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Abstract

Lie’s method for converting a scalar second order ordinary differential equation (ODE) to

linear ODE by point transformations was already extended to third and fourth order scalar

ODEs by point and contact transformations and to the systems of second order ODEs.

The point symmetry group classification of linear nth order scalar and second order systems

of m ODEs was provided. Till recently no work on the linearization and classification has

been done for higher order systems of ODEs and scalar ODEs linearizable via point, contact

and higher order derivative transformations. In this work, we use Meleshko’s algorithm

for reducing fourth order autonomous ODEs to second and third order linearizable ODEs

and then applying the Ibragimov and Meleshko linearization test for the obtained ODEs.

This method can be applied to solve those nonlinear ODEs that are not linearizable by

point and contact transformations.

Complex-linearization of a class of systems of second order ODEs had been studied

with complex symmetry analysis. Linearization of this class had been achieved earlier

by complex method, however, linearization conditions and the most general linearizable

form of such systems have not been derived yet. It is shown that the general linearizable

form of the complex-linearizable systems of two second order ODEs is (at most) quadrat-

ically semilinear in the first order derivatives of the dependent variables. Linearization

conditions for such systems are derived in terms of coefficients of the system and their

derivatives. Further, complex methods are employed to obtain the complex-linearizable

form of 2−dimensional systems of third order ODEs. This complex-linearizable form leads

to a linearizable class of these systems of ODEs. The most general linearizable form and
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linearization conditions for such class of 2−dimensional systems of third order ODEs are

derived with complex-linearization.

A canonical form for 2−dimensional linear systems of third order ODEs is obtained

by splitting the complex, scalar, third order, linear ODE. This canonical form is used for

the symmetry group classification of 2−dimensional linear systems of third order ODEs.

Five equivalence classes of such systems with Lie algebras of dimensions 8, 9, 10, 11, and

13 are proved to exist.

Contact and higher order derivative symmetries of scalar ODEs are related with the

point symmetries of the reduced systems. Two new types of transformations that build up

these relations and equivalence classes of scalar third and fourth order ODEs linearizable

via these transformations are obtained. Four equivalence classes of these equations are

seen to exist.
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Chapter 1

Introduction

Most of the important governing equations in physics and mathematical models in en-

gineering sciences, biology, economics, chemistry etc. are given in terms of nonlinear

differential equations (DEs). In earlier days, it was easier to approximate a situation by

one that led to easily solved equations. Despite enormous advances of approximation

methods for solving nonlinear DEs, the key features of the phenomenon being modelled

may be lost in the approximation. In other words we lose the essential part of a problem

under consideration along with the nonessentials. An important and difficult aspect of

nonlinear DEs is to solve these equations exactly so that their significance is not lost. One

of the methods of solving them is the transformation of a given DE into another equation

of a standard form. Since linear DEs are the simplest, we would like to transform nonlin-

ear DEs into the linear form by transforming their independent and dependent variables

which is called linearization in symmetry analysis. (However, in the literature the approx-

imation of nonlinear equations by linear ones is also called linearization). Linearization

does not only simplify a nonlinear DE but also allows us to construct its exact solutions.

Therefore, linearization can play a significant role in the theory of DEs. These equations

involve the behaviour of certain unknown functions, called dependent variables, at given

values of independent variables and their derivatives. A DE is of order n if the highest

derivative involved in it is of order n. If dependent variables are functions of a single
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1. Introduction 2

independent variable, these are called ODEs. If these equations involve more than one

independent variable, they are called partial differential equations (PDEs). The number

of arbitrary constants that appear in the general solutions of linear ODEs is same as the

order of the ODEs. To get the exact solution of a linear ODE we have to put as many

initial conditions as the order of the ODE. This allows us to classify ODEs on the basis

of initial conditions to be satisfied by an ODE. We also use other generalizations of lin-

earization for the purpose of the classification of ODEs. This classification of ODEs is the

main motivation of this thesis.

The concept of groups is related to the invariance or symmetry of objects under some

action. In 1826 Abel [1] proved that irreducible quintic equations are not solvable by means

of radicals. Independently, Galois [24], in 1830, used symmetries to prove that quintic and

higher order polynomial equations are not solvable by means of radicals. This leads to the

concept of groups. Groups used by Galois were finite and are now called Galois groups.

Lie (1880) wanted to use similar methods to try to solve and classify DEs. Polynomial

equations have (at most) as many solutions as their order, while DEs have infinitely many

solutions. To deal with DEs, Lie needed to have not only infinitely continuous but dif-

ferentiable groups [38, 40, 42, 45]. These groups are now called Lie groups. Galois groups

deal with the symmetries of algebraic equations while symmetries of DEs are discussed

in terms of Lie group theory. Unlike Galois groups, Lie groups deal with infinitely many

transformations and depend on continuously varying parameters. The crucial idea of Lie

group theory is to employ infinitesimals instead of finite transformations. Lie showed how

invariance under the action of an infinitesimal generator of a symmetry can be used to

reduce the number of independent variables in a PDE, or to reduce the order of an ODE.

Thus, if there are enough symmetry generators any DE can be reduced to quadratures.

He also classified the symmetries required for solving DEs and hence the DEs solvable.

Lie transformed DEs to the linear form by transforming their independent and depen-

dent variables invertibly. Such transformations are called point transformations and the

transformed DEs are called linearized. DEs that can be transformed to the linear form

are called linearizable. Lie [38] proved that a nonlinear scalar second order ODE can be
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mapped to a linear ODE via an invertible point transformation if and only if it has eight

Lie point symmetries. He used the fact that all linear scalar second order ODEs can be

mapped to the free particle equation via an invertible point transformation. Hence all

linearizable scalar second order ODEs can be put into one equivalence class. He proved

that any nonlinear scalar second order ODE is linearizable if it is semilinear and at most

cubic in the first derivative. Further, coefficients of the linearizable ODE must satisfy four

conditions that involve these coefficients and two auxiliary functions and their first order

derivatives. In 1894 Tressè [70, 71] reduced these four conditions to two by eliminating

these auxiliary functions.

Later developments have extended in many directions, including transformations of

derivatives as well (contact transformations). In 1940 Chern [14, 15] extended the lin-

earization programme to scalar third order ODEs by using contact transformations. He

obtained conditions for scalar third order ODEs to be linearizable to the equations u′′′ = 0

and u′′′ + u = 0. In 1990 Mahomed and Leach [48] showed that all linearizable scalar

ODEs of order n (n ≥ 3) can be put into three equivalence classes with n + 1, n + 2 and

n + 4 Lie point symmetries. Grebot [26, 27], in 1996, used the restricted class of point

transformations to address the linearization of scalar third order ODEs. Explicit lineariza-

tion criteria for scalar third order ODEs were obtained by Neut and Petitot [59] in 2002

and independently by Ibragimov and Meleshko (IM) [29,30] in 2005. They determined the

linearizability criteria and procedure for the construction of linearizing transformations

for scalar third order ODEs by following Lie’s original procedure [38]. The linearization

problem for scalar fourth order ODEs gets more complicated and was tackled by Ibragi-

mov, Meleshko and Suksern (IMS) [31, 69] in 2008. They used Lie’s approach to obtain

the explicit linearizability criteria for scalar fourth order ODEs. In 2006 Meleshko [56]

provided a simple algorithm to reduce autonomous third order scalar ODEs to second

order ODEs saisfying Lie linearizability criteria.

All developments mentioned above are for scalar ODEs. The extension of the clas-

sification to systems was achieved by Goringe and Leach [25] in 1988 for a limited class

and generalized for all classes by Wafo Soh and Mahomed [73] in 2000. Gorringe and
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Leach treated the case of systems of two linear second order ODEs with constant coeffi-

cients in the complex domain and proved that they can have 7, 8 or 15 point symmetries.

Wafo Soh and Mahomed [73] extended to variable coefficients and proved that the Lie

algebra for linearizable systems of two second order ODEs can only be 5−, 6−, 7−, 8−,

or 15−dimensional. In 2001 they generalized it further to n−dimensional systems of sec-

ond order ODEs by using the group classification and found that the number of classes

increases by one with each increased dimension [74]. The number of generators in the

minimal case is n + 3 and for the highest sub-maximal case is 2n + 4. There are five

equivalence classes of linearizable systems of two second order ODEs and not only the one

found by Lie for scalar ODEs. Algebraic linearization criteria for systems of second order

ODEs via invertible point transformations were provided by Wafo Soh and Mahomed [74],

Bagderina [11] and Ayub et al. [10].

A connection between the symmetries of a system of second order ODEs, that could

be regarded as geodesics on a manifold and of the underlying manifold (isometries) was

found by Aminova and Aminov [7] in 2000 and independently by Feroze, Mahomed and

Qadir [22] in 2006. For the connection to make sense one needs to be able to determine

when the system of ODEs can correspond to a system of geodesic equations (which are

defined in section 2.5) and then construct the manifold on which the geodesics live. A

mathematica code for this purpose was obtained by Fredericks et al. [23]. It was noted by

Aminova and Aminov that the requirement for the system to be linearizable is that the

curvature of the manifold be zero. The linearizability criteria for a system of second order

quadratically semilinear ODEs were obtained by Mahomed and Qadir [50] in 2007. They

considered a system of second order ODEs of geodesic type (quadratically semilinear in

the first derivative with no linear terms) and independently proved that the conditions

for the system to be linearizable are to treat coefficients of the system of ODEs as if they

are Christoffel symbols and require that the curvature tensor constructed from them be

zero. In other words the geodesics are straight lines if the manifold is flat. Using the

projection procedure of Aminova and Aminov [8], the system of n second order ODEs of

geodesic type can be reduced to a system of (n− 1) second order quadratically semilinear
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ODEs [52]. Following this procedure of projection, the linearization criteria for a system

of two cubically semilinear ODEs were derived by Mahomed and Qadir [52]. When this

procedure was applied to a system of two dimensions, Lie linearization conditions for scalar

second order ODEs were obtained.

Another recent development was of complex symmetry analysis (CSA). It deals with

those systems of DEs that come from the systems of complex DEs. Complex DEs are

those in which dependent variables are complex functions of complex or real independent

variables. Whereas Lie considered complex DEs, he did not use the analyticity of complex

functions. The fact used recently was that the dependent variables must be analytic and

satisfy Cauchy-Reimann (CR) equations [2,4]. Complex ODEs give systems of two PDEs

on splitting into real and imaginary parts. A complex function of a real variable yields

two real functions with CR structure on both the variables. In this way we get a system

of two ODEs. We can also ask for the linearizability of complex scalar ODEs to obtain

linearizable PDEs/ODEs [5]. Using CSA it has been shown that we get three of the five

linearizable classes of systems of two second order ODEs [66].

In Lie’s programme of linearization, no definite statement is available for the cases

when ODEs are not linearizable. This gap may be filled by another development called

conditional linearization. Conditional linearization is a totally different direction for lin-

earization given by Mahomed and Qadir [51] in 2008. Differentiating a linearizable scalar

second order ODE and then requiring that the original equation holds, gives the condition-

ally linearizable third order ODE [51]. The result is that the new third order conditionally

linearizable ODE may contain only two arbitrary constants in its solution. This is a new

class of ODEs and is not contained in IM [29] and Neut and Petitot class [59]. The same

procedure was applied to a system of ODEs [49] to get a system of two third order condi-

tionally linearizable ODEs. This method was repeated with the third order conditionally

linearizable ODE to get a fourth order ODE [53].

Linearization maps a nonlinear DE to a linear one by using an invertible transforma-

tion. The inverse transformation maps the solution of the linear DE to the solution of

the nonlinear DE, thus allowing us to get an exact solution of the nonlinear DE. Not only
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this, but we also obtain the general solution of a nonlinear DE. The general solution of

a linear DE contains arbitrary constants equal to its order. So initial conditions equal in

number to the order of a linearizable DE must be given in order to find its exact solution.

Our motivation for considering the linearization problem is that it does not only give the

general solution of a nonlinear ODE but also classifies ODEs according to the number of

initial conditions to be satisfied by an ODE. Using the power of linearization, we can put

DEs into one equivalence class of solvable DEs.

The thesis is organized as follows. In the second chapter we review some results on the

linearization of scalar and systems of ODEs. In the third chapter we use Meleshko’s algo-

rithm to reduce fourth order ODEs by one (or two) order(s) and then apply IM’s (Lie’s)

linearization criteria to the reduced ODEs. In this way we get the solution of a nonlinear

fourth order ODE by quadrature. We give complete criteria for scalar fourth order ODEs

that are reducible to the lower order linearizable equations. Fourth order ODEs that are

linearizable by Meleshko’s method are not necessarily contained in IMS’ class of lineariz-

able ODEs. The fourth chapter is on complex linearization of 2−dimensional systems of

second order ODEs. We first obtain the linearizable form for a 2−dimensional complex-

linearizable system of second and third order ODEs. Further, linearization conditions for

such systems are derived in terms of coefficients of the system and their derivatives. The

most general linearizable form and the linearization criteria for a class of 2−dimensional

systems of third order ODEs are also derived by complex-linearization. In the fifth chap-

ter we use complex methods for the classification of 2−dimensional linear systems of

third order ODEs. We first obtain the canonical form of 2−dimensional linear systems

of third order ODEs by using complex methods. This form provides the classification of

2−dimensional linear systems of third order ODEs that corresponds to a scalar complex

third order ODE. We prove that there are five equivalence classes of such equations from

eight to thirteen dimensions, excluding twelve. In the sixth chapter we relate contact and

higher order derivative symmetries of scalar ODEs with point symmetries of the reduced

systems. We define new types of transformations that build up these relations and ob-

tain equivalence classes of scalar ODEs linearizable via these transformations. We first
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obtain canonical forms of linear scalar third and fourth order ODEs, then perform the

group classification for these equations. Four equivalence classes of linear scalar third and

fourth order ODEs are seen to exist. In the last chapter, we conclude the work done in

the proceeding chapters along with some future directions.

1.1 Lie groups of transformations and Lie algebras

In this section, we give basic definitions with examples and necessary tools to deal with

ODEs by symmetry methods that will be used subsequently.

1.1.1 Lie groups of transformations

A set G, closed under a binary operation ‘·’ is called a groupoid. If it is associative i.e.,

(a · b) · c = a · (b · c) , ∀ a, b, c ∈ G, then it is called a semigroup. It is called a monoid if it

contains an identity i.e., ∃! e ∈ G such that a · e = e · a = a, ∀ a ∈ G. Note that we can

have a left identity that is not a right identity and vice versa, e.g. if ↑ is the operation of

raising to the power defined in N then 1 is the right identity that is not a left identity,

n ↑ 1 = n but 1 ↑ n = 1 6= n. If for a monoid we have the property that ∀ a ∈ G, ∃!

a−1 ∈ G such that a · a−1 = a−1 · a = e, then it is called a group. A group G is called an

abelian group if the group operation is commutative i.e., a · b = b · a, ∀ a, b ∈ G. If there

are a finite number of elements in a group, then the group is called a finite group. The

number of elements in a group is called the order of the group. A basic example of a finite

group is the symmetric group Sn which is the group of permutations of n objects. The set

of integers Z is an infinite group with ‘+’ as the group operation. These are all examples of

groups with a discrete number of elements. If we consider those groups whose number of

elements are a continuum, such as the space R, then we can talk about continuous groups.

A group G is continuous if there is some notion of ‘continuity’ imposed on the elements

of the group in the sense that a small change in a or b produces a correspondingly small

change in a · b. It is defined in a precise way as:
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Definition 1.1.1. A continuous group is a topological space, whose elements form a group

and the group operation and its inverse are continuous mappings.

Remember that a map or function is continuous from one topological space to another

if the inverse image of every open set is open. The most common example of a continuous

group is the set of all real numbers R with ‘+’ as the group operation. The same set R is

not a group under the operation of multiplication because R has an element 0 which has

no multiplicative inverse. The space of extended real numbers, R̄, is not a group under

multiplication. This is because 1/0 is ∞ ∈ R̄ and when we approach 0 from the left its

inverse approaches −∞ and when we approach 0 from the right its inverse approaches

+∞. As the inverse of every element of a group has to be unique, so R̄ fails to form a

group, and hence, is not a continuous group.

Definition 1.1.2. If the elements of a differentiable manifold form a group and the group

operation

m : G×G −→ G, m(a, b) = a.b, a, b ∈ G,

and the inversion

i : G −→ G, i(a) = a−1, a ∈ G

are smooth mappings then it is called a Lie group [60] .

The sets R and C with ‘+’ as the group operation are examples of Lie groups. If

we eliminate 0 from the set of real numbers and denote the set as R∗, then R∗ forms a

continuous group under multiplication but not a Lie group. This is because the space

R∗ can be written as a union of two disjoint subsets (−∞, 0) and (0,∞) and hence, is

disconnected. Unlike R∗, C∗ is a Lie group under multiplication because when we remove

the origin, the space is still connected.

Definition 1.1.3. A transformation that involves a change of dependent and independent

variables without involving other functions i.e.,

x̄ = x̄(x, u), ū = ū(x, u), (1.1)

is called a point transformation.
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Definition 1.1.4. Suppose the point transformation (1.1) depends continuously on (at

least) one parameter a, (see e.g., [68]), i.e.

x̄ = x̄(x, u; a), ū = ū(x, u; a). (1.2)

Further suppose that these transformations (1.2) are defined for each (x, u) ∈ D ⊂ R2 and

the parameter a belongs to a continuous group S ⊂ R with a law of composition σ(a, b).

The set of transformations (1.2) forms a one-parameter Lie group of transformations G if:

(i) the closure law holds i.e., if

x̄ = x̄(x, u; a), ū = ū(x, u; a),

then

¯̄x = ¯̄x(x̄, ū; ā), ¯̄u = ¯̄u(x̄, ū; ā);

(ii) the associative law holds;

(iii) the set of transformations (1.2) contains the identity transformation, i.e. ∃! e ∈ S

such that

x̄ = x̄(x, u; e) = x, ū = ū(x, u; e) = u;

(iv) the transformations (1.2) are invertible, i.e. ∀ a in S ∃! a′ ∈ S such that

ā(a, a′) = e .

Examples of Lie groups of transformations

(1) Consider the 1−dimensional transformation

x̄ = ax, (1.3)

where a is a non-zero real number.

¯̄x = bx̄ = bax. (1.4)
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By writing ¯̄x = cx, we have the product element c = ba, so the composition of two

transformations is described by an analytic function that yields another transformation

of the form in (1.3). This operation is clearly associative, as well as abelian, since the

composition of transformations corresponds to the multiplication of real numbers. The

identity is determined from x̄ = x, which clearly corresponds to the transformation (1.3)

with a = 1. The inverse of (1.3) is seen to correspond to the transformation with ā = 1/a,

which explains the requirement that a 6= 0. Hence, the transformations defined in (1.3)

form a one-parameter, abelian Lie group.

(2) The set of transformations

x̄ = a1x+ a2, a1 6= 0, (1.5)

forms a two-parameter, non-abelian group. The identity element corresponds to the trans-

formation (1.5) with a1 = 1 and a2 = 0. The inverse of (1.5) is determined by taking

ā1 = 1/a1 and ā2 = −a2/a1. The composition of two transformations is given by the

product rule c1 = b1a1 and c2 = b2 + b1a2 where ¯̄x = b1x̄+ b2.

(3) General linear groups :

The set of transformations

x̄ = a1x+ a2u,

ū = a3x+ a4u, (1.6)

with a1a4−a2a3 6= 0 forms a general linear group in two dimensions. If x and u denote the

components of a vector r, the transformation (1.6) can be written in the matrix notation

as

r̄ = Ar,

where

r̄ =

x̄
ū

 , r =

x
u

 , A =

a1 a2

a3 a4

 .
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The linear group in two dimensions is isomorphic to the group of 2×2 non-singular matrices

with the matrix multiplication as the law of composition. Here the identity corresponds

to

A =

1 0

0 1

 ,

the inverse is the matrix inverse A−1 and the product element is given by the matrix

multiplication C = BA, where ¯̄r = Br̄. The linear group in two dimensions is a four-

parameter, non-abelian group and is denoted by GL(2,R), where R signifies that the

entries are real. The general linear group with complex entries is denoted by GL(2,C). In

n dimensions, these transformation groups are denoted by GL(n,R) and, with complex

entries, by GL(n,C). The number of parameters for an n−dimensional linear group is n2.

(4) Special linear group:

This group is obtained by restricting the determinant of the transformations in example

(3) to unity. This restriction provides one functional relation between the n2 parameters.

Thus we have an (n2 − 1)−parameter group. This group is denoted by SL(n,R) for real

entries and by SL(n,C) for complex entries.

(5) Orthogonal groups :

We restrict the transformations in example (3) to be length invariant:

x̄2 + ū2 = (a1x+ a2u)2 + (a3x+ a4u)2 = x2 + u2. (1.7)

For the above equation to hold we must have

a21 + a23 = 1, a22 + a24 = 1, a1a2 + a3a4 = 0. (1.8)

We have three conditions imposed on four parameters, leaving one free parameter. Thus,

we have a one-parameter group. This group of transformations is called orthogonal group

and is denoted by O(2). Its elements are rotations and combinations of rotations and

reflections. This group is abelian as the angle of resultant of two transformations is the

sum of the angles of the individual transformations. Orthogonal group is isomorphic
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to the group of 2 × 2 orthogonal matrices with the matrix multiplication as the law of

composition. From orthogonality, (detÔ)2 = 1 which implies that detÔ = ±1, where Ô

is an orthogonal matrix. The subset of O(2) for which detÔ = 1 forms a group known

as the special orthogonal group (or unimodular orthogonal group), SO(2). Since detÔ = 1

does not impose an additional condition on the parameters, we have one independent

real parameter. Geometrically, SO(2) can be regarded as a group of rotations about the

z−axis and written as

x̄ = x cos θ − u sin θ,

ū = x sin θ + u cos θ, (0 ≤ θ ≤ 2π), (1.9)

where θ is the angle of rotation about the z−axis.

The important thing here is that O(2) is not a Lie group while its subgroup SO(2) is a

Lie group. For this, consider the orthogonal matrix

1 0

0 −1

 that cannot be connected

to the identity by a continuous transformation. Since a continuous group is, by definition,

always connected to the identity, the orthogonal matrix is not in a continuous group.

The determinant of this matrix is −1 and of the identity is +1. Since the product of

determinants is the determinant of products, all matrices continuously connected to the

identity will have determinant +1 and will thus lie in SO(2). Hence SO(2) forms a Lie

group while O(2) does not. Note that reflections do not form a continuous group of O(2).

Hence there is only one connected component of O(2). Further, we restrict transformations

of the general linear group to those which leave Σn
i=1x

2
i invariant. The n2 parameters are

subjected to n + n(n − 1)/2 conditions, leaving n(n − 1)/2 free parameters. This group,

which is not a Lie group, is denoted by O(n).

If we consider transformations in example (3) to be complex, i.e. take xi as complex

variables and aij as complex coefficients, the number of free (real) parameters is 2n2.
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1.1.2 Infinitesimal transformations

The one-parameter group of transformations (1.2) can be characterized as the motion in

the xu−plane. The image of an arbitrary point (x0, u0) under the one-parameter group

of transformations moves in the xu−plane, when the parameter a varies. In this way, we

get different curves for different initial points. Each curve represents points that can be

transformed into each other under the action of the group. These curves, called orbits of

the groups, are completely characterized by the field of its tangent vectors X. The idea

of orbits can be concisely described by considering infinitesimal transformations defined

below [28].

Definition 1.1.5. Consider the one-parameter Lie group of transformations (1.2). Let

the functions x̄(x, u; a) and ū(x, u; a) satisfy the initial conditions:

x̄ = x, ū = u, at a = 0. (1.10)

We expand (1.2) as a Taylor series in the parameter a in a neighborhood of a = 0. Invoking

(1.10), we arrive at what is called the infinitesimal transformation of the group G

x̄(x, u; a) ≈ x+ aξ(x, u),

ū(x, u; a) ≈ u+ aη(x, u), (1.11)

where the functions ξ(x, u) and η(x, u) are defined by

ξ(x, u) =
∂x̄

∂a
|a=0 , η(x, u) =

∂ū

∂a
|a=0 . (1.12)

Definition 1.1.6. The functions ξ(x, u) and η(x, u) defined by (1.12) are components of

the operator

X = ξ
∂

∂x
+ η

∂

∂u
. (1.13)

The operator X, is called an infinitesimal generator of the transformation (1.2).

Repeated applications of X generate a finite transformation. Although finite trans-

formations are complicated and nonlinear, their infinitesimal generators are always linear
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operators. So instead of considering a group as a whole we will consider an infinitesimal

transformation around the identity.

Geometrically, integral curves of vector fields are group orbits i.e., we obtain the finite

transformation (1.2) by integrating

∂x̄

∂a
= ξ(x̄, ū),

∂ū

∂a
= η(x̄, ū), (1.14)

with initial conditions (1.10). It is to be mentioned here that an infinitesimal generator

uniquely determines the group orbits but orbits give the generator only up to a constant

factor.

Examples

(1) Consider the following group

x̄ = ax,

ū =
1

a
u. (1.15)

The identity transformation has a = 1. The infinitesimal transformation is given by

x̄ ≈ (1 + a)x = x+ ax,

ū ≈ (1− a)u = u− au.

From this we find

∂x̄

∂a
|a=1= x ,

∂ū

∂a
|a=1= −u ,

so that the corresponding infinitesimal generator of the given group is

X = x
∂

∂x
− u ∂

∂u
. (1.16)

(2) Take the example of the rotation group (1.9). Here the identity transformation

has θ = 0. We have the corresponding infinitesimal transformations

x̄ ≈ x− θu,

ū ≈ u+ θx,



1. Introduction 15

so that

∂x̄

∂θ
|θ=0= −u ,

∂ū

∂θ
|θ=0= x

and the corresponding infinitesimal generator is

X = −u ∂
∂x

+ x
∂

∂u
. (1.17)

Infinitesimal transformations of multi-parameter Lie groups

Transformations (1.2) can depend on more than one parameter (see e.g. [68]) as we have

seen in previous examples. In this section we define multi-parameter Lie groups of trans-

formations and their infinitesimal generators.

Definition 1.1.7. The transformations

x̄ = x̄(x, u; ar), ū = ū(x, u; ar) where r = 1, 2, . . . , N, (1.18)

form an N−parameter Lie group of transformations if:

(i) all ar are independent of each other;

(ii) transformations (1.18) contain the identity and are invertible;

(iii) the law of composition holds; and

(iv) the law of association holds.

The N−parameter Lie group of transformations is denoted by GN .

Definition 1.1.8. We can associate an infinitesimal generator Xr to each parameter ar

by

Xr = ξr
∂

∂x
+ ηr

∂

∂u
, (1.19)

with

ξr(x, u) =
∂x̄

∂ar
, ηr(x, u) =

∂ū

∂ar
,
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with all parameters as = 0, s = 1, 2, . . . , N.

Each parameter of an N−parameter Lie group of transformations leads to an infinites-

imal generator. So there are N infinitesimal generators of an N−parameter Lie group of

transformations.

Examples

(1) Consider the example of a group

x̄ = a1x+ a2.

The identity transformation has parameters a1 = 1 and a2 = 0. The infinitesimal trans-

formations are

x̄ ≈ (1 + a1)x+ a2,

with the infinitesimal generators

X1 = x
∂

∂x
, X2 =

∂

∂x
.

(2) Consider the following 3−parameter Lie group of transformations

x̄ = x cos a1 − u sin a1 + a2,

ū = x sin a1 + u cos a1 + a3. (1.20)

The infinitesimal generators of the above group of transformations are

X1 = −u ∂
∂x

+ x
∂

∂u
, (1.21)

X2 =
∂

∂x
, (1.22)

X3 =
∂

∂u
, (1.23)

where (1.21) corresponds to the rotation in the xu−plane, while (1.22) and (1.23) are

translations along the x and u axes, respectively. This group is called the Euclidean group

or group of rigid motions in R2.
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1.1.3 Lie algebras

An N−parameter Lie group of transformations is determined by N infinitesimal genera-

tors Xr. These infinitesimal generators define an N−dimensional linear vector space. This

linear vector space has an additional structure, called the commutators which is defined

below [68].

Consider an N−parameter Lie groups of transformations (1.18) with infinitesimal gen-

erators (1.19).

Definition 1.1.9. The commutator of two generators Xr and Xs is defined by

[Xr,Xs] = XrXs −XsXr = (Xrξs −Xsξr)
∂

∂x
+ . . . . (1.24)

From the above definition it follows that

[Xr,Xs] = −[Xs,Xr]. (1.25)

Also the commutators (1.24) are bilinear, i.e.

[c1Xr + c2Xs,Xt] = c1[Xr,Xt] + c2[Xs,Xt], (1.26)

[Xt, c1Xr + c2Xs] = c1[Xt,Xr] + c2[Xt,Xs]. (1.27)

Definition 1.1.10. The Jacobi identity for the commutators (1.24), defined by

[Xr , [Xs ,Xt ]] + [Xs , [Xt ,Xr ]] + [Xt , [Xr ,Xs ]] = 0, (1.28)

always holds.

Theorem 1.1.11. The commutator of any two infinitesimal generators of an N−parameter

Lie group of transformations is again an infinitesimal generator of the same Lie group of

transformations. More generally we can write it using the Einstein summation convention

as

[Xr,Xs] = Ct
rsXt, with r, s, t = 1, 2, . . . , n, (1.29)

where Ct
rs, defined by (1.29), are called structure constants.
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Structure constants possess the following properties:

(i) Structure constants are antisymmetric in the lower indices, i.e.

Ct
rs = −Ct

sr.

(ii) Because of the Jacobi identity (1.28), structure constants satisfy Lie identity

Ct
rsC

n
oq + Ct

sqC
n
or + Ct

qrC
n
os = 0.

Definition 1.1.12. A Lie algebra is a vector space, L of generators (1.19) which are closed

with respect to the commutator relations satisfying (1.25), (1.26), (1.27) and (1.28).

A Lie algebra is denoted by the same letter L. The dimension of a Lie algebra is the

dimension of the vector space L. An N−dimensional Lie algebra is denoted by the symbol

LN . If we are given N linearly independent operators (1.19), their linear span is a Lie

algebra LN provided the relation (1.29) holds. It is convenient to use the relations (1.29)

in the form of a table of commutators of the basis (1.19).

