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Abstract 

In this thesis, we explore the fluid flow and heat transfer in thin liquid films over an 

unsteady stretching surface with viscous dissipation under the influence of an external 

magnetic field. To investigate the behavior of this system, we use similarity 

transformations with the analytical and numerical solution techniques. Specifically, we 

derive the Lie point symmetries of the system of partial differential equations that describes 

the flow and heat transfer in a thin liquid layer. A 5-dimensional Lie point symmetry 

algebra is derived. We develop new similarity transformations for the given model using a 

pair of the admitted Lie point symmetry generators. Arbitrary coefficients are used in the 

Lie optimal system and these arbitrary coefficients may be employe to the control the flow 

and heat transfer. 

By constructing the optimum system of Lie sub-algebras, related invariants, and similarity 

transformations, we reduce the number of independent variables in this flow model and 

convert the partial differential equations into ordinary differential equations for simplifying 

the solution procedure. This conversion requires double reduction, and the resulting 

transformations allow us to reduce the model to nonlinear ordinary differential equations.  

To examine the proposed magnetohydrodynamic (MHD) flow and heat transfer, we build 

analytic solutions for the obtained system of ordinary differential equations using the 

Homotopy analysis approach. The results are presented in the form of tables and figures, 

which demonstrate how the magnetic parameter, Prandtl number, Eckert number, and 

unsteadiness parameter affect fluid velocity, film thickness, and heat transfer. We compare 

these changes in velocity and temperature profiles with those previously reported for flow 

and heat transfer inside a thin film under the influence of viscous dissipation and an 

external magnetic field. 

Overall, our findings provide valuable insights into the behavior of fluid flow and heat 

transfer in thin films over unsteady stretching surfaces with viscous dissipation and 

external magnetic fields. These insights have important practical applications in fields such 

as chemical engineering, material sciences, and energy transfer. 
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Chapter 1. Introduction 

1.1   Background and Motivation 

Heat transfer in a liquid film over an unsteady stretching surface is a complex and 

challenging problem with many practical applications in various industrial and biomedical 

fields. The understanding of heat transfer in such systems is crucial for the design and 

optimization of heat transfer systems. Viscous dissipation and an external magnetic field 

have been shown to have significant effects on heat transfer and fluid flow in a liquid film 

over an unsteady stretching surface. For instance, in a recent study [8], the influence of 

viscous dissipation and a magnetic field on heat transfer and fluid flow in a liquid film over 

an unsteady stretching surface is investigated. The study found that the presence of viscous 

dissipation and a magnetic field significantly impacted the heat transfer and fluid flow 

characteristics in the liquid film. Therefore, studying the effects of viscous dissipation and 

a magnetic field on heat transfer in thin liquid films over an unsteady stretching surface is 

an important area of research. 

In recent years, Lie symmetry analysis has emerged as a powerful tool to study and analyze 

fluid flow and heat transfer in thin films over unsteady stretching surfaces. In this study, 

we derived the Lie point symmetries for a system of partial differential equations 

describing the flow and heat transfer in a thin liquid layer over an unsteady stretching 

surface with viscous dissipation in the presence of an external magnetic field. A 5-

dimensional Lie point symmetry algebra is obtained, and we used linked invariants to 

develop new similarity transformations for the given model using a pair of the admitted 

Lie point symmetry generators. These transformations allowed us to reduce the number of 

independent variables of this flow model and convert the partial differential equations into 

ordinary differential equations, thus simplifying the solution procedure. 

To examine the proposed MHD flow and heat transfer, we constructed analytical solutions 

for this system using the Homotopy analysis approach. The findings of this study are 

provided in the form of tables and figures, showing how the magnetic parameter, Prandtl 

number, Eckert number, and unsteadiness parameter affect fluid velocity, film thickness, 

and heat transfer. Our results indicate that the presence of an external magnetic field, along 
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with viscous dissipation, has a significant impact on the flow and heat transfer 

characteristics in thin liquid films over unsteady stretching surfaces. 

In recent times, the use of numerical techniques to investigate heat transfer in complex 

systems has gained momentum. The homotopy analysis method and the finite difference 

method are among the analytical and numerical methods, respectively, that have received 

attention due to their ability to approximate solutions for nonlinear problems in various 

heat transfer scenarios. The homotopy analysis method has been successfully applied in 

solving a wide range of heat transfer problems [2] [5] [7] [8]. The finite difference method 

is a popular numerical technique used to solve partial differential equations [3]. 

Moreover, the study of Lie symmetry has become increasingly significant in recent years 

as it provides useful insights into the structure and properties of differential equations [4]. 

In this thesis, Lie symmetry method is utilized to analyze the symmetries in the governing 

equations, and optimal systems are generated for the obtained Lie symmetries. These 

optimal systems are employed to obtain the optimal solutions for the heat transfer problem. 

1.2   Problem Statement 

This heat transfer problem under magnetic field and viscous dissipation has practical 

applications in several fields, including chemical reactors, biomedical devices, and heat 

exchangers. Accurately predicting the heat transfer behavior in such systems is a 

challenging task, and finding optimal solutions for various design and operational 

parameters is necessary. 

To address this challenge, this thesis aims to analyze the heat transfer behavior in a liquid 

film that is stretched in an unsteady manner while also taking in account the effects of 

magnetic field and viscous dissipation, incorporating Lie symmetry and optimal systems. 

The research utilized various analytical and numerical techniques, including the homotopy 

analysis method and finite difference method, to investigate the problem. To ensure the 

credibility and precision of the results, they were verified and compared against existing 

literature. 

The main aim of this investigation is to determine the temperature, velocity, and 

concentration distributions in the liquid film and provide a comprehensive analysis of the 
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heat transfer characteristics. The outcomes of this research are expected to contribute 

significantly to the development and enhancement of heat transfer systems through design 

and optimization for various industrial and biomedical applications. 

1.3  Objectives, Scope, and Limitations of the Study 

The main objectives of this thesis are: 

• To examine the heat transfer characteristics in a liquid film that is flowing over an 

unsteady stretching surface, considering factors such as viscous dissipation and the 

presence of an external magnetic field. 

• To analyze the symmetries of the governing equations and generate the optimal 

systems for Lie symmetries. 

• To obtain the temperature, velocity, and concentration distributions in the liquid 

film using homotopy analysis method and finite difference method.  

• To validate the findings by comparing them with relevant results in existing 

literature. 

The research questions that will be addressed in this thesis are: 

• How do the presence of an external magnetic field and viscous dissipation affect 

heat transfer in a liquid film that is flowing over an unsteady stretching surface? 

• How do Lie symmetry and the optimal systems obtained from Lie symmetry 

transformations affect the heat transfer solutions? 

• What are the profiles of temperature, velocity, and concentration in a liquid film 

flowing over an unsteady stretching surface, considering the presence of viscous 

dissipation and an external magnetic field, and how do these profiles compare with 

those found in existing literature? 

• How effective are the homotopy analysis method and finite difference method in 

solving the heat transfer problems? 

The research will be limited to exploring the use of Lie symmetry method to generate 

optimal systems and applying homotopy analysis method and finite difference method to 

determine the temperature, velocity, and concentration distributions in the liquid film. By 

concentrating on these areas, this study aims to provide a comprehensive analysis of the 
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heat transfer behavior in this system, which can have important implications for designing 

and optimizing heat transfer systems in various industrial and biomedical applications. 
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Chapter 2. Literature Review 

2.1  Heat Transfer in a Liquid Film over a Moving Surface: 

This research topic has practical applications in a variety of industrial processes such as 

surface cooling, drying of thin sheets, crystal growth, and polymer processing. The 

significance of this area of study lies in its potential to optimize heat transfer systems and 

enhance their efficiency, as well as to improve the understanding of complex heat transfer 

phenomena in practical applications [5]. The unsteady stretching surface enhances the heat 

transfer rate by creating a thin film that facilitates the transfer of heat and momentum 

between the fluid and the solid surface [6]. 

Viscous dissipation and magnetic field are two important factors that affect heat transfer 

[7]. Viscous dissipation occurs due to the friction between the fluid layers and results in 

the transfer of energy from the fluid to the surrounding environment [8]. The external 

magnetic field, on the other hand, can alter the fluid flow patterns and heat transfer 

characteristics by modifying the fluid properties such as thermal conductivity and viscosity 

[8]. 

Several analytical and numerical techniques have been proposed to examine the heat 

transfer properties of a liquid film flowing over an unsteady stretching surface. Some of 

the commonly used methods include finite difference method (FDM), homotopy analysis 

method (HAM), along with Lie symmetry analysis (LSA) [8]. 

The primary objective of this research is to analyze the heat transfer properties of a liquid 

film that is flowing over an unsteady stretching surface while being subjected to the effects 

of viscous dissipation and an external magnetic field. To accomplish this, we employ two 

numerical techniques, the homotopy analysis method and finite difference method. 

Furthermore, we will analyze the symmetries of the governing equations using Lie 

symmetry method and generate optimal systems based on the transformations obtained. By 

comparing the solutions obtained from these methods and the optimal systems, we provide 

a comprehensive understanding of heat transfer in this system. 
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2.2  Influence of Viscous Dissipation on Heat Transfer 

Viscous dissipation is a phenomenon in which energy is dissipated in a fluid due to the 

friction between its layers and the conversion of mechanical energy into heat. In unsteady 

flow regimes, the overall rate of heat transfer in a liquid film can be significantly affected 

by this factor. 

One of the earliest studies in this area is conducted in [10] where a boundary layer analysis 

is conducted to examine the effect of viscous dissipation on heat transfer in a liquid film 

flowing over a stretching surface. The study revealed that the presence of viscous 

dissipation has a considerable impact on both the rate of heat transfer and the distribution 

of fluid temperature within the film. 

Recent studies have utilized numerical techniques to examine the influence of viscous 

dissipation on heat transfer in a liquid film that is flowing over an unsteady stretching 

surface. For example, [11] conducted a study using finite difference method (FDM) to 

explore the impact of viscous dissipation on heat transfer in a liquid film flowing over a 

stretching surface. The combined effects of thermal radiation and chemical reaction are 

also considered in this investigation. The researchers noted that the addition of viscous 

dissipation has a significant impact on both the rate of heat transfer and the distribution of 

fluid temperature within the film. 

Similarly, [12] have investigated the impact of viscous dissipation on heat transfer in a 

liquid film over an unsteady stretching surface using different numerical and analytical 

methods. For instance, researchers utilized a finite volume method to explore the effects of 

viscous dissipation on heat transfer in a liquid film over a stretching surface with an 

external magnetic field. Their findings revealed that the inclusion of viscous dissipation 

results in a considerable enhancement of the heat transfer rate and the fluid temperature 

distribution in the film. Similarly, in another work a finite difference method is employed 

to examine the influence of viscous dissipation on the heat transfer characteristics of a 

liquid film flowing over a stretching surface in the presence of thermal radiation and 

chemical reaction [5]. They observed that viscous dissipation had a considerable impact on 

the heat transfer rate and the fluid temperature distribution in the film. In conclusion, the 
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literature suggests that viscous dissipation plays a crucial role in heat transfer in a liquid 

film over an unsteady stretching surface. 

2.3  Influence of the External Magnetic Field on Heat Transfer  

The existence of a magnetic field was found to induce modifications in the flow behavior, 

the rate of heat transfer, and the thermal stability of the liquid film. Researchers have used 

various analytical and numerical methods to investigate these effects, including the finite 

difference method, finite volume method, and boundary element method. The findings of 

these investigations have demonstrated that the heat transfer properties of the liquid film 

are affected by the presence of an external magnetic field. In the study [13], they analyzed 

the magnetic field impact on the hydromagnetic boundary layer flow and heat transfer of 

the liquid film. The findings of the study showed that the external magnetic field played an 

important role in enhancing the heat transfer rate and reducing the skin friction coefficient 

compared to the case without a magnetic field. These results emphasize the importance of 

considering the external magnetic field when studying heat transfer phenomena occurring 

in a liquid film flowing over a surface undergoing unsteady stretching. Further research is 

needed to explore the underlying mechanisms and potential applications of the magnetic 

field's influence on heat transfer in such systems. 

In another study [14], the impact of a transverse magnetic field on heat transfer in a liquid 

film over an unsteady stretching surface has been analyzed. The study revealed that the 

introduction of an external magnetic field led to an increase in the heat transfer rate and a 

decrease in the temperature gradient within the liquid film. The study further reported that 

the intensity of the magnetic field is directly proportional to the heat transfer rate. 

Therefore, it is concluded that the presence of an external magnetic field affects the heat 

transfer characteristics of a liquid film. 

Moreover, a study [7], is conducted to analyze the combined effect of magnetic field and 

viscous dissipation on the heat transfer characteristics of a liquid film over an unsteady 

stretching surface. The results demonstrated that the magnetic field and viscous dissipation 

play a crucial role in determining the heat transfer and stability of the liquid film. The 

inclusion of a magnetic field drastically increased the heat transfer rate and reduced the 

thermal instability of the liquid film compared to the non-magnetic case. The study also 
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found that viscous dissipation has a considerable effect on the heat transfer rate, and its 

inclusion led to a further increase in the heat transfer rate. These findings highlight the 

importance of considering the combined effects of magnetic field and viscous dissipation 

on heat transfer in a liquid film over unsteady an stretching surface.  

2.4  Symmetry Analysis of Heat Transfer Problems 

The Lie symmetry method is a well-established technique for generating optimal systems 

for a multiple range of mathematical and physical problems. The method has been applied 

to multiple areas of science, including heat transfer and fluid dynamics. 

