussed by Tomescu et al. in [59]. Some

infinite regular graphs generated by tiling of the plane by an infinite hexagonal grid are also discussed

in [23] and was proved that these graphs also have discrepancies between their metric dimension

and partition dimension. It was also proved that their are some infinite induced subgraphs of these

graphs having metric dimension equal to n and some have metric dimension equal to 3.

In what follows we shall consider certain infinite regular graphs generated by tiling of the plane by

2-dimensional lattices of certain infinite Carbon nanotubes. Carbon nanotubes are basically sheets

of graphite rolled up into a tube. It is constructed from the hexagonal 2-dimensional lattice of

graphite mapped on a given one-dimensional cylinder of radius R. The nanotubes HAC5C7 and

HC5C7 are constructed in a similar way by a sheet covered by pentagons and heptagons. The

nanotube HAC5C6C7 is constructed by a sheet covered by pentagons, hexagons and heptagons.

A V-Phenylenic nanotube is constructed by a sheet covered by C4, C6 and C8. The nanotubes

TUC4C8(R) and TUC4C8(S) are constructed by a sheet covered by C4 and C8. The nanotube

H-Naphtalenic is constructed by a sheet covered by squares, hexagons and octagons. Also the

nanotube V C5C7 is constructed by a sheet covered by pentagons and heptagons. Carbon nanotubes

are allotropes carbon with a cylindrical nano-structure. These cylindrical Carbon nanotubes have

unusual properties, which are valuable for nanotechnology, electrons, optics and other fields of

material sciences and technology. Nanotubes are members of fullerene structure family. Their

name is derived from their long, hollow structure.

5.2 Metric Dimension and Partition dimension of Nanotubes

In this section, we compute the metric dimension and partition dimension of certain infinite regular

graphs generated by tiling of the plane by 2-dimensional lattices of some infinite nanotubes. We
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prove that these 2-dimensional lattices of nanotubes have infinite metric bases but their partition

dimension is finite and evaluated. Hence, these nanotubes have discrepancy between their metric di-

mension and partition dimension. These results show that these 2-dimensional lattices of nanotubes

are among the graphs for which the strict inequality pd(G) < dim(G) + 1 holds. It is also shown

that there exist induced subgraphs of 2-dimensional lattices of these nanostructures having metric

dimension unbounded as well as having constant metric dimension.

In the next lemma, we show that the infinite nanotubesHAC5C7,HC5C7,HAC5C6C7, H-Naphtalenic,

V C5C7, V-Phenylenic, TUC4C8(R) and TUC4C8(S) have no finite metric basis.

Lemma 5.2.1. The 2-dimensional lattices of infinite nanotubes HAC5C7, HC5C7, HAC5C6C7,

H-Naphtalenic, V C5C7, V-Phenylenic, TUC4C8(R) and TUC4C8(S) nanotubes have no finite met-

ric basis, i.e., dim(HAC5C7) = dim(HC5C7) = dim(HAC5C6C7) = dim(H − Naphtalenic) =

dim(V C5C7) = dim(V − Phenylenic) = dim(TUC4C8(R)) = dim(TUC4C8(S)) =∞.

A 2-D lattice of HAC5C7

x) y)

A 2-D lattice of HC
5
C7 

a

 A 2-D lattice of HAC
5
C6C7 

b

a

a

b

b

z)

Figure 5.1: Vertices having equal distances from a and b

Proof. In the graph of 2-dimensional lattice of HAC5C7 as shown in Fig. 5.1 (x), we labeled two
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vertices by a and b and set of vertices c in this graphs such that d(a, c) = d(b, c). To the contrary,

suppose that this graph has a finite metric basis B. We can find two vertices a, b and a subset A of

this graph consisting of all vertices c such that d(a, c) = d(b, c) ≤ m for every positive integer m such

that B ⊂ A. This implies that d(a, c) = d(b, c) for all c ∈ B, a contradiction to our assumption.