Example

Similitude group in R2 is a four-parameter Lie group of transformations that consists of

uniform scaling and rigid motions in R2:

x̄ = ea4(x cos a1 − u sin a1) + a2,

ū = ea4(x sin a1 + u cos a1) + a3. (1.30)

The infinitesimal generators of the given group are

X1 = −u ∂
∂x

+ x
∂

∂u
, X2 =

∂

∂x
, X3 =

∂

∂u
, X4 = x

∂

∂x
+ u

∂

∂u
. (1.31)

The commutator table of the above infinitesimal generators is

X1 X2 X3 X4

X1 0 −X3 X2 0

X2 X3 0 0 X2

X3 −X2 0 0 X3

X4 0 −X2 −X3 0
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The above table is antisymmetric with its diagonal elements all zero. The structure con-

stants are easily read off from the table. This shows that the algebra of these generators is

closed with respect to the commutation satisfying the relations (1.25), (1.26), (1.27) and

(1.28). Hence, the generators (1.31) form a basis of a Lie algebra L4.

1.2 Lie symmetry analysis of ODEs

An nth order ODE

F (x, u;u′, u′′, . . . , u(n)) = 0, (1.32)

can be viewed geometrically as a surface in an (n+2)−dimensional space whose coordinates

are given by the independent variable, the dependent variable and their derivatives up to

the order n. So the solutions of ODEs are particular curves on this surface. From this point

of view, a symmetry transformation represents the motion that moves solution curves into

solution curves. More precisely, a symmetry is a one-parameter group of transformations

that acts on an (n+ 2)−dimensional space and maps solutions to solutions.

In this section, we show how to find infinitesimal symmetry generators admitted by an

nth order scalar and system of ODEs. For this purpose, we first have to prolong or extend

generators up to the nth order.

1.2.1 Extension of transformations and their generators

To apply a point transformation (1.1) or (1.2) to (1.32) we have to transform derivatives

u(n) i.e., to extend the point transformation to derivatives (see e.g. [68]). This is done by

defining

ū′ =
dū(x, u; a)

dx̄(x, u; a)
=
u′(∂ū/∂u) + (∂ū/∂x)

u′(∂x̄/∂u) + (∂x̄/∂x)
= ū′(x, u, u′; a),

ū′′ =
dū′(x, u, u′; a)

dx̄(x, u; a)
= ū′′(x, u, u′, u′′; a),

...
...

ū(n) =
dū(n−1)(x, u, u′, . . . , u(n−1); a)

dx̄(x, u; a)
= ū(n)(x, u, u′, . . . , u(n); a), (1.33)
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which are the extended or prolonged transformations. To obtain the extension of an

infinitesimal generator X, we write

x̄ = x+ aξ(x, u) + · · · = x+ aXx+ · · · ,

ū = u+ aη(x, u) + · · · = u+ aXu+ · · · ,

ū′ = u′ + aη(1)(x, u, u′) + · · · = u′ + aXu′ + · · · ,
...

ū(n) = u(n) + aη(n)(x, u, u′, · · · , u(n)) + · · · = u(n) + aXu(n) + · · · , (1.34)

where η(1), . . . , η(n) are defined by

η(1) =
∂ū′

∂a
, . . . , η(n) =

∂ū(n)

∂a
, at a = 0. (1.35)

The expressions (1.33), on account of (1.34), take the form

ū′ = u′ + aη(1) + . . . =
dū

dx̄
=
du+ adη + . . .

dx+ adξ + . . .

=
u′ + a(dη/dx) + . . .

1 + a(dξ/dx) + . . .
= u′ + a(

dη

dx
− u′dξ

x
) + . . . ,

...

ū(n) = u(n) + aη(n) + . . . =
dū(n−1)

dx̄

= u(n) + a(
dη(n−1)

dx
− u(n) dξ

dx
) + . . . ,

which on comparison with (1.34) yields

η(n) =
dη(n−1)

dx
− u(n) dξ

dx
, n ≥ 2 (1.36)

and which in turn, determines the components of the extended generator X of order n.

From (1.36) it is clear that the η(n) is not the nth derivative of η.

We can summarize the above result as follows.

Definition 1.2.1. If

X = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
,
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is an infinitesimal generator of a point transformation, then its extension or prolongation

up to the nth order, denoted by X(n), is given by

X(n) = ξ
∂

∂x
+ η

∂

∂u
+ η(1)

∂

∂u′
+ . . .+ η(n)

∂

∂u(n)
, (1.37)

where η(n) are defined by (1.36).

By using the implicit function theorem, the nth order ODE (1.32) can be locally written

as

u(n)(x) = f(x, u;u′, u′′, . . . , u(n−1)). (1.38)

Definition 1.2.2. The nth order ODE (1.38) admits the one-parameter group of trans-

formations (1.2) if and only if the nth extension of its generator leaves the solution curve

invariant.

In other words we say that the form of the ODE (1.38) remains invariant under the

point transformation (1.1) or (1.2). This implies

ū(n)(x̄) = f(x̄, ū; ū′, . . . , ū(n−1)). (1.39)

If the nth order ODE (1.38) admits the one-parameter group of transformations (1.2)

then an infinitesimal generator of the group is called an infinitesimal symmetry generator

or symmetry of the ODE (1.38).

Theorem 1.2.3. An nth order ODE (1.38) admits an extended infinitesimal generator

(1.37) of order n if and only if

X(n)[u(n)(x)− f(x, u;u′, . . . , u(n−1))] = 0,

or

η(n)(x, u;u′, . . . , u(n)) = X(n−1)f(x, u;u′, . . . , u(n−1)), (1.40)

with

u(n)(x)− f(x, u;u′, . . . , u(n−1)) = 0. (1.41)

Definition 1.2.4. Equation (1.40) with η(n) given by (1.36) are called the symmetry

conditions for the nth order ODE (1.38).
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Expressions for η(1), η(2), η(3) and η(4)

The third chapter of this thesis contains linearization of scalar fourth order ODEs. So we

present here the derivation of the expressions for η(i) up to i = 4.

Equation (1.36) with n = 1 is

η(1) =
dη(x, u)

dx
− u′dξ(x, u)

dx
, (1.42)

where

d

dx
=

∂

∂x
+ u′

∂

∂u
+ u′′

∂

∂u′
+ . . . .

Applying the operator d
dx

in (1.42), we obtain

η(1) = η,x + u′(η,u − ξ,x)− u′2ξ,u. (1.43)

Proceeding in the same way, we have

η(2) = η,xx + u′(2η,xu − ξ,xx) + u′2(η,uu − 2ξ,xu)− u′3ξ,uu + u′′(η,u − 2ξ,x − 3u′ξ,u), (1.44)

η(3) = η,xxx + (3η,xxu − ξ,xxx)u′ + 3(η,xuu − ξ,xxu)u′2 + (η,uuu − 3ξ,xuu)u
′3 − ξ,uuuu′4

+3(η,xu − ξ,xx)u′′ + 3(η,uu − 3ξ,xu)u
′u′′ − 6ξ,uuu

′2u′′ − 3ξ,uu
′′2

+(η,u − 3ξ,x)u
′′′ − 4ξ,uu

′u′′′, (1.45)

η(4) = η,xxxx + u′(4η,xxxu − ξ,xxxx) + u′2(6η,xxuu − 4)ξ,xxxu + u′3(4η,xuuu − 6ξ,xxuu)

+u′4(η,uuuu − 4ξ,xuuu) + u′5(−ξ,uuuu) + u′′(6η,xxu − 4ξ,xxx + 12u′η,xuu

−18u′ξ,xxu + 6u′2η,uuu − 24u′2ξ,xuu − 10u′3ξ,uuu) + u′′2(3η,uu − 12ξ,xu

−15u′ξ,uu) + u′′′(4η,xu − 6ξ,xx + 4u′η,uu − 16u′ξ,xu − 10u′2ξ,uu

−10u′′ξ,u) + u(iv)(η,u − 4ξ,x − 5u′ξ,u). (1.46)

Example

Consider the rotation group (1.9) with the infinitesimal generator given by (1.17). Sub-

stituting the values of ξ and η into the expressions (1.43) and (1.44) yields

η(1) = 1 + u′2, η(2) = 3u′u′′,
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so the prolonged generator for the rotation group (1.9) is

X(2) = −u ∂
∂x

+ x
∂

∂u
+ (1 + u′2)

∂

∂u′
+ 3u′u′′

∂

∂u′′
.

1.2.2 Lie point symmetries of scalar ODEs

Here, we will show how to find the Lie point symmetry generators of scalar ODEs. For

the first order ODE

u′ = f(x, u),

the symmetry condition (1.40) is

η(1) = Xf = (ξ
∂

∂x
+ η

∂

∂u
)f = ξf,x + ηf,u ,

or

ξf,x + ξ,xf + ξ,uf
2 = η,x + η,uf − ηf,u,

where the function f(x, u) is always given. The above PDE always has a solution for

the functions ξ(x, u) and η(x, u). So a first order ODE always has an infinite number of

symmetries.

For the second order ODE

u′′ = f(x, u;u′), (1.47)

the symmetry condition (1.40) reads

η(2) = X(1)f = (ξ
∂

∂x
+ η

∂

∂u
+ η′

∂

∂u′
)f.

Invoking the expressions (1.43) and (1.44) for η(1) and η(2), we obtain

f(η,u − 2ξ,x − 3u′ξ,u)− f,xξ − f,uη + fu′[η,x + u′(η,u − ξ,x)− u′2ξ,u] + η,xx

+u′(2η,xu − ξ,xx) + u′2(η,uu − 2ξ,xu)− u′3ξ,uu = 0.

From the above DE we have to determine ξ and η. Since ξ and η do not depend on

u′, so the above DE splits into several equations, called determining PDEs, for ξ and η.
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These determining PDEs are then solved for ξ and η to obtain the point symmetries of the

equation (1.47). Similarly by following this procedure we can find the point symmetries

of any ODE of order n > 2 after calculating η(i), i = 1, 2, . . . n. Although the procedure

becomes lengthy for higher order ODEs but the determining PDEs for ξ and η are always

linear.

For linear ODEs of order n we have the following result [68].

Theorem 1.2.5. An nth order linear (systems of) ODE(s) admits at least an n−parameter

Lie group of point symmetries.

1.2.3 Lie point symmetry conditions for systems of ODEs

Suppose we have a system of k ODEs of order n:

u(n) = f(x,u; u′, . . . ,u(n−1)),

where f = (f1, f2, . . . , fk), u = (u1, u2, . . . , uk), u′ = (u′1, u
′
2, . . . , u

′
k) and so on. To find

Lie point symmetry conditions for the above system of ODEs we first define the extended

transformation and extended infinitesimal transformations for k dependent variables [12].

Consider a one-parameter Lie group of point transformations with u = (u1, u2, . . . , uk)

as dependent variables and x as independent variable:

x̄ = x̄(x,u; a),

ū = ū(x,u; a).

The extended transformations of the above transformations up to the order n are given

by

ū′ =
dū(x,u; a)

dx̄(x,u; a)
= ū′(x,u,u′; a),

ū′′ =
dū′(x,u,u′; a)

dx̄(x,u; a)
= ū′′(x,u,u′,u′′; a),

...
...

ū(n) =
dū(n−1)(x,u,u′, . . . ,u(n−1); a)

dx̄(x,u; a)
= ū(n)(x,u,u′, . . . ,u(n); a), (1.48)
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where

d

dx
=

∂

∂x
+ u′i

∂

∂ui
+ u′′i

∂

∂u′i
+ . . . , i = 1, 2, . . . , k.

The infinitesimal transformations are

x̄ = x+ aξ(x,u) +O(a2),

ū = u + aη(x,u) +O(a2),

ū′ = u′ + aη(1)(x,u,u′) +O(a2),

...

ū(n) = u(n) + aη(n)(x,u,u′, . . . ,u(n)) +O(a2),

with the extended infinitesimals, for n ≥ 2, given by

η
(n)
i =

dη
(n−1)
i

dx
− u(n)i

dξ

x
, i = 1, 2, . . . , k (1.49)

and

η = (η1, η2, . . . , ηk), η
(1) = (η

(1)
1 , η

(1)
2 , . . . , η

(1)
k ), etc.

Here the extended infinitesimal generator is

X(n) = ξ
∂

∂x
+ ηi

∂

∂ui
+ η

(1)
i

∂

∂u′i
+ . . .+ η

(n)
i

∂

∂u
(n)
i

, (1.50)

where the summation varies from i = 1 to k.

Expressions for η
(1)
i , η

(2)
i and η

(3)
i

Since the present work mainly revolves around the linearization and the group classification

of systems of two third order ODEs, so here we derive expressions for η
(1)
i , η

(2)
i and η

(3)
i ,

with y and z as dependent variables.

Equation (1.49) for the dependent variable y with n = 1 is

η
(1)
1 =

dη(x, y, z)

dx
− y′dξ(x, y, z)

dx
. (1.51)
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Applying the operator

d

dx
=

∂

∂x
+ y′

∂

∂y
+ z′

∂

∂z
+ y′′

∂

∂y′
+ z′′

∂

∂z′
+ y′′′

∂

∂y′′
+ z′′′

∂

∂z′′
,

we obtain

η
(1)
1 = η,x + y′(η1,y − ξ,x) + z′(η1,z − y′ξ,z)− y′2ξ,y. (1.52)

Proceeding in the same way, we have

η
(2)
1 = η1,xx + y′(2η1,xy − ξxx) + 2z′η1,xz + y′′(η1,y − 2ξ,x − 3y′ξ,y − 2z′ξ,z)

+z′′(η1,z − y′ξ,z) + y′2(η1,yy − 2ξ,xy − 2z′ξ,yz) + 2y′z′(η1,yz − ξ,xz)

+z′2(η1,zz − y′ξ,zz)− y′3ξ,yy , (1.53)

η
(3)
1 = η1,xxx + y′(3η1,xxy − ξ,xxx) + z′(3η1,xxz) + y′2(3η1,xyy − 3ξ,xxy)

+y′z′(6η1,xyz − 3ξ,xxz) + z′2(3η1,xzz) + y′3(η1,yyy − 3ξ,xyy)

+y′2z′(3η1,yyz − 6ξ,xyz) + y′z′2(3η1,yzz − 3ξ,xzz) + z′3(η1,zzz)

+y′4(−ξ,yyy) + y′3z′(−3ξ,yyz) + y′2z′2(−3ξ,yzz) + y′z′3(−ξ,zzz)

+y′′(3η1,xy − 3ξ,xx) + z′′(3η1,xz) + y′y′′(3η1,yy − 9ξ,xy)

+z′y′′(3η1,yz − 6ξ,xz) + y′z′′(3η1,yz − 3ξ,xz) + z′z′′(3η1,zz)

+y′2y′′(−6ξ,yy) + y′z′y′′(−9ξ,yz) + z′2y′′(−3ξ,zz) + y′2z′′(−3ξ,yz)

+y′z′z′′(−3ξ,zz) + y′′2(−3ξ,y) + y′′z′′(−3ξ,z) + y′′′(η1,y − 3ξ,x)

+z′′′(η1,z) + y′y′′′(−4ξ,y) + z′y′′′(−3ξ,z) + y′z′′′(−ξ,z) . (1.54)

Similarly for the dependent variable z, we have the expressions:

η
(1)
2 = η2,x + z′(η2,z − ξ,x) + y′(η2,y − z′ξ,y)− z′2ξ,z , (1.55)

η
(2)
2 = η2,xx + z′(2η1,xz − ξ,xx) + 2y′η2,xy + z′′(η2,z − 2ξ,x − 2y′ξ,y − 3z′ξ,z)

+y′′(η2,y − z′ξ,y) + z′2(η2,zz − 2ξ,xz − 2z′ξ,yz) + 2y′z′(η2,yz − ξ,xy)

+y′2(η2,zz − z′ξ,yy)− z′3ξ,zz (1.56)
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and

η
(3)
2 = η2,xxx + y′(3η2,xxy) + z′(3η2,xxz − ξ,xxx) + y′2(3η2,xyy)

+y′z′(6η2,xyz − 3ξ,xxy) + z′2(3η2,xzz − 3ξ2,xxz) + y′3(η2,yyy)

+y′2z′(3η2,yyz − 3ξ,xyy) + y′z′2(3η2,yzz − 6ξ,xyz)

+z′3(η2,zzz − 3ξ,xzz) + y′3z′(−ξ,yyy) + y′2z′2(−3ξ,yyz)

+y′z′3(−3ξ,yzz) + z′4(−ξ,zzz) + y′′(3η2,xy)

+z′′(3η2,xz − 3ξ,xx) + y′y′′(3η2,yy) + z′y′′(3η2,yz − 3ξ,xy)

+y′z′′(3η2,yz − 6ξ,xy) + z′z′′(3η2,zz − 9ξ,xz) + y′z′y′′(−3ξ,yy)

+z′2y′′(−3ξ,yz) + y′2z′′(−3ξ,yy) + y′z′z′′(−9ξ,yz)

+z′2z′′(−6ξ,zz) + y′′z′′(−3ξ,y) + z′′2(−3ξ,z) + y′′′(η2,y)

+z′′′(η2,z − 3ξ,x) + z′y′′′(−ξ,y) + y′z′′′(−3ξ,y) + z′z′′′(−4ξ,z) . (1.57)

To derive the symmetry condition for a system of two third order ODEs

y′′′ = f1(x, y, z; y′, z′, y′′, z′′),

z′′′ = f2(x, y, z; y′, z′, y′′, z′′),

we suppose that the above system admits the symmetry generator

X(3) = ξ
∂

∂x
+ η1

∂

∂y
+ η2

∂

∂z
+ η

(1)
1

∂

∂y′
+ η

(1)
2

∂

∂z′
+ η

(2)
1

∂

∂y′′
+ η

(2)
2

∂

∂z′′

+η
(3)
1

∂

∂y′′′
+ η

(3)
2

∂

∂z′′′
.

The symmetry conditions read as

X(3)[y′′′ − f1(x, y, z; y′, z′, y′′, z′′)] = 0,

X(3)[z′′′ − f2(x, y, z; y′, z′, y′′, z′′)] = 0,

or

η
(3)
1 = X(2)f1(x, y, z; y′, z′, y′′, z′′),

η
(3)
2 = X(2)f2(x, y, z; y′, z′, y′′, z′′).
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Applying the operator X(2) on the above expressions, we get

η
(3)
1 = ξf1,x + η1f1,y + η2f1,z + η

(1)
1 f1,y′ + η

(1)
2 f1,z′ + η

(2)
1 f1,y′′ + η

(2)
2 f1,z′′ ,

η
(3)
2 = ξf2,x + η1f2,y + η2f2,z + η

(1)
1 f2,y′ + η

(1)
2 f2,z′ + η

(2)
1 f2,y′′ + η

(2)
2 f2,z′′ .

These are the symmetry conditions for the system of two third order ODEs with η
(1)
i , η

(2)
i

and η
(3)
i , (i = 1, 2) given by the expressions (1.52)−(1.57).

1.2.4 Contact and Lie-Bäcklund transformations and their in-

finitesimal generators

We will be using a generalization of contact and higher order symmetry generators, we first

define the contact and Lie-Bäcklund transformations and their infinitesimal generators.

Some basic results related to these transformations [12] are also reviewed.

Definition 1.2.6. A transformation

x̄ = ϕ(x, u, p), ū = ψ1(x, u, p), p̄ = ψ2(x, u, p), (1.58)

with p = u′ is called a contact transformation if it preserves the contact condition du = pdx

i.e.,

dū = p̄dx̄. (1.59)

The contact condition (1.59) can also be written as

ψ2 =
Dxψ1(x, u, p)

Dxϕ(x, u, p)
.

From the above equation we find that the functions ϕ, ψ1 and ψ2 are related by

ψ1,p = ψ2ϕ,p, ψ1,x + pψ1,u = (ϕ,x + pϕ,u)ψ2. (1.60)

We can write the above result in the form of the following theorem.

Theorem 1.2.7. Equations (1.58) define a contact transformation if and only if {ϕ, ψ1, ψ2}

satisfies the relations (1.60).
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Example

The contact transformation

t = u′, s = −u+ xu′, s′ = x, (1.61)

is known as the Legendre transformation [28]. Indeed, this transformation maps the DE

of hyperbolas

u′′′ − 3u′′2

2u′
= 0,

to the linear equation

2ts′′′ + 3s′′ = 0.

Definition 1.2.8. A one-parameter Lie group of contact transformations is defined by

x̄ = x+ aξ(x, u, u′) +O(a2), (1.62)

ū = x+ aη(x, u, u′) +O(a2), (1.63)

p̄ = x+ aζ(x, u, u′) +O(a2), (1.64)

with the infinitesimal generator

X = ξ(x, u, u′)
∂

∂x
+ η(x, u, u′)

∂

∂u
+ ζ(x, u, u′)

∂

∂u′
,

provided the contact condition is preserved.

Theorem 1.2.9. Equations (1.62)−(1.64) define a one-parameter Lie group of contact

transformations if and only if ξ and η satisfy

∂η

∂u′
=

∂ξ

∂u′
u′.

Let the characteristic function W = W (x, u, u′) be defined by

W = ξu′ − η,
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then the infinitesimal generator in terms of the characteristic function is given by

ξ =
∂W

∂u′
,

η = u′
∂W

∂u′
−W,

ζ = −∂W
∂x
− u′∂W

∂u
.

Definition 1.2.10. A transformation of the form

x̄ = ϕ(x, u, u′, u′′, . . . , u(m)), (1.65)

ū = ψ(x, u, u′, u′′, . . . , u(m)), (1.66)

ūi = ψi(x, u, u
′, u′′, . . . , u(m)), i = 1, 2, . . .m, (1.67)

is called a Lie-B äcklund transformation of order m if it preserves the contact conditions

up to the order m:

ui =
dui−1
dt

, i = 1, 2, . . .m. (1.68)

Lie-Bäcklund transformations depend on independent and dependent variables and deriva-

tives of the dependent variable up to some finite order. The following theorem shows that

the contact transformations are special case of Lie-Bäcklund transformations.

Theorem 1.2.11. Any Lie-Bäcklund transformation with an infinitesimal generator of

the form

X = W (x, u, u(1))
∂

∂u
,

is equivalent to a contact transformation with the infinitesimal generator

X = ξ(x, u, u(1))
∂

∂x
+ η(x, u, u(1))

∂

∂u
+ ζ(x, u, u(1))

∂

∂u′
,

where u′ = u(1).



Chapter 2

Linearization of ODEs

The study of nonlinear DEs was initially focussed on approximating them by linear DEs

[58], but then the main aspects of the nonlinear DEs that are crucial for the phenomenon

being modelled could be lost. Using approximations one was not clear how the essence of

nonlinearity was lost. This method works only when the iteration converges. One faces the

same problem with the numerical methods for solutions. To find the numerical solution

of a nonlinear equation one first needs to know whether its solution exists or not. Proof

of existence and convergence is furnished by functional analytic methods when they can

be applied. Further, the rate of convergence is very important. If we have an adequate

accuracy only after a million terms, the fact that it converges is of little help in obtaining

the solution. So one needs to find the exact solution of nonlinear DEs. In the latter part of

the 19th century Lie developed the method of linearization to solve nonlinear DEs exactly.

Linearization is an invertible mapping that converts a nonlinear DE to a linear one by the

change of variables. Linearization criteria comprise the most general forms of DEs that

could be the candidates of linearization and the sufficient conditions that ensure existence

of invertible transformations from nonlinear to linear equations.

Suppose we have an nth order nonlinear ODE and an invertible transformation that

converts it into a linear ODE of the same order. As every linear nth order ODE has n

linearly independent solutions, by applying the inverse transformation to the solutions

31
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of the linear ODE, we obtain the n exact solutions of the given nonlinear ODE. The

linearization scheme can be best displayed by Figure 2.1.

Figure 2.1: The linearization scheme. By setting all arbitrary constants but one in the

linear superposition as zero, we can get the linearly independent solutions of the nonlinear

ODE.

This chapter briefly reviews results on the linearization of scalar and systems of ODEs.

We first review the original work of Lie and then more recent work on linearization is

presented. The results on linearization based on geometry and complex analysis are given.

New forms of linearization called by the authors “Meleshko linearization” and “conditional

linearization”, are reviewed.

2.1 Linearization of scalar ODEs

This section is devoted to the linearization of scalar ODEs by point and contact trans-

formations. We give Lie’s criteria for the scalar second order ODEs linearizable via point

transformations. The necessary forms and the sufficient conditions for the linearization of

scalar third and fourth order ODEs by point transformations are presented. Further, the

most general forms of third and fourth order ODEs linearizable via contact transforma-



2.Linearization of ODEs 33

tions are provided, but first we give some well known results on the equivalence of scalar

ODEs [46].

Definition 2.1.1. Two equations are said to be equivalent if there exists an invertible

transformation which transforms one equation into the other. The problem of finding all

equations which are equivalent to a given equation (called the target equation) is called

the equivalence problem.

• First order ODEs. All first order scalar ODEs are equivalent to one another. In

particular, an equation of the form u′ = f(x, u) can always be transformed to the

simplest equation s′ = 0, by a suitable point transformation

t = ϕ(x, u), s = ψ(x, u). (2.1)

• Linear second order ODEs. As proved by Lie [38], any linear, scalar, second order

ODE can be transformed to the simplest equation s′′ = 0, by the transformation

(2.1). Hence all linearizable scalar second order ODEs belong to one equivalence

class.

• Linear ODEs of order n ≥ 3. A linear scalar ODE of order n ≥ 3 need not be

transformable into the simplest form. We now present a theorem due to Laguerre

[32,33] for linear scalar nth order ODEs.

Theorem 2.1.2. Any linear homogeneous nth order scalar ODE

u(n) +
n−1∑
i=0

k̄i(x)u(i) = 0 , n ≥ 3, (2.2)

can be transformed by the point transformation (2.1) to the equation

s(n) +
n−3∑
i=0

ki(t)s
(i) = 0 . (2.3)

Equation (2.3) is called the Laguerre canonical form of the ODE (2.2).
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2.1.1 Linearization of scalar second order ODEs via point trans-

formations

The linearization problem for DEs was first solved by Lie [38]. He found the most general

linearizable form for scalar second order ODEs via point transformations and showed that

any second order scalar ODE is linearizable if it is at most cubic in the first derivative

with the coefficients of the nonlinear ODE satisfying four conditions. These conditions,

(2.11), involve up to the second order partial derivatives of the coefficients and first order

derivatives of two auxiliary functions. Tressé [70, 71] eliminated the auxiliary functions

from these four conditions and reduced them to two (namely (2.12)). These conditions

are in the form of DEs that need to be checked but not to be solved. Here, we give Lie’s

linearization criteria in detail.

To obtain the Lie linearizable form for scalar second order ODEs (see e.g. [28]), we

assume that the ODE

u′′ = f(x, u, u′), (2.4)

comes from the simplest linear equation

s′′ = 0, (2.5)

by the point transformation (2.1). The derivatives s′ and s′′ are transformed as follows:

s′ =
Dxψ

Dxϕ
= P (x, u, u′) , s′′ =

DxP

Dxϕ
,

where Dx is the total derivative operator with respect to x and is given by

Dx =
∂

∂x
+ u′

∂

∂u
+ u′′

∂

∂u′
.

Equation (2.5), on using the above transformation, becomes

Dx(ϕ)D2
x(ψ)−Dx(ψ)D2

x(ϕ) = 0, (2.6)

where

Dxϕ = ϕ,x + u′ϕ,u, (2.7)

D2
xϕ = ϕ,xx + 2u′ϕ,xu + u′2ϕ,uu + u′′ϕ,u,
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and similar expressions for Dxψ and D2
xψ. After inserting the above expressions, equation

(2.6) takes the form

u′′ +
1

∆
(ϕ,uψ,uu − ψ,uϕ,uu)u′3 +

1

∆
(ϕ,xψ,uu + 2ϕ,uψ,xu − ψ,xϕ,uu − 2ψ,uϕ,xu)u

′2

+
1

∆
(ϕ,uψ,xx + 2ϕ,xψ,xu − ψ,uϕ,xx − 2ψ,xϕ,xu)u

′ +
1

∆
(ϕ,xψ,xx − ψ,xϕ,xx) = 0, (2.8)

where ∆ = ϕ,xψ,u − ψ,xϕ,u 6= 0, is the Jacobian of the transformation (2.1).

Writing

a = ∆−1(ϕ,uψ,uu − ψ,uϕ,uu),

b = ∆−1(ϕ,xψ,uu + 2ϕ,uψ,xu − ψ,xϕ,uu − 2ψ,uϕ,xu),

c = ∆−1(ϕ,uψ,xx + 2ϕ,xψ,xu − ψ,uϕ,xx − 2ψ,xϕ,xu),

d = ∆−1(ϕ,xψ,xx − ψ,xϕ,xx),

(2.9)

equation (2.8) takes the form

u′′ + a(x, u)u′3 + b(x, u)u′2 + c(x, u)u′ + d(x, u) = 0. (2.10)

Hence, we have the following theorem.

Theorem 2.1.3. A scalar second order ODE (2.4) is linearizable by the point transfor-

mation (2.1) if it is at most cubic in u′ i.e., has the form (2.10).

Equation (2.10) has four arbitrary functions viz; a, b, c, and d while (2.8) involves two

functions ϕ(x, u) and ψ(x, u). So coefficients of the equation (2.10) linearizable via point

transformations must be restricted by two relations. These relations (namely (2.12)) are

given in the following theorem.

Theorem 2.1.4. The following statements are equivalent:

(i) a scalar second order ODE (2.4) is linearizable by the point transformation (2.1);

(ii) equation (2.4) has an 8-dimensional Lie algebra;
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(iii) equation (2.4) has the form (2.10) with the coefficients a, b, c, d satisfying the

following integrability conditions:

F1,x = F 2
1 − dF2 − cF1 + d,u + bd,

F1,u = −F1F2 + ad− 1

3
b,x +

2

3
c,u,

F2,x = F1F2 − ad− cF1 −
1

3
c,u +

2

3
b,x,

F2,u = F 2
2 + bF2 + aF1 + a,x − ac, (2.11)

where F1 and F2 are auxiliary functions;

(iv) the coefficients a, b, c, d satisfy the following set of constraints:

3a,xx − 2b,xu + c,uu − 3a,xc+ 3a,ud+ 2b,xb− 3c,xa− c,ub+ 6d,ua = 0,

b,xx − 2c,xu + 3d,uu − 6a,xd+ b,xc+ 3b,ud− 2c,ua− 3d,xa+ 3d,ub = 0.
(2.12)

Example

Consider the following ODE

u′′ + u′2 − 1

x
u′ = 0. (2.13)

Comparing (2.13) with (2.10) gives b = 1, c = − 1
x
, a = d = 0, which satisfy constraints

(2.12). Hence (2.13) is linearizable. In fact the point transformation t = eu, s = x2

transforms the ODE (2.13) into s′′ = 0, whose solution is s = c1t+ c2, where c1 and c2 are

arbitrary constants. By inverting the transformation we get the solution of the nonlinear

ODE (2.13) in the explicit form: u = ln( 1
c1
x2 − c2

c1
).