A Lie symmetry transformation for a system of partial differential equations maintains the 

structure of the equations. These transformations, known as Lie symmetries, are a useful 

tool for analyzing the properties of the system. One of the key advantages of the Lie 

symmetry method is that it allows us to simplify the governing equations, making it easier 

to find solutions. In particular, the method can be used to reduce the number of independent 

variables in the system, making it easier to solve the equations numerically or analytically. 

The Lie symmetry method is an effective approach for analyzing heat transfer problems by 

considering the equations that govern the flow of heat in a given system. A notable example 

of the Lie symmetry method's application is in analyzing the heat transfer in a liquid film 

over an unsteady stretching surface. The governing equations for this problem include 

factors such as temperature, velocity, and the impact of external magnetic fields. By using 

the Lie symmetry method to identify conservation laws and first integrals of the system, 

the equations' order can be reduced, leading to the discovery of exact solutions. This 

knowledge can then be applied to optimize heat transfer devices and processes, leading to 

improved efficiency and sustainability [15]. 

Once the governing equations have been formulated for a heat transfer problem, the Lie 

symmetry method can be applied to simplify the system, identify conservation laws, and 

obtain exact solutions. This approach can be particularly useful in understanding the 

behavior of heat transfer in a liquid film over an unsteady stretching surface. By finding 

the Lie symmetries of the system, it is possible to simplify the governing equations, find 
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conservation laws, and find exact solutions, making it easier to understand and analyze the 

behavior of the system [16]. 

2.5  Effectiveness of the Homotopy Analysis Method and Finite 

Difference Method in Solving Heat Transfer Problems 

The application of mathematical methods to solve complex heat transfer problems has been 

a key area of research in recent years. Two such methods that have been widely used in the 

field of heat transfer are the Homotopy Analysis Method (HAM) and the Finite Difference 

Method (FDM). 

HAM is an analytical approach that is well-suited to solving nonlinear differential 

equations.  It is a perturbation technique that allows construction of approximate solutions 

for complex problems that may not be solvable by traditional methods. This methodology 

has been successfully employed in solving numerous heat transfer problems, exhibiting 

high accuracy in its solutions [2] [3] [5]. 

FDM is a numerical technique employed to solve differential equations by dividing the 

solution domain into a finite number of points. It is a widely used method in the field of 

heat transfer and has been shown to produce accurate results for a variety of problems.  

The effects for the various factors stated earlier are studied using both HAM and FDM. 

These methods have been successful in producing accurate solutions to these complex 

problems and have helped in furthering our understanding of heat transfer in such systems. 

In summary, the utilization of both HAM and FDM in tackling heat transfer issues has been 

a critical research focus, resulting in noteworthy progress in comprehending these intricate 

systems. The use of these numerical techniques has enabled researchers to gain valuable 

insights into the behavior of such systems, providing a deeper understanding of the 

underlying physical phenomena and the ability to predict and optimize the heat transfer 

process. Furthermore, the application of these methods has also led to the development of 

new techniques for the analysis and optimization of various engineering applications 

involving heat transfer, such as in the design of heat exchangers and cooling systems. 
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2.6  Recent Advances in Heat Transfer Analysis for Liquid Films over 

Unsteady Stretching Surfaces with Magnetic Fields and Viscous 

Dissipation 

There has been an increasing amount of research in recent years that investigates this 

scenario. These studies have focused on examining different parameters, such as the 

stretching rate, magnetic field strength, and fluid properties, to gain a better understanding 

of how they affect the heat transfer behavior of the liquid film. 

For example, a study by [13] used numerical simulations to examine the effects. The 

researchers discovered that the introduction of a magnetic field resulted in an enhancement 

of the heat transfer rate, while the impact of viscous dissipation became increasingly 

noticeable as the stretching rate increased. 

Another study [16], the researchers used HAM to analyze the heat transfer behavior of a 

liquid film over an unsteady stretching surface with viscous dissipation and magnetic field. 

The researchers noted that HAM produced more precise solutions compared to 

conventional numerical methods. Additionally, they observed that the presence of a 

magnetic field resulted in an elevated heat transfer rate, particularly at high stretching rates. 

In yet another study [15], used the finite difference method (FDM) to examine the effects. 

The authors found that the FDM provided a more efficient solution compared to multiple 

scales method, and that the addition of a magnetic field led to an increase in the heat transfer 

rate, especially at low stretching rates [17]. 

The Lie symmetry technique can provide analytical solutions that are invariant and 

transform the system of PDEs into a set of ODEs. This simplifies the mathematical 

analysis, making the problem more manageable. In my research, I applied this method to 

explore the heat transfer in a thin liquid film on an unsteady stretching sheet. Specifically, 

I investigated how parameters such as viscous dissipation and magnetic fields affect the 

heat transfer. Additionally, I examined the effect of magnetic parameter and viscous 

dissipation on the velocity and temperature profiles of the thin film flow.  

Similarity transformations have been found to be effective in mapping the system of 

boundary layer equations PDEs with three independent and three dependent terms into a 
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system of coupled non-linear ODEs with two dependent and one independent variable. 

However, the similarity transformations remain the same in all of these studies and do not 

align with the trends observed in real flows [19]. Similarity transformations are invertible 

transformations of the dependent and independent variables which transformation 

equations into equations and solutions into solutions. 

The Lie symmetry approach has been used to study symmetries of spatial motion of an 

ideal incompressible shallow water fluid on a rotating plane. However, this approach is 

limited to the case where Lie point symmetries exist for the differential equations. 

Numerical methods, such as the shooting and RK4 methods, have been used to solve these 

problems, but these methods are computationally expensive and may not be able to provide 

accurate results. Spectral methods have also been used to obtain the solution of these sets 

of transformed ODEs, but these methods are numerically expensive to compute. 

In recent studies, researchers have attempted to solve this type of problem by using central 

difference with the block elimination method. However, these studies have a limitation on 

the unsteadiness parameter 𝑆. The limit of unsteadiness parameter 𝑆 is (𝑆 <  2) for 

Newtonian Fluids. The reductions obtained by these studies provide solution for this range 

of unsteadiness parameter 𝑆 but the results do not align with the behavior of real 

accelerating fluids [20]. 

As a result, there is a need for a new approach that overcomes the limitations of existing 

methods. The current research proposes the development of a new approach to solve the 

problem of unsteady boundary layer flow and thin film flow by using Lie symmetry 

methods to generate optimal systems and using new similarity transformations to generate 

solutions. The proposed approach will be able to provide a more accurate and 

comprehensive solution to this problem, considering the limitations of previous methods 

and aligning with the trends observed in real flows. 

In my thesis, I will delve deeper into this field and explore new possibilities. Chapter 3 

covers the mathematical formulation of the problem. Chapter 4 focuses on the construction 

of Lie symmetry transformations. In chapter 5, solution methods for the reduced system of 

ODEs are presented along with, their validation, and comparison. Chapter 6 presents the 

similarity solutions for fluid and heat transfer in an unsteady boundary layer flow in the 
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presence of magnetic parameter. Chapter 7 will present the similarity solutions for unsteady 

fluid flow and heat transfer in a thin film in the presence of magnetic parameter. 
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Chapter 3. Mathematical Modelling 

In the present research, two different flow conditions are considered. In the coming sections 

of this chapter, mathematical modelling of each type of flow is discussed. 

Mathematical modeling plays a crucial role in understanding the underlying mechanisms 

and dynamics of heat transfer in a liquid film over an unsteady stretching surface. The 

governing equations provide a framework for describing the behavior of the system and 

enable the prediction of the system response to various physical and geometric parameters. 

The governing equations for heat transfer in a liquid film over an unsteady stretching 

surface include the energy equation, the continuity equation, and the boundary conditions. 

The energy equation describes the conservation of energy in the system. The continuity 

equation describes the conservation of mass in the system. The boundary conditions specify 

the conditions at the interface between the liquid film and the unsteady stretching surface. 

These conditions are usually expressed in terms of temperature, heat flux, and velocity, 

and they can be either Dirichlet, Neumann, or Robin type. 

3.1  Unsteady Fluid Flow and Heat Transfer in Boundary Layer with 

External Magnetic Field and Viscous Dissipation  

The present study mathematically explains the dynamics of a viscous, laminar fluid flow 

over a horizontal surface subject to unsteady conditions, with the added influence of an 

external magnetic field and viscous dissipation. The fluid under consideration is assumed 

to be incompressible, with negligible temperature variations that would affect its viscosity. 

While gravitational and pressure effects are disregarded in the analysis. The initial 

conditions for the fluid flow are specified in terms of the velocity and temperature functions 

as a function of the x-coordinate and time. The surface of the fluid film is presumed to be 

devoid of any surface waves, and streamwise diffusion is deemed to be insignificant. 

Under these assumptions, the governing 2-dimensional boundary layer equations can be 

expressed mathematically. The Navier-Stokes equation for x-velocity considers the effect 

of both the external magnetic field and viscous dissipation. The system presenting the fluid 

flow is expressed as: 
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Continuity equation: 

𝜕𝑢

𝜕𝑥
 +

𝜕𝑣

𝜕𝑦
 =  0                                                                                                                               

Navier-Stokes equation for x-velocity: 

𝜕𝑢

𝜕𝑡
 +  𝑢

𝜕𝑢

𝜕𝑥
  +  𝑣

𝜕𝑢

𝜕𝑦
− 𝜈 (

𝜕2𝑢

𝜕𝑦2
) +

𝜎𝐵2

𝜌
𝑢 = 0                                                                    

Energy equation: 

𝜕𝑇

𝜕𝑡
 +  𝑢

𝜕𝑇

𝜕𝑥
 +  𝑣

𝜕𝑇

𝜕𝑦
−

𝜅

𝜌𝐶𝑝
(

𝜕2𝑇

𝜕𝑦2
) −

𝜇

𝜌𝐶𝑝
(

𝜕𝑢

𝜕𝑦
)

2

 =  0                                                     (3.1) 

3.2   The Boundary Conditions 

In the mathematical model of a laminar fluid flow, the boundaries of the system are defined 

through a set of boundary conditions. These conditions provide the information necessary 

to fully define the solution of the mathematical model and are determined through a 

combination of physical considerations and mathematical simplicity. In this section, the 

boundary conditions for the current system will be derived. 

The first set of boundary conditions are defined at the surface of the fluid, where 𝑦 = 0. At 

this location, the velocity components in the x and y directions are given by 𝑢 = 𝑈(𝑥, 𝑡) 

and 𝑣 = 0, respectively. The temperature of the fluid at the surface is also defined as 𝑇 =

𝑇𝑠(𝑥, 𝑡). These conditions describe the velocity and temperature at the surface of the fluid, 

considering the influence of the external velocity field, 𝑈(𝑥, 𝑡), and the surface 

temperature, 𝑇𝑠(𝑥, 𝑡). The second set of boundary conditions are defined at the free surface 

of the fluid, where 𝑦 = ℎ(𝑡) because this function determines the location of the boundary 

between the fluid and the surrounding environment. By specifying the boundary conditions 

in terms of this function, we can ensure that the velocity and temperature of the fluid are 

properly defined at the interface between the fluid and the surrounding medium. At this 

location, the y-component of the velocity is set to zero, i.e., 
𝜕𝑢

𝜕𝑦
= 0, to ensure that there is 

no normal flow at the surface. Additionally, the temperature derivative in the y direction is 

also set to zero, i.e., 
𝜕𝑇

𝜕𝑦
= 0, to ensure that the temperature does not change in the normal 
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direction. Finally, the velocity in the y direction is defined as 𝑣 =
𝜕ℎ

𝜕𝑡
, which represents the 

velocity of the free surface. 

In conclusion, the boundary conditions for the mathematical model of a laminar fluid flow 

include conditions at the surface of the fluid and the free surface. These conditions ensure 

that the solution of the mathematical model is physically meaningful and consistent with 

the underlying physics of the problem. 

The boundary conditions for this mathematical model can be summarized as follows: 

At 𝑦 = 0 (the thin film surface), the following conditions hold: 

a. 𝑢 =  𝑈(𝑥, 𝑡) 

b. 𝑣 =  0 

c. 𝑇 =  𝑇𝑠(𝑥, 𝑡) 

At 𝑦 = ℎ(𝑡) (the upper boundary), the following conditions hold: 

d. 
𝜕𝑢

𝜕𝑦
= 0 

e. 
𝜕𝑇

𝜕𝑦
= 0 

f. 𝑣 =
𝜕ℎ

𝜕𝑡
                                                                                                                                        (3.2)

 

Figure 3.1: Diagram illustrating fluid flow and heat transfer over an unsteady stretching 

surface 
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Chapter 4. Lie Symmetries and Invariants 

The research explores the movement of fluid in a liquid film that experiences viscous 

dissipation and an external magnetic field. The motion of the fluid is due to the stretching 

of the sheet in a specific direction. The velocity and temperature of the sheet are considered 

to be positive constants, denoted as 𝛼, 𝑏, and 𝜈, where ν represents the kinematic viscosity, 

and the temperature at the slit and the reference temperature are represented by 𝑇0 and 𝑇𝑠, 

respectively. 

𝑈(𝑥, 𝑡) =
𝑏𝑥

1 − 𝛼𝑡
, 𝑇𝑠(𝑥, 𝑡) = 𝑇0 − 𝑇𝑟𝑒𝑓 (

𝑏𝑥2

2𝜈(1 −  𝛼𝑡)
3
2

)                                        (4.1) 

The use of these particular forms for the velocity, temperature, and magnetic field enables 

the construction of similarity transformations, which is a crucial aspect of this study.  

𝐵(𝑥, 𝑡) =
𝐵0

√1 −  𝛼𝑡
                                                                                                                  (4.2)  

To simplify the analysis of fluid flow and heat transfer, we apply similarity transformations 

to the partial differential equations (3.1) that describe the flow. Through this method, the 

governing equations can be simplified from having three dependent and three independent 

variables to a system of ordinary differential equations.  

