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Abstract 

In this thesis approximate Lie symmetry methods for differential equations are used to 

investigate the problem of energy in general relativity and in particular in 

gravitational waves. For this purpose second-order approximate symmetries of the 

system of geodesic equations for the Reissner-Nordström (RN) spacetime are studied. 

It is shown that in the second-order approximation, energy must be rescaled for the 

RN spacetime. 

 

Then the approximate symmetries of a Lagrangian for the geodesic equations in the 

Kerr spacetime are investigated. Taking the Minkowski spacetime as the exact case, it 

is shown that the symmetry algebra of the Lagrangian is 17 dimensional. This algebra 

is related to the 15 dimensional algebra of conformal isometries of the Minkowski 

spacetime. First introducing spin angular momentum per unit mass as a small 

parameter first-order approximate symmetries of the Kerr spacetime as a first 

perturbation of the Schwarzschild spacetime are considered. We then investigate the 

second-order approximate symmetries of the Kerr spacetime as a second perturbation 

of the Minkowski spacetime.  

 

Next, second-order approximate symmetries of the system of geodesic equations for 

the charged-Kerr spacetime are investigated. A rescaling of the arc length parameter 

for consistency of the trivial second-order approximate symmetries of the geodesic 

equations indicates that the energy in the charged-Kerr spacetime has to be rescaled. 

 

Since gravitational wave spacetimes are time-varying vacuum solutions of Einstein's 

field equations, there is no unambiguous means to define their energy content. Here a 

definition, using slightly broken Noether symmetries is proposed. A problem is noted 

with the use of the proposal for plane-fronted gravitational waves. To attain a better 

understanding of the implications of this proposal we also use an artificially 

constructed time-varying non-vacuum plane symmetric metric and evaluate its Weyl 

and stress-energy tensors so as to obtain the gravitational and matter components 

separately and compare them with the energy content obtained by our proposal. The 

procedure is also used for cylindrical gravitational wave solutions. The usefulness of 

the definition is demonstrated by the fact that it leads to a result on whether 

gravitational waves suffer self-damping. 
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Chapter 1

Preliminaries

1.1 Introduction

Among all the theories of gravitation Einstein�s theory of General Relativity (GR) is the most

generally accepted. According to GR the gravitating matter alters the geometry of its sur-

roundings and thus the behavior of nearby bodies. GR gives correct results even for strong

gravitational forces (where Newton�s theory fails) and agrees with Newton�s theory for weak

gravitational forces. It is expressed in terms of pseudo-Riemannian geometry. Here the four di-

mensional spacetime is represented by a Lorentzian manifold M , having signature (+;�;�;�)

with metric tensor gab and the stress-energy tensor Tab (a; b = 0; 1; 2; 3). The curvature of the

spacetime is given by the Riemann curvature tensor Rabcd. Einstein�s �eld equations (EFEs)

Rab �
1

2
Rgab + �gab = �Tab; (1.1)

provide a relation between the geometry and the distribution of matter in spacetime, where R

is the trace of the Ricci tensor Rab, which itself is the trace of the curvature tensor Rabcd. The

stress-energy tensor corresponds to the real distribution of matter. The gravitational coupling

constant � = 8�G=c4; where G is Newton�s gravitational constant, c is the speed of light and

�; called the cosmological constant, is negligible in all non-cosmological situations. Equations

(1.1) constitute a system of ten non-linear partial di¤erential equations to determine the twenty

unknown functions, ten gab and ten Tab (as both are symmetric tensors). Due to non-linearity
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this system is very di¢ cult to solve analytically unless some constraints or geometric symmetries

are imposed on the metric tensor. A metric tensor is called an exact solution [1] of (1.1) if it

de�nes a physically acceptable Tab.

The �rst exact solution of the EFEs was obtained by Schwarzschild in 1916, just after the

formulation of the theory. This is a spherically symmetric static vacuum solution, i.e. for which

Rab = 0: This spacetime admits 4 Killing Vectors (KVs) which gives the conservation laws of

energy, angular momentum and azimuthal angular momentum. Another important spherically

symmetric static solution of EFEs is the Reissner-Nordström (RN) solution, which represents

the �eld of a point massive electric charge at rest at the origin. For this spacetime Rab 6= 0:

This spacetime also admits the same four conservation laws. Yet another well-known spacetime

of GR is the Kerr spacetime. This spacetime is an axially symmetric, stationary solution

of the vacuum EFEs. This spacetime admits 2 KVs which give the conservation of energy

and azimuthal angular momentum. Besides, there are non-static solutions of vacuum EFEs

which represent gravitational waves (GWs). These are �uctuations in spacetime. In Maxwell�s

theory of electromagnetism accelerated charges emit electromagnetic waves. In a similar way

in Einstein�s theory of GR accelerated masses produce GWs. The �rst exact cylindrical wave

solution was given by Einstein and Rosen in 1937. Then Bondi and Robinson gave the exact

plane wave solution in 1957. Linearization of GR naturally leads to the prediction of GWs.

They have never been directly detected but e¤orts are now underway to detect them from

astrophysical sources, which will bring the researchers an additional tool to study the universe

(see for example [2, 3]). Newton�s theory of gravitation implies that the binary period of two

point masses (e.g., two stars) moving in a bound orbit is strictly a constant quantity. However,

GR predicts that two stars revolving around each other in a bound orbit su¤er accelerations

and as a result gravitational radiation is emitted.

The de�nition of energy has been one of the most thorny and important problems in GR.

In contrast to Newton�s theory of gravity, energy is not a well de�ned concept in GR. In the

context of Classical Mechanics the Hamiltonian in the Poisson bracket acts as a time derivative

for a conservative system. Thus energy is a conserved and well de�ned quantity. Therefore it

is clear that for energy to be conserved in GR, the spacetime must have a time-like KV, so as

to allow time-translational invariance. If the spacetime is static there is a time-like isometry or
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KV, which can be used to de�ne the energy of a test-particle. Namely if the KV is k and the

momentum of the test-particle is p, the energy of the test-particle is given by E = k:p. Further

energy conservation in the spacetime is guaranteed in the frame using k to de�ne time direction.

However if there does not exist a time-like KV, energy is not conserved and hence energy of a

test particle can also not be de�ned. Since GWs must be given by non-static spacetimes the

problem of de�ning the energy content of GWs is particularly severe.

There have been several attempts [4, 5, 6] to obtain a well de�ned expression for local

or quasi-local energy and momentum in GR. However, there is still no generally accepted

de�nition known. As a result, di¤erent people have di¤erent points of view. Cooperstock [7]

argued that in GR, energy and momentum are localized in regions of the non-vanishing energy

and momentum tensor and consequently GWs are not carriers of energy and momentum in

vacuum. By de�nition GWs, have zero stress-energy tensor. Therefore the existence of these

waves was questioned. However, GR indicates the existence of GWs as solutions of EFEs [1].

The problem for GWs was attempted by Weber and Wheeler [8] and Ehlers and Kundt

[9]. They considered a sphere of test particles in the path of the waves. Weber and Wheeler

gave an approximate formula for momentum imparted to test particles by cylindrical GWs.

Ehlers and Kundt showed that plane waves impart a constant momentum to the test particles

in their path. Qadir and Sharif [10] presented an operational procedure, embodying the same

principle, that gave a closed formula for the momentum imparted by GWs to the test particles.

Rosen used the energy-momentum pseudo-tensors of Einstein [11] and Landau-Lifshitz [12] and

carried out calculations in cylindrical polar coordinates [13]. He concluded that the energy

and momentum density components vanish for cylindrical GWs. These results supported the

Scheidegger�s conjecture [14] that a physical system cannot radiate gravitational energy. Later,

Rosen pointed out [15] that if the calculations are performed in Cartesian coordinates the energy

and momentum densities turn out to be non-vanishing and reasonable. Rosen and Virbhadra

[16] used Einstein�s prescription by using Cartesian coordinates and found these quantities �nite

and well de�ned. Then Virbhadra [17] used the prescriptions of Tolman, Landau-Lifshitz and

Papapetrou to evaluate the energy and momentum densities and showed that the same results

hold in all these prescriptions.

Energy and momentum conservation are described by the requirement that the divergence of
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the stress-energy tensor is zero. In GR, the partial derivative in the usual conservation equation

T ba;b = 0; is replaced by a covariant derivative. The tensor T ba then represents the energy

and momentum of matter and all non-gravitational �elds and no longer satis�es T ba;b = 0:

A contribution from the gravitational �eld must be added to obtain an energy-momentum

expression with zero divergence. Following Einstein and Landau-Lifshitz, Papapetrou gave

similar prescriptions [18]. Comparatively recently Weinberg gave another similar prescription

[19]. The expressions they gave are called energy-momentum complexes because they can be

expressed as a combination of T ba and a pseudo-tensor, which is interpreted to represent the

energy and momentum of the gravitational �eld. These complexes have been criticized because

they are coordinate dependent and hence non-tensorial. One can get physically meaningful

results for the Einstein, Landau-Lifshitz, Papapetrou, Weinberg (ELLPW) energy-momentum

complexes, only in Cartesian coordinates [12, 20, 21]. Due to the coordinate dependence many

others, including Møller [22], Bondi [23], Komar [24], Ashtekar-Hansen [25] and Penrose [4],

have proposed coordinate independent de�nitions. Møller realized that the use of a tetrad as

the �eld variable, instead of a metric, makes it possible to introduce a �rst order Lagrangian

for the EFEs. Bondi studied the isolated sources of radiative spacetime and observed that

the 2-surface integral of a certain expansion coe¢ cient of the line element of that spacetime

in an asymptotically retarded spherical coordinate system (u; r; �; �) behaves as the energy of

the system at the retarded time u. Komar introduced a tensorial super-potential which is

independent of any background structure and is unique property. Ashtekar and Hansen de�ned

the angular momentum in their speci�c conformal model of the spatial in�nity as a certain

2-surface integral near in�nity. Penrose de�ned quasi-local energy-momentum and angular

momentum using twistor-theoretical idea. However, each of these, has its own drawbacks

[22, 26, 27]. Here we mention some prescriptions relating to the evaluation of energy, some of

which are also discussed in [28].

1.1.1 Di¤erent Prescriptions to Evaluate Energy and Momentum in GR

As mentioned above, all stress-energy pseudo-tensors de�ned satisfy the local conservation law

with the partial derivative.
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(a) Einstein�s Prescription

First of all Einstein attempted the problem of energy and momentum in GR. He gave the

energy-momentum complex [11]

	ba =
1

16�
Lbca;c ; (1.2)

where

Lbca =
gadp�g [�g(g

bdgce � gcdgbe)];e (1.3)

and we have used the Einstein summation convention here and hereafter.

(b) Landau-Lifshitz�s Prescription

After Einstein Landau and Lifshitz tried to resolve the problem of energy and momentum in

GR. They gave the energy-momentum complex [12]

�ab =
1

16�
P acbd;cd ; (1.4)

where

�ab = �g(T ab + tab); (1.5)

P abcd = �g[�g(gabgcd � gacgbd)]: (1.6)

Here �ab is symmetric in indices a and b while P abcd has symmetries of the Riemann curvature

tensor, tab is known as the Landau-Lifshitz pseudo-tensor. The locally conserved quantity �ab

contains contributions from the matter, non-gravitational �elds and gravitational �elds as well.

(c) Papapetrou�s Prescription

The energy-momentum complex of Papapetrou [18] is given by

�ab =
1

16�
Kabcd

;cd; (1.7)
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where

Kabcd =
p
�g[gab�cd � gacgbd + gcd�ab � gbdgac]; (1.8)

and �ab is the Minkowski metric.

(d) Weinberg�s Prescription

Weinberg energy-momentum complex is given by [19]

W ab =
1

16�

abc;c ; (1.9)

where


abc = he;ae �bc � he;be �ac � hea;e �bc + heb;e �ac + hac;b � hbc;a; (1.10)

and hab = gab � �ab: (1.11)

(e) Møller�s Prescription

The energy-momentum complex of Møller is given by [21]

M b
a =

1

8�
�bca;c ; (1.12)

where

�bca =
p
�g(gad;e � gae;d)gbegcd: (1.13)

Beside the idea of pseudo-tensor there were some other attempts to resolve the problem of

energy in GR. Below we discuss few of them which are more relevant for our further discussion.

(f) Komar�s Integral

Komar using his de�nition of approximate symmetry [29], wrote down an integral for the mass

(energy) in a spacetime [24]

M =
1

8�

Z
S2
�de�; (1.14)

9



where e� is the time-like Killing 1-form for the exact symmetry, �de� the dual of the 2-form de�
and S2 is the 2-surface [30]. First Cohen and de Felice [31] and then Chellathurai and Dadhich

[32] used this integral to calculate the e¤ective mass of RN, Kerr and charged-Kerr spacetimes.

For our purpose, this formulation will be discussed in more detail in chapter 4.

(g) Qadir-Sharif �s formula for momentum imparted to test particles by GW

This prescription [10] does not give the energy-momentum tensor in the �eld but the momentum

imparted to test particles. The momentum 4-vector whose proper time derivative is Fa, is given

by

pa =

Z
Fadt; (1.15)

where

F0 =M [fln A
p
g00
g;0 �

g��;0g
��
;0

4A
]; Fi =M(ln g00);i; (1.16)

and A = (ln
p
�g);0. (1.17)

The spatial components of pa give the momentum imparted to test particles as de�ned in the

preferred frame (in which g0� = 0).

(h) Christodoulou-Thorne�s memory e¤ect

The �memory� of GW burst is the permanent displacement of the test masses of a laser in-

terferometer detector after a wave train passes through it [33, 34]. This memory in general

equals the change from before the burst to afterward, in the transverse traceless part of the 1=r

Coulomb-type gravitational �eld generated by the four-momenta of the source�s various inde-

pendent pieces. Christodoulou [35], pointed out that the previous linearized theory calculations

missed the gravitational self-interaction e¤ect. The nonlinear memory due to the cumulative

contribution of the e¤ective stress of the gravitational waves themselves gives a measurable

correction. Thorne [36] discussed this idea in a more physically intelligible way and argued that

the contribution due to the nonlinear e¤ects are already included in the expression given in

[33, 34].
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(i) Isaacson�s stress-energy tensor

Isaacson [37] assumed that the wavelength of the gravitational wave is much smaller than

the radius of curvature of the background geometry. This led to a gauge-invariant �rst-order

approximation procedure. It was argued that the gravitational �eld is remarkably similar to

the electromagnetic �eld in the behavior of its amplitude, frequency and polarization. Then

the results of this linear approximation were extended to incorporate some of the essential

features of the EFEs. It was found that in the high-frequency limit the gravitational �eld

has a natural gauge-invariant stress (true) tensor. Like the Maxwell stress tensor, this stress

tensor for gravitational waves involves only �rst derivatives of the �eld. This gives the freedom

to introduce a Poynting vector to describe the �ow of energy and momentum, and acts as a

source generating curvature of spacetime. The formalism was then applied to a spherical shell

of radiation expending in a spherically symmetric background geometry. For this purpose a

spherically symmetric solution of Vaidya [38, 39] was used. There the source was found to lose

exactly the energy and momentum contained in the radiation �eld.

In [28] it is shown that the di¤erent prescriptions (a) - (e), can provide the same result for

di¤erent cosmological models. There it is also shown that the problem becomes very complicated

and the results obtained will not be the same when rotation is included in the spacetime.

The lack of a good de�nition of energy, also leads to problems with the de�nition of mass [40].

Since energy conservation is related to time translation symmetry [41], therefore, one needs to

use some concept of time symmetry that allows for slight deviations away from exact symmetry

to de�ne energy in GR and in particular in GWs. This approach was attempted earlier by

various people. There have been a number of di¤erent de�nitions of �approximate symmetry�.

One idea was to assume that conservation of energy holds asymptotically [29] and to examine

whether it would work for gravitational radiation and to de�ne a positive de�nite energy. This

seems unsatisfactory as the gravitational energy should then reach in�nity. There may then

be problems with orders of approximation being consistent. An altogether di¤erent approach

was taken by providing a measure of the extent of break-down of symmetry. The integral of

the square of the symmetrized derivative of a vector �eld was divided by its mean square norm

[42, 37]. This led to what was called an almost symmetric space and the corresponding vector

�eld an almost KV [43]. This measure of �non-symmetry�in a given direction was applied to
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the Taub cosmological solution [44] and to study gravitational radiation. It provides a choice of

gauge that makes calculations simpler and was used for this purpose [45]. Essentially based on

the almost symmetry, the concept of an �approximate symmetry group�was presented [46]. In

[47] a method for computing approximate KVs on closed 2-surfaces was established and used to

study the distortion of the horizon geometry of black holes. This latter work was related to the

earlier proposal of Matzner [42] to calculate the approximate Killing �elds using an eigenvalue

approach, so as to de�ne a meaningful spin for non-symmetric black holes in GR [48]. However

it has not been unequivocally successful either. The approach of a slightly broken symmetry

seems promising, but merely providing simplicity of calculations is not physically convincing.

Other approaches need to be tried, to �nd one that seems signi�cantly better than others. In

this thesis we will apply the approximate symmetry methods for ordinary di¤erential equations

(ODEs) �rst to some static spacetimes and then to the GW spacetimes to look at the energy

content in these spacetimes.

Many relativists (notably including Roger Penrose [49]), believe that the invariants of the

Weyl tensor should give the gravitational radiation �eld. It is not, a priori, so clear which (or

which combination) of the scalar invariants should be used. A proposal for a �radiation scalar�

was provided [50] and used to extract gauge-independent (or coordinate-independent) informa-

tion particularly characterizing gravitational �elds for numerical relativity by encoding it in

the numerical variables [51, 52, 53, 54]. However, this radiation scalar is physically meaningful

only in special regions of spacetime and may not have general applicability. Further, the actual

energy has not been evaluated and there are no unambiguous physical predictions coming from

it. Till these are extracted one cannot be sure that this proposal will actually give such results.

The Weyl tensor Cabcd which is conformally invariant [55] represents a pure gravitational

�eld and in some sense tells us about the gravitational energy of the spacetime, but it does

not give a direct measure of the gravitational energy. On the other hand the stress-energy

tensor Tab gives the matter content of the spacetime [40]. As for exact GWs the stress-energy

tensor is zero, we calculate the Weyl and stress-energy tensors for perturbed gravitational wave

spacetimes discussed here, to obtain the gravitational and matter components separately and

compare them with the energy content obtained from the de�nition of second-order approximate

symmetries of the geodesic equations.
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In the literature [56] the Weyl tensor is usually de�ned with valence (1, 3). In spinors it is

naturally given as a tensor of valence (0, 4) [57]. For usual purposes the form does not matter,

but for di¤erential symmetries of the tensor the form is crucial [58]. The (0, 4) form has physical

signi�cance for our purpose that is it relates to our de�nition of energy which will be seen in

chapters 5 and 6.

Minkowski spacetime is maximally symmetric having 10 KVs which form the Poincarè

algebra so(1; 3)�s R4 (where �s denotes semi direct sum) [59]. The generators of this algebra

give conservation laws for energy, spin angular momentum and linear momentum. When one

goes from Minkowski to non �at spacetimes like Schwarzschild, RN and Kerr spacetimes some

of the conservation laws are lost. To recover the Lorentz covariance or lost conservation laws in

the Schwarzschild spacetime approximate symmetry methods for ODEs were used by Kara et.

al. [60]. They considered the Schwarzschild spacetime as a �rst perturbation of the Minkowski

spacetime. In the �rst-order approximate symmetries of the (approximate) geodesic equations

they recovered no non-trivial approximate symmetry. They recovered the lost conservation laws

of linear and spin angular momentum as trivial �rst-order approximate conservation laws. In

this thesis we will use not only �rst-order but also second-order approximate symmetries of the

geodesic equations as well as of the Lagrangians. In contrast to Kara et. al. we obtain energy

re-scaling in di¤erent spacetimes from the application of second-order approximate symmetry

of the geodesic equations. This is further discussed in the subsequent chapters.

Because of its non-tensorial nature the idea of a pseudo-tensor (discussed above) is not good

as it violates the basic spirit of GR. The way we propose for de�ning gravitational energy, by

the use of approximate Lie symmetry methods [61] avoids the pseudo-tensor and hence does

not violate GR. For the case of GWs spacetimes (to be discussed in detail in chapters 5 and 6)

we plot the scaling factors by using Mathematica 5. For the arti�cially constructed examples

of wave-like spacetimes (given in chapter 5 and 6) these plots show that the energy increases

inde�nitely with time. For the physical example of cylindrical GWs (given in chapter 6) the

plots show that the energy oscillates between positive and negative values and asymptotically

goes to zero.

Another interesting question about GWs is �whether there is the analogue of Landau-

damping of electromagnetic waves for GWs�. Since Maxwell�s theory of electromagnetism
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is linear, electromagnetic waves do not interact with the �eld but are damped due to their

interaction with matter. On the other hand GR is non-linear and so GWs can undergo self-

interaction. This gives rise to the possibility of �Landau self-damping�of GWs. On the other

hand, the Khan-Penrose [62] and Szekeres [63] solutions of colliding plane GWs suggest that

there could even be enhancement of the waves, as they lead to curvature singularities after

the collision. The problem of de�nition of energy in GR makes it very di¢ cult to answer

the question posed. Using Wheeler�s �poor man�s approach�, we can ask whether �the mass

equivalent to the energy of the GWs attracts and hence damps the waves�, or like the black hole,

�the energy enhances the mass and hence the energy equivalent to it in the wave�. With the use

of approximate Lie symmetry methods the question seems to be answerable. The cylindrical

waves get damped by self-interaction. This will be discussed in chapter 6.

The plan of the thesis is as follows. The next section brie�y reviews some basic de�nitions

to be used later. In the last section of this chapter we will give a review of the approximate sym-

metries of the geodesic equations for the Schwarzschild spacetime. In chapter 2 we will discuss

second-order approximate symmetries of the geodesic equations and of the orbital equation for

the RN spacetime. Chapter 3 deals with the approximate symmetries of a Lagrangian for the

Kerr and charged-Kerr spacetimes. In chapter 4 second-order approximate symmetries of the

geodesic equations for the charged-Kerr spacetime are considered. In chapter 5 we will investi-

gate the approximate symmetries of geodesic equations for plane-fronted (pp) wave and plane

symmetric wave-like spacetimes. In the same chapter approximate symmetries of Lagrangians

for these plane wave spacetimes are considered. In chapter 6 we will study approximate sym-

metries of geodesic equations and of Lagrangians for cylindrically symmetric exact wave and

wave-like spacetimes. A summary and discussion are given in chapter 7.

1.2 Basics

In this section we will provide some basic de�nitions that will be of great use subsequently.
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1.2.1 Lie Groups

A di¤erentiable manifold G is called a Lie group if 8 g; h 2 G, the map (g; h) �! gh�1 is

di¤erentiable [64]. The following are examples of Lie groups:

(i) The group of all n� n; non-singular real matrices

GL(n; R) = fMn�n; jM j 6= 0g; (1.18)

is an n dimension Lie group;

(ii) A group of scalings in the plane

x� = ax; y� = a2y; 0 < a <1; (1.19)

is a Lie group;

(iii) The circle, S1; consisting of angles mod 2� under addition or complex numbers with

absolute value 1 under multiplication is a one-dimensional compact connected abelian Lie group.

1.2.2 The Lie Bracket and Lie Algebra

Let X and Y be di¤erentiable vector �elds on M: Let p 2 M and x : U �! M be a parame-

trization at p where M is a di¤erentiable manifold and

X = ai
@

@xi
; Y = bj

@

@xj
; (1.20)

be the expressions for X and Y in these parametrization. Let D be the set of all di¤erentiable

functions on M then for all f 2 D we have

[X;Y]f = (XY �YX)f = XYf �YXf = (ai
@bj
@xi

� bj
@aj
@xi

)
@f

@xj
; (1.21)

which is again a di¤erentiable vector �eld. The vector �eld [X;Y] obtained by the Lie product

of two vector �elds X and Y is called Lie bracket of X and Y.

A Lie algebra L is a vector space over some �eld F equipped with the Lie bracket satisfying

the properties
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(i) [�X+ �Y;Z] = �[X;Z] + �[Y;Z];

[X; �Y + �Z] = �[X;Y] + �[X;Z] linearity for all �; � 2 F ;

(ii) [X;Y] = �[Y;X] (skew commutativity);

(iii) [X; [Y;Z]] + [Y; [Z;X]] + [Z; [X;Y]] = 0 (Jacobi identity).

A Lie algebra is said to be real if F is the �eld of real numbers and complex if F is the �eld of

complex number. The vector �elds X and Y are called the generators of the Lie algebra. If the

basis (generators) of the Lie algebra are �nite (say n) then it is known as a �nite dimensional (n

dimensional) Lie algebra. Otherwise it is known as in�nite dimensional Lie algebra. Now if hX1;

X2; :::;Xri is an r-dimensional Lie algebra, then we can represent the in�nitesimal generator

Xj(x) by

Xj(x) = aij(x)
@

@xi
: (1.22)

The Lie algebra of the generators Xj(x) is known from the Lie product of the two operators

[Xi;Xj ]. This can be simpli�ed by using the structure constants de�ned by

[Xi;Xj ] = CsijXs; (1.23)

where

Csij = �Csji (1.24)

and the Jacobi identity gives

C�ijC
�
�s + C

�
jsC

�
�i + C

�
siC

�
�j = 0: (1.25)

To every Lie group, one can associate a Lie algebra, whose underlying vector space is the

tangent space of G at the identity element, which completely captures the local structure of the

group. Informally one can think of elements of the Lie algebra as elements of the group that

are �in�nitesimally close� to the identity. For example, the Lie algebra of the general linear

group GL(n; R) is the vector space M(n;R) of square matrices with the Lie bracket given by

[A; B] = AB �BA; A; B 2M: (1.26)
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Since a Lie algebra determines the local structure of the group, therefore two groups will be

locally isomorphic if and only if their Lie algebras are isomorphic. To every Lie algebra there can

be associated a unique simply connected Lie group, but there can be other multiply connected

Lie groups.

1.2.3 Approximate Lie Algebra

Here we give the de�nition of an approximate Lie algebra [65]. A class of �rst-order di¤erential

operators

X = �i(x; �)
@

@xi
; (1.27)

such that

�i(x; �) � �i0(x) + ��
i
1(x) + :::+ �

k�ik(x); i = 1; :::; n; (1.28)

with some �xed functions �i0(x); ��
i
1(x); :::; �

k�ik(x); ( i = 1; :::; n) is called an approximate op-

erator. An approximate Lie bracket of the approximate operators X and Y is an approximate

operator denoted by [X;Y] and is

[X;Y] � XY �YX: (1.29)

An approximate Lie algebra L is a vector space over some �eld F equipped with the approximate

Lie bracket satisfying the properties, namely:

(i) [�X+ �Y; Z] � �[X;Z] + �[Y;Z]

[X; �Y + �Z] � �[X;Y] + �[X;Z] linearity for all �; � 2 F

(ii) [X;Y] � �[Y;X] (skew commutativity)

(iii) [X; [Y;Z]] + [Y; [Z;X]] + [Z; [X;Y]] � 0 (Jacobi identity).

Here the approximate Lie bracket [X;Z] is calculated to the precision indicated. We illus-

trate this by the following example.

Example: Consider the approximate (up to O(�2)) operators [65]

X =
@

@x
+ �x

@

@y
; Y =

@

@y
+ �y

@

@x
: (1.30)
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Their exact Lie bracket is

[X;Y] = �2(x
@

@x
� y @

@y
): (1.31)

Therefore the linear span of X and Y is not a Lie algebra in the usual (exact) sense. However,

these operators span an approximate Lie algebra in the �rst-order of precision.

1.2.4 Exact and Approximate Symmetries of ODEs

First we will de�ne exact symmetries of ODEs and then we will de�ne approximate symmetries

of ODEs.

According to Noether�s theorem [66] for a system arising from a variational principle, con-

servation laws of that system come from a symmetry property. This theorem gives a procedure

which relates the constants of motion of a given Lagrangian system to its symmetry transfor-

mation [67]. There is a connection between the symmetries of a manifold and its isometries

[68]. Symmetry generators of a Lagrangian for the geodesic equations of a manifold form a

Lie algebra which always include the generator @=@s [69]. From the geometric point of view

symmetries of a manifold are characterized by its isometries or KVs, which always form a �nite

dimensional Lie algebra [1].

In general a manifold does not possess exact symmetry but approximately does so. It would

be of interest to look at the approximate symmetries of the manifold. These approximate

symmetry may give us much more information.