2.1.2 Linearization of higher order scalar ODEs via point trans-

formations

IM [30] obtained the linearization criteria for scalar third order ODEs by following Lie’s

procedure of point transformations. They also obtained the linearizing transformations

for these ODEs. Linearization of fourth order scalar ODEs via point transformations was

studied by IMS [31]. They obtained the necessary form for linearizable scalar fourth order

ODEs and also generalized the form for higher order scalar ODEs.
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Linearization criteria for a scalar third order ODE

For obtaining the necessary condition for a third order ODE

u′′′ = f(x, u, u′, u′′), (2.14)

to be linearizable via point transformation (2.1), we assume that (2.14) is obtained from

the linear equation

s′′′(t) + k0(t)s(t) = 0, (2.15)

by the transformation (2.1). Remember that (2.15) is the Laguerre canonical form for

linear scalar third order ODEs. The derivatives are changed as follows:

s′ =
Dxψ

Dxϕ
= P (x, u, u′),

s′′ =
DxP

Dxϕ
= Q(x, u, u′, u′′),

s′′′ =
DxQ

Dxϕ
,

where

Dx =
∂

∂x
+ u′

∂

∂u
+ u′′

∂

∂u′
+ u′′′

∂

∂u′′
,

is the total derivative operative with respect to x. Expanding these derivatives, one has

Dxϕ = ϕ,x + u′ψ,u , Dxψ = ψ,x + u′ψ,u,

so that

s′′′ =
DxQ

Dxϕ
=

∆

(ϕ,x + u′ϕ,u)5
[(ϕ,x + u′ϕ,u)u

′′′ − 3ϕ,u(u
′′)2] + . . . ,

the omitted terms being at most linear in u′′, and

∆ = ϕ,xψ,u − ϕ,uψ,x 6= 0.

It turns out that the transformation (2.1) with ϕ,u = 0 and ϕ,u 6= 0 provides two distinct

types of linearizable equations.
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IM type I. If ϕ,u = 0, then we obtain the first type for linearization given by

u′′′ + (a1u
′ + a0)u

′′ + b3u
′3 + b2u

′2 + b1u
′ + b0 = 0, (2.16)

where

a1 = 3ψ,u
−1ψ,uu, a0 = 3(ϕ,xψ,u)

−1(ϕ,xψ,xu − ψ,uϕ,xx),

b3 = (ψ,u)
−1ψ,uuu, b2 = 3(ϕ,xψ,u)

−1(ϕ,xψ,xuu − ψ,uuϕ,xx),

b1 = (ϕ2
xψ,u)

−1(3ϕ2
,xxψ,u − ϕ,xxxϕ,xψ,u − 6ϕ,xxϕ,xψ,xu + 3ϕ2

,xψ,xxu),

b0 = (ϕ2
,xψ,x)

−1(3ϕ2
,xxψ,x − ϕ,xxxϕ,xψ,x − 3ϕ,xxϕ,xψ,xx + ϕ2

,xψ,xxx + k0ψϕ
5
,x.

IM type II. If ϕ,u 6= 0, set λ(x, u) = ϕ,x/ϕ,u, equations are of the form

u′′′ +
1

u′ + λ
[−3(u′′)2 + (c2u

′2 + c1u
′ + c0)u

′′ + d5u
′5 + d4u

′4

+ d3u
′3 + d2u

′2 + d1u
′ + d0] = 0, (2.17)

where ci = ci(x, u) and dj = dj(x, u).

Thus every linearizable third order ODE belongs either to the type I with linear depen-

dence on the second derivative u′′ or to the type II of equations that are at most quadratic

in the second derivative u′′ with a specific dependence on the first derivative u′. We have

the following theorems [30].

Theorem 2.1.5. Equation (2.16) is linearizable if and only if its coefficients satisfy the

following conditions:

a0,u − a1,x = 0, (3b1 − a02 − 3a0,x),u = 0,

3a1,x + a0a1 − 3b2 = 0, 3a1,u + a1
2 − 9b3 = 0,

(9b1 − 6a0,x − 2a0
2)a1,x + 9(b1,x − a1b0),u + 3b1,ua0 − 27b0,uu = 0. (2.18)

Theorem 2.1.6. Equation (2.17) is linearizable if and only if its coefficients satisfy the

constraints given in Appendix A.1.
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Linearization criteria for a scalar fourth order ODE

The Laguerre canonical form of linear scalar fourth order ODEs is

s(4)(t) + k1(t)s
′(t) + k0(t)s(t) = 0. (2.19)

IMS [31] proved that there are two disjoint forms of scalar fourth order ODEs that are

linearizable to the equation (2.19) by the point transformations (2.1).

IMS type I. If ϕ,u = 0, the first candidate for linearization is

u(4) + (a1u
′ + a0)u

′′′ + b0u
′′2 + (c2u

′2 + c1u
′ + c0)u

′′

+d4u
′4 + d3u

′3 + d2u
′2 + d1u

′ + d0 = 0,

where all the coefficients, being functions of x and u, satisfy ten long, complicated con-

straint equations which are not of our concern here.

IMS type II. If ϕ,u 6= 0, then the second candidate for linearization is

u(4) +
1

u′ + λ
(−10u′′ + f2u

′2 + f1u
′ + f0)u

′′′ +
1

(u′ + λ)2
[15u′′3 + (h2u

′2 + h1u
′

+h0)u
′′2 + (j4u

′4 + j3u
′3 + j2u

′2 + j1u
′ + j0)u

′′ + k7u
′7 + k6u

′6 + k5u
′5

+k4u
′4 + k3u

′3 + k2u
′2 + k1u

′ + k0] = 0,

where λ(x, u) = ϕ,x/ϕ,u. All the coefficients, being functions of x and u, satisfy certain

constraint requirements.

Necessary form of a linearizable ith (i ≥ 4) order scalar ODE

IMS [31] derived two necessary forms of linearizable ith (i ≥ 4) scalar order ODEs.

IMS type I. If ϕ,u = 0, the first type for linearization is

u(i) + u(i−1)[a1u
′ + a0] + ... = 0,

where aj = aj(x, u).

IMS type II. If ϕ,u 6= 0, the second type for linearization is

u(i) + u(i−1)
1

(u′ + λ)
[−u′′ i(i+ 1)

2
+ f2u

′2 + f1u
′ + f0] + ... = 0,

where fj = fj(x, u) and λ(x, u) = ϕ,x/ϕ,u.
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2.1.3 Linearization of scalar ODEs via contact transformations

IM [30] also used contact transformations to solve the linearization problem for scalar

third order ODEs. They proved that any general scalar third order ODE is linearizable

to the equation (2.15) via the contact transformation (1.58) if it is at most cubic in the

second derivative, i.e. of the form

u′′′ + a(x, u, u′)u′′3 + b(x, u, u′)u′′2 + c(x, u, u′)u′′ + d(x, u, u′) = 0. (2.20)

The coefficients in the equation (2.20) have to satisfy certain constraints called sufficient

conditions for the linearization.

Linearization of fourth order scalar ODEs via contact transformations (1.58) was stud-

ied by IMS [69]. They showed that all fourth order ODEs that are linearizable via contact

transformations (1.58) are contained in the class of equations of the form

u(4) +
1

u′′ + µ
[−3(u′′′)2 + (c2u

′′2 + c1u
′′ + c0)u

′′′ + d5u
′′5 + d4u

′′4

+ d3u
′′3 + d2u

′′2 + d1u
′′ + d0] = 0, (2.21)

where all coefficients are functions of x, u, u′ and µ = (ϕ,x + ϕ,u)/ϕ,u′ . They derived

the sufficient conditions for the linearization, the methods for constructing the linearizing

transformations as well as the coefficients of the resulting linear equations. They also for-

mulated the linearizable form for ith, (i > 4) order scalar ODEs via contact transformation

which is given by

u(i) + u(i−1)
1

(u′′ + µ)
[−u′′ i(i+ 1)

2
+ a2u

′2 + a1u
′ + a0] + ... = 0,

where all coefficients are functions of (x, u, u′) and µ is the same as defined above.

2.2 Linearization and classification of systems of ODEs

In this section Lie’s linearization criteria for scalar second order ODEs are extended to

2−dimensional systems of second order ODEs. The two canonical forms of linear systems

of second order ODEs of the dimension n are given with the linearization criteria developed
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for both the forms. We provide the equivalence classes of 2−dimensional linear systems

of second order ODEs.

A general non-homogeneous n−dimensional system of linear second order ODEs con-

tains 2n2 + n arbitrary coefficients. This number of arbitrary coefficients makes it very

difficult to address the classification problem of such systems. Since invertible point trans-

formations preserve the number of symmetries, therefore, it is needed to convert this

general system of ODEs into a simple form of ODEs that involves a fewer number of co-

efficients. These simpler forms are called canonical forms of the given ODEs. In [72] two

canonical forms for n−dimensional systems of second order ODEs were presented which

are stated in the following theorem.

Theorem 2.2.1. Any linear non-homogeneous system of n second order ODEs

u′′(x) = Au′(x) + Bu(x) + c, (2.22)

can be mapped via a point transformation to one of the following forms: either

v′′(t) = Fv′(t), (2.23)

or

w′′(t) = Gw(t), (2.24)

where A, B are n × n matrix functions and u, c are vector functions of x, while F, G

are n× n matrix functions and v, w, are vector functions of t.

For the case n = 2, the number of arbitrary coefficients has been reduced from ten to

four. Consider the linear system (2.24) with n = 2 having 4 arbitrary coefficients.

w′′1 = g11(t)w1 + g12(t)w2,

w′′2 = g21(t)w1 + g22(t)w2. (2.25)

The number of arbitrary coefficients are further reduced from four to three by the change

of variables

y = w1/τ(t), z = w2/τ(t), x =

∫ t

τ−2(s)ds,
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where τ satisfies

τ ′′ − g11 + g22
2

τ = 0,

to the linear system

y′′ = ḡ11(x)y + ḡ12(x)z,

z′′ = ḡ21(x)y − ḡ11(x)z, (2.26)

with

ḡ11 =
τ 3(g11 − g22)

2
, ḡ12 = τ 3g12, ḡ21 = τ 3g21.

Thus we have the following theorem [73].

Theorem 2.2.2. A 2−dimensional system of linear second order ODEs can be mapped

invertibly to the linear system (2.26).

The system (2.26) is the optimal canonical form of linear systems of two second order

ODEs. This form provides five equivalence classes of linearizable systems of two second

order ODEs, with 5−, 6−, 7−, 8− and 15−dimensional Lie algebras [73]. For the maximal

symmetry class of 2−dimensional systems of second order ODEs, we state the following

theorem.

Theorem 2.2.3. A 2−dimensional system of second order ODEs can be reduced to the

system of free particle equations

w′′1 = 0, w′′2 = 0, (2.27)

if and only if it has a 15−dimensional Lie algebra.

Following Lie’s procedure [57], one uses invertible point transformations

t = ϕ(x, y, z), w1 = ψ1(x, y, z), w2 = ψ2(x, y, z), (2.28)

to map the general system of two second order ODEs in semilinear form to the simplest

form (2.27). Under (2.28) the derivatives transform as

w′1 =
Dxψ1

Dxϕ
= P1(x, y, z, y

′, z′),

w′2 =
Dxψ2

Dxϕ
= P2(x, y, z, y

′, z′)
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and

w′′1 =
DxP1

Dxt
, w′′2 =

DxP2

Dxt
,

where Dx is the total derivative operator. This yields

y′′ + a11y
′3 + a12y

′2z′ + a13y
′z′2 + a14z

′3 + b11y
′2 + b12y

′z′ + b13z
′2 + c11y

′ + c12z
′ + d1 = 0,

z′′′ + a21z
′3 + a22y

′2z′ + a23y
′z′2 + a24z

′3 + b21y
′2 + b22y

′z′ + b23z
′2 + c21y

′ + c22z
′ + d2 = 0,

(2.29)

where the above twenty coefficients are arbitrary functions of x, y and z. The system

(2.29) represents the most general form of a system of two second order ODEs equivalent

to the system of free particle equations (2.27).

One can also use the invertible point transformation (2.28) to map 2−dimensional

systems of second order ODEs to the second canonical form (2.25) with n = 2 to yield the

following theorem [67].

Theorem 2.2.4. A 2−dimensional system of second order ODEs is equivalent to the

system (2.25) via an invertible point transformation (2.28) if it is of the form

y′′ + ā11y
′3 + ā12y

′2z′ + ā13y
′z′2 + b̄11y

′2 + b̄12y
′z′ + b̄13z

′2 + c̄11y
′ + c̄12z

′ + d̄1 = 0,

z′′ + ā11y
′2z′ + ā12y

′z′2 + ā13z
′3 + b̄21y

′2 + b̄22y
′z′ + b̄23z

′2 + c̄21y
′ + c̄22z

′ + d̄2 = 0,

where all of the above coefficients are arbitrary functions of x, y and z.

2.3 Meleshko linearization

Meleshko presented a new method to solve autonomous third order scalar ODEs and

called it linearization [56]. He considers those third order ODEs that do not satisfy IM

linearization criteria and reduces them to the second order ODEs and then linearizes them

if they are. Since such kind of ODEs do not satisfy IM linearization criteria and hence

are not linearizable as IM pointed out. We call this reduction of ODEs to the lower
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order linearizable equations Meleshko linearization. This type of linearization, which is

not actually linearization but uses the base of linearization allows us to define a new class

of ODEs that does not lie in IM class. We here give the essence of Meleshko’s linearization

for scalar third order autonomous ODEs. Consider a third order autonomous ODE

u′′′ = f(u, u′, u′′). (2.30)

Since the independent variable is missing, we can take u as the new independent variable

and its derivative as the new dependent variable y(u) = u′. By this we get a second order

ODE of the form

y2y′′ + yy′2 = f(u, y, yy′),

which is Lie linearizable if f is of the form

f(u, u′, u′′) = a(u, u′)u′′3 + b(u, u′)u′′2 + c(u, u′)u′′ + d(x, u)

and the coefficients a, b, c, d have to satisfy the following conditions:

b,uuu
′4 + (3b,uc+ 3ad,u + 6a,ud− 2c,uu′)u

′3 + (2c,u − 2cc,u′ + 3b,u′d

+3bd,u′ + 3d,u′u′)u
′2 + (6bd− 2c2 − 9d,u)u

′ + 9d = 0,

3a,uuu
′4 + (2bb,u − 3a,uc− 3ac,u − 2b,uu′)u

′3 + (2b,u + 3a,u′d+ 6ad,u′

−bc,u′ + c,u′u′)u
′2 + (bc− 9ad− 3c,u′)u

′ + 3c = 0. (2.31)

This leads to the following theorem.

Theorem 2.3.1. A third order autonomous ODE (2.30) is reducible to the second order

linearizable equation (Meleshko linearizable by order one) if it is of the form

u′′′ = a(u, u′)u′′3 + b(u, u′)u′′2 + c(u, u′)u′′ + d(x, u),

with the coefficients satisfying the constraints (2.31).
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2.4 Complex linearization

Lie used complex DEs of complex variables, but he did not consider the analyticity of

complex variables embodied in the CR-equations. A complex dependent variable splits

into two dependent real variables while the complex independent variable splits into two

real independent variables. In this way a scalar complex ODE splits into a system of two

PDEs. The CR-equations would apply not only between the independent and dependent

variables but also between the independent variables and the derivatives of the dependent

variables. If we restrict the independent variable to be real we get a system of two real

ODEs [2,4]. In this thesis we are only concerned with the splitting of complex scalar ODEs

into systems of two real ODEs. Consider the complex ODE

u′′ = f(x, u, u′), (2.32)

where u is a complex function of real variable x. Now by writing u = y+iz and f = f1+if2,

will split the scalar complex ODE (2.32) into a system of two real ODEs

y′′ = f1(x, y, z; y′, z′), z′′ = f2(x, y, z; y′, z′). (2.33)

For the function f to be analytic, its real and imaginary parts must satisfy the CR-

equations with respect to the dependent variables and their derivatives. For complete

characterization of such systems, we state the following theorem [6].

Theorem 2.4.1. A general 2−dimensional system of second order ODEs (2.33) corre-

sponds to a complex equation (2.32) if and only if f1 and f2 satisfy the CR-equations

f1,y = f2,z, f1,z = −f2,y,

f1,y′ = f2,z′ , f1,z′ = −f2,y′ . (2.34)

When the dependent variable in a linearizable second order scalar ODE is a com-

plex function of a real independent variable, it leads to complex linearization. To obtain

complex linearization criteria [5] for a 2−dimensional system of second order ODEs, we
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suppose u in the linearizable ODE (2.10) to be a complex function of a real variable x.

Suppose there exist complex functions

a(x, u) = a1(x, y, z) + ia2(x, y, z),

b(x, u) = b1(x, y, z) + ib2(x, y, z),

c(x, u) = c1(x, y, z) + ic2(x, y, z),

d(x, u) = d1(x, y, z) + id2(x, y, z).

(2.35)

Now by writing u(x) = y(x)+ iz(x) will split the scalar complex ODE (2.10) into a system

of two second order ODEs of the form

y′′ + a1y
′3 − 3a2y

′2z′ − 3a1y
′z′2 + a2z

′3 + b1y
′2 − 2b2y

′z′ − b1z′2 + c1y
′ − c2z′ + d1 = 0,

z′′ + a2y
′3 + 3a1y

′2z′ − 3a2y
′z′2 − a1z′3 + b2y

′2 + 2b1y
′z′ − b2z′2 + c2y

′ + c1z
′ + d2 = 0.

(2.36)

The sufficient conditions for linearization (2.12) now split into a set of four constraint

equations:

12a1,xx + 12c1a1,x − 12c2a2,x − 6d1a1,y − 6d1a2,z + 6d2a2,y

−6d2a1,z + 12a1c1,x − 12a2c2,x + c1,yy − c1,zz + 2c2,yz

−12a1d1,y − 12a1d2,z + 12a2d2,y − 12a2d1,z + 2b1c1,y + 2b1c2,z

−2b2c2,y + 2b2c1,z − 8b1b1,x + 8b2b2,x − 4b1,xy − 4b2,xz = 0,

12a2,xx + 12c2a1,x + 12c1a2,x − 6d2a1,y − 6d2a2,z − 6d1a2,y

+6d1a1,z + 12a2c1,x + 12a1c2,x + c2,yy − c2,zz − 2c1,yz

−12a2d1,y − 12a2d2,z − 12a1d2,y + 12a1d1,z + 2b2c1,y + 2b2c2,z

+2b1c2,y − 2b1c1,z − 8b2b1,x − 8b1b2,x − 4b2,xy + 4b1,xz = 0,

24d1a1,x − 24d2a2,x − 6d1b1,y − 6d1b2,z + 6d2b2,y − 6d2b1,z

+12a1d1,x − 12a2d2,x + 4b1,xx − 4c1,xy − 4c2,xz − 6b1d1,y

−6b1d2,z + 6b2d2,z − 6b2d1,z + 3d1,yy − 3d1,zz + 6d2,yz + 4c1c1,y

+4c1c2,z − 4c2c2,y + 4c2c1,z − 4c1b1,x + 4c2b2,x = 0,
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24d2a1,x + 24d1a2,x − 6d2b1,y − 6d2b2,z − 6d1b2,y + 6d1b1,z

+12a2d1,x + 12a1d2,x + 4b2,xx − 4c2,xy + 4c1,xz − 6b2d1,y

−6b2d2,z − 6b1d2,y + 6b1d1,z + 3d2,yy − 3d2,zz − 6d1,yz + 4c2c1,y

−4c2c2,z + 4c1c2,y − 4c1c1,z − 4c2b1,x − 4c1b2,x = 0. (2.37)

Thus we have the following theorem [5].

Theorem 2.4.2. A 2−dimensional system of second order ODEs is complex linearizable

if it is of the form (2.36) and its coefficients satisfy the conditions (2.37) and CR-equations

with respect to y and z.

2.4.1 Equivalent classes of systems of ODEs obtained by com-

plex methods

As mentioned earlier, there are five classes of 2−dimensional linearizable systems of ODEs

with 5, 6, 7, 8 or 15 Lie point symmetries. By using CSA we get three of the five

linearizable classes. To obtain these classes we need a canonical form for linear systems

of two second order ODEs corresponding to complex scalar ODEs [66]. We start with a

general linear scalar complex second order ODE

u′′ = a(x)u′ + b(x)u+ c(x). (2.38)

As all linear scalar second order ODEs are equivalent, so (2.38) is equivalent to the fol-

lowing scalar second order complex ODEs

u′′ = d(x)u, (2.39)

u′′ = e(x)u′, (2.40)

where all these ODEs belong to one equivalence class and have 8 Lie point symmetries. So

these ODEs are transformable to each other and reducible to the free particle equation.

To extract systems of two linear second order ODEs from (2.39) and (2.40), we write
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u(x) = y(x) + iz(x), d(x) = d1(x) + id2(x) and e(x) = e1(x) + ie2(x) and obtain the

following two forms of linear systems of second order ODEs

y′′ = d1(x)y − d2(x)z,

z′′ = d2(x)y + d1(x)z (2.41)

and

y′′ = e1(x)y′ − e2(x)z′,

z′′ = e2(x)y′ + e1(x)z′. (2.42)

Thus we can state the above discussion in the form of the following theorem.

Theorem 2.4.3. If a 2−dimensional system of second order ODEs is linearizable via

invertible complex point transformations then it can be mapped to one of the two forms

(2.41) and (2.42).

These two linear forms contain only two arbitrary coefficients while the minimum

number of coefficients obtained earlier was three. The reason of reduction of number is

that we are dealing with the special classes of systems of ODEs that correspond to the

scalar complex ODEs. The number of coefficients in (2.41) can be further reduced to one

by the following theorem [66].

Theorem 2.4.4. Any linear system of two second order ODEs of the form (2.41) can be

mapped to the simplest system of two linear ODEs

ȳ′′ = −d(x̄)z̄,

z̄′′ = d(x̄)ȳ, (2.43)

via the real point transformation

ȳ =
y

α(x)
, z̄ =

z

α(x)
, x̄ =

∫ x

α−2(s)ds, (2.44)

where α′′ − d1α = 0 and d = αd2.



2.Linearization of ODEs 49

The system (2.43) is the reduced optimal canonical form for the linear systems of two

second order ODEs. It involves only one arbitrary coefficient, so three usual cases arise:

(a) d is zero, (b) d is an arbitrary constant, (c) d(x̄) is an arbitrary function. It was

found [66] that (a) gives 15, (b) 7 and (c) 6 Lie point symmetry generators.

2.5 Geometric linearization

Since DEs live on manifolds, it is natural to ask about the connection between symmetries

in geometry and for DEs. A connection between the symmetries of systems of geodesics

equations and the underlying manifold was provided in the form of a theorem in [22]. This

theorem leads us to a procedure of checking the linearizability of systems of quadratically

semilinear second order ODEs.

A quadratically semilinear system of second order ODEs in the general form is given

by

üa + Aabcu̇
bu̇c +Ba

b u̇
b + Ca = 0. (2.45)

The above system of ODEs is of geodesic type if Ba
b = Ca = 0. It is said to be a system

of geodesic equations if there exists some metric tensor for which the Christoffel symbols

Γijk, given by (2.47), satisfy Γabc = Aabc.

2.5.1 Linearization criteria for a quadratically semilinear system

of second order ODEs

We consider the system of n geodesic equations

üi + Γijku̇
ju̇k = 0, i, j, k = 1, 2, . . . n, (2.46)

where the Christoffel symbols Γijk, are given in terms of the metric tensor gij

Γijk =
1

2
gil(gjl,k + gkl,j − gjk,l) (2.47)
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and u̇i is the derivative with respect to the arc length l defined by

dl2 = gijdu
iduj.

The Reimann tensor is defined by

Ri
jkl = Γijl,k − Γijk,l + ΓimkΓ

m
jl − ΓimlΓ

m
jk. (2.48)

The following theorem [50] gives the linearization criteria for systems of ODEs of the form

(2.46) via invertible point transformations.

Theorem 2.5.1. A system of n second order ODEs of the form (2.46) is linearizable via

an invertible point transformation if and only if the curvature tensor (2.48) constructed by

treating the coefficients of (2.46) as Christoffel symbols is zero and the admitted symmetry

algebra is sl(n+ 2,R).

2.5.2 Linearization criteria for a cubically semilinear system of

second order ODEs

Projecting the n−dimensional system of geodesic equations (2.46) down to (n−1)−dimensional,

we get the linearization criteria for cubically semilinear systems of second order ODEs [52].

In fact, taking u1 as the new dependent variable we treat all other dependent variables

as functions of u1. The projection procedure puts

ua′ =
dua

du1
u1
′
, (a = 2, 3, . . . , n)

and

ua′′ =
d2ua

(du1)2
(u1
′
)2 +

dua

du1
u1
′′
, (a = 2, 3, . . . , n).

This gives

ua′′ + αbcu
a′ub

′
uc′ + βabcu

b′uc′ + γab u
b′ + θa = 0, (a = 2, 3, . . . , n), (2.49)
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where prime denotes differentiation with respect to the parameter u1 and the coefficients

in terms of Christoffel symbols are

αbc = −Γ1
bc, βabc = Γabc − 2δacΓ

1
b1, γab = 2Γa1b − δabΓ1

11,

θa = Γa11, (a = 2, 3, . . . , n).

The linearization constraints are that the curvature tensor formed from the Christoffel

symbols is zero.

Taking n = 2 in (2.49) gives a system of two cubically semilinear second order ODEs

y′′ + α1y
′3 + 2α2y

′2z′ + α3y
′z′2 + β1y

′2 + 2β2y
′z′ + β3z

′2 + γ1y
′ + γ2z

′ + θ1 = 0,

z′′ + α1y
′2z′ + 2α2y

′z′2 + α3z
′3 + β4y

′2 + 2β5y
′z′ + β6z

′2 + γ3y
′ + γ4z

′ + θ2 = 0, (2.50)

that comes from the system of three ODEs of the form (2.46) by projection.

As a by-product of the projection procedure we re-derive the Lie conditions. This

result is stated in the form of the following remark [52,62].

Remark 2.5.2. By taking geodesics equations with n = 2 and projecting down, we

get a scalar cubically semilinear ODE (2.10) and the linearization conditions are the Lie

conditions (2.12).

2.6 Conditional linearization

Conditional linearization is another form of linearization that does not actually linearize

an ODE but uses the linearizable ODE as a base. Mahomed and Qadir introduced this

idea [51] by giving the conditional linearizability criteria for scalar third order ODEs. It

was then extended to the fourth order scalar [53] and systems of two ODEs [49]. Here

we give the criteria in detail for the conditionally linearizable third order ODEs only, but

first we define such equations [51].

Definition 2.6.1. By differentiating the second (third) order scalar ODEs linearizable

by point transformations and then requiring that the original equation holds, is called
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conditional linearizability by point transformations of third (fourth) order scalar ODEs.

The original linearizable equation is called the root equation.

To obtain the conditional linearization criteria for scalar third order ODEs, we dif-

ferentiate the cubically semi-linear, scalar, second order ODE (2.10) with respect to the

independent variable x to get third order ODE of the general form

u′′′ + (g2u
′2 − g1u′ + g0)u

′′ + h4u
′4 − h3u′3 + h2u

′2 − h1u′ + h0 = 0, (2.51)

where the coefficients are given by

a =
g2
3
, b =

−g1
2
, c = g0, h4 =

g2,u
3
,

h3 =
g1,u
2
− g1,x

3
, h2 = g0,u −

g1,x
2
, d =

∫
h2dx+ l(y) (2.52)

and l(y) is the arbitrary function.

We can use the original equation (2.10) to replace the second order derivative and write

the equation as quintically nonlinear in the first derivative

u′′′ − j5u′5 + j4u
′4 − j3u′3 + j2u

′2 − j1u′ + j0 = 0, (2.53)

with the identifications of the coefficients

a =
j1√

3
, b =

1

5a
(a,u − j2),

c =
1

4a
(j3 − 2b2 + b,u + a,x), d =

1

3a
(c,u + b,x − j2 − 3bc),

j1 = 2bd+ c2 − d,u − c,x, j0 = d,x − cd. (2.54)

This equation will have all solutions of the original ODE but may not have any more. As

such, it could be a third order nonlinear ODE with only two arbitrary constants. We thus

have two classes of conditionally linearizable third order ODEs, those with replacement,

i.e. of the form (2.53) and those without, given by (2.51).

The above result can be stated in the form of the following theorems [51].

Theorem 2.6.2. Equation (2.51) is conditionally linearizable by a point transformation

with respect to the second order ODE (2.10) if its coefficients satisfy the linearizability

criteria (2.12) with the identification of coefficients given by (2.52).



2.Linearization of ODEs 53

Theorem 2.6.3. Equation (2.53) is conditionally linearizable by a point transformation

with respect to the second order ODE (2.10) if its coefficients satisfy the linearizability

criteria (2.12) with the coefficients given by (2.54).

The above procedure is repeated to obtain the scalar fourth order ODEs with the

second order root equation by differentiating either (2.51) or (2.53) and using the second

order or one of these equations to replace the relevant derivative terms. In this way we get

five types of fourth order ODEs with a second order root equation. For details we refer

the reader to [53]. All of these types of equations have two arbitrary constants in their

solutions. Fourth order ODEs with third order root equation is obtained by differentiating

the IM type I (2.16) or IM type II (2.17) and then either replacing the derivatives terms

with any of these two equations or not [54]. In this way we get four types of fourth

order conditionally linearizable ODEs with the third order root equation. One can also

go one step further by taking IMS’ or Meleshko’s linearizable ODEs as the root equations

to go to the higher order ODEs, differentiating these equations and then replacing or

not. The same procedure can be repeated by differentiating the equations linearizable

via contact transformations. We get different classes of conditionally linearizable ODEs.

This classification will then be by the number of arbitrary initial conditions that can be

satisfied.



Chapter 3

Meleshko linearization of fourth

order scalar ODEs

If a scalar third order ODE does not depend explicitly on the independent variable, we

can reduce it to a second order ODE [56]. We can then apply the Lie linearization test

to the reduced ODE. If the reduced ODE satisfies the test then after finding a linearizing

transformation, the general solution of the original equation is obtained by quadrature. We

call this reduction of ODEs to lower order linearizable equations Meleshko linearization.

In this chapter we extend Meleshko’s procedure to the fourth order ODEs in the cases

that the equations do not depend explicitly on the independent or the dependent variable

(or both) to reduce it to third (respectively second) order equations [16]. Once the order

is reduced we can apply the IM (or Lie) linearization test. If the reduced third (or second)

order ODE satisfies the IM (or Lie) linearization test, then after finding a linearizing

transformation, the general solution of the original equation is obtained by quadrature.

So this method is effective in the sense that it reduces many ODEs, that cannot be

linearized, to lower order linearizable equations. Meleshko linearization allows us to define

a new class of ODEs that do not lie in IM’s class, IMS’class or conditionally linearizable

classes.