𝑦 =  0, 𝑢 = 𝑈(𝑥, 𝑡), 𝑣 =  0, 𝑇 = 𝑇𝑠(𝑥, 𝑡),  

𝑦 =  ℎ(𝑡), 𝑢𝑦 = 𝑇𝑦 = 0, 𝑣 =  ℎ𝑡 =
𝑑ℎ

𝑑𝑡
 ,                                                                            (4.3)                                                                                   

A similarity transformation 

𝑓(𝜂) =
𝜓(𝑥, 𝑦, 𝑡)

𝑥√ 𝑏𝜈
1 −  𝛼𝑡

, 𝜃 (𝜂) =
𝑇0 − 𝑇(𝑥, 𝑦, 𝑡)

𝑇𝑟𝑒𝑓 (
𝑏𝑥2

2𝜈
) (1 −  𝛼𝑡)

3
2

, 𝜂 =
𝑦

𝛽
√

𝑏

𝜈(1 −  𝛼𝑡)
   

                                                                                                                                                         (4.4) 

is constructed through the stream function, 
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𝑢 =
𝜕𝜓

𝜕𝑦
=

𝑏𝑥

1 −  𝛼𝑡
𝑓′, 𝑣 = −

𝜕𝜓

𝜕𝑥
= −𝛽√

𝑏𝜈

1 −  𝛼𝑡
 𝑓                                                  (4.5) 

There transformations map the boundary layer equations to following system of ODEs: 

𝑓′′′ + 𝛾𝑓′2 + 𝛾 (
𝑆𝜂

2
− 𝑓) 𝑓′′ + 𝛾(𝑆 − 𝑀𝑛)𝑓′ = 0

𝑃𝑟−1 𝜃′′ + 2𝛾(𝑆 + 𝑓′)𝜃 + 𝛾 (
𝑆𝜂

2
− 𝑓) 𝜃′ + 𝐸𝑐𝑓′′2 = 0                                           (4.6)

 

and conditions 

𝑓(0) = 0, 𝑓′(0) = 1, 𝜃 (0) = 1,   

𝑓(1) =
𝑆

2
, 𝑓′′(1) = 0, 𝜃′(1) = 0                                                                            (4.7) 

The system of PDEs is subject to certain conditions, including the film thickness denoted 

by ℎ(𝑡), which is a function of the similarity variable 𝜂, with prime denoting the derivative 

with respect to 𝜂. The magnetic parameter 𝑀𝑛 and the Eckert number 𝐸𝑐 are defined, 

respectively, as 
𝜎𝐵0

2

𝑏𝜌
 and 

𝑈2

𝐶𝑝𝑇𝑠−𝑇0
. The Prandtl number, 𝑃𝑟, is given by 

(𝜈𝜌𝐶𝑝)

𝜅
, while 𝛽 is a 

constant found by the HAM. Moreover, 𝛽 is dimensionless and represents the film 

thickness at the free surface. Finally, 𝑆 is defined as 
𝛼

𝑏
 that shows unsteadiness, and we 

obtain ℎ(𝑡) = 𝛽√
𝜈(1−𝛼𝑡)

𝑏
 at the free surface. 

To obtain new similarity transformations for the system of partial differential equations 

related to my thesis topic, the first step is to derive Lie point symmetry generators. This 

involves finding the infinitesimal generator 𝑿 of the Lie symmetry group for the system of 

partial differential equations. The generator 𝑿 represents the directional flow of the 

symmetry transformations and helps in finding invariant solutions and simplifying the 

original system of partial differential equations. A symmetry generator for (3.1) reads as 

𝑿 =  𝜉𝑘
𝜕

𝜕𝜓𝑘
+  𝜙𝑘

𝜕

𝜕𝜁𝑘
,                                                                                                               (4.8)  
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The infinitesimal coordinates 𝜉𝑘 and 𝜙𝑘 are functions of the independent variables 𝑥, 𝑦, 𝑡, 

and the dependent variables 𝑢, 𝑣, and 𝑇, represented by 𝑘 =  1, 2, 3. 

Due to the presence of first and second-order partial derivatives in the system of equations 

(3.1) and associated boundary conditions (3.2), necessitates to employ the first and second-

order extensions of the Lie point symmetry generators. 𝑿[1] denotes the first-order 

extension, whereas 𝑿[2] represents the second-order extension. 

To demonstrate the extension technique, the second order extension can be represented as  

𝑿[2] = 𝑿[1] + 𝜙𝑘
𝑡

𝜕

𝜕𝜁𝑘,𝑡
+ 𝜙𝑘

𝑥
𝜕

𝜕𝜁𝑘,𝑥
+ 𝜙𝑘

𝑦 𝜕

𝜕𝜁𝑘,𝑦
+ 𝜙𝑘

𝑡𝑡
𝜕

𝜕𝜁𝑘,𝑡𝑡
+ 𝜙𝑘

𝑥𝑥
𝜕

𝜕𝜁𝑘,𝑥𝑥
+ 𝜙𝑘

𝑦𝑦 𝜕

𝜕𝜁𝑘,𝑦𝑦
 

                                                                                                                                                       (4.9)  

This is an equation that represents the form of a second-order differential operator, known 

as the Lie derivative along a one-parameter Lie group of transformations. The operator is 

defined by a vector field 𝑿 and acts on the dependent variables of a partial differential 

equation (PDE) system. The coefficients 𝜙𝑘
𝑡 , 𝜙𝑘

𝑥, 𝜙𝑘
𝑦

, 𝜙𝑘
𝑡𝑡, 𝜙𝑘

𝑥𝑥, and 𝜙𝑘
𝑦𝑦

 are functions of 

the independent variables, dependent variables, and their partial derivatives.  

The extension coefficients are obtained through the following formulas. 

𝜙𝑘
𝑛  =  𝐷𝑛𝜙𝑘  −  𝜁𝑘,𝑡𝐷𝑛(𝜉1) − 𝜁𝑘,𝑥𝐷𝑛(𝜉2) − 𝜁𝑘,𝑦𝐷𝑛(𝜉3)                                                 (4.10) 

where 𝑛 ∈  {𝑡, 𝑥, 𝑦} and 𝑘 =  1, 2, 3.   

𝛷𝑘
𝑡𝑡 = 𝐷𝑡𝜙𝑘

𝑡 − 𝜁𝑘,𝑡𝑡𝐷𝑡(𝜉1) − 𝜁𝑘,𝑡𝑥𝐷𝑡(𝜉2) − 𝜁𝑘,𝑡𝑦𝐷𝑡(𝜉3).  

𝛷𝑘
𝑥𝑥 = 𝐷𝑥𝜙𝑘

𝑥 − 𝜁𝑘,𝑡𝑥𝐷𝑥(𝜉1) − 𝜁𝑘,𝑥𝑥𝐷𝑥(𝜉2) − 𝜁𝑘,𝑥𝑦𝐷𝑥(𝜉3). 

𝛷𝑘
𝑦𝑦

= 𝐷𝑦𝜙𝑘
𝑦

− 𝜁𝑘,𝑡𝑦𝐷𝑦(𝜉1) − 𝜁𝑘,𝑦𝑥𝐷𝑦(𝜉2) − 𝜁𝑘,𝑦𝑦𝐷𝑦(𝜉3).                                            (4.11)  

where 

𝐷𝑛 =
𝜕

𝜕𝑛
+ 𝜁𝑘,𝑛

𝜕

𝜕𝑘
 + 𝜁𝑘,𝑛𝑛

𝜕

𝜕𝑘, 𝑛
  + . . . ,                                                                             (4.12) 
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To find the infinitesimal coordinates, 𝜉𝑘 and 𝜓𝑘, of the operator in equation (4.8), a second 

order extension, 𝑿[2], is applied to the system of partial differential equations (PDEs) in 

equation (3.1). One specific PDE in this system, the continuity equation, is used to explain 

an invariance criterion, that is 

𝑿[2] (
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
)|

𝜕𝑢
𝜕𝑥

+
𝜕𝑣
𝜕𝑦

=0

= 0                                                                                                 (4.13) 

The LHS of the equation evaluates the action of the generator 𝑿[2] on the incompressibility 

condition, and the RHS is equal to zero, meaning that the action of 𝑿[2] preserves the 

incompressibility of the fluid flow. Solving the PDE given by such invariance criterion of 

all equations in system (3.1) yields the following symmetries: 

Table 4.1: Lie Symmetries 

𝑺𝒚𝒎𝒎𝒆𝒕𝒓𝒚 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒐𝒓 

𝑿1 𝜕

𝜕𝑥
 

𝑿2 𝜕

𝜕𝑇
 

𝑿3 
𝑥

𝜕

𝜕𝑥
+ 𝑢

𝜕

𝜕𝑢
+ 2𝑇

𝜕

𝜕𝑇
 

𝑿4 
𝑡

𝜕

𝜕𝑡
+

𝑦

2

𝜕

𝜕𝑦
− 𝑢

𝜕

𝜕𝑢
−

𝑣

2

𝜕

𝜕𝑣
− 2𝑇

𝜕

𝜕𝑇
 

𝑿5 
𝑡

1−
𝜎𝐵𝑜

2

𝜌𝛼2 𝜕

𝜕𝑥
+

𝜌𝛼2 − 𝜎𝐵𝑜2

𝜌𝛼2𝑡
𝑡

1−
𝜎𝐵𝑜

2

𝜌𝛼2 𝜕

𝜕𝑢
 

 

In order to ensure the validity of Lie solutions to the system of PDEs (3.1), it is necessary 

to consider the invariance of associated boundary conditions (3.2) as well. It is important 

that these conditions remain invariant under the symmetry generators 𝑿1, 𝑿2, ..., 𝑿7. 

Typically, when applying a single symmetry generator to the boundary conditions, both U 

and T become functions of either x or t. However, in this study, it is desired to keep them 

as functions of both x and t. To achieve this, linear combinations of the symmetry 

generators 𝑿1, 𝑿2, ..., 𝑿7 are formed by adding two at a time. The resulting combinations, 
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shown in Table 4.2, ensure that the boundary conditions (3.2) remain invariant while 

allowing for U and T to remain functions of both space and time. This is a crucial aspect 

of the research, as it ensures that the solutions obtained are physically meaningful and 

applicable to the specific problem at hand. 

The study employs Lie point symmetries to investigate the similarity solutions of the 

system of PDEs (3.1). This involves applying the infinitesimal generator 𝑿 on the PDE 

system and equating the resulting expression to zero, leading to a system of PDEs that 

involve the infinitesimal coordinates 𝜉𝑘 and 𝜙𝑘 and their partial derivatives. By solving 

these PDEs, the Lie point symmetries of the system are obtained. However, to ensure that 

these symmetries also yield similarity solutions, they must satisfy the boundary conditions 

(3.2) as well. To achieve this, linear combinations of the symmetry generators are used, 

which, when applied to the boundary conditions, give rise to linear PDEs and solving them 

invariance of the boundary conditions of the type (3.2) is achieved.  

Table 4.2: Symmetries and Invariants 

Case Symmetry Invariants 

𝟏 𝑿3 + 𝛼𝑿4 𝑡𝑥−𝛼, 𝑦𝑥−
𝛼
2 , 𝑢𝑥𝛼−1, 𝑣𝑥

𝛼
2 , 𝑥2(𝛼−1)𝑇 

𝟐 𝑿4 + 𝛼𝑿1 
𝑡𝑒−

𝑥
𝛼, 𝑦𝑒−

𝑥
2𝛼, 𝑢𝑒

𝑥
𝛼, 𝑣𝑒

𝑥
2𝛼 , 𝑇𝑒

2𝑥
𝛼   

𝟑 𝑿3 
𝑡, 𝑦,

𝑢

𝑥
, 𝑣,

𝑇

𝑥2
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Chapter 5. Numerical and Analytical Solution Methods 

HAM allows for the deformation of a given problem into a simpler one, which is 

particularly useful for solving non-linear problems where traditional methods may not be 

applicable. The Homotopy Analysis Method has been widely applied in various fields, 

including fluid dynamics and heat transfer. 

In addition to the HAM, this research also employs the FDM as a numerical solution 

technique. The FDM is a popular method for solving differential equations, especially 

those that are difficult or impossible to solve analytically. This involves the discretization 

of differential equations into a system of algebraic equations, which are subsequently 

solved numerically. This method is widely applicable and can be employed to solve a 

variety of problems, even those involving complex geometries and boundary conditions. 

Finally, in this research in-house codes are developed with MAPLE, that is a powerful tool 

for symbolic mathematical computations. MAPLE is widely used in scientific and 

engineering research, and it is particularly useful for solving mathematical problems that 

involve symbolic manipulation. In-house codes developed using MAPLE are highly 

efficient and can be tailored specifically to the problem at hand, providing a level of 

flexibility and precision. 

Overall, the combination of these three approaches allows a comprehensive and detailed 

exploration of the mathematical structures of the problem at hand, providing a deeper 

understanding of the underlying physics of unsteady boundary layer flow and thin film 

flow in the presence of a magnetic field. The results obtained from these methods are 

compared and evaluated to determine the most effective solution technique for this type of 

problem. 

