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Preface

For the last few decades fixed point theory has been an active and thriving area of research

for mathematicians. The fixed point theory is mainly concerned with obtaining conditions on

the structure that the underlying space(set) X must be endowed with and on the properties

of selfmapping f on X, in order to obtain the existence (and uniqueness) of fixed point. The

underlying ambient space cover a variety of structures: metric space, generalized metric space,

linear topological spaces, lattice and statistical metric space etc. The fundamentals of theory

are attributed to the celebrated and remarkable mathematicians such as Banach, Brouwer

and Tarski in metric, topological and discrete perspectives respectively.

In 1922 the famous Polish mathematician Stafen Banach laid the ground for metric fixed

point theory by formulating his notable theorem, known as Banach contraction principle. His

theorem carved a niche for itself as a rapidly growing area of research in mathematics. It has

become the most celebrated tool in non-linear analysis to find the existence of solutions for

various linear and nonlinear equations such as Volterra integral equations, integro-differential

equations and existence of equilibria in game theory as well. These applications elicit the

panoptic nature of Banach contraction principle.

In metric fixed point theory the results critically rely on prenominal geometric conditions

of underlying spaces in conjunction with some sufficient metric constraints imposed on the

behavior of mappings. Although a huge number of results have been established, there are

still several interesting questions which remain to be answered regarding to what extent the

theory can be nurtured and extended. Mathematicians have been intrigued and endeavored

in the search of these questions which led them to the new avenues of research except for

some questions which seem merely tantalizing. Thereby contributing enormously in the field
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of fixed point theory by finding the fixed point(s) of selfmappings or non-selfmappings defined

on several ambient spaces and satisfying variety of conditions. Among these fixed point

theorems, some of them have much more practical importance, i.e., they provide a constructive

method for finding fixed point(s). Thus provide information on convergence rate along with

error estimates. Banach contraction principle is one of such theorems wherein the proposed

iterative scheme converges linearly. Commonly, the iterative procedures serve as constructive

methods in fixed point theory. A number of fixed point theorems have been obtained by

considering the following ways:

1. by weakening the contractive assumption and possibly by simultaneously giving to the

space a sufficiently rich structure in order to compensate the relaxation of the contrac-

tiveness assumption; or

2. by enriching/extending the structure of the ambient space.

Various extensions of Banach contraction principle have also been obtained by unifying the

ideas mentioned above or by adding suitable supplementary conditions. In many problems,

in particular the problem of convergence of measurable functions with respect to a measure

evoke the need to generalize the notion of a metric. This quest led Czerwik to the concept of

b-metric. Afterwards, many mathematicians undertook further developments in this direction

and established some exciting fixed points results.

On the other hand the inception of statistical metric spaces by Menger in 1942 opened a new

avenue in research. He introduced the basic concepts of probabilistic geometry. Fixed point

theory is a part of probabilistic analysis which has become a dynamic area of research. The

introduction of fundamental notions of statistical metric space and its geometry owed a lot

to Menger. Schweizer and Sklar contributed a major influence upon the development of the

theory of probabilistic metric spaces.

The theory of fixed points of a self mapping on a partially ordered set is owed to Turinici. Af-

terwards Ran and Reurings undertook further investigations in this context. They presented

some fixed point theorems wherein the mappings do not necessarily require to satisfy con-

traction condition for all possible pairs of points in the underlying set rather the contraction
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condition has to be satisfied only for those points which are related to each other with respect

to the partial order defined on the set.

In this context Jachymski generalized the idea by delineating the underlying set with a graph.

He introduced the notion of Banach G-contractions and obtained a very novel variant which

is a hybrid of Banach contraction principle and the main results of Ran and Reurings.

The purpose of this dissertation is twofold: to generalize the notion of Banach G-contraction

by weakening contractive condition; to give the underlying space a rich geometric structure

so that the notion becomes more viable. In the quest of the first aspect we bring in light two

new categories of mappings: integral G-contractions; weakly G-contractive mappings in the

setting of metric space. In Chapter 3, by using the graph theoretic approach we obtain some

significant fixed point theorems for such class of contractions. While the quest of the sec-

ond objective led us to undertake some investigations in b-metric space and statistical metric

space.

In Chapter 4 we contribute some recent developments in the direction of b-metric space. In

first half of Chapter 4, by using the concept of ϕ-contractions and Hardy-Roger’s contrac-

tive condition we introduce two new notions when the underlying b-metric space is endowed

with a graph G. Furthermore, in the second half of Chapter 4 by using the gauge function

two convergence theorems are established which give the constructive iterative process to ap-

proach the fixed point. We also calculate a priori and a posteriori estimates for the proposed

iterative scheme. As an application we obtaine an existence theorem for the solution of first

order differential equation where the rate of convergence of proposed iterative scheme is at

leat r ≥ 1.