The proof for the metric dimension of 2-dimensional lattices of the following nanotubes HC5C7,

HAC5C6C7, V-Phenylenic, TUC4C8(R), TUC4C8(S), H-Naphtalenic and V C5C7 nanotubes can be

followed in the similar fashion as shown in Fig. 5.2 and Fig. 5.3.

a b

A 2-D lattice of H-Naphtalenic
nanotube                   

A 2-D lattice of VC5C7  
            

a b 

x) 
    
 

y) 
   

Figure 5.2: Vertices having equal distances from a and b

The partition dimension of 2-dimensional lattice ofHAC5C7,HC5C7,HAC5C6C7, H-Naphtalenic,

V C5C7, V-Phenylenic, TUC4C8(R), and TUC4C8(S) nanotubes has been determined in the follow-

ing lemma.

Lemma 5.2.2. We have pd(HAC5C7) = pd(HC5C7) = pd(HAC5C6C7) = pd(H−Naphtalenic) =

pd(V C5C7) = pd(V − Phenylenic) = pd(TUC4C8(R)) = pd(TUC4C8(S)) = 3.

Proof. In [13] it was proved that pd(G) = 2 if and only if G is path and this property holds for

infinite graphs too. It follows that pd(HAC5C7) ≥ 3, pd(HC5C7) ≥ 3 and pd(HAC5C6C7) ≥ 3.

Fig. 5.4 provides a resolving 3-partition of 2-dimensional lattices of these infinite nanotubes. It

follows that pd(HAC5C7) = pd(HC5C7) = pd(HAC5C6C7) = 3. The proof for the rest of the

2-dimensional lattices of the infinite nanotubes can be followed on the same lines and their resolving

3-partitions are shown in Fig. 5.5 and Fig. 5.6, which completes the proof.
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a
ba

a

b

TUC C  (R)
4 8

TUC C  (S)
4 8

x)

z)

y)

V-phenylenic nanotube

Figure 5.3: Vertices having equal distances from a and b

5.3 Metric Dimension of Induced Subgraphs of the Nanotubes

A k-polyomino system is a finite 2-connected plane graph such that each interior face (also called

cell) is surrounded by a regular 4k-cycle of length one. In other words, it is an edge-connected union

of cells as shown in Fig. 5.8.

Fig. 5.7 and Fig. 5.8 represent induced subgraphs of 2-dimensional lattices of HC5C7, HAC5C7

and HAC5C6C7 nanotubes. The graph HPn consists of series of n induced heptagons, In is an

alternate edge-connected union of n
2 induced 5-cycles and n

2 induced 7-cycles, HP 1
n is defined as

an edge-connected union of n
2 pair of induced 7-cycles, En is an edge-connected union of n

2 pair

of induced C5, I1n is an alternate edge connected union of C5, C7 and an edge, while the induced

subgraph HHn is define as an edge connected union of pairwise zig-zag sequence of n heptagons.

Note that all these induced subgraphs are of order l.

In the next theorems, we determined the metric dimension of the induced subgraphs defined above.
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Figure 5.4: A resolving 3-partition of 2-dimensional lattices of HAC5C7, HC5C7 and HAC5C6C7

nanotubes

We proved that there exist induced subgraphs of 2-dimensional lattices of these infinite nanotubes

having metric dimension unbounded as well as having constant metric dimension.

Theorem 5.3.1. a) For every integer n ≥ 1 we have: dim(HPn) = dim(In) = 2.

b) For every integer n ≥ 3 we have: dim(HP 1
n) = dim(En) = dim(I1n) = dn2 e.

Proof. a) From [11], it implies that dim(HPn) ≥ 2. In Fig. 5.7, the vertices of HPn lying on the

upper half and lower half of the induced 7-cycles are represented by ui and vi, respectively, where

1 ≤ i ≤ l
2 . To prove that dim(HPn) ≤ 2, we show that the set W = {u2, v1} resolves V (HPn). For

this, we give representations of the vertices of V (HPn) \W with respect to W . We have

code(u1|W ) = (1, 1), code(u3|W ) = (1, 3), code(v2|W ) = (3, 1).

Also

code(ui|W ) = (i− 2, i− 1), for 4 ≤ i ≤ l

2
,
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A 2-D lattice of VC5C7  
           

Figure 5.5: A resolving 3-partition of 2-dimensional lattice of H-Naphtalenic, and V C5C7 nanotubes

code(vi|W ) = (i, i− 1), for 3 ≤ i ≤ 5

and

code(vi|W ) = (i− 1, i− 1), for 6 ≤ i ≤ l

2
.