We assumed that a set of base functions, 𝜂𝑚, where 𝑚 ranges from 0 to 15, could express 

the solution of 𝑓(𝜂) and 𝜃(𝜂). To obtain the solution, we used the boundary conditions 

(4.8) to express the initial functions 𝑓0(𝜂) and 𝜃0(𝜂) as follows: 

𝑓0(𝜂) = 𝜂 + 3
(𝑆 − 2)

4
 𝜂2 −

(𝑆 − 2)

4
𝜂3, 𝜃0(𝜂) = 1                                                   (5.1) 
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To make the tedious procedure of HAM, which is presented in various research papers 

such as [1] and [11], easy to program, we used a different approach. We expanded each 

variable in the system (4.7) as follows: 

𝐹 = ∑ 𝑞𝑚𝑓𝑚(𝜂)

𝑛

𝑚=0

= 𝑞0𝑓0(𝜂) +  𝑞1𝑓1(𝜂) +  … +  𝑞𝑛𝑓𝑛(𝜂) 

𝐹′ = ∑ 𝑞𝑚𝑓′𝑚(𝜂)

𝑛

𝑚=0

= 𝑞0𝑓′
0

(𝜂) +  𝑞1𝑓′
1

(𝜂)+ . . . + 𝑞𝑛𝑓′
𝑛

(𝜂)                                      (5.2) 

Similarly, 

𝐹′′ = ∑ 𝑞𝑚𝑓′′𝑚(𝜂)

𝑛

𝑚=0

, 𝐹′′′ = ∑ 𝑞𝑚𝑓′′′𝑚(𝜂)

𝑛

𝑚=0

, 𝑔 = ∑ 𝑞𝑚𝛾𝑚(𝜂)

𝑛

𝑚=0

 

𝜃 = ∑ 𝑞𝑚𝜃𝑚(𝜂)

𝑛

𝑚=0

, 𝜃′ = ∑ 𝑞𝑚𝜃′
𝑚(𝜂)

𝑛

𝑚=0

, 𝜃′′ = ∑ 𝑞𝑚𝜃′′
𝑚(𝜂)                     (5.3)

𝑛

𝑚=0

 

The final form becomes, 

∑ 𝑞𝑚𝑓′′′
𝑚

(𝜂)

𝑛

𝑚=0

+ ∑ 𝑞𝑚𝛾𝑚(𝜂)

𝑛

𝑚=0

(( ∑ 𝑞𝑚𝑓′
𝑚

(𝜂)

𝑛

𝑚=0

)

2

+ (
𝑆𝜂

2
− ∑ 𝑞𝑚𝑓𝑚(𝜂)

𝑛

𝑚=0

) ∑ 𝑞𝑚𝑓′′
𝑚

(𝜂)

𝑛

𝑚=0

+ (𝑆 − 𝑀𝑛) ∑ 𝑞𝑚𝑓′𝑚(𝜂)

𝑛

𝑚=0

)

= 0 
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𝑃𝑟−1 ∑ 𝑞𝑚𝜃′′
𝑚(𝜂)

𝑛

𝑚=0

+ ∑ 𝑞𝑚𝛾𝑚(𝜂)

𝑛

𝑚=0

(2 (𝑆 + ∑ 𝑞𝑚𝑓′
𝑚

(𝜂)

𝑛

𝑚=0

) ∑ 𝑞𝑚𝜃𝑚(𝜂)

𝑛

𝑚=0

+ (
𝑆𝜂

2
− ∑ 𝑞𝑚𝑓𝑚(𝜂)

𝑛

𝑚=0

) ∑ 𝑞𝑚𝜃′
𝑚(𝜂)

𝑛

𝑚=0

) + 𝐸𝑐 ( ∑ 𝑞𝑚𝑓′′
𝑚

(𝜂)

𝑛

𝑚=0

)

2

= 0                                                                                                                       (5.4) 

The present study aims to find analytical solutions for a specific set of boundary conditions 

by using the method outlined by Wang [1]. The first step is to write the boundary conditions 

in the form of  

𝑓𝑚(0) = 0, 𝑓𝑚
′ (0) = 0, 𝜃𝑚(0) = 0,  

𝑓𝑚(1) = 0, 𝑓𝑚
′′(1) = 0, 𝜃𝑚

′ (1) = 0                                                                                          (5.5)  

To find the particular solutions we use the following: 

𝑓𝑚
∗ (η) = ∭ ℎ𝑓𝐻𝑓𝑓𝑛

∗(𝜂)𝑑𝜂𝑑𝜂𝑑𝜂
𝜂

0

 

𝜃𝑚
∗ (η) = ∬ ℎ𝜃𝐻𝜃𝜃𝑛

∗(𝜂)
𝜂

0

𝑑𝜂𝑑𝜂                                                                                                (5.6) 

The parameters ℎ𝑓 and ℎ𝜃 are non-zero auxiliary parameters that control the convergence 

of the solution, and 𝐻𝑓(𝜂) and 𝐻𝜃(𝜂) are non-zero auxiliary functions that are typically 

equal to 1. The general solution is then given by  

𝑓𝑚(𝜂)  =  𝑓�̅�
∗ (𝜂) + 𝑎1 + 𝑎2𝜂 + 𝑎3𝜂2 

𝜃𝑚(𝜂) =  �̅�𝑚
∗ (𝜂) +  𝑎4 + 𝑎5𝜂,                                                                                                  (5.7) 

where 𝑎1, 𝑎2, 𝑎3, 𝑎4 𝑎𝑛𝑑 𝑎5 are constants 

𝑓(𝜂) ≈ ∑ 𝑓𝑚(𝜂)

𝑛

𝑚=0

                                                                                                                       (5.8) 
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𝜃(𝜂) ≈ ∑ 𝜃𝑚(𝜂)

𝑛

𝑚=0

                                                                                                                      (5.9) 

𝑔 ≈ ∑ 𝑔𝑚

𝑛

𝑚=0

                                                                                                                               (5.10) 

In the present study, the symbolic mathematical tool MAPLE is used to construct the 15th 

order approximate solutions. 
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Chapter 6. Similarity Transformations and Double 

Reductions of the Flow Model 

Similarity transformations are introduced here and their importance in reducing the 

complexity of the Navier-Stokes equations is illustrated. The various steps involved in 

constructing similarity transformations are then discussed in detail, with a focus on 

identifying the relevant scaling parameters and ensuring that the transformed equations 

satisfy the necessary physical and mathematical requirements. 

Construction of similarity transformations is based on the concept of double reductions, 

which yields simplification of the transformed equations by reducing them to a set of 

ODEs. The chapter presents various examples to illustrate the use of these techniques and 

concludes with a discussion of their advantages, limitations, and future research directions. 

In summary, this chapter provides a comprehensive guide for utilizing similarity 

transformations and double reductions as powerful tools in reducing the complexity of the 

Navier-Stokes equations for numerical simulations of fluid flow. 

Table 6.1: Symmetries 

Case  Symmetry Invariants 

1 𝑿3 + 𝛼𝑿4, 𝛼 ≠ 0 𝑡𝑥−𝛼, 𝑦𝑥−
𝛼
2 , 𝑢𝑥𝛼−1, 𝑣𝑥

𝛼
2 , 𝑥2(𝛼−1)𝑇 

2 𝑿3 
𝑡, 𝑦,

𝑢

𝑥
, 𝑣,

𝑇

𝑥2
 

3 𝑿4 + 𝑎𝑿1, 𝛼 ≠ 0 
𝑡𝑒−

𝑥
𝑎 , 𝑦𝑒−

𝑥
2𝑎, 𝑢𝑒

𝑥
𝑎, 𝑣𝑒

𝑥
2𝑎, 𝑇𝑒

2𝑥
𝑎  

General 𝐶1𝑿1 + 𝐶2𝑿2 + 𝐶3𝑿3 

+𝐶4𝑿4 

𝑡, 𝑦,
𝑢

𝑥
, 𝑣,

𝑇

𝑥2
 

 

6.1  Case 1 

The first reduction involved the use of Lie symmetry to simplify the system of partial 

differential equations. By finding the invariance that leaves both 𝑢𝑦 = 0 and 𝑇𝑦 = 0, we 

extended the generator and derived a PDE which led to the calculation of invariants. These 
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invariants were then used as new independent and dependent variables in the system, which 

was then mapped to a simpler form for easier solving using the similarity method. 

(1 − 𝑎)𝐺 + 𝑎𝑧1𝐺𝑧1
−

𝑎

2
𝑧2𝐺𝑧2

+ 𝐻𝑧2
= 0  

𝐺𝑧1
+ (1 − 𝑎)𝐺2 − 𝑎𝑧1𝐺𝐺𝑧1

−
𝑎

2
𝑧2𝐺𝐺𝑧2

+ 𝐻𝐺𝑧2
− 𝜈Gz2,𝑧2

 +
𝜎𝐵𝑜

2

𝛼2𝜌𝑧1
𝐺 = 0 

𝐾𝑧1
+ 2(1 − 𝑎)𝐺𝐾 − 𝑎𝑧1𝐺𝐾𝑧1

−
𝑎

2
𝑧2𝐺𝐾𝑧2

+ 𝐻𝐾𝑧2
−

𝜅

𝜌𝐶𝑝
Kz2,𝑧2

−
𝜔

𝜌𝐶𝑝
𝐺𝑧2

2 = 0       (6.1) 

Subjected to boundary conditions 

𝑧2 = 0, 𝐻 = 0, 𝐺 = 𝑈(𝑧1), 𝐾 = 𝑇𝑠(𝑧1) 

𝑧2 = 𝑐1√𝑧1, 𝐻 =
𝑐1

2√𝑧1

, 𝐺𝑧2
= 0, 𝐾𝑧2

= 0                                                     (6.2) 

Admitted symmetry 

Symmetry is an important concept in mathematics, and we can use it to simplify complex 

systems of equations. In this step, we identified a certain symmetry in the system of partial 

differential equations that we are studying. This symmetry allows us to find new variables 

that satisfy the system and its conditions. 

𝑦 = z1 ∂z1 +
z2

2
∂𝑧2

− 𝐺 ∂𝐺 −
𝐻

2
∂H − 2𝑘 ∂𝑘                                                                        (6.3) 

Invariants {
z2

√𝑧1,
, z1𝐺, √𝑧1𝐻, 𝑧1

2𝐾} 

This gave us new variables 

𝑤 =
𝑧2

√𝑧1

, 𝑃 = 𝑧1𝐺, 𝑄 = √𝑧1𝐻, 𝑅 = 𝑧1
2𝐾                                                                              (6.4) 

Second reduction 

In this step, we further simplified the system of partial differential equations by applying a 

second reduction. This involved finding new equations that satisfy the system and its 
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conditions, and introducing new variables that helped us solve the system using the 

similarity method. 

𝑃 + 𝑄𝑤 = 0 

𝑣𝑃𝑤,𝑤 − (𝑄 −
𝑤

2
) 𝑃𝑤 − 𝑃2 + (1 −

𝜎𝐵o
2

𝛼2𝜌
) 𝑃 = 0 

2𝑅(𝑃 − 1) + (𝑄 −
𝑤

2
) 𝑅𝑤 −

𝜅

𝜌𝐶𝜑
𝑅w,w −

𝜔

𝜌𝑐𝑝
𝑃𝑤

2 = 0                                                       (6.5) 

Subject to the conditions 

𝑤 = 0, 𝑄 = 0, 𝑃 = 𝑐1, 𝑅 = 𝑐2

𝑤 = 𝑐3, 𝑄 =
𝑐3

2
, 𝑃𝑤 = 0, 𝑅𝑤 = 0.                                                                    (6.6) 

Similarity transformation 

In this step, we used a similarity transformation to map the system of PDEs to a simpler 

form. This allows us to solve the system using certain invariants, which we identified by 

introducing new variables and applying certain boundary conditions. The resulting system 

is easier to solve using numerical methods or other techniques. 

The reduced system of ODEs derived here includes the quantities 𝑃𝑟, 𝑆, 𝐸𝑐 and 𝑀𝑛 to 

satisfy the system and its conditions. 

𝛽√
𝛼𝜈

𝑏
𝜂 = 𝑤 −

𝑏

𝛼
𝑓′ = P,  𝛽√

𝑣𝑏

𝛼
𝑓 = Q,  𝜃 = R                                                                  (6.7) 

Through this process, an invertible similarity transformation is obtained. 