Chapter 5 is devoted to fixed point theorems for mappings in probabilistic metric space en-

dowed with a graph G. In this context we extende the concept of Banach G-contractions and

put forth a new type of contractions known as probabilistic G-contractions.

After unveiling every new concept, examples are furnished to elucidate the validity of our

notions and to show the degree of generality of our results over the pre-existing results. As

applications of some of our results we also obtaine some fixed point theorems for cyclic con-

traction.
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Chapter 1

Introduction and preliminaries

The purpose of this chapter is stipulated with the basic concepts, terminologies and notations

which are used throughout this dissertation. We aim to write each chapter self content and

pedagogical. For this reason we also add preliminaries section to the chapters where they

are necessary. Subsequently let us represent with R the set of all real numbers, N the set of

natural numbers, R+ := [0,∞) and ∅ the empty set.

1.1 Fixed points and weakly Picard operators

Let X and Y are nonempty sets and f : X → Y then fx represents the image of x under f .

We assume that the set X is endowed with a metric d. Let f : X → X be a self-map. A

point ξ ∈ X is a fixed point of f if

f(ξ) = ξ.

Let us denote with Fixf , the set of all fixed points of f , i.e.,

Fixf = {x ∈ X : f(x) = x}.

Example 1.1.1. Assume X := (−∞,+∞) and f : X → X.

1. If f(x) = x2 + 3x+ 1 then Fixf := {−1};

2. If f(x) = x2 then Fixf := {0, 1};

3. If f(x) = x then Fixf := R;
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4. If f(x) = x+ 1 then Fixf := ∅.

Definition 1.1.2. A mapping f : X → X is said to be Lipschtizian if there exists a constant

κ ≥ 0 such that

d(fx, fy) ≤ κd(x, y) for all x, y ∈ X. (1.1)

One can observe that every Lipschitizian map is necessarily continuous. The smallest real

number κ for which (1.1) is satisfied is known as Lipschitizian constant for f .

Definition 1.1.3. A mapping f : X → X is said to be a contraction if there exists a constant

κ ∈ [0, 1) such that

d(fx, fy) ≤ κd(x, y) for all x, y ∈ X. (1.2)

Let X be any nonempty set and f : X → X. For a given x ∈ X we define fnx inductively

by f0x = x and fn+1x = f(fnx);n = 0, 1, 2, · · · . We call fnx the n-th iteration of x under

f . For any x0 ∈ X the sequence {xn};n = 0, 1, 2, · · · defined by

xn = fxn−1 = fnx0, n = 1, 2, · · · ,

is known as the sequence of successive approximation or Picard iterations starting at x0.

Definition 1.1.4. [84] A mapping f : X → X is called a Picard operator (briefly, PO) if f

has a unique fixed point ξ ∈ X and limn→0 f
nx = ξ for all x ∈ X.

Definition 1.1.5. [95] A mapping f : X → X is called a weakly Picard operator (briefly,

WPO) if the sequence {fnx} converges for all x ∈ X and the limit of the sequence is a fixed

point of f .

Example 1.1.6. Let X := [0, 1] and f : X → X is defined as fx = x2. Then Fixf = {0, 1}

and f is a weakly Picard operator.

It is obvious that the class of weakly Picard operators subsumes the class of Picard oper-

ators.
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1.2 Gauge functions

Let ϕ : [0,∞)→ [0,∞). Consider the following properties:

(i)ϕ t1 ≤ t2 =⇒ ϕ(t1) ≤ ϕ(t2), for all t1, t2 ∈ [0,∞);

(ii)ϕ ϕ(t) < t for t > 0;

(iii)ϕ ϕ(0) = 0;

(iv)ϕ limn→∞ ϕ
n(t) = 0 for all t ≥ 0;

(v)ϕ
∑∞

n=0 ϕ
n(t) converges for all t > 0;

(vi)ϕ ϕ is continuous;

(vii)ϕ t− ϕ(t)→∞ as t→∞;

(viii)ϕ ϕ is subadditive.

The function ϕ : [0,∞)→ [0,∞) satisfying at least one of the above properties is known as a

gauge function. It is easily seen that: (i)ϕ and (iv)ϕ imply (ii)ϕ; (i)ϕ and (ii)ϕ imply (iii)ϕ.