Since all the distinct vertices receive different codes, this implies that dim(HPn) = 2. The proof

follows on the same lines for In.

b) Suppose that there are even numbers of heptagons in HP 1
n . The vertices a and b have equal

distances to all vertices of HP 1
n except the vertices c, d, e, f , g, h, p and q, while the vertices a and

b may be distinguished only by c, d, e, f , g, h, p or q if a and b do not belong to any basis of HP 1
n .

It follows that at least one vertex from the set {a, b, c, d, e, f, g, h, p, q} must belong to any basis of

HP 1
n . In other words, a metric basis of HP 1

n can be constructed by choosing exactly one vertex of

degree two from each pair of consecutive heptagons and the result follows. Note that the result is

also true when n is odd but the number of vertices are different. The situation is quite similar for

the induced subgraphs En and I1n.

Now we determine the exact value of the metric dimension of zig-zag chain of 7-cycles showing

that the zig-zag chain of 7-cycles have unbounded metric dimension.

Theorem 5.3.2. For every integer n ≥ 1, we have dim(HHn) = dn+2
2 e.

Proof. Suppose that heptagons of HHn have been numbered by 1, 2, 3, ..., n from left to right.

Fig. 5.8 shows that dim(HH1) = dim(HH2) = 2 with metric basis {x, y} and dim(HH3) = 3
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Figure 5.6: A resolving 3-partition of 2-dimensional lattices of V-Phenylenic nanotube, TUC4C8(R),

and TUC4C8(S) nanotubes

with metric basis being {y, t, h} containing vertices of type y, t and h. Now we will prove that

dim(HHn) = dn+2
2 e for n ≥ 4. This can be shown by using double inequality.

For an upper bound, we construct a resolving set having dn+2
2 e vertices (in each case, whether n

odd or even). Hence, a resolving set A can be constructed having cardinality dn+2
2 e as follows:

• For n odd, we can choose vertices x and t from heptagons numbered 1 and 2 respectively, and a

vertex of type s from each of the heptagons numbered by 5, 7, 9, ..., n− 1 from left to right and also

a vertex of type h from nth heptagon.

• When n is even, we choose vertices x and t from heptagons numbered 1 and 2 respectively, and a

vertex of type s from each of the heptagons numbered by 4, 6, 8, ..., n− 2 from left to right and also

a vertex of type j from nth heptagon.

One can easily verify that any two vertices of HHn having same distances to any other vertex of A
may be distinguished by other vertices of A; which shows that dim(HHn) ≤ dn+2

2 e for n ≥ 1.

For reverse inequality, we will first show that every resolving set of HHn must contain at least one

vertex from each of the two consecutive heptagons in the finite sequence of heptagons represented
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Figure 5.8: The zig-zag chain of 7-cycles

by HHn. The vertices e and a in the third heptagon from left to right may be distinguished only

by the vertices of type a, b and y in second heptagon, and by vertices of type f , y, z and b in third

heptagon and all vertices in fourth octagon except vertex of type a of HHn. A similar argument can

be established for other pair of vertices of type f , b and y, z. This shows that any two consecutive

heptagons of HHn must contain at least one vertex in any metric basis. This implies that if we

assign to i-th heptagon the binary variable Hi having value 1 if it has a vertex in a resolving set A
of HHn and 0 otherwise, we can write:
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H1 = 1;

H2 +H3 ≥ 1

H3 +H4 ≥ 1

H4 +H5 ≥ 1

· · · · ·

· · · · ·

· · · · ·

Hn−1 +Hn ≥ 2

By summing up these inequalities, we get:

S = H2 + 2H3 + 2H4 + · · ·+ 2Hn−1 +Hn ≥ n.

Hence we get

2 | A |= 2
n∑

i=1

Hi = S +H2 +Hn + 2 ≥ n+ 2.

This implies that | A |≥ dn+2
2 e, hence dim(HHn) ≥ dn+2

2 e, which completes the proof.

Fig. 5.9 represents some induced subgraphs of TUC4C8(R), V-Phenylenic and TUC4C8(S) nan-

otubes. Yn is defined as the series of n induced C4, the graph On is an edge-connected union of n

induced 8-cycles, Bn is defined as an edge-connected union of n pairs of induced C8 and C4 alter-

natively, Dn is an edge-connected union of n pairs of induced C6 and C8 alternatively, while Xn is

an edge-connected union of n pairs of induced C4 and C6 alternatively. The metric dimension of Fn

has been determined in [59]. Fig. 5.10 represents a polyomino chains of 8-cycles and we denoted it

by OOn. Note that all these induced subgraphs are of order k.