A symmetry transformation or symmetry of a DE is that transformation which leaves the

form of the equation invariant. The symmetries of an ODE [70]

E(s;x(s);x0(s);x00(s); ::::;x(n)(s)) = 0; (1.32)

under point transformations

(s;x) �! (�(s;x); �(s;x)); (1.33)

are given by

X[k]= �(s;x)
@

@s
+ �(s;x)

@

@x
+ �1(s;x;x0)

@

@x0
+ ::::+ �(k)(s;x;x0:::;x(k))

@

@x(k)
; (1.34)
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such that on the solution of

E =0; (1.35)

we have

X[k] (E)jE=0=0: (1.36)

The operator X is called the in�nitesimal generator, group operator or Lie operator and X[k]

is called the kth prolongation of the in�nitesimal generator

X =�(s;x)
@

@s
+ �(s;x)

@

@x
; (1.37)

where the prolongation coe¢ cients are given by

�;s =
d�

ds
� x0d�

ds
; (1.38)

�;(k) =
d�(k�1)
ds

� x(k)d�
ds
; k � 2: (1.39)

Henceforth we shall drop the index k for the prolongation and leave it to the context to clarify

which one is being used. For determining the symmetries of a system of ODEs we use the

invariance criterion. The system of ODEs of order n

Er(s;x(s);x
0(s);x00(s); :::;x(n)(s)) =0; (r = 1; 2:::; p); (1.40)

admits a symmetry algebra with generator

X =�(s;x)
@

@s
+ ��(s;x)

@

@x�
; (1.41)

if and only if

X[n] (Er)jEr=0= 0; (1.42)

holds, where x is a point in the underlying m-dimensional space and x0 is the �rst derivative

of x and x(n) is the nth-order derivative with respect to s and

X[n]=�(s;x)
@

@s
+ ��(s;x)

@

@x�
+ ��;s(s;x;x

0)
@

@x�0
+ :::+ ��;(n)(s;x;x

0; :::;x(n))
@

@x�(n)
; (1.43)
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the prolongation coe¢ cients are

��;s =
d��

ds
� x�0 d�

ds
; (1.44)

��;(n) =
d��(n�1)

ds
� x�(n)d�

ds
; n � 2: (1.45)

Now we de�ne the kth-order approximate symmetries of a system of ODEs [61]. If

E = E0 + �E1 + �
2E2 + :::+ �

kEk +O(�
k+1) (1.46)

and

X = X0 + �X1+�
2X2 + ::::+ �

kXk; (1.47)

so that

XE :=[(X0 + �X1 + �
2X2 + :::+ �

kXk)(E0 + �E1 + �
2E2

+:::+ �kEk)]E=E0+�E1+:::+�kEk=O(�
k+1); (1.48)

then (1.47) is called a kth-order approximate symmetry of (1.46). Here E0 is the exact equation

E1 is called the �rst-order approximate part and E2 is called the second-order approximate part

of the perturbed equation and so on. The X0 is the exact symmetry generator, X1 as the �rst-

order approximate part, X2 the second-order approximate part of the symmetry generator and

so on, where

X0 = �0(s;x)
@

@s
+ �0(s;x)

@

@x
+ �10(s;x;x

0)
@

@x0
+ �20(s;x;x

0;x00)
@

@x00
+ :::

+�
(k)
0 (s;x;x

0; :::;x(k))
@

@x(k)
; (1.49)

X1 = �1(s;x)
@

@s
+ �1(s;x)

@

@x
+ �11(s;x;x

0)
@

@x0
+ �21(s;x;x

0;x00)
@

@x00
+ :::

+�
(k)
1 (s;x;x

0; :::;x(k))
@

@x(k)
; (1.50)

X2 = �2(s;x)
@

@s
+ �2(s;x)

@

@x
+ �12(s;x;x

0)
@

@x0
+ �22(s;x;x

0;x00)
@

@x00
+ :::

+�
(k)
2 (s;x;x

0; :::;x(k))
@

@x(k)
; (1.51)
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and so on. The kth-order approximate symmetry is called non-trivial if at least one of the lower

order symmetries are non-zero for it, that is if (at least) any one of X0; X1; X2;..., Xk�1 is

non-zero. In the case of trivial symmetries it is also possible that lower order symmetries cancel

out in the determining equations.

There are some alternate methods for de�ning approximate symmetries of di¤erential equa-

tions (DEs). In this regard a de�nition was given by Fushchich and Shtelen [71]. They inter-

change the order of approximation and take the limit between the parameter of the symmetry

generator of the algebra on the one hand and the approximation parameter on the other hand.

This method is compared with that of Baikov et al. in [72, 73]. A generalization of the ap-

proximate Lie symmetry methods for DEs to include conditional symmetries was developed

in [74]. Comparatively recently another notion of approximate symmetries of DEs has been

developed by Burde [75]. This latter method does not �nd solutions of a DE directly, but

provide transformations between di¤erent DEs. At this point the approach completely di¤ers

from standard perturbation methods that involve a straightforward expansion of the depen-

dent variables, which is inserted into the perturbed DE. This method was aimed at �nding

transformations from the perturbed equation to the unperturbed equation: which variables are

transformed (and in what way) was determined by the requirement that the transformations

form a Lie group. These transformations naturally de�ne an approximate solution of the per-

turbed equation that has the solution of the unperturbed equation as a zero-order part. This

approach is then compared with the other approaches of approximate symmetries of DEs [75].

We will follow the method of Baikov et al. [61].

1.2.5 Exact and Approximate Symmetries of Lagrangians

Symmetries (and approximate symmetries) of the system of the geodesic equations for a space-

time gives us conserved quantities but in addition there are also non-Noether symmetries which

are not related to conservation laws and therefore of no interest for our purpose. Further,

the Lie symmetries need second prolongation (for second-order Euler-Lagrange equations) of

the symmetry generator, while the symmetries of the Lagrangian give us directly conserved

quantities in which we are interested and only need the �rst prolongation of the symmetry

generator. Methods for obtaining exact symmetries and �rst-order approximate symmetries of
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a Lagrangian are available in the literature [70, 76, 77]. Here we extend to the second-order

approximate case.

Symmetries of a Lagrangian also known as Noether symmetry [70] are de�ned as follows.

Consider a vector �eld given by (1.41) whose �rst prolongation is

X[1] = X+ (�j;s + �
j
;xi
xi

0 � �;sxj
0 � �;xixi

0
xj

0
)
@

@xi0
; (1.52)

where i; j = 0; 1; 2; 3. Now consider a set of second-order ODEs (Euler-Lagrange equations)

xi00 = g(s; xi; xi
0
); (1.53)

which has a Lagrangian L(s; xi; xi
0
): Then X is a Noether point symmetry of the Lagrangian

L(s; xi; xi
0
) if there exists a function A(s; xi) such that

X[1]L+ (Ds�)L = DsA; (1.54)

where the total derivative operator is

Ds =
@

@s
+ xi

0 @

@xi
: (1.55)

For more general considerations see [70, 78]. The signi�cance of Noether symmetries is clear

from the following theorem [66].

Theorem 1.1. IfX is a Noether point symmetry corresponding to a Lagrangian L(s; xi; xi
0
)

of (1.53), then

I = �L+ (�i � xi0�)Lxi0 �A; (1.56)

is a �rst integral of (1.53) associated with X: For the proof of this theorem see [79].

We de�ne second-order approximate symmetries of the Lagrangian via the following theo-

rem.

Theorem 1.2. If

L(s; xi; xi
0
; �; �2) = L0(s; x

i; xi
0
) + �L1(s; x

i; xi
0
) + �2L2(s; x

i; xi
0
) +O(�2); (1.57)
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is a �rst-order perturbed (up to second-order in �) Lagrangian corresponding to a second-order

perturbed system of equations

E = E0 + �E1 + �
2E2 +O(�

3) = 0; (1.58)

and the functional
R
V Lds is invariant under the one-parameter group of transformations with

approximate Lie symmetry generator

X = X0 + �X1 + �
2X2 +O(�

3); (1.59)

up to gauge

A = A0 + �A1 + �
2A2; (1.60)

where

Xj = �j
@

@s
+ �ij

@

@xi
; (j = 0; 1; 2 and i = 0; 1; 2; 3); (1.61)

then

X
[1]
0 L0 + (Ds�)L0 = DsA0; (1.62)

X
[1]
1 L0 +X

[1]
0 L1 + (Ds�1)L0 + (Ds�0)L1 = DsA1 (1.63)

and

X
[1]
2 L0 +X

[1]
1 L1 +X

[1]
0 L2 + (Ds�2)L0 + (Ds�1)L1 + (Ds�0)L2 = DsA2: (1.64)

Proof: For the unperturbed case (1.62) and �rst-order perturbed case (1.63), see for example

[70, 77] respectively, for the second-order perturbed case (1.64), proof follows from there.

Here L0 is the exact Lagrangian corresponding to the exact equations E0 = 0; L0 + �L1

the �rst-order approximate Lagrangian corresponding to the �rst-order perturbed equations

E0+�E1 = 0. The perturbed equations (1.63) and (1.64) always have the approximate symmetry

�X0 which are known as trivial approximate symmetries. For a 4-dimensional spacetime (1.62)

- (1.64) give 19 determining equations.
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1.2.6 Approximate First Integrals

The �rst-order approximate �rst integrals are de�ned by setting I by I0 + �I1, � by �0 + ��1;

�0+��1; by L0+�L1; and A by A0+�A1 in the de�nition of �rst integral (1.56) and equating the

coe¢ cients of like powers of � on both sides. This gives the zeroth (exact part) and �rst-order

approximate part of the �rst-order approximate �rst integrals

I0 = �0L0 + (�
i
0 � �0

�
x
i
)
@L0

@
�
x
i
�A0; (1.65)

I1 = �0L1 + �1L0 + (�
i
0 � �0

�
x
i
)
@L1

@
�
x
i
+ (�i1 � �1

�
x
i
)
@L0

@
�
x
i
�A1: (1.66)

If I0 vanishes, then I is called an unstable approximate �rst integral and otherwise called stable.

A detailed discussion on the approximate �rst integrals for Hamiltonian dynamical system is

given in [80].

1.2.7 Weyl and Stress-energy Tensors

Here we de�ne some useful tensors which will be used in the subsequent discussion.

The Riemann curvature tensor Rabcd = gaaR
a
bcd can be uniquely decomposed into three

parts [1] given by

Rabcd = Cabcd + Eabcd +Gabcd; (1.67)

where

Eabcd =
1

2
(gacSbd + gbdSac � gadSbc � gbcSad); (1.68)

Gabcd =
1

12
R(gacgbd � gadgbc); (1.69)

and

Sab = Rab �
1

4
Rgab; (1.70)

denotes the traceless part of the Ricci tensor Rab. The decomposition given by (1.67) de�nes

the Weyl conformal tensor Cabcd given by

Cabcd = Rabcd �
1

2
(gacRbd � gadRbc + gbdRac � gbcRad) +

1

6
R(gadgbc � gacgbd); (1.71)
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or

Cabcd = Rabcd �
1

2
(�acRbd � �adRbc + gbdRac � gbcRad) +

1

6
R(�adgbc � �acgbd): (1.72)

The Weyl tensor has manifestly all the symmetries of the Riemann curvature tensor i.e.

Cabcd = �Cbacd = �Cabdc = Ccdab; (1.73)

but [55]

gbdCabcd = 0; (1.74)

in contrast to gbdRabcd = Rac: A further distinction is that, while the Riemann tensor can be

de�ned in a manifold endowed only with a connection, the Weyl tensor can be de�ned only if

a metric is also de�ned as it is essential for de�ning the Ricci scalar. The Weyl tensor is also

known as the conformal curvature tensor. Let egab = 
2(x)gab be a conformal transformation

of g where 
 is a smooth positive real function on M . The Weyl tensor is invariant under

conformal transformations of the metric [55]. Due to the symmetry property de�ned by (1.74)

it can be checked that the Weyl tensor is that part of the Riemann curvature tensor for which all

contractions vanish. Because of its symmetry properties the Weyl tensor has at most 20�10 =

10 independent components in a four dimensional spacetime. The importance of the Weyl tensor

for the deeper problem of GR is the conformal invariance of Cabcd [1, 55]. If the Weyl tensor

vanishes in a neighborhood of a spacetime, the neighborhood is locally conformally equivalent

to the Minkowski spacetime. Thus the Weyl tensor has geometric meaning independent of any

physical interpretation.

The stress-energy tensor Tab gives the matter content of a spacetime [40]. This is a symmetric

tensor and can be calculated from the EFEs

Tab =
1

�
(Rab �

1

2
Rgab): (1.75)

For a 4-dimensional spacetime this tensor has 10 independent components. At each event of the

spacetime this tensor gives the energy density, momentum density and stress as measured by

observers at that event. Since for GW spacetimes Tab is always zero and Cabcd may be non-zero,

there is no stress, energy or momentum. If there is no mass or energy at a given event, the
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Ricci tensor vanishes through the EFEs. If it were not for the Weyl tensor, this would mean

that matter here could not have gravitational in�uence on distant matter separated by a void.

Thus the Weyl tensor represents that part of spacetime curvature which can propagate across

and curve up a void.

1.3 Review of the Approximate Symmetries of the Schwarz-

schild Spacetime

In this section we review the exact and approximate symmetries of the orbital equation and

of the geodesic equations for the Schwarzschild metric [60]. The �eld of a point gravitational

source at the origin is given by the Schwarzschild metric

ds2 = e�(r)dt2 � e��(r)dr2 � r2(d�2 + sin2 �d�2); (1.76)

where

e� = 1� 2GM
c2r

(1.77)

and M is the mass of the point gravitational source at the origin.

In the isometry algebra of Minkowski spacetime, so(1; 3) is isomorphic to so(3) � so(3).

This algebra corresponds to the conservation of angular momentum (one of the so(3)s), �spin

angular momentum�(the other so(3)) and the (linear) energy-momentum (R4). The symmetry

generators are

Y0 =
@

@t
; Y1 = cos�

@

@�
� cot � sin� @

@�
; (1.78)

Y2 = sin�
@

@�
+ cot � cos�

@

@�
; Y3 =

@

@�
; (1.79)

with the symmetry algebra so(3)�R corresponding to the conservation of energy and angular
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momentum and

Y4 = sin � cos�
@

@r
+
cos � cos�

r

@

@�
� csc � sin�

r

@

@�
; (1.80)

Y5 = sin � sin�
@

@r
+
cos � sin�

r

@

@�
+
csc � cos�

r

@

@�
; (1.81)

Y6 = cos �
@

@r
� sin �

r

@

@�
; (1.82)

which give the conservation of linear momentum as well as

Y7 =
r sin � cos�

c

@

@t
+ ct(sin � cos�

@

@r
+
cos � cos�

r

@

@�
� csc � sin�

r

@

@�
); (1.83)

Y8 =
r sin � sin�

c

@

@t
+ ct(sin � sin�

@

@r
+
cos � sin�

r

@

@�
+
csc � cos�

r

@

@�
); (1.84)

Y9 =
r cos �

c

@

@t
+ ct(cos ��

@

@r
� sin�

r

@

@�
); (1.85)

which give the conservation of spin angular momentum due to Lorentz invariance.

The geodesic equations for the Schwarzschild metric are given by

��
t + � 0

�
t
�
r = 0; (1.86)

��
r +

1

2
(e�)0(e�c2

�
t
2

� e�� �r
2
)� re�(

�
�
2

+ sin2 �
�
�
2

) = 0; (1.87)

��
� +

2

r

�
r
�
� � sin � cos �

�
�
2

= 0; (1.88)

��
�+

2

r

�
r
�
�+ 2 cot �

�
�
�
� = 0: (1.89)

with

� 0 =
2GM=c2r2

1� 2GM=c2r
: (1.90)

Applying the de�nition for the symmetries of ODEs these equations have the (exact) symmetries

given by the above isometry algebra so(3)�R (1.78) and (1.79) added to the dilatation algebra

d2 =

�
@

@s
; s

@

@s

�
(1.91)

generated by the re-parametrization allowed for the geodetic parameter. These are the exact

symmetry generators. Note that here conservation of linear momentum is lost as a test particle
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put at a �nite distance from the gravitational source will start to move. Further, the �spin

angular momentum�conservation is also lost, as the motion is no longer be Lorentz invariant

in the �eld of gravitational source.

Now for investigating the approximate symmetries of the geodesic equations for this metric

Kara et. al. �rst looked at the approximate symmetries of the orbital equation for this metric.

The orbital equation of motion is given by

d2v

d�2
+ v =

GM

h2
+
3GM

c2
v2; (1.92)

where h is the classical angular momentum per unit mass and v = 1
r . In the classical limit

c ! 1 it gives the classical orbital equation. Applying the de�nition for the symmetries of

ODEs to (1.92), this yields the following (exact) symmetry generators

Y1 = v cos�
@

@�
� v2 sin� @

@v
; Y2 = v sin�

@

@�
+ v2 cos�

@

@v
; (1.93)

Y3 = v
@

@v
; Y4 = cos�

@

@v
; Y5 = sin�

@

@v
; Y6 =

@

@�
; (1.94)

Y7 = cos 2�
@

@�
� v sin 2� @

@v
; Y8 = sin 2�

@

@�
+ v cos 2�

@

@v
: (1.95)

Considering the de�nition of approximate symmetries (only up to �rst-order) with � de�ned to

be 2GM=c2; (1.92) has two stable approximate symmetries

Ya1 = sin�
@

@v
+ �(2 sin�

@

@�
+ v cos�

@

@v
); (1.96)

Ya2 = cos�
@

@v
� �(2 cos� @

@�
� v sin� @

@v
): (1.97)

At best, only some of the exact symmetries lost in going from Minkowski to Schwarzschild space

have been recovered. Since the orbital equation had been derived by using the symmetries to

restrict the motion to an (arbitrarily chosen) equatorial plane, it could be expected that all of

them will re-appear as approximate symmetries in the full system of geodesic equations. The

perturbed geodesic equations for Schwarzschild metric with small term �; de�ned above, are
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given by

��
t + �(

�
t
�
r

r2
) = 0; (1.98)

��
r � r(

�
�
2

+ sin2 �
�
�
2

) + �[
1

2r2
(c2

�
t
2

� �
r
2
) +

�
�
2

+ sin2 �
�
�
2

] = 0; (1.99)

��
� +

2

r

�
r
�
� � sin � cos �

�
�
2

= 0; (1.100)

��
�+

2

r

�
r
�
�+ 2 cot �

�
�
�
� = 0: (1.101)

Applying the de�nition of approximate symmetries (1.48) to these equations (1.98)-(1.101)

and using (1.78) - (1.85) as exact symmetry generators, Kara et. al. have obtained the new

approximate symmetry generators, which are exactly the same as the exact symmetry generators

that were lost due to the gravitational �eld. Note that Lorentz invariance is recovered as an

approximate symmetry in the gravitational �eld. So the trivial (in the sense that they are

epsilon multiples of the exact symmetries) approximate symmetries provide the �stability�of

all the known conservation laws. That is, the conservation laws are inherited by the perturbed

geodesic equations of the Schwarzschild spacetime.
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Chapter 2

Second-Order Approximate

Symmetries of the Geodesic

Equations and re-scaling of Energy

in the Reissner-Nordström

Spacetime

In this chapter we will investigate second-order approximate symmetries of the geodesic equa-

tions for the RN spacetime. A re-scaling of the arc length parameter s; for consistency of

the trivial second-order approximate symmetries of the geodesic equations indicates that the

energy in the RN spacetime has to be re-scaled [81]. Here we will also provide the second-order

approximate symmetries of the orbital equation for the same spacetime.

2.1 Approximate Symmetries of the RN Spacetime

It had been pointed out [60] that there is a di¤erence between the conservation laws obtained

for the system of geodesic equations and the single orbital equation for the Schwarzschild

spacetime. It was further remarked that it should be checked if this di¤erence also holds for
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other spacetimes. We investigate this question for the orbital equation in the RN spacetime.

Therefore, in this section we �rst discuss the second-order approximate symmetries of the

orbital equation of the RN spacetime and then we will discuss the second-order approximate

symmetries of the geodesic equations for the RN metric.

The RN spacetime is given by (1.76) with

e� = 1� 2GM
c2r

+
GQ2

c4r2
; (2.1)

where Q is the electric charge of the point gravitational source. Electromagnetism is the only

long range force in Nature other than gravity and this is the only spherically symmetric, static

exact solution of the �sourceless�Einstein-Maxwell equations. In the chargeless case (Q = 0)

it reduces to the Schwarzschild metric. It is of interest to look at the symmetry structure of

this metric and the corresponding symmetries, and approximate symmetries of the geodesic

equations.

For determining approximate symmetries we take the same small parameter �; as before.

However, we have another small parameter to include

� =
GQ2

c4
: (2.2)

There is no way to meaningfully deal with two small parameters. As such we restrict our

attention to RN black holes, for which � � �2: Thus we can put

� = k�2 with 0 < k � 1

4
: (2.3)

Hence retaining only �2 and neglecting its higher powers (2.1) gives

(e�)0 =
�

r2
� 2k
r3
�2, � 0 =

�

r2
+
1� 2k
r3

�2 and e�� = 1 +
�

r
+
(1� k)
r2

�2, (2.4)

where �0� denotes the derivative with respect to r. In the limit of � �! 0; this spacetime

reduces to the Minkowski spacetime and when �2 �! 0 and � 6= 0; then we obtain the perturbed

Schwarzschild spacetime discussed in chapter 1.
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2.1.1 Approximate Symmetries of the Orbital Equation for the RN Space-

time

The orbital equation of motion for the RN metric up to second-order in �, is given by

E : v00 + v � �1
2
(3v2 +

c2

h2
) + �2(2kc2v3 +

k

h2
c2v) = 0; (2.5)

where h is the classical angular momentum per unit mass and v = 1=r. The exact and �rst

order approximate symmetry generators for this equation are given by (1.93) - (1.95) and (1.96),

(1.97) respectively. The zeroth-order (exact) and �rst-order approximate symmetries can also

be written as

�0 = v[c1 cos�+ c2 sin�] + c4 + c5 cos 2�+ c6 sin 2�; (2.6)

�0 = v2[c2 cos�� c1 sin�] + v[c3 + c6 cos 2�� c5 sin 2�] + c7 cos�+ c8 sin�; (2.7)

and

�1 = v[a1 cos�+ a2 sin�] + a6 + a7 cos 2�+ a8 sin 2�+ 2(c7 sin�� c8 cos�); (2.8)

�1 = v2[a2 cos�� a1 sin�] + v[a3 + a8 cos 2�� a7 sin 2�+ c7 cos�+ c8 sin�]

+a4 cos�+ a5 sin�: (2.9)

We apply the second prolongation

X[2] = X
[2]
0 +�X

[2]
1 +�

2X
[2]
2 =�(�; v)

@

@�
+ �(�; v)

@

@v
+ �;�(�; v; v

0)
@

@v0
+

�;��(�; v; v
0; v00)

@

@v00
; (2.10)

of the second-order approximate symmetry generator X =X0+�X1+�
2X2; to the second-order

perturbed ODE (2.5), where X0 is the exact part given by (2.6), (2.7) and X1 is the �rst-order

approximate part given by (2.8) and (2.9) of the second-order approximate symmetry generator.

We have to �nd the second-order approximate part X2 of the approximate symmetry generator.
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In (2.10)

� = �0 + ��1 + �
2�2 and � = �0 + ��1 + �

2�2; (2.11)

where each of the �i and �i (i = 0; 1; 2), is a function of �; v; �i;� are functions of �; v; �
0; and

�i;�� are functions of �; v; �
0; �00: Applying the operator X[2] given by (2.10) on (2.5)

(X0 + �X1+�
2X2)[v

00 + v � �1
2
(3v2 +

c2

h2
) + �2(2kc2v3 +

k

h2
c2v)](2:5) = 0; (2.12)

or

[(�0 + ��1 + �
2�2)f1� 3�v + �2(6kc2v2 +

k

h2
c2)g+ �0;�� + ��1;�� + �2�2;��](2:5) = 0; (2.13)

where

�i;�� = �i�� + (2�i�v � �i��)v
0 + (�ivv � 2�i�v)v

02 + (�iv � 2�i�)v
00 � �ivvv

03 � 3�ivv
0v00: (2.14)

In (2.14) in subscripts i; �� denotes second prolongation and i�� etc. denote second derivatives.

Using (2.14) and (2.5) in (2.13) and comparing coe¢ cients of the di¤erent powers of v0; only

for the terms involving �2; we obtain the following set of determining equations

�2vv = 0; (2.15)

�2vv � 2�2�v = 0; (2.16)

2�2�v � �2�� + 3v�2v �
3

2
�1v(3v

2 +
c2

h2
) + 3�0v(2kc

2v3 +
k

h2
c2v) = 0; (2.17)

�2�� � v�2v + 2v�2� +
1

2
(�1v � 2�1�)(3v

2 +
c2

h2
)� (�0v � 2�0�)(2kc

2v3

+
k

h2
c2v) + �0(6kc

2v2 +
kc2

h2
)� 3v�1 + �2 = 0: (2.18)

Integration of (2.15) twice with respect to v gives

�2 = vf(�) + h(�): (2.19)
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We use (2.19) in (2.16) and then integrate it twice with respect to v we obtain

�2 = v2f�(�) + vg(�) + k(�): (2.20)

Use of (2.6), (2.7) in (2.17) and then use of (2.19), (2.20) in the resulting equation we get

c1 cos�+ c2 sin� = 0; (2.21)

a1 cos�+ a2 sin� = 0 (2.22)

and

f��(�) + f(�) = 0; (2.23)

2g�(�)� h��(�) = 0: (2.24)

In (2.21) and (2.22), c1, c2, correspond to the exact symmetry generators and a1, a2 correspond

to the �rst-order approximate symmetry generators. Equations (2.21) and (2.22) give us

a1 = 0; a2 = 0 and c1 = 0; c2 = 0:

Integration of (2.23) yields

f(�) = b1 cos�+ b2 sin� (2.25)

and integration of (2.24) gives

g(�) =
1

2
h�(�) + b3: (2.26)

Therefore,

�2 = v(b1 cos�+ b2 sin�) + h(�); (2.27)

�2 = v2(b2 cos�� b1 sin�) + v(
1

2
h�(�) + b3) + k(�): (2.28)

Substituting the values of �0; �0 and �1; �1 from (2.6), (2.7), and (2.8), (2.9) in (2.18) and using

(2.27) and (2.28) we obtain the following equations in which a4 and a5 correspond to �rst-order
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approximate symmetry generators.

h���(�) + 4h(�) = 6(a4 cos�+ a5 sin�); (2.29)

k��(�) + k(�) = 0: (2.30)

Solving the non-homogeneous 3rd order ODE (2.29) we obtain

h(�) = b6 + b7 cos 2�+ b8 sin 2�+ 2(a4 sin�� a5 cos�): (2.31)

Integration of (2.30) yields

k(�) = b4 cos�+ b5 sin�: (2.32)

With the use of (2.31) and (2.32) from (2.27) and (2.28) we have

�2 = v(b1 cos�+ b2 sin�) + b6 + b7 cos 2�+ b8 sin 2�+ 2(a4 sin�� a5 cos�); (2.33)

�2 = v2(b2 cos�� b1 sin�) + v(b8 cos 2�� b7 sin 2�+ a4 cos�+ a5 sin�+ b3)

+b4 cos�+ b5 sin�: (2.34)

Here bi (i = 1; :::; 8) are arbitrary constants of integration.

In the second approximation, i.e. when we retain terms quadratic in �, the orbital equation

(2.5) possesses no non-trivial second-order approximate symmetry generators, but the �rst-

order approximate symmetry generators (non-trivial in the case of the Schwarzschild spacetime)

are still retained. Thus there is no new approximate conservation law but only the previous

conservation laws that have been recovered. The second-order trivial approximate symmetry

generators are the same as given by (1.93) - (1.97).

2.1.2 Approximate Symmetries of the System of Geodesic Equations for the

RN Spacetime

A better idea of what is actually required comes from the full system of geodesic equations.