Definition 1.2.1. A function ϕ : [0,∞) → [0,∞) satisfying (i)ϕ and (iv)ϕ is said to be a

comparison function.

Definition 1.2.2. [86] A function ϕ : [0,∞)→ [0,∞) satisfying (i)ϕ and (v)ϕ is known as a

(c)-comparison function.

Example 1.2.3. Let ϕ : R+ → R+ be defined by ϕ(t) = t
1+t ; t ∈ R+. Then ϕ is a comparison

function but not a (c)-comparison function. On the other hand define ϕ : R+ → R+ as

ϕ(t) = t
2 ; 0 ≤ t ≤ 1 and ϕ(t) = t− 1

2 ; t > 1. Then ϕ is a (c)-comparison function.

It follows from above example that any (c)-comparison function is a comparison function

but converse may not be true.

Subsequently, let J always denote an interval in R+ containing 0 i.e., an interval of the form

[0, R], [0, R) or [0,∞) ([0, 0] = {0} is a trivial interval). Let Pn(t) denote a polynomial of

the form Pn(t) = 1 + t + · · · + tn−1 and P0(t) = 0. Let ϕn denote nth iterate of a function

ϕ : J → J .
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Definition 1.2.4. [85] Let r ≥ 1. A function ϕ : J → J is said to be a gauge function of

order r on J if it satisfies the following conditions:

(i) ϕ(λt) ≤ λrϕ(t) for all λ ∈ (0, 1) and t ∈ J ,

(ii) ϕ(t) < t for all t ∈ J \ {0}.

The condition (i) of Definition 1.2.4 elicits ϕ(0) = 0 and ϕ(t)/tr is nondecreasing on

J \ {0}.

Example 1.2.5. (i) The function ϕ : J → J defined by ϕ(t) = ct (0 < c < 1) is a gauge

function of first order on J = [0,∞).

(ii) The function ϕ : J → J defined by ϕ(t) = ctr (c > 0, r > 1) where R = (1/c)1/(r−1) is a

gauge function of order r on J = [0, R).

1.3 Graph theory

A graph G is a mathematical model which is conveniently used to delineate many real world

situations. A graph G is a pair (V (G), E(G)) where the vertex set V (G) is a nonempty set of

elements and the edge set E(G) is a binary operation on V (G). A graph G may be directed

or undirected. A directed graph is one in which each edge is specified with the direction from

one vertex to other. Let G = (V (G), E(G)) be a directed graph. By G−1 we denote the graph

obtained from G by reversing the direction of edges and by letter G̃ we denote the undirected

graph obtained from G by ignoring the direction of edges. It will be more convenient to treat

G̃ as a directed graph for which the set of its edges is symmetric, i.e.,

E(G̃) = E(G) ∪ E(G−1).

Definition 1.3.1. Let x and y are vertices in a graph G. Then a path in G from x to y of

length l is a sequence {xi}li=0 of l+ 1 vertices such that x0 = x, xl = y and (xi−1, xi) ∈ E(G)

for i = 1, · · · , l.

Definition 1.3.2. A graph G is called connected if there is a path between any two vertices.

The graph G is weakly connected if G̃ is connected.
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Definition 1.3.3. Let G be a graph such that E(G) is symmetric and x is a vertex in G, the

subgraph Gx consisting of all edges and vertices which are contained in some path beginning

at x is called component of G containing x.

In such case V (Gx) = [x]
G̃
, where [x]

G̃
is the equivalence class of a relation R defined on

V (G) by the rule: yRz if there is a path in G from y to z. Clearly, Gx is connected. For

comprehensive study on the subject we refer the readers to [55].

1.4 b-metric space

From the last few decades fixed point theory is being rapidly evolved not only in metric

structure but also in various abstract spaces. The b-metric space is one of the interesting

generalizations of metric space which was initiated in some works of Bourbaki, Bakhtin,

Czerwik and Heinonen. Afterwards, several articles appeared in literature which deal with

the fixed point theory for single valued and multi-valued functions in a b-metric space [7, 8,

13, 17, 19, 20, 21, 22, 31, 49, 78, 81] etc.

Definition 1.4.1. [31, 8] Let X be a non-empty set and s ≥ 1 be a given real number. A

function d : X×X → R+ is said to be a b−metric if and only if for all x, y, z ∈ X the following

conditions are satisfied:

(d1) d(x, y) = 0 if and only if x = y;

(d2) d(x, y) = d(y, x);

(d3) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b−metric space with the coefficient s.

The following example show that the class of b-metric spaces is essentially larger than the

class of metric spaces.