In the next theorem, we have determined the metric dimension of the induced subgraphs defined

above. We prove that there exist induced subgraphs of these nanotubes having metric dimension n

as well as having constant metric dimension.

Theorem 5.3.3. a) For every integer n ≥ 2, we have: dim(Yn) = n and Yn has n!2n metric basis.

b) For every integer n ≥ 1, we have dim(On) = dim(Bn) = dim(Dn) = 2.

c) We have dim(Xn) = 3 for every positive integer n ≥ 2.

Proof. a) Fig. 5.9 represents two vertices a and b having equal distances to all other vertices of

Yn implying that at least one of them must be included in any metric basis of Yn. In this way,

by choosing only one vertex of degree two in each induced square of Yn (in 2n ways), these sets of
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Figure 5.9: Some induced subgraphs of nanotubes

vertices form a metric basis for Yn. These vertices can be arranged in n! ways and the result follows.

b) In [11], it was proved that dim(G) = 1 if and only if G is a path. It follows that dim(On) ≥ 2.

In Fig. 5.9 the vertices lying on the upper half and lower half of the induced C8 of On are represented

by vi and ui respectively, where 1 ≤ i ≤ k
2 . Now to show that dim(G) ≤ 2, we will show that the

set W = {u1, v3} resolves V (On). For this, we give representation of the vertices in V (On)\W with

respect to W .

code(v1|W ) = (1, 2), code(v2|W ) = (2, 1), code(u2|W ) = (1, 4), code(u3|W ) = (2, 3).

Also

code(vi|W ) = (i, i− 3), for 4 ≤ i ≤ k

2

and

code(ui|W ) = (i− 1, i− 2), for 4 ≤ i ≤ k

2
.

It follows that dim(On) = 2. The result for dim(Bn) = 2 can be followed on the same lines.

In Fig. 5.9 the vertices lying on the upper half and lower half of the C8 or C6 of Dn are represented

by vj and uj respectively, where 1 ≤ j ≤ k
2 . Now to show that dim(Dn) ≤ 2, we will show that the

set W1 = {v1, u2} resolves V (Dn). So for this we give representation of the vertices in V (Dn) \W1

with respect to W1, i.e., code(v2 |W1) = (1, 3) and code(u1 |W1) = (1, 1).

Also

code(vj |W1) = (j − 1, j − 1), for 3 ≤ j ≤ k

2
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and

code(uj |W1) = (j, j − 2), for 3 ≤ j ≤ k

2
.

It follows that dim(Dn) = 2

c) To prove that dim(Xn) = 3, we will first show that dim(Xn) 6= 2. For this we have the following

three cases:

• If we take any two distinct vertices u and v from any induced C4 of Xn, then there exist two

neighbouring vertices of either u or v which have same representation.

• If we take two distinct vertices u and v from any induced C6 such that u, v /∈ V (C4)∩V (C6), then

again there are two neighbouring vertices of u or v with same representation.

• If we select the vertex u from any induced C6 and the vertex v from any induced C4 of Xn and the

vertices u, v are not in same induced C4 or induced C6, then in this case there are two vertices having

same distance from u and/or v, so have the same representation. It follows that dim(Xn) ≥ 3.

Now to show that dim(Xn) ≤ 3, we will give representation of the vertices in V (Xn) \ W with

respect to W = {v1, v3, u4}.
We have code(v2|W ) = (1, 1, 3), code(v4|W ) = (3, 1, 1), code(u1|W ) = (1, 3, 3), code(u2|W ) =

(2, 2, 2), r(v2|W ) = (3, 3, 1).

Also

code(vi|W ) = (i− 1, i− 3, i− 3), for 5 ≤ i ≤ k

2

and

code(ui|W ) = (i, i− 2, i− 4), for 5 ≤ i ≤ k

2
.