The geodesic equations for the RN metric are given by
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E1 :
��
t + �(

�
t
�
r

r2
) + �2[

(1� 2k)
r3

�
t
�
r] = 0; (2.36)

E2 :
��
r � r(

�
�
2

+ sin2 �
�
�
2

) + �[
1

2r2
(c2

�
t
2

� �
r
2
) +

�
�
2

+ sin2 �
�
�
2

]
��
r

��2 1
2r3

[(1 + 2k)c2
�
t
2

+ (1� 2k) �r
2
+ 2rk(

�
�
2

+ sin2 �
�
�
2

)] = 0; (2.37)

E3 :
��
� +

2

r

�
r
�
� � sin � cos �

�
�
2

= 0; (2.38)

E4 :
��
�+

2

r

�
r
�
�+ 2 cot �

�
�
�
� = 0: (2.39)

where ��� denotes the derivative with respect to s. Since this is the system of second-order

ODEs, with second-order perturbation term, we apply to it the second prolongation of the

approximate symmetry generator X = X0 + �X1+�
2X2, where the exact part X0 and �rst-

order approximate part X1 are given by (1.78) - (1.85), the second-order approximate part

X2 of the symmetry generators to be determined. The second prolongation of the symmetry

generator is given by

X[2]=�
@

@s
+ �0

@

@t
+ �1

@

@r
+ �2

@

@�
+ �3

@

@�
+ �0;s

@

@
�
t
+ �1;s

@

@
�
r
+ �2;s

@

@
�
�

+ �3;s
@

@
�
�
+ �0;ss

@

@
��
t
+ �1;ss

@

@
��
r
+ �2;ss

@

@
��
�
+ �3;ss

@

@
��
�

: (2.40)

Note that in (2.40) � = �0 + ��1 + �2�2 and �
� = �0 + ��1 + �2�2 etc. (� = 0; 1; 2; 3). Here �,

�� are all functions of s; t; r; � and �; ��;s are all functions of s; t; r; �; �;
�
t;
�
r;
�
� and

�
�; and ��;ss

are all functions of s; t; r; �; �;
�
t;
�
r;
�
�;
��
�;
��
t;
��
r;
��
� and

��
�. We apply this symmetry generator to the

geodesic equations (2.36) - (2.39). We obtain the following equations

X[2]E1 = [�
0
0;ss + ��

0
1;ss + �

2�02;ss + f
�

r2
+
1� 2k
r3

�2gf(�00;s + ��01;s + �2�02;s)
�
r+

(�10;s + ��
1
1;s + �

2�12;s)
�
tg �

�
t
�
r(�10 + ��

1
1 + �

2�12)(
2�

r3
+
3(1� 2k)

r4
�2)]Ej=0 = 0;

(2.41)
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X[2]E2 = [�
1
0;ss + ��

1
1;ss + �

2�12;ss + c
2
�
t(
�

r2
+
1 + 2k

r3
�2)(�00;s + ��

0
1;s + �

2�02;s)

� fc
2
�
t
2

2
(
2�

r3
� 3(1 + 2k)

r4
�2)�

�
r
2

2
(
2�

r3
+
3(1� 2k)

r4
�2) + (1� k�2

r2
)(
�
�
2

+ sin2 �
�
�
2

)g(�10 + ��11 + �2�12)�
�
r(
�

r2
+
1� 2k
r3

�2)(�10;s + ��
1
1;s+

�2�12;s)� 2(r � �+
k�2

r
)f(�20;s + ��21;s + �2�22;s)

�
� + sin � cos �

�
�
2

(�20

+��21 + �
2�22) +

�
� sin2 �(�30;s + ��

3
1;s + �

2�32;s)g]Ej=0 = 0; (2.42)

X[2]E3 = [�
2
0;ss + ��

2
1;ss + �

2�22;ss �
2
�
r
�
�

r2
(�10 + ��

1
1 + �

2�12) +
2
�
�

r
(�10;s + ��

1
1;s

+ �2�12;s) +
2
�
r

r
(�20;s + ��

2
1;s + �

2�22;s)�
�
�
2

(cos2 � � sin2 �)(�20+

��21 + �
2�22)� 2 sin � cos �

�
�(�30;s + ��

3
1;s + �

2�32;s)]Ej=0 = 0; (2.43)

X[2]E4 = [�
3
0;ss + ��

3
1;ss + �

2�32;ss �
2
�
r
�
�

r2
(�10 + ��

1
1 + �

2�12) +
2
�
�

r
(�10;s + ��

1
1;s

+ �2�12;s) + 2(

�
r

r
+

�
� cot �)(�30;s + ��

3
1;s + �

2�32;s)� 2
�
�
�
� csc2 �(�20+

��21 + �
2�22) + 2

�
� cot �(�20;s + ��

2
1;s + �

2�22;s)]Ej=0 = 0; (2.44)

where (j = 1; 2; 3; 4): The prolongation coe¢ cients are

�0i;s = �0is +
�
t(�0it � �is) +

�
r�0ir +

�
��0i� +

�
��0i� �

�
t
2

�it �
�
t
�
r�ir �

�
t
�
��i� �

�
t
�
��i�; (2.45)

�1i;s = �1is +
�
t�1it +

�
r(�1ir � �is) +

�
��1i� +

�
��1i� �

�
t
�
r�it �

�
r
2
�ir �

�
r
�
��i� �

�
r
�
��i�; (2.46)

�2i;s = �2is +
�
t�2it +

�
r�2ir +

�
�(�2i� � �is) +

�
��2i� �

�
t
�
��it �

�
r
�
��ir �

�
�
2

�i� �
�
�
�
��i�; (2.47)

�3i;s = �3is +
�
t�3it +

�
r�3ir +

�
��3i� +

�
�(�3i� � �is)�

�
t
�
��it �

�
r
�
��ir �

�
�
�
��i� �

�
�
2

�i�; (2.48)
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�0i;ss = �0iss +
�
t(2�0ist � �iss) +

�
t
2

(�0itt � �ist)�
�
t
3

�itt + 2
�
r�0isr + r

�2�0irr + 2
�
��0is�+

�
�
2

�0i�� + 2
�
��0is� +

�
�
2

�0i�� + 2
�
t
�
r(�0itr � �isr) + 2

�
t
�
�(�0it� � �is�) + 2

�
t
�
�(�0it� � �is�)

+ 2
�
r
�
��0ir� + 2

�
r
�
��0ir� + 2

�
�
�
��0i�� � 2

�
t
2 �
r�itr � 2

�
t
2 �
��it� � 2

�
t
2 �
��it� � t�

�
r
2
�irr�

�
t
�
�
2

�i�� �
�
t
�
�
2

�i�� � 2
�
t
�
r
�
��ir� � 2

�
t
�
r
�
��ir� � 2

�
t
�
�
�
��i�� +

��
t(�0it � 2�is � 3

�
t�it�

2
�
r�ir � 2

�
��i� � 2

�
��i�) +

��
r(�0ir �

�
t�ir) +

��
�(�0i� �

�
t�i�) +

��
�(�0i� �

�
t�i�); (2.49)

�1i;ss = �1iss + 2
�
t�1ist +

�
t
2

�1itt +
�
r(2�1isr � �iss) + r�2(�1irr � 2�isr)�

�
r
3
�irr + 2

�
��1is�

+
�
�
2

�1i�� + 2
�
��1is� +

�
�
2

�1i�� + 2
�
t
�
r(�1itr � �ist) + 2

�
t
�
��1it� + 2

�
t
�
��1it� + 2

�
r
�
�(�1ir�

� �is�) + 2
�
r
�
�(�1ir� � �is�) + 2

�
�
�
��1i�� �

�
t
2 �
r�itt �

�
r
�
�
2

�i�� �
�
r
�
�
2

�i�� � 2
�
t
�
r
2
�itr

� 2 �r
2 �
��ir� � 2

�
r
2 �
��ir� � 2

�
t
�
r
�
��it� � 2

�
t
�
r
�
��it� � 2

�
r
�
�
�
��i�� +

��
t(�1it �

�
r�it) +

��
r(�1ir

� 2�is � 3
�
r�ir � 2

�
t�it � 2

�
��i� � 2

�
��i�) +

��
�(�1i� �

�
r�i�) +

��
�(�1i� �

�
r�i�); (2.50)

�2i;ss = �2iss + 2
�
t�2ist +

�
t
2

�2itt + 2
�
r�2isr + r

�2�2irr +
�
�(2�2is� � �iss) +

�
�
2

(�2i�� � 2�is�)�
�
�
3

�i�� + 2
�
��2is� +

�
�
2

�2i�� + 2
�
t
�
r�2itr + 2

�
t
�
�(�2it� � �ist) + 2

�
t
�
��2it� + 2

�
r
�
�(�2ir� � �isr)

+ 2
�
r
�
��2ir� + 2

�
�
�
�(�2i�� � �is�)�

�
t
2 �
��itt �

�
r
2 �
��irr �

�
�
�
�
2

�i�� � 2
�
t
�
�
2

�it� � 2
�
r
�
�
2

�ir�

� 2
�
�
2 �
��i�� � 2

�
t
�
r
�
��itr � 2

�
t
�
�
�
��it� � 2

�
r
�
�
�
��ir� +

��
t(�2it �

�
��it) +

��
r(�2ir �

�
��ir)+

��
�(�2i� � 2�is � 3

�
��i� � 2

�
t�it � 2

�
r�ir � 2

�
��i�) +

��
�(�2i� �

�
��i�); (2.51)

�3i;ss = �3iss + 2
�
t�3ist +

�
t
2

�3itt + 2
�
r�3isr +

�
r
2
�3irr + 2

�
��3is� +

�
�
2

�3i�� +
�
�(2�3is� � �iss)+

�
�
2

(�3i�� � 2�is�)�
�
��i�� + 2

�
t
�
r�3itr + 2

�
t
�
��3it� + 2

�
t
�
�(�3it� � �ist) + 2

�
r
�
��3ir� + 2

�
r
�
�(�3ir�

� �isr) + 2
�
�
�
�(�3i�� � �is�)� 2

�
t
�
r
�
��itr � 2

�
t
�
�
�
��it� � 2

�
r
�
�
�
��ir� � 2

�
t
�
�
2

�it� � 2
�
r
�
�
2

�ir�

�
�
t
2 �
��itt �

�
r
2 �
��irr �

�
�
2 �
��i�� � 2

�
�
�
�
2

�i�� +
��
t(�3it �

�
��it) +

��
r(�3ir �

�
��ir) +

��
�(�3i��

�
��i�) +

��
�(�3i� � 2�is � 3

�
��i� � 2

�
t�it � 2

�
r�ir � 2

�
��i�); (2.52)
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(where i = 0; 1; 2 denoting the exact, �rst-order approximate and second-order approximate

part respectively). Substituting these values, the exact and �rst-order approximate symmetry

generators X0 and X1 given by (1.78) - (1.85) in (2.41) - (2.44) and using the geodesic equations

(2.36) - (2.39), we get the following set of determining equations.

2r2�2tr � a2 = 0; �2t� = 0; �2t� = 0; r�2r� � �2� = 0;

r�2r� � �2� = 0; r�2�� � cot ��2� = 0;

2r2�2tt � c
2[sin �(a3 sin�� a4 cos�) + a5 cos�] = 0;

2r2�2rr � [sin �(a3 sin�� a4 cos�) + a5 cos�] = 0;

�2�� + r�2r � [sin �(a3 sin�� a4 cos�) + a5 cos�] = 0;

�2�� + r sin
2 ��2r + sin � cos ��2� � sin

2 �[sin �(a3 sin�� a4 cos�) + a5 cos�] = 0; (2.53)

2r2(�02tt � 2�2st) + c(a2 sin � cos�+ a3 sin � sin�+ a4 cos �) = 0; (2.54)

r3�12tt � c
2(a5 sin � cos�+ a6 sin � sin�+ a7 cos � + a2ct sin � cos�+

a3ct sin � sin�+ a4ct cos �) = 0; (2.55)

2r4�22tt + c
2(a5 cos � cos�+ a6 cos � sin�� a7 sin � + a2ct cos � cos�

+a3ct cos � sin�� a4ct sin �) = 0; (2.56)

2r4�32tt + c
2(a6 csc � cos�� a5 csc � sin�� a2ct csc � sin�+ a3ct csc � cos�) = 0; (2.57)

2cr2�02rr + 3(a2 sin � cos�+ a3 sin � sin�+ a4 cos �) = 0; (2.58)

r3(�12rr � 2�2sr) + a5 sin � cos�+ a6 sin � sin�+ a7 cos � + a2ct sin � cos�+

a3ct sin � sin�+ a4ct cos � = 0; (2.59)

2r3(r�22rr + 2�
2
2r)� a5 cos � cos�� a6 cos � sin�+ a7 sin � � a2ct cos � cos�

�a3ct cos � sin�+ a4ct sin � = 0; (2.60)

2r3(r�32rr + 2�
3
2r) + a5 csc � sin�� a6 csc � sin cos+a7 sin � + a2ct csc � sin�

�a3ct csc � cos� = 0; (2.61)

c(�02�� + r�
0
2r)� a2 sin � cos�� a3 sin � sin�� a4 cos � = 0; (2.62)
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r(�12�� + r�
1
2r � �

1
2 � 2r�22�)� 2(a5 sin � cos�+ a6 sin � sin�+ a7 cos �

+a2ct sin � cos�+ a3ct sin � sin�+ a4ct cos �) = 0; (2.63)

r(r�22�� + r
2�22r + 2r�

1
2�
� 2r�2s�) + a5 cos � cos�+ a6 cos � sin�� a7 sin �

+a2ct cos � cos�+ a3ct cos � sin�� a4ct sin � = 0; (2.64)

r2(�32�� + r�
3
2r + 2r

2 cot ��32�)� a5 csc � sin�+ a6 csc � cos�� a2ct csc � sin�

+a3ct csc � cos� = 0; (2.65)

c(sin � cos��02� + �
0
2��

+ r sin2 ��02r)� sin
2 �(a2 sin � cos�+ a3 sin � sin�

+a4 cos �) = 0; (2.66)

r(�12�� + r sin
2 ��12r + sin � cos ��

1
2�
� sin2 ��12 � 2r sin � cos ��22 � 2r sin ��32�)�

2 sin2 �(a5 sin � cos�+ a6 sin � sin�+ a7 cos � + a2ct sin � cos�+ a3ct sin � sin�

+a4ct cos �) = 0; (2.67)

r2(�22�� + r sin
2 ��22r � cos 2��

2
2 � 2 sin � cos ��32� + sin � cos ��

2
2�
) + sin2 �(a5 sin �

cos�+ a6 sin � sin�� a7 cos � + a2ct cos � cos�+ a3ct cos � sin�� a4ct sin �) = 0; (2.68)

r(r�32�� � 2r�2s� + r
2 sin2 ��32r + r sin � cos ��

3
2�
+ 2r�12� + 2r

2 cot ��22�)+

sin2 �(a6 csc � cos�� a5 csc � sin�� a2ct csc � sin�+ a3ct csc � cos�) = 0; (2.69)

2�02st � �2ss = 0; �
1
2st = 0; �

2
2st = 0; �

3
2st = 0; (2.70)

�02sr = 0; 2�
1
2sr � �2ss = 0; r�

2
2sr + �

2
2s = 0; r�

3
2sr + �

3
2s = 0; (2.71)

�02s� = 0; �
1
2s�
� r�22s = 0; r(2�

2
2s�
� �2ss) + 2�

1
2s = 0; �

3
2s�
+ cot ��32s = 0; (2.72)

�02s� = 0; �
1
2s�
� r sin2 ��32s = 0; �

2
2s�
� sin � cos ��32s = 0; (2.73)

r(2�32s� � �2ss) + 2�
1
2s + 2r cot ��

2
2s = 0; (2.74)

�02ss = 0; �
1
2ss = 0; �

2
2ss = 0; �

3
2ss = 0; (2.75)

r3(�02tr � �2sr)� (a5 sin � cos�+ a6 sin � sin�+ a7 cos � + a2ct sin � cos�+

a3ct sin � sin�+ a4ct cos �) = 0; (2.76)

2r2(�12tr � �2st)� c(a2ct sin � cos�+ a3ct sin � sin�+ a4ct cos �) = 0; (2.77)

2r2(r�22tr + �
2
2t)� c(a2 cos � cos�+ a3 cos � sin�� a4 sin �) = 0; (2.78)

2r2(r�32tr + �
3
2t)� c(a3 csc � cos�� a2 csc � sin�) = 0; (2.79)
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2r2(�02t� � �2s�) + a5 cos � cos�+ a6 cos � sin�� a7 sin � + a2ct cos � cos�+

a3ct cos � sin�� a4ct sin � = 0; (2.80)

2r(�12t� � r�
2
2t) + 3c(a2 cos � cos�+ a3 cos � sin�� a4 sin �) = 0; (2.81)

r(�22t� � �2st) + �
1
2t = 0; (2.82)

�32t� + cot ��
3
2t = 0; (2.83)

2r2(�02t� � �2s�) + a6 sin � cos�� a5 sin � sin�� a2ct sin � sin�

+a3ct sin � cos� = 0; (2.84)

2r(�12t� � r sin
2 ��32t) + 3c(a3 sin � cos�� a2 sin � sin�) = 0; (2.85)

�22t� � sin � cos ��
3
2t = 0; (2.86)

r(�32t� � �2st) + �
1
2t + r cot ��

2
2t = 0; (2.87)

2c(r�02r� � �
0
2�
) + a2 cos � cos�+ a3 cos � sin�� a4 sin � = 0;

2r(r�12r� � r�2s� � �
1
2�
� r2�22r)� 3(a5 cos � cos�+ a6 cos � sin�� a7 sin � (2.88)

+a2ct cos � cos�+ a3ct cos � sin�� a4ct sin �) = 0; (2.89)

r2(�22r� � �2sr)� �
1
2 + r�

1
2r = 0; (2.90)

�32r� + cot ��
3
2r = 0; (2.91)

2c(r�02r� � �
0
2�
) + a3 sin � cos�� a2 sin � sin� = 0; (2.92)

2r(r�12r� � r�2s� � �
1
2�
� r2 sin2 ��32r) + 3(a5 sin � cos�� a6 sin � cos�+

a2ct sin � sin�� a3ct sin � cos�) = 0; (2.93)

�22r� � sin � cos ��
3
2r = 0; (2.94)

r2(�32r� � �2sr + cot ��
2
2r) + r�

1
2r � �

1
2 = 0; (2.95)

�02�� � cot ��
0
2�
= 0; (2.96)

�12�� � cot ��
1
2�
� r�22� � r sin

2 ��32� = 0; (2.97)

r(�22�� � �2s� � cot ��
2
2�
� sin � cos ��32�) + �

1
2�
= 0; (2.98)

r(�32�� � �2s� � csc
2 ��22 + cot ��

2
2�
) + �12� = 0: (2.99)

It should be noted that the symmetry algebra of the exact case i.e. of the geodesic equations

of the Minkowski spacetime (maximally symmetric) is sl(6;R), (35 symmetry generators) [68],
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which has many symmetries that do not correspond to conservation laws, arising from the

mixing of the geodesic re-parametrization generators with the Noether symmetry generators

of the geodesic equations. Since we are looking for non-trivial approximate conservation laws

which can come from Noether symmetries, therefore we only use the 10 KVs (which are also

Noether symmetry generators) and d2; as exact symmetry generators in the construction of the

above determining equations for second-order approximate symmetries of the geodesic equations

of the RN spacetime. These were also used in the construction of the determining equations of

the �rst-order approximate symmetries of the geodesic equation for the Schwarzschild spacetime

[60].

First integrating (2.53-i) with respect to r and then with respect to t we get

�2 = �
a2t

2r
+

Z
f1(s; t; �; �)dt+ f2(s; r; �; �); (2.100)

where f1 and f2 are arbitrary functions of integration.

Equation (2.53-ii) implies that

f1 = f3(s; t; �) (2.101)

and (2.53-iii) gives

f3 = f4(s; t): (2.102)

Substituting the value of �2 from (2.100) in (2.53-vii) and then integration twice with respect

to t yields

f4 =
c2t

2r2
[sin �(a3 sin�� a4 cos�) + a5 cos�] + f5(s):

Integration of f4 with respect to t and then substitution in (2.100) gives

�2 = �a2t
2r
+
c2t2

4r2
[sin �(a3 sin�� a4 cos�) + a5 cos�] + tf5(s)

+f2(s; r; �; �) + b0; (2.103)

where b0 is constant of integration.
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Equation (2.53-x) gives us

cos �(a3 sin�� a4 cos�)� a5 sin� = 0;

which implies that

a3 = 0; a4 = 0 and a5 = 0:

Therefore from (2.103) we have

�2 = �
a2t

2r
+ tf5(s) + f2(s; r; �; �) + b0: (2.104)

Now use of (2.104) into (2.53-viii) yields

a2 = 0

and thus

�2 = tf5(s) + f2(s; r; �; �) + b0: (2.105)

Also (2.53-viii) implies that

f2 = rf6(s; �; �) + f7(s; �; �):

Hence (2.105) becomes

�2 = tf5(s) + rf6(s; �; �) + f7(s; �; �) + b0: (2.106)

Use of (2.106) in (2.53-ix) gives

f7 = �f8(s; �) + f9(s; �):

Therefore

�2 = tf5(s) + rf6(s; �; �) + �f8(s; �) + f9(s; �) + b0: (2.107)
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The use of (2.107) in (2.53-x) implies

f8 = 0 and f9 = �f10(s) + f11(s):

From (2.107) we have

�2 = tf5(s) + rf6(s; �; �) + �f10(s) + f11(s) + b0: (2.108)

Now from (2.53-vi) with the use of (2.108) we get

f6 = sin �

Z
f12(s; �)d�+ f13(s; �) and f10 = 0:

Thus

�2 = tf5(s) + r[sin �

Z
f12(s; �)d�+ f13(s; �)] + f11(s) + b0: (2.109)

Integration of (2.75-i), (2.75-ii), (2.75-iii) and (2.75-iv) twice with respect to s give us respec-

tively

�02 = g1(t; r; �; �)s+ g2(t; r; �; �); (2.110)

�12 = h1(t; r; �; �)s+ h2(t; r; �; �); (2.111)

�22 = l1(t; r; �; �)s+ l2(t; r; �; �); (2.112)

�32 = m1(t; r; �; �)s+m2(t; r; �; �): (2.113)

Equation (2.70-i) yield

g1 =
1

4
t2f5ss(s) + tg3(r; �; �) + g4(r; �; �);

therefore

�02 = [
1

4
t2f5ss(s) + tg3(r; �; �) + g4(r; �; �)]s+ g2(t; r; �; �): (2.114)

Now (2.70-i) implies

g3 = b1
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and

f11 = b1s
2 + b2s+ b3;

f12 = sf14(�) + f15(�);

f13 = sf16(�) + f17(�):

Therefore

�2 = tf5(s) + r[sin �fs
Z
f14(�)d�+

Z
f15(�)d�g+ sf16(�) + f17(�)]

+b1s
2 + b2s+ b4; (2.115)

where b4 = b0 + b3 and

�02 = [
1

4
t2f5ss(s) + tb1 + g4(r; �; �)]s+ g2(t; r; �; �) (2.116)

Equations (2.70-ii), (2.75-iii) and (2.75-iv) give respectively

h1 = h3(r; �; �); l1 = l3(r; �; �) and m1 = m3(r; �; �):

Thus

�12 = h3(r; �; �)s+ h2(t; r; �; �); (2.117)

�22 = l3(r; �; �)s+ l2(t; r; �; �); (2.118)

�32 = m3(r; �; �)s+m2(t; r; �; �): (2.119)

From (2.71-i) we obtain

g4 = g5(�; �):

From (2.116) we get

�02 = [
1

4
t2f5ss(s) + tb1 + g5(�; �)]s+ g2(t; r; �; �): (2.120)
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Now (2.71-ii) yields

h3 =
b1
2
r + h4(�; �) and f5 = b5s+ b6:

Thus

�2 = t(b5s+ b6) + r[sin �fs
Z
f14(�)d�+

Z
f15(�)d�g+ sf16(�) + f17(�)]

+b1s
2 + b2s+ b4; (2.121)

�02 = [tb1 + g5(�; �)]s+ g2(t; r; �; �) (2.122)

and

�12 = [
b1
2
r + h4(�; �)]s+ h2(t; r; �; �): (2.123)

Equations (2.71-iii) and (2.71-iv) gives us respectively

l3 =
1

r
l4(�; �) and m3 =

1

r
m4(�; �):

Therefore

�22 =
s

r
l4(�; �) + l2(t; r; �; �); (2.124)

�32 =
s

r
m4(�; �) +m2(t; r; �; �): (2.125)

From (2.72-i) we obtain

g5 = g6(�):

Equation (2.122) gives

�02 = [tb1 + g6(�)]s+ g2(t; r; �; �): (2.126)

Equation (2.72-ii) yields

l4 = h4�(�; �)

and (2.72-iv) gives

m4 = m5(�) csc �:
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Therefore

�22 =
s

r
h4�(�; �) + l2(t; r; �; �); (2.127)

�32 =
s

r
m5(�) csc � +m2(t; r; �; �): (2.128)

Equation (2.73-i) yields

g6 = b7:

From (2.126) we get

�02 = [tb1 + b7]s+ g2(t; r; �; �): (2.129)

Equation (2.73-ii) implies that

h4 = sin �

Z
m5(�)d�+ h5(�);

therefore

�12 = [
b1
2
r + sin �

Z
m5(�)d�+ h5(�)]s+ h2(t; r; �; �) (2.130)

and

�22 =
s

r
[cos �

Z
m5(�)d�+ h5�(�)] + l2(t; r; �; �): (2.131)

Now from (2.73-iv) we obtain

m5(�) = b8 cos�+ b9 sin�:

From (2.130), (2.131) and (2.128) we get respectively

�12 = [
b1
2
r + sin �(b8 sin ��� b9 cos�+ b10) + h5(�)]s+ h2(t; r; �; �); (2.132)

�22 =
s

r
[cos �(b8 sin�� b9 cos�+ b10) + h5�(�)] + l2(t; r; �; �) (2.133)

and

�32 =
s

r
(b8 sin�� b9 cos�+ b10) csc � +m2(t; r; �; �): (2.134)
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From (2.72-iii) we have

h5 = b11 cos � + b12 sin �;

thereby

�12 = [
b1
2
r + sin �(b8 sin ��� b9 cos�+ b10) + b11 cos � + b12 sin �]s

+h2(t; r; �; �) (2.135)

and

�22 =
s

r
[cos �(b8 sin�� b9 cos�+ b10)� b11 sin � + b12 cos �] + l2(t; r; �; �): (2.136)

Equation (2.73-iv) yields

b10 = �b12:

Using this in (2.135) and (2.136) we get respectively

�12 = [
b1
2
r + sin �(b8 sin ��� b9 cos�) + b11 cos �]s+ h2(t; r; �; �); (2.137)

and

�22 =
s

r
[cos �(b8 sin�� b9 cos�)� b11 sin �] + l2(t; r; �; �): (2.138)

Now going back to (2.53-ix) and (2.53-x) give us respectively

f16 = b13 cos � + b14 sin �;

f17 = b15 cos � + b16 sin �;

and

f14 = b17 cos�+ b18 sin�;

f15 = b19 cos�+ b20 sin�;
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thus

�2 = t(b5s+ b6) + r[sin �fs(b17 sin�� b18 cos�+ b21) + b19 sin��

b20 cos�+ b22g+ s(b13 cos � + b14 sin �) + b15 cos � + b16 sin �]

+b1s
2 + b2s+ b4: (2.139)

Equation (2.53-x) implies

b21 = �b14 and b22 = �b16:

Use of this in (2.121) yields

�2 = t(b5s+ b6) + r[sin �fs(b17 sin�� b18 cos�) + b19 sin�� b20 cos�g

+sb13 cos � + b15 cos �] + b1s
2 + b2s+ b4: (2.141)

From (2.54) we get

g2 = t2b5 + g7(r; �; �)t+ g8(r; �; �): (2.142)

Therefore

�02 = [tb1 + b7]s+ t
2b5 + g7(r; �; �)t+ g8(r; �; �): (2.143)

Equation (2.55) gives us

h2 =
c2t2

2r3
(a6 sin � sin�+ a7 cos �) + h5(r; �; �)t+ h6(r; �; �):

From (2.137) we have

�12 = [
b1
2
r + sin �(b8 sin ��� b9 cos�) + b11 cos �]s+

c2t2

2r3
(a6 sin � sin�

+a7 cos �) + h5(r; �; �)t+ h6(r; �; �): (2.144)

Equation (2.56) yields

l2 = �
c2t2

4r4
(a6 cos � sin�� a7 sin �) + l5(r; �; �)t+ l6(r; �; �):
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Therefore

�22 =
s

r
[cos �(b8 sin�� b9 cos�)� b11 sin �] +�

c2t2

4r4
(a6 cos � sin�� a7 sin �)

+l5(r; �; �)t+ l6(r; �; �): (2.145)

From (2.57) we get

m2 = �
c2t2

4r4
(a6 csc � cos�) +m6(r; �; �)t+m7(r; �; �);

so

�23 =
s

r
[csc �(b8 cos�+ b9 sin�)]�

c2t2

4r4
(a6 csc � cos�)

+m6(r; �; �)t+m7(r; �; �): (2.146)

Now (2.58) gives

g7 = g9(�; �)r + g10(�; �) and g8 = g11(�; �)r + g12(�; �):

Hence

�02 = [tb1 + b7]s+ t
2b5 + [g9(�; �)r + g10(�; �)]t+ g11(�; �)r + g12(�; �): (2.147)

From (2.59) we obtain

a6 = 0; a7 = 0;

h5 = h7(�; �)r + h8(�; �)

and

h6 = r2[sin �(b17 sin�� b18 cos�) + b13 cos �] + h9(�; �)r + h10(�; �):
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Thus

�12 = [
b1
2
r + sin �(b8 sin ��� b9 cos�) + b11 cos �]s+ [h7(�; �)r + h8(�; �)]t

+r2[sin �(b17 sin�� b18 cos�) + b13 cos �] + h9(�; �)r + h10(�; �); (2.148)

�22 =
s

r
[cos �(b8 sin�� b9 cos�)� b11 sin �] + l5(r; �; �)t+ l6(r; �; �) (2.149)

and

�23 =
s

r
[csc �(b8 cos�+ b9 sin�)] +m6(r; �; �)t+M7(r; �; �): (2.150)

With the disappearance of a2; :::; a7; the above system of determining equations (2.53) - (2.100)

becomes homogeneous (i.e. reduces to that of the Minkowski spacetime) and its solution is

given in chapter 1.