Meleshko had only developed the algorithm for those third order ODEs that do not

54
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involve independent variable x. We include independence of u for completeness before

proceeding to the fourth order.

3.1 Third order ODEs independent of u

Consider the scalar third order ODE that do not depend explicitly on the dependent

variable

u′′′ = f(x, u′, u′′). (3.1)

Since the dependent variable u is missing so we take u′ as the new dependent variable

y(x). The derivatives are transformed as

u′′ = y′, u′′′ = y′′. (3.2)

This converts the ODE (3.1) to the second order ODE

y′′ = f(x, y, y′). (3.3)

The above ODE is linearizable by Lie’s criteria if and only if it is at most cubically

semilinear (2.10) i.e., f is of the form

f(x, y, y′) = −a(x, y)y′3 − b(x, y)y′2 − c(x, y)y′ − d(x, y), (3.4)

with the coefficients satisfying the conditions (2.12). Replacing y by u′ and invoking (3.2)

in (3.4) and (2.12), we get what is called the Meleshko linearization criteria for the scalar

third order ODEs (3.1). We write it in the following theorem.

Theorem 3.1.1. Equation (3.1) is reducible to the second order linearizable equation (or

Meleshko linearizable of order one) if and only if

f(x, u′, u′′) = −a(x, u′)u′′3 − b(x, u′)u′′2 − c(x, u′)u′′ − d(x, u′), (3.5)

with the coefficients satisfying

3a,xx − 2b,xu′ + c,u′u′ − 3a,xc+ 3a,u′d+ 2b,xb− 3c,xa− c,u′ + 6d,u′a = 0,

b,xx − 2c,xu′ + 3d,u′u′ − 6a,xd+ b,xc+ 3b,u′d− 2cu′a− 3d,xa+ 3d,u′b = 0.
(3.6)
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3.2 Fourth order ODEs

In this section we consider those fourth order ODEs that do not explicitly involve inde-

pendent variable or dependent variable or both.

Case I. Fourth order ODEs independent of x

Consider the autonomous fourth order ODE

u(4) = f(u, u′, u′′, u′′′). (3.7)

Here the independent variable x is missing, so we take u′ as the new dependent variable

of the new independent variable u:

y(u) = u′. (3.8)

The derivatives are transformed as follows:

u′′ =
du′

dx
=
du′

du

du

dx
=
dy

du
u′ = y′y,

u′′′ =
dy′

du
y′ = y′′y2 + y′2y,

u(4) =
dy′′

du
y′ = y′′′y3 + 4y2y′y′′ + yy′3. (3.9)

This transforms the ODE (3.7) into the equation

y3y′′′ + 4y2y′y′′ + yy′3 − f(u, y, yy′, y2y′′ + yy′2) = 0, (3.10)

which is a third order ODE in (u, y). It is linearizable of IM type I if it is of the form

(2.16) i.e.,

f(u, y, y′y, y′′y2 + yy′2) = −y3[(a1y′ + a0)y
′′ + b3y

′3 + b2y
′2 + b1y

′ + b0]

+4y2y′y′′ + yy′3, (3.11)

where ai = ai(u, y), (i = 0, 1) and bj = bj(u, y), (j = 0, 1, 2, 3). Invoking (3.11), equation

(3.10) takes the form

y′′′ + (a1y
′ + a0)y

′′ + b3y
′3 + b2y

′2 + b1y
′ + b0 = 0. (3.12)
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Now applying the inverse of the transformation (3.8), i.e.

y = u′, y′ =
u′′

u′
, y′′ =

u′u′′ − u′′2

u′3
, y′′′ =

u′2u(4) − 4u′u′′u′′′ + 3u′′3

u′5
, (3.13)

the ODE (3.12) is transformed to a fourth order ODE with x as independent variable and

u as dependent variable:

u(4) + (A1u
′′ + A0)u

′′′ +B3u
′′3 +B2u

′′2 +B1u
′′ +B0 = 0, (3.14)

where

Ai = Ai(u, u
′), (i = 0, 1); Bj = Bj(u, u

′), (j = 0, 1, 2, 3), (3.15)

subject to the identification of coefficients

a1 = A1 +
4

u′
, a0 =

A0

u′
, b3 = B3 +

A1

u′
+

1

u′2
,

b2 =
B2

u′
+
A0

u′2
, b1 =

B1

u′2
, b0 =

B0

u′3
,

with the constraints

u′2A1,u − u′A0,u′ + A0 = 0,

u′2(−3A0,uu′) + u′(3B1,u′ + 3A0,u − 2A0A0,u′) + (−6B1 + 2A2
0) = 0,

u′2(3A1,u) + u′(A0A1 − 3B2) + A0 = 0,

u′2(3A1,u′ − 9B3 + A2
1)− u′A1 − 5 = 0,

u′4(−6A0,uA1,u) + u′3(9B1A1,u − 2A2
0A1,u + 9B1,uu′) + u′2(−18B1,u − 9A1B0,u′

−9B0A1,u′ + 3A0B1,u′ − 27B0,u′u′) + u′(27A1B0 − 6A0B1 + 126B0,u′)− 180B0 = 0.

(3.16)

If the equation (3.10) is linearizable of IM type II, then we have to take

f(u, y, yy′, y2y′′ + yy′2) = − y3

y′ + λ
[−3(y′′)2 + (c2y

′2 + c1y
′ + c0)y

′′

+d5y
′5 + d4y

′4 + d3y
′3 + d2y

′2 + d1y
′ + d0] + 4y2y′y′′ + yy′3, (3.17)

where ci = ci(u, y), (i = 0, 1, 2), dj = dj(u, y), (j = 0, 1, 2, 3, 4, 5) and λ = λ(u, y).

Considering the form (3.17) and converting (3.10) into the fourth order by applying
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the inverse transformation (3.13), we have

u(4) +
1

u′′ + λ0
[−3(u′′′)2 + (C2u

′′2 + C1u
′′ + C0)u

′′′

+D5u
′′5 +D4u

′′4 +D3u
′′3 +D2u

′′2 +D1u
′′ +D0] = 0, (3.18)

where Ci = Ci(u, u
′), (i = 0, 1, 2); Dj = Dj(u, u

′), (j = 0, 1, 2, 3, 4, 5); λ0 =

λ0(u, u
′), subject to the identification of coefficients

c2 = C2 −
2

u′
, c1 = C1 +

4λ0
u′
, c0 =

C0

u′2
, d5 =

D5

u′5
,

d4 = D4 +
C2

u′
− 2

u′2
, d3 =

D3

u′
+
C1

u′
+

4λ0
u′2
− 3λ0
u′3

,

d2 =
D2

u′2
+
C0

u′3
, d1 =

D1

u′3
, d0 =

D0

u′4
, λ =

λ0
u′
,

with the constraint equations (A.29)−(A.37), presented in Appendix A.4.

The above results can be stated in the form of the following theorems.

Theorem 3.2.1. Equation (3.14) is reduced to the third order linearizable equation (Meleshko

linearizable of order one) if and only if it obeys (3.16).

Theorem 3.2.2. Equation (3.18) is reduced to the third order linearizable equation (Meleshko

linearizable of order one) if and only if it obeys (A.29)− (A.37), given in Appendix A.4.

Case II. Fourth order ODEs independent of u

Consider the general form of a fourth order ODE independent of u

u(4) = f(x, u′, u′′, u′′′). (3.19)

Here the dependent variable u is missing. By taking u′ as the new dependent variable

y(x), the above ODE is reduced to the third order ODE

y′′′ = f(x, y, y′, y′′). (3.20)

To make equation (3.20) linearizable for the IM type I (2.16), we have to take

f(x, y, y′, y′′) = −(a1y
′ + a0)y

′′ − b3y′3 − b2y′2 − b1y′ − b0, (3.21)
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with the coefficients ai = ai(x, y), (i = 0, 1) and bj = bj(x, y), (j = 0, 1, 2, 3),

satisfying the conditions (2.18). By applying the inverse transformation we get the fourth

order ODE in (x, u) variables:

u(4) + (a1u
′′ + a0)u

′′′ + b3u
′′3 + b2u

′′2 + b1u
′′ + b0 = 0, (3.22)

and the coefficients being functions of (x, u′) must satisfy

a0,u′ − a1,x = 0, (3b1 − a02 − 3a0,x),u′ = 0,

3a1,x + a0a1 − 3b2 = 0, 3a1,u′ + a1
2 − 9b3 = 0,

(9b1 − 6a0,x − 2a0
2)a1,x + 9(b1,x − a1b0),u′ + 3b1,u′a0 − 27b0,u′u′ = 0. (3.23)

Equation (3.20) is linearizable of IM type II (2.17), if f is of the form

f(x, y, y′, y′′) =
−1

y′ + λ
[−3(y′′)2 + (c2y

′2 + c1y
′ + c0)y

′′

+d5y
′5 + d4y

′4 + d3y
′3 + d2y

′2 + d1y
′ + d0], (3.24)

and the coefficients ci = ci(x, y), (i = 0, 1, 2), dj = dj(x, y), (j = 0, 1, . . . , 5) and

λ = λ(x, y) have to satisfy constraint equations presented in Appendix A.2.

Again by applying the inverse transformation to (3.20) with f of the form (3.24) we

get the fourth order ODE in (x, u) variables:

u(4) +
1

u′′ + λ
[−3(u′′′)2 + (c2u

′′2 + c1u
′′ + c0)u

′′′

+d5u
′′5 + d4u

′′4 + d3u
′′3 + d2u

′′2 + d1u
′′ + d0] = 0. (3.25)

The coefficients are now functions of x and u′ and they satisfy constraints presented in

Appendix A.3.

We give the above results in the form of the following theorems.

Theorem 3.2.3. Equation of the form (3.22) is reduced to the third order linearizable

equation (Meleshko linearizable of order one) if and only if its coefficients satisfy the

constraints (3.23).



3. Meleshko linearization of scalar fourth order ODEs 60

Theorem 3.2.4. Equation of the form (3.25) is reduced to the third order linearizable form

(Meleshko linearizable of order one) if and only if its coefficients satisfy the constraints

given in Appendix A.3.

Case III. Fourth order ODEs independent of x and u

Consider the following ODE

u(4) = f(u′, u′′, u′′′). (3.26)

By considering u′ as the independent and u′′ as the dependent variable, we convert the

equation (3.26) into a second order ODE:

y2y′′ + yy′2 = f(u′, y, yy′). (3.27)

For equation (3.27) to be Lie linearizable, we must have

f(u′, y, yy′) = −y2[a(u′, y)y′3 + b(u′, y)y′2 + c(u′, y)y′ + d(u′, y)] + yy′2. (3.28)

Hence equation (3.26) takes the form

u(4) + a(u′, u′′)u′′′3 + b(u′, u′′)u′′′2 + c(u′, u′′)u′′′ + d(u′, u′′) = 0, (3.29)

where a, b, c and d must satisfy the constraints:

(3a,u′u′)u
′′4 + (2bb,u′ − 3ca,u′ − 3ac,u′ − 2b,u′u′′)u

′′3 + (2b,u′ − bc,u′′

+3a,u′′d+ 6ad,u′′ − c,u′′u′′)u′′2 + (bc− 9ad− 3c,u′′)u
′′ − c = 0,

(bu′u′)u
′′4 + (b,u′c+ 3d,u′′b− 3d,u′a− 6a,u′d− 2c,u′u′′)u

′′3 + (c,u′ + 3d,u′′

−6bd+ 3b,u′′d− 2cc,u′′ + 3d,u′′u′′)u
′′2 + (2c2 − 6d− 12d,u′′)u

′′ + 15d = 0.

(3.30)

Hence we have the following theorem.

Theorem 3.2.5. Equation (3.29) is reduced to the second order linearizable equation

(Meleshko linearizable of order two) if and only if it obeys (3.30).

Remark 3.2.6. It is to be remarked here that the symmetry Lie algebra admitted by

Meleshko linearizable ODEs of order two is non-commutative in general. For example, the

ODE

u′′3u(4) + u′u′′′3 = 0, (3.31)
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is of the form (3.29) with the coefficients satisfying the constraints (3.30). It has the

following 4 Lie-point symmetries:

X1 =
∂

∂x
, X2 =

∂

∂u
, X3 = x

∂

∂x
, X4 = u

∂

∂u
, (3.32)

that form a non-Abelian algebra.

Remark 3.2.7. If we have a fourth order ODE of the form

u(4) = −f(x, u)u′5 + 10
u′′u′′′

u′
− 15

u′′3

u′2
,

with f(x, u) linear in x, then we can convert it to a linear ODE x(4) = f(x, u) by simply

taking x as dependent and u as independent variables.

3.3 Illustrative examples

Example 1. The nonlinear fourth order ODE

u3u′u(4) − u3u′′u′′′ + 3u2u′2u′′′ + 3u′5 = 0, (3.33)

cannot be linearized by point or contact transformation and has only two Lie-point sym-

metries

X1 =
∂

∂x
, X2 = u

∂

∂u
.

It is of the form (3.14) with the coefficients

A1 = − 1

u′
, A0 = 3

u′

u
, B3 = B2 = B1 = 0, B0 = 3

u′4

u3
.

One can verify that these coefficients satisfy the conditions (3.16). The transformation

u′ = y(u) will reduce this ODE to the third order linearizable ODE

u3yy′′′ + 3u2(uy′ + y)y′′ + 3u2y′2 + 3y2. (3.34)

By using the linearizing transformation equations given in Appendix A.1, we arrive at the

transformation

t = u, s = uy2, (3.35)
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which maps (3.34) to the linear third order ODE

s′′′ +
6

t3
s = 0,

whose solution is given by

s = c1t
−1 + t2{c2 cos(

√
2 ln t) + c3 sin(

√
2 ln t)},

where ci are arbitrary constants. By using the inverse transformation of (3.35) we get the

solution of (3.34) given by

y = ±
√
c1u−2 + c2u cos(

√
2 lnu) + c3u sin(

√
2 lnu).

Hence the general solution of (3.33) is obtained by taking the quadrature∫
du√

c1u−2 + c2u cos(
√

2 lnu) + c3u sin(
√

2 lnu)
= ±x+ c4,

where ci are arbitrary constants.

Example 2. The nonlinear ODE

u2u′2u(4) − 10u2u′u′′u′′′ − 3uu′3u′′′ + 15u2u′′3 + 9uu′2u′′2 + 3u′4u′′ = 0, (3.36)

is of the form (3.14) with the coefficients

A1 =
−10

u′
, A0 =

−3u′

u
, B3 =

15

u′2
, B2 =

9

u
, B1 =

3u′2

u2
, B0 = 0,

satisfying the conditions (3.16). So it is reduced to the third order linearizable ODE

u2y2y′′′ − 3uy2y′′ − 6u2yy′y′′ + 3y2y′ + 6uyy′2 + 6u2y′3 = 0, (3.37)

in (u, y) variables. The transformation

t = u2, s =
1

y
,

reduces (3.37) to the linear third order ODE s′′′ = 0, whose solution is

s = c1t
2 + c2t+ c3.
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Now one only needs to solve the equation

u′ = 1/(c1u
4 + c2u

2 + c3),

where ci are arbitrary constants. Hence, the general solution of (3.36) is given by

x = c∗1u
5 + c∗2u

3 + c3u+ c4,

where c∗1, c
∗
2, c4 and c4 are arbitrary constants with c∗1 = c1

5
, c∗2 = c2

3
.

Example 3. The ODE

u′u′′u(4) − 3u′u′′′2 + 6u′3u′′2u′′′ − 4u′′2u′′′ − u′u′′5 = 0, (3.38)

has two Lie-point symmetries. It is of the form (3.18) with the coefficients

λ0 = 0, C2 = 6u′2 − 4

u′
, C1 = C0 = 0, D5 = −1, D4 = D3 = D2 = D1 = D0 = 0,

obey the conditions (A.29)−(A.37). So it is reducible to the third order linearizable ODE

y′′′ +
1

y′
[−3y′′2 − uy′5] = 0. (3.39)

The transformation

t = y, s = u,

will convert the nonlinear ODE (3.39) to the linear ODE

s′′′ + s = 0,

with solution

s = c1e
−t + c2e

t
2 cos t+ c3e

t
2 sin t.

Finally to find the solution of (3.38), we only need to solve

u = c1e
−u′ + c2e

u′
2 cosu′ + c3e

u′
2 sinu′.
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Example 4. The nonlinear ODE

u′2u′′u(4) − u′2u′′′3 − 2u′2u′′′2 + u′u′′2u′′′ + u′′4 = 0, (3.40)

is of the form (3.29) and the coefficients

a = − 1

u′′
, b = − 2

u′′
, c =

u′′

u′
, d =

u′′3

u′2
,

satisfy the conditions (3.30). So it is reduced to the second order linearizable ODE

v2yy′′ − 2y′2v2 + yy′v + y2 = 0,

by considering u′ = v as independent and u′′ = y as dependent variables. The transfor-

mation

t = v, s =
v

y
,

reduces it to linear ODE

s′′ = 0,

whose solution is given by

s = c1t+ c2,

where ci are arbitrary constants. So the solution of (3.40) is given by quadrature

x = c1u
′ + c2 lnu′ + c3,

where ci are arbitrary constants.

Example 5. The nonlinear ODE

(u′ + 1)u(4) + 3(u′ + 2)u′′u′′′ + (u′ + 3)u′′3 + x3(u′ + 1)u′′ + xu′ = 0, (3.41)

is of the form (3.22) and the coefficients satisfying the constraint requirements (3.23). So

it can be reduced to the third order ODE

(y + 1)y′′′ + 3(y + 2)y′y′′ + (y + 3)y′3 + x3(yy′ + y′) + xy = 0.



3. Meleshko linearization of scalar fourth order ODEs 65

By using the transformation

t = x, s = yey, (3.42)

we can reduce the above third order ODE to the linear equation

s′′′ + t3s′ + ts = 0,

whose solution can easily be found.



Chapter 4

Linearization of two dimensional

systems of second and third order

ODEs by complex methods

CSA has been employed to solve certain classes of systems of nonlinear ODEs and linear

PDEs. Of particular interest here, is the linearization of systems of second order ODEs

(see, e.g., [5, 6]) that is achieved by complex methods. These classes are obtained from

linearizable scalar and systems of ODEs by regarding their dependent variables as complex

functions of a real independent variable, which when split into the real and imaginary

parts give two dependent variables. In this way, a scalar ODE produces a system of two

coupled equations, with CR-structure on both the equations. These CR-equations appear

as constraint equations that restrict the emerging systems of ODEs to special subclasses

of the general class of such systems. These subclasses of 2−dimensional systems of second

order ODEs may trivially be studied with CSA, however, they appear to be nontrivial

when viewed from real symmetry analysis. Complex-linearizable (c-linearizable) classes

are characterized by complex transformations of the form

U : (x, u(x))→ (t(x), s(x, u)). (4.1)

When linearizable scalar second order ODEs are treated as complex by considering the

66
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dependent variable as a complex function of a real independent variable, they lead to the

c-linearization. On splitting the complex functions involved in the associated constraint

equations (2.12), we get four equations. These four equations constitute the c-linearization

criteria [5], for the corresponding class of systems of two second order ODEs. The reason

for calling them c-linearization, instead of linearization criteria is that, in earlier works,

explicit Lie’s procedure to obtain linearization conditions of this class of systems, was not

performed after incorporating complex symmetry approach on scalar ODEs. The most

general form of the c-linearizable, 2−dimensional, linearizable systems of second order

ODEs is obtained here by real and complex methods. This derivation shows that the

general linearizable forms (obtained by real and complex procedures) of 2−dimensional,

c-linearizable systems of second order ODEs are identical. Moreover, associated lineariza-

tion criteria have been derived, again by adopting both the real and complex symmetry

methods. These linearization conditions are also shown to be similar whether derived

from Lie’s procedure developed for systems or by employing complex symmetry analysis

on scalar ODEs [19]. We exploit this result to obtain linearizable form and sufficient con-

ditions for the linearization of systems of third order ODEs [20]. This chapter is mainly

divided into two sections. First section is on the linearization of c-linearizable systems of

second order ODEs. The result is then employed to obtain linearization criteria for the

systems of third order ODEs in the second section.

4.1 Linearization of 2−dimensional c-linearizable sys-

tems of second order ODEs

The point transformations (2.1) yield the most general form of scalar, second order, lin-

earizable ODEs (2.10) that is derived in section 2.1.2. Restricting these transformations

to

t = φ(x), s = ψ(x, u), (4.2)
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i.e., assuming φ,u = 0, leads to a quadratically semilinear, scalar, second order ODE that is

derived here explicitly. Under transformations (4.2) the first and second order derivatives

of s(t) with respect to t read as

s′ =
Dxψ(x, u)

Dxφ(x)
= p(x, u, u′),

and

s′′ =
Dxp(x, u, u

′)

Dxφ(x)
,

respectively. Here

Dx =
∂

∂x
+ u′

∂

∂u
+ u′′

∂

∂u′
+ · · · ,

is the total derivative operator. Applying the total derivative operator in both the above

equations leads us to the following

s′ =
ψ,x + u′ψ,u

φ,x
,

and

s′′ =
φ,x(ψ,xx + 2u′ψ,xu + u′2ψ,uu + u′′ψ,u)− φ,xx(ψ,x + u′ψ,u)

φ3
,x

, (4.3)

respectively. Equating (4.3) to zero, i.e., considering s′′ = 0, leaves a quadratically semi-

linear ODE of the form

u′′ + a(x, u)u′2 + b(x, u)u′ + c(x, u) = 0, (4.4)

with the coefficients

a(x, u) =
ψ,uu
ψ,u

, b(x, u) =
2φ,xψ,xu − ψ,uφ,xx

φ,xψ,u
, c(x, u) =

φ,xψ,xx − ψ,xφ,xx
φ,xψ,u

. (4.5)

The quadratic, nonlinear (in the first derivative) equation (4.4) with three coefficients (4.5)

is a subcase of the general linearizable (cubically semilinear) second order ODE (2.10).
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Now for the derivation of the Lie linearization criteria of the nonlinear equation (4.4)

via the point transformation (4.2), we start with the re-arrangement

ψ,uu = a(x, u)ψ,u,

2ψ,xu = φ−1,x ψ,uφ,xx + b(x, u)ψ,u,

ψ,xx = φ−1,x ψ,xφ,xx + c(x, u)ψ,u.

of the relations (4.5). Equating the mixed derivatives of ψ, such that

(ψ,xu),u = (ψ,uu),x and (ψ,xu),x = (ψ,xx),u, (4.6)

we find

b,u − 2a,x = 0, (4.7)

and

φ−2,x (2φ,xφ,xx − 3φ2
,xx) = 4(cu + ac)− (2b,x + b2). (4.8)

As φ,u = 0, differentiating (4.8) with respect to u, simplifies it to

c,uu − a,xx − a,xb+ a,uc+ c,ua = 0. (4.9)

Equations (4.7) and (4.9) constitute the linearization criteria for the scalar, second order,

quadratically semilinear ODEs (4.4).

In the subsequent subsections we derive the c-linearization and Lie linearization criteria

for a system of two second order ODEs.

4.1.1 c-linearization

Treat u(x) in (4.4) as a complex function of a real variable x, i.e. u(x) = y(x) + iz(x).

Further assume that

a(x, u) = a1(x, y, z) + ia2(x, y, z),

b(x, u) = b1(x, y, z) + ib2(x, y, z),

c(x, u) = c1(x, y, z) + ic2(x, y, z). (4.10)
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This converts the scalar ODE (4.4) to a system of two second order ODEs of the form

y′′ + a1y
′2 − 2a2y

′z′ − a1z′2 + b1y
′ − b2z′ + c1 = 0,

z′′ + a2y
′2 + 2a1y

′z′ − a2z′2 + b2y
′ + b1z

′ + c2 = 0, (4.11)

with the coefficients aj, bj, cj; (j = 1, 2), satisfying the CR-equations

a1,y = a2,z, a1,z = −a2,y,

b1,y = b2,z, b1,z = −b2,y,

c1,y = c2,z, c1,z = −c2,y. (4.12)

Moreover, the conditions (4.7) and (4.9) can now be converted into a set of four equations

2a1,x − b1,y = 0, (4.13)

2a2,x + b1,z = 0, (4.14)

c1,zz + a1,xx + a1,xb1 − a2,xb2 − (a2c1),z − (a1c2),z = 0, (4.15)

c2,yy − a2,xx − a2,xb1 − a1,xb2 + (a2c1),y + (a1c2),y = 0, (4.16)

by splitting the complex coefficients (4.12) into the real and imaginary parts.

As evident from [5], such a (complex) procedure leads us to the c-linearization of

systems of ODEs. Our claim here is that the equations (4.13)−(4.16) are actually the

linearization conditions despite of being just the c-linearization conditions for the system

(4.11). In order to prove this fact, we now use the Lie linearization approach in the next

subsection to derive the linearization conditions for the system (4.11).

4.1.2 Lie linearization

The previous work on the c-linearizable [5, 6] and their linearizable subclass of systems

[64,66] of second order ODEs reveals that point transformations of the form

t = φ(x), v = ψ1(x, y, z), w = ψ2(x, y, z), (4.17)

where

ψ1,y = ψ2,z, ψ2,y = −ψ1,z, (4.18)
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i.e., ψj, for j = 1, 2, satisfy the CR-equations that involve derivatives with respect to

both the dependent variables, linearizes the c-linearizable systems. Notice that (4.17) are

obtainable from (4.2) that is a subclass of (2.1). These transformations map the first and

second order derivatives as

v′ =
Dxψ1

Dxφ
= p1(x, y, z, y

′, z′), (4.19)

w′ =
Dxψ2

Dxφ
= p2(x, y, z, y

′, z′),

and

v′′ =
Dxp1
Dxφ

= q1(x, y, z, y
′, z′, y′′, z′′), (4.20)

w′′ =
Dxp2
Dxφ

= q2(x, y, z, y
′, z′, y′′, z′′),

where

Dx =
∂

∂x
+ y′

∂

∂y
+ z′

∂

∂z
+ y′′

∂

∂y′
+ z′′

∂

∂z′
+ · · · .

Inserting the total derivative operator in the above equations and substituting these in

v′′ = 0, w′′ = 0 and simplifying, we arrive at the following 2-dimensional system

y′′ + α1y
′2 − 2α2y

′z′ + α3z
′2 + β1y

′ − β2z′ + γ1 = 0,

z′′ + α4y
′2 + 2α5y

′z′ + α6z
′2 + β3y

′ + β4z
′ + γ2 = 0, (4.21)

where

α1 = φ,x∆
−1(ψ2,zψ1,yy − ψ1,zψ2,yy),

α2 = φ,x∆
−1(ψ1,zψ2,yz − ψ2,zψ1,yz),

α3 = φ,x∆
−1(ψ2,zψ1,zz − ψ1,zψ2,zz),

α4 = φ,x∆
−1(ψ1,yψ2,yy − ψ2,yψ1,yy),

α5 = φ,x∆
−1(ψ1,yψ2,yz − ψ2,yψ1,yz),

α6 = φ,x∆
−1(ψ1,yψ2,zz − ψ2,yψ1,zz),

β1 = 2φ,x∆
−1(ψ2,zψ1,xy − ψ1,zψ2,xy)−

φ,xx
φ,x

,

β2 = 2φ,x∆
−1(ψ1,zψ2,xz − ψ2,zψ1,xz),
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β3 = 2φ,x∆
−1(ψ1,yψ2,xy − ψ2,yψ1,xy),

β4 = 2φ,x∆
−1(ψ1,yψ2,xz − ψ2,yψ1,xz)−

φ,xx
φx

,

γ1 = ∆−1(φ,xψ1,yψ1,xx − ψ1,xψ1,yφ,xx − φ,xψ1,zψ2,xx + ψ1,zψ2,xφ,xx) ,

γ2 = ∆−1(φ,xψ1,zψ1,xx − ψ1,xψ1,zφ,xx + φ,xψ1,yψ2,xx + ψ1,yψ2,xφ,xx) , (4.22)

with

∆ = φ,x(ψ1,yψ2,z − ψ1,zψ2,y) 6= 0,

is the Jacobian of the transformation (4.17). The coefficients (4.5) of the scalar ODE

(4.4) split into the coefficients of the corresponding 2−dimensional system of second order

ODEs. This happens due to the presence of the complex dependent function u in the

coefficients (4.5). The restricted fibre preserving transformations (4.17) used to derive the

linearizable form (4.21), are obtainable from the complex transformations (4.2) that are

employed to deduce (4.4). Therefore, the transformations (4.17) along with (4.18) appear

to be the real and imaginary parts of complex transformation (4.2), they reveal the corre-

spondence of the linearizable forms of 2−dimensional systems and scalar complex ODEs.

The CR-equations are not yet incorporated in the linearizable form (4.21). Insertion of

the CR-equations (4.18) and their derivatives

ψ1,yy = ψ2,yz = −ψ1,zz,

ψ2,zz = ψ1,yz = −ψ2,yy, (4.23)

brings out the correspondence between the coefficients (4.5) of the complex linearizable

ODEs (4.4) and the coefficients (4.22) of the system (4.21). Employing (4.18) and (4.23)

the number of coefficients (4.22) reduces to six that read as

α1 = −α3 = α5 = a1, α2 = α4 = −α6 = a2,

β1 = β4 = b1, β2 = β3 = b2, γ1 = c1, γ2 = c2. (4.24)

Here the coefficients aj, bj and cj are the real and imaginary parts of the complex coeffi-

cients (4.5). The linearizable form of the systems derived in this section by real method is
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the same as one obtains by splitting the corresponding form of the scalar complex equation

(4.4). This analysis leads us to the following theorem.

Theorem 4.1.1. The most general form of the linearizable, 2−dimensional, c-linearizable

systems of second order ODEs is quadratically semilinear.

Sufficient conditions for the linearization of a c-linearizable system

Consider the most general form of the c-linearizable, 2−dimensional systems of second

order ODEs (4.11), with constraint equations (4.12). Rewriting the coefficients of the

system (4.11) in the form

a1 = ∆−1φ,x(ψ1,yψ1,yy + ψ1,zψ1,yz),

a2 = ∆−1φ,x(ψ1,zψ1,yy + ψ1,yψ1,yz),

b1 = 2∆−1φ,x(ψ1,yψ1,xy + ψ1,zψ1,xz)−
φ,xx
φ,x

,

b2 = 2∆−1φ,x(ψ1,zψ1,xy + ψ1,yψ1,xz),

c1 = ∆−1(φ,xψ1,yψ1,xx − ψ1,xψ1,yφ,xx − φ,xψ1,zψ2,xx + ψ1,zψ2,xφ,xx),

c2 = ∆−1(φ,xψ1,zψ1,xx − ψ1,xψ1,zφ,xx + φ,xψ1,yψ2,xx + ψ1,yψ2,xφ,xx). (4.25)

For obtaining the sufficient conditions of linearization for (4.11), we have to solve the

compatibility problem, that has already been solved for the scalar equations earlier in this

work, for the set of equations (4.25). It is an over determined system of PDEs for the

functions φ, ψ1 and ψ2 with known aj, bj, cj.