It follow that dim(Xn) = 3, which completes the proof.
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Figure 5.10: The zig-zag chain of 8-cycles

Theorem 5.3.4. For every integer n ≥ 1, we have dim(OOn) = dn+2
2 e.
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Proof. Suppose that the induced octagons of OOn have been numbered by 1, 2, 3, ..., n from left

to right. Fig. 5.10 shows that dim(OO1) = dim(OO2) = 2 having metric basis {a, e} and

dim(OO3) = 3 being metric basis {b, f, h}. Now we will show that dim(OOn) = dn+2
2 e for n ≥ 4.

This can be proved by double inequality.

For the upper bound, we construct a resolving set having dn+2
2 e vertices (in both cases, n odd or

even). We can construct a resolving set A of cardinality dn+2
2 e as follows:

• When n is odd, we choose vertices f and h from octagons numbered 1 and 2 respectively, and a

vertex of type v from each of the octagons numbered by 5, 7, 9, ..., n− 1 from left to right and also

a vertex of type g from nth octagon.

• When n is even, we choose vertices f and h from octagons numbered by 1 and 2 respectively,

and a vertex of type v from each of the octagons numbered by 4, 6, 8, ..., n− 2 and of type p of nth

octagon from left to right.

It can be easily verified that any two vertices of OOn having equal distances to any other vertex of

A can be distinguished by the other vertices of A, which shows that dim(OOn) ≤ dn+2
2 e for n ≥ 1.

For reverse inequality, we first prove that every resolving set must contain at least one vertex from

each group of two consecutive octagons in the chain of octagons representing OOn. The vertices v

and m in third octagon from left to right can be distinguished only by the vertices of type a, m and

n in second octagon and by x, t and f in third octagon and all vertices in fourth octagon except m

of OOn. Similar argument can be established for the pair of vertices x, n and t, f . It follows that

any two consecutive octagons of OOn must contain at least one vertex in any metric basis. This

implies that if we assign to i-th octagon the binary variable Oi having value 1 if it has a vertex in a

resolving set B of OOn and 0 otherwise, we can write:

O1 = 1;

O2 +O3 ≥ 1

O3 +O4 ≥ 1

O4 +O5 ≥ 1

· · · · ·

· · · · ·

· · · · ·

On−1 +On ≥ 2

By summing up these inequalities, we get:

S = O2 + 2O3 + 2O4 + · · ·+ 2On−1 +On ≥ n.
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Hence we get

2 | B |= 2
n∑

i=1

Oi = S +O2 +On + 2 ≥ n+ 2.

Which implies that | B |≥ dn+2
2 e, hence dim(OOn) ≥ dn+2

2 e, which completes the proof.
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Figure 5.11: Some induced subgraphs of nanotubes

Fig. 5.11 represents some induced subgraphs of 2-dimensional lattices of H-Naphtalenic and

V C5C7 nanotubes. The induced subgraph Mn is defined an edge-connected union of n pairs of

induced 6-cycles and n− 1 induced 4-cycles alternatively, Rn is defined as an edge-connected union

of n pairs of induced 7-cycles and n pairs of induced 4-cycles alternatively, BBn is defined as an

edge-connected union of n induced pairs of C8 and C6, and an edge alternatively, while the induced

subgraph Y Yn is defined as an edge-connected union of n pairs of zig-zag C6 and an edge alternatively.

Note that all the defined induced subgraphs are of order l. In the next theorem, we determine the

metric dimension of induced subgraphs defined above.

Theorem 5.3.5. a) For every positive integer n ≥ 2, we have: dim(Mn) = dim(Rn) = 2;

b) For every positive integer n ≥ 2 we have: dim(BBn) = dim(Y Yn) = n.

Proof. a) From [11], it implies that dim(Mn) ≥ 2. In Fig. 5.11, the vertices of Mn lying on the

upper and lower half of the induced 6-cycles and 4-cycles are labeled by xi and yi, respectively,

where 1 ≤ i ≤ l
2 . To show that dim(Mn) ≤ 2, we prove that W1 = {x2, y1} resolves V (Mn). For

this, we give representations of the vertices of V (Mn) \W1 with respect to W1.

code(x1|W1) = (1, 1), code(y2|W1) = (3, 1).

Also

code(xi|W1) = (i− 2, i), for 3 ≤ i ≤ l
2 ,
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and

code(yi|W1) = (i− 1, i− 1), for 3 ≤ i ≤ l
2 .