Example 1.4.2. [12, 31, 49] 1. Let X := lp(R) with 0 < p < 1 where lp(R) := {{xn} ⊂ R :∑∞
n=1 |xn|p <∞}. Define d : X ×X → R+ as:

d(x, y) =
( ∞∑
n=1

|xn − yn|p
)1/p

,
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where x = {xn}, y = {yn}. Then (X, d) is a b-metric space with coefficient s = 21/p.

2. Let X := Lp[0, 1] be the space of all real functions x(t), t ∈ [0, 1] such that
∫ 1
0 |x(t)|p <∞.

Define d : X ×X → R+ as:

d(x, y) =
(∫ 1

0
|x(t)− y(t)|pdt

)1/p
.

Then (X, d) is a b-metric space with coefficient s = 21/p.

1.5 Probabilistic metric space

In 1942 Menger [67] introduced the notion of probabilistic metric space (briefly, PM space)

and since then there have been made enormous developments in the theory of probabilistic

metric space in many directions [27, 44, 107]. The fundamental idea of Menger is to replace

real numbers with distribution functions as values of metric. This intuitive approach was the

result of the simple fact that even in measurement of ordinary length the number given as the

distance between two points is often not the result of a single measurement but the average of

a series of measurements. Hence in such case the implication of theory of metric space i.e., the

very association of a single real number with a pair of elements becomes an over idealization.

Hence in such and many similar situations it is more appropriate to look upon the distance

as a statistical rather than a determinate one.

A succinct and intuitive response to fill this gap is to assign a distribution function Fx,y instead

of a real number d(x, y) with every pair of elements x, y. This leads to the generalization

of metric space known as statistical or probabilistic metric space. For detailed discussion

on probabilistic metric spaces and their applications we refer the readers to Onicescu [75,

Chapter 7], Schweizer [105, 106, 107] and Hadzić and Pap [44].

Definition 1.5.1. A mapping F : R → [0, 1] is called a distribution function if it is non-

decreasing, left continuous with inft∈R F (t) = 0 and supt∈R F (t) = 1. In addition if F (0) = 0

then F is called a distance distribution function.

Let D+ denote the set of all distance distribution functions satisfying limt→∞ F (t) = 1.

The space D+ is partially ordered with respect to usual pointwise ordering of functions, i.e.,
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F ≤ G if and only if F (t) ≤ G(t) for all t ∈ R. The element ε0 ∈ D+ acts as the maximal

element in the space and is defined by

ε0(t) =

{
0 if t ≤ 0,
1 if t > 0.

(1.3)

Definition 1.5.2. A statistical or probabilistic metric space (briefly, PM-space) is an ordered

pair (X,F ) where X is a nonempty set and F : X ×X → D+ and the following conditions

are satisfied (F (x, y) = Fx,y, for all (x, y) ∈ X ×X):

(PM1) Fx,y(t) = ε0(t) ⇐⇒ x = y and x, y ∈ X;

(PM2) Fx,y(t) = Fy,x(t) for all x, y ∈ X and t ∈ R;

(PM3) if Fx,y(t) = 1 and Fy,z(s) = 1, then Fx,z(t+ s) = 1,

for all x, y, z ∈ X and for every t, s ≥ 0.

Example 1.5.3. (Sehgal [104]) Let (X, d) be a metric space. Define Fx,y(t) = ε0(t− d(x, y))

for all x, y ∈ X and t > 0. Then (X,F ) is a PM-space induced by the metric d.
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Chapter 2

Banach contraction principle and its
generalizations

In 1922 Banach presented a very interesting theorem in his doctoral dissertation which is

known as Banach contraction principle. It has been extensively used to study the existence of

solutions of many nonlinear differential and integral equations and to prove the convergence

of algorithms in computational mathematics. The aim of this chapter is to present a brief lit-

erature review of metric fixed point theory. Furthermore, some necessary and relevant results

are also refurnished and their proofs can be found in monographs in the list of references.

2.1 Banach contraction principle

Theorem 2.1.1. (Banach contraction principle [9]) Let (X, d) be a complete metric space

and f : X → X be a contraction mapping with contraction constant κ ∈ (0, 1). Then f has

a unique fixed point ξ ∈ X. Moreover, for any x ∈ X:

1. the iterative sequence {fnx} converges to ξ;

2. the following priori estimate holds

d(fnx, ξ) ≤ κn

1− κ
d(x, fx) n = 0, 1, 2, · · · ;

3. the following posteriori estimate holds

d(fn+1x, ξ) ≤ d(fn+1x, fnx) n = 0, 1, 2, · · · .
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The strength of contraction theorem lies in the fact that it not only provides a constructive

algorithm to approach the fixed point but it also provides the error bounds. Following well

known theorem is due to Picard-Lindelöf which illuminates the validity of Banach contraction

principle.