The system (4.25) gives us

ψ1,yy = ψ1,ya1 + ψ1,za2, ψ1,yz = ψ1,za1 − ψ1,ya2,

ψ1,xy =
1

2
(ψ1,yb1 + ψ1,zb2 + ψ1,y

φ,xx
φ,x

),

ψ1,xz =
1

2
(ψ1,zb1 − ψ1,yb2 + ψ1,z

φ,xx
φx

),

ψ1,xx = ψ1,yc1 + ψ1,zc2 + ψ1,x
φ,xx
φ,x

,

ψ2,xx = ψ1,yc2 − ψ1,zc1 + ψ2,x
φ,xx
φ,x

.
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The compatibility of the system (4.25) first requires to compute partial derivatives

∆,x, ∆,y, ∆,z, which are

∆,x = 2∆
φ,xx
φ,x

+ ∆b1,

∆,y = 2∆a1,

∆,z = −2∆a2,

of the Jacobian. Comparing the mixed derivatives (∆,y),z = (∆,z),y, we obtain

a1,z + a2,y = 0. (4.26)

Invoking (∆,x),y = (∆,y),x gives

2a1,x − b1,y = 0, (4.27)

and (∆,x),z = (∆,z),x, we obtain

2a2,x + b1,z = 0. (4.28)

Equating the mixed derivatives

(ψ1,yy),z = (ψ1,yz),y, (ψ1,yy),x = (ψ1,xy),y, (ψ1,xx),y = (ψ1,xy),x,

(ψ1,xx),z = (ψ1,xz),x, (ψ1,xy),z = (ψ1,xz),y, (ψ2,xx),y = (ψ2,xy),x

and (ψ2,xx),z = (ψ2,xz),x,

gives us

a1,y − a2,z = 0, (4.29)

b2,y + b1,z = 0, (4.30)

b2,z − b1,y = 0, (4.31)

c2,z − c1,y = 0, (4.32)

c2,y + c1,z = 0, (4.33)

c1,zz + a1,xx + a1,xb1 − a2,xb2 − (a2c1),z − (a1c2),z = 0, (4.34)

c2,yy − a2,xx − a2,xb1 − a1,xb2 + (a1c2),y − (a2c1),y = 0, (4.35)
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respectively. Note that (ψ1,yz),x − (ψ1,xz,),y = 0 and (ψ1,xy),z − (ψ1,yz),x = 0 are satis-

fied. Also (4.26), (4.29), and (4.30)-(4.33) are CR-equations for the coefficients aj, bj,

cj. Therefore, the solution of the compatibility problem of the system (4.25), provides

CR-constraints on the coefficients of (4.11) and the linearization conditions.

Theorem 4.1.2. A 2−dimensional, c-linearizable system of second order ODEs of the

form (4.11) is linearizable if and only if its coefficients satisfy the CR-equations and con-

ditions (4.27), (4.28), (4.34), (4.35).

Note that these are the same conditions (4.13)−(4.16) that are already obtained, by

employing complex analysis, i.e., splitting the linearization conditions associated with the

base scalar equation (4.4), into the real and imaginary parts.

Corollary 4.1.3. The c-linearization conditions for a 2−dimensional system of quadrat-

ically semilinear, second order ODEs are the linearization conditions.

4.1.3 Examples

We present some examples to illustrate our results.

Example 1. The 2-dimensional system of second order ODEs

y′′ − (
2y

y2 + z2
)y′2 − 2(

2z

y2 + z2
)y′z′ + (

2y

y2 + z2
)z′2 − 2

x
y′ − 2y

x2
= 0,

z′′ + (
2z

y2 + z2
)y′2 − 2(

2y

y2 + z2
)y′z′ − (

2z

y2 + z2
)z′2 − 2

x
z′ − 2z

x2
= 0. (4.36)

is of the same form as (4.11) with

a1 =
−2y

y2 + z2
, a2 =

2z

y2 + z2
, b1 =

−2

x
, b2 = 0, c1 =

−2y

x2
, c2 =

−2z

x2
. (4.37)

One can easily verify that (4.37) satisfy the conditions (4.27), (4.28), (4.34), (4.35) and

CR-equations with respect to y and z. So the system of ODEs (4.36) is linearizable. The

transformation

t = x, v =
y

x(y2 + z2)
, w =

−z
x(y2 + z2)

, (4.38)
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reduces the nonlinear system (4.36) to the linear system

v′′ = 0, w′′ = 0, (4.39)

whose solution is given by

v = c1x+ c2, w = c3x+ c4. (4.40)

By applying the inverse of the transformation (4.38) on solution of the linear system (4.40),

we get the solution of the nonlinear system (4.36) explicitly

y =
c1x+ c2

x[(c1x+ c2)2 + (c3x+ c4)2]
, z = − c3x+ c4

x[(c1x+ c2)2 + (c3x+ c4)2]
(4.41)

Example 2. Consider the following system of nonlinear ODEs

y′′ − 1

f(y, z)
(y′2 cos y sin y − z′2 cos y sin y − 2y′z′ cosh z sinh z) +

2y′

x
= 0,

z′′ − 1

f(y, z)
(y′2 cosh z sinh z − z′2 cosh z sinh z + 2y′z′ cos y sin y) +

2z′

x
= 0, (4.42)

where f(y, z) = sin2 y cosh2 z+cos2 y sinh2 z .The coefficients satisfy the CR-equations and

the linearization conditions (4.27), (4.28), (4.34), (4.35). Hence Theorem 4.1.2 guarantees

that the system (4.42) is linearizable. In fact, it can be transformed to the linear system

(4.39) via the linearizing transformations

t = x, v = x cos y cosh z, w = −x sin y sinh z. (4.43)

The solution of (4.42) is given implicitly by applying the inverse of the transformation

(4.43) to the solution (4.40) of the linear system (4.39)

cos y cosh z = c1 +
c2
x
, sin y sinh z = −c3 −

c4
x
, (4.44)

where all ci are arbitrary constants.

Example 3. Consider the anisotropic oscillator system

y′′ + f(x)y = 0,

z′′ + g(x)z = 0. (4.45)
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In [52] it is shown that the system (4.45) is reducible to the linear system (4.39) provided

f = g. Our c-linearization criteria also lead to the same condition, i.e. f = g.

In the next section we use Theorems 4.1.1 and 4.1.2 to obtain the linearization criteria

for the 2−dimensional systems of third order ODEs.

4.2 Linearization of the 2-dimensional systems of third

order ODEs

We have shown in section 2.1.3 that a scalar third order ODE in real variables linearizes to

(2.15) via the restricted real point transformations (4.2), if it is of the form (2.16). Treat

u in (2.16) as a complex function of a real variable x i.e.,

u(x) = y(x) + iz(x), (4.46)

and the coefficients of (2.16) as complex functions

aj(x, u) = αj(x, y, z) + iβj(x, y, z); (j = 0, 1),

bk(x, u) = γk(x, y, z) + iδk(x, y, z); (k = 0, 1, 2, 3). (4.47)

This converts the equation (2.16) in it to a system of two third order ODEs, when split

into the real and imaginary parts. The system so obtained according to (4.46) and (4.47)

is

y′′′ + (α1y
′ − β1z′ + α0)y

′′ − (β1y
′ + α1z

′ + β0)z
′′ + γ3y

′3 − 3δ3y
′2z′

−3γ3y
′z′2 + δ3z

′3 + γ2y
′2 − 2δ2y

′z′ − γ2z′2 + γ1y
′ − δ1z′ + γ0 = 0,

z′′′ + (β1y
′ + α1z

′ + β0)y
′′ + (α1y

′ − β1z′ + α0)z
′′ + δ3y

′3 + 3γ3y
′2z′

−3δ3y
′z′2 − γ3z′3 + δ2y

′2 + 2γ2y
′z′ − δ2z′2 + δ1y

′ + γ1z
′ + δ0 = 0, (4.48)

where the coefficients αj, βj; (j = 0, 1), γk, δk; (k = 0, 1, 2, 3), are functions of (x, y, z).

These coefficients are analytical functions of (x, y, z), so they satisfy the CR-equations



4. Linearization of systems of ODEs by complex methods 78

given by

αj,y = βj,z, αj,z = −βj,y; (j = 0, 1)

γk,y = δk,z, γk,z = −δk,y; (k = 0, 1, 2, 3). (4.49)

Theorem 4.2.1. The system of ODEs (4.48) represents the most general form of 2-

dimensional systems of third order ODEs, that can be a candidate of linearization due

to CSA.

Proof. The result follows by employing the point transformations (4.17) with the CR-

structure (4.18) on the system

v′′′(t) + k1(t)v(t)− k2(t)w(t) = 0,

w′′′(t) + k2(t)v(t) + k1(t)w(t) = 0,

that corresponds to (2.15) due to s(t) = v(t) + iw(t) and k0(t) = k1(t) + ik2(t), map it to

(4.48).

Theorem 4.2.2. The sufficient conditions for a 2−dimensional system of third order

ODEs of the form (4.48) to be linearizable are that its coefficients satisfy CR-equations

(4.49) and the following conditions

α0,y + β0,z − 2α1,x = 0,

β0,y − α0,z − 2β1,x = 0,

3α1,x + α0α1 − β0β1 − 3γ2 = 0,

3β1,x + α0β1 + α1β0 − 3δ2 = 0,

3α1,y + 3β1,z + 2α2
1 − 2β2

1 − 18γ3 = 0,

3β1,y − 3α1,z + 4α1β1 − 18δ3 = 0,

3γ1,y + 3δ1,z − 2(α0β0),z − (α0)
2
,y + (β0)

2
,y − 3β0,xz − 3α0,xy = 0,

3δ1,y − 3γ1,z − 2(α0β0),y + (α0)
2
,z − (β0)

2
,z − 3β0,xy + 3α0,xz = 0,
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4(9γ1 − 6α0,x − 2α2
0 + 2β2

0)α1,x − 4(9δ1 − 6β0,x − 4α0β0)β1,x

+18γ1,xy + 18δ1,xz − 18(α1γ0),y + 18(β1δ0),y − 18(α1δ0),z

−18(β1γ0),z + 6(γ1,yα0 + δ1,zα0 + γ1,zβ0 − δ1,yβ0)

−27(γ0,yy + 2δ0,yz − γ0,zz) = 0,

4(9γ1 − 6α0,x − 2α2
0 + 2β2

0)β1,x + 4(9δ1 − 6β0,x − 4α0β0)α1,x

−18γ1,xz + 18δ1,xy + 18(α1γ0),z − 18(β1δ0),z − 18(α1δ0),y

−18(β1γ0),y + 6(γ1,yβ0 + δ1,zβ0 − γ1,zα0 + δ1,yα0)

−27(δ0,yy − 2γ0,zy − δ0,zz) = 0. (4.50)

Proof. The derivation of the linearization criteria for 2-dimensional systems of second

order ODEs with CR-structure, by point transformations of the form (4.17) along with

the CR-constraints (4.18) has been demonstrated in section 4.1.2. There it is shown that

splitting the linearization criteria associated with the base complex equations due to the

complex transformations (4.2), into the real and imaginary parts, provides the sufficient

conditions for the linearization of the corresponding systems. Therefore, linearization

criteria for the 2-dimensional systems of third order ODEs (4.48) along with (4.49), are

provided here by splitting of the linearization criteria (2.18) associated with the scalar

third order ODEs.

Scalar third order ODEs of the form (2.17) and their associated linearization criteria

cannot be regarded as linearizing the corresponding systems of third order equations. This

class of scalar third order ODEs (2.17) has been derived by exploiting the general point

transformations (2.1), that leads to c-linearization instead of linearization. The linearizing

conditions associated with this class of scalar equations reveal the complex-linearizability

of the corresponding systems and do not ensure that they are transformable to a linear

form.
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4.2.1 Illustration of the result

Example 1. The 2−dimensional system of nonlinear third order ODEs

y′′′ +

(
3y′y′′ − 3z′z′′

y2 + z2

)
y +

(
3z′y′′ + 3y′z′′

y2 + z2

)
z = 0,

z′′′ +

(
3z′y′′ + 3y′z′′

y2 + z2

)
y −

(
3y′z′′ − 3z′y′′

y2 + z2

)
z = 0, (4.51)

where prime denotes differentiation with respect to x, has the same form as given in (4.48).

Moreover, its non-zero coefficients

α1 =
3y

y2 + z2
, β1 =

−3z

y2 + z2
,

satisfy the requirements of Theorem 4.2.2. So this system is transformable to the linear

system

v′′′ = 0, w′′′ = 0, (4.52)

here prime denotes differentiation with respect to t, under the invertible point transfor-

mation

t = x, v = y2 − z2, w = 2yz. (4.53)

The solution of (4.52) is given by

v = c1t
2 + c2t+ c3, w = c4t

2 + c5t+ c6,

where all c1 . . . , c6 are arbitrary constants. By using the inverse of the transformation

(4.53), we get the general solution of (4.51) in the implicit form

y2 − z2 = c1x
2 + c2x+ c3, 2yz = c4x

2 + c5x+ c6.

After a few calculations, we get the general solution in the explicit form

y =
±1√

2

√√
(c1x2 + c2x+ c3)2 + (c4x2 + c5x+ c6)2 + (c1x2 + c2x+ c3),

z =
±1√

2

√√
(c1x2 + c2x+ c3)2 + (c4x2 + c5x+ c6)2 − (c1x2 + c2x+ c3).
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Example 2. Consider the following 2-dimensional system of nonlinear third order

ODEs

y′′′ +

(
3y′ +

3

x

)
y′′ − 3z′z′′ + y′3 − 3y′z′2 +

3

x
y′2 − 3

x
z′2 = 0,

z′′′ + 3z′y′′ +

(
3y′ +

3

x

)
z′′ + 3y′2z′ − z′3 +

6

x
y′z′ = 0, (4.54)

with the coefficients

α1 = 3, α0 =
3

x
, γ3 = δ3 = 1, γ2 =

3

x
,

and all others zero. The above system is of the form (4.48) and its coefficients satisfy the

CR-equations and the constraints (4.50). Hence it is linearizable and transforms to the

linear system

v′′′ = 0, w′′′ = 0. (4.55)

The linearizing transformations used in this case are

t = x, v = xey cos z, w = xey sin z. (4.56)

The solution of (4.55) is

v = c1t
2 + c2t+ c3, w = c4t

2 + c5t+ c6,

where all c1 . . . , c6 are arbitrary constants. By using the inverse of the transformations

(4.56), we obtain the general solution

y =
1

2
ln[(c1x+ c2 +

c3
x

)2 + (c4x+ c5 +
c6
x

)2],

z = arctan(
c4x

2 + c5x+ c6
c1x2 + c2x+ c3

),

of the nonlinear system (4.54).
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Example 3. Consider the following nonlinear system of third order ODEs

y′′′ +

(
3yy′

y2 + z2
+

3zz′

y2 + z2
− 3

)
y′′ −

(
− 3zy′

y2 + z2
+

3yz′

y2 + z2

)
z′′

− 3yz′2

y2 + z2
− 6zy′z′

y2 + z2
+

3yz′2

y2 + z2
+ 2y′ + 3y = 0,

z′′′ +

(
− 3zy′

y2 + z2
+

3yz′

y2 + z2

)
y′′ −

(
3yz′

y2 + z2
+

3zz′

y2 + z2
− 3

)
z′′

+
3zy′2

y2 + z2
− 6yy′z′

y2 + z2
− 3zz′2

y2 + z2
+ 2z′ + 3z = 0. (4.57)

The coefficients

α1 =
3y

y2 + z2
, α0 = −3, β1 =

−3z

y2 + z2
, γ2 =

−3y

y2 + z2
,

γ1 = 2, γ0 = 3y, δ2 =
3y

y2 + z2
, δ0 = 3z,

γ3 = δ3 = δ1 = β0 = 0. (4.58)

satisfy the CR-equations and the conditions (4.50). Hence, (4.57) is linearizable. It is

transformable to the linear system

v′′′ +
6

t3
v = 0, w′′′ +

6

t3
w = 0. (4.59)

The linearizing transformations which establish the above correspondence between the

nonlinear and linear systems are

t = ex, v = y2 − z2, w = 2yz. (4.60)

The solution of (4.59) is

v = c1t
−1 + t2{c2 cos(

√
2 ln t) + c3 sin(

√
2 ln t)},

w = c4t
−1 + t2{c5 cos(

√
2 ln t) + c6 sin(

√
2 ln t)}, (4.61)

where all c1 . . . , c6 are arbitrary constants. By using the inverse of the transformation
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(4.60), the general solution of (4.57) is given explicitly by

y =
±1√

2
[

√
[c1e−x + e2x{c2 cos(

√
2x) + c3 sin(

√
2x)}]2 + [c4e−x + e2x{c5 cos(

√
2x) + c6 sin(

√
2x)}]2

+ c1e
−x + e2x{c2 cos(

√
2x) + c3 sin(

√
2x)}]

1
2 ,

z =
±1√

2
[

√
[c1e−x + e2x{c2 cos(

√
2x) + c3 sin(

√
2x)}]2 + [c4e−x + e2x{c5 cos(

√
2x) + c6 sin(

√
2x)}]2

− c1e
−x − e2x{c2 cos(

√
2x) + c3 sin(

√
2x)}]

1
2 .

Example 4. The nonlinear system of ODEs

y′′′ + 3(1 + y′)y′′ − z′z′′ + y′3 − 3y′z′2 + 3y′2 − 3z′2 + 3y′ + (1 + x) = 0,

z′′′ + 3(1 + y′)z′′ + 3z′y′′ + z′3 + 3y′2z′ + 6y′z′ + 3z′ = 0, (4.62)

satisfies the conditions of theorems 4.2.1 and 4.2.2, which guarantee its transformation to

a linear form. Therefore, the following transformation is found

t = x, y =
1

2
ln(v2 + w2)− x, z = arctan(

w

v
),

that converts the nonlinear system (4.62) to the linear system

v′′′ + tv = 0, w′′′ + tw = 0.



Chapter 5

Lie-point symmetry classification of

two dimensional linear systems of

third order ODEs by complex

methods

A unique equivalence class (with eight infinitesimal symmetry generators) exists for second

order linearizable ODEs, whereas for the third order there are three classes with four, five

and seven generators [48]. As far as 2-dimensional systems of second order ODEs are

concerned there are five classes with 5−, 6−, 7−, 8− and 15−dimensional Lie point

symmetry algebras [73]. The complex procedure has been adopted to linearize a class

of 2−dimensional systems of second order ODEs that is shown to possess 6−, 7− and

15−dimensional algebras [66]. This chapter deals with the symmetry classification of

the 2−dimensional systems of linear third order ODEs obtainable from a complex scalar

ODE of the same order. We provide symmetry algebras of those systems of third order

ODEs that correspond to scalar linearizable third order complex ODEs. For this purpose a

canonical form for the linear systems obtainable from a complex linear equation is derived.

It is shown that this form provides five equivalence classes for linearizable 2-dimensional

84
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systems of third order ODEs. The dimensions of the associated Lie algebras are found to

be eight to twelve and thirteen [21].

5.1 The canonical form obtained by complex methods

In order to classify linearizable ODEs and systems we need a canonical form of the corre-

sponding linear equations. For obtaining a canonical form of 2−dimensional linear systems

of third order ODEs we need the Laguerre canonical form given by

u′′′(x) + k0(x)u(x) = 0. (5.1)

Three equivalence classes arise from the Laguerre canonical form for the linear scalar third

order ODEs viz; for k0 = 0, k0 = non-zero constant and k0 = non-zero function of x, the

associated symmetry algebras are 7−, 5− and 4−dimensional respectively.

Taking u in (5.1) as a complex function of a real variable x, i.e., u(x) = y(x) + iz(x)

and k0(x) = k1(x) + ik2(x), converts the scalar third order ODE (2.15) to a linear system

y′′′(x) + k1(x)y(x)− k2(x)z(x) = 0,

z′′′(x) + k2(x)y(x) + k1(x)z(x) = 0. (5.2)

A point transformation of the form

x = ρ1(t), y(x) = ρ2(t)v(t) + ρ3(t)w(t), z(x) = ρ4(t)v(t) + ρ5(t)w(t), (5.3)

is considered to map the system (5.2) to itself (with different coefficients). The transformed

coefficients are analyzed and it is found that there exist no point transformation of the

form (5.3) that can further reduce the number of arbitrary coefficients of (5.2) to one.

Therefore, system (5.2) with two arbitrary functions k1(x) and k2(x), is the canonical

form for a system of two linear third order ODEs obtained by CSA.
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5.2 Group classification

Let

X(3) = ξ(x, y, z)
∂

∂x
+ η1(x, y, z)

∂

∂y
+ η2(x, y, z)

∂

∂z
+ η

(1)
1 (x, y, z)

∂

∂y′

+η
(1)
2 (x, y, z)

∂

∂z′
+ η

(2)
1 (x, y, z)

∂

∂y′′
+ η

(2)
2 (x, y, z)

∂

∂z′′

+η
(3)
1 (x, y, z)

∂

∂y′′′
+ η

(3)
2 (x, y, z)

∂

∂z′′′
, (5.4)

be the symmetry of (5.2) with η
(1)
i , η

(2)
i and η

(3)
i , (i = 1, 2) given by the expressions

(1.52)−(1.57). According to the Lie algorithm, we have the following symmetry conditions

η
(3)
1 = X(2)(−k1(x)y(x) + k2(x)z(x)),

η
(3)
2 = X(2)(−k2(x)y(x)− k1(x)z(x)),

which give the following set of PDEs, i.e., the determining equations for the system (5.2)

ξ,y = ξ,z = 0, η1,zz = η1,xz = η2,yy = η2,xy = 0, (5.5)

η1,yy − 3ξ,xy = η1,yz − 2ξ,xz = η1,xy − ξ,xx = 0, (5.6)

η2,zz − 3ξ,xz = η2,yz − 2ξ,xy = η2,xz − ξ,xx = 0, (5.7)

η1,xxz + yk1ξ,z − zk2ξ,z = η2,xxy + yk2ξ,y + zk1ξ,y = 0, (5.8)

η1,xxy − ξ,xxx + 4yk1ξ,y − 4zk2ξ,y + yk2ξ,z + zk1ξ,z = 0, (5.9)

η2,xxz − ξ,xxx + 4yk2ξ,z + 4zk1ξ,z + yk1ξ,y − zk2ξ,y = 0, (5.10)

yξk1,x − zξk2,x + η1k1 − η2k2 + η1,xxx + (−yk1 + zk2)(η1,y − 3ξ,x)

−(yk2 + zk1)η1,z = 0, (5.11)

yξk2,x + zξk1,x + η1k2 + η2k1 + η2,xxx − (yk2 + zk1)(η2,z − 3ξ,x)

+(−yk1 + zk2)η2,y = 0. (5.12)

Equations (5.5)−(5.7) give the following solution

ξ = c1
x2

2
+ c2x+ c3, (5.13)

η1 = (c4 + c2)y + c1xy + c5z + v(x), (5.14)

η2 = c6y + (c7 − c2)z + c1xz + w(x),
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where cj (j = 1, 2, . . . , 7) are constants and v(x), w(x) are arbitrary functions of their

argument.

Now we start the group classification for the system (5.2). The following cases arise in

the equations of the system of determining equations (5.8)−(5.12) for the values of k1(x)

and k2(x). Examples for each case are provided. These examples illustrate transformations

of the linear as well as nonlinear 2−dimensional systems of third order ODEs to the

canonical form (5.2) via point transformations.

Case I. k1 = 0 = k2

In this case we find from equations (5.8)−(5.12) that

η1,xxx = 0, η2,xxx = 0, (5.15)

that produces

v(x) = c8
x2

2
+ c9x+ c10, (5.16)

w(x) = c11
x2

2
+ c12x+ c13, (5.17)

where cp, p = 8, . . . , 13, are arbitrary constants. This yields a 13−dimensional Lie point

symmetry algebra:

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂z
, X4 = x

∂

∂x
,

X5 = y
∂

∂y
, X6 = z

∂

∂z
, X7 = x

∂

∂y
, X8 = x

∂

∂z
,

X9 = z
∂

∂y
, X10 = y

∂

∂z
, X11 =

x2

2

∂

∂y
, X12 =

x2

2

∂

∂z
, (5.18)

X13 =
x2

2

∂

∂x
+ xy

∂

∂y
+ xz

∂

∂z
. (5.19)

As an example of this case we consider the following system of ODEs

tv′′′ + 3tv′v′′ + 3v′′ + tv′3 + 3v′2 = 0,

ww′′′ + 3w′w′′ = 0, (5.20)

where prime denotes differentiation with respect to t, which has a 13−dimensional algebra.

The above system of ODEs can be converted to the simplest linear system

y′′′ = 0, z′′′ = 0, (5.21)
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here prime denotes differentiation with respect to x, by using the transformation

t = x, v = ln(y/x), w =
√
z. (5.22)

The solution of the system (5.21) is given by

y = c1x
2 + c2x+ c3, z = c4x

2 + c5x+ c6,

which on applying the inverse of the transformation (5.22) and a simple calculation, yields

the solution of the nonlinear system (5.20)

v = ln(c1t+ c2 +
c3
t

), w =
√
c4t2 + c5t+ c6,

where all ci, i = 1, 2 . . . , 6 are arbitrary constants.

Case II. k1 = C 6= 0, k2 = 0

Keeping these choices of k1, k2 for the system (5.2) yields an uncoupled 2−dimensional

system of linear third order ODEs. Accordingly the set of equations (5.8)−(5.12) reduces

to

η1 + η1,xxx − y(η1,y − 3ξ,x) + zη1,z = 0 , (5.23)

η2 + η2,xxx − z(η2,z − 3ξ,x)− yη2,y = 0 . (5.24)

This gives

ξ = c3, (5.25)

η1 = c4y + c5z + v(x), (5.26)

η2 = c6y + c7z + w(x), (5.27)

where (v(x), w(x)) solves (5.2) with k1 = constant 6= 0 and k2 = 0. In this case we have

the following 11−dimensional Lie algebra

Xj = vj
∂

∂y
+ wj

∂

∂z
, j = 1, 2, . . . , 6,

X7 =
∂

∂x
, X8 = y

∂

∂y
, X9 = z

∂

∂z
, X10 = z

∂

∂y
, X11 = y

∂

∂z
, (5.28)
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where (vj, wj) are linearly independent solutions of (5.2).

A coupled system of nonlinear ODEs

2tvv′′′ + 6(tv′ + v)v′′ + 6v′2 + atv2 = 0,

vw′′′ + wv′′′ + 3w′v′′ + 3v′w′′ + avw = 0, (5.29)

where a is a constant, is transformable to

y′′′ + ay = 0, z′′′ + az = 0, (5.30)

via the linearizing transformation

t = x, v =
√
y/x, w = z

√
x/y. (5.31)

The nonlinear system (5.29) and the linear system (5.30) both have an 11−dimensional

algebra.

Case III. k1 = %(x) 6= 0, k2 = 0

In this case again an uncoupled system is obtained for which we find

c1 = c2 = c3 = 0. (5.32)

This leads to a 10−dimensional Lie algebra

Xj = vj
∂

∂y
+ wj

∂

∂z
, j = 1, 2, . . . , 6,

X7 = y
∂

∂y
, X8 = z

∂

∂z
, X9 = z

∂

∂y
, X10 = y

∂

∂z
, (5.33)

where (vj, wj) are linearly independent solutions of (5.2).

As an example of this case we consider the following nonlinear system

2tv′′′ + 2ww′′′ + 6w′w′′ + 6v′′ + 2t2v + tw2 = 0,

v4w′′′ − v2v′′′ + 6vv′v′′ − 6v′3 + v3 + tv4w = 0,

that has a 10−dimensional algebra. This system can be converted to a linear system of

the form

y′′′ + xy = 0, z′′′ + xz = 0,
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as it also has 10 Lie point symmetries. The point transformations that relate both the

nonlinear and linear systems is

x = t, y = w +
1

v
, z = 2tv + w2.

Case IV. k1 = 0, k2 = C 6= 0

Here we get

c1 = c2 = 0, c5 = −c6, c4 = c7, (5.34)

that yields a 9−dimensional Lie algebra

Xj = vj
∂

∂y
+ wj

∂

∂z
, j = 1, 2, . . . , 6 ,

X7 =
∂

∂x
, X8 = y

∂

∂y
+ z

∂

∂z
, X9 = z

∂

∂y
− y ∂

∂z
, (5.35)

where (vj, wj) are linearly independent solutions of (5.2) with k1 = 0 and k2 = non-zero

constant.

As an example of nonlinear and linear systems of ODEs that have 9−dimensional Lie

algebras consider

v′′′ + w3 = 0, 3w2w′′′ + 18ww′w′′ + 6w′3 + v = 0, (5.36)

and

y′′′ + z = 0, z′′′ + y = 0.

Both the systems have same 9 Lie point symmetries which guarantees existence of a point

transformation, which in this case is

x = t, y = w3, z = v.

Case V. Both k1 = C1 6= 0, k2 = C2 6= 0

Substitution of k1 and k2 in (5.2) leads to a coupled system of linear equations. Inserting

non-zero constants in place of k1, k2 in equations (5.8)−(5.12) gives

c1 = c2 = 0, c5 = −c6, c4 = c7. (5.37)
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which is the case IV, therefore yielding the same 9−dimensional Lie algebra.

The following nonlinear system can be taken as an illustration of this case

v2v′′′ − 6vv′v′′ + 6v′3 + v3 − v4w = 0, vw′′′ − vw − 1 = 0. (5.38)

The above system is linearizable to the system

y′′′ − y − z = 0, z′′′ + y − z = 0, (5.39)

via the linearizing transformation

t = x, v =
1

z
, w = y. (5.40)

The nonlinear system (5.38) and the linear system (5.39) both have a 9−dimensional Lie

algebra.

Case VI. k1 = %(x) 6= 0, k2 = C 6= 0

A coupled system is obtained here for which

c1 = c2 = c3 = 0, c5 = −c6, c2 = c7, (5.41)

that makes

ξ = 0,

η1 = c4y + c1z + v(x),

η2 = −c1y + c4z + w(x), (5.42)

resulting in the following 8−dimensional Lie algebra

Xj = vj
∂

∂y
+ wj

∂

∂z
, j = 1, 2, . . . , 6,

X7 = y
∂

∂y
+ z

∂

∂z
, X8 = z

∂

∂y
− y ∂

∂z
, (5.43)

where (vj, wj) are linearly independent solutions of (5.2).