Check

We make an easy check for the veri�cation of our calculations. That is to check whether all the

constants appearing in the determining equations for the second-order approximation vanish or

not. We do not take the linear combination of all the symmetry generators (1st approximate)

but only take one of them, for example the following one with exact symmetry generator equal

to zero. That is

Y1 = a1(cos �
@

@r
� sin �

r

@

@�
) and Y0 = 0: (2.151)

We assume that �02 is function of r, t only and does not depend on � and �. Thus we get the

following set of equations

�02tt = 0; (2.152)

�02rr = 0; (2.153)

�02�� + r�
0
2r = 0; (2.154)

�02�� + r sin
2 ��02r + sin � cos ��

0
2�
= 0; (2.155)

�02tr =
a1
r3
cos �; (2.156)
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2�02t� =
a1
r2
sin �; (2.157)

�02t� = 0; (2.158)

r�02r� � �
0
2�
= 0; (2.159)

r�02r� � �
0
2�
= 0; (2.160)

�02�� � cot ��
0
2�
= 0: (2.161)

Now integration of (2.156) �rst with respect to t and then with respect to r gives

�02 = �
a1t

2r2
cos � +

Z
f(r; �; �)dr + g(�; �): (2.162)

Equation (2.153) yields

a1 = 0 and f = f1(�; �): (2.163)

Therefore

�02 = rf1(�; �) + g(�; �) + c0:

From (2.154) we obtain

g = �g1(�) + g2(�): (2.164)

Hence

�02 = rf1(�; �) + �g1(�) + g2(�) + c0: (2.165)

Now (2.155) gives us

g1 = 0 and g2 = c1�+ c2: (2.166)

Therefore

�02 = rf1(�; �) + c1�+ c2 + c0: (2.167)

From (2.160) we deduce

c1 = 0; (2.168)

so

�02 = rf1(�; �) + c3; (2.169)
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where

c3 = c0 + c2: (2.170)

Equation (2.161) yields

f1(�; �) = sin �

Z
h(�)d�+ l(�): (2.171)

Therefore

�02 = r[sin �

Z
h(�)d�+ l(�)] + c3: (2.172)

Equation (2.154) implies

l = c4 cos � + c5 sin �: (2.173)

Thus

�02 = r[sin �

Z
h(�)d�+ c4 cos � + c5 sin �] + c3: (2.174)

From (2.155) we have

h = c6 cos�+ c7 sin�: (2.175)

Therefore

�02 = r[sin �fc6 sin�� c7 cos�+ c8g+ c4 cos � + c5 sin �] + c3: (2.176)

Again (2.155) implies

c5 = 0 and c8 = 0: (2.177)

Hence

�02 = r[sin �fc6 sin�� c7 cos�8g+ c4 cos �] + c3: (2.178)

In this check we see that the constant a1 corresponding to the �rst-order approximate symmetry

disappears for the consistency of the determining equations. Hence there is no non-trivial

symmetry.

In the construction of the determining equations for the second-order approximate symme-

tries of the geodesic equations (2.36) - (2.39) for the RN spacetime, we used (1.78) and (1.79)

as the 4 exact symmetry generators and (1.80) - (1.85) as the 6 �rst-order approximate sym-

metry generators. Of the 4 exact generators 2 did not appear in the new determining equations

and the other 2 canceled out. The 6 generators of the �rst-order approximate symmetry had
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to be eliminated for consistency of the new determining equations, (as seen above) making

them homogeneous. The resulting system was the same as for the Minkowski spacetime, yield-

ing 12 second-order trivial approximate symmetry generators i.e. 10 KVs and @=@s; s@=@s.

Four of them are again the exact symmetry generators used earlier, and hence simply add into

them, making no di¤erence. The other 6 replace the lost �rst-order approximate symmetry

generators. The full set has the Poincarè algebra so(1; 3) �s R4 apart from d2. In conclusion

there are no non-trivial second-order approximate symmetries of the geodesic equations for the

RN spacetime as was the case for the �rst-order approximate symmetries of the Schwarzschild

spacetime.

2.2 Energy (Mass) in the RN Spacetime

It is worth remarking that for the �rst-order approximate symmetries of the geodesic equa-

tions for the Schwarzschild spacetime it did not matter whether we used the full system

E = E0+�E1 = 0; or the unperturbed system E0 = 0, in the construction of the determining

equations. However, for the second-order approximate symmetries it does make a di¤erence.

One needs to use the full system E = E0+�E1+�
2E2 = 0; and not the unperturbed system, in

the determining equations to obtain the solution.

The exact symmetry generators i.e. for the Minkowski spacetime, include not only (1.78) -

(1.85), but also the generators of the dilation algebra, @=@s; s@=@s corresponding to

�(s) = c0s+ c1: (2.179)

In the determining equations for the �rst-order approximate symmetries of the geodesic equa-

tions for the Schwarzschild spacetime the terms involving �s = c0; cancel out. However, for

the second-order approximate symmetries of the geodesic equations for the RN spacetime the

terms involving �s do not automatically cancel out but collect a scaling factor of (1 � 2k) so

as to cancel out. (This factor comes from the application of the perturbed system, rather than

the unperturbed one in the determining equations). Since energy conservation comes from time

translational invariance and � is the coe¢ cient of @=@s in the point transformations given by

(1.34), where s is the proper time, the scaling factor (1 � 2k) corresponds to a re-scaling of
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energy. Thus, whereas there was no energy re-scaling needed for the �rst-order approximate

symmetries of the geodesic equations of the Schwarzschild spacetime, it arises naturally in the

second-order approximate symmetries of the RN spacetime. Using (2.3) we get the energy

re-scaling factor (taking G = 1; c = 1)

(1� 2k) = (1� Q2

2M2
): (2.180)

Thus, even though there are no non-trivial second-order approximate symmetries for the geo-

desic equations of the RN spacetime, we get the non-trivial result of energy re-scaling from the

de�nition of second-order approximate symmetries of ODEs which will be further discussed in

chapter 7.

It is worth remarking that when some symmetries are lost at one order (exact or �rst-order

approximate) they are recovered at the next (at least to second-order) as trivial approximate

symmetries.

We give the main results of this chapter in the form of the following theorem.

Theorem 2.1. The energy in the RN spacetime is re-scaled by the factor (2.180).
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Chapter 3

Second-Order Approximate Noether

Symmetries for the Kerr Spacetime

In this chapter we study second-order approximate Noether symmetries for the Kerr spacetime.

First we consider the Kerr spacetime as a �rst perturbation of the Schwarzschild spacetime

by introducing the spin angular momentum per unit mass as a small parameter �: For a �rst-

order Lagrangian of this perturbed spacetime there does not exist any non-trivial approximate

symmetry. Then we consider the Kerr spacetime as a second perturbation of the Minkowski

spacetime, taking mass of the order of � and spin angular momentum per unit mass of the

order of �2: The Noether symmetry algebra of the exact case i.e. of the Minkowski spacetime

is 17 dimensional which properly contains the conformal conformal Killing vectors (CKVs) of

this spacetime [82]. Like the �rst-order approximate case there is no non-trivial approximate

symmetry in the second-order approximation.

3.1 Symmetries and Approximate Symmetries of the Lagrangian

for the Kerr Spacetime

We �rst discuss the exact symmetries of the Lagrangian for the Kerr spacetime.
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3.1.1 Exact Noether Symmetries of the Kerr Spacetime

The line element for this spacetime in Boyer-Lindqust coordinates is given by [40]

ds2 = (1� 2GMr

�2c2
)c2dt2 � (�

2

�
)dr2 � �2d�2 � �sin

2 �

�2
d�2 + (

2GMra sin2 �

�2c2
)dtd�; (3.1)

where

�2 = r2 +
a2

c2
cos2 �, � = (r2 +

a2

c2
)2 � a2�sin2 � and � = r2 +

a2

c2
� 2GMr;

M is the mass and a the angular momentum per unit mass of the gravitating source. This

metric reduces to the Schwarzschild metric when a = 0. This spacetime has two KVs, @=@t and

@=@� and a non-trivial Killing tensor [1]. Thus the only conserved quantities are energy and

angular momentum for this spacetime.

A Lagrangian for the geodesic equations is in general de�ned by

L[xa;
�
x
a
] = g

ab(xc)
dxa

ds

dxb

ds
; (3.2)

and for the metric given by (3.1) we get

L = (1� 2GMr

�2c2
)c2

�
t
2

� �2

�

�
r
2
� �2

�
�
2

� �sin
2 �

�2

�
�
2

+
2GMra sin2 �

�2c2
�
t
�
�; (3.3)

Using (3.3) in (1.54) we obtain a set of determining equations for 6 unknown functions �; �i

(i = 0; 1; 2; 3) and A, where each of these is a function of 5 variables, i.e. s; t; r; � and �:

�t = 0; �r = 0; �� = 0; �� = 0; As = 0; (3.4)

�0s(
2GMr

c2�2
� 1) + �3s2a(1�

GMr

c2�2
) sin2 � = At; (3.5)

�0s2a(1�
GMr

c2�2
) sin2 � � �3s

�

�2
sin2 � = A�; (3.6)

�1s
�2

�
= �Ar; �2s�2 = �A�; �1� +��2r = 0; (3.7)

�1r � �2a
2

2
sin 2� + �2(�2� �

1

2
�s) = 0; (3.8)

57



�0r(
2GMr

c2�2
� 1)� �1t

�2

�
+ �3r2a(1�

GMr

c2�2
) sin2 � = 0; (3.9)

�0�(
2GMr

c2�2
� 1)� �2t�2 + �3�2a(1�

GMr

c2�2
) sin2 � = 0; (3.10)

�0r2a(1�
GMr

c2�2
) sin2 � � �1�

�2

�
� �3r

�

�2
sin2 � = 0; (3.11)

�1
1

�
fr�� �2(r � GM

c2
)g � �2a

2

2
sin 2� + �2(�1r �

1

2
�s) = 0; (3.12)

�0�2a(1�
GMr

c2�2
) sin2 � � �2��2 � �3�

�

�2
sin2 � + �2(�2� �

1

2
�s) = 0; (3.13)

�1
M

�4
(�2 � 2r2) + �2GMa2r

c2�4
sin 2� + �0t (

2GMr

c2�2
� 1) + �3t 2a(1

�GMr

c2�2
) sin2 � � 1

2
�s(
2GMr

c2�2
� 1) = 0; (3.14)

�1
1

�4
[�2f2a(a2 + r2)� a2(r � GM

c2
) sin2 �g � r�] sin2 � + �2 1

�2
[� +

a2

�2
(�

��2�) sin2 �] sin 2� � �0�2a(1�
GMr

c2�2
) sin2 � +

�sin2 �

�2
(�3� �

1

2
�s) = 0; (3.15)

�1
aGM

c2�4
(2r2 � �2) sin2 � � �2aGMr

c2�2
(
a2

�2
sin2 � + 1) sin 2� + �0�(

2GMr

c2�2
� 1)

+2a(�0t + �
3
�)(1�

GMr

c2�2
) sin2 � � �3t

�

�2
sin2 � � �s3a(1�

GMr

c2�2
) sin2 � = 0: (3.16)

Solving these equations by the same method used in chapter 2, i.e. back and forth substi-

tution, we get the symmetry generators i.e.

Y0 =
@

@t
; Y3 =

@

@�
; Z0 =

@

@s
with A = c (constant). (3.17)

Thus here we see that the isometries form a subalgebra of the symmetries of the Lagrangian.

With this information, from (1.56) one can obtain the �rst integrals of the geodesic equations

for the Kerr metric.

3.1.2 Approximate Noether Symmetries of the Kerr Spacetime

In this section we investigate the approximate symmetries of the Kerr spacetime in two dif-

ferent ways. First we consider the Kerr spacetime as a �rst perturbation of the Schwarzschild

spacetime and then we take it as a second perturbation of the Minkowski spacetime.
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Kerr Spacetime as a First Perturbation of the Schwarzschild Spacetime

For the �rst-order approximate symmetries of a Lagrangian for the Kerr metric we introduce

the spin angular momentum per unit mass

a = �; (3.18)

as a small parameter. In this case the �rst-order perturbed Lagrangian is given by

L = (1� 2GM
rc2

)c2
�
t
2

� (1� 2GM
rc2

)�1c2
�
r
2
� r2(

�
�
2

+ sin2 �
�
�
2

) + �
2GM

rc2
sin2 �

�
t
�
�: (3.19)

For � = 0; the above Lagrangian reduces to that of the Schwarzschild spacetime. For the exact

(unperturbed) Schwarzschild spacetime the Noether symmetry algebra is 5 dimensional, given

by so(3) � R � d1 with symmetry generators (3.20) and (3.21), which properly contains the

isometry algebra, and the gauge function is just a constant [83]. Using the Lagrangian (3.19)

and the exact Noether symmetries of the Schwarzschild spacetime

Y0 =
@

@t
; Y1 = cos�

@

@�
� cot � sin� @

@�
; (3.20)

Y2 = sin�
@

@�
+ cot � cos�

@

@�
; Y3 =

@

@�
; Z0 =

@

@s
; (3.21)

in the �rst-order approximate Noether symmetry conditions (1.63) we obtain the following set

of determining equations

�t = 0; �r = 0; �� = 0; �� = 0; As = 0; (3.22)

2�0s(1�
2GM

rc2
) = At; 2(

rc2

rc2 � 2GM )�1s = �Ar; (3.23)

2�2sr
2 = �A�; 2�3sr2 sin2 � = �A�; (3.24)

2�1 + 2r�2� � r�s = 0; �0r(1�
2GM

rc2
)2 � �1t = 0; (3.25)

�1�(
rc2

rc2 � 2GM ) + �3rr
2 sin2 � = 0; �2� + �

3
� sin

2 � = 0; (3.26)

�1�(
rc2

rc2 � 2GM ) + �2rr
2 = 0; �1(

2GM

rc2 � 2GM )� r(2�1r + �s) = 0; (3.27)
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�1
2GM

rc2
+ (1� 2GM

rc2
)(2�0t � �s) = 0; (3.28)

2�2r cos � + (2�1 + 2r�3� � r�s) sin � = 0; (3.29)

�0�(1�
2GM

rc2
)� �2t r2 +

GM

rc2
(c1 sin�� c2 cos�) sin2 � = 0; (3.30)

�0�(1�
2GM

rc2
)� �3t r2 sin2 � +

GM

2rc2
(c1 cos�+ c2 sin�) sin 2� = 0: (3.31)

In the above equations (3.30) and (3.31) two constants c1 and c2 corresponding to the exact

Noether symmetry generators of the Schwarzschild spacetime appear.

Equation (3.22) yields

� = f1(s); A = A(t; r; �; �): (3.32)

From (3.23) and (3.24) we obtain

�0 = sf2(t; r; �; �) + f3(t; r; �; �); (3.33)

�1 = sf4(t; r; �; �) + f5(t; r; �; �); (3.34)

�2 = sf6(t; r; �; �) + f7(t; r; �; �); (3.35)

�3 = sf8(t; r; �; �) + f9(t; r; �; �): (3.36)

Use of (3.34) in the second of (3.27) and then di¤erentiation twice with respect to s gives

�sss = 0: (3.37)

On integration (3.37) yields

� =
1

2
b0s

2 + b1s+ b2: (3.38)

Use of (3.33), (3.34) and (3.38) in (3.28) and then separation by the powers of s gives

2M

r2
f4(t; r; �; �) + (1�

2GM

rc2
)[2f2t(t; r; �; �)� b0] = 0; (3.39)

2M

r2
f5(t; r; �; �) + (1�

2GM

rc2
)[2f3t(t; r; �; �)� b1] = 0: (3.40)

Di¤erentiate (3.33) with respect to s, substitute it in the �rst of (3.23) and then integrate the
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resulting equation with respect to t; we determine

A = 2(1� 2GM
rc2

)

Z
f2(t; r; �; �)dt+ f10(r; �; �): (3.41)

Use of (3.34) and (3.41) in the second of (3.23) gives

f4(t; r; �; �) = �1
2
(1� 2GM

rc2
)[
4GM

r2c2

Z
f2(t; r; �; �)dt+

2(1� 2GM
rc2

)

Z
f2r(t; r; �; �)dt+ f10r(r; �; �)]: (3.42)

Use of (3.42) in (3.39) and then di¤erentiate with respect to t we obtain

(1� 2GM
rc2

)f2r(t; r; �; �) + (
2G2M2

r4c4
� 1)f2(t; r; �; �) = 0: (3.43)

The use of (3.35) and (3.41), in the �rst of (3.24) and the use of (3.36) and (3.41), in the second

of (3.24) yields

f6(t; r; �; �) = � 1
r2
[(1� 2GM

rc2
)

Z
f2�(t; r; �; �)dt+

1

2
f10�(r; �; �)]; (3.44)

f8(t; r; �; �) = �csc
2 �

r2
[(1� 2GM

rc2
)

Z
f2�(t; r; �; �)dt+

1

2
f10�(r; �; �)]: (3.45)

Therefore

�2 = � s

r2
[(1� 2GM

rc2
)

Z
f2�(t; r; �; �)dt+

1

2
f10�(r; �; �)] + f7(t; r; �; �); (3.46)

�3 = �s csc
2 �

r2
[(1� 2GM

rc2
)

Z
f2�(t; r; �; �)dt+

1

2
f10�(r; �; �)] + f9(t; r; �; �): (3.47)

Use (3.33) and (3.34) in the second of (3.25) and then separate by the powers of s we deduce

f2(t; r; �; �) = 0: (3.48)

With the use of (3.48) from (3.39) we obtain

f4(t; r; �; �) =
r2

2M
(1� 2GM

rc2
)b0: (3.49)
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Thus

�0 = f3(t; r; �; �); (3.50)

�1 =
sr2

2M
(1� 2GM

rc2
)b0 + f5(t; r; �; �); (3.51)

�2 =
�s
2r2

f10�(r; �; �) + f7(t; r; �; �); (3.52)

�3 =
�s csc2 �
2r2

f10�(r; �; �) + f9(t; r; �; �); (3.53)

A = f10(r; �; �): (3.54)

We di¤erentiate (3.51) with respect to s and (3.54) with respect to r and substitute them in

the second of (3.23), we determine

f10r(r; �; �) =
�r2
M

b0: (3.55)

Equation (3.55) on integration with respect to r gives

f10(r; �; �) = �
r3

3M
b0 + g1(�; �): (3.56)

First we substitute (3.56) in (3.52). Then di¤erentiate (3.51) with respect to � and (3.52) with

respect to r and substitute them in the �rst of (3.27) we obtain

(
rc2

rc2 � 2GM )f5�(t; r; �; �) +
s

r2
g1�(�; �) + rf7r(t; r; �; �) = 0: (3.57)

Separation of (3.57) for the di¤erent powers of s yields

(
rc2

rc2 � 2GM )f5�(t; r; �; �) + rf7r(t; r; �; �) = 0; (3.58)

g1(�; �) = g2(�): (3.59)

Therefore

�2 = f7(t; r; �; �); (3.60)

�3 = �s csc
2 �

2r2
g2�(�) + f9(t; r; �; �); (3.61)
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A = � r3

3M
b0 + g2(�): (3.62)

We use (3.60) and (3.61) in the second of (3.26) and then separate by the powers of s we obtain

f7�(t; r; �; �) + sin
2 �f9�(t; r; �; �) = 0; (3.63)

g2(�) = b3: (3.64)

Therefore

�3 = f9(t; r; �; �); (3.65)

A = b3 �
r3

3M
b0: (3.66)

We di¤erentiate (3.38) with respect to s and (3.51) with respect to r and use them in the second

of (3.27). Then separate by the powers of s we get

b0 = 0: (3.67)

Di¤erentiate (3.50) with respect to r and (3.51) with respect to t and then the use of them in

the second of (3.25) yields

(1� 2GM
rc2

)2f3r(t; r; �; �)� f5t(t; r; �; �) = 0: (3.68)

Integration of (3.68) with respect to t gives

f5(t; r; �; �) = (1�
2GM

rc2
)2
Z
f3r(t; r; �; �)dt+ g4(r; �; �): (3.69)

Thus

� = sb1 + b2; (3.70)

�1 = (1� 2GM
rc2

)2
Z
f3r(t; r; �; �)dt+ g4(r; �; �); (3.71)

A = b3: (3.72)
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We di¤erentiate (3.50) with respect to � and (3.60) with respect to t: Substitution of these in

(3.30) yields

(1� 2GM
rc2

)f3�(t; r; �; �)� r2f7t(t; r; �; �) +
GM

rc2
(c1 sin�� c2 cos�) sin2 � = 0: (3.73)

Integration of (3.73) with respect to t yields

�2 =
1

r2
(1� 2GM

rc2
)

Z
f3�(t; r; �; �)dt+

GMt

r3c2
(c1 sin�� c2 cos�) sin2 �

+g5(r; �; �): (3.74)

Similarly from (3.31) we obtain

�3 =
csc2 �

r2
(1� 2GM

rc2
)

Z
f3�(t; r; �; �)dt+

GMt

r3c2
(c1 cos�+ c2 sin�) cot �

+g6(r; �; �): (3.75)

Di¤erentiation of (3.74) with respect to � and of (3.75) with respect to � and then the use of

them in (3.26) gives

c1 cos�+ c2 sin� = 0; (3.76)

this yields

c1 = 0 and c2 = 0: (3.77)

This makes the system of the determining equations (3.23) - (3.31) homogeneous. Hence there

is no non-trivial �rst-order approximate symmetry for this case. We only recover the 5 exact

symmetry generators given by (3.20) and (3.21), as trivial �rst-order approximate Noether

symmetry generators for this perturbed Kerr spacetime.

Kerr Spacetime as a Second Perturbation of the Minkowski Spacetime

Now we consider the Kerr spacetime as a second perturbation of the Minkowski spacetime. For

this we use the same small parameter �; de�ned for the approximate Schwarzschild spacetime

in chapter 1 and

a = k1�: (3.78)
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For the Kerr black hole (see for example [84]) we have 0 < k1 � 1=4: Here the second-order

perturbed Lagrangian is given by

L =
�
t
2

� �
r
2
� r2

�
�
2

� r2 sin2 �
�
�
2

� 2
r
�(
�
t
2

+
�
r
2
)� �2[ 1

r2
(1� k21

4
sin2 �)

�
r
2

+k21 cos
2 �

�
�
2

+ k21 sin
2 �

�
�
2

�
p
k1
r
sin2 �

�
t
�
�] +O(�3): (3.79)

For the exact case we take � = 0; which means that there is no mass or angular momentum per

unit mass. In this case the Lagrangian (3.79) reduces to that of the Minkowski spacetime.

Noether Symmetries of the Minkowski Spacetime

Here we calculate the Noether symmetries of the exact case, i.e. of the Minkowski spacetime.

Using (1.54) we get the following set of 19 determining equations,

�t = 0; �r = 0; �� = 0; �� = 0; As = 0; (3.80)

2�0s = At; � 2�1s = Ar; � 2r2�2s = A�; � 2r2 sin2 ��3s = A� (3.81)

2�0t � �s = 0; 2�1r � �s = 0; �0r � �1t = 0; �0� � r2�2t = 0; (3.82)

�0� � r2 sin2 ��3t = 0; �1� + r2�2r = 0; �1� + r2 sin2 ��3r = 0; (3.83)

�2� + sin
2 ��3� = 0; 2(�

1 + r�2�)� r�s = 0; (3.84)

2�1 sin � + 2r�2 cos � + 2r�3� sin � � r sin ��s = 0: (3.85)

Equation (3.80) yields

� = f1(s); A = A(t; r; �; �): (3.86)

On integration with respect to t the �rst of (3.82) gives

�0 =
t

2
f1s(s) + f2(s; r; �; �): (3.87)

We use (3.87) in the �rst of (3.81) and di¤erentiate with respect to s, we determine

f1sss(s) = 0; f2ss(s; r; �; �) = 0: (3.88)

65



Integration of (3.88) gives

f1(s) = � =
1

2
c0s

2 + c1s+ c2 (3.89)

and

f2(s; r; �; �) = sf3(r; �; �) + f4(r; �; �): (3.90)

Therefore

�0 =
t

2
(c0s+ c1) + sf3(r; �; �) + f4(r; �; �): (3.91)

Use of (3.91) in the �rst of (3.81) gives

A =
c0
2
t2 + 2tf3(r; �; �) + f5(r; �; �): (3.92)

Di¤erentiation of (3.89) with respect to s and substitution in the second of (3.82) yields

�1r =
1

2
(c0s+ c1): (3.93)

Integration of (3.93) with respect to r determine

�1 =
r

2
(c0s+ c1) + f6(s; t; �; �): (3.94)

Use of (3.92) and (3.94) in the second of (3.81) yields

f6ss(s; t; �; �) = 0: (3.95)

Integration of (3.95) gives

f6(s; t; �; �) = sf7(t; �; �) + f8(t; �; �): (3.96)

Thus

�1 =
r

2
(c0s+ c1) + sf7(t; �; �) + f8(t; �; �): (3.97)
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Di¤erentiation of (3.91) with respect to r and of (3.97) with respect to t and then the insertion

of these in the third of (3.82) yields

f7(t; �; �) = tf9(�; �) + f10(�; �); (3.98)

f3(r; �; �) = �rf9(�; �) + g1(�; �): (3.99)

We use (3.98) in (3.97) and (3.99) in (3.92). Then the substitution of these in the second of

(3.81) yields

f5(r; �; �) = �
c0
2
r2 � 2rf10(�; �) + g2(�; �):

Therefore, (3.92), (3.91) and (3.97) become

A =
c0
2
(t2 � r2) + 2t[g1(�; �)� rf9(�; �)] + g2(�; �)� 2rf10(�; �); (3.100)

�0 =
t

2
(c0s+ c1) + s[g1(�; �)� rf9(�; �)] + f4(r; �; �); (3.101)

�1 =
r

2
(c0s+ c1) + s[tf9(�; �) + f10(�; �)] + f8(t; �; �): (3.102)

From (3.89), (3.102) and the second of (3.84) we obtain

�2� = �
1

r
[sftf9(�; �) + f10(�; �)g+ f8(t; �; �)]: (3.103)

Integration of (3.103) with respect to �, gives

�2 = �1
r

Z
[sftf9(�; �) + f10(�; �)g+ f8(t; �; �)]d� + g3(s; t; r; �): (3.104)

Di¤erentiate (3.100) with respect to � and (3.104) with respect to s, then from the substitution

of them in the third of (3.81) we have

g3ss(s; t; r; �) = 0: (3.105)

Integration of (3.105) yields

g3(s; t; r; �) = sg4(t; r; �) + g5(t; r; �): (3.106)

67



Insert (3.104) along with (3.106) in the third of (3.81) and then di¤erentiate it with respect to

t we obtain

g4tt(t; r; �) = 0: (3.107)

On integration (3.107) yields

g4(t; r; �) = tg6(r; �) + g7(r; �): (3.108)

We put (3.108) in (3.106) and then (3.106) in (3.104). Then we di¤erentiate (3.104) with respect

to s and (3.100) with respect to �: With the use of these from the third (3.81) we have

f9��(�; �) + f9(�; �) = 0; (3.109)

g1��(�; �) = 0: (3.110)

Integration of (3.110) gives

g1(�; �) = �g8(�) + g9(�): (3.111)

Again from the third of (3.81) we obtain

[r2g6(r; �)]rr = 0: (3.112)

Integration of (3.112) yields

g6(r; �) =
1

r
g10(�) +

1

r2
h1(�): (3.113)

Substitute (3.113) in the same equation we obtain

h1(�) = �g8(�): (3.114)

Di¤erentiation of (3.101) with respect to r and of (3.102) with respect to t and substitution of

them in the third of (3.82) gives

f9(�; �) = 0; (3.115)

f8tt(t; �; �) = 0: (3.116)
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Integration of (3.116) yields

f8(t; �; �) = th2(�; �) + h3(�; �): (3.117)

From the use of (3.117) in (3.102) and then from the third of (3.82) we get

f4(r; �; �) = rh2(�; �) + h4(�; �): (3.118)

Now (3.100), (3.101), (3.102) and (3.104) become

A =
c0
2
(t2 � r2) + 2t[�g8(�) + g9(�)] + g2(�; �)� 2rf10(�; �); (3.119)

�0 =
t

2
(c0s+ c1) + s[�g8(�) + g9(�)] + rh2(�; �) + h4(�; �); (3.120)

�1 =
r

2
(c0s+ c1) + sf10(�; �) + th2(�; �) + h3(�; �); (3.121)

�2 = �1
r

Z
[sf10(�; �) + th2(�; �) + h3(�; �)]d� + s[tf

1

r
g10(�)�

1

r2
g8(�)g

+g7(r; �)] + g5(t; r; �): (3.122)

We di¤erentiate (3.120) with respect to � and (3.122) with respect to t, substitute these in the

fourth of (3.82). Then di¤erentiate the resulting equation with respect to s we obtain

g8(�) = 0; and g10(�) = 0: (3.123)

Use of (3.123) back in the fourth of (3.82) and then di¤erentiation of this with respect to t we

get

g5tt(t; r; �) = 0: (3.124)

On integration (3.124) yields

g5(t; r; �) = th5(r; �) + h6(r; �): (3.125)
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Substitute (3.125), in the fourth of (3.82) and di¤erentiate twice with respect to r; we obtain

h2��(�; �) + h2(�; �) = 0; (3.126)

[r2h5(r; �)]rr = 0: (3.127)

Integration of (3.127) gives

h5(r; �) =
1

r
h7(�) +

1

r2
h8(�): (3.128)

Use of (3.128) in (3.122) and then use of this and (3.120) in fourth of (3.82) yields

h4(�; �) = �h8(�) + h9(�): (3.129)

Therefore (3.199), (3.120) and (3.122) become

A =
c0
2
(t2 � r2) + 2tg9(�) + g2(�; �)� 2rf10(�; �); (3.130)

�0 =
t

2
(c0s+ c1) + sg9(�) + rh2(�; �) + �h8(�) + h9(�); (3.131)

�2 = �1
r

Z
[sf10(�; �) + th2(�; �) + h3(�; �)]d� + sg7(r; �) +

t

r
[h7(�)

+
1

r
h8(�)] + h6(r; �): (3.132)

We di¤erentiate (3.121) with respect to � and (3.132) with respect to r. Then we put them in

the second of (3.83). From the di¤erentiation of the resulting equation with respect to �; we

have

f10��(�; �) + f10(�; �) = 0; (3.133)

[g7(r; �)]r = 0; ) g7(r; �) = p1(�): (3.134)