Theorem 2.1.2. (Picard iteration theorem [30]) Consider the following first order initial

value problem

x′(t) = f(t, x(t)), x(t0) = x0. (2.1)

Suppose the following conditions hold:

1. f is continuous on a rectangle

R = {(t, x) : |t− t0| ≤ a, |x− x0| ≤ b}.

2. f is Lipschitz function with respect to x, or equivalently

|f(t, x)− f(t, y)| ≤ κ|x− y|,

for (t, x), (t, y) ∈ R and κ > 0.

Then the initial value problem (2.1) has a unique solution on an interval [t0−β, t0 +β] where

β < min{a, bc ,
1
κ}.

The direct applications of Banach principle such as the existence of solutions for differential

equations, existence of equilibria in game theory etc., elucidate its significance. This is one

of the most important reason why the researchers have always been intrigued and propelled

to establish a variety of generalizations of Theorem 2.1.1. A lot of interesting fixed point

theorems have been obtained by considering contraction condition involving not only d(x, y)

on right hand side of (1.2) but also the displacement of x and y under the mapping f i.e.,

d(x, fx), d(y, fy), d(x, fy), d(y, fx).

Next subsection deals with some extensions obtained by weakening contractive condition and

by imposing some supplementary conditions to the structure of metric space or the mapping

f .
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2.2 Weaker forms of contraction

Banach [9] showed that every contraction mapping on a complete metric space always pos-

sesses a unique fixed point. Edelstein [36] defined the notion of contractive mappings. The

mapping f : X → X is said to be contractive if

d(fx, fy) < d(x, y) for all x, y ∈ X with x 6= y. (2.2)

In order to obtain a fixed point of a contractive map we have to add further assumptions such

as there exists a point x ∈ X for which {fnx} contains a convergent subsequence or the space

is compact. The mappings f : X → X is said to be nonexpansive if

d(fx, fy) ≤ d(x, y) for all x, y ∈ X. (2.3)

To obtain a fixed point of nonexpansive map we also need to impose some certain assumptions

such as uniform normal structure or compactness of the space. The mapping f : X → X is

said to be weakly contractive if

d(fx, fy) ≤ d(x, y)− ψ(d(x, y)) for all x, y ∈ X, (2.4)

where ψ : [0,∞) → [0,∞) is continuous, nondecreasing such that ψ is positive on (0,∞),

ψ(0) = 0 and limt→∞ ψ(t) = ∞. Alber and Guerre-Delabriere [3] introduced the notion of

weakly contractive mapping when the underlying space was taken to be a Hilbert space. They

proved that every weakly contractive mapping defined on a Hilbert space posses a unique fixed

point point, with out any additional assumption. Later on, Rhoades [93] showed that this

result also holds for metric spaces. From the definitions it is clear that weakly contractive

maps lie between contraction maps and contractive maps.

The inception of Kannan’s fixed point theorem in 1969 [57] has carved a niche for itself in

fixed point theory like Banach principle. The mapping f : X → X is said to be a Kannan

mapping if there exists κ ∈ [0, 1
2) such that

d(fx, fy) ≤ κ[d(x, fx) + d(y, fy)] for all x, y ∈ X. (2.5)

Unlike contraction, contractive, nonexpensive and weakly contractive mappings the Kannan’s

mappings are not necessarily continuous. By pursuing on the same lines, Chatterjea [26]
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proposed the following condition:

d(fx, fy) ≤ κ[d(x, fy) + d(y, fx)] for all x, y ∈ X, (2.6)

where κ ∈ [0, 1
2).

The notion of Kannan’s mapping was further refined by Ćirić, Reich and Rus [28, 91, 98],

Zamfirescu [113] and then by Hardy and Rogers [45]. The mapping f : X → X is said to be

a C̀iric̀-Reich-Rus operator if there exists nonnegative real numbers a, b, c with a+ b+ c < 1

such that

d(fx, fy) ≤ ad(x, y) + bd(x, fx) + cd(y, fy) for all x, y ∈ X. (2.7)

Hardy and Rogers [45] attenuated the class of C̀iric̀-Reich-Rus operators by defining the

following condition:

d(fx, fy) ≤ ad(x, y) + bd(x, fx) + cd(y, fy) + ed(