Consider the following nonlinear system

tv′′′ + 3v′′ + t2v − v − w = 0, v′′′ + w′′′ + 2tv + tw = 0,
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that has an 8−dimensional Lie algebra. The transformation

t = x, v = y/x, w = z − y/x,

converts the above nonlinear system into the linear system of equations

y′′′ + xy − z = 0, z′′′ + y + xz = 0.

Case VII. k1 = %1(x) 6= 0, k2 = %2(x)

Considering %2(x) 6= 0 we have the subcases: (i) %1 = 0, (ii) %1 = C and

(iii) %1(x) = non− constant function of x. All of these subcases produce

c1 = c2 = c3 = 0, c5 = −c6, c2 = c7. (5.44)

So we have an 8−dimensional Lie algebra, that is similar to the case VI.

The linear system

v′′′ + 2w′′′ + t2v + t(2t+ 1)w + t3 = 0, w′′′ − tv + t(t− 2)w + t4 = 0,

can be mapped into the the linear system

y′′′ + x2y − xz = 0, z′′′ + xy + x2z = 0,

by using the point transformation

t = x, v = z − 2y + 2x2, w = y − x2,

Both of the above linear systems possess an algebra of 8 Lie point symmetries.

The following theorem emerges from the group classification performed in this section.

Theorem 5.2.1. CSA provides us five equivalence classes for a linear 2−dimensional

system of third order ODEs, namely, with 8−, 9−, 10−, 11−, and 13−dimensional Lie

algebras.



Chapter 6

Classification of scalar higher order

ODEs linearizable via generalized

contact and generalized Lie-Bäcklund

transformations

Three equivalence classes exist [48] for scalar third order ODEs linearizable via point

transformations. There is no classification provided for these equations linearizable via

contact transformations. Indeed IM [29,30] obtained the necessary form of scalar third or-

der ODEs linearizable via contact transformations, given by (2.20). However they neither

discussed its contact symmetries nor provided the classification for it. Here our aim is to

investigate the contact and higher order symmetries of linearizable scalar ODEs. In fact

we reduce a scalar third (fourth) order ODE to a system of two second order ODEs and

relate contact (higher order) symmetries of the scalar ODE with point symmetries of the

reduced system. In doing so we define new types of transformations that are more general

than contact and higher order tangent transformations and perform group classification

of scalar third and fourth order ODEs linearizable via these transformations [17,18].
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6.1 Generalized contact transformations

Consider an nth (n ≥ 3) order scalar ODE

y(n) = f(x, y, y′, y′′, . . . , y(n−1)). (6.1)

We substitute y′ = z in the above ODE. This reduces the above scalar ODE to the

following system of two ODEs of order n− 1

y(n−1) = z(n−2),

z(n−1) = f(x, y, z; z′, z′′, . . . , z(n−2)). (6.2)

A point transformation

t = ϕ(x, y, z), v = ψ1(x, y, z), w = ψ2(x, y, z), (6.3)

for the system (6.2) corresponds to a generalized contact transformation for the scalar nth

order ODE (6.1) with z = y′. The transformation (6.3) is actually the contact transfor-

mation without the contact condition.

The transformations (6.3) are generalized contact transformations for the scalar ODE

(6.1) in the sense that they involve the change of variable y′ by considering it as a separate

dependent variable z.

Now consider the general form of a linear scalar third order ODE

y′′′ = δ(x) + σ(x)y + α(x)y′ + β(x)y′′. (6.4)

Defining y′ = z we reduce the order to 2 and double the dimensions, i.e.

y′′ = z′,

z′′ = δ(x) + σ(x)y + α(x)z + β(x)z′. (6.5)

Here the variable z is actually the derivative of the variable y. For the purpose of the

group classification we replace the variable z by y′ and compare the corresponding system

of equations (6.5) with the canonical form (2.23) of the linear system of second order
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ODEs. Since (2.23) only depends explicitly on y′ and z′ so it gives δ(x) = 0 and σ(x) = 0.

The system (6.5) is now of the form

y′′ = z′,

z′′ = α(x)y′ + β(x)z′. (6.6)

This is the reduced form of the systems of second order ODEs that is obtained from a

scalar linear, third order ODE.

6.1.1 Group classification

In this section we perform the group classification on the system (6.6). Let

X(2) = ξ(x, y, z)
∂

∂x
+ η1(x, y, z)

∂

∂y
+ η2(x, y, z)

∂

∂z
+ η

(1)
1 (x, y, z)

∂

∂y′

+η
(1)
2 (x, y, z)

∂

∂z′
+ η

(2)
1 (x, y, z)

∂

∂y′′
+ η

(2)
2 (x, y, z)

∂

∂z′′
, (6.7)

be the symmetry generators for (6.6), then symmetry conditions read as

η
(2)
1 = X(1)(z′),

η
(2)
2 = X(1)(α(x)y′ + β(x)z′), (6.8)

where η
(2)
1 and η

(2)
2 are second order extension coefficients given by (1.53) and (1.56)

respectively. The symmetry conditions (6.8) give the following system of determining

PDEs

ξ,yy = ξ,yz = ξ,zz = 0, η1,zz − ξ,z = 0, η1,xx − η2,x = 0, (6.9)

η1,yy − 2ξ,xy − αξ,z = 0, η2,yy − αξ,y = 0, 2η2,zz − 2ξ,xz − ξ,y − 2βξ,z = 0, (6.10)

2η1,yz − 2ξ,xz − 2ξ,y − βξ,z = 0, 2η2,yz − 2ξ,xy − βξ,y − 2αξ,z = 0, (6.11)

2η1,xy − η2,y − ξ,xx + αη1,z = 0, 2η2,xy + αη2,z − βη2,y − αη1,y − (αξ),x = 0, (6.12)

2η1,xz + η1,y − η2,z − ξ,x + βη1,z = 0, 2η2,xz − αη1,z + η2,y − ξ,xx − (βξ),x = 0, (6.13)

η2,xx − αη1,x − βη2,x = 0. (6.14)
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The system of PDEs (6.9) gives the following solution

ξ = ya1(x) + za2(x) + a3(x), (6.15)

η1 =
1

2
z2a2 + za4(x, y) + a5(x, y), (6.16)

η2 =
1

2
z2a2,x + za4,x + a5,x + a6(y, z), (6.17)

where ai, (i = 1, 2, . . . , 6) are arbitrary functions of their arguments.

We now assume β(x) to be zero, nonzero constant and an arbitrary function of x and

consider the following cases.

Case I β(x) = 0

The system of PDEs (6.10)−(6.14) in this case takes the form

η1,yy − 2ξ,xy − αξ,z = 0, η2,yy − αξ,y = 0, 2η2,zz − 2ξ,xz − ξ,y = 0, (6.18)

2η1,yz − 2ξ,xz − 2ξ,y = 0, 2η2,yz − 2ξ,xy − 2αξ,z = 0, (6.19)

2η1,xy − η2,y − ξ,xx + αη1,z = 0, 2η2,xy + αη2,z − αη1,y − ξα,x − αξ,x = 0, (6.20)

2η1,xz + η1,y − η2,z − ξ,x = 0, 2η2,xz − αη1,z + η2,y − ξ,xx = 0, (6.21)

η2,xx − αη1,x = 0. (6.22)

The above system of PDEs is solved for different values of α(x).

Case I.1 Both α and β are zero

In this case the system of PDEs (6.18)−(6.22) reduces to

η1,yy − 2ξ,xy = 0, η2,yy = 0, 2η2,zz − 2ξ,xz − ξ,y = 0, (6.23)

2η1,yz − 2ξ,xz − 2ξ,y = 0, 2η2,yz − 2ξ,xy = 0, (6.24)

2η1,xy − η2,y − ξ,xx = 0, 2η2,xy = 0, (6.25)

2η1,xz + η1,y − η2,z − ξ,x = 0, 2η2,xz + η2,y − ξ,xx = 0, (6.26)

η2,xx = 0. (6.27)



6. Classification of scalar higher order linearizable ODEs 97

Solving the above system yields the following 15 Lie point symmetries:

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂z
, (6.28)

X4 = x
∂

∂y
, X5 = z

∂

∂y
, X6 =

1

2
x2

∂

∂y
+ x

∂

∂z
, (6.29)

X7 = z
∂

∂x
+

1

2
z2
∂

∂y
, X8 = x

∂

∂x
+

1

2
xz

∂

∂y
, (6.30)

X9 =
1

2
xz

∂

∂y
+ z

∂

∂z
, X10 = (

1

2
xz + y)

∂

∂y
, (6.31)

X11 =
1

2
x2

∂

∂x
+ xy

∂

∂y
+ y

∂

∂z
, (6.32)

X12 = x2
∂

∂x
+

1

2
(x2z + xy)

∂

∂y
+ xz

∂

∂z
, (6.33)

X13 = −1

2
xz

∂

∂x
+

1

4
z(xz + 2y)

∂

∂y
+

1

2
z2
∂

∂z
, (6.34)

X14 = (
1

2
xz + y)

∂

∂x
− 1

4
z(xz − 2y)

∂

∂y
, (6.35)

X15 = (
1

2
x2z − xy)

∂

∂x
+ (

1

4
x2z2 − y2) ∂

∂y
+ (

1

2
xz2 − yz)

∂

∂z
. (6.36)

Case I.2 α = α0 6= 0, β = 0

The system of PDEs (6.18)−(6.22) in this case yields a 15−dimensional Lie algebra. The

first three operators are X1,X2,X3, given by (6.28), while the remaining 12 operators are

Y1 = y
∂

∂y
+ z

∂

∂z
, (6.37)

Y2 = z
∂

∂y
+ α0y

∂

∂z
, (6.38)

Y3 = e
√
α0x

∂

∂y
+
√
α0e

√
α0x

∂

∂z
, (6.39)

Y4 = y
∂

∂x
+ zy

∂

∂y
+

1

2
(y2α0 + z2)

∂

∂z
, (6.40)

Y5 = z
∂

∂x
+

1

2
(y2α0 + z2)

∂

∂y
+ α0zy

∂

∂z
, (6.41)

Y6 = e−
√
α0x

∂

∂y
−
√
α0e

−√α0x
∂

∂z
, (6.42)

Y7 = e
√
α0x

∂

∂x
+
√
α0e

√
α0xy

∂

∂y
+ α0e

√
α0xy

∂

∂z
, (6.43)
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Y8 = e−
√
α0x

∂

∂x
−
√
α0e

−√α0xy
∂

∂y
+ α0e

−√α0xy
∂

∂z
, (6.44)

Y9 =
(z
√
α0 − α0y)e

√
α0x

√
α0

∂

∂y
+ (z
√
α0 − α0y)e

√
α0x

∂

∂z
, (6.45)

Y10 =
(z
√
α0 + α0y)e−

√
α0x

√
α0

∂

∂y
− (z
√
α0 − α0y)e−

√
α0x

∂

∂z
, (6.46)

Y11 =
(
√
α0y − z)e

√
α0x

√
α0

∂

∂x
+

(α0y
2 − z2)e

√
α0x

2
√
α0

∂

∂y
+

(α0y
2 − z2)e

√
α0x

2

∂

∂z
, (6.47)

Y12 =
(
√
α0y + z)e−

√
α0x

√
α0

∂

∂x
+

(α0y
2 − z2)e−

√
α0x

2
√
α0

∂

∂y
+

(α0y
2 − z2)e−

√
α0x

2

∂

∂z
.

(6.48)

Case I.3.1 α = (x± c)m, m 6= 2, or ex, β = 0

This case produces a 5−dimensional Lie algebra. The first three operators are X2,X3,Y1

given by (6.28) and (6.37).

Case I.3.2 α = (x± c)−2, β = 0

In this case we obtain a 6−dimensional Lie algebra.

Case II β(x) 6= 0

The following subcases arise:

Case II.1 α = 0, β = β0 6= 0

The system of PDEs (6.10)−(6.14) simplifies to

η1,yy − 2ξ,xy = 0, η2,yy = 0, 2η2,zz − 2ξ,xz − ξ,y − 2β0ξ,z = 0, (6.49)

2η1,yz − 2ξ,xz − 2ξ,y − β0ξ,z = 0, 2η2,yz − 2ξ,xy − β0ξ,y = 0, (6.50)

2η1,xy − η2,y − ξ,xx = 0, 2η2,xy − β0η2,y = 0, (6.51)

2η1,xz + η1,y − η2,z − ξ,x + β0η1,z = 0, 2η2,xz + η2,y − ξ,xx − β0ξ,x = 0, (6.52)

η2,xx − β0η2,x = 0, (6.53)

which produces a 7−dimensional Lie algebra. The first four of these operators are X1,X2,X3,Y1

given by (6.28) and (6.37) while the remaining three are

Y2 = x
∂

∂y
, Y3 = (−β0y + z)

∂

∂y
, Y4 =

eβ0x

β0

∂

∂y
+ eβ0x

∂

∂z
.



6. Classification of scalar higher order linearizable ODEs 99

Case II.2.1 α = α0 = β0 6= 0

In this subcase the system of PDEs (6.10−6.14) gives the following set of solution

ξ = c1, η1 = c2y + c3z + c4 + c5e
α1x + c6e

α2x,

η2 = c5α1e
α1x + c6α2e

α2x + c3(y + z)α0 + c2z + c7,

where

α1 =
1

2
(α0 +

√
α2
0 + 4α0), α2 =

1

2
(α0 −

√
α2
0 + 4α0),

and ci, (i = 1, 2, . . . , 7) are arbitrary constants. This yields a 7−dimensional Lie algebra

with X1, X2, X3 and Y1 given by (6.28) and (6.37). The other three operators are

Y2 = z
∂

∂y
+ α0(y + z)

∂

∂z
,

Y3 = eα1x
∂

∂y
+ α1e

α1x
∂

∂z
,

Y4 = eα2x
∂

∂y
+ α2e

α2x
∂

∂z
.

Case II.2.2 α = α0 6= 0 and β = β0 6= 0 with α0 6= β0

This case produces the following set of solution for the PDEs (6.10−6.14)

ξ = c1, η1 = c2y + c3z + c4 + c5e
β1x + c6e

β2x,

η2 = c5β1e
β1x + c6β2e

β2x + c3α0y + c3β0z + c2z + c7,

where

β1 =
1

2
(β0 +

√
β2
0 + 4α0), and β2 =

1

2
(β0 −

√
β2 + 4α0).

From above we get a 7−dimensional Lie algebras. The first four operators are given by

(6.28) and (6.37).

Case II.3 β = β0, α(x) = cxm, (x+ c)m,m = 1, 2

This case produces a 5−dimensional Lie algebra with first three generators X2,X3,Y1.
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Case II.4.1 α(x) = (cx± d)m, β(x) = (cx± d)m, m = 1, 2

Here we find a algebra with 6 Lie point symmetries.

Case II.4.2 α(x) = β(x) = x(−1), x(−2)

This case lies in the above case.

The system of PDEs (6.9)−(6.14) provides us four equivalence classes with 5, 6, 7

and 15 symmetries. These Lie point symmetries correspond to the generalized contact

symmetries for the scalar ODE (6.4). Thus we have the following theorem.

Theorem 6.1.1. A linear, scalar, third order ODE has one of 5, 6, 7 and 15 generators

of generalized contact transformations.

For the scalar fourth order ODE we can reduce it to a system of two third order ODEs

and following the same procedure we can find generalized contact symmetries of the scalar

ODE. We can also reduce scalar fourth and higher order ODEs to systems of second order

ODEs and investigate about its symmetries. For this purpose we generalize Lie-Bäcklund

transformation in the subsequent section.

6.2 Generalized Lie-Bäcklund transformations

Consider the general form of scalar nth order ODEs (6.1) with n ≥ 4. We define m to be

1 < m ≤ n

2
, if n is even

1 < m ≤ n− 1

2
, if n is odd.

We replace y(m) = z in (6.1) to form the following system of two ODEs

y(m) = z,

z(m) = f(x, y, z; z′z′′, . . . , z(m−1)), if n is even, (6.54)

and

y(m+1) = z′,

z(m+1) = f(x, y, z; z′z′′, . . . , z(m)), if n is odd. (6.55)



6. Classification of scalar higher order linearizable ODEs 101

A point transformation (6.3) for the above systems corresponds to a generalized Lie-

B äcklund transformation of order m for the scalar ODE (6.1) with y(m) = z. Generalized

Lie-Bäcklund transformations depend on the independent, dependent variables and the

mth order derivative of the dependent variable but do not require the contact conditions

(1.68) to hold.

Consider the general form of a linear, scalar, fourth order ODE

y(4) = π(x) + γ(x)y + ρ(x)y′ + λ(x)y′′ + %(x)y′′′. (6.56)

By taking y′′ = z will convert the above equation to a system of two second order ODEs

y′′ = z,

z′′ = π(x) + γ(x)y + ρ(x)y′ + λ(x)z + %(x)z′. (6.57)

We now identify the above system with the canonical form (2.24) of the linear system

of second order ODEs. The form (2.24) depend explicitly on y and z. This makes all

coefficients functions zero but γ(x) and λ(x). Hence we have the following reduced system

of linear second order ODEs

y′′ = z,

z′′ = γ(x)y + λ(x)z. (6.58)

6.2.1 Group classification

We now perform the group classification for the system of ODEs (6.58). Suppose X(2)

given by (6.7) be the symmetry generator for the system (6.58). The symmetry conditions
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give us the following set of determining PDEs

ξ,yy = ξ,yz = ξ,zz = 0, η1,zz = η2,yy = 0, η1,yy − 2ξ,xy = 0, (6.59)

η2,zz − 2ξ,xz = 0, η1,yz − ξ,xz = 0, η2,yz − 2ξ,xy = 0, η1,xz − zξ,z = 0, (6.60)

2η1,xy − ξ,xx − 3zξ,y − γyξ,z − λzξ,z = 0, η2,xy − λyξ,y − γzξ,y = 0, (6.61)

2η2,xz − ξ,xx − zξ,y − 3γyξ,z − 3λzξ,z = 0, (6.62)

−η2 + η1,xx + zη1,y − 2zξ,x + γyη1,z + λzη1,z = 0, (6.63)

ξyγ,x + ξzλ,x + η1γ + η2λ− η2,xx − zη2,y − γyη2,z + 2γyξ,x

−λzη2,z + 2λzξ,x = 0. (6.64)

The PDEs (6.59)−(6.62) yield the following set of solutions

ξ = a1(x), (6.65)

η1 = (
1

2
a1,x + c3)y + c1z + a2(x), (6.66)

η2 = c2y + (
1

2
a1,x + c4)z + a3(x), (6.67)

where ci, (i = 1, 2, 3, 4) are arbitrary constants and aj, (j = 1, 2, 3) are arbitrary functions

of x. We now substitute (6.65)−(6.67) into (6.63)−(6.64). After some calculations we get

ξ = a1(x), (6.68)

η1 = (
a1,x
2

+ c3)y + c1z + v(x), (6.69)

η2 = c2y + (
a1,x
2

+ c4)z + w(x), (6.70)

where (v, w) solves (6.58) and a1(x) satisfies

a1,xxx + 2c1γ − 2c2 = 0, (6.71)

2a1,x − c1λ− c3 + c4 = 0, (6.72)

2γa1,x + a1γ,x + (c3 − c4)γ + c2λ = 0, (6.73)

a1,xxx − 4λa1,x − 2λ,xa1 − c1γ + c2 = 0. (6.74)

We now consider different cases for γ(x) to be zero, nonzero constant and an arbitrary

function of x.



6. Classification of scalar higher order linearizable ODEs 103

Case I γ(x) = 0

With the substitution γ = 0 in (6.73), it becomes

c2λ = 0, (6.75)

which prompts the consideration of the following cases.

Case I.1 λ = 0, γ = 0

This makes c2 = 0. From (6.72) we get

a1 = (c3 − c4)
x

2
+ c5,

so that we have

ξ = (c3 − c4)
x

2
+ c5.

Therefore in this case we get the following 8−dimensional Lie algebra

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂y
, X4 = y

∂

∂y
+ z

∂

∂z
, (6.76)

X5 = z
∂

∂y
, X6 = x

∂

∂x
+ 2y

∂

∂y
, (6.77)

X7 =
1

6
x3

∂

∂y
+ x

∂

∂z
, X8 =

1

2
x2

∂

∂y
+

∂

∂z
. (6.78)

Case I.2 λ = λ0 6= 0, γ = 0

From (6.75) we get c2 = 0. From (6.74) we have a1,x = 0 which implies that a1 = c5.

Hence we get 7−dimensional Lie algebra. The first four operators are given by (6.76) and

the other three are

Y5 = z
∂

∂y
+ λ0z

∂

∂z
,

Y6 = e
√
λ0x

∂

∂y
+ λ0e

√
λ0x

∂

∂z
,

Y7 = e−
√
λ0x

∂

∂y
+ λ0e

−
√
λ0x

∂

∂z
.

Case I.3 λ(x) = ex, (cx+ d)m, (m = ±1, 2, ), γ = 0

In this case we find the following 5−dimensional Lie algebra

Yi = vj
∂

∂y
+ wj

∂

∂z
, i = 1, 2, 3, 4, (6.79)

Y5 = y
∂

∂y
+ z

∂

∂z
,
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where (vj, wj) are linearly independent solutions of (6.58).

Case I.4 λ(x) = (cx+ d)−2, γ = 0

This case produces a 6−dimensional Lie algebra. The first four operators are given by

(6.79). The extra two operators are

Y5 = y
∂

∂y
+ z

∂

∂z
, Y6 = x

∂

∂x
− 2z

∂

∂z
.

Case II γ(x) 6= 0

Here we have the following subcases.

Case II.1 γ = γ0, λ = 0

This case produces a1 = c5 and c2 = γc1. Hence we have a 7−dimensional Lie algebra.

The first four generators are given by (6.79) and extending generator is

Y5 =
∂

∂x
, Y6 = y

∂

∂y
+ z

∂

∂z
, Y7 = z

∂

∂y
+ γ0y

∂

∂z
.

Case II.2 γ = γ0, λ = λ0

In this case we have a 7−dimensional Lie algebra with Y1, Y2, Y3 and Y4 given by (6.79)

The additional two operators are given by

Y5 =
∂

∂x
, Y6 = y

∂

∂y
+ z

∂

∂z
, Y7 = z

∂

∂y
+ (γ0y + λ0z)

∂

∂z
.

Case II.3 γ = γ(x) 6= 0, λ = λ0

Here we get a 5−dimensional Lie algebra with first four operators given by (6.79). The

additional operator is

Y5 = y
∂

∂y
+ z

∂

∂z
.

Case II.4 γ = γ(x) 6= 0, λ = xm

This case produces the Lie algebra of case I.3.

The system of PDEs (6.59)−(6.64) provides us four equivalence classes with 5, 6, 7 and

8 symmetries. These Lie point symmetries are the generalized Lie-Bäcklund symmetries

of order 2 for a scalar fourth order linearizable ODE. Thus we have the following theorem.

Theorem 6.2.1. A linear, scalar, fourth order ODE has one of 5, 6, 7 and 8 generators

of generalized Lie-Bäcklund transformations of order 2.



Chapter 7

Conclusions and future directions

7.1 Conclusions

Nonlinear ODEs are difficult to solve but, if they can be converted to linear ones by

invertible transformations, they can be solved. Lie completely resolved the problem of the

use of point transformations for the case of scalar second order ODEs. However, he did

not extend to the higher order ODEs, to systems or to PDEs. For those he relied on his

general algorithms. In the thesis, we address the issue of linearization and classification

of scalar third and fourth order and systems of two third order ODEs. The classification

on the basis of symmetries puts the ODEs into the equivalence classes of linearizable

ODEs and hence makes them solvable. Not only this, but we get the general solution

of nonlinear ODEs. In order to tackle the problem of linearization and classification we

employed three types of transformations: (a) derivative independent transformations (b)

derivatives dependent transformations (c) complex transformations.

We started our work by presenting criteria for fourth order autonomous ODEs to

be reducible to linearizable third and second order ODEs. There are certain fourth order

ODEs, not depending explicitly on the independent variable, which cannot be linearized by

point or contact transformations but can be reducible to third order linearizable ODEs by

Meleshko’s method. The solution of the original equation is then obtained by a quadrature.
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Various fourth order ODEs with fewer symmetries can be reduced to linearizable form by

this procedure. The class of ODEs linearizable by Meleshko’s method is not included in

IM’s, IMS’ or conditionally linearizable classes [51,53] of the ODEs (though there can be an

overlap but it is not contained in that either). The reason is that it is not linearizable but

reducible to a lower order linearizable ODE. By using the concept of Meleshko linearization

a new class of scalar ODEs may be defined on the basis of initial conditions to be satisfied

by the ODEs.

Complex methods have been adopted to achieve linearization of the 2−dimensional

systems of ODEs with the help of the scalar, complex linearizable ODEs. By the complex

ODEs we extract systems with CR-structure on both the equations and employ the fibre

preserving point transformations with CR-structure, to derive the sufficient conditions of

linearization. Though by going complex we deal with the subclasses of higher dimensional

systems of higher order ODEs, it linearizes them in a trivial way that is impossible to

attempt with the real symmetry methods yet. When both the 2−dimensional systems of

ODEs and the point transformations have a specific CR-structure, then there is no need to

adopt the Lie procedure for nonlinear systems to obtain the linearization conditions. By

splitting the linearization criteria associated with the base equations due to the complex

fibre preserving point transformations, into the real and imaginary parts, leads to the

linearization conditions for the corresponding systems.

The c-linearization of 2−dimensional systems of second order ODEs is achieved earlier

by considering the scalar, second order, linearizable ODEs as complex. Their associated

linearization criteria are separated into the real and imaginary parts due to the complex

functions involved. In this thesis the linearizable form of c-linearizable systems has been

derived and it is shown to be (atmost) quadratically semilinear in the first order deriva-

tives. Moreover, the c-linearization criteria are proved to be the linearization criteria for

such 2-dimensional systems that are linearizable due to their correspondence with the

complex scalar ODEs. Using this fact, we also provided the linearization conditions for

2−dimensional systems of third order ODEs. The obtained linearizable form is (at most)

linear in second derivative and cubically semilinear in the first derivative.
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CSA is employed to tackle the problem of classification of linear systems of two third

order ODEs. We used the Laguerre canonical form of a complex, linear, scalar, third

order ODE to obtain the system of two linear third order ODEs. Five equivalence classes

are obtained from this linear system of ODEs. The allowed symmetry Lie algebras may

be 8−, 9−, 10−, 11− or 13−dimensional. The maximal symmetry case reduces to the

simplest equations y′′′ = 0, z′′′ = 0. Further, systems with 11 Lie point symmetries

are linearizable to the uncoupled systems with constant coefficients. The systems with

9−dimensional Lie algebras are those that are reducible to linear coupled systems with

constant coefficients. The systems of two third order ODEs that are linearizable to the

systems with variable coefficients have 10 and 8 Lie point symmetries. The former class

corresponds to uncoupled systems while the latter corresponds to coupled systems. It is

worth noting that in the maximal algebra there is a sub-algebra of three translations and

three scalings along the one independent and two dependent variables. There are also

“cross-scalings” between the one independent and two dependent variables, giving a total

of four such generators and then three generators with quadratic coefficients. The next

largest class has only five generators involving the independent and dependent variables,

namely one translation along the independent variable, two scalings along the dependent

variables and two “cross-scalings” between them. Then there are six extra generators

that involve the solutions of the equations as coefficients. For the next two cases there

is the translation along the independent variable and a scaling and rotation between the

dependent variables. These two correspond to the single complex scaling. For the next

two we lose the translation along the independent variable and only retain the complex

rotation as the real pair of scalings and rotations.

After presenting linearization criteria and classification of systems of two third order

ODEs, we turn to the problem of classification of scalar ODEs linearizable via derivative

dependent transformations. Though Leach and Mahomed [48] had shown that there are

three equivalence classes of third order scalar ODEs linearizable via point transformations,

no work on the symmetry group classification of these equations linearizable via contact

transformations was done. In fact IM [30] got the necessary form of a scalar third order
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ODE linearizable via contact transformations but there was no attempt to address the

classification problem with their methods. We found a connection between (generalized)

contact transformations of systems of order n with point transformations of the reduced

systems of order n − 1. By defining the first derivative of dependent variables to be new

variables we reduce the order of a system from n to n−1 and increase its dimension form m

to 2m. Point transformations for the lower order system correspond to generalized contact

transformations for the higher order system. We obtained the canonical form of scalar third

order ODEs linearizable via generalized contact transformations. This canonical form

gave us four equivalence classes for scalar third order ODEs depending on the number of

infinitesimal generators. Here we obtained group classification of a scalar third order ODE

by reducing it to a system of two second order ODEs. If the reduced system of ODEs

is linearizable then it can be solved by using geometric linearization [61]. In reducing a

scalar third order ODE to a system of two second order ODEs, the advantage of geometric

linearization could be availed, where we can find the solution of the system easily by simply

employing the coordinate transformations as the linearizing transformations.

A similar procedure is carried out to the fourth order scalar ODEs. We reduced

a linear scalar fourth order ODE to a system of two linear second order ODEs. Any

point transformation for the reduced system corresponds to a generalized Lie-Bäcklund

transformation of the scalar ODE. The reduced system of two linear second order ODEs

provided us four equivalence classes of such equations with 5, 6, 7 and 8 generalized

Lie-Bäcklund symmetries of order 2.

7.2 Future directions

In the last we will give some future directions associated with the work presented in the

thesis.

• We reduced the scalar fourth order ODEs to linearizable third and second order

equations. It would be interesting to apply the procedure to systems of third order

ODEs in the cases that the equations do not depend explicitly on one of the depen-
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dent variables or the independent variable. These systems can then be reduced to

systems of second order ODEs to apply the power of geometry. If they satisfy the

geometric linearization criteria they can then be solved easily.

• The concept of c-linearization can be generalized to the 2m−dimensional systems

of nth order ODEs by splitting the complex, linearizable, m−dimensional systems

of ODEs of the same order. There is a development [55] to obtain odd dimensional

systems by splitting iteratively starting with a scalar base equation. This procedure

may lead us to the linearization of m−dimensional system of second order ODEs,

by iteratively complexifying a scalar, second order, linearizable ODE.

• In the present work, we obtained point symmetry group classification of linear sys-

tems of two third order ODEs using complex methods. CSA may lead us to the

classification of the higher dimensional systems of higher order ODEs. Similarly,

the classification problem of such linearizable systems is addressable with the com-

plex methods. Presently, the symmetry classification and linearization of higher

dimensional systems of higher order ODEs seems to be exploitable only with CSA.

• A scalar third order linear ODE has three classes with 4, 5 and 10 contact symme-

tries. The maximal symmetry class with 15 generalized contact symmetries corre-

sponds to the maximal symmetry class of contact symmetries. It remains an open

problem to study the correspondence between the other classes of generalized contact

symmetries and those of contact symmetries. Also of great interest is to obtain the

linearization criteria via generalized contact transformations of systems of ODEs.