This implies that dim(Mn) = 2. The proof of dim(Rn) = 2 follows on the same lines and is therefore

omitted.

b) It can be seen that there are n induced pairs containing octagons and hexagons in BBn. Suppose

that these octagonal-hexagonal pairs of BBn have been numbered by 1, 2, · · · , n from left to right.

Fig. 5.11 depicts that the vertices p and q of BBn can only be distinguished by the vertices of the

pair numbered by 1 in BBn and the vertex of type s of the remaining pairs and have equal distance

to all other vertices of BBn if p or q do not belong to the metric basis of BBn. This implies that at

least one of them must be included in any metric basis of BBn.

We can construct a metric basis of BBn by taking only one vertex of type t from each pair numbered

by 2, 3, · · · , n of the induced subgraph BBn and the result follows.

There are n pairs of zig-zag hexagons in the sequence of hexagons of the graph Y Yn. The vertices

u and v have equal distances to all vertices of Y Yn different from w, x, e and f of first pairs of

zig-zag hexagons, and the vertices w and x may be distinguished by the vertices u, v, e or f of Y Yn,

the situation is similar for all other pairs of hexagons. If u and v do not belong to basis of Y Yn, it

follows that at least one vertex from the set {u, v, w, x, e, f} of Y Yn must belong to any metric basis

of Y Yn.

On the other hand, by choosing exactly one vertex of degree two in each of pair of zig-zag hexagons

of Y Yn, these sets of vertices form a metric basis for Y Yn and the result follows.
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Chapter 6

Concluding Remarks and Open Problems

In chapter 3, We studied the metric dimension of certain wheel related graphs, namelym-level wheel,

an infinite class of convex polytopes and antiweb-gear graphs denoted by Wn,m, Qn and AWJ2n,

respectively. We proved that these infinite classes of wheel related graphs have unbounded metric

dimension. Moreover, we extended this study to infinite classes of convex polytopes Qm
n , Dn and

Bn generated by wheel related graphs. We proved that these infinite classes of convex polytopes

generated by wheel related graphs also have unbounded metric dimension.

In chapter 4, we have proved that the generalized Petersen networks P (n, 3) is a family of regular

networks having constant metric dimension and only 4 vertices appropriately chosen suffices to re-

solve all the vertices of the generalized Petersen networks P (n, 3) when n ≡ 2, 3, 4, 5 (mod 6). Thus

we conclude that each network in the family of generalized Petersen networks P (n, 3) is a network

with constant metric dimension. This completes the study of metric dimension for generalized Pe-

tersen networks P (n, 3). However, to determine a precise formula for the whole class of generalized

Petersen networks still remains a challenging for the researchers.

In chapter 5, we have studied that the metric dimension and partition dimension of 2-dimensional

lattices of HAC5C7, HC5C7, HAC5C6C7, H-Naphtalenic, V C5C7, V-Phenylenic, TUC4C8(R) and

TUC4C8(S) nanotubes generated by the tiling of the plane. We prove that metric dimension of

these infinite nanotubes is not finite but their partition dimension is finite and evaluated, implying

that these nano-structures are among the graphs having discrepancies between their metric dimen-

sion and partition dimension. It has also been proved that there exist some induced subgraphs of

2-dimensional lattices of these nano-structures which have unbounded metric dimension while others

have constant metric dimension. It seems that all 2-dimensional lattices of infinite nanotubes have

discrepancy their metric dimension and partition dimension.

The future work in this direction is to characterise the graph families having discrepancies between

their metric dimension and partition dimension and characterize the graph families having constant
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metric dimension, bounded metric dimension and unbounded metric dimension. So, the reader is

invited to work on the following open problems:

1. Characterize the convex polytopes with respect to the nature of their metric dimension.

2. Is it the case that the metric dimension of convex polytope Qm
n is given by the following formula

dim(Qm
n ) =


b3n5 c n ≡ 0(mod 5),

b3n−35 c ; otherwise

for all n ≥ 7 and m ≥ 4 ?

3. Is it the case that all the 2-dimensional lattices of infinite nanotubes have discrepancies between

their metric dimension and partition dimension?

4. Determine a precise formula for the whole class of generalized Petersen networks P (n,m).

82



Bibliography

[1] S. Ahmad, M. A. Chaudhry, I. Javaid, M. Salman, On the metric dimension generalized Petersen

graphs, Questions Math., 36(2013), 421− 435.
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