Use of (3.122) in the second of (3.83) with (3.128) and then di¤erentiation of the resulting

equation once with respect to t and then with respect to r; determine

h8(�) = 0: (3.135)
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Now again the second of (3.83) yields

h3��(�; �) + h3(�; �) = 0; (3.136)

[r2h6r(r; �)]r = 0: (3.137)

Integration of (3.137) gives

h6(r; �) =
�1
r
h10(�) + p2(�): (3.138)

Therefore (3.132) becomes

�2 = �1
r

Z
[sf10(�; �) + th2(�; �) + h3(�; �)]d� + sp1(�) +

1

r
[th7(�)� h10(�)]

+p2(�): (3.139)

We use (3.130) and (3.139) in the third of (3.81) which gives

g2��(�; �) = 0, (3.140)

p1(�) = 0: (3.141)

On integration (3.140) yields

g2(�; �) = �p3(�) + p4(�): (3.142)

Now with the use of (3.130) and (3.139) the third of (3.81) gives

p3(�) = 0: (3.143)

Use of (3.131) and (3.139) in fourth of (3.82) deduce

h8(�) = 0: (3.144)

Thus

A =
c0
2
(t2 � r2) + 2tg9(�) + p4(�)� 2rf10(�; �); (3.145)
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�0 =
t

2
(c0s+ c1) + sg9(�) + rh2(�; �) + h9(�); (3.146)

�2 = �1
r

Z
[sf10(�; �) + th2(�; �) + h3(�; �)]d� +

1

r
[th7(�)� h10(�)] + p2(�): (3.147)

Di¤erentiation of (3.121) with respect to � and (3.147) with respect to r; then use of them in

the second of (3.83) yields

h7(�) = 0; h10(�) = 0: (3.148)

Therefore (3.147) becomes

�2 = �1
r

Z
[sf10(�; �) + th2(�; �) + h3(�; �)]d� + p2(�): (3.149)

Use of (3.145) in the fourth of (3.81) gives

�3 = � s

2r2
csc2 �[2tg9�(�) + p4�(�)� 2rf10�(�; �)] + p5(t; r; �; �): (3.150)

From (3.146), (3.150) and the �rst of (3.83) we have

g9�(�) = 0; ) g9(�) = c3; (3.151)

p5tt(t; r; �; �) = 0: (3.152)

Integration of (3.152) yields

p5(t; r; �; �) = tp6(r; �; �) + p7(r; �; �): (3.153)

From the use of (3.153) in the �rst of (3.83) we obtain

p6(r; �; �) =
1

r
[h2�(�; �) +

1

r
h9�(�)] csc

2 �: (3.154)

We use (3.151) in (3.120) and (3.153), (3.154) in (3.150) and then from the third of (3.83) we

obtain

p4�(�) = 0; ) p4(�) = c4: (3.155)
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Substitution of (3.155) in the �rst of (3.83) gives

h9�(�) = 0; ) h9(�) = c5 (3.156)

and

p7(r; �; �) =
1

r
h3�(�; �) csc

2 � + p8(�; �): (3.157)

Thus

A =
c0
2
(t2 � r2)� 2rf10(�; �) + 2tc3 + c4; (3.158)

�0 =
t

2
(c0s+ c1) + rh2(�; �) + sc3 + c5; (3.159)

�3 =
1

r
[sf10�(�; �) + h3�(�; �) + th2�(�; �)] csc

2 � + p8(�; �): (3.160)

We di¤erentiate (3.147) with respect to � and (3.160) with respect to �: Then use them in the

�rst of (3.84) we obtain

Z
f10�(�; �)d� + 2f10�(�; �) cot � � f10��(�; �) = 0; (3.161)Z
h2�(�; �)d� + 2h2�(�; �) cot � � h2��(�; �) = 0; (3.162)Z
h3�(�; �)d� + 2h3�(�; �) cot � � h3��(�; �) = 0 (3.163)

and

p8(�; �) = p2�(�) cot � + p9(�): (3.164)

Therefore (3.160) becomes

�3 =
1

r
[sf10�(�; �) + h3�(�; �) + th2�(�; �)] csc

2 � + p2�(�) cot � + p9(�): (3.165)

From (3.85) we have

Z
f10(�; �)d� � f10(�; �) tan � � f10��(�; �) sec � csc � = 0; (3.166)
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Z
h2(�; �)d� � h2(�; �) tan � � h2��(�; �) sec � csc � = 0; (3.167)Z
h3(�; �)d� � h3(�; �) tan � � h3��(�; �) sec � csc � = 0 (3.168)

and

p2��(�) + p2(�) + p9�(�) tan � = 0: (3.169)

Equation (3.169) yields

p9�(�) = 0) p9 = c6: (3.170)

Use of (3.170) in (3.169) gives

p2(�) = c7 cos�+ c8 sin�: (3.171)

Now solve (3.126), (3.133) and (3.136) along with (3.161) - (3.163) and (3.166) - (3.108) we

obtain

h2(�; �) = c9 sin � cos�+ c10 sin � sin�+ c11 cos �; (3.172)

f10(�; �) = c15 sin � cos�+ c16 sin � sin�+ c17 cos �; (3.173)

h3(�; �) = c12 sin � cos�+ c13 sin � sin�+ c14 cos �; (3.174)

Thus

A =
c0
2
(t2 � r2)� 2r(c15 sin � cos�+ c16 sin � sin�+ c17 cos �) + 2tc3 + c4; (3.175)

� =
1

2
c0s

2 + c1s+ c2; (3.176)

�0 =
t

2
(c0s+ c1) + r(c9 sin � cos�+ c10 sin � sin�+ c11 cos �) + sc3 + c5; (3.177)

�1 =
r

2
(c0s+ c1) + s(c15 sin � cos�+ c16 sin � sin�+ c17 cos �) +

t(c9 sin � cos�+ c10 sin � sin�+ c11 cos �) + (c12 cos�+ c13 sin�) sin �

+c14 cos �; (3.178)
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�2 =
1

r
[s(c15 cos � cos�+ c16 cos � sin�� c17 sin �) + t(c9 cos � cos�+

c10 cos � sin�� c11 sin �) + c12 sin � cos�+ c13 sin � sin�+ c14 cos �]

+c7 cos�+ c8 sin�; (3.179)

�3 =
1

r
[s(c16 sin � cos�� c15 sin � sin�) + t(c10 sin � cos�� c9 sin � sin�)

+c13 sin � cos�� c12 sin � sin�] csc2 � + c8 cos�� c7 sin�+ c6: (3.180)

Here 17 constants of integration appear in (3.175) - (3.180). Thus the Noether symmetries

of the Minkowski spacetime form a 17 dimensional Lie algebra. The symmetry generators apart

from the 10 KVs (Poincarè algebra so(1; 3)�s R4) given in (1.78) - (1.85) are

Z0 =
@

@s
; Z1 = s

@

@s
+
1

2
(t
@

@t
+ r

@

@r
); Z2 = sY0; (3.181)

Z3 =
1

2
[s2

@

@s
+ s(t

@

@t
+ r

@

@r
)]; Z4 = sY7; Z5 = sY8; Z6 = sY9: (3.182)

The Z0 is translation in s, Z1 is scaling symmetry in s; t; r and [Z0;Z3] = Z1:

This is reasonable as symmetries of a Lagrangian always form a subalgebra of the symmetries

of the Euler-Lagrange (geodesic) equations [64] and the algebra of the Euler-Lagrange equations

for Minkowski space is sl(6;R); which is 35 dimensional [68]. Using Z1 we can write s = t2 or

s = r2 and

Z3 =
r2

4
[
1

t
(r2 + 2t2)

@

@t
+ 3r

@

@r
]: (3.183)

Now, every �at spacetime is conformally �at, i.e. for which all components of the Weyl tensor

are zero [1]. The Lie algebra of the Conformal Killing Vectors (CKVs) for a conformally �at

spacetime is 15 dimensional [59]. Therefore for the Minkowski spacetime we already know that

there are 15 CKVs. The 5 symmetry generators, i.e. Zi for i = 2; :::; 6 given in (3.181) and

(3.182), are proper CKVs with conformal factor

 =
1

2
(c0t

2 + c1): (3.184)

Thus we see that not only the KVs but also the CKVs form a subalgebra of the symmetries of

the Lagrangian for the Minkowski spacetime.
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Schwarzschild Spacetime as a First Perturbation of the Minkowski Spacetime

Retaining terms of �rst-order in � and neglecting O(�2); the Lagrangian (3.79) becomes a �rst-

order perturbed Lagrangian for the Schwarzschild spacetime:

L =
�
t
2

� �
r
2
� r2

�
�
2

� r2 sin2 �
�
�
2

� 2
r
�(
�
t
2

+
�
r
2
): (3.185)

Using (1.56) and the exact symmetry generators given by (1.78) - (1.85) and (3.181) - (3.182)

we get a set of 19 equations. In these equations only 12 of the 17 constants corresponding to

exact symmetry generators appear.

�t = 0; �r = 0; �� = 0; �� = 0; As = 0; (3.186)

�4
r
(
rc0
2
+ c14 sin � cos�+ c15 sin � sin�+ c16 cos �)� 2�1s = Ar; (3.187)

� 2r2�2s = A�; � 2r2 sin2 ��3s = A�; 2(c0t+ 2c3 � r�0s) = �rAt; (3.188)

4(c9 sin � cos�+ c10 sin � sin�+ c11 cos �)� r(�0r � �1t ) = 0; (3.189)

2(c9 cos � cos�+ c10 cos � sin�� c11 sin �)� �0� + r2�2t = 0; (3.190)

2(c9 cos � cos�� c10 sin � cos�) + �0� � r2 sin2 ��3t = 0; (3.191)

2�1 sin � + 2r�2 cos � + 2r�3� sin � � r sin ��s = 0; (3.192)

�2� + sin
2 ��3� = 0; 2�

1 � 2r�2� � r�s = 0; (3.193)

2[s(c14 sin � cos�+ c15 cos � sin�� c16 sin �) + t(c9 cos � cos�+

c10 cos � sin�� c11 sin �) + c12 cos � cos�+ c13 cos � sin�� c17 sin �]

+r�1� + r
3�2r = 0; (3.194)

2[s(c14 sin � sin�� c15 sin � cos�) + t(c9 sin � sin�� c10 sin � cos�)

+c12 sin � sin�� c13 sin � cos�]� r�1� � r3 sin2 ��3r = 0; (3.195)

[s(c14 sin � cos�+ c15 cos � sin�+ c16 cos �) + t(c9 sin � cos�+ c10 sin � sin�

+c11 cos �) + c12 sin � cos�+ c13 sin � sin�+ c17 cos �] +
r2

2
(2�0t � �s)

+
r

2
(c0s+ c1) = 0; (3.196)
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2[s(c14 sin � cos�+ c15 cos � sin�+ c16 cos �) + t(c9 sin � cos�+ c10 sin � sin�

+c11 cos �) + c12 sin � cos�+ c13 sin � sin�+ c17 cos �]� r2(2�1r � �s)

+r(c0s+ c1) = 0: (3.197)

Solving this system by the same method used earlier in this thesis, the 12 generators of the

exact symmetry have to be eliminated for consistency of these new determining equations, mak-

ing them homogeneous. The resulting system is the same as for the Minkowski space, yielding

17 �rst-order approximate symmetry generators given by (1.78) - (1.85) and (3.181) - (3.182).

Thus for the Schwarzschild spacetime as a �rst perturbation of the Minkowski spacetime, there

is no non-trivial approximate Noether symmetry. We recover all the lost conservation laws as

trivial �rst-order approximate conservation laws. Beside energy and angular momentum which

always remain conserved for the Schwarzschild spacetime (for both exact and perturbed) we

see the approximate conservation of linear momentum and spin angular momentum. This was

also seen in the �rst-order approximate symmetries of the geodesic equations for Schwarzschild

metric [60].

Kerr Spacetime as a Second Perturbation of the Minkowski Spacetime

Though we have recovered all the lost conservation laws as trivial �rst-order approximate con-

servation laws in the case of Schwarzschild spacetime as a �rst perturbation of the Minkowski

spacetime. There is no non-trivial approximate symmetry in the �rst approximation. In hope

of �nding some non-trivial approximate Noether symmetry from the de�nition of second-order

approximate symmetry of the Lagrangian we take the Kerr spacetime as a second perturba-

tion of the Minkowski spacetime. In the second approximation, that is when we retain terms

quadratic in �; we have the Lagrangian given by (3.79). From (1.64) we have a new system of

19 determining equations. In these equations now 14 of the 17 constants corresponding to the

exact (also �rst-order approximate) symmetry generators appear.

�t = 0; �r = 0; �� = 0; �� = 0; As = 0; (3.198)

2k1 sin �(c15 cos�� c14 sin�)� 2r(c0t+ 2c3)� 2r2�0s = r2At; (3.199)
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[(k21 sin
2 � � 4)� 2][c0r

2
+ c14 sin � cos�+ c15 cos � sin�+ c16 cos �]

�r2�1s =
r2

2
Ar; (3.200)

k21 cos
2 �(c14 cos � cos�+ c15 cos � sin�� c16 sin �) + r3�2s =

�r
2
A�; (3.201)

k1(c0t+ 2c3)� 2k21 csc2 �(c15 cos�� c14 sin�)� r3�3s =
r

2
csc2 �A�; (3.202)

1

r2
(k21 sin

2 � � 5)(c9 sin � cos�+ c10 sin � sin�+ c11 cos �)

�k1
r3
sin �[s(c15 cos�� c14 sin�)� t(c9 sin�� c10 cos�)� c12 sin�+

c13 cos�] + r(�
0
r � �1t ) = 0; (3.203)

1

r
(k21 cos

2 � + 2)(c9 cos � cos�+ c10 cos � sin�� c11 sin �) +
k1
r2
sin �[s cot �

(c15 cos�� c14 sin�)� cot �(c12 sin�� c13 cos�)� t cot �(c9 sin��

c10 cos�) + r csc �(a8 cos�� a7 sin�)]� �0� + r2�2t = 0; (3.204)

�k1
r2
sin2 �[s(c14 sin � cos�+ c15 sin � sin�+ c16 cos �) + t(c9 sin � cos�+

c10 sin � sin�+ c11 cos �) + c12 sin � cos�+ c13 sin � sin�+ c17 cos �]+

k1
r2
sin 2�[s(c14 cos � cos�+ c15 cos � sin�� c16 sin �) + t(c9 cos � cos�

+c10 cos � sin�� c11 sin �) + c12 cos � cos�+ c13 cos � sin�� c17 sin �+

r(a7 cos�+ a8 sin�)]�
k1
r2
sin �[s(c15 sin�+ c14 cos�) + c12 cos�+ c13 sin�

+t(c9 cos�+ c10 sin�) + r cos �(a7 cos�+ a8 sin�)] +
k21
r2
sin2 �(c9 sin�

�c10 cos�) + 2(c9 sin � sin�+ c10 sin � cos�) + �0� � r2 sin2 ��3t = 0; (3.205)

1

r2
(k21 � 6)[s(c14 cos � cos�+ c15 cos � sin�� c16 sin �) + t(c9 cos � cos�

+c10 cos � sin�� c11 sin �) + c12 cos � cos�+ c13 cos � sin�� c17 sin �]�

�1� � r2�2r = 0; (3.206)

1

r
[k21(1 + sin

2 �)� 6][s(c15 sin � cos�� c14 sin � sin�)� t(c9 sin � sin��

c10 sin � cos�)� c12 sin � sin�+ c13 sin � cos�] + k1 sin2 �(c9 sin � cos�

+c10 sin � sin�+ c11 cos �)� r�1� � r3 sin2 ��3r = 0; (3.207)
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k21
r
sin2 �[s(c15 cos � cos�� c14 cos � sin�)� t(c9 cos � sin�� c10 cos � cos�)�

c12 cos � sin�+ c13 cos � cos�+ r(a8 cos�� a7 sin�)] + k1 sin2 �(c9 cos � cos�

+c10 cos � sin�� c11 sin �)� r2(�2� + sin2 ��3�) = 0; (3.208)

�k
2
1

r
sin 2�[s(c14 cos � cos�+ c15 cos � sin�� c16 sin �) + t(c9 cos � cos�+

c10 cos � sin�� c11 sin �) + c12 cos � cos�+ c13 cos � sin�� c17 sin �]�

2k1 sin
2 �(c9 sin � sin�� c10 sin � cos�) +

k21
r
sin �[s(c15 sin�+ c14 cos�)

+t(c10 sin�+ c9 cos�) + c12 cos�+ c13 sin�)]� 2r�1 sin2 � � r2�2 sin 2��

r2 sin2 �(2�3� � �s)� k21 sin2 �(c0s+ c1) = 0; (3.209)

k21
r
sin 2�[s(c14 cos � cos�+ c15 cos � sin�� c16 sin �) + t(c9 cos � cos�+

c10 cos � sin�� c11 sin �) + c12 cos � cos�+ c13 cos � sin�� c17 sin �+

r(a7 cos�+ a8 sin�)] +
2k21
r
cos2 �[s(c14 sin � cos�+ c15 sin � sin�+

c16 cos �) + t(c9 sin � cos�+ c10 sin � sin�+ c11 sin �) + c12 sin � cos�+

c13 sin � sin�+ c17 cos �] + k
2
1 cos

2 �(c0s+ c1)� 2r�1 � 2r2�2� + r2�s = 0; (3.210)

1

r2
(5� k21 sin2 �)[s(c14 sin � cos�+ c15 sin � sin�+ c16 cos �) + t(c9 sin � cos�

+c10 sin � sin�+ c11 cos �) + c12 sin � cos�+ c13 sin � sin�+ c17 cos �+

r(c0s+ c1)] +
k21
r3
sin 2�[s(c14 cos � cos�+ c15 cos � sin�� c16 sin �)+

t(c9 cos � cos�+ c10 cos � sin�� c11 sin �) + +c12 cos � cos�+ c13 cos � sin�

�c17 sin � + r(a7 cos�+ a8 sin�)]� 2�1r + �s = 0; (3.211)

2

r2
[s(c14 sin � cos�+ c15 sin � sin�+ c16 cos �) + t(c9 sin � cos�+

c10 sin � sin�+ c11 cos �) + c12 sin � cos�+ c13 sin � sin�+ c17 cos �]

+
2k1
r2
sin2 �(c10 cos�� c9 sin�) + 2�0t � �s +

1

r
(c0s+ c1) = 0: (3.212)

In the above set of determining equations corresponding to the exact (also �rst-order approx-

imate) symmetry generators 14 constants appear. The 2 constants corresponding to Y1 and

Y2; given in (1.78) and (1.79), appear here and did not appear in the �rst-order approxima-
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tion. At �rst sight it seems that these 2 new constants may give some non-trivial second-order

approximate symmetries. But for the consistency of the determining equations all of these 14

constants have to be eliminated and the system again becomes homogeneous. The resulting

system is again the same as for the Minkowski spacetime, yielding 17 second-order approx-

imate symmetry generators given by(1.78) - (1.85) and (3.181) - (3.182). Thus there is no

non-trivial second-order approximate symmetry generator for the Kerr spacetime taken as a

second perturbation of the Minkowski spacetime.

Going from Minkowski to the Kerr spacetime we are left with only two Killing vectors, that

is only with energy and angular momentum conservations. Also for the Lagrangian of the

exact Kerr metric there are only three symmetry generators given by (3.17). Here we recover

all the lost conservation laws as trivial second-order approximate conservation laws for the Kerr

spacetime.

The results of this chapter are summarised in the following theorem.

Theorem 3.1. The Noether symmetries of the Minkowski spacetime form a 17 dimensional

Lie algebra which properly contains the 15 dimensional algebra of the CKVs for this spacetime.
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Chapter 4

Second-Order Approximate

Symmetries of the Geodesic

Equations and re-scaling of Energy

in the Charged-Kerr Spacetime

The re-scaling of energy for a test particle in the RN spacetime [81] was seen in the second-

order approximate symmetries of the geodesic equations. A problem arises in the search for a

scaling factor for the energy of test particles in the Kerr spacetime. Whereas, in the RN-case

the energy re-scaling was by (1�Q2=2M2), there is a simple multiplicative factor for the Kerr

spacetime. In the absence of the constant (unity in this case), it is not clear what signi�cance

to attach to the re-scaling. So as to relate that factor to the factor arising in the RN-case, in

this chapter we investigate second-order approximate symmetries of the geodesic equations for

the charged-Kerr spacetime [82].

The line element for the charged-Kerr spacetime is given by [40, 85]

ds2 = [1� G(2c2Mr �Q2)
�2c4

]c2dt2 � (�
2

�
)dr2 � �2d�2 � �sin

2 �

�2
d�2 +

Ga

�2c2
(2Mr � Q2

c2
) sin2 �dtd�; (4.1)
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where

� =
a2

c2
+ r2 � G

c2
(2Mr � Q2

c2
): (4.2)

Using the same � de�ned for the Schwarzschild spacetime in chapter 1 and setting

GQ2

c4
= k�2;

we have the second-order perturbed (in �) geodesic equation for the charged-Kerr spacetime

E1 :
��
t + �

1

r2
�
t
�
r + �2[

1

r3
(1� 2k)

�
t
�
r � 2

p
k1
r2

sin2 �
�
r
�
�] +O(�3) = 0; (4.3)

E2 :
��
r � r(

�
�
2

+ sin2 �
�
�
2

) + �[
1

2r2
(
�
t
2

� �
r
2
) + (

�
�
2

+ sin2 �
�
�
2

)]�

�2[
1

2r3
(1 + 2k)

�
t
2

+

p
k1
r2

sin2
�
t
�
��

�
r
2

r3
f2(k1 sin � + k)� 1g

+
k1
r2
sin2 �

�
r
�
� +

1

r
(k1 sin

2 � + k)(
�
�
2

+ sin2 �
�
�
2

)] +O(�3) = 0; (4.4)

E3 :
��
� +

2

r

�
r
�
� � sin � cos �

�
�
2

+ �2[

p
k1
r3

sin 2�
�
t
�
�� k1

2r4
sin 2�

�
r
2

�2k1
r3
cos2 �

�
r
�
� � k1

2r2
sin 2�(

�
�
2

+ sin2 �
�
�
2

)] +O(�3) = 0; (4.5)

E4 :
��
�+

2

r

�
r
�
�+ 2 cot �

�
�
�
�+ �2[

p
k1
r4

�
t
�
r � 2

p
k1
r3

cot �
�
t
�
� � 2k1

r3
�
r
�
�]

+O(�3) = 0: (4.6)

If � = 0, then these equations reduces to that of the Minkowski spacetime and when we retain

terms only up to order � and neglect higher orders, then these equations reduces to the �rst-order

perturbed geodesic equation of the Schwarzschild spacetime.

4.1 Second-Order Approximate Symmetries of the Geodesic

Equations for the Charged-Kerr Spacetime

In this section we discuss second-order approximate symmetries of the geodesic equations for the

charged-Kerr spacetime. Since the geodesic equations (4.3) - (4.6) are second-order ODEs, with

second-order perturbation term, we apply to it the second prolongation X[2] of the generator
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X = X0 + �X1+�
2X2 de�ned in (2.40), which yields

X[2]E1 = [�
0
0;ss + ��

0
1;ss + �

2�02;ss + f
�

r2
+
1� 2k
r3

�2gf(�00;s + ��01;s + �2�02;s)
�
r+

(�10;s + ��
1
1;s + �

2�12;s)
�
tg �

�
t
�
r(�10 + ��

1
1 + �

2�12)(
2�

r3
+
3(1� 2k)

r4
�2)

� 2
p
k1�

2

r2
f2 sin

2 �

r
(�10 + ��

1
1 + �

2�12) + (�
2
0 + ��

2
1 + �

2�22) sin 2�g
�
r
�
�

2
p
k1�

2

r2
sin2 �(�10;s + ��

1
1;s + �

2�12;s)
�
�+ (�30;s + ��

3
1;s + �

2�32;s)
�
r]Ej=0 = 0; (4.7)

X[2]E2 = [�
1
0;ss + ��

1
1;ss + �

2�12;ss + c
2f �
r2
�
t+ �2(

1 + 2k

r3
�
t+

p
k1�

2

r2
sin2 �

�
�)g

(�00;s + ��
0
1;s + �

2�02;s)� f
c2
�
t
2

2
(
2�

r3
� 3(1 + 2k)

r4
�2)�

�
r
2

2
(
2�

r3
+

3(1� 2k)
r4

�2) + (1� k�2

r2
)(
�
�
2

+ sin2 �
�
�
2

)� �2k1
r2
sin2 �(

2

r
p
k1

�
t
�
��

3

r2
�
r
2
+
2

r

�
r
�
� +

�
�
2

+ sin2 �
�
�
2

)g(�10 + ��11 + �2�12)�
1

r2
f� �r+

�2(
1� 2k
r

�
r +

2k1
r
sin2 �

�
r + k1 sin

2 �
�
�)g(�10;s + ��11;s + �2�12;s)�

fr
�
�
2

� �
�
�
2

+ �2(
k

r

�
�
2

+

p
k1
r2

�
t
�
�+

2k1
r3

�
r
2
� k1
r2

�
r
�
� � k1

r

�
�
2

)g

(�20 + ��
2
1 + �

2�22) sin 2� � fr
�
� � �

�
� +

�2

r
(k
�
� +

k1
r
sin2 �

�
r�

2k1 sin
2 �

�
�)gf(�20;s + ��21;s + �2�22;s)� fr

�
�� �

�
�+

�2

r
(k

�
�+

p
k1
r

�
t+ 2k1 sin

2 �
�
�)g sin2 �(�30;s + ��31;s + �2�32;s)g]Ej=0 = 0; (4.8)

X[2]E3 = [�
2
0;ss + ��

2
1;ss + �

2�22;ss � f
2
�
r
�
�

r2
+ �2

k1
r3
(
3

r
p
k1
t�
�
�� 2

r2
�
r
2
+

3 cot �

r

�
r
�
� �

�
�
2

� sin2 �
�
�
2

) sin 2�g(�10 + ��11 + �2�12) + f
2
�
�

r
�

�2
k1
r3
(

�
r

r
+ cot �

�
�) sin 2�g(�10;s + ��11;s + �2�12;s) + f

2
�
r

r
� �2k1

r2
(
�
�

+
1

r
cot �

�
r)g sin 2�(�20;s + ��21;s + �2�22;s)� f

�
�
2

(cos2 � � sin2 �)
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� �2k1
r2
(
2

r
p
k1

�
t
�
�� 1

r2
�
r
2
+
2 tan 2�

r

�
r
�
� � 2(

�
�
2

+ (3 sin2 ��

4 sin4 �)
�
�
2

) cos 2�g(�20 + ��21 + �2�22) +
p
k1 sin 2�

r3

�
�(�00;s + ��

0
1;s

+ �2�02;s)� f2 sin � cos �
�
�� �2

p
k1
r2
(

�
t

r
�
p
k1 sin

2 �
�
�)g(�30;s + ��31;s

+�2�32;s)]Ej=0 = 0; (4.9)

X[2]E4 = [�
3
0;ss + ��

3
1;ss + �

2�32;ss � f
2

r2
�
r
�
�+ �2

2
p
k1
r4

(
2

r

�
t
�
r + 3 cot �

�
t
�
�

� 3 �r
�
�)g(�10 + ��11 + �2�12) + f

2
�
�

r
+ �2

p
k1
r3
(

�
t

r
�

�
�)g(�10;s + ��11;s

+ �2�12;s) + 2f
�
r

r
+

�
� cot � � �2 2k1

r3
�
rg(�30;s + ��31;s + �2�32;s)� (2

�
�
�
�

+ �2
�
t
�
�) csc2 �(�20 + ��

2
1 + �

2�22) + �
2

p
k1
r3
(

�
r

r
+ 2 cot �

�
�)(�00;s + ��

0
1;s

+ �2�02;s) + 2f
�
�+ �2

p
k1
r3

�
tg cot �(�20;s + ��21;s + �2�22;s)]Ej=0 = 0; (4.10)

where (j = 1; 2; 3; 4): We use the prolongation coe¢ cients de�ned in (2.45) - (2.52), the exact

(for the Minkowski spacetime) and the �rst-order approximate (for the Schwarzschild space-

time) symmetry generators Y0 and Y1 given by (1.78) - (1.85) and the second-order perturbed

geodesic equations in above equations (4.7) - (4.10). We get the following set of determining

equations.