• Here we reduced a scalar fourth order ODE to a system of two linear second order

ODEs. We can reduce a scalar fourth order ODE to a system of two third order ODEs

and following the same procedure of group classification we can find generalized

contact symmetries of the scalar ODE. Similarly we can take it to higher order

ODEs to get equivalence classes of these equations by simply reducing scalar ODEs

to systems of ODEs. One could use the given procedure to find the equivalence
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classes of systems of higher order ODEs. We can also reduce a scalar fourth order

ODE, y(4) = f(x, y, y′, y′′, y′′′), to a system of three second order ODEs by following

two steps. In the first step we reduce it to a system of two third order ODEs

y′′′ = z′′, z′′′ = f(x, y, z; z′, z′′), (7.1)

by defining y′ = z. In the second step we define z′ = u to reduce (7.1) to system of

three ODEs of order two

y′′ = z′, z′′ = u′, u′′ = f(x, y, z, u;u′). (7.2)

Similarly any system of ODEs of order n ≥ 3 can be reduced in m steps to a system

of second order ODEs to use the power of geometry. In this way we can relate the

higher order symmetries of the scalar ODEs with the point symmetries of reduced

systems and can find the equivalence classes of the higher order ODEs. The m steps

of reduction of an ODE can be shrunk into one step by defining the second or higher

order derivative to be a new dependent variable. In this way the point symmetries

of the reduced system correspond to the generalized Lie Bäcklund symmetries of the

corresponding scalar ODE.

• This procedure could be carried out to reduce scalar nth order ODEs to systems of

lower order with three or more dimensions. As an example consider the scalar fifth

order ODE

y(5) = f(x, y; y′, y′′, y′′′, y(4)). (7.3)

By defining y′′ = z and z′ = u we can reduce it to a system of three ODEs of order

two

y′′ = z, z′′ = u′, u′′ = f(x, y, z, u; y′, u′), (7.4)

and investigate the point symmetries of the reduced system. We can also reduce the

scalar ODE (7.3) to a system of two third ODEs

y′′′ = z′′, z′′′ = f(x, y, z; y′, z′, z′′), (7.5)
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by defining y′′ = z′ and find the Lie point symmetries of the above system. It would

be interesting to find a connection between the equivalence classes of the systems

(7.4) and (7.5) and relate their point symmetries.

• In the thesis, we performed the classification of those systems that are linearizable

via generalized contact and generalized Lie Bäcklund transformations. Also of great

interest is to develop linearization criteria for such systems and relate the linearizable

classes of these systems. This is the start. There is much work that needs to be done

in this direction to explore new and interesting results about these transformations

and their equivalence classes. The equations linearizable via these transformations

may form a new class of ODEs that do not fall into IM’s, IMS’, Meleshko’s classes

of linearizable ODEs. In Lie’s programme there is no definite statement available

for the cases when the ODEs are not linearizable. By the recent developments this

gap may be filled.



Appendix A

A.1

The linearizing transformation is provided by the third order ODE

6
dχ

dx
− 3χ2 = 3b1 − a02 − 3a0,x, (A.1)

where

χ =
ϕ,xx
ϕ,x

, (A.2)

and by the following integrable system of partial differential equations

3ψ,uu = a1ψ,u, 3ψ,xu = (3χ+ a0)ψ,u ,

ψ,xxx = 3χψ,xx + b0ψ,u −
1

6
(3a0,x + a0

2 − 3b1 + 9χ2)ψ,x − Ωψ , (A.3)

where

Ω =
1

54
(9a0,xx + 18a0,xa0 + 54b0,u − 27b1,x + 4a0

3 − 18a0b1 + 18a1b0) , (A.4)

and

α = Ωϕ,x
−3. (A.5)
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A.2

c0 = 6λλ,u − 6λ,x + λc1 − λ2c2 , (A.6)

6λ,uu = c2,x − c1,u + λc2,u + c2λ,u, (A.7)

18d0 = 3λ2[λc1,u − 2c1,x − λc2,x + 3λ2c2,u − 12λ,xu]− 54(λ,x)
2

+6λ[3λ,xx + 15λ,xλ,u − 6λ(λ,u)
2 + (3c1 − λc2)λ,x]

+λ2[9(λc2 − 2c1)λ,u − 2c1
2 + 2λc1c2 + 4λ2c2

2 + 18λ2d4 − 72λ3d5] , (A.8)

18d1 = 9λ2c1,u − 12λc1,x − 27λ2c2,x + 33λ3c2,u − 36λλ,xu

+18λ,xx + 6(3c1 + 4λc2)λ,x − 3λ(6c1 + 7λc2)λ,u + 18λ(λ,y)
2

−18λ,xλ,u − 4λc21 − 2λ2c1c2 + 20λ3c22 + 72λ3d4 − 270λ4d5 , (A.9)

9d2 = 3λc1,u − 3c1,x − 21λc2,x + 21λ2c2,u + 15c2λx

−15λc2λ,u − c12 − 5λc1c2 + 14λ2c2
2 + 54λ2d4 − 180λ3d5 , (A.10)

3d3 = 3λc2,u − 3c2,x − c1c2 + 2λc22 + 12λd4 − 30λ2d5, (A.11)

54d4,x = 18c1,uu + 3c2c1,u − 72c2,xu − 39c2c2,x

+18λc2,uu − 3λc2c2,u + (72c2,u + 33c22)λ,u + 108d4λ,u

+270d5λ,x + 378λd5,x − 108λ2d5,y − 540λd5λ,y

+36λc1d5 − 8λc32 − 36λc2d4 + 108λ2c2d5 + 54λH , (A.12)

and

Hx = 3Hλ,u + λH,u , (A.13)
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where

H = d4,u − 2d5,x − 3λd5,u − 5d5λ,u − 2λc2d5

+
1

3
[c2,uu + 2c2c2,u − 2c1d5 + 2c2d4] +

4

27
c32 . (A.14)

The functions ϕ(x, u) and ψ(x, u) are found by the following system of equations:

ϕ,x = λϕ,y , ψ,x = −ϕ,uW + λψ,u, (A.15)

6ϕ,uϕ,uuu = 9(ϕ,uu)
2 + {15λad5 − 3d4 − c22 − 3c2,u}(ϕ,u)2, (A.16)

ψ,uuu = Wd5ϕ,u +
1

6
{15λd5 − c22 − 3d4 − 3c2,u}ψ,u −

1

2
Hψ

+3ϕ,uuψ,uu(ϕ,u)
−1 − 3

2
(ϕ,uu)

2ψ,u(ϕ,u)
−2 , (A.17)

where

3W,x = {c1 − λc2 + 6λ,u}W , 3W,u = c2W , (A.18)

and

α =
H

2(ϕ,u)3
. (A.19)
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A.3

c0 = 6λλ,u′ − 6λ,x + λc1 − λ2c2 , (A.20)

6λ,u′u′ = c2,x − c1,u′ + λc2,u′ + c2λ
′
u, (A.21)

18d0 = 3λ2[λc1,u′ − 2c1,x − λc2,x + 3λ2c2,u′ − 12λ,xu′ ]− 54(λ,x)
2

+6λ[3λ,xx + 15λ,xλ,u′ − 6λ(λu′)
2 + (3c1 − λc2)λ,x]

+λ2[9(λc2 − 2c1)λ,u′ − 2c1
2 + 2λc1c2 + 4λ2c2

2 + 18λ2d4 − 72λ3d5] , (A.22)

18d1 = 9λ2c1,u′ − 12λc1,x − 27λ2c2,x + 33λ3c2,u′ − 36λλx,u′

+18λ,xx + 6(3c1 + 4λc2)λ,x − 3λ(6c1 + 7λc2)λ,u′ + 18λ(λ,u′)
2

−18λ,xλ,u′ − 4λc21 − 2λ2c1c2 + 20λ3c22 + 72λ3d4 − 270λ4d5 , (A.23)

9d2 = 3λc1,u′ − 3c1,x − 21λc2,x + 21λ2c2,u′ + 15c2λ,x

−15λc2λ,y′ − c12 − 5λc1c2 + 14λ2c2
2 + 54λ2d4 − 180λ3d5 , (A.24)

3d3 = 3λc2,u′ − 3c2,x − c1c2 + 2λc22 + 12λd4 − 30λ2d5, (A.25)

54d4,x = 18c1,u′u′ + 3c2c1,u′ − 72c2,xu′ − 39c2c2,x

+18λc2,u′u′ − 3λc2c2,u′ + (72c,2u′ + 33c22)λ,u′ + 108d4λ,u′

+270d5λ,x + 378λd5,x − 108λ2d5,u′ − 540λd5λ
′
u

+36λc1d5 − 8λc32 − 36λc2d4 + 108λ2c2d5 + 54λH , (A.26)

and

H,x = 3Hλ,u′ + λH,u′ , (A.27)
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where

H = d4,u′ − 2d5,x − 3λd5,u′ − 5d5λ,u′ − 2λc2d5

+
1

3
[c2,u′u′ + 2c2c2,u′ − 2c1d5 + 2c2d4] +

4

27
c32 . (A.28)

A.4

(λ0C1 − 6λ0,u)u
′2 + (6λ0λ0,u′ + 4λ20 − λ20C2 − C0)u

′ − 4λ20 = 0 , (A.29)

(C2,u − C1,u′)u
′3 + (λ0C2,u′ + C2λ0,u′ − 4λ0,u′ − 6λ0,u′u′)u

′2

+(10λ0,u′ + 4λ0 − C2λ0)u
′ − 8λ0 = 0 , (A.30)

(−6λ20C1,u − 54(λ0,uy)
2 + 18λ0λ0,uu + 18λ0λ0,uC1 − 2λ20C

2
1)u′8

+(3λ30C1,u′ + 48λ20λ0,u − 3λ30C2,u − 36λ20λ0,uu′ − 6λ20λ0,uC2 − 18λ20λ0,u′C1

+2λ30C1C2 − 16λ30C1)u
′7 + (−60λ30λ0,u′ + 9λ40C2,u′ − 42λ20λ0,u

−36λ20(λ0,u′)
2 + 9λ30λ0,u′C2 + 14λ30C1 − 32λ40 + 8λ40C2 + 4λ40C

2
2

+18λ40D4)u
′6 + (44λ40 + 72λ20λ0,u′ − 18λ30λ0,u′ − 7λ40C2)u

′5

+(−20λ40)u
′4 − 72λ50D5 = 0, (A.31)

(−12λ0C1,u + 18λ0,uu′ + 18λ0,uC1 − 4λ0C
2
1)u′8 + (9λ20C1,u′ − 48λ0λ0,u

−27λ20C2,u − 36λ0λ0,uu′ − 18λ0,u + 72λ0λ0,u + 24λ0λ0,uC2 − 18λ0λ0,u′C1

−18λ0λ0,u′ − 32λ20C1 − 2λ20C1C2)u
′7 + (−18D1 − 36λ20λ0,u′ + 33λ30C2,u′

+6λ0λ0,u + 18λ20C1 − 21λ20λ0,u′C2 + 18λ0(λ0,u′)
2 − 64λ30 + 4λ20C1 − 8λ30C2

+20λ30C
2
2 + 72λ30D4)u

′6 + (52λ30 + 6λ20λ0,u′ + 13λ30c2)u
′5

+(−22λ30)u
′4 − 270λ40D5 = 0 , (A.32)
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(−3C1,u − C2
1)u′8 + (3λ0C1,u′ − 12λ0,u − 21λ0C2,u − 8λ0C1

+15λ0,uC2 − 5λ0C1C2)u
′7 + (−9d2 + 12λ0λ0,u′ + 21λ20C2,u′ − 30λ0,u

−15λ0λ0,u′C2 + 10λ0C1 − 20λ20C2 + 14λ20C
2
2 + 54λ20D4

−16λ20)u
′6 + (−9C0 + 28λ20 + 30λ0λ0,u′ + 13λ20C2)u

′5 + (−40λ20)u
′4

−180λ30D5 = 0 , (A.33)

(−3C2,u − C1C2)u
′7 + (−3D3 + 4C1 + 3λ0C2,u′ − 4λ0C2 + 2λ0C

2
2

+12λ0D4)u
′6 + (−4λ0 + 4λ0C2)u

′5 + (−λ0)u′4 − 30λ20D5 = 0 , (A.34)

(−54D4,u + 18C1,u′u′ + 3C2C1,u′ − 72C2,uu′ − 39C2C2,u)u
′8 + (24C2,u

+72λ0,u′u′ + 12C2λ0,u′ − 6C1,u′ + 36λ0C2,u′u′ − 3λ0C2C2,u′ + 72λ0,u′C2,u′

+33C2
2λ0,u′) + 108D4λ0,u′ + 54λ0d4,u′ + 36λ0C

2
2 + 18λ0C2u′u′)u

′7

+(−168λ0,u′ − 12λ0C2 − 138λ0C2,u′ − 24C2λ0,u′ − 33λ0C
2
2 − 36λ0D4)u

′6

+(168λ0 − 228λ0C2 + 60λ0,u′)u
′5 + (−120λ0)u

′4 + (270D5λ0,u

+270λ0D5,u)u
′2 + (54λ20D5,u′ − 810λ0λ0,u′D5)u

′ + 2160λ20D5 = 0 , (A.35)

and

(−H,u)u
′2 + (3Hλ0,u′ + λ0H,u′)u

′ − 3Hλ0 = 0 , (A.36)

where

H = (D4,u′ +
1

3
C2,u′u′ +

2

3
C2C2,u′ +

2

3
C2D4 +

4

27
C3

2)

+
1

u′
(−4

3
C2,u′ +

2

3
C2

2 −
4

3
D4 −

8

9
C2

2)

+
1

u′2
(−5

9
C2) +

1

u′3
(
40

27
) +

1

u′5
(−2D5,u −

2

3
C1D5)

+
1

u′6
(−3λ0D5,u′ − 5D5λ0,u′ − 2λ0C2D5 −

8

3
λ0D5)

+
1

u′7
(24λ0D5) . (A.37)



References

[1] N.H. Abel, Oeuvres Complètes, Grondahl and Son, Christiana, 1881.

[2] S. Ali, Complex Lie symmetries for differential equations, PhD thesis, National Uni-

versity of Sciences and Technology, 2009.

[3] S. Ali, F.M. Mahomed and A. Qadir, Complex Lie symmetries for variational prob-

lems, J. Nonlinear Math. Phys. 15 (2008) 25.

[4] S. Ali, F.M. Mahomed and A. Qadir, Complex Lie symmetries for scalar second order

ordinary differential equations, Nonlinear Anal-Real 10 (2009) 3335.

[5] S. Ali, F.M. Mahomed and A. Qadir, Linearization criteria for systems of two second

order differential equations by complex methods, Nonlinear Dynam. 66 (2011) 77.

[6] S. Ali, A. Qadir and M. Safdar, Linearization from complex Lie point transformations,

Journal of Applied Mathematics 2014 (2014) 793247.

[7] A.V. Aminova and N.A.M. Aminov, Projective geometry of systems of differential

equations: general conceptions, Tensor N.S. 62 (2000) 65.

[8] A.V. Aminova and N.A.M. Aminov, Projective geometry of systems of second-order

ordinary differential equations, Sbornik 197 (2006) 951.

[9] S.C. Anco and G. Bluman, Integrating factors and first integrals of ordinary differ-

ential equations, Eur. J. Appl. Math. 9 (1998) 245.

119



Bibliography 120

[10] M. Ayub, M. Khan and F.M. Mahomed, Algebraic linearization criteria for systems

of second order ordinary differential equations, Nonlinear Dynam. 67 (2012) 2053.

[11] Y.Y. Bagderina, Linearization criteria for a system of two second order ordinary

diffrerential equations, J. Phys. A: Math. Theor. 43 (2010) 465201.

[12] G.W. Bluman and S. Kumei, Symmetries of differential equations, Springer, Berlin,

1990.
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Meleshko presented a new method for reducing third order autonomous ordinary differen-
tial equations (ODEs) to Lie linearizable second order ODEs. We extended his work by
reducing fourth order autonomous ODEs to second and third order linearizable ODEs
and then applying the Ibragimov and Meleshko linearization test for the obtained ODEs.
The application of the algorithm to several ODEs is also presented.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

First order ODEs can always be linearized [1] by point transformations [2]. Lie [3] showed that all linearizable second or-
der ODEs must be cubically semi-linear, i.e.,

y00 þ a1ðx; yÞy03 � a2ðx; yÞy02 þ a3ðx; yÞy0 � a4ðx; yÞ ¼ 0 ð1Þ

the coefficients a1; a2; a3; a4 satisfy an over-determined integrable system of four constraints involving two auxiliary func-
tions, which Tresse wrote in more usable form [4]

3ða1a3Þx � 3a4a1y � 6a1a4y � 2a2a2x þ a2a3y � 3a1xx þ 2a2xy � a3yy ¼ 0;
3ða4a2Þy � 3a1a4x � 6a4a1x � 2a3a3y þ a3a2x þ 3a4yy � 2a3xy þ a2xx ¼ 0: ð2Þ

We call such equations Lie linearizable.
Chern [5,6] and Grebot [7,8] extended the linearization programme to the third order using contact and point transfor-

mations, respectively to obtain linearizability criteria for equations reducible to the forms u000ðtÞ ¼ 0 and u000ðtÞ þ uðtÞ ¼ 0. It
was shown [9] that there are three classes of third order ODEs that are linearizable by point transformations, viz. those that
reduce to the above two forms or u000ðtÞ þ aðtÞuðtÞ ¼ 0. Neut and Petitot [10] dealt with the general third order ODEs. Ibragi-
mov and Meleshko (IM) [11] used the original Lie procedure [3] of point transformation to determine the linearizability cri-
teria for third order ODEs. They showed that any third order ODE y000 ¼ f ðx; y; y0; y00Þ obtained from a linear equation
u000 þ aðtÞu ¼ 0 by means of point transformations t ¼ uðx; yÞ;u ¼ wðx; yÞ, must belong to one of the following two types of
equations.

http://dx.doi.org/10.1016/j.cnsns.2013.12.031
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Type I: If uy ¼ 0 the equations that are linearizable are of the form

y000 þ ða1y0 þ a0Þy00 þ b3y03 þ b2y02 þ b1y0 þ b0 ¼ 0: ð3Þ

Type II: If uy – 0 , set rðx; yÞ ¼ ux=uy , equations are of the form

y000 þ 1
y0 þ r

½�3ðy00Þ2 þ ðc2y02 þ c1y0 þ c0Þy00 þ d5y05 þ d4y04 þ d3y03 þ d2y02 þ d1y0 þ d0� ¼ 0; ð4Þ

where all coefficients ai; bi; ci; di, being the functions of x and y, satisfy certain constraint requirements. Afterwards [12,13]
used the point and contact transformations to determine the criteria for the linearizability of fourth order scalar ODEs. Mel-
eshko [14] provided a simple algorithm to reduce third order ODEs of the form y000 ¼ f ðy; y0; y00Þ to second order ODEs. If the
reduced equations satisfy the Lie linearizability criteria, they can then be solved by linearization. Meleshko showed that a
third order ODE is reducible to the second order linearizable ODE if it is of the form

y000 þ Aðy; y0Þy003 þ Bðy; y0Þy002 þ Cðy; y0Þy00 þ Dðy; y0Þ; ð5Þ

where the coefficients A;B;C;D satisfy certain constraints.
In the present paper we extend Meleshko’s procedure to the fourth order ODEs in the cases that the equations do not

depend explicitly on the independent or the dependent variable (or both) to reduce it to third (respectively second) order
equations. Once the order is reduced we can apply the IM (or Lie) linearization test. If the reduced third (or second) order
ODE satisfies the IM (or Lie) linearization test, then after finding a linearizing transformation, the general solution of the ori-
ginal equation is obtained by quadrature. So this method is effective in the sense that it reduces many ODEs, that cannot be
linearized, to lower order linearizable forms. This is one of the motivations for studying this method. Another hope for the
study of the linearization problem is that by using it we may be able to provide a complete classification of ODEs according to
the number of arbitrary initial conditions that can be satisfied [17].

2. Equations reducible to linearizable forms

Meleshko had only treated the special case of independence of x for third order ODE. We include independence of y for
completeness before proceeding to the fourth order.

2.1. Third order ODEs independent of y

Taking y0 as the independent variable uðxÞ, we convert the ODE

y000 ¼ f ðx; y0; y00Þ; ð6Þ

to the second order ODE

u00 ¼ f ðx;u;u0Þ; ð7Þ

which is linearizable by Lie’s criteria if it is cubically semi-linear with the coefficients satisfying conditions (2).
Hence (7) is reducible to second order linearizable form if and only if

f ðx; y0; y00Þ ¼ �cðx; y0Þy003 þ gðx; y0Þy002 � hðx; y0Þy00 þ dðx; y0Þ; ð8Þ

with the coefficients satisfying

3ðchÞx � 3dcy0 � 6cdy0 � 2ggx þ ghy0 � 3cxx þ 2gxy0 � hy0y0 ¼ 0;

3ðdgÞy0 � 3cdx � 6dcx � 2hhy0 þ hgx þ 3dy0y0 � 2hxy0 þ gxx ¼ 0: ð9Þ

2.2. Fourth order ODEs independent of y

Since the variable y is missing, by taking y0 as the new dependent variable uðxÞ, the ODE

yð4Þ ¼ f ðx; y0; y00; y000Þ; ð10Þ

is reduced to third order ODE

u000 ¼ f ðx;u;u0;u00Þ: ð11Þ

Eq. (11) is linearizable for the type I of Ibragimov and Meleshko’s criteria if and only if

f ðx; y0; y00; y000Þ ¼ �ða1y00 þ a0Þy000 � b3y003 � b2y002 � b1y00 � b0; ð12Þ

with the coefficients ai ¼ aiðx; y0Þ; ði ¼ 0;1Þ and bj ¼ bjðx; y0Þ; ðj ¼ 0;1;2;3Þ, satisfying the conditions
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a0y0 � a1x ¼ 0;

ð3b1 � a2
0 � 3a0xÞy0 ¼ 0;

3a1x þ a0a1 � 3b2 ¼ 0;

3a1y0 þ a2
1 � 9b3 ¼ 0;

ð9b1 � 6a0x � 2a2
0Þa1x þ 9ðb1x � a1b0Þy0 þ 3b1y0a0 � 27b0y0y0 ¼ 0: ð13Þ

Also the necessary and sufficient conditions for (11) to be linearizable for the type II of Ibragimov and Meleshko’s criteria are

f ðx; y0; y00; y000Þ ¼ �1
y00 þ r

½�3ðy000Þ2 þ ðc2y002 þ c1y00 þ c0Þy000 þ d5y005 þ d4y004 þ d3y003 þ d2y002 þ d1y00 þ d0� ð14Þ

and the coefficients ci ¼ ciðx; y0Þ; ði ¼ 0;1;2Þ , dj ¼ djðx; y0Þ; ðj ¼ 0;1;2;3;4;5Þ and r ¼ rðx; y0Þ have to satisfy constraint equa-
tions which can be produced simply by replacing y by y0 for the type II constraint equations in [11].

2.3. Fourth order ODEs independent of x

The transformation y0 ¼ uðyÞ will transform autonomous ODE of the fourth order

yð4Þ ¼ f ðy; y0; y00; y000Þ; ð15Þ

into the equation

u3u000 þ 4u2u0u00 þ uu03 � f ðy;u;uu0;u2u00 þ uu02Þ ¼ 0; ð16Þ

which is a third order ODE in ðy;uÞ. It is linearizable by Ibragimov Meleshko’s criteria if it is of the form (3) i.e.,

f ðy;u;u0u;u00u2 þ uu02Þ ¼ �u3½ða1u0 þ a0Þu00 þ b3u03 þ b2u02 þ b1u0 þ b0� þ 4u2u0u00 þ uu03; ð17Þ

where ai ¼ aiðy;uÞ; ði ¼ 0;1Þ and bj ¼ bjðy;uÞ; ðj ¼ 0;1;2;3Þ. With this (16) takes the form

u000 þ ða1u0 þ a0Þu00 þ b3u03 þ b2u02 þ b1u0 þ b0 ¼ 0: ð18Þ

Transforming (18) into a fourth order ODE with x as independent variable and y as dependent variable:

yð4Þ þ ðA1y00 þ A0Þy000 þ B3y003 þ B2y002 þ B1y00 þ B0 ¼ 0; ð19Þ

where

Ai ¼ Aiðy; y0Þ; ði ¼ 0;1Þ; Bj ¼ Bjðy; y0Þ; ðj ¼ 0;1;2;3Þ ð20Þ

subject to the identification of coefficients

a1 ¼ A1 þ
4
y0
; a0 ¼

A0

y0
; b3 ¼ B3 þ

A1

y0
þ 1

y02
;

b2 ¼
B2

y0
þ A0

y02
; b1 ¼

B1

y02
; b0 ¼

B0

y03
; ð21Þ

with the constraints

y02A1y � y0A0y0 þ A0 ¼ 0;

y02ð�3A0yy0 Þ þ y0ð3B1y0 þ 3A0y � 2A0A0y0 Þ þ ð�6B1 þ 2A2
0Þ ¼ 0;

y02ð3A1yÞ þ y0ðA0A1 � 3B2Þ þ A0 ¼ 0;

y02ð3A1y0 � 9B3 þ A2
1Þ � y0A1 � 5 ¼ 0;

y04ð�6A0yA1yÞ þ y03ð9B1A1y � 2A2
0A1y þ 9B1yy0 Þ þ y02ð�18B1y � 9A1B0y0 � 9B0A1y0 þ 3A0B1y0 � 27B0y0y0 Þ þ y0ð27A1B0

� 6A0B1 þ 126B0y0 Þ � 180B0

¼ 0: ð22Þ

Also in order to make (16) linearizable of type II of Ibragimov and Meleshko’s criteria we have to take

f ðy;u;uu0;u2u00 þ uu02Þ ¼ � u3

u0 þ r
½�3ðu00Þ2 þ ðc2u02 þ c1u0 þ c0Þu00 þ d5u05 þ d4u04 þ d3u03 þ d2u02 þ d1u0 þ d0�

þ 4u2u0u00 þ uu03; ð23Þ
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where ci ¼ ciðy;uÞ; ði ¼ 0;1;2Þ , dj ¼ djðy; uÞ; ðj ¼ 0;1;2;3;4;5Þ and r ¼ rðy;uÞ.
Considering the form (23) and converting (16) into fourth order with x as independent and y as dependent variable, we

have

yð4Þ þ 1
y00 þ r0

½�3ðy000Þ2 þ ðC2y002 þ C1y00 þ C0Þy000 þ D5y005 þ D4y004 þ D3y003 þ D2y002 þ D1y00 þ D0� ¼ 0; ð24Þ

where

Ci ¼ Ciðy; y0Þ; ði ¼ 0;1;2Þ; Dj ¼ Djðy; y0Þ; ðj ¼ 0;1;2;3;4;5Þ; r0 ¼ r0ðy; y0Þ;

subject to the identification of coefficients

c2 ¼ C2 �
2
y0
; c1 ¼ C1 þ

4r0

y0
; c0 ¼

C0

y02
; d5 ¼

D5

y05
;

d4 ¼ D4 þ
C2

y0
� 2

y02
; d3 ¼

D3

y0
þ C1

y0
þ 4r0

y02
� 3r0

y03
;

d2 ¼
D2

y02
þ C0

y03
; d1 ¼

D1

y03
; d0 ¼

D0

y04
; r ¼ r0

y0
; ð25Þ

with the constraints (43)–(51) (presented in the Appendix A).

2.4. Fourth order ODEs independent of x and y

By considering y0 as independent and y00 as dependent variable, we convert the equation

yð4Þ ¼ f ðy0; y00; y000Þ; ð26Þ

into a second order ODE:

u2u00 þ uu02 ¼ f ðy0;u;uu0Þ: ð27Þ

For (27) to be Lie-linearizable we must have

f ðy0;u;uu0Þ ¼ �u2½Aðy0;uÞu03 þ Bðy0;uÞu02 þ Cðy0;uÞu0 þ Dðy0;uÞ� þ uu02: ð28Þ

Hence (26) takes the form

yð4Þ þ aðy0; y00Þy0003 þ bðy0; y00Þy0002 þ cðy0; y00Þy000 þ dðy0; y00Þ ¼ 0; ð29Þ

where a; b; c and d must satisfy the constraints:

ð3ay0y0 Þy004 þ ð2bby0 � 3cay0 � 3acy0 � 2by0y00 Þy003 þ ð2by0 � bcy00 þ 3ay00dþ 6ady00 � cy00y00 Þy002 þ ðbc � 9ad� 3cy00 Þy00 � c ¼ 0;

ðby0y0Þy004 þ ðby0c þ 3dy00b� 3dy0a� 6ay0d� 2cy0y00 Þy003 þ ðcy0 þ 3dy00 � 6bdþ 3by00d� 2ccy00 þ 3dy00y00 Þy002 þ ð2c2 � 6d

� 12dy00 Þy00 þ 15d

¼ 0: ð30Þ

Thus we have the following theorems.

Theorem 1. Eq. (19) is reduced to the third order linearizable form if and only if it obeys (22).

Theorem 2. Eq. (24) is reduced to the third order linearizable form if and only if it obeys (43)–(51) (presented in the appendix
II).

Theorem 3. Eq. (29) is reduced to the second order linearizable form if and only if it obeys (30).

Remark. If we have a fourth order ODE of the form

yð4Þ ¼ �f ðx; yÞy05 þ 10
y00y000

y0
� 15

y003

y02
; ð31Þ

with f ðx; yÞ linear in x, then we can convert it to a linear ODE xð4Þ ¼ f ðx; yÞ by simply taking x as dependent and y as indepen-
dent variables.
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3. Illustrative examples

Example 1. The nonlinear fourth order ODE

y0yð4Þ � y00y000 � 3y02y000 þ 2y03y00 þ 3y05 ¼ 0; ð32Þ

cannot be linearized by point or contact transformation. It has the form (19) with the coefficients A1 ¼ �1=y0;A0 ¼ �3y0;
B3 ¼ B2 ¼ 0;B1 ¼ 2y02;B0 ¼ þ3y05. One can verify that these coefficients satisfy the conditions (22). The transformation
y0 ¼ uðyÞ will reduce this ODE to the 3rd order linearizable ODE

u000 þ 3
u

u0u00 � 3u00 � 3
u

u02 þ 2u0 þ 3u ¼ 0: ð33Þ

By using transformation equations in [11], we arrive at the transformation t ¼ ey; s ¼ u2 which maps (33) to the linear third

order ODE s000 þ 6s=t3 ¼ 0, whose solution is given by s ¼ c1t�1 þ c2t2cosð21=2 ln tÞ þ c3t2sinð21=2 ln tÞ, where ci are arbitrary
constants. By using the above transformation we get the solution of (33) given by u ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1e�y þ c2e2ycosð21=2yÞ þ c3e2ysinð21=2yÞ
q

. Hence the general solution of (32) is obtained by taking the quadrature
Z

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1e�y þ c2e2y cosð21=2yÞ þ c3e2y sinð21=2yÞ

q ¼ �xþ c4; ð34Þ

where ci are arbitrary constants.