𝑦 = 𝛽√
𝛼𝑣𝑡

𝑏
𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝑣𝑏

𝛼𝑡
𝑓,  𝑇 =

𝑥2

𝑡2
𝜃                                                         (6.8) 

This transformation maps the system to the following system of ODEs 
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𝑓′′′ + 𝛾𝑓′2 + 𝛾 (
𝑆𝜂

2
− 𝑓) 𝑓′′ + 𝛾(𝑆 − 𝑀𝑛)𝑓′ = 0

𝑃𝑟−1 𝜃′′ + 2𝛾(𝑆 + 𝑓′)𝜃 + 𝛾 (
𝑆𝜂

2
− 𝑓) 𝜃′ + 𝐸𝑐𝑓′′2 = 0                                           (6.9)

 

6.2  Case 2 

The first reduction 

𝐺 + 𝐻𝑧2
= 0

𝐺𝑧1
+ H𝐺𝑧2

+ G2 − 𝜈Gz2,𝑧2
+

𝜎𝐵0
2

𝛼2𝜌𝑧1
𝐺 = 0

𝐾𝑧1
+ 2GK + 𝐻𝐾𝑧2

−
𝜅

𝜌𝜑
Kz2,𝑧2

−
𝜔

𝜌𝐶𝑝
𝐺𝑧2

2 = 0                                                            (6.10)     

 

Subjected to boundary conditions 

𝑧2 = 0, 𝐺 = 𝑈(𝑧1), 𝐻 = 0, 𝐾 = 𝑇𝑠(𝑧1)

𝑧2 = ℎ(𝑧1), 𝐺𝑧2
= 0, 𝐾𝑧2

= 0, 𝐻 =
𝑑ℎ

𝑑𝑧1
                                             (6.11)

 

Admitted symmetry 

𝑦 = 𝑧1𝜕𝑧1 +
𝑧2

2
𝜕𝑧2 − 𝐺𝜕𝐺 −

𝐻

2
𝜕𝐻 − 2𝐾𝜕𝐾                                                                      (6.12) 

Invariants {
z2

√𝑧1,
, z1𝐺, √𝑧1𝐻, 𝑧1

2𝐾} 

This gave us new variables 

𝑤 =
𝑧2

√𝑧1

, 𝑃 = 𝑧1𝐺, 𝑄 = √𝑧1𝐻, 𝑅 = 𝑧1
2𝐾                                                                            (6.13) 

Second reduction 

𝑃 + 𝑄𝑤 = 0 

𝑣𝑃𝑤,𝑤 − (𝑄 −
𝑤

2
) 𝑃𝑤 − 𝑃2 + (1 −

𝜎𝐵o
2

𝛼2𝜌
) 𝑃 = 0 

2𝑅(𝑃 − 1) + (𝑄 −
𝑤

2
) 𝑅𝑤 −

𝜅

𝜌𝐶𝜑
𝑅𝑤,𝑤 −

𝜔

𝜌𝑐𝑝
𝑃𝑤

2 = 0                                                     (6.14) 
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Subject to the conditions 

𝑤 = 0, 𝑄 = 0, 𝑃 = 𝑐1, 𝑅 = 𝑐2 

𝑤 = 𝑐3, 𝑄 =
𝑐3

2
, 𝑃𝑤 = 0, 𝑅𝑤 = 0.                                                                 (6.15) 

Similarity transformation 

The reduced system of ODEs derived here includes the quantities 𝑃𝑟, 𝑆, 𝐸𝑐 and 𝑀𝑛 to 

satisfy the system and its conditions. 

𝛽√
𝛼𝜈

𝑏
𝜂 = 𝑤 −

𝑏

𝛼
𝑓′ = P,  𝛽√

𝑣𝑏

𝛼
𝑓 = Q,  𝜃 = R                                                                (6.16) 

Through this process, an invertible similarity transformation is obtained. 

𝑦 = 𝛽√
𝛼𝑣𝑡

𝑏
𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝑣𝑏

𝛼𝑡
𝑓,  𝑇 =

𝑥2

𝑡2
𝜃                                                       (6.17) 

This transformation maps the system to the following system of ODEs 

𝑓′′′ + 𝛾𝑓′2 + 𝛾 (
𝑆𝜂

2
− 𝑓) 𝑓′′ + 𝛾(𝑆 − 𝑀𝑛)𝑓′ = 0

𝑃𝑟−1 𝜃′′ + 2𝛾(𝑆 + 𝑓′)𝜃 + 𝛾 (
𝑆𝜂

2
− 𝑓) 𝜃′ + 𝐸𝑐𝑓′′2 = 0.                                       (6.18)

 

6.3  Case 3 

The first reduction 

𝐻𝑧2
−

1

𝑎
(𝐺 + 𝑧1𝐺𝑧1

+ 𝑧2𝐺𝑧2
) = 0

𝐺𝑧1
−

1

𝑎
(𝐺 + 𝑧1𝐺𝑧1

+ 𝑧2𝐺𝑧2
) + 𝐻𝐺𝑧2

− 𝜈Gz2,𝑧2
+

𝜎𝐵𝑜
2

𝛼2𝜌𝑧1
𝐺 = 0

𝐾𝑧1
−

1

𝑎
𝐺 (2𝐾 + 𝑧1𝐾𝑧1

+
𝑧2

2
𝐾𝑧2

) + 𝐻𝐾𝑧2
−

𝜅

𝜌𝐶𝑝
𝐾𝑧2,𝑧2

−
𝜔

𝜌𝐶𝑝
𝐺𝑧2

2 = 0                           (6.19)

 

Subjected to boundary conditions 

𝑧2 = 0, 𝐺 = 𝑈(𝑧1), 𝐻 = 0, 𝐺𝑧2
= 0 



 

30  

𝑧2 = 𝑐√𝑧1, 𝐻 =
𝑐

2√𝑧1

, 𝐾 = 𝑇𝑠(𝑧1), 𝐾𝑧2
= 0                                              (6.20) 

Admitted symmetry 

𝑦 = 𝑧1𝜕𝑧2 + 𝜕𝐻                                                                                                                         (6.21) 

Invariants {z1, √G, (1 −
𝑧2

𝑍1
)𝐻, 𝐾} 

This gave us new variables 

𝑤 = 𝑧1, 𝑃 = √𝐺, 𝑄 = (1 −
𝑧2

𝑍1
) 𝐻, 𝑅 = 𝐾                                                                           (6.22) 

Second reduction 

𝑃 + 𝑤𝑃𝑤 = 0

𝑃𝑤 −
1

𝛼
(𝑃 + 𝑤𝑃𝑤) +

𝜎𝐵0
2

𝛼2𝜌𝜔
𝑃 = 0

𝑅𝑤 −
1

2
𝑃(2𝑅 + 𝑤𝑅𝑤) = 0                                                                                             (6.23)

                                                                

Subject to the conditions 

𝑤 = 0, 𝑄 = 0, 𝑃 = 𝑐1, 𝑅 = 𝑐2 

𝑤 = 𝑐3, 𝑄 =
𝑐3

2
, 𝑃𝑤 = 0, 𝑅𝑤 = 0.                                                                 (6.24) 

This system does not need to be transformed as the 𝑄 term is seen to be eliminated and this 

does not lead to a system of ODE’s with a third order ODE. This is the type of case which 

is over-constrained which is why it is not solved here.  

6.4  General Case 

The first reduction 

𝐺𝑧1
+ 𝐻𝑧2

= 0

−
z1𝐶3

𝐶4
𝐺𝑧1

−
z2

2
𝐺𝑧2

+ GGz1
+ H𝐺𝑧2

+
C3 − C4

𝐶4
G − 𝜈Gz2,𝑧2

+
𝜎𝐵0

2

𝛼2𝜌
𝐺 = 0

−
𝑧1𝐶3

𝐶4
𝐾

𝑧1

−
z2

2
Kz2

+
(𝐶3 − 𝐶4)

𝐶4
2K + GKz1

+ 𝐻𝐾𝑧2
−

𝜅

𝜌𝜑
Kz2,𝑧2

−
𝜔

𝜌𝐶𝑝
𝐺𝑧2

2 = 0 (6.25)
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Subjected to boundary conditions. 

𝑧2 = 0, 𝐺 = 𝑈(𝑧1), 𝐻 = 0, 𝐾 = 𝑇𝑠(𝑧1) 

𝑧2 = ℎ(𝑧1), 𝐺𝑧2
= 0, 𝐾𝑧2

= 0, 𝐻 =
𝑑ℎ

𝑑𝑧1
                                                      (6.26) 

Admitted symmetry 

𝑦 = 𝑧1𝜕𝑧1 + 𝐺𝜕𝐺 + 2𝐾𝜕𝐾                                                                                                      (6.27) 

Invariants {𝑧2,
𝐺

𝑧1
, 𝐻,

𝐾

𝑧1
2} 

This gave us new variables 

𝑤 = 𝑧2, 𝑃 = 𝑧1𝐺, 𝑄 = 𝐻, 𝑅 = 𝑧1
2𝐾                                                                                       (6.28) 

Second reduction 

𝑃 + 𝑄𝑤 = 0 

−
𝐶3

𝐶4
𝑃 −

𝑤

2
𝑃𝑤 +

𝐶3 − 𝐶4

𝐶4
𝑃 + 𝑃2 + 𝑄𝑃𝑤 − 𝑣𝑃w,w +

𝜎𝐵o
2

𝛼2𝜌
𝑃 = 0 

−
𝐶3

𝐶4
2𝑅 −

𝑤

2
𝑅𝑤 +

𝐶3 − 𝐶4

𝐶4
2𝑅 + 2𝑃𝑅 + 𝑄𝑅𝑤 −

𝜅

𝜌𝐶𝑝
𝑅𝑤,𝑤 −

𝜔

𝜌𝑐𝑝
𝑃𝑤

2 = 0                 (6.29) 

This reduction simplifies and eliminates the constants, so we get the same equation we got 

previously. 

𝑃 + 𝑄𝑤 = 0 

−𝑃 −
𝑤

2
𝑃𝑤 + 𝑃2 + 𝑄𝑃𝑤 − 𝑣𝑃𝑤,𝑤 +

𝜎𝐵o
2

𝛼2𝜌
𝑃 = 0 

−2𝑅 −
𝑤

2
𝑅𝑤 + 2𝑃𝑅 + 𝑄𝑅𝑤 −

𝜅

𝜌𝐶𝑝
𝑅𝑤,𝑤 −

𝜔

𝜌𝑐𝑝
𝑃𝑤

2 = 0                                                 (6.30) 
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Subject to the conditions 

𝑤 = 0, 𝑄 = 0, 𝑃 = 𝑐1, 𝑅 = 𝑐2                                                                                   

𝑤 = 𝑐3, 𝑄 =
𝑐3

2
, 𝑃𝑤 = 0, 𝑅𝑤 = 0.                                                                (6.31) 

Similarity transformation 

The reduced system of ODEs derived here includes the quantities 𝑃𝑟, 𝑆, 𝐸𝑐 and 𝑀𝑛 to 

satisfy the system and its conditions. 

𝛽√
𝛼𝜈

𝑏
𝜂 = 𝑤 −

𝑏

𝛼
𝑓′ = P,  𝛽√

𝑣𝑏

𝛼
𝑓 = Q,  𝜃 = R                                                                (6.32) 

Through this process, an invertible similarity transformation is obtained. 

𝑦 = 𝛽√
𝛼𝑣𝑡

𝑏
𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝑣𝑏

𝛼𝑡
𝑓,  𝑇 =

𝑥2

𝑡2
𝜃                                                       (6.33) 

This transformation maps the system to the following system of ODEs 

𝑓′′′ + 𝛾𝑓′2 + 𝛾 (
𝑆𝜂

2
− 𝑓) 𝑓′′ + 𝛾(𝑆 − 𝑀𝑛)𝑓′ = 0

𝑃𝑟−1 𝜃′′ + 2𝛾(𝑆 + 𝑓′)𝜃 + 𝛾 (
𝑆𝜂

2
− 𝑓) 𝜃′ + 𝐸𝑐𝑓′′2 = 0                                          (6.34)

 

6.5  Implemented System 

The optimal systems and a general case are considered, and similarity transformation are 

derived. The flow model is reduced using the obtained similarity transformation. For all 

cases we obtain the following system of ODEs: 
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Table 6.2: Final Systems 

Symmetries Transformed system 

𝑿3 + 𝛼𝑿4 
𝑓′′′ + 𝛾𝑓′2 + 𝛾 (

𝑆𝜂

2
− 𝑓) 𝑓′′ + 𝛾(𝑆 − 𝑀𝑛)𝑓′ = 0

Pr−1 𝜃′′ + 2𝛾(𝑆 + 𝑓′)𝜃 + 𝛾 (
𝑆𝜂

2
− 𝑓) 𝜃′ + 𝐸𝑐𝑓′′2 = 0.

 

 

𝑿3 
𝑓′′′ + 𝛾𝑓′2 + 𝛾 (

𝑆𝜂

2
− 𝑓) 𝑓′′ + 𝛾(𝑆 − 𝑀𝑛)𝑓′ = 0

Pr−1 𝜃′′ + 2𝛾(𝑆 + 𝑓′)𝜃 + 𝛾 (
𝑆𝜂

2
− 𝑓) 𝜃′ + 𝐸𝑐𝑓′′2 = 0.

 

 

𝐶1𝑿1 + 𝐶2𝑿2 + 𝐶3𝑿3

+ 𝐶4𝑿4 

𝑓′′′ + 𝛾𝑓′2 + 𝛾 (
𝑆𝜂

2
− 𝑓) 𝑓′′ + 𝛾(𝑆 − 𝑀𝑛)𝑓′ = 0

Pr−1 𝜃′′ + 2𝛾(𝑆 + 𝑓′)𝜃 + 𝛾 (
𝑆𝜂

2
− 𝑓) 𝜃′ + 𝐸𝑐𝑓′′2 = 0.

 

 

The boundary conditions became: 

𝑓(0) =  0, 𝑓′(0) = 1, 𝜃 (0) =  1,  

𝑓(1) =
𝑆

2
, 𝑓′′(1) =  0, 𝜃′(1) =  0                                                                        (6.35) 

In Table 7.1 three different cases, namely 𝑿3 + 𝛼𝑿4, 𝑿3, and 𝐶1𝑿1 + 𝐶2𝑿2 + 𝐶3𝑿3 +

𝐶4𝑿4, are presented and transformation to final form has been done. Interestingly, the final 

form of system of reduced ODEs in these cases is found to be the same. 

The implemented system is described by two coupled differential equations. The first 

equation is a third-order differential equation for the temperature distribution, 𝑓(𝜂), which 

is a function of the spatial coordinate 𝜂. This equation involves terms such as the third 

derivative of 𝑓, 𝑓′′′ and its first and second derivatives, 𝑓′ and 𝑓′′, respectively. The 

equation also includes parameters such as 𝛾, 𝑆, 𝑀𝑛, and 𝜂. 

The second equation is a second-order differential equation for the dimensionless stream 

function, 𝜃(𝜂), which is also a function of the spatial coordinate 𝜂. This equation includes 
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terms such as the second derivative of 𝜃, 𝜃′′, and its first derivative, 𝜃′, as well as the first 

derivative of 𝑓, 𝑓′. This equation also involves parameters such as 𝛾, 𝑆, 𝑀𝑛, 𝜂, and 𝐸𝑐. 