2r2�2tr � a2 = 0; �2t� = 0; �2t� = 0; r�2r� � �2� = 0;

r�2r� � �2� = 0; r�2�� � cot ��2� = 0;

2r2�2tt � c
2[sin �(a3 sin�� a4 cos�) + a5 cos�] = 0;

2r2�2rr � [sin �(a3 sin�� a4 cos�) + a5 cos�] = 0;

�2�� + r�2r � [sin �(a3 sin�� a4 cos�) + a5 cos�] = 0;

�2�� + r sin
2 ��2r + sin � cos ��2� � sin

2 �[sin �(a3 sin�� a4 cos�)+

a5 cos�] = 0; (4.11)
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2r2(�02tt � 2�2st) + c(a2 sin � cos�+ a3 sin � sin�+ a4 cos �) = 0; (4.12)

r3�12tt � c
2(a5 sin � cos�+ a6 sin � sin�+ a7 cos � + a2ct sin � cos�+

a3ct sin � sin�+ a4ct cos �) = 0; (4.13)

2r4�22tt + c
2(a5 cos � cos�+ a6 cos � sin�� a7 sin � + a2ct cos � cos�

+a3ct cos � sin�� a4ct sin �) = 0; (4.14)

2r4�32tt + c
2(a6 cos�� a5 sin�� a2ct sin�+ a3ct cos�) csc � = 0; (4.15)

2cr2�02rr + 3(a2 sin � cos�+ a3 sin � sin�+ a4 cos �) = 0; (4.17)

r3(�12rr � 2�2sr) + (a5 cos�+ a6 sin�) sin � + a7 cos � + ct sin �(a2 cos�

+a3 sin�) + a4ct cos � = 0; (4.18)

2r3(r�22rr + 2�
2
2r)� a5 cos � cos�� a6 cos � sin�+ a7 sin ��

a2ct cos � cos�� a3ct cos � sin�+ a4ct sin � = 0; (4.19)

2r3(r�32rr + 2�
3
2r) + (a5 sin�� a6 sin � cos �) csc � + a7 sin �+

ct csc �(a2 sin�� a3 cos�) = 0; (4.20)

c(�02�� + r�
0
2r)� sin �(a2 cos�� a3 sin�)� a4 cos � = 0; (4.21)

r(�12�� + r�
1
2r � �

1
2 � 2r�22�)� 2(a5 cos�+ a6 sin�) sin � + 2a7 cos �

+2ct sin �(a2 cos�+ a3 sin�) + 2a4ct cos � = 0; (4.22)

r(r�22�� + r
2�22r + 2r�

1
2�
� 2r�2s�) + (a5 cos�+ a6 sin�) cos ��

a7 sin � + (a2 cos�+ a3 sin�)ct cos � � a4ct sin � = 0; (4.23)

r2(�32�� + r�
3
2r + 2r

2 cot ��32�)� (a5 sin�+ a6 cos�� a2ct sin�

+a3ct cos�) csc � = 0; (4.24)

c(sin � cos��02� + �
0
2��

+ r sin2 ��02r)� sin
2 �(a2 sin � cos�+ a3 sin � sin�

+a4 cos �) = 0; (4.25)

r(�12�� csc � + r sin ��
1
2r + cos ��

1
2�
� sin ��12 � 2r cos ��22 � 2r�32�) sin ��

2 sin3 �(a5 cos�+ a6 sin�+ a7 cot � + a2ct cos�+ a3ct sin�

+a4ct cot �) = 0; (4.26)
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r2(�22�� + r sin
2 ��22r � cos 2��

2
2 � sin 2��32� +

1

2
sin 2��22�) + sin

3 �(a5 cos�

+a6 sin�� a7 cot � + a2ct cot � cos�+ a3ct cot � sin�� a4ct) = 0; (4.27)

r(r�32�� � 2r�2s� + r
2 sin2 ��32r + r sin � cos ��

3
2�
+ 2r�12� + 2r

2 cot ��22�)

+ sin2 �(a6 csc � cos�� a5 csc � sin�� a2ct csc � sin�+ a3ct csc � cos�) = 0; (4.28)

2�02st � �2ss = 0; �
1
2st = 0; �

2
2st = 0; �

3
2st = 0; (4.29)

�02sr = 0; 2�
1
2sr � �2ss = 0; r�

2
2sr + �

2
2s = 0; r�

3
2sr + �

3
2s = 0; (4.30)

�02s� = 0; �
1
2s�
� r�22s = 0; r(2�

2
2s�
� �2ss) + 2�

1
2s = 0; �

3
2s�
+ cot ��32s = 0; (4.31)

�02s� = 0; �
1
2s�
� r sin2 ��32s = 0; �

2
2s�
� sin � cos ��32s = 0; (4.32)

r(2�32s� � �2ss) + 2�
1
2s + 2r cot ��

2
2s = 0; (4.33)

�02ss = 0; �
1
2ss = 0; �

2
2ss = 0; �

3
2ss = 0; (4.34)

r3(�02tr � �2sr)� (a5 sin � cos�+ a6 sin � sin�+ a7 cos � + a2ct sin � cos�+

a3ct sin � sin�+ a4ct cos �) = 0; (4.35)

2r2(�12tr � �2st)� c(a2ct sin � cos�+ a3ct sin � sin�+ a4ct cos �) = 0; (4.36)

2r2(r�22tr + �
2
2t)� c(a2 cos � cos�+ a3 cos � sin�� a4 sin �) = 0; (4.37)

2r2(r�32tr + �
3
2t)� c(a3 csc � cos�� a2 csc � sin�) = 0; (4.38)

2r2(�02t� � �2s�) + a5 cos � cos�+ a6 cos � sin�� a7 sin � + a2ct cos � cos�

+a3ct cos � sin�� a4ct sin � = 0; (4.39)

2r(�12t� � r�
2
2t) + 3c(a2 cos � cos�+ a3 cos � sin�� a4 sin �) = 0; (4.40)

r(�22t� � �2st) + �
1
2t = 0; (4.41)

�32t� + cot ��
3
2t = 0; (4.42)

2r2(�02t� � �2s�) + a6 sin � cos�� a5 sin � sin�� a2ct sin � sin�

+a3ct sin � cos� = 0; (4.43)

2r(�12t� � r sin
2 ��32t) + 3c(a3 sin � cos�� a2 sin � sin�) = 0; (4.44)

�22t� � sin � cos ��
3
2t = 0; (4.45)

r(�32t� � �2st) + �
1
2t + r cot ��

2
2t = 0; (4.46)
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2c(r�02r� � �
0
2�
) + a2 cos � cos�+ a3 cos � sin�� a4 sin � = 0; (4.47)

2r(r�12r� � r�2s� � �
1
2�
� r2�22r)� 3(a5 cos � cos�+ a6 cos � sin�� a7 sin �

+a2ct cos � cos�+ a3ct cos � sin�� a4ct sin �) = 0; (4.48)

r2(�22r� � �2sr)� �
1
2 + r�

1
2r = 0; (4.49)

�32r� + cot ��
3
2r = 0; (4.50)

2c(r�02r� � �
0
2�
) + a3 sin � cos�� a2 sin � sin� = 0; (4.51)

2r(r�12r� � r�2s� � �
1
2�
� r2 sin2 ��32r) + 3(a5 sin � cos�� a6 sin � cos�+

a2ct sin � sin�� a3ct sin � cos�) = 0; (4.52)

�22r� � sin � cos ��
3
2r = 0; (4.53)

r2(�32r� � �2sr + cot ��
2
2r) + r�

1
2r � �

1
2 = 0; (4.54)

�02�� � cot ��
0
2�
= 0; (4.55)

�12�� � cot ��
1
2�
� r�22� � r sin

2 ��32� = 0; (4.56)

r(�22�� � �2s� � cot ��
2
2�
� sin � cos ��32�) + �

1
2�
= 0; (4.57)

r(�32�� � �2s� � csc
2 ��22 + cot ��

2
2�
) + �12� = 0: (4.58)

The above set of determining equations (4.11) - (4.58) is exactly the same to that for the

RN spacetime. Only 6 constants corresponding to the �rst-order approximate symmetry appear

and the other 4 constants corresponding to the exact symmetry do not appear as explained in

the RN-case. These 6 constants disappear (by the same method adopted in the RN-case) for

consistency of the above equations (4.11) - (4.58) making them homogeneous. Thus there is

no non-trivial approximate symmetry for the second-order perturbed geodesic equations of the

charged-Kerr spacetime. We only recover the exact (also �rst-order approximate) symmetry

generators as trivial second-order approximate symmetry generators which form the Poincarè

algebra so(1; 3)�s R4 apart from d2.

4.2 Energy (Mass) in the Charged-Kerr Spacetime

The exact symmetry algebra i.e. (when � = 0), as well as the �rst-order approximate symmetry

algebra when �2 = 0 and � 6= 0, of the geodesic equations for the charged-Kerr spacetime include
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the generators of dilation algebra, @=@s, s@=@s corresponding to

�(s) = c0s+ c1: (4.59)

Like the RN spacetime, for the second-order approximate symmetries of the geodesic equa-

tions for the charged-Kerr spacetime in the determining equations the terms involving �s = c0

do not automatically cancel out but collect a scaling factor of

1

r3
(1� 2k)

�
t� 2

p
k1
r2

sin2 �
�
�; (4.60)

so as to cancel out. (As mentioned earlier this factor comes from the application of the perturbed

system, rather than the unperturbed one in the determining equations.) The scaling factor

(4:60) corresponds to a re-scaling of energy (mass) as explained for the RN spacetime. This

scaling factor for the charged-Kerr spacetime involves the derivatives of the coordinates t and

� and derivatives only apply to the paths of the particles. To get the energy in the spacetime

�eld these derivatives can be replaced by the exact �rst integrals of the geodesic equations and

involve a constant that has units of mass. As such, we write it as M

�
t = 2M;

�
� =

�M2

2r2 sin2 �
: (4.61)

Using these �rst integrals and

k =
Q2

4GM2
; k1 = (

ac

2GM
)2; (4.62)

in (4.60) and denoting it by Mc�K we get the energy re-scaling factor for the charged-Kerr

spacetime (taking G = 1; c = 1)

Mc�K =M � Q2

2M
+
Ma

r
: (4.63)

For a = 0; the expression (4.63) reduces to M -times of the expression for the RN spacetime

[81].

The energy (mass) in the charged-Kerr spacetime has been de�ned by many authors. We
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discuss some of these de�nitions and then compare our de�nition (4.63) with them.

Komar, using his de�nition of approximate symmetry [29], wrote down an integral (1.14)

for the mass in a spacetime. Using the Komar integral (1.14) Cohen and de Felice considered

� as the stationary Killing 1-form over a charged-Kerr background metric [31]. They obtained

a formula for the e¤ective mass (and hence energy) for the charged-Kerr spacetime

Mc�K =M � Q2

r
� Q2(r2 + a2)

ar2
tan�1(

a

r
): (4.64)

In the above expression (4.64) a does not appear explicitly and only appears in a product with

Q. When Q �! 0 in the above expression (4.64) the e¤ects of rotation also disappear. This

does not seem reasonable. In the limit of a �! 0 expression (4.64) reduces to that of the RN

spacetime given in [86, 87].

Chellathurai and Dadhich modi�ed the Komar integral and obtained an expression for the

e¤ective mass of the charged-Kerr black hole [32]

Mc�K =M � Q2

r
� (12M

2 +Q2)a2

3r3
+
14MQ2a2

3r4
+ ::: : (4.65)

This expression (4.65) reduces to that of the RN spacetime in the limit a �! 0 and in the

limit Q �! 0 reduces to that for the Kerr spacetime [88]. However, it is not clear that this

modi�cation satisfactorily adjusts for the approximate symmetry of Komar.

Qadir and Quamar [89] obtained an expression for the  N -potential of the charged-Kerr

spacetime,

' = � Mr �Q2=2
(r2 + a2 cos2 �)

: (4.66)

In the limit a �! 0 (4.66) reduces to that for the RN spacetime [90, 91]. This yields the

approximate modi�cation of the mass to be

Mc�K =M � Q2

2r
� Ma2 cos2 �

r2
+
Q2a2 cos2 �

2r3
+ ::: : (4.67)

The signi�cance and comparison of our expression (4.63), with the other three expressions

(4.64), (4.65) and (4.67) will be discussed in more detail in chapter 7.

The main result of this chapter is given in the form of the following theorem.
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Theorem 4.1. For the charged-Kerr spacetime the energy is re-scaled by the factor (4.63).
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Chapter 5

Approximate Noether Symmetries

of the Geodesic Equations for Plane

Symmetric Gravitational Wave

Spacetimes and the De�nition of

Energy

In this chapter we give �rst-order approximate Noether symmetries of an arti�cially constructed

example of a plane symmetric �wave-like�spacetime, which represents a gravitational wave in-

teracting with matter and of the pp-wave spacetime. For the wave-like spacetime a non-trivial

approximate Noether symmetry is found. We use this non-trivial approximate Noether symme-

try to contract the energy momentum vector that gives the conserved quantity for the wave-like

spacetime. To look at the energy content of the plane wave spacetimes we then investigate

second-order approximate symmetries of the geodesic equations for the pp-wave and the wave-

like spacetimes. Since �2 does not appear in the geodesic equations for perturbed pp-waves,

there is a problem in applying the de�nition of second-order approximate symmetries of ODEs,

which gives the scaling factor mentioned earlier, to them. To obtain a better understanding of

the energy re-scaling in plane GWs, the wave-like spacetime is then investigated. We give the
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non-zero components of the Weyl and stress-energy tensors for the spacetimes discussed in this

chapter.

5.1 First-Order Approximate Noether Symmetries of PlaneWave

Spacetimes

In this section we �rst discuss the wave-like spacetime and then we study the pp-wave spacetime.

5.1.1 First-Order Approximate Noether Symmetries of the Plane Wave-Like

Spacetime

To study �rst-order approximate symmetries of the Lagrangian for plane symmetric spacetime

we consider the following line element of a static spacetime [92]

ds2 = e2�(x)dt2 � dx2 � e2�(x)(dy2 + dz2); (5.1)

with

�(x) = �2(x) = (x=X)2; (5.2)

where X is a constant having the same dimensions as x.

The Lagrangian for (5.1) is

L = e2x=X
�
t
2

� �
x
2
� e2(x=X)2( �y

2
+

�
z
2
): (5.3)

Using this Lagrangian in (1.54) we get the following set of determining equations.

�t = 0; �x = 0; �y = 0; �z = 0; As = 0; (5.4)

2e2x=X�0s = At; � 2�1s = Ax; � 2e2(x=X)
2
�2s = Ay; � 2e2x=X�3s = Az; (5.5)

2�1x � �s = 0; �2z + �3y = 0; �1y + e2(x=X)
2
�2x = 0; �

1
z + e

2(x=X)2�3x = 0; (5.6)

e2x=X�0x � �1t = 0; e2x=X�0y � e2(x=X)
2
�2t = 0; e

2x=X�0z � e2(x=X)
2
�3t = 0; (5.7)

2�1 +X(2�0t � �s) = 0; 4x�1 +X2(2�2y � �s) = 0; 4x�1 +X2(2�3z � �s) = 0: (5.8)
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Solving the above set of equations by back and forth substitution we get

Y0 =
@

@t
; Y1 =

@

@y
; Y2 =

@

@z
; Y3 = y

@

@z
� z @

@y
; Z0 =

@

@s
; A = c; (5.9)

where c is a constant, Y0 corresponds to energy conservation, Y1 and Y2 correspond to linear

momentum conservation along y and z, while Y3 corresponds to angular momentum conserva-

tion in the yz plane.

Since GWs are non-static spacetimes therefore the static spacetime (5.3) is perturbed with

a time-dependent small parameter (for de�niteness �t) to make it slightly non-static. For this

in (5.1) we take [93]

�(x) =
x

X
+ �

t

T
and �(x) = (

x

X
)2 + �

t

T
; (5.10)

where T is a constant having dimensions of t. Its �rst-order perturbed Lagrangian is

L = e2x=X
�
t
2

� �
x
2
� e2(x=X)2( �y

2
+

�
z
2
) +

2�t

T
[e2x=X

�
t
2

� e2(x=X)2( �y
2
+

�
z
2
)] +O(�2):

Using this perturbed Lagrangian and the exact symmetry generators given in (5.9), we obtain

the following set of determining equations

�t = 0; �x = 0; �y = 0; �z = 0; As = 0; (5.11)

2e2x=X�0s = At; � 2�1s = Ax; � 2e2(x=X)
2
�2s = Ay; � 2e2x=X�3s = Az; (5.12)

2�1x � �s = 0; �2z + �3y = 0; �1y + e2(x=X)
2
�2x = 0; �

1
z + e

2(x=X)2�3x = 0; (5.13)

e2x=X�0x � �1t = 0; e2x=X�0y � e2(x=X)
2
�2t = 0; e

2x=X�0z � e2(x=X)
2
�3t = 0; (5.14)

2a0
T
+
2

X
�1 + 2�0t � �s = 0; �

2a0
T
� 4x

X2
�1 � 2�2y + �s = 0; (5.15)

�2a0
T
� 4x

X2
�1 � 2�3z + �s = 0: (5.16)

In these equations only one constant, i.e. a0 corresponding to the exact symmetry generator

Y0, appears. Equation (5.11) yields

� = f1(s); A = A(t; x; y; z): (5.17)
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Integrating (5.12) with respect to s we get

�0 =
s

2
e�2x=XAt + f2(t; x; y; z); (5.18)

�1 = �s
2
Ax + f3(t; x; y; z); (5.19)

�2 = �s
2
e�2(x=X)

2
Ay + f4(t; x; y; z); (5.20)

�3 = �s
2
e�2(x=X)

2
Az + f5(t; x; y; z); (5.21)

We use (5.18) and (5.19) in the �rst of (5.15). Then we di¤erentiate it twice with respect to s:

Integrating the resulting equation we obtain

� =
1

2
b0s

2 + b1s+ b2: (5.22)

Again from the �rst of (5.15) we obtain

f3(t; x; y; z) = f6(x; y; z)�Xf2t(t; x; y; z): (5.23)

We substitute (5.23) in (5.19). Then we put (5.19) along with (5.22), in the �rst of (5.15), from

this we obtain

f6 =
X

2
(b1 �

2a0
T
): (5.24)

We use (5.19) and (5.22) in the second of (5.13) and then separate the resulting equation for

di¤erent powers of s: This give two equations which on integration yields

A = �1
2
b0x

2 + xf7(t; y; z) + f8(t; y; z) (5.25)

and

f2(t; x; y; z) = �
b1xt

2X
+

Z
f9(t; y; z)dt+ f10(x; y; z): (5.26)

From the second of (5.15) and (5.16), with the use of (5.19), (5.20) and (5.22) we obtain

94



f4(t; x; y; z) =
2x

X

Z
f9(t; y; z)dy + yb1(

1

2
� x2

X2
� x

X
) + y

a0
T
(
2x

X
� 1) (5.27)

+g1(t; y; z);

f5(t; x; y; z) =
2x

X

Z
f9(t; y; z)dz + zb1(

1

2
� x2

X2
� x

X
) + z

a0
T
(
2x

X
� 1)

+g2(t; y; z); (5.28)

respectively. Use of (5.18) and (5.19) in the �rst of (5.14) gives

f7(t; y; z) = 0 and f8 = g3(y; z): (5.29)

Now second of (5.15) yields

b0 = 0; (5.30)

g3(y; z) = yg4(z) + g5(z); (5.31)

From (5.16) we obtain

g4(z) = b3z + b4 and g5(z) = b5z + b6: (5.32)

The �rst of (5.13) yields

b1 = 0: (5.33)

From the third of (5.13) we get

b3 = 0, and b4 = 0, (5.34)

f9 = yg6(t) + g7(t): (5.35)

Now the third of (5.13) gives

g6(t) = 0 and g7(t) = �
a0
T
; (5.36)

g1 = g9(t; z): (5.37)
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From the fourth of (5.13) we obtain

b5 = 0 and g2 = g10(t; y): (5.38)

The second of (5.14) yields

g9 = h1(z)t+ h2(z); (5.39)

f10 = yh1(z)e
2x=X(x=X�1) + h3(x; z): (5.40)

From the third of (5.14) we have

h1 = b7z + b8; (5.41)

g10 = (b7y + b9)t+ h4(z); (5.42)

h3 = h5(x) + zb9e
2x=X(x=X�1): (5.43)

From the second of (5.13) we get

b7 = 0: (5.44)

The �rst of (5.14) yields

b8 = 0; b8 = 0 and h5 = b10: (5.45)

From the second of (5.13) we obtain

h2 = b11z + b12; (5.46)

h4 = �b11z + b13: (5.47)

Therefore

� = b2; A = b6; (5.48)

�0 = �a0t
T
+ b10; �

1 = 0; (5.49)

�2 = �a0y
T
+ b11z + b12; (5.50)

�3 = �a0z
T
� b11z + b13: (5.51)
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Thus the non-trivial �rst-order approximate symmetry generator is

Ya =
@

@t
� �

T
(t
@

@t
+ y

@

@y
+ z

@

@z
): (5.52)

Using (1.65) and (1.66) we obtain the corresponding stable (non-trivial) approximate �rst in-

tegral

I = e2x=Xt� +
2�

T
[e2x=Xt

�
t� e2(x=X)2(y �y + z �z)]: (5.53)

Using the time-like non-trivial �rst-order approximate Noether symmetry generator (5.52) we

contract the energy momentum vector. This gives the corresponding conserved quantity

Q = E � �

T
(tE + ypy + zpz); (5.54)

where E is the energy and p is the momentum. This gives the energy imparted to the test

particles with energy and momentum given by (5.54). However this does not give the energy

in the spacetime �eld.

5.1.2 First-Order Approximate Noether Symmetries of the PP-Wave Space-

time

To check the conserved quantity Q; in the pp-wave spacetime, we investigate the �rst-order

approximate Noether symmetries for this spacetime.

The line element for the pp-waves [94] is

ds2 = h!2[(x2 � y2) sin(!(t� z)) + 2xy cos(!(t� z))](dt2 � 2dtdz � dz2)

+dt2 � dx2 � dy2 � dz2; (5.55)

where h is the amplitude of the wave and ! is the frequency.

The Lagrangian for the exact pp-waves (5.55) is

L = h!2[(x2 � y2) sin(!(t� z)) + 2xy cos(!(t� z))](
�
t
2

+
�
z
2
� 2

�
t
�
z)

+
�
t
2

� �
x
2
� �
y
2
� �
z
2
: (5.56)
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For the Lagrangian (5.55), from (1.54), we get the following set of determining equations

�t = 0; �x = 0; �y = 0; �z = 0; As = 0; (5.57)

2h!2[(x2 � y2) sin(!(t� z)) + 2xy cos(!(t� z))]�0s = At; � 2�1s = Ax; (5.58)

�2�2s = Ay; �
0
s = Az; �

0
z = 0; 2�

1
x � �s = 0; 2�2y � �s = 0; (5.59)

�1y + �
2
x = 0; �

0
x � 2�1z = 0; �0y � 2�2z = 0; �0t + �3z � �s = 0; (5.60)

2h!2[(x2 � y2) sin(!(t� z)) + 2xy cos(!(t� z))]�0x � 2�1t + �3x = 0; (5.61)

2h!2[(x2 � y2) sin(!(t� z)) + 2xy cos(!(t� z))]�0y � 2�2t + �3y = 0; (5.62)

![(x2 � y2) cos(!(t� z))� 2xy sin(!(t� z))](�0 � �3) + 2[x sin(!(t� z))

+y cos(!(t� z))]�1 + 2[x cos(!(t� z))� y sin(!(t� z))]�2+

[(x2 � y2) sin(!(t� z)) + 2xy cos(!(t� z))](2�0t � �s) +
1

h!2
�3t = 0: (5.63)

Solving the above system of determining equations (5.57) - (5.63) by the usual method, we get

the following symmetry generator and the gauge function as a constant

Y0 =
@

@t
+

@

@z
; Z0 =

@

@s
; A = c: (5.64)

To investigate the approximate symmetries of pp-waves we �rst remove the t-dependent

part of (5.55) and putting h = 1 to de�ne a static spacetime [95]

ds2 = !2[(x2 � y2) + 2xy](dt2 � 2dtdz � dz2) + dt2 � dx2 � dy2 � dz2: (5.65)

For this static spacetime we obtain the Lagrangian

L = !2[(x2 � y2) + 2xy](
�
t
2

+
�
z
2
� 2

�
t
�
z) +

�
t
2

� �
x
2
� �
y
2
� �
z
2
: (5.66)

For the Lagrangian (5.66) the set of determining equations is

�t = 0; �x = 0; �y = 0; �z = 0; As = 0; � 2�1s = Ax; (5.67)

�2�2s = Ay; ; 2�
1
x � �s = 0; 2�2y � �s = 0; �1y + �2x = 0; (5.68)
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!2(x2 � y2 + xy)(�0x � �3x) + �0x � �1t = 0; (5.69)

!2(x2 � y2 + xy)(�0y � �3y) + �0y � �2t = 0; (5.70)

!2(x2 � y2 + xy)(�3y � �0y)� �2z � �3y = 0; (5.71)

2!2[(x+ y)�1 + (x� y)�2] + 2!2(x2 � y2 + xy)(�0t � �3t )+

2�0t � [!2(x2 � y2 + xy) + 1]�s = 0; (5.72)

2!2[(x+ y)�1 + (x� y)�2]� 2!2(x2 � y2 + xy)(�0z � �3z)�

2�3z � [!2(x2 � y2 + xy)� 1]�s = 0; (5.73)

2!2[(x+ y)�1 + (x� y)�2]� !2(x2 � y2 + xy)(�0z � �3z

��0t + �3t )� �0z + �3t � 2!2(x2 � y2 + xy)�s = 0; (5.74)

!2(x2 � y2 + xy)(�3x � �0x)� �1z � �3z = 0; (5.75)

2!2(x2 � y2 + xy)(�0s � �3s) + 2�0s = At; (5.76)

2!2(x2 � y2 + xy)(�3s � �0s) + 2�3s = �Az: (5.77)

Solving the above system of equations by the same method used earlier, we obtain the following

symmetry generators with a constant gauge function

Y0 =
@

@t
; Y1 =

@

@z
; Z0 =

@

@s
; A = c: (5.78)

To obtain the approximate Noether symmetries of the pp-waves the exact pp-wave spacetime

(5.55) is considered as a perturbation on the static spacetime (5.56). For this purpose the

amplitude h = �, is taken as a small parameter and the line element of the perturbed pp-waves

is

ds2 = !2[(x2 � y2) + 2xy + �f(x2 � y2) sin(!(t� z)) + 2xy cos(!(t� z))g](dt2

�2dtdz � dz2) + dt2 � dx2 � dy2 � dz2: (5.79)

The Lagrangian for the above perturbed spacetime (5.79) is
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L = !2[(x2 � y2) + 2xy + �f(x2 � y2) sin(!(t� z)) + 2xy cos(!(t� z))g](
�
t
2

+

�
z
2
� 2

�
t
�
z) +

�
t
2

� �
x
2
� �
y
2
� �
z
2
: (5.80)

The set of determining equations for the Lagrangian (5.80) is

�t = 0; �x = 0; �y = 0; �z = 0; As = 0; � 2�1s = Ax; (5.81)

�2�2s = Ay; ; 2�
1
x � �s = 0; 2�2y � �s = 0; �1y + �2x = 0; (5.82)

!2(x2 � y2 + xy)(�0x � �3x) + �0x � �1t = 0; (5.83)

!2(x2 � y2 + xy)(�0y � �3y) + �0y � �2t = 0; (5.84)

!2(x2 � y2 + xy)(�3y � �0y)� �2z � �3y = 0; (5.85)

2!2[(x+ y)�1 + (x� y)�2] + 2!2(x2 � y2 + xy)(�0t � �3t )+

2�0t � [!2(x2 � y2 + xy) + 1]�s + !3[(x2 � y2) cos(!(t� z))

�2xy sin(!(t� z))](a0 � a1) = 0; (5.86)

2!2[(x+ y)�1 + (x� y)�2]� 2!2(x2 � y2 + xy)(�0z � �3z)�

2�3z � [!2(x2 � y2 + xy)� 1]�s + !3[(x2 � y2) cos(!(t� z))

�2xy sin(!(t� z))](a0 � a1) = 0; (5.87)

2!2[(x+ y)�1 + (x� y)�2]� !2(x2 � y2 + xy)(�0z � �3z

��0t + �3t )� �0z + �3t � 2!2(x2 � y2 + xy)�s � 2!3[(x2�

y2) cos(!(t� z))� 2xy sin(!(t� z))](a0 � a1) = 0; (5.88)

!2(x2 � y2 + xy)(�3x � �0x)� �1z � �3z = 0; (5.89)

2!2(x2 � y2 + xy)(�0s � �3s) + 2�0s = At; (5.90)

2!2(x2 � y2 + xy)(�3s � �0s) + 2�3s = �Az: (5.91)

For � = 0, the above Lagrangian (5.80) reduces to (5.66). Using this �rst-order perturbed

Lagrangian and the three exact symmetry generators given by (5.78), in (1.63), in the resulting

system of determining equations two constants corresponding to the exact symmetry generators
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Y0 and Y1; given in (5.78), appear. Solving the system of equations (5.81) - (5.91), by the

same back and forth substitution method used earlier the two constants have to be eliminated

for consistency of the determining equations, making them homogeneous. The resulting system

is the same as for the static (exact) spacetime (5.65). Thus there is no non-trivial approximate

symmetry for this perturbed Lagrangian and the gauge function is a constant. Hence we can

not obtain the conserved quantity in the case of perturbed pp-wave spacetime. Only the three

exact symmetry generators are recovered as trivial �rst-order approximate Noether symmetries

which give trivial �rst-order approximate conservation laws for energy and linear momentum

along z.

5.2 Second-Order Approximate Symmetries of the Geodesic

Equations for Plane Wave Spacetimes

In this section we �rst analyze pp-waves and then we study the plane wave-like spacetime.

5.2.1 Approximate Symmetries of the Geodesic Equations for the PP-Wave

Spacetime

For the perturbed pp-wave spacetime (5.79) we have the system of �rst-order perturbed geodesic

equations and �2 does not appear [95],

E1 :
��
t + !2(

�
t� �

z)[(x+ y)
�
x+ (x� y) �y] + �[!