Example 2. The nonlinear ODE

y2y02yð4Þ � 10y2y0y00y000 � 3yy03y000 þ 15y2y003 þ 9yy02y002 þ 3y04y00 ¼ 0; ð35Þ

is of the form (19) with the coefficients A1 ¼ �10
y0 ;A0 ¼ �3y0

y ;B3 ¼ 15
y02 ;B2 ¼ 9

y ;B1 ¼ 3y02

y2 ;B0 ¼ 0 satisfying the conditions (22). So it
is reduced to the third order linearizable ODE

y2u2u000 � 3yu2u00 � 6y2uu0u00 þ 3u2u0 þ 6yuu02 þ 6y2u03 ¼ 0; ð36Þ

with y as independent and u as dependent variable. The transformation t ¼ y2; s ¼ 1
u, reduces (36) to the linear third order

ODE s000 ¼ 0, whose solution is s ¼ c1t2 þ c2t þ c3. Now one only needs to solve the equation y0 ¼ 1=ðc1y4 þ c2y2 þ c3Þ, where
ci are arbitrary constants. Hence, the general solution of (35) is given by

x ¼ c1y5 þ c2y3 þ c3yþ c4:

Example 3. The ODE

y0y00yð4Þ � 3y0y0002 þ 6y03y002y000 � 4y002y000 � y0y005 ¼ 0; ð37Þ

has 2 symmetries. It is of the form (24) with the coefficients r0 ¼ 0;C2 ¼ 6y02 � 4
y0 ;C1 ¼ C0 ¼ 0; D5 ¼ �1;D4 ¼ D3 ¼ D2 ¼ D1

¼ D0 ¼ 0, obey the conditions (43)–(51). So it is reducible to linearizable third order ODE

u000 þ 1
u0
½�3u002 � yu05� ¼ 0: ð38Þ

The transformation t ¼ u; s ¼ y, will convert the nonlinear ODE (38) to the linear ODE s000 þ s ¼ 0 with solution

s ¼ c1e�t þ c2e
t
2 cos t þ c3e

t
2 sin t: ð39Þ

Finally to find the solution of (37), we only need to solve

y ¼ c1e�y0 þ c2e
y0
2 cos y0 þ c3e

y0
2 sin y0: ð40Þ

Example 4. The nonlinear ODE

y00yð4Þ þ y0003 � y0002 � y00y000; ð41Þ

is of the form (29) and the coefficients a ¼ 1
y00 ; b ¼ � 1

y00 ; c ¼ �y00; d ¼ 0, that satisfy conditions (30). So it is reduced to the lin-
earizable second order ODE u00 þ u03 � u0 ¼ 0. By using the transformation t ¼ u; s ¼ ey, we can reduce it to linear ODE
s00 � s ¼ 0, whose solution is given by s ¼ c1et þ c2e�t , where ci are arbitrary constants. So that solution of (41) is obtained
by solving the second order ODE

ey0 ¼ c1e�y00 þ c2ey00 ; ð42Þ

where ci are arbitrary constants.
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4. Concluding remarks

Nonlinear ODEs are difficult to solve but, if they can be converted to linear ones by invertible transformations, they can be
solved. Hence linearization plays a significant role in the theory of ODEs. In this paper we have presented criteria for fourth
order autonomous ODEs to be reducible to linearizable third and second order ODEs. There are certain fourth order ODEs, not
depending explicitly on the independent variable, which cannot be linearized by point or contact transformations but can be
reducible to linearizable third order ODEs by Meleshko’s method. The solution of the original equation is then obtained by a
quadrature. Various fourth order ODEs with fewer symmetries can be reduced to linearizable form by this procedure. The
class of ODEs linearizable by this method is not included in the Ibragimov and Meleshko classes or conditionally linearizable
classes [15,16] of the ODEs (though there can be an overlap but it is not contained in that either). The reason is that it is not
linearizable but reducible to linearizable form. In Lie’s programme there is no definite statement available for the cases when
the ODEs are not linearizable. By the recent developments this gap may be filled. By using the concept of Meleshko linear-
ization a new class of scalar ODEs may be defined on the basis of initial conditions to be satisfied by ODEs.

Appendix A

ðr0C1 � 6r0yÞy02 þ ð6r0r0y0 þ 4r2
0 � r2

0C2 � C0Þy0 � 4r2
0 ¼ 0; ð43Þ

ðC2y � C1y0 Þy03 þ ðr0C2y0 þ C2r0y0 � 4r0y0 � 6r0y0y0 Þy02 þ ð10r0y0 þ 4r0 � C2r0Þy0 � 8r0 ¼ 0; ð44Þ

ð�6r2
0C1y � 54ðr0yÞ2 þ 18r0royy þ 18r0r0yC1 � 2r2

0C2
1Þy08 þ ð3r3

0C1y0 þ 48r2
0r0y � 3r3

0C2y � 36r2
0r0yy0 � 6r2

0r0yC2

� 18r2
0r0y0C1 þ 2r3

0C1C2 � 16r3
0C1Þy07 þ ð�60r3

0r0y0 þ 9r4
0C2y0 � 42r2

0r0y � 36r2
0ðroy0 Þ2 þ 9r3

0r0y0C2 þ 14r3
0C1

� 32r4
0 þ 8r4

0C2 þ 4r4
0C2

2 þ 18r4
0D4Þy06 þ ð44r4

0 þ 72r2
0r0y0 � 18r3

0r0y0 � 7r4
0C2Þy05 þ ð�20r4

0Þy04 � 72r5
0D5 ¼ 0; ð45Þ

ð�12r0C1y þ 18royy0 þ 18r0yC1 � 4r0C2
1Þy08 þ ð9r2

0C1y0 � 48r0r0y � 27r2
0C2y � 36r0r0yy0 � 18r0y þ 72r0r0y þ 24r0r0yC2

� 18r0r0y0C1 � 18r0r0y0 � 32r2
0C1 � 2r2

0C1C2Þy07 þ ð�18D1 � 36r2
0r0y0 þ 33r3

0C2y0 þ 6r0r0y þ 18r2
0C1 � 21r2

0r0y0C2

þ 18r0ðr0y0 Þ2 � 64r3
0 þ 4r2

0C1 � 8r3
0C2 þ 20r3

0C2
2 þ 72r3

0D4Þy06 þ ð52r3
0 þ 6r2

0roy0 þ 13r3
0c2Þy05

þ ð�22r3
0Þy04 � 270r4

0D5 ¼ 0; ð46Þ

ð�3C1y � C2
1Þy08 þ ð3r0C1y0 � 12r0y � 21r0C2y � 8r0C1 þ 15royC2 � 5r0C1C2Þy07

þ ð�9d2 þ 12r0r0y0 þ 21r2
0C2y0 � 30r0y � 15r0r0y0C2 þ 10r0C1 � 20r2

0C2 þ 14r2
0C2

2 þ 54r2
0D4 � 16r2

0Þy06

þ ð�9C0 þ 28r2
0 þ 30r0r0y0 þ 13r2

0C2Þy05 þ ð�40r2
0Þy04 � 180r3

0D5 ¼ 0; ð47Þ

ð�3C2y � C1C2Þy07 þ ð�3D3 þ 4C1 þ 3r0C2y0 � 4r0C2 þ 2r0C2
2 þ 12r0D4Þy06 þ ð�4r0 þ 4r0C2Þy05

þ ð�r0Þy04 � 30r2
0D5 ¼ 0;

ð48Þ

ð�54D4y þ 18C1y0y0 þ 3C2C1y0 � 72C2yy0 � 39C2C2yÞy08 þ ð24C2y þ 72r0y0y0 þ 12C2r0y0 � 6C1y0 þ 36r0C2y0y0 � 3r0C2C2y0

þ 72r0y0C2y0 þ 33C2
2r0y0 Þ þ 108D4r0y0 þ 54r0d4y0 þ 36r0C2

2 þ 18r0C2y0y0 Þy07

þ ð�168r0y0 � 12r0C2 � 138r0C2y0 � 24C2r0y0 � 33r0C2
2 � 36r0D4Þy06 þ ð168r0 � 228r0C2 þ 60r0y0 Þy05

þ ð�120r0Þy04 þ ð270D5r0y þ 270r0D5yÞy02 þ ð54r2
0D5y0 � 810r0r0y0D5Þy0 þ 2160r2

0D5 ¼ 0; ð49Þ

and

ð�HyÞy02 þ ð3Hr0y0 þ r0H0yÞy0 � 3Hr0 ¼ 0; ð50Þ

where

H ¼ D4y0 þ
1
3

C2y0y0 þ
2
3

C2C2y0 þ
2
3

C2D4 þ
4

27
C3

2

� �
þ 1

y0
�4

3
C2y0 þ

2
3

C2
2 �

4
3

D4 �
8
9

C2
2

� �
þ 1

y02
�5

9
C2

� �
þ 1

y03
40
27

� �

þ 1
y05

�2D5y �
2
3

C1D5

� �
þ 1

y06
�3r0D5y0 � 5D5r0y0 � 2r0C2D5 �

8
3

r0D5

� �
þ 1

y07
ð24r0D5Þ: ð51Þ
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Abstract

Complex-linearization of a class of systems of second order ordinary
differential equations (ODEs) has already been studied with complex
symmetry analysis. Linearization of this class has been achieved ear-
lier by complex method, however, linearization criteria and the most
general linearizable form of such systems have not been derived yet. In
this paper, it is shown that the general linearizable form of the complex-
linearizable systems of two second order ODEs is (at most) quadrati-
cally semi-linear in the first order derivatives of the dependent variables.
Further, linearization conditions are derived in terms of coefficients of
system and their derivatives. These linearizable 2-dimensional complex-
linearizable systems of second order ODEs are characterized here, by
adopting both the real and complex procedures.
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1 Introduction

Most of the algorithms constructed to solve differential equations (DEs) with
symmetry analysis involve an invertible change of the dependent and/or inde-
pendent (point transformations) variables. For solving nonlinear DEs symme-
try analysis uses a tool called linearization, which maps them to linear equa-
tions under invertible change of the variables. Linearization procedure requires
the most general forms of the DEs that could be candidates of linearization and
linearization criteria that ensure existence of invertible transformations from
nonlinear to linear equations. Though construction of point transformations
and finally getting to an analytic solution of the concerned problem are also
involved in linearization process, these issues are of secondary nature as one
needs to first investigate linearizability of DEs. An explicit linearizable form
and linearization criteria for the scalar second order ODEs have been derived
by Sophus Lie (see, e.g., [3]). Similarly, linearization of higher order scalar
ODEs and systems of these equations attracted a great deal of interest and
studied comprehensively over the last decade (see, e.g., [4]-[11]).

Complex symmetry analysis has been employed to solve certain classes of
systems of nonlinear ODEs and linear PDEs. Of particular interest here, is
linearization of systems of second order ODEs (see, e.g., [1]-[2]) that is achieved
by complex methods. These classes are obtained from linearizable scalar and
systems of ODEs by considering their dependent variables as complex functions
of a real independent variable, which when split into the real and imaginary
parts give two dependent variables. In this way, a scalar ODE produces a
system of two coupled equations, with Cauchy-Riemann (CR) structure on
both the equations. These CR-equations appear as constraint equations that
restrict the emerging systems of ODEs to special subclasses of the general
class of such systems. These subclasses of 2-dimensional systems of second
order ODEs may trivially be studied with real symmetry analysis, however,
they appear to be nontrivial when viewed from complex approach. Complex-
linearizable (c-linearizable) classes explored earlier [1]-[2] and studied in this
paper provide us means to extend linearization procedure to m-dimensional
systems (m ≥ 3), of nth order (n ≥ 2) ODEs. Though these classes are subcases
of the general m-dimensional systems of nth order ODEs, their linearization
has not been achieved yet, with real symmetry analysis. Presently symmetry
classification and solvability of higher dimensional systems of higher order
ODEs seems to be exploitable only with complex symmetry analysis.

When linearizable scalar second order ODEs are considered complex by
taking the dependent variable as a complex function of a real independent
variable, they lead to c-linearization. The associated linearization criteria that
consist of two equations (see, e.g., [3]) involving coefficients of the second or-
der equations and their partial derivatives of (at most) order two, also yield
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four constraint equations for the corresponding system of two ODEs on split-
ting the complex functions involved, into the real and imaginary parts. These
four equations constitute the c-linearization criteria [1], for the correspond-
ing class of systems of two second order ODEs. The reason for calling them
c-linearization instead of linearization criteria is that, in earlier works, ex-
plicit Lie procedure to obtain linearization conditions of this class of systems,
was not performed after incorporating complex symmetry approach on scalar
ODEs. The most general form of the c-linearizable 2-dimensional linearizable
systems of second order ODEs is obtained here by real and complex methods.
This derivation shows that the general linearizable forms (obtained by real
and complex procedures) of 2-dimensional c-linearizable systems of second or-
der ODEs are identical. Moreover, associated linearization criteria have been
derived, again by adopting both the real and complex symmetry methods.
These linearization conditions are also shown to be similar whether derived
from real Lie procedure developed for systems or by employing complex sym-
metry analysis on scalar ODE. The core result obtained here is refinement
of the c-linearization conditions to linearization criteria for 2-dimensional sys-
tems of second order ODEs, obtainable from linearizable complex scalar second
order ODEs.

The plan of the paper is as follows. The second section presents derivation
of the linearizable form for the scalar second order ODEs and Lie procedure to
obtain associated linearization criteria. The subsequent section is on the lin-
earization of 2-dimensional c-lineariable systems of second order ODEs, by real
and complex symmetry methods. The fourth section contains some illustrative
examples. The last section concludes the paper.

2 A subclass of linearizable scalar second or-

der ODEs

The following point transformations

x̃ = φ(x, u), ũ = ψ(x, u), (1)

where φ and ψ are arbitrary functions of x and u, yield the most general form
of linearizable scalar second order ODEs

u′′ + α(x, u)u′3 + β(x, u)u′2 + γ(x, u)u′ + δ(x, u) = 0, (2)

with four arbitrary coefficients, that is cubically semi-linear in the first order
derivative of the dependent variable, for derivation see [3]. Restricting these
transformations to

x̃ = φ(x), ũ = ψ(x, u), (3)



2892 H.M. Dutt and M. Safdar

i.e., assuming φu = 0, leads to a quadratically semi-linear scalar second order
ODE that is derived here explicitly. Under transformations (3) the first and
second order derivatives of ũ(x̃) with respect to x̃ read as

ũ′ =
Dψ(x, u)

Dφ(x)
= λ(x, u, u′), (4)

and

ũ′′ =
Dλ(x, u, u′)

Dφ(x)
= µ(x, u, u′, u′′), (5)

respectively. Here

D =
∂

∂x
+ u′

∂

∂u
+ u′′

∂

∂u′
+ · · · , (6)

is the total derivative operator. Inserting the total derivative operator in both
the above equations leads us to the following

ũ′ =
ψx + u′ψu

φx

, (7)

and

ũ′′ =
φx(ψxx + 2u′ψxu + u′2ψuu + u′′ψu)− φxx(ψx + u′ψu)

φ3
x

, (8)

respectively. Equating (8) to zero, i.e., considering ũ′′ = 0, leaves a quadrati-
cally semi-linear ODE of the form

u′′ + a(x, u)u′2 + b(x, u)u′ + c(x, u) = 0, (9)

with the coefficients

a(x, u) =
ψuu

ψu

, b(x, u) =
2φxψxu − ψuφxx

φxψu

, c(x, u) =
φxψxx − ψxφxx

φxψu

. (10)

The quadratic nonlinear (in the first derivative) equation (9) with three co-
efficients (10) is a subcase of the general linearizable (cubically semi-linear)
second order ODE (2).

Now for the derivation of Lie linearization criteria of nonlinear equation
(9), we start with a re-arrangement

ψuu = a(x, u)ψu ,

2ψxu = φ−1x ψuφxx + b(x, u)ψu ,

ψxx = φ−1x ψxφxx + c(x, u)ψu . (11)
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of the relations (10). Equating the mixed derivatives of ψ, such that (ψxu)u =
(ψuu)x and (ψxu)x = (ψxx)u, we find

bu − 2ax = 0, (12)

and

φ−2x (2φxφxx − 3φ2
xx) = 4(cu + ac)− (2bx + b2). (13)

As φu = 0, differentiating (13) with respect to u, simplifies it to

cuu − axx − axb+ auc+ cua = 0. (14)

Equations (12) and (14) constitute the linearization criteria for the scalar sec-
ond order quadratically semi-linear ODEs.

3 Linearizable two dimensional c-linearizable

systems of second order ODEs

We derive c-linearization and Lie-linearization criteria for a system of two
second order ODEs.

3.1 C-linearization

Suppose u(x) in (9) be complex function of a real variable x i.e., u(x) =
y(x) + iz(x). Further assume that

a(x, u) = a1(x, y, z) + ia2(x, y, z) ,

b(x, u) = b1(x, y, z) + ib2(x, y, z) ,

c(x, u) = c1(x, y, z) + ic2(x, y, z) . (15)

This converts the scalar ODE (9) to a system of two second order ODEs of
the form

y′′ + a1y
′2 − 2a2y

′z′ − a1z′2 + b1y
′ − b2z′ + c1 = 0 ,

z′′ + a2y
′2 + 2a1y

′z′ − a2z′2 + b2y
′ + b2z

′ + c2 = 0 , (16)

with the coefficients aj, bj, cj; (j = 1, 2), satisfying the CR-equations

a1,y = a2,z, a1,z = −a2,y,
b1,y = b2,z, b1,z = −b2,y,
c1,y = c2,z, c1,z = −c2,y. (17)
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Moreover, conditions (12) and (14) can now be converted into a set of four
equations

2a1,x − b1,y = 0, (18)

2a2,x + b1,z = 0, (19)

c1,zz + a1,xx + a1,xb1 − a2,xb2 − (a2c1),z − (a1c2),z = 0, (20)

c2,yy − a2,xx − a2,xb1 − a1,xb2 + (a2c1),y + (a1c2),y = 0, (21)

by splitting the complex coefficients (17) into the real and imaginary parts.
As evident from [1], such a (complex) procedure leads us to c-linearization

of systems of ODEs. Our claim here is that equations (18-21) are actually the
linearization conditions despite of being just the c-linearization conditions for
system (16). In order to prove this fact, we now use Lie linearization approach
in the next subsection to derive the linearization conditions for system (16).

3.2 Lie linearization

The previous work on c-linearizable [1, 2] and their linearizable subclass of
systems [9, 10] of second order ODEs reveals that point transformations of the
form

x̃ = φ(x), ỹ = ψ1(x, y, z), z̃ = ψ2(x, y, z), (22)

where

ψ1,y = ψ2,z, ψ2,y = −ψ1,z, (23)

i.e., ψj, for j = 1, 2, satisfy the CR-equations that involve derivatives with
respect to both the dependent variables, linearizes the c-linearizable systems.
Notice that (22) are obtainable from (3) that is a subclass of (1). These
transformations map the first and second order derivatives as

ỹ′ =
Dψ1

Dφ
= λ1(x, y, z, y

′, z′), z̃′ =
Dψ2

Dφ
= λ2(x, y, z, y

′, z′), (24)

and

ỹ′′ =
Dλ1
Dφ

= µ1(x, y, z, y
′, z′, y′′, z′′), z̃′′ =

Dλ2
Dφ

= µ2(x, y, z, y
′, z′, y′′, z′′), (25)

where

D =
∂

∂x
+ y′

∂

∂y
+ z′

∂

∂z
+ y′′

∂

∂y′
+ z′′

∂

∂z′
+ · · · . (26)
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Inserting the total derivative operator in the above equations and simplifying,
we arrive at the following 2-dimensional system

y′′ + α1y
′2 − 2α2y

′z′ + α3z
′2 + β1y

′ − β2z′ + γ1 = 0,

z′′ + α4y
′2 + 2α5y

′z′ + α6z
′2 + β3y

′ + β4z
′ + γ2 = 0, (27)

where

α1 = φx∆−1(ψ2,zψ1,yy − ψ1,zψ2,yy), α2 = φx∆−1(ψ1,zψ2,yz − ψ2,zψ1,yz),

α3 = φx∆−1(ψ2,zψ1,zz − ψ1,zψ2,zz), α4 = φx∆−1(ψ1,yψ2,yy − ψ2,yψ1,yy),

α5 = φx∆−1(ψ1,yψ2,yz − ψ2,yψ1,yz), α6 = φx∆−1(ψ1,yψ2,zz − ψ2,yψ1,zz),

β1 = 2φx∆−1(ψ2,zψ1,xy − ψ1,zψ2,xy)−
φxx

φx

, β2 = 2φx∆−1(ψ1,zψ2,xz − ψ2,zψ1,xz),

β3 = 2φx∆−1(ψ1,yψ2,xy − ψ2,yψ1,xy), β4 = 2φx∆−1(ψ1,yψ2,xz − ψ2,yψ1,xz)−
φxx

φx

,

and

γ1 = ∆−1(φxψ1,yψ1,xx − ψ1,xψ1,yφxx − φxψ1,zψ2,xx + ψ1,zψ2,xφxx) ,

γ2 = ∆−1(φxψ1,zψ1,xx − ψ1,xψ1,zφxx + φxψ1,yψ2,xx + ψ1,yψ2,xφxx) , (28)

where

∆ = φx(ψ1,yψ2,z − ψ1,zψ2,y) 6= 0 , (29)

is the Jacobian of the transformation (22). The coefficients (10) of the scalar
ODE (9) split into the coefficients of the corresponding 2-dimensional sys-
tem of second order ODEs. This happens due to presence of the complex
dependent function u, in the coefficients (10). The restricted fibre preserving
transformations (22) used to derive the linearizable form (27), are obtainable
from the complex transformations (3) that are employed to deduce (9). There-
fore, transformations (22) along with (23) appear to be the real and imaginary
parts of complex transformation (3), they reveal the correspondence of the
linearizable forms of 2-dimensional systems and scalar complex ODEs. The
CR-equations are not yet incorporated in the linearizable form (27). Insertion
of the CR-equations (23) and their derivatives

ψ1,yy = ψ2,yz = −ψ1,zz,

ψ2,zz = ψ1,yz = −ψ2,yy, (30)

brings out the correspondence between the coefficients (10) of the complex
linearizable ODEs (9) and coefficients (28) of the system (27). Employing (23)
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and (30) the coefficients (28) reduces to only six arbitrary coefficients that read
as

α1 = −α3 = α5 = a1, α2 = α4 = −α6 = a2,

β1 = β4 = b1, β2 = β3 = b2, γ1 = c1, γ2 = c2. (31)

Here the coefficients aj, bj and cj are the real and imaginary parts of the
complex coefficients (10). The linearizable form of systems derived in this
section by real method appears to be the same as one obtains by splitting the
corresponding form of the scalar complex equation (9). This analysis leads us
to the following theorem.

Theorem 3.1 The most general form of the linearizable two dimensional
c-linearizable systems of second order ODEs is quadratically semi-linear.

3.2.1 Sufficient conditions for the linearization of a c-linearizable
system

Consider the most general form of the c-linearizable 2-dimensional systems
of second order ODEs (16), with constraint equations (17). Rewriting the
coefficients of the system (16) in the form

a1 = ∆−1φx(ψ1,yψ1,yy + ψ1,zψ1,yz),

a2 = ∆−1φx(ψ1,zψ1,yy + ψ1,yψ1,yz),

b1 = 2∆−1φx(ψ1,yψ1,xy + ψ1,zψ1,xz)−
φxx

φx

,

b2 = 2∆−1φx(ψ1,zψ1,xy + ψ1,yψ1,xz),

c1 = ∆−1(φxψ1,yψ1,xx − ψ1,xψ1,yφxx − φxψ1,zψ2,xx + ψ1,zψ2,xφxx),

c2 = ∆−1(φxψ1,zψ1,xx − ψ1,xψ1,zφxx + φxψ1,yψ2,xx + ψ1,yψ2,xφxx). (32)

For obtaining the sufficient linearizability conditions of (16), we have to solve
compatibility problem, that has already been solved for the scalar equations
earlier in this work, for the set of equations (32). It is an over determined
system of partial differential equations for the functions φ, ψ1 and ψ2 with
known aj, bj, cj.
The system (32) gives us

ψ1,yy = ψ1,ya1 + ψ1,za2 ,

ψ1,yz = ψ1,za1 − ψ1,ya2 ,

ψ1,xy =
1

2
(ψ1,yb1 + ψ1,zb2 + ψ1,y

φxx

φx

) ,

ψ1,xz =
1

2
(ψ1,zb1 − ψ1,yb2 + ψ1,z

φxx

φx

) ,
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ψ1,xx = ψ1,yc1 + ψ1,zc2 + ψ1,x
φxx

φx

,

ψ2,xx = ψ1,yc2 − ψ1,zc1 + ψ2,x
φxx

φx

.

The compatibility of the system (32) first requires to compute partial
derivatives

∆x = 2∆
φxx

φx

+ ∆b1 ,

∆y = 2∆a1 ,

∆z = −2∆a2 ,

of the Jacobian. Comparing the mixed derivatives (∆y)z = (∆z)y, (∆x)y =
(∆y)x and (∆x)z = (∆z)x, we obtain

a1,z + a2,y = 0 , (33)

2a1,x − b1,y = 0 , (34)

2a2,x + b1,z = 0 , (35)

respectively. Equating the mixed derivatives (ψ1,yy)z = (ψ1,yz)y, (ψ1,yy)x =
(ψ1,xy)y, (ψ1,xx)y = (ψ1,xy)x , (ψ1,xx)z = (ψ1,xz)x, (ψ1,xy)z = (ψ1,xz)y, (ψ2,xx)y =
(ψ2,xy)y and (ψ2,xx)z = (ψ2,xz)x gives us

a1,y − a2,z = 0, (36)

b2,y + b1,z = 0, (37)

b2,z − b1,y = 0, (38)

c2,z − c1,y = 0, (39)

c2,y + c1,z = 0, (40)

c1,zz + a1,xx + a1,xb1 − a2,xb2 − (a2c1),z − (a1c2),z = 0, (41)

c2,yy − a2,xx − a2,xb1 − a1,xb2 + (a1c2),y − (a2c1),y = 0. (42)

(43)

Note that (ψ1,yz)x− (ψ1,xz,)y = 0 and (ψ1,xy)z − (ψ1,yz)x = 0 are satisfied. Also
(33), (36), and (37)-(40) are CR-equations for the coefficients aj, bj, cj. There-
fore, the solution of the compatibility problem of the system (32), provides
CR-constraints on the coefficients of (16) and the linearization conditions.

Theorem 3.2 A two dimensional c-linearizable system of second order ODEs
of the form (16) is linearizable if and only if its coefficients satisfy the CR-
equations and conditions (34), (35), (41), (42).

These are the same conditions that are already obtained (18-21), by em-
ploying complex analysis, i.e., splitting the linearization conditions associated
with the base scalar equation (9), into the real and imaginary parts.
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Corollary 3.3 The c-linearization conditions for a two dimensional system
of quadratically semi-linear second order ODEs are the linearization conditions.

4 Examples

We present some examples to illustrate our results.

1. The 2-dimensional system of second order ODEs

y′′ − (
2y

y2 + z2
)y′2 − 2(

2z

y2 + z2
)y′z′ + (

2y

y2 + z2
)z′2 − 2

x
y′ − 2y

x2
= 0 ,

z′′ + (
2z

y2 + z2
)y′2 − 2(

2z

y2 + z2
)y′z′ − (

2z

y2 + z2
)z′2 − 2

x
z′ − 2z

x2
= 0 . (44)

is of the same form as (16) with

a1 =
−2y

y2 + z2
, a2 =

2z

y2 + z2
, b1 =

−2

x
, b2 = 0 , c1 =

−2y

x2
, c2 =

−2z

x2
.(45)

One can easily verify that (45) satisfy the conditions (34), (35), (41), (42) and
CR-equations w.r.t y and z. So the system of ODEs (44) is linearizable. The
transformation

t = x , u =
y

x(y2 + z2)
, v =

−z
x(y2 + z2)

, (46)

reduces the nonlinear system (44) to the linear system u′′ = 0 , v′′ = 0 .

2. Consider the following system of nonlinear ODEs

y′′ − 1

f(y, z)
(y′2 cos y sin y − z′2 cos y sin y − 2y′z′ cosh z sinh z) +

2y′

x
= 0 ,

z′′ − 1

f(y, z)
(y′2 cosh z sinh z − z′2 cosh z sinh z + 2y′z′ cosh y sinh y) +

2z′

x
= 0 ,(47)

where f(y, z) = sin2 y cosh2 z + cos2 y sinh2 y, and the coefficients satisfy the
CR-constraint and linearization conditions (34), (35), (41), (42). Hence The-
orem 2 guarantees that system (47) can be transformed to system of linear
equations u′′ = 0 , v′′ = 0. The linearizing transformations in this case are

t = x , u = x cos y cosh z , v = −x sin y sinh z . (48)

3. Consider the anisotropic oscillator system

y′′ + f(x)y = 0 ,

z′′ + g(x)z = 0 . (49)
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In [7] it is shown that system (49) is reducible to the free particle system
(u′′ = 0 , v′′ = 0) provided f = g. Our c-linearization criteria also leads to the
same condition, i.e. f = g.

5 Conclusion

C-linearization of 2-dimensional systems of second order ODEs is achieved
earlier by considering the scalar second order linearizable ODEs as complex.
Their associated linearization criteria are separated into the real and imaginary
parts due to complex functions involved. In this work, the c-linearization
and linearization are shown to be two different criteria for a 2-dimensional
systems of second order ODEs. Linearizable form of such c-linearizable systems
has been derived and it is shown to be quadratically semi-linear in the first
order derivatives. Moreover, complex linearization criteria have been refined
to linearization criteria for such 2-dimensional systems that are linearizable
due to their correspondence with the complex scalar ODEs.

Earlier in this work, c-linearizable classes of systems of ODEs are claimed
to be non-trivial, when viewed from complex approach. The reason for calling
them non-trivial is that the concept of c-linearization of systems of ODEs is
extendable to m-dimensional systems of nth order ODEs. The simplest pro-
cedure that might lead us to linearization of m-dimensional system of second
order ODEs, is to iteratively complexify a scalar second order linearizable
ODE. Therefore, complex symmetry analysis needs to be extended to 2- and
3-dimensional systems of third and second order ODEs, respectively, in order
to derive the general linearization results mentioned above. Likewise, com-
plex symmetry analysis may lead us to algebraic classification of the higher
dimensional systems of higher order ODEs.
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