The implemented system is subject to boundary conditions that determine the values of 𝑓 

and 𝜃 at both ends of the channel. These conditions include 𝑓(0) = 0 and 𝑓′(0) = 1, which 

establish a fixed velocity at the lower wall and a stationary wall. Furthermore, the condition 

𝜃(0) = 1 sets a fixed temperature at the lower wall. The upper wall is subject to the 

conditions 𝑓(1) =
𝑆

2
, indicating that the velocity at the upper wall is half that of the lower 

wall, and 𝑓′′(1) = 0, indicating that the pressure gradient at the upper wall is zero. Lastly, 

the condition 𝜃′(1) = 0 indicates no heat transfer at the upper wall. 
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Chapter 7. Finite Difference Method 

The research presented in this study involves solving a system of nonlinear ordinary 

differential equations (ODEs) using the method of difference equations. To accomplish 

this, forward finite differencing schemes are employed to discretize the system of nonlinear 

ODEs (4.7) into a system of difference equations. The resulting difference equations, along 

with the given boundary conditions (4.8), are then solved using the Newton-Raphson 

method. This approach is particularly useful for systems of nonlinear ODEs that cannot be 

solved analytically or by other numerical methods. To ensure the accuracy of our solutions, 

we have also implemented finite difference scheme. For this purpose, we have utilized 

forward difference schemes at 𝜂 =  0 and backward difference schemes at 𝜂 =  1. The 

use of these techniques and tools in conjunction allows us to achieve highly accurate 

solutions for the non-linear system of ODEs under consideration in this study. 

Forward difference:  

𝑑𝑓

𝑑𝜂
=

𝑓(𝜂𝑖+1) − 𝑓(𝜂𝑖)

ℎ
                                                                                                               (7.1) 

𝑑2𝑓

𝑑𝜂2
=

𝑓(𝜂𝑖+2) − 2𝑓(𝜂𝑖+1) + 𝑓(𝜂𝑖)

ℎ2
                                                                                       (7.2) 

𝑑3𝑓

𝑑𝜂3
=

𝑓(𝜂𝑖+3) − 3𝑓(𝜂𝑖+2) + 3𝑓(𝜂𝑖+1) − 𝑓(𝜂𝑖)

ℎ3
                                                                (7.3) 

Backward difference:  

𝑑𝑓

𝑑𝜂
=

𝑓(𝜂𝑖) − 𝑓(𝜂𝑖−1)

ℎ
                                                                                                               (7.4) 

𝑑2𝑓

𝑑𝜂2
=

𝑓(𝜂𝑖) − 2𝑓(𝜂𝑖−1) + 𝑓(𝜂𝑖−2)

ℎ2
                                                                                       (7.5) 

𝑑3𝑓

𝑑𝜂3
=

𝑓(𝜂𝑖) − 3𝑓(𝜂𝑖−1) + 3𝑓(𝜂𝑖−2) − 𝑓(𝜂𝑖−3)

ℎ3
                                                                (7.6) 

The first-order accurate O(h) finite difference approximations for the first, second, and 

third-order derivatives are used in the process. The resulting non-linear algebraic equations 

are solved implicitly by iterating the Newton-Raphson method with an initial guess of 0.2 
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for each term until the error is less than 10−10. The dimensionless film thickness 𝜆 is an 

unknown variable in this system, which is made consistent by using the boundary condition 

provided in (4.8). The stability of the system is found to be satisfactory during the study. 

7.1  Validation of Results 

In this research, HAM is utilized to solve a non-linear coupled system of ODEs presented 

in equation (4.6). The HAM approach is an improvement on the method proposed by Wang 

[1] as it expands all terms individually rather than simultaneously. The results are validated 

by comparing them with those of Wang [1] in Table 7.1. The 15th order HAM results show 

good agreement with Wang's results, with a deviation of less than 0.00007. These results 

are used as a benchmark for comparison with the Finite Difference Method (FDM) results 

presented in Table 7.1 and Table 7.2. 

7.2  Comparison of Solution Methods 

In the current study, Table 7.1 illustrates the impact of unsteadiness parameter 𝑆 on the 

film thickness 𝜆 and skin friction 𝑓′′(0) that have been determined using FDM with 2000 

nodes, and HAM. It is observed that the HAM solution demonstrates good convergence at 

higher values of unsteadiness parameter 𝑆.  

Table 6.2 illustrates the influence of Prandtl number 𝑃𝑟 on the surface temperature 𝜃(1) 

and heat flux 𝜃′(0) that have been determined using the finite difference method with 2000 

nodes, and Homotopy Analysis Method (HAM). On the other hand, the numerical method, 

the finite difference method, can compute results for these values of Prandtl number. The 

comparison of results obtained from these different methods aids in the verification and 

validation of results obtained by the FDM. The system of non-linear ODEs is solved using 

Newton's iteration method, and the error between the numerical solution and analytical 

solution is found to be less than 0.09%. To assess the effectiveness of numerical solution 

methods in regions where analytical techniques may fail, a comparison is made between 

the finite difference method and Homotopy Analysis Method. The results obtained from 

both methods are in good agreement, as shown in Table 7.1.  
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Table 7.1: Validation of Results 

𝑺 FDM HAM (15th order) Error 

𝛽 𝑓′′(0) 𝛽 𝑓′′(0) 

𝟎. 𝟓 4.201564784 −3.733414657 4.200727468 −3.733402849 8.4

∗ 10−4 

𝟎. 𝟕 2.158612579 −2.718487262 2.157625689 −2.718582938 9.9

∗ 10−4 

𝟎. 𝟗 1.317561235 −2.033348615 1.317819600 −2.033348467 2.6

∗ 10−4 

𝟏 1.065413587 −1.725132059 1.064350595 −1.725132061 1.0

∗ 10−4 

𝟏. 𝟐 0.715315574 −1.331743214 0.715315670 −1.331730153 9.6

∗ 10−8 

𝟏. 𝟒 0.481647891 −0.957835792 0.479888132 −0.957826447 1.8

∗ 10−4 

𝟏. 𝟓 0.384652317 −0.785666542 0.385409030 −0.785657910 2.4

∗ 10−4 

Table 7.2: Validation of Results 

𝑷𝒓 FDM HAM (15th order) Error 

𝜃(1) 𝜃′(0) 𝜃(1) 𝜃′(0) 

𝟎. 𝟎𝟓 1.086787616 0.206263 1.086883256 0.206364 9.5 ∗ 10−5 

𝟎. 𝟎𝟔 1.105548321 0.249781 1.105613246 0.249880 6.5 ∗ 10−5 

𝟎. 𝟎𝟕 1.124731747 0.294108 1.124830389 0.294208 9.8 ∗ 10−5 

𝟎. 𝟎𝟖 1.144491179 0.339473 1.144551882 0.339376 6.7 ∗ 10−5 

𝟎. 𝟎𝟗 1.164743819 0.385567 1.164806928 0.385417 6.3 ∗ 10−5 

𝟎. 𝟏𝟎 1.185534262 0.432176 1.185602771 0.432363 6.8 ∗ 10−5 
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7.3 Computation Time 

Table 7.3: Film thickness 𝜆 and skin friction 𝑓 variation with order of HAM 

Order of HAM Compute time (sec) 𝛽 𝑓′′(0) 

𝟐 1.2 0.7144701269 −1.331170826 

𝟓 2.3 0.7153168290 −1.331729681 

𝟖 3.8 0.7153140585 −1.331730038 

𝟏𝟎 6.2 0.7153140083 −1.331730006 

𝟏𝟐 8.4 0.7153137910 −1.331729863 

𝟏𝟓 12.5 0.7153156700 −1.331730153 

 

The results obtained from the analysis of the order of HAM and computation time for the 

heat transfer equations are presented in the Table 7.3. The calculations were carried out 

using a computer with an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz 2.81 GHz and 

12 GB RAM. The values of 𝛽 and 𝑓′′ (0) for different orders of HAM are obtained, and it 

is observed that the values are consistent across all orders of HAM. As the order of the 

HAM increases, the computation time also increases, making it a computationally 

expensive method for higher-order solutions. 

According to the findings, as the order of the HAM increased from 2 to 15, the computation 

time also increased from 1.2 seconds to 12.5 seconds. However, it is important to note that 

even with an increase in the order of HAM, the values of 𝛽 and 𝑓′′(0) remained relatively 

constant till 4th decimal place, indicating that the solution is stable and reliable. 

Overall, the results of this study suggest that a higher order of HAM leads to a more 

accurate solution, but at the expense of increased computation time. Therefore, the choice 

of HAM order should be made based on the balance between computational resources and 

the required accuracy of the solution. These findings are significant in the development of 

more accurate and efficient numerical methods for solving complex heat transfer equations 

in various engineering applications. 
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Chapter 8. Results and Discussion 

This section presents key findings of the study and provides a detailed analysis of the 

results obtained from the methodology described in the previous section. This section 

presents the results of the similarity transformations and double reductions performed on 

the Navier-Stokes equations, including the derived reduced system of ODEs. The section 

then discusses the numerical solutions of the reduced system of ODEs for various values 

of the scaling parameters and physical properties of the fluid flow. The study results are 

visually presented in the form of tables and graphs that depict fluid flow patterns and the 

impact of different physical parameters on flow behavior, providing a comprehensive 

illustration of the results. 

The discussion section then delves deeper into the interpretation of the results, highlighting 

the key insights gained from the study. The discussion examines the effects of various 

physical parameters on the fluid flow, including the Prandtl number, and the geometrical 

characteristics of the flow domain. The section also evaluates the performance of the 

similarity transformations and double reductions in reducing the complexity of the Navier-

Stokes equations and facilitating the numerical simulation of fluid flow. Finally, the section 

concludes by providing a summary of the findings of the study and their implications for 

the field of fluid dynamics, as well as suggestions for future research in this area. 

Table 8.1: Variation in film thickness 𝛽 with unsteadiness 𝑆 and magnetic parameter 𝑀𝑛 

𝑴𝒏 𝑺 = 𝟎. 𝟓 𝑺 = 𝟎. 𝟕 𝑺 = 𝟎. 𝟗 𝑺 = 𝟏. 𝟎 𝑺 = 𝟏. 𝟐 𝑺 = 𝟏. 𝟒 𝑺 = 𝟏. 𝟓 

𝟓 4.200727 2.157636 1.317824 1.064351 0.715314 0.479888 0.385409 

𝟔 3.330918 1.700584 1.028113 0.824712 0.544815 0.357457 0.283289 

𝟕 2.760233 1.403570 0.842920 0.673206 0.439966 0.284801 0.223951 

𝟖 2.356749 1.194989 0.714297 0.568748 0.368965 0.236693 0.185165 

𝟗 2.039973 1.040425 0.619749 0.492360 0.317699 0.202489 0.157832 

𝟏𝟎 1.809418 0.921291 0.547313 0.434067 0.278943 0.176923 0.137530 

 

The Table 8.1 shows the film thickness values for different values of magnetic parameter 

𝑀𝑛 and unsteadiness parameter 𝑆. The film thickness is an important parameter that 

characterizes the behavior of fluid motion within a liquid film. As the value of 𝑀𝑛 increases 
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from 5 to 10, the film thickness decreases for all values of 𝑆. This is because an increase 

in 𝑀𝑛 results in a stronger magnetic field, which causes the fluid to become more 

constrained and flow in a more restricted manner. As a result, the thickness of the liquid 

film decreases. 

Similarly, as the value of 𝑆 increases from 0.5 to 1.5, the film thickness decreases for all 

values of 𝑀𝑛. This is because an increase in 𝑆 indicates that the motion of the sheet 

becomes more unsteady, which leads to a more turbulent flow of the liquid film. 

Consequently, the fluid flow is constrained to a smaller region, which leads to a decrease 

in the thickness of the liquid film. 

Overall, the results show that both the magnetic parameter 𝑀𝑛 and the unsteadiness 

parameter 𝑆 have a significant impact on the behavior of fluid motion within a liquid film. 

By understanding the relationship between these parameters and the film thickness, the 

behavior of liquid films in various applications can be controlled. 

Table 8.2:  Variation in 𝑓′(𝜂) and 𝜃(𝜂) with 𝑆, 𝑀𝑛 and 𝑃𝑟 

𝑴𝒏 𝑓′(1) 𝜃(1) 

𝑷𝒓 = 𝟎. 𝟎𝟓 

𝜃(1) 

𝑷𝒓 = 𝟎. 𝟎𝟔 

𝜃(1) 

𝑷𝒓 = 𝟎. 𝟎𝟕 

𝜃(1) 

𝑷𝒓 = 𝟎. 𝟎𝟖 

𝜃(1) 

𝑷𝒓 = 𝟎. 𝟎𝟗 

𝜃(1) 

𝑷𝒓 = 𝟎. 𝟏 

𝑺 = 𝟎. 𝟓 

𝟓 0.026523 1.157968 1.193940 1.231595 1.271069 1.312505 1.355506 

𝟕. 𝟓 0.032626 1.096385 1.117178 1.138560 1.160520 1.183095 1.206315 

𝟏𝟎 0.034214 1.071482 1.086595 1.101988 1.117675 1.133670 1.149983 

𝑺 = 𝟏. 𝟎 

𝟓 0.282537 1.086885 1.105613 1.124829 1.144553 1.164803 1.185600 

𝟕. 𝟓 0.285033 1.052393 1.063332 1.074434 1.085700 1.097135 1.108741 

𝟏𝟎 0.286042 1.038826 1.046831 1.054918 1.063090 1.071346 1.079690 

𝑺 = 𝟏. 𝟓 

𝟓 0.629464 1.046026 1.055634 1.065383 1.075275 1.085315 1.095504 

𝟕. 𝟓 0.630354 1.024864 1.029950 1.035074 1.040237 1.045440 1.050682 

𝟏𝟎 0.630669 1.017481 1.021032 1.024601 1.028187 1.031792 1.035416 
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The Table 8.2 displays the impact of varying the magnetic parameter 𝑀𝑛 and unsteadiness 

parameter 𝑆 on the heat and mass transfer characteristics of thin film flows over stretching 

sheets. Moreover, it presents temperature distribution for different Prandtl number 𝑃𝑟. 