3

2
f(x2 � y2) cos(!(z � t))+

2xy sin(!(z � t))g(
�
t
2

+
�
z
2
�
�
t
�
z)� !2(

�
t� �

z)fx sin(!(z � t))� y cos(!(z

�t))g �x+ !2fy sin(!(z � t)) + x cos(!(z � t))g �y] = 0; (5.92)

E2 :
��
x+ [!2(x+ y)� �!2fx sin(!(z � t))� y cos(!(z � t))g](

�
t
2

+
�
z
2
�
�
t
�
z) = 0; (5.93)

E3 :
��
y + [!2(x+ y)� �!2fx cos(!(z � t))� y sin(!(z � t))g](

�
t
2

+
�
z
2
�
�
t
�
z) = 0; (5.94)

E4 :
��
z + !2(

�
t� �

z)[(x+ y)
�
x+ (x� y) �y] + �[!

3

2
f(x2 � y2) cos(!(z � t))+

2xy sin(!(z � t))g(
�
t
2

+
�
z
2
�
�
t
�
z)� !2(

�
t� �

z)fx sin(!(z � t))� y cos(!(z

�t))g �x+ !2fy sin(!(z � t)) + x cos(!(z � t))g �y] = 0: (5.95)
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Since there is no quadratic term in �, in the above geodesic equations (5.92) - (5.95), we

cannot apply the de�nition of second-order approximate symmetries, which gives us the energy

re-scaling factor to them. This behavior is consistent with the pp-wave geometry in which the

wave front moves as parallel planes and the spacetime curvature is absolutely zero before the

pp-wave pulse arrives and after it has passed [40]. There is no region where there is a slight shift

from the �at geometry as required for obtaining an approximate symmetry. Thus the proposal

of approximate Lie symmetries for determining the energy content of GWs cannot be checked

for pp-waves.

5.2.2 Approximate Symmetries of the Geodesic Equations for the Plane

Wave-Like Spacetime

Retaining �2 in (5.10) and neglecting its higher powers, second-order perturbed geodesic equa-

tions are obtained [95]

E1 :
��
t +

2

X

�
t
�
x� �

T
[
�
t
2

� ( �y
2
+

�
z
2
)e2((x=X)

2�x=X)] +
�2t

T 2
[
�
t
2

+ (
�
y
2
+

�
z
2
)e2((x=X)

2�x=X)] +O(�3) = 0; (5.96)

E2 :
��
x+

e2x=X

X

�
t
2

� 2x

X2
e2(x=X)

2
(
�
y
2
+

�
z
2
) +

2t�

TX
[e2x=X

�
t
2

� 2x
X
e2(x=X)

2

(
�
y
2
+

�
z
2
)] +

t2�2

T 2X
[e2x=X

�
t
2

� 2x
X
e2(x=X)

2
(
�
y
2
+

�
z
2
)] +O(�3) = 0; (5.97)

E3 :
��
y +

4x2

X2

�
x
�
y +

2�

T

�
t
�
y � 2t�

2

T 2
�
t
�
y +O(�3) = 0; (5.98)

E4 :
��
z +

4x2

X2

�
x
�
z +

2�

T

�
t
�
z � 2t�

2

T 2
�
t
�
z +O(�3) = 0: (5.99)

We apply the second prolongation X[2] of the generator X = X0+ �X1+�
2X2 de�ned in (2.40),

to (5.96) - (5.99), which yields

X[2]E1 = [�00;ss + ��
0
1;ss + �

2�02;ss + (�
0
0 + ��

0
1 + �

2�02)
�2

T 2
f
�
t
2

+ (
�
y
2
+

�
z
2
)

e2((x=X)
2�x=X)g+ (�10 + ��11 + �2�12)(

�

T
+
�2t

T 2
)f 2
X
(
x

X
� 1)( �y

2
+

�
z
2
)e2((x=X)

2�x=X)g+ 2(�00;s + ��01;s + �2�02;s)(
�
x

X
� �

�
t

T
+
�2t

�
t

T 2
)+
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2(�10;s + ��
1
1;s + �

2�12;s)(

�
t

X
) +

2

T
f �y(�20;s + ��21;s + �2�22;s) +

�
z(�30;s

+��31;s + �
2�32;s)g(�+

�2t

T
)e2((x=X)

2�x=X)]Ej=0 = 0; (5.100)

X[2]E2 = [�10;ss + ��
1
1;ss + �

2�12;ss +
2

TX
(�00 + ��

0
1 + �

2�02)(�+
�2t

T
)f
�
t
2

e2x=X

�( �y
2
+

�
z
2
)e2(x=X)

2g+ 2

X2
(�10 + ��

1
1 + �

2�12)f
�
t
2

e2x=X � ( �y
2
+

�
z
2
)(1

+
4x2

X2
)e2(x=X)

2g(1 + 2�t
T
+
�2t2

T 2
) +

2
�
t

X
(�00;s + ��

0
1;s + �

2�02;s)e
2x=X(1

+
4�t

T
+
2�2t2

T 2
) +� 4x

X2
f �y(�20;s + ��21;s + �2�22;s) +

�
z(�30;s + ��

3
1;s +

�2�32;s)g(1 +
2�t

T
+
�2t2

T 2
)e2(x=X)

2
]Ej=0 = 0; (5.101)

X[2]E3 = [�20;ss + ��
2
1;ss + �

2�22;ss �
2

T 2
�
t
�
y(�00 + ��

0
1 + �

2�02) +
4

X2

�
x
�
y(�10 + ��

1
1

+�2�12) +
2

T

�
y(�� �2t

T
)(�00;s + ��

0
1;s + �

2�02;s) +
4x

X2

�
y(�10;s + ��

1
1;s +

�2�12;s) + 2(�
2
0;s + ��

2
1;s + �

2�22;s)(
2x

X2

�
x+

�

T

�
t� �2t

T 2
�
t)]Ej=0 = 0; (5.102)

X[2]E4 = [�30;ss + ��
3
1;ss + �

2�32;ss �
2

T 2
�
t
�
z(�00 + ��

0
1 + �

2�02) +
4

X2

�
x
�
z(�10 + ��

1
1

+�2�12) +
2

T

�
z(�� �2t

T
)(�00;s + ��

0
1;s + �

2�02;s) +
4x

X2

�
z(�10;s + ��

1
1;s +

�2�12;s) + 2(�
3
0;s + ��

3
1;s + �

2�32;s)(
2x

X2

�
x+

�

T

�
t� �2t

T 2
�
t)]Ej=0 = 0; (5.103)

where (j = 1; 2; 3; 4): For � = 0; (5.96) - (5.99) yield the equations for the exact case and

only retaining �rst power of �; neglecting its higher powers will give the equations for �rst-

order approximate case. For the exact (� = 0) the geodesic equations (5.96) - (5.99) admit the

symmetry generators

Y0 =
@

@t
; Y1 =

@

@y
; Y2 =

@

@z
; Y3 = y

@

@z
� z @

@y
; Z0 =

@

@s
; Z1 = s

@

@s
; (5.104)
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with the gauge function as a constant.

We use the prolongation coe¢ cients de�ned in (2.45) - (2.52), the exact symmetry generators

given by (5.104), the �rst-order approximate symmetry generators (which are consist of the

exact symmetry generators and the non-trivial symmetry generator given by (5.52)), and the

second-order perturbed geodesic equations, in above equations (5.100) - (5.103). We get the

following set of determining equations

�2tt �
e2(x=X)

X
�2x = 0; �2xx = 0; �2yy +

2xe2(x=X)
2

X2
�2x = 0;

�2zz +
2xe2(x=X)

2

X2
�2x = 0; �2tx �

1

X
�2t = 0; �2ty = 0;

�2tz = 0; �2xy �
2x

X2
�2y = 0; �2xz �

2x

X2
�2z = 0; �2yz = 0; (5.105)

�02tt +
2e2(x=X)

X
�02x +

2

X
�12t +

a0
T 2
� 2�2st = 0; (5.106)

�12tt +
2e2(x=X)

X
(�02t �

1

2
�12x �

2t

T 2
a0) +

2

X2
�12 = 0; (5.107)

�22tt �
e2(x=X)

X
�22x = 0; �

3
2tt �

e2(x=X)

X
�32x = 0; (5.108)

�02xx +
2

X
�02x = 0; �

1
2xx � 2�2sx = 0; (5.109)

�22xx +
4x

X2
�22x = 0; �

3
2xx +

4x

X2
�32x = 0; (5.110)

�02yy +
2xe2(x=X)

2

X2
�02x +

a0
T 2
e2[(x=X)

2�x=X] = 0; (5.111)

�12yy +
2e2(x=X)

2

X2
[x�12x � (1 +

4x2

X2
)�12 � 2x(�22y � �2x)] = 0; (5.112)

�22yy +
2x

X2
(2�12y + �

2
2xe

2(x=X)2)� 2�2sy = 0; (5.113)

�32yy +
2x

X2
�32xe

2(x=X)2 = 0; (5.114)

�02zz +
2xe2(x=X)

2

X2
�02x +

a0
T 2
e2[(x=X)

2�x=X] = 0; (5.115)

�12zz +
2e2(x=X)

2

X2
[x�12x � (1 +

4x2

X2
)�12 � 2x(�22y � �2x)] = 0; (5.116)

�22yy +
2x

X2
�22xe

2(x=X)2 = 0; (5.117)

�32zz +
2x

X2
(2�12z + �

3
2xe

2(x=X)2)� 2�2sz = 0; (5.118)
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2

X
�12s + 2�

0
2st � �2ss = 0;

e2(x=X)

X
�02s + �

1
2st = 0; �

2
2st = 0; (5.119)

�32st = 0;
1

X
�02s + �

0
2sx = 0; �

1
2sx � �2ss = 0; (5.120)

2x

X2
�22s + �

2
2sx = 0;

2x

X2
�32s + �

3
2sx = 0; �

0
2sy = 0; (5.121)

2xe2(x=X)

X
�22s � �

1
2sy = 0;

4x

X2
�12s + 2�

2
2sy � �2ss = 0; (5.122)

�32sy = 0; �
0
2sz = 0;

2xe2(x=X)

X
�32s � �

1
2sz = 0; (5.124)

�22sz = 0;
4x

X2
�12s + 2�

3
2sz � �2ss = 0; (5.125)

�02st + �
1
2x � �

0
2t +X(�

0
2xt � �2sx) = 0; (5.126)

�02xe
2(x=X) � �12t � �

0
2t +X(�

1
2xt � �2st) = 0; (5.127)

(2x�X)�22t +X
2�22xt = 0; (2x�X)�

3
2t +X

2�32xt = 0; (5.128)

1

X
�12y + �

0
2ty � �2sy = 0;

1

X
�02y + �

1
2ty �

2xe2(x=X)
2

X2
�22t = 0; (5.129)

�22ty �
2x

X2
�12t � �2st +

a0
T 2

= 0; �32ty +
a0
T 2

= 0; (5.130)

1

X
�12z + �

0
2tz � �2sz = 0; �

2
2tz +

a0
T 2

= 0; (5.131)

�12tz +
1

X
(e2(x=X)�02z �

2xe2(x=X)
2

X
�32t) = 0; (5.132)

4x

X2
�12t + 2�

3
2tz � �2st �

a0
T 2

= 0; (5.133)

1

X
(1� 2x

X
)�02y + �

0
2xy = 0; �

3
2xy = 0; (5.134)

�12xy �
2x

X2
(e2(x=X)

2
�22x + �

1
2y)� �2sy = 0; (5.135)

�22xy � �2sx +
2

X2
(2x�12x + �

1
2) = 0; (5.136)

�02xz +
1

X
(1� 2x

X
)�02z = 0; �

2
2xz = 0; (5.137)

�12xz �
2x

X2
(e2(x=X)

2
�32x + �

1
2z)� �2sz = 0; (5.138)

�22xy � �2sx +
2

X2
(2x�12x + �

1
2) = 0; (5.139)

�22yz = 0; �
1
2yz �

2xe2(x=X)
2

X2
(�22z + �

3
2y) = 0; (5.140)

�22yz +
2x

X2
�12z � �2sz = 0; �

3
2yz +

2x

X2
�12y � �2sz = 0; (5.141)

�02ss = 0; �
1
2ss = 0; �

2
2ss = 0; �

3
2ss = 0: (5.142)
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Like the �rst-order approximate case for this wavelike spacetime only one constant correspond-

ing to the time translation exact symmetry generator appears in the above equations (5.105) -

(5.142). Solving these equations by the same method used earlier in this thesis we get no non-

trivial symmetry generator. The �rst-order approximate symmetry generator given by (5.52)

along with the exact symmetry generators given in (5.9) are obtained as trivial approximate

symmetry generators and the gauge function is a constant. Hence in the second-order approx-

imation there is non non-trivial approximate symmetry for the plane wave-like spacetime.

It should be noted that for the �rst-order approximate case we obtain the same set of

determining equations (5.105) - (5.142). The solution of these equations is given above.

5.3 Energy (Mass) in a Plane Wave-Like Spacetime

The Lie symmetry algebra for the exact or unperturbed (when � = 0) (as well as the �rst-order

approximate symmetry algebra i.e. when �2 = 0 and � 6= 0) geodesic equations for the plane

wave-like spacetime include the generators of dilation algebra, @=@s, s@=@s corresponding to

�(s) = c0s+ c1: (5.143)

Like the RN [81] and charged-Kerr [82] spacetimes, for the second-order approximate sym-

metries of the geodesic equations in the determining equations the terms involving �s = c0; do

not automatically cancel out but collect a scaling factor of [95]

t

T 2
[
�
t
2

+ (
�
y
2
+

�
z
2
)e2((x=X)

2�x=X)]: (5.144)

so as to cancel out. The scaling factor (5:144) corresponds to a re-scaling of energy (mass) as

explained earlier. This scaling factor for the wave-like spacetime involve the derivatives of the

coordinates t and �: Since derivatives only apply to the paths of the particles, to get the energy

in the spacetime �eld we replace these derivatives by the exact �rst integrals of the geodesic

equations
�
t =

c1
2
e�2(x=X);

�
y = c2e

�2((x=X)2�x=X) =
�
z: (5.145)

Using these �rst integrals (5.145) in (5.144) we obtain the scaling factor (5.146) for the plane
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wave-like spacetime [93]
t

4T
[e�4(x=X) + 2e�2((x=X)

2+x=X)]: (5.146)

This energy expression is plotted below for di¤erent values of t and x, using Mathematica

5.0. The values of X and T are arbitrary. The above scaling factor for this wave-like spacetime

depends linearly on t and in both diagrams below the energy in the gravitational �eld increases

linearly with time. In Fig. 5-1 the energy is seen to decrease along x and disappears sharply

close to x = 0. To see the variation with x we enlarge the diagram by reducing the range of

x in Fig. 5-2. As we move along x the increase in energy with time becomes gradual. Since

the small parameter � (which is considered as the strength of the wave) is arbitrary the units

of energy are arbitrarily chosen. Throughout this thesis gravitational units are used and space,

time and mass are given in seconds.

Admittedly, in this arti�cial example of the wave-like spacetime energy increases linearly

without limit. This is because of the (nonphysical) choice of a linearly increasing component

of the metric tensor for convenience of computation, leading to a corresponding increase in the

scaling factors (5.146).

5.4 The Weyl and Stress-Energy Tensors for Plane Symmetric

Spacetimes

Though the Weyl tensor gives information about the gravitational energy of the spacetime,

it is not clear how to obtain a measure of the energy in it. For the pure gravitational part

and matter part here we give the independent nonzero components of Weyl and stress-energy

tensors for the perturbed pp-wave and plane wave-like spacetimes.
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Figure 5-1: Plane symmetric gravitational wave-like spacetime. The energy increases inde�-
nitely in time close to x = 0 and then disappears suddenly after some distance. The small
parameter �, (considered as strength of the wave) is arbitrary in all the spacetimes discussed in
this thesis. Thus the units of energy are chosen arbitrarily. Throughout this thesis gravitational
units are adopted and space, time and mass are given in seconds
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Figure 5-2: This is a expanded version of Fig. 5-1. Here the range of x is shrunk and it is seen
that the energy decreases smoothly with distance.
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5.4.1 The Weyl and Stress-Energy Tensors for the PP-Wave Spacetime

Following are the independent nonzero components of the Weyl tensor for the perturbed pp-

wave spacetime (5.79) [95]

C0101 = �!2[!2(x2 � y2 � 2xy) + 1 + �f2!2(x2 � y2 � xy) sin!(z � t)�

2!2xy cos!(z � t)� sin!(z � t)g] +O(�2);

C0113 = C0101 = C1313 = �C0202 = C0223 = C2323;

C0102 = �!2[!2(x2 � y2 � 2xy) + 1 + �f2!2(x2 � y2) sin!(z � t)� !2(x2

�y2 + 4xy) cos!(z � t) + cos!(z � t)] +O(�2);

C0123 = C0102 = C0213 = C1323: (5.147)

As given in the �rst section of chapter 1, for usual purposes the form of the Weyl tensor does

not matter, but for di¤erential symmetries of the tensor the form is crucial [58]. In covariant

form the components of the Weyl tensor are

C0101 = �!2[1� � sin!(z � t)] = C0113 = C1313 = �C0202 = C0223 = C2323;

C0102 = �!2[1� � cos!(z � t)] = C0123 = C0213 = C1323: (5.148)

From here it appears that the (0, 4) form may give the physically relevant quantities as

the space dependence in (5.147) does not seem to correspond to the geometry of the pp-wave,

while (5.148) does. Here the pure gravitational �eld which �curves up the void� is seen to be

sinusoidal. For this spacetime there is obviously no nonzero component of the stress-energy

tensor.

5.4.2 The Weyl and Stress-Energy Tensors for the Plane Wave-like Space-

time

The independent nonzero components of the Weyl tensor for the plane wave-like spacetime

(5.10) are
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C0101 =
1

3X3
(2x+X) +O(�2);

C0202 = C0303 =
e2(x=X)

2

6X3
(1 + �

2t

T
)(2x+X) +O(�2);

C1212 = C1313 = �C0202; C2323 = �2C0202: (5.149)

From Figs. 5-1 and 5-2 (where the wave is along the x direction), it is clear that the energy in

the gravitational �eld of the plane wave-like spacetime increases with time. Therefore the �rst

component of the Weyl tensor must depend on t linearly which corresponds to the covariant

form (given below) and not the mixed form.

C0101 =
e2x=X

3X3
(1 + �

2t

T
)(2x+X) +O(�2);

C0202 = C0303 =
e2(x=X)

2+2x=X

6X3
(1 + �

4t

T
)(2x+X) +O(�2);

C1212 = C1313 = �C0202; C2323 = �2C0202: (5.150)

The nonzero components of the stress-energy tensor for this wave-like spacetime are

T00 =
4e2x=X

�X2
(1 + �

2t

T
)(1 +

3x2

X2
) +O(�2);

T11 =
�8x
�X4

(x+X) +O(�2);

T22 = T33 =
e2x

2=X2

�X4
(1 + �

2t

T
)(2xX + 4x2 + 3X2) +O(�2);

T01 =
�

�TX2
(x�X) +O(�2): (5.151)

It is worth noting that the x-direction stress has no approximate part of �rst-order and the

approximate part of the energy increases linearly with time and quadratically at large distances.

More interestingly there is an approximate momentum in the x-direction that increases linearly

with the value of x. This linear increase in energy was built into the metric and it entails the

momentum in the x-direction.

Now we give the fraction of energy density imparted to the matter �eld, by the following

111



expression

Eimp =
(T00)P
(T00)E

; (5.152)

where (T00)E and (T00)P are the energy densities of the exact (i.e. when � = 0) and �rst-order

approximate spacetime respectively. For the plane wave-like spacetime we have

Eimp = �
2t

T
: (5.153)

Here we give the result of this chapter in the form of the following theorem.

Theorem 5.1. The energy of plane gravitational wave in a plane gravitational wave-like

spacetime is the classical energy re-scaled by the factor (5.146).
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Chapter 6

Approximate Noether Symmetries

of the Geodesic Equations for

Cylindrically Symmetric

Gravitational Wave Spacetimes and

the De�nition of Energy

In this chapter we study �rst-order approximate Noether symmetries of the cylindrical analogue

of the arti�cially constructed example of a plane �wave-like�spacetime discussed in chapter 5,

and of cylindrically symmetric GW spacetime. To obtain the energy content of the cylindrical

wave spacetimes we investigate second-order approximate symmetries of the geodesic equations

for these spacetimes. Here we also give the non-zero components of the Weyl and stress-energy

tensors for the cylindrical GW spacetimes discussed in this chapter.
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6.1 First-Order Approximate Noether Symmetries of Cylindri-

cal Wave Spacetimes

In this section we �rst study the wave-like spacetime and then we investigate the cylindrically

symmetric GW spacetime.

6.1.1 First-Order Approximate Noether Symmetries of the Cylindrical Wave-

like Spacetime

To investigate �rst-order approximate symmetries of the Lagrangian for cylindrically symmetric

spacetime we consider the following line element of a static spacetime [96]

ds2 = e�(�)dt2 � d�2 � e2�(�)(a2d�2 + dz2); (6.1)

with

�(�) = (�=R)2and �(�) = (�=R)3; (6.2)

where R is a constant having the same dimensions as of �.

A Lagrangian for the static spacetime (6.1) is

L = e(�=R)
2 �
t
2

� ��2 � e(�=R)3(a2
�
�
2

+
�
z
2
): (6.3)

Using this Lagrangian in (1.54) we get the following set of determining equations.

�t = 0; �� = 0; �� = 0; �z = 0; As = 0; (6.4)

2e(�=R)
2
�0s = At; � 2�1s = A�; � 2a2e(�=R)

3
�2s = A�; � 2e(�=R)

3
�3s = Az; (6.5)

2�1� � �s = 0; a2�2z + �3� = 0; �1� + a2e(�=R)
3
�2� = 0; �

1
z + e

(�=R)3�3� = 0; (6.6)

e(�=R)
2
�0� � �1t = 0; e(�=R)

2
�0� � e(�=R)

3
�2t = 0; e

(�=R)2�0z � e(�=R)
3
�3t = 0; (6.7)

2�

R2
�1 + 2�0t � �s = 0;

3�2

R3
�1 + 2�2� � �s = 0;

3�2

R3
�1 + 2�3z � �s = 0: (6.8)

Solving the above set of equations (6.4) - (6.8) by the same method as for the plane symmetric
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case we get the following symmetry generators

Y0 =
@

@t
; Y1 =

@

@�
; Y2 =

@

@z
; Y3 = z

@

@�
� a2� @

@z
; Z0 =

@

@s
; A = c: (6.9)

where c is a constant, Y0 corresponds to energy conservation, Y1 corresponds to azimuthal

angular momentum conservation and Y2 to linear momentum conservation along z, while Y3

corresponds to angular momentum conservation.

For the approximate symmetries of the Lagrangian for the cylindrical wave-like spacetime

we consider [95]

�(�) = (�=R)2 + �
2t

T
and �(x) = (�=R)3 + �

2t

T
; (6.10)

in the metric (6.1), where T is a constant having dimensions of t. Its �rst-order perturbed

Lagrangian is

L = e(�=R)
2 �
t
2

� ��2 � e(�=R)3(a2
�
�
2

+
�
z
2
) +

2�t

T
[e(�=R)

2 �
t
2

� e(�=R)3(a2
�
�
2

+
�
z
2
)] +O(�2): (6.11)

Using this �rst-order perturbed Lagrangian (6.8) and the exact symmetry generators (6.9), in

(1.63), we obtain the following set of equations (6.12) - (6.17), in which only one constant a0

corresponding to the exact symmetry generator Y0; given in (6.9), appears.

�t = 0; �� = 0; �� = 0; �z = 0; As = 0; (6.12)

2e(�=R)
2
�0s = At; � 2�1s = A�; � 2a2e(�=R)

3
�2s = A�; � 2e(�=R)

3
�3s = Az; (6.13)

2�1� � �s = 0; a2�2z + �3� = 0; �1� + a2e(�=R)
3
�2� = 0; �

1
z + e

(�=R)3�3� = 0; (6.14)

e(�=R)
2
�0� � �1t = 0; e(�=R)

2
�0� � e(�=R)

3
�2t = 0; e

(�=R)2�0z � e(�=R)
3
�3t = 0; (6.15)

2a0
T
+
2�

R2
�1 + 2�0t � �s = 0; �

2a0
T
� 3�

2

R3
�1 � 2�2y + �s = 0; (6.16)

�2a0
T
� 3�

2

R3
�1 � 2�3z + �s = 0: (6.17)

Solving these equations by the same method as for the plane symmetric case we get the fol-

lowing non-trivial approximate symmetry generator (6.18) along with the trivial approximate
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symmetry generators given by (6.9)

Ya =
@

@t
� �(t @

@t
+ �

@

@�
+ z

@

@z
): (6.18)

The corresponding �rst-order approximate (stable) �rst integral is

I = e(�=R)
2 �
t+

2�

T
[e(�=R)

2
t
�
t� e(�=R)3(a2�

�
�+ z

�
z)]: (6.19)

Like the plane symmetric case the conserved quantity for this cylindrical wave-like case is

Q = E � �

T
(tE + �p� + zpz): (6.20)

6.1.2 First-Order Approximate Noether Symmetries of the Cylindrically

Symmetric GW Spacetime

To check the conserved quantity Q; in the cylindrical GW spacetime, we investigate the �rst-

order approximate Noether symmetries for this spacetime.

The line element for the cylindrical wave spacetime [97] is

ds2 = e2(
� )(dt2 � d�2)� �2e�2 d�2 � e2 dz2; (6.21)

where 
 and  are arbitrary functions of t and �, subject to the vacuum EFEs

 00 +
1

�
 0 �

��
 = 0; 
0 = �( 02 +

�
 

2

);
�

 = 2�

�
  0; (6.22)

where dot denotes di¤erentiation with respect t and prime with respect to �. The solution of

(6.22) is given by

 = AJ0(!�) cos(!t) +BY0(!�) sin(!t); (6.23)


 =
!�

2
[(A2J0

0
J0 �B2Y0Y 00) cos(2!t)�ABf(J0Y 00 + Y0J 00) sin(2!t)�

2(J0Y
0
0 � Y0J 00)!tg]: (6.24)

This metric has two KVs @=@� and @=@z [1]; this means that there is only azimuthal angular
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momentum conservation and linear momentum conservation along z.

The Lagrangian for (6.22),

L = e2(
� )(
�
t
2

� ��2)� �2e�2 
�
�
2

� e2 �z
2
; (6.25)

admits the symmetry generator @=@s; along with the two KVs and the gauge function is a

constant.

To discuss the approximate symmetries of cylindrical GWs �rst a static spacetime is de�ned

as follows. We remove the t-dependent part in (6.21) and put the strength of the wave A = 1

and B = 0. Since Y0 is badly behaved at � = 0; we choose B = 0 [95].

ds2 = e2(
0� 0)(dt2 � d�2)� �2e�2 0d�2 � e2 0dz2; (6.26)

where

 0 = J0(!�) and 
0 =
!�

2
J0(!�)J

0
0(!�): (6.27)

A Lagrangian for the spacetime (6.25) is

L = e2(
0� 0)(
�
t
2

� ��2)� �2e�2 0
�
�
2

� e2 0 �z
2
: (6.28)

Using this Lagrangian (6.27) in (1.54) we obtain the following set equations

�t = 0; �r = 0; �� = 0; �� = 0; As = 0; (6.29)

2e2(
0� 0)�0s = At; � 2e2(
0� 0)�1s = A�; (6.30)

�2�2e�2 0�2s = A�; � 2e2 0�3s = Az; (6.31)

2�1� � �s + 2�1(
00 �  00) = 0; (6.32)

2�0t � �s + 2�1(
00 �  00) = 0; (6.33)

(2�2� � �s)�+ 2�1(1�  00) = 0; (6.34)

2�1 00 + 2�
3
z � �s = 0; (6.35)

e2
0�1� + �
2�2z = 0; e

2(
0� 0)�1z + e
2 0�3� = 0; (6.36)
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�2�2z + e
2 0�3� = 0; �

0
� � �1t = 0; (6.38)

e2
0�0� � �2�2t = 0; e2(
0� 0)�0z � e2 0�3t = 0; (6.39)

where the prime over 
0 and  0 denote derivative with respect to !�. Solving the above

equations (6.29) - (6.38) by the same back and forth substitution method used earlier in the

thesis we get the following symmetry generators with the gauge function as a constant

Y0 =
@

@t
; Y1 =

@

@�
; Y2 =

@

@z
; Z0 =

@

@s
; A = c:

For the approximate case we put the strength of the wave as a small parameter, i.e. A = �;

and take the exact wave as a perturbation on the static metric (6.25) in the following way.

 = J0(!�)(1 + � cos(!t)) =  0 + � 1; (6.40)


 =
!�

2
J0(!�)J

0
0(!�)(1 + �

2 cos(!t)) = 
0 + �
2
1: (6.41)

For this perturbed cylindrically symmetric GW spacetime we obtain the following �rst-order

perturbed Lagrangian

L = e2(
0� 0)(
�
t
2

� ��2)� �2e�2 0
�
�
2

� e2 0 �z
2
� 2� 1[e2(
0� 0)(

�
t
2

� ��2)

��2e�2 0
�
�
2

+ e2 0
�
z
2
] +O(�2): (6.42)

Using this perturbed Lagrangian (3.42) and the exact symmetry generators (6.39) in (1.63) we

obtain the following set of determining equations

�t = 0; �r = 0; �� = 0; �� = 0; As = 0; (6.43)

2e2(
0� 0)�0s = At; � 2e2(
0� 0)�1s = A�; (6.44)

�2�2e�2 0�2s = A�; � 2e2 0�3s = Az; (6.45)

2�1� � �s + 2�1(
00 �  00)� 2a0
�
 1 = 0; (6.46)

2�0t � �s + 2�1(
00 �  00)� 2a0
�
 1 = 0; (6.47)

(2�2� � �s)�+ 2�1(1�  00)� 2a0�
�
 1 = 0; (6.48)
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2�1 00 + 2�
3
z � �s � 2a0

�
 1 = 0; (6.49)

e2
0�1� + �
2�2z = 0; e

2(
0� 0)�1z + e
2 0�3� = 0; (6.50)

�2�2z + e
2 0�3� = 0; �

0
� � �1t = 0; (6.51)

e2
0�0� � �2�2t = 0; e2(
0� 0)�0z � e2 0�3t = 0: (6.52)

In the above equations (6.43) - (6.52) only one constant a0 corresponding to the exact symmetry

generatorY0, given in (6.39), appears. Solving these equations by the same method used earlier

this constant has to be eliminated for the consistency of the above determining equations making

them homogeneous. Thus there is no non-trivial approximate symmetry for this perturbed

cylindrical GW spacetime. We only recover the exact symmetry generators given in (6.39),

as trivial �rst-order approximate Noether symmetry generators. Hence energy conservation,

azimuthal angular momentum conservation and linear momentum conservation along the axis

of the cylinder are obtained as trivial �rst-order approximate conservation laws. The conserved

quantity Q cannot be found here which was obtained for the case of the wave-like spacetime

(6.10).

6.2 Second-Order Approximate Symmetries of the Geodesic

Equations for Cylindrical Wave Spacetimes

In this section we �rst discuss the cylindrical wave-like spacetime and then we study the per-

turbed cylindrically symmetric GW spacetime.

6.2.1 Approximate Symmetries of the Geodesic Equations for the Cylindri-

cal Wave-Like Spacetime

Retaining �2 in (6.10) and neglecting its higher powers, we obtain second-order perturbed

geodesic equations for this wave-like spacetime [95]

��
t +

2

R

�
t�� � �t

T
[
�
t
2

� e(�=R)2(�=R�1)(a2
�
�
2

+
�
z
2
)] +

�t2

T 2
[
�
t
2

+

e(�=R)
2(�=R�1)(a2

�
�
2

+
�
z
2
)] +O(�3) = 0; (6.53)
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��
�+

e(�=R)
2

R

�
t
2

� 2�

R2
e(�=R)

3
(a2

�
�
2

+
�
z
2
) +

2t�

TR
[
�
t
2

e(�=R)
2�

2�

R
e(�=R)

3
(a2

�
�
2

+
�
z
2
)] +

t2�2

T 2R
[
�
t
2

e(�=R)
2 � 2�

R
e(�=R)

3
(a2

�
�
2

+
�
z
2
)] +O(�3) = 0; (6.54)

��
�+

4�

R2
��
�
�+

2�

T

�
t
�
�� 2t�

2

T 2
�
t
�
�+O(�3) = 0; (6.55)

��
z +

4�

R2
�
�
�
z +

2�

T

�
t
�
z � 2t�

2

T 2
�
t
�
z +O(�3) = 0: (6.56)

These equations are exactly the same as those for the plane wave-like spacetime discussed in

chapter 5, in cylindrical coordinates. Applying the second prolongation X[2] of the generator

X = X0+�X1+�
2X2 de�ned in (2.40), to (6.53) - (6.56), and using the prolongation coe¢ cients

de�ned in (2.45) - (2.52), we get the same set of determining equations (5.105) - (5.142) in

cylindrical coordinates. For these equations there does not exist any non-trivial second-order

approximate symmetry. We only recover the exact and �rst-order approximate symmetries as

trivial second-order approximate symmetry generators.

6.3 Energy in a Cylindrical Wave-like Spacetime

Like the plane wave-like spacetime (5.10) we obtain the following scaling factor for this cylin-

drical wave-like spacetime (6.10) [95]

t

4T
[e�2(�=R)

2
+ 2e�(�=R)

2(�=R�1)]: (6.57)

This factor is exactly the same as that for the plane wave-like spacetime. Here it is in cylindrical

coordinates. This gives the energy re-scaling in this wave-like spacetime. The plots of this factor

(6.57) are same as those for the plane wave-like spacetime given in chapter 5.

6.3.1 Approximate Symmetries of the Geodesic Equations for the Perturbed

Cylindrically Symmetric GW Spacetime

For the perturbed cylindrically symmetric GW spacetime (6.21) for which 
 and  are de�ned

by (6.40) and (6.41), we have the following system of second-order perturbed geodesic equations
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[95]

��
t + 2(
00 �  00)

�
t
�
�� �[

�
 1(

�
t
2

+
�
�
2
) + �2e�2
0

�
 1

�
�
2

�
�
 1e

2(2 0�
0) �z
2
+

2 01
�
t
�
�] + �2[

�

1(

�
t
2

+
�
�
2
) + 4

�
 1 1e

2(2 0�
0) �z
2
� 2
01

�
t
�
�] +O(�3) = 0; (6.58)

��
�+ (
00 �  00)(

�
t
2

+
�
�
2
+
�
t
�
�) + �2e�2
0( 00 � 1)

�
�
2

+  00e
2(2 0�
0) �z

2
�

�[ 01(
�
t
2

+
�
�
2
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where dot over 
1 and  1 denotes di¤erentiation with respect to !t.

We apply the second prolongation X[2] of the generator X = X0 + �X1+�
2X2 de�ned in

(2.40), to (6.58) - (6.61), which yields
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where (j = 1; 2; 3; 4): For � = 0; (6.58) - (6.61) yield equations for the exact case and only

retaining �rst power of �; neglecting its higher powers, will give equations for the �rst-order
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approximate case. For the exact (� = 0) the geodesic equations (6.58) - (6.61) admit the

symmetry generators

Y0 =
@

@t
; Y1 =

@

@�
; Y2 =

@

@z
; Z0 =

@

@s
; Z1 = s

@

@s
; (6.66)

with the gauge function as a constant.

We use the prolongation coe¢ cients de�ned in (2.45) - (2.52), the exact symmetry generators

given by (6.104), the �rst-order approximate symmetry generators which are same to those of

the exact case and the second-order approximate geodesic equations (6.58) - (6.61) in above

equations (6.62) - (6.65). We get the following set of determining equations
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0
2ss = 0; �

1
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2
2ss = 0; �

3
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In these equations only one constant a0 corresponding to the exact symmetry generator Y0

given in (6.66) appears. Solving these equations by the same method as used before this

constant a0 disappears for the consistency of the above set of determining equations (6.67) -

(6.101). Thus these equations become homogenous and there is no non-trivial second-order

approximate symmetry. We only recover the exact symmetry generators given by (6.66), as

trivial second-order approximate symmetry generators.

Note that for the �rst-order approximate symmetries we get the same set of determining

equations (6.67) - (6.101), which is obtained in the second-order approximate case. The solution

of these equations is discussed above. Hence like the second-order approximate case there is no

non-trivial �rst-order approximate symmetry for this perturbed cylindrical wave spacetime.

6.4 Energy in the Perturbed Cylindrical Wave Spacetime

We obtain the following scaling factor for the perturbed cylindrical wave spacetime in the same

way as for RN, charged-Kerr and wave-like spacetimes. The scaling factor is [95]

�

1(

�
t
2

+
�
�
2
) + 4

�
 1 1e

2(2 0�
0) �z
2
� 2
01

�
t
�
�: (6.102)

To replace the derivative of the coordinates t, z we use the exact �rst integrals

�
t =

1

2
e2( 0�
0);

�
z = �1

2
e�2 0 : (6.103)

Further it is assumed that there is no initial velocity in the z and � directions. Hence
�
z and

�
�

vanish. To replace
�
� we use the Lagrangian (6.28) of the exact (unperturbed) case, i.e.

�
� = e( 0�
0)(e3( 0�
0) � 1)

1
2 : (6.104)
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Using (6.103) and (6.104) in (6.102) the following scaling factor is obtained

�

1e

2( 0�
0)(e2( 0�
0) + e3( 0�
0) � 1)� 2
01e3( 0�
0)(e3( 0�
0) � 1)
1
2 ; (6.105)

where 
1 is given in (6.41). This scaling factor involves the Bessel function of the �rst kind

and its derivatives. The asymptotic representation of the Bessel function of the �rst kind for

large value of the argument is given in [98]. Using that asymptotic representation of the Bessel

function in (6.105), we obtain an asymptotic representation of the scaling factor as follows

3� 2 114
�
3
2

[(jcos(!�)j)
3
2 sin(2!t)](!�)

�1
2 +O([!�]

�3
2 ): (6.106)

In the above factor (6.106) the magnitude of the coe¢ cient of (!�)�1=2 is greater than the

magnitude of the coe¢ cient of (!�)�3=2. Therefore the contribution of the second term is very

small and is neglected.

Thus the energy in this perturbed spacetime �eld is re-scaled by the factor (6.106). It is

plotted below for di¤erent values of t, � and ! (in radians per second), in which the energy

oscillates between positive and negative values and goes to zero as � tends to in�nity. Here

the behavior is much more recognizably wave-like. Since the strength of the wave, A = �, is

arbitrary the energy is given in arbitrarily chosen units.

As we mentioned in the �rst chapter as to �whether there is the analogue of Landau-damping

of electromagnetic waves for GWs�. With our present proposal, i.e. the use of approximate

Lie symmetry methods the question seems to be answerable. Classically the energy density in

cylindrical waves reduces by the factor 1=2��. From (6.106) the energy density decreases by a

further factor of 3�2 114 =
p
�3 � (!�). Hence for su¢ ciently large � the scaling factor � 1=

p
!�3

is a signi�cant self-damping of the waves.
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Figure 6-1: Cylindrically symmetric GWs with ! = 15 the gravitational energy oscillates
between positive and negative values and disappears as � approaches very large values. The
units of energy are arbitrary in all diagrams.
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Figure 6-2: To see the behaviour of energy for comparatively large distance, the range of � is
extended to 100 units.
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Figure 6-3: To see a further extended version of the above Fig. 6-2 the range of � is given in
units of 105:
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Figure 6-4: Here the value of the frequency is comparatively small i.e. ! = 0:05: To see the
variation along time, the range of t is keept larger.
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6.5 TheWeyl and Stress-Energy Tensors for Cylindrically Sym-

metric GW Spacetimes

In this section, for the pure gravitational part and matter part, we give the independent nonzero

components of Weyl and stress-energy tensors for the perturbed cylindrically symmetric GW

and cylindrical wave-like spacetimes.

6.5.1 The Weyl and Stress-Energy Tensors for the Perturbed Cylindrically

Symmetric GW Spacetime

Following are the independent nonzero components of the Weyl tensor for the perturbed cylin-

drical wave spacetime discussed above [95]
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0

1] +O(�
2): (6.107)

This yields the pure gravitational �eld for the above discussed cylindrical perturbed wave space-

time. As is evident from Figs. 6-1 to 6-4, the energy in the gravitational �eld oscillates and

then vanishes for large �, here all the components of the Weyl tensor also depend on the Bessel

function of the �rst kind and its derivatives which oscillates and goes to zero as � approaches

very large value. The last two components only appear for the approximate part of the space-

time. In this case the components of the Weyl tensor in the covariant form are not very di¤erent
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from those in the mixed form given above and therefore we do not give them separately.

The non-vanishing components of the stress-energy tensor are

T00 = T11 =
1

�
( 020 � 
00 + 2� 00 01) +O(�2);

T22 =
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�
e2(
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�
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�
 1 +O(�

2): (6.108)

Like the components of the Weyl tensor the above components of the stress-energy tensor also

depend on the Bessel function of the �rst-kind and its derivatives. In this case of cylindrical

perturbed waves the fraction of energy density imparted to the matter �eld is

Eimp = 2�
 00 

0
1

 020 � 
00
: (6.109)

This fraction of energy goes to zero as � �! 0:

6.5.2 The Weyl and Stress-Energy Tensors for the Cylindrical Wave-Like

Spacetime

The non-vanishing components of the Weyl tensor for the cylindrical wave-like spacetime are

C0101 =
1

3R5
(3R2�� 2R�2 + 3�3 �R3) +O(�2);

C0202 = a2C0303 = �(1 + �
2t

T
)
a2e�

3=R3

6R5
(3R2�� 2R�2 + 3�3 �R3) +O(�2);

C1212 = a2C1313 = �C0202; C2323 = �2C0202: (6.110)
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In covariant form the components of the Weyl tensor are

C0101 =
1

3R5
(1 + �

2t

T
)(3R2�� 2R�2 + 3�3 �R3) +O(�2);

C0202 = a2C0303 = �
a2e�

3=R3+�2=R2

6R5
(1 + �

4t

T
)(3R2�� 2R�2 + 3�3 �R3) +O(�2);

C1212 = a2C1313 = �C0202; C2323 = �2C2202: (6.111)

The components in the covariant form are physically reasonable as they follow the geometry of

the constructed metric and the energy de�ned by approximate symmetry.

The nonzero components of stress-energy tensor are

T00 =
3e�

2=R2

2�R6
(1 + �

2t

T
)(9�3 + 4R3) +O(�2); T11 =

3

2�R6
(3�+ 4R) +O(�2);

T22 = a2T33 = �
a2e�

3=R3

2�R2
(1 + �

2t

T
)(6R3�+ 4R2�2 + 9�4 � 6R�3 + 6R4) +O(�2);

T01 = �
�

�TR3
(3�� 2R) +O(�2): (6.112)

Here the momentum density is along the radius of the cylinder. For this case we have the same

relative energy density imparted to the matter �eld, as given by (5.152).

The results of this chapter are given in the form of the following theorems.

Theorem 6.1. The energy in the cylindrical gravitational wave is the classical energy of a

cylindrical wave re-scaled by the factor (6.106).

Theorem 6.2. The energy of cylindrical gravitational wave in a cylindrical gravitational

wave-like spacetime is the classical energy re-scaled by the factor (6.57).
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Chapter 7

Summary and Discussion

In this thesis we addressed the problem of energy in GR, using slightly broken or approximate

Lie symmetry methods. These methods were �rst applied to the Schwarzschild spacetime [60],

where only �rst-order approximate symmetries of the geodesic equations were investigated.

Following the method adopted in [60], in this work we �rst considered second-order approximate

symmetries of the geodesic equations and �rst-order approximate symmetries of the Lagrangians

of some static spacetimes, i.e. RN, Kerr and charged-Kerr spacetimes. Then we applied these

methods to non-static spacetimes where the problem of de�nition of energy is more severe. For

these spacetimes we obtained scaling factors. These scaling factors give the re-scaling of energy

in these spacetimes. For the cylindrical wave spacetime we also obtained that the wave has to be

damped in self-interaction. Here the approximation or the breaking involves a small parameter

whose powers, higher than some chosen value, is neglected. The scaling factors obtained here,

are independent of the strength of the perturbation parameter. This means that we do not

need a �nite perturbation and can take the limit as it goes to zero. This is reminiscent of the

d�Alembert principle for statics [99]. The d�Alembert principle is an extension of the principle

of virtual work from statics to dynamics, i.e. the work done by a force is along a virtual

displacement and not along the actual displacement. The limit of this virtual displacement can

be taken zero, to attain the staticity and the total work done is independent of it.

In this chapter we give a summary and discussion of chapters 2 to 6 in two separate sections,

i.e. in the �rst section we discuss static spacetimes and in the second section we discuss non-

static spacetimes.
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7.1 Static Spacetimes.

RN Spacetime

In chapter 2 we studied the approximate symmetries of the RN spacetime. First we investi-

gated second-order approximate symmetries of the orbital equation for this spacetime. For this

orbital equation there does not exist any non-trivial approximate symmetry. We only recovered

the exact and �rst-order approximate symmetries as trivial second-order approximate symme-

tries. This spacetime has isometry algebra so(3) � R with generators (1.78) and (1.79). The

symmetry algebra of the geodesic equations for this metric is so(3)�R� d2. We then explored

the second-order approximate symmetries of the RN spacetime. Neglecting terms containing

�2; in the geodesic equations (2.36) - (2.39), this spacetime has the same �rst-order approximate

symmetries as those of the Schwarzschild spacetime [60]. Again we get no non-trivial approxi-

mate symmetry generator in the second approximation. We only recover the lost conservation

laws as approximate conservation laws. As for the Schwarzschild spacetime, where there is a

di¤erence between the conservation laws obtained for the system of geodesic equations and for

the single orbital equation, the di¤erence also holds for the RN spacetime.

Importantly from the consistency of the trivial second-order approximate symmetries of the

perturbed geodesic equations for the RN spacetime we have obtained the scaling factor (2.180).

This gives the re-scaling of energy in the RN spacetime �eld. This scaling factor for the RN

spacetime, which does not appear for the Schwarzschild spacetime is of special interest. The

pseudo-Newtonian formalism [90, 91, 100, 101] gives re-scaling of force by (1�Q2=rMc2). The

reduction is by the ratio of the electromagnetic potential energy at a distance r to the rest

energy of the gravitational source. It is position dependent. The scaling factor (1�Q2=2GM2)

obtained here from the use of approximate Lie symmetry methods is more reasonable as relating

the electromagnetic self-energy to the gravitational self-energy, with the radial parameter, r,

canceled out.

Kerr Spacetime

In the third chapter we discussed exact and approximate symmetries of a Lagrangian for the

geodesic equations in the Kerr spacetime. The unperturbed Lagrangian for the geodesic equa-
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tions in the Kerr spacetime has an additional symmetry @=@s; along with the two KVs: The

unperturbed Lagrangian for the Schwarzschild spacetime has a 5 dimensional algebra which con-

tains the four KVs of this metric and @=@s. Taking the Kerr spacetime as a �rst perturbation

of the Schwarzschild spacetime with spin as a small parameter we recovered the conservation

laws as trivial �rst-order approximate conservation laws which were lost in going from the

Schwarzschild spacetime to the Kerr spacetime.

Retaining terms ofO(�2) in the Kerr spacetime we have a second-order perturbed Lagrangian

given by (3.79). This Lagrangian reduces to that of Minkowski spacetime if � = 0 and if we

retain terms of �rst-order in � and neglecting O(�2), we get a Lagrangian for the perturbed

Schwarzschild spacetime which is a �rst perturbation of the Minkowski spacetime. For the

exact case (Minkowski spacetime) symmetries of the Lagrangian form a 17 dimensional Lie

algebra, which also holds in Cartesian coordinates and thus there is no coordinate dependence.

Remark. It is mentioned here that the symmetries of the Minkowski spacetime Lagrangian

were �rst discussed in [83], where the metric taken was ds2 = cosh(x=a)dt2 � dx2 � dy2 � dz2;

which is not Minkowski, as it has R0101 6= 0. The calculation was left incomplete, giving an

impression that the algebra is in�nite dimensional, and it was shown that the isometry algebra

is a subalgebra of the symmetries of the Lagrangian. This problem was revisited in [102], with

the correct metric, but the symmetry algebra of the Lagrangian was given as 12 dimensional

and the gauge function as zero, which was again erroneous.

For the �rst-order approximate case (perturbed Schwarzschild) there is no non-trivial �rst-

order approximate symmetry of the Lagrangian. However all the exact 17 symmetry generators

are recovered as �rst-order approximate symmetry generators. In the second-order approximate

case, i.e. when we retain terms quadratic in �, which is the second perturbation of the Minkowski

spacetime, we again have no non-trivial second-order approximate symmetry of the Lagrangian

and only 17 symmetry generators of the exact case are recovered as second-order approximate

symmetry generators. Thus we see that in going from Minkowski to Schwarzschild and Kerr

metrics the conservation laws which were lost are now recovered as approximate conservation

laws. It was shown [69] that a Lagrangian for the geodesic equations possesses at least one

additional symmetry generator, @=@s, apart from the isometry algebra. This is veri�ed for the

Schwarzschild and Kerr spacetimes. As in the case of the Minkowski metric the CKVs form a
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subalgebra of the symmetries of the Lagrangian which include @=@s. Therefore we make the

following conjecture

Conjecture. The CKVs form a subalgebra of the symmetries of the Lagrangian that mini-

mize the arc length, for any spacetime.

For both the non-�at spacetimes, i.e. Schwarzschild and Kerr spacetimes the unperturbed

Lagrangian has only the one additional symmetry generator @=@s and the gauge function A is

a constant. In Minkowski spacetime there are 7 additional symmetry generators and the gauge

function A is a function of 4 variables t; r; � and �. The signi�cance of these additional 7

symmetry generators of the Minkowski spacetime Lagrangian, which are also recovered as �rst-

order and second-order approximate symmetries generators for the Schwarzschild and Kerr

spacetimes respectively, is discussed in detail in chapter 3.

Charged-Kerr Spacetime

In chapter 4 we studied the second-order approximate symmetries of the geodesic equations

for the charged-Kerr spacetime. For this spacetime we obtained the scaling factor (4.63). In

the RN spacetime, the re-scaling was independent of r (discussed in chapter 2) while for the

charged-Kerr spacetime the re-scaling factor given by (4.63) consists of two parts - one is due

to charge and the other is due to spin of the gravitating source which depends on r. The charge

comes in quadratically compared to unity in one term. The spin comes in linearly. It does not

come with a constant term to compare. However, taken as a whole, we see that the spin has

an e¤ectively lower order e¤ect.

In all three expressions (4.64), (4.65) and (4.67), the charge and spin appear at the same

order (quadratically). The last one comes with a �-dependent part, which arises from the �-

dependence of the �force�experienced by a body in the Fermi-Walker frame [101]. As mentioned

earlier, (4.64) seems unreasonable as the rotational e¤ect depends on the presence of a charge

and disappears with it! In (4.63) in the absence of charge, the e¤ect is to enhance the mass.

This seems reasonable as the frame-dragging e¤ect also appears to lead to an enhanced mass

-�friction�of the rotating mass with the background spacetime, as it were. Recall that one can

extract rotational energy from a rotating black hole and hence the rotation should add into

the mass. As would be expected, this e¤ect decreases with r. The other three expressions give
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a reduction of the rotating mass. Also notice that (4.63) gives a change in the mass due to

charge that is position independent. That this should be so is not so clear to us. However, nor

is it clear to us that it should be position dependent. The force experience by a particle in the

�eld of a charged gravitational source would be position dependent, but this does not say that

the mass should be modi�ed by a position dependent expression. It might be that in (4.63)

the modi�cation is due to the electromagnetic self-energy to the gravitational self-energy. As

such, we conclude that the other expressions have de�nite drawbacks of which (4.63) seems to

be free.

It would be of interest to analyze the Kerr-AdS and other solutions using approximate

Noether symmetries. One could use references [103] and [104] and those cited therein for the

purpose.

7.2 Non-Static Spacetimes

In this section we summaries chapter 5 and 6 where we have addressed the problem of energy

in non-static spacetimes, using approximate Lie symmetry methods for DEs.

Plane Wave Spacetimes

In chapter 5, �rst we investigated Noether symmetries of the plane wave spacetimes. In this

regard �rst of all we studied the plane wave-like spacetime [93] for which there exists a non-trivial

�rst-order approximate Noether symmetry. We used this non-trivial approximate Noether

symmetry to contract the energy-momentum vector that gives a conserved quantity (5.54) which

gives the energy imparted to the test particles. Then we investigated �rst-order approximate

Noether symmetries for the perturbed pp-wave spacetime for which there is no non-trivial

approximate Noether symmetry.

To resolve the problem of energy in GW spacetimes we used the second-order approximate

symmetries of the geodesic equations for perturbed gravitational wave spacetimes discussed

here. First the pp-wave spacetime is investigated. Since there is no �2 in the geodesic equations

for the perturbed pp-waves, the de�nition of second-order approximate symmetries of ODEs

which gives the scaling factor, cannot be applied to them. This is similar to the result of Qadir
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and Sharif�s work [10], using the pseudo-Newtonian formalism, which just gave a constant mo-

mentum imparted to test particles in the path of the waves and no determinable value for

it. For a better understanding of the implication of the de�nition of second-order approximate

symmetries of ODEs, in plane symmetric waves this de�nition has applied to the arti�cially con-

structed time-varying non-vacuum plane symmetric spacetime [93], for which the scaling factor

(5.146) is obtained. It is seen from the plots 5-1 and 5-2, of the plane wave-like spacetime that

the energy increases without limit, with time close to the origin for x and then disappears. The

reason for this increase in energy is the (nonphysical) choice of a linearly increasing component

of the metric tensor for convenience of computation, this leads to a corresponding increase in

the scaling factors (5.146).

Cylindrical Wave Spacetimes

We then considered a cylindrical analog of the plane wave-like spacetime [93]. A non-trivial

�rst-order approximate Noether symmetry exists for this wave-like spacetime. Like the plane

wave-like spacetime, this non-trivial Noether symmetry gives the conserved quantity (6.20).

Then we studied �rst-order approximate Noether symmetries of the perturbed cylindrical wave

spacetime for which there is no non-trivial approximate Noether symmetry.

To obtain the energy in the cylindrical wave spacetimes we investigated the second-order

approximate symmetries of the perturbed geodesic equations for these spacetimes. The scaling

factors (6.57) and (6.106) are obtained for these spacetimes. In the factor (6.106) the magni-

tude of the coe¢ cient of (!�)�1=2 is greater than the magnitude of the coe¢ cient of (!�)�3=2.

Therefore the contribution of the second term is very small and is neglected. In Figs. 6-1 to

6-4 the re-scaling factor for the energy oscillates between positive and negative values along t

and �. It disappears as � tends to in�nity.

Using the idea of pseudo-tensors [30], di¤erent people have claimed that the gravitational

energy should be positive at large scales as well as at small scales [105, 106, 107, 108, 109].

The positivity of gravitational energy does not seem convincing because the total energy of

the universe is zero [110], which suggests that the gravitational energy must �uctuate between

positive and negative values to be able to give the net energy of a given spacetime zero.

Our de�nition of gravitational energy, obtained from approximate Lie symmetry methods,

139



avoids the pseudo-tensor and hence does not violate GR. The radiation scalar [50] does not

violate the spirit of GR either. However, nor does it give a measure of the energy of GWs.

Our expression of energy does give such a measure and is also reasonable as the gravitational

energy oscillates over positive and negative values, as it should. Admittedly, in the arti�cial

example we constructed the energy increased linearly without limit. For the physical example

of cylindrical exact waves, the Bessel function of the �rst kind goes to zero asymptotically for

large values of the argument [98]. Correspondingly, because of our scaling factor for cylindrical

waves they die out asymptotically.

There is a problem with Isaacson�s work [37], which in fact deals with the perturbation, h;

on the background Minkowski metric to give the total metric, g. We do not have a guarantee

that the perturbation series converges for the vacuum spacetime. Where it can be applied it

will give the higher order terms as the nonlinear source of the linearized gravitational waves.

This is the energy they claim. Since there is no good reason to take the �at Minkowski space

as the relevant one, it is not at all clear that this would be the physically sound way to work

out the energy. In fact, Minkowski spacetime is unstable under such perturbations. Essentially,

there is nothing with respect to which the energy is to be small.

The �Christodoulou memory e¤ect� [35], deals with the energy imparted to test particles.

Hence it does not address the issue of the energy in the �eld. Consequently, when applied to

the exact cylindrical GW solution for the �rst-order approximation, we get the Weber-Wheeler

�rst-order energy approximation and when the Christodoulou and Thorne procedure is applied

it should yield the second-order approximation given by Weber and Wheeler. The general

treatment should, then, yield the formula obtained by Qadir and Sharif [10].

We also addressed the question �whether there is the analogue of Landau-damping of elec-

tromagnetic waves for gravitational waves�. The problem of de�nition of energy in GR makes

it very di¢ cult to answer the above question. With the use of approximate Lie symmetry

methods for DEs the above question seems to be answerable. In the Newtonian theory the

energy density in cylindrical waves reduces by the factor 1=2��. From the expression (6.106)

the energy density in cylindrical waves, in curved spacetimes, decreases by a further factor of

3�211=4=
p
�3 � (!�). Hence for su¢ ciently large distance from the origin of the source of wave

the scaling factor � 1=
p
!�3 is a signi�cant self-damping of the waves! This enhanced asymp-
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totic attenuation of gravitational waves will obviously have profound observational signi�cance

[111].

It would be of great interest to apply this approximate symmetry analysis to the Khan-

Penrose [62] and Szekeres [63] solutions to see whether they su¤er self-damping or enhancement

according to our de�nition. Of course, it may be that the procedure will be inapplicable for

those plane wave solutions as well. Also, the analysis should be applied to �spherical solutions�

like those of Nutku [112].

7.3 Weyl and Stress-Energy Tensors

The Weyl tensor represents the pure gravitational �eld and the stress-energy tensor gives the

matter part of a spacetime. Therefore to obtain the pure gravitational �eld and the matter �eld

the approximate Weyl and stress-energy tensors for the GW spacetimes, discussed in the thesis

are calculated. The components of the Weyl tensor are given in the (0, 4) (covariant) form as

well. For the perturbed pp-wave spacetime it appears that the (0, 4) form gives the physically

relevant quantities as the space dependence in the (1, 3) (mixed) form of the Weyl tensor does

not seem to correspond to the geometry of the pp-wave while the covariant form does. For

the wave-like spacetimes the components in the covariant form are physically reasonable as

they follow the geometry of the constructed metrics and the energy de�ned by approximate

symmetry. The stress-energy tensor density imparted to the matter �eld in the wave-like and

perturbed cylindrical wave spacetimes was obtained.
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