Results indicate that as 𝑀𝑛 increases, the velocity gradient 𝑓′ of the fluid also increases 

due to the magnetic field generated by the sheet, resulting in enhanced heat transfer 𝜃. 

Conversely, increasing 𝑆 leads to a decrease in 𝑓′ and 𝜃 due to reduced fluid movement 

and contact with the sheet. Higher 𝑃𝑟 values lead to a decreased 𝜃 because thicker thermal 

boundary layers reduce heat transfer rates. These findings demonstrate the significant 

effects of magnetic and unsteadiness parameters on the heat transfer characteristics of thin 

film flows over stretching sheets, which can be manipulated by adjusting these parameters. 

 

Figure 8.1: Variation of 𝜃(1) with 𝑃𝑟 as 𝑆 = 0.5 
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Figure 8.2: Variation of 𝜃(1) with 𝑃𝑟 as 𝑆 = 1.0 

 

Figure 8.3: Variation of 𝜃(1) with 𝑃𝑟 as 𝑆 = 1.5 
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The plots of 𝜃 with a variation of 𝑃𝑟, indicating that the temperature distribution follows a 

predictable pattern as the Prandtl number increases. However, the slope of the curve varies 

depending on the value of 𝑀𝑛. As 𝑀𝑛 increases from 5 to 10, the slope of the curve 

becomes less steep, indicating a decrease in the rate of change of temperature with respect 

to the Prandtl number. This suggests that the magnetic field has a stabilizing effect on the 

temperature distribution in the flow, reducing the sensitivity of the temperature to changes 

in the Prandtl number. The steepness of the curve for 𝑀𝑛 = 5 compared to the other values 

further emphasizes this trend. These results have important implications for the design and 

optimization of magnetic fields in industrial processes involving fluid flow and can develop 

more efficient and sustainable technologies. 

Table 8.3: Variation in 𝑓′(𝜂) and 𝜃(𝜂) with 𝑆, 𝑀𝑛 and 𝑃𝑟 for 𝑆 = 0.5 

𝑬𝒄 𝑓′(1) 𝜃(1) 

𝑷𝒓 = 𝟎. 𝟎𝟓 

𝜃(1) 

𝑷𝒓 = 𝟎. 𝟎𝟔 

𝜃(1) 

𝑷𝒓 = 𝟎. 𝟎𝟕 

𝜃(1) 

𝑷𝒓 = 𝟎. 𝟎𝟖 

𝜃(1) 

𝑷𝒓 = 𝟎. 𝟎𝟗 

𝜃(1) 

𝑷𝒓 = 𝟎. 𝟏 

𝑴𝒏 = 𝟓 

𝟏 0.026523 1.157968 1.193940 1.231595 1.271069 1.312505 1.355506 

𝟑 0.026523 1.186461 1.229036 1.273689 1.320542 1.369785 1.421655 

𝟓 0.026523 1.215068 1.264189 1.315801 1.370025 1.427070 1.487212 

𝑴𝒏 = 𝟕. 𝟓 

𝟏 0.032626 1.096385 1.117178 1.138560 1.160520 1.183095 1.206315 

𝟑 0.032626 1.123065 1.149694 1.177085 1.205256 1.234238 1.264075 

𝟓 0.032626 1.149740 1.182198 1.215610 1.249987 1.285378 1.321834 

𝑴𝒏 = 𝟏𝟎 

𝟏 0.034214 1.071482 1.086595 1.101988 1.117675 1.133670 1.149983 

𝟑 0.034214 1.097523 1.118149 1.139200 1.160679 1.182592 1.204958 

𝟓 0.034214 1.123410 1.149688 1.176407 1.203679 1.231512 1.259933 
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Table 8.4: Variation in 𝑓′(𝜂) and 𝜃(𝜂) with 𝑆, 𝑀𝑛 and 𝑃𝑟 for 𝑆 = 1.5 

𝑬𝒄 𝑓′(1) 𝜃(1) 

𝑷𝒓 = 𝟎. 𝟎𝟓 

𝜃(1) 

𝑷𝒓 = 𝟎. 𝟎𝟔 

𝜃(1) 

𝑷𝒓 = 𝟎. 𝟎𝟕 

𝜃(1) 

𝑷𝒓 = 𝟎. 𝟎𝟖 

𝜃(1) 

𝑷𝒓 = 𝟎. 𝟎𝟗 

𝜃(1) 

𝑷𝒓 = 𝟎. 𝟏 

𝑴𝒏 = 𝟓 

𝟏 0.629464 1.046026 1.055634 1.065383 1.075275 1.085315 1.095504 

𝟑 0.629464 1.050679 1.061263 1.072002 1.082903 1.093967 1.105198 

𝟓 0.629464 1.055332 1.066890 1.078622 1.090531 1.102619 1.114891 

𝑴𝒏 = 𝟕. 𝟓 

𝟏 0.630354 1.024864 1.029950 1.035074 1.040237 1.045440 1.050682 

𝟑 0.630354 1.029386 1.035398 1.041457 1.047563 1.053716 1.059917 

𝟓 0.630354 1.033904 1.040845 1.047840 1.054888 1.061992 1.069152 

𝑴𝒏 = 𝟏𝟎 

𝟏 0.630669 1.017481 1.021032 1.024601 1.028187 1.031792 1.035416 

𝟑 0.630669 1.021958 1.026418 1.030902 1.035409 1.039940 1.044495 

𝟓 0.630669 1.026433 1.031804 1.037203 1.042631 1.048088 1.053575 

 

To provide a more accurate explanation of the above tables, it shows the values of the 

temperature distribution parameter 𝜃 for different values of Eckert number 𝐸𝑐 and 

dimensionless velocity 𝑓′ for various values of Prandtl number 𝑃𝑟 ranging from 0.05 to 

0.1. 

The table indicates that there is no significant effect of Eckert number on the dimensionless 

velocity 𝑓′. The value of 𝑓′ remains constant at 0.026523 for all the values of 𝐸𝑐, 

suggesting that the velocity of the fluid is not affected by the Eckert number due to the 

non-existence of this number in the velocity equations that is not coupled with the second 

equation. 

However, the results indicate that the values of 𝜃 increase as the Eckert number increases. 

This implies that the Eckert number has a considerable effect on the temperature 

distribution in the fluid. As the Eckert number increases, the fluid's energy increases, 

resulting in a more uniform temperature distribution. This trend is observed for all values 

of 𝑃𝑟. All these results are shown in Table 8.3 and Table 8.4.  
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Figure 8.4: Variation of 𝜃(1) with 𝑃𝑟 as 𝑀𝑛 = 5 

 

Figure 8.5: Variation of 𝜃(1) with 𝑃𝑟 as 𝑀𝑛 = 7.5 
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Figure 8.6: Variation of 𝜃(1) with 𝑃𝑟 as 𝑀𝑛 = 10 

The temperature distribution plots for various Ecket numbers 𝐸𝑐 and Prandtl numbers 𝑃𝑟 

indicate a direct linear relationship between temperature and 𝑃𝑟 number. The temperature 

increases with increasing 𝑃𝑟 number for all 𝐸𝑐 values. The plots for different 𝐸𝑐 values 

demonstrate that as the value of 𝐸𝑐 increases, the slope of the curve also increases, 

implying that the magnetic field has a more significant effect on temperature distribution. 

Notably, the 𝐸𝑐 = 5 curve has a steeper slope than the other two curves, implying that a 

more potent magnetic field can cause a more significant change in the temperature 

distribution. However, these findings align with the anticipated behavior of fluid flow 

under the influence of a magnetic field, where the field can induce convective motion and 

change the temperature distribution in the fluid. Overall, these results offer insight into the 

intricate relationship between magnetic fields, fluid flow, and temperature distribution in 

practical engineering systems. 
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8.1  Effect of Unsteadiness on the Boundary Layer Thickness and Fluid 

Velocity 

Table 8.5: Effect of Unsteadiness on 𝛽 and 𝑓′ for 𝑀𝑛 = 5, 𝐸𝑐 = 1 

𝑺 𝒉𝟏 𝛽 𝑓′(1) 𝑓′′(0) 

𝟎. 𝟓 −0.1 4.200727468 0.02651777121 −3.733402849 

𝟏 −0.8 1.064350595 0.2777140390 −1.725132061 

𝟏. 𝟓 −1 0.385409030 0.6294643239 −0.7856579100 

𝟐. 𝟓 −1 −0.4861298706 1.375217221 0.7473965361 

𝟑 −1 −2.550489381 1.725959701 1.684306489 

𝟒 −1 0.9839147941 2.579359123 2.434904615 

𝟓 −1 0.5155264233 3.352517940 3.760291470 

 

Figure 8.7: ℎ1-curve 
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Figure 8.8: 𝑓′ Variation for different 𝑆 values 

The outcomes of the current investigation reveal that the heat transfer properties are 

significantly influenced by the homotopy parameter, the unsteadiness parameter, and the 

film thickness. The homotopy parameter, denoted by ℎ1, is employed in the homotopy 

analysis technique to convert the original nonlinear differential equation into a series of 

deformation equations that can be solved analytically. The negative values of ℎ1 in this 

research imply that the homotopy parameter has an impact on the equation's solution, and 

its magnitude decreases as the stretching parameter, 𝑆, increases. The negative values of 

the film thickness, represented by 𝛽, indicate that the liquid film free surface is located 

below the stretching plate surface, indicating the presence of dry patches on the plate 

surface. To ensure a continuous and smooth liquid film over the plate, the value of the 

unsteadiness parameter should be selected within a certain range. In the present study, the 

negative values of 𝛽 were observed when the unsteadiness parameter was 2.5 and 3. 

Further ahead the for the unsteadiness values 4 and 5, the film thickness is again positive. 

Due to the discontinuity at 2.5 and 3, it is recommended to select the range of the 

unsteadiness parameter from 0.5 to 1.5 to ensure a continuous liquid film over the plate. 
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These findings are of significant importance for understanding the behavior of fluids in 

various industrial and natural processes, such as heat exchangers, coatings, and boundary 

layer flows. 

It is important to note that 𝑓′(1) should be below 1 to ensure a stable lubrication film. This 

is because the value of 𝑓′(1) represents the slope of the lubrication film at the exit, and if 

it is greater than 1, the film thickness will decrease rapidly, leading to a breakdown of the 

lubrication film. Therefore, to maintain a stable lubrication film, it is crucial to keep the 

value of 𝑓′(1) below 1. 

8.2  Effect of Unsteadiness on Temperature  

Table 8.6: Variation with 𝑆 for 𝑀𝑛 = 5, 𝐸𝑐 = 1 and ℎ2 = −0.06 

𝑺 𝜃(1) 𝜃′(0) 

𝟎. 𝟓 1.157957115 0.437771 

𝟎. 𝟕 1.119649013 0.309671 

𝟎. 𝟗 1.096379966 0.234875 

𝟏 1.086883256 0.206364 

𝟏. 𝟐 1.069898690 0.158651 

𝟏. 𝟒 1.053985374 0.117841 

𝟏. 𝟓 1.046025366 0.098710 
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Figure 8.9: ℎ2-curve 

The ℎ2 curves are plotted for the system to study the effect of unsteadiness on the 

temperature distribution. The stability range is seen to be constant for increasing values of 

𝑆, which indicates that the system remains stable under the influence of unsteadiness. 

However, the value of 𝜃′(0) decreases with increasing 𝑆, which indicates that the 

temperature gradient near the surface of the film is reduced due to unsteadiness.  

This is because the unsteadiness of the system introduces temporal variations in the 

temperature distribution of the fluid, leading to reduced temperature gradients near the 

surface of the film. As a result, the heat transfer rate from the film to the surrounding fluid 

decreases, leading to a reduction in the overall heat transfer rate. The impact of this 

reduction in temperature gradient near the film surface on the design and heat transfer 

cannot be ignored. Therefore, it is crucial to account for the effect of unsteadiness on 

temperature distribution to ensure accurate prediction of heat transfer. 
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Figure 8.10: 𝜃 Variation for different 𝑆 values 

The results revealed that both 𝑆 and the thermal conductivity parameter 𝐸𝑐 significantly 

influence the temperature profile in the liquid film. As the value of 𝑆 increases, the 

temperature at the surface of the stretching plate 𝜃(1) decreases, indicating a cooling effect 

caused by the unsteadiness of the system. Additionally, the temperature gradient at the 

surface of the plate 𝜃′(0) also decreases with increasing 𝑆. The negative value of the 

homotopy parameter ℎ2 implies that the heat transfer rate from the surface of the plate to 

the liquid film is lower than that from the liquid film to the surrounding medium, as the 

surface of the plate is cooled by the surrounding medium. These findings emphasize the 

importance of accounting for the impact of unsteadiness and thermal conductivity when 

analyzing the thermal behavior of fluids. 
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8.3  Effect of Prandtl Number on Temperature 

Table 8.7: 𝜃 Variation with Prandtl number for 𝑆 = 1 

𝑷𝒓 𝒉𝟐 𝜃(1) 𝜃′(0) 

𝟎. 𝟎𝟓 −0.06 1.086883256 0.206364 

𝟎. 𝟎𝟔 −0.06 1.105613246 0.249880 

𝟎. 𝟎𝟕 −0.07 1.124830389 0.294208 

𝟎. 𝟎𝟖 −0.08 1.144551882 0.339376 

𝟎. 𝟎𝟗 −0.1 1.164806928 0.385417 

𝟎. 𝟏 −0.1 1.185602771 0.432363 

 

 

Figure 8.11: ℎ2-curve 

The results obtained from the ℎ2 curves for the temperature variation with Prandtl number 

as 𝑆 = 1 indicate that as 𝑃𝑟 increases, the stability range also increases. This suggests that 

the temperature field becomes more stable for larger Prandtl numbers. Also, the value of 

𝜃′(0) also increases with increasing Prandtl number, indicating a stronger temperature 

gradient at the surface. This result is consistent with the physical intuition that fluids with 
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larger Prandtl numbers exhibit stronger thermal diffusivity, which leads to a more rapid 

transfer of heat across the fluid. The observed trend of increasing stability range and 

stronger temperature gradient at the surface can have important implications for practical 

applications involving heat transfer in fluids, such as in the design of heat exchangers. 

 

Figure 8.12: 𝜃 Variation for different 𝑃𝑟 values 

The results of the study indicate that the Prandtl number has a significant impact on the 

temperature distribution. The Prandtl number represents the ratio of momentum diffusivity 

to thermal diffusivity, and it is an important factor that affects the rate at which heat is 

transferred from the surface to the liquid film. The data in the Table 8.7 show that 

increasing 𝑃𝑟, increases the temperature distribution, indicating that the heat transfer rate 

from the surface to the fluid is higher. This trend is consistent across all values of the 

homotopy parameter ℎ2. Moreover, the slope of the temperature gradient at the surface 

𝜃′(0) also increases as 𝑃𝑟 increases, suggesting that the heat transfer rate at the surface 

also increases with the 𝑃𝑟. It is important to note that the influence of 𝑃𝑟 on the temperature 

distribution is significant, especially in practical applications where heat transfer is critical 

in determining system efficiency.  
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8.4  Effect of Magnetic Parameter 

Table 8.8: Effect of 𝑀𝑛 on thickness and velocity for 𝑆 = 1.2 and ℎ1 = −0.8 

𝑴𝒏 Thickness 𝑓′(1) 𝑓′′(0) 

𝟓 0.715314261 0.4161931511 −1.331730186 

𝟔 0.544815066 0.4172131660 −1.341393300 

𝟕 0.439965654 0.4178361535 −1.347321314 

𝟖 0.368965482 0.4182564328 −1.351329678 

𝟗 0.317699872 0.4185580475 −1.354223028 

𝟏𝟎 0.278942859 0.4187867209 −1.356406820 

 

 

 

Figure 8.13: ℎ1-curve 

The Table 8.8 shows the influence of magnetic parameter 𝑀𝑛 on film thickness, velocity 

𝑓′(1), and skin friction 𝑓′′(0). It is observed from the ℎ1 curves plot that the stability range 

does not change with increasing values of 𝑀𝑛, indicating that the flow remains stable. 

However, the values of both 𝑓′(1) and 𝑓′′(0) exhibit a slight increase with increasing 𝑀𝑛, 
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indicating an increase in the velocity and skin friction of the flow. The magnetic field 

induces the movement of charged particles within the fluid, enhancing the fluid flow and 

increasing the fluid velocity. Furthermore, the decrease in film thickness with increasing 

𝑀𝑛 attributed to the magnetic field ability to restrict the motion of fluid particles, resulting 

in a thinner film of fluid. These results suggest that the magnetic parameter has a significant 

impact on the flow characteristics of the fluid, which is crucial to consider while designing 

and analyzing fluid systems with magnetic fields. 

The Table 8.8 presents the results obtained with varying magnetic parameter 𝑀𝑛. The 

HAM is used to solve the governing equations, and the parameter ℎ1 was varied as a 

homotopy parameter. 

The film thickness decreases with increasing magnetic parameter 𝑀𝑛, which can be 

attributed to the increased magnetic forces that pull the fluid closer to the surface. This 

behavior can have practical implications for various industrial processes, such as coating 

and thin film manufacturing. The stability range, as indicated by the negative values of ℎ1, 

remained the same for all values of 𝑀𝑛, which suggests that the magnetic field does not 

have a significant impact on the stability of the flow. 

The value of 𝑓′(1), which represents the velocity at the surface, slightly increased with 

increasing 𝑀𝑛, indicating that the magnetic field enhances the flow velocity. This behavior 

is consistent with the well-known effect of a magnetic field on fluid flow, which can lead 

to increased turbulence and mixing. 

Finally, the value of 𝑓′′(0), which represents the skin friction at the surface, also slightly 

increased with increasing 𝑀𝑛. The observed increase in the velocity and temperature 

profiles can be attributed to the increased interaction between the fluid and the surface 

caused by the magnetic field. 

Overall, the results suggest that the magnetic field has significant effects on the fluid flow 

and surface interaction in the presence of a stretching sheet. These findings have potential 

applications in various industrial processes, such as coating and thin film manufacturing, 

and can contribute to a better understanding of the behavior of fluid flow under the 

influence of magnetic fields. 
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Table 8.9: Effect of 𝑀𝑛 on 𝜃(𝜂) and 𝜃′(𝜂)  for 𝑆 = 1.2, 𝑃𝑟 = 0.05 and ℎ2 = −0.06 

𝑴𝒏 𝜃(1) 𝜃′(0) 

𝟓 1.069896224 0.158652 

𝟔 1.053884904 0.125612 

𝟕 1.044234735 0.105614 

𝟖 1.037779006 0.092207 

𝟗 1.033157234 0.082590 

𝟏𝟎 1.029684988 0.075354 

 

 

Figure 8.14: ℎ2-curve 

The temperature distribution for various values of 𝑀𝑛 and ℎ2 is presented in the table 

above. The results indicate that the stability range for ℎ2 remains constant with increasing 

𝑀𝑛. However, the value of 𝜃′(0), which represents the temperature gradient at the surface, 

decreases slightly with increasing 𝑀𝑛. This suggests that the fluid near the surface is less 

affected by the magnetic field as 𝑀𝑛 increases. The decrease in the temperature gradient 

can be attributed to the fact that the magnetic field becomes stronger as 𝑀𝑛 increases, 
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leading to the suppression of the thermal boundary layer thickness near the surface of the 

plate. This behavior is significant in practical applications where the heat transfer rate plays 

a crucial role in determining the efficiency of the system. Therefore, it is essential to 

consider the influence of the magnetic field on the temperature distribution and heat 

transfer rate in the design and optimization of various engineering systems. 

 

 

Figure 8.15: 𝜃 Variation for different 𝑀𝑛 values 

The Table 8.9 provided shows the effect of 𝑀𝑛 on the temperature distribution 𝜃 and the 

temperature gradient 𝜃′. As 𝑀𝑛 increases from 5 to 10, 𝜃(1) decreases from 1.069896224 

to 1.029684988, indicating that the temperature at the surface of the liquid film decreases 

with increasing magnetic field strength. This is likely due to the magnetic field inducing 

convection, which can enhance the rate of heat transfer and lower the surface temperature. 

At the same time, 𝜃′(0) also decreases from 0.158652 to 0.075354 as 𝑀𝑛 increases. As 

the strength of the magnetic field increases, the temperature gradient at the surface is 

observed to decrease. This suggests that the interaction between the fluid and the surface 

is enhanced under the influence of the magnetic field. This can be attributed to the fact that 
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the magnetic field suppresses the thermal boundary layer near the surface, which in turn 

leads to a lower temperature gradient at the surface. 

These results are important for understanding the effects of magnetic fields on heat transfer 

in liquid films. They provide insight into how magnetic fields can alter the temperature 

distribution and temperature gradient at the surface of a liquid film, which has implications 

for a variety of industrial and scientific applications. 

8.5 Effect of Ecket Number on the Temperature Distribution 

Table 8.10: Effect of 𝐸𝑐 on 𝜃 and 𝜃′ for 𝑀𝑛 = 5, 𝑃𝑟 = 0.05 and ℎ2 = −0.06 

𝑬𝒄 𝜃(1) 𝜃′(0) 

𝟏 1.069895644 0.158652 

𝟐 1.075608223 0.183336 

𝟑 1.08137084 0.208025 

𝟒 1.087028566 0.232710 

𝟓 1.092735696 0.257393 
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Figure 8.16: ℎ2-curve 

 

Figure 8.17: 𝜃 Variation for different 𝐸𝑐 values  
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Table 8.10 shows the results obtained for 𝑀𝑛 = 5 and 𝑃𝑟 = 0.05, where 𝐸𝑐 is the Ecket 

number and 𝜃 and 𝜃′ represent the temperature and temperature gradient, respectively. The 

results show that as the Ecket number increases, both the temperature distribution and 

temperature gradient increase. Specifically, for an Ecket number of 1, the temperature 

distribution is 1.069895644 and the temperature gradient is 0.158652. However, for an 

Ecket number of 5, the temperature distribution increases to 1.092735696 and the 

temperature gradient increases to 0.257393. This suggests that increasing 𝐸𝑐 increases the 

heat transfer rate, which is consistent with previous studies. 

The Ecket number represents the ratio of thermal diffusivity to kinematic viscosity, and its 

increase leads to a higher rate of heat transfer. This can be explained by the fact that as the 

Ecket number increases, the thermal diffusivity becomes relatively more dominant than the 

kinematic viscosity, leading to a higher rate of heat transfer. Additionally, increasing the 

Ecket number also results in a decrease in the boundary layer thickness, which in turn leads 

to a decrease in the thermal resistance at the surface. Therefore, the results obtained in this 

study can be used to optimize the heat transfer rate in various industrial applications.  

Overall, the results of this analysis suggest that the Eckert number has a minimal effect on 

the temperature distribution in the fluid. Other parameters, such as the magnetic parameter 

and the Prandtl number, may have a larger impact on the temperature distribution and 

should be considered when analyzing the behavior of the fluid. 
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Conclusion 

In conclusion, this thesis has investigated the behavior of fluid flow and heat transfer in 

thin liquid films over an unsteady stretching surface with viscous dissipation under the 

influence of an external magnetic field. The results reveal that the magnetic parameter 𝑀𝑛 

and unsteadiness parameter 𝑆 have a significant impact on the behavior of the liquid film, 

affecting the film thickness and heat transfer rates. The Eckert number 𝐸𝑐, Prandtl number 

𝑃𝑟, homotopy parameters ℎ1 and ℎ2, unsteadiness parameter 𝑆, and film thickness 𝛾 also 

significantly influence the temperature distribution and heat transfer rate in the system. The 

Lie point symmetry analysis is employed to derive the Lie point symmetries of the system 

of partial differential equations, and new similarity transformations are developed using a 

pair of the admitted Lie point symmetry generators. Lie optimal system enabled the 

conversion of the partial differential equations into ordinary differential equations for 

simplifying the solution procedure. These findings have practical implications for various 

industrial and natural processes involving fluid behavior, such as heat exchangers, 

coatings, and boundary layer flows, and provide valuable insights into the intricate 

relationship between magnetic fields, fluid flow, and temperature distribution in 

engineering systems. Future research can focus on extending these findings to more 

complex fluid flow systems and optimizing the design and performance of various 

engineering applications. 

After an extensive investigation of the impact of various parameters on the behavior of 

fluid motion in a liquid film, it is evident that the magnetic parameter 𝑀𝑛, unsteadiness 

parameter 𝑆, Eckert number 𝐸𝑐, Prandtl number 𝑃𝑟, homotopy parameter, unsteadiness 

parameter, and film thickness significantly influence the heat and mass transfer properties 

of the system. The findings provide valuable insights into the intricate relationship between 

magnetic fields, fluid flow, and temperature distribution in engineering systems. 

The study shows that increasing 𝑀𝑛 enhances heat transfer due to the magnetic field, while 

increasing 𝑆 decreases it due to reduced fluid movement. Higher 𝑃𝑟 values decrease heat 

transfer rates due to thicker thermal boundary layers, and temperature distribution follows 

a predictable pattern with increasing 𝑃𝑟, which can be stabilized by increasing 𝑀𝑛. The 

Eckert number has no effect on the dimensionless velocity f', but it significantly affects the 
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temperature distribution parameter 𝜃, which increases as 𝐸𝑐 increases. Negative values of 

the homotopy parameter and film thickness indicate the presence of dry patches on the 

plate surface, which should be avoided to ensure a continuous liquid film. The unsteadiness 

parameter range should be selected to maintain a smooth and stable liquid film over the 

plate. 

Unsteadiness and thermal conductivity significantly affect the temperature distribution in 

a liquid film over a stretching surface, with the temperature gradient near the surface of the 

film being reduced under the influence of unsteadiness. Increasing the Prandtl number 

leads to increased stability range and stronger temperature gradient at the surface, resulting 

in a higher heat transfer rate. The magnetic field has a significant impact on the fluid flow 

velocity, skin friction, and film thickness, and increasing 𝑀𝑛 leads to increased velocity 

and skin friction and decreased film thickness. 

In conclusion, the results of this study have important implications for designing and 

optimizing various engineering systems involving fluid flow, such as heat exchangers, 

coatings, and boundary layer flows. The findings highlight the need to consider the impact 

of various parameters such as the magnetic parameter, unsteadiness parameter, Eckert 

number, Prandtl number, homotopy parameter, unsteadiness parameter, and film thickness 

when analyzing the behavior of fluids. By taking these parameters into account, it is 

possible to control and optimize the heat and mass transfer properties of fluid systems, 

leading to more efficient and sustainable technologies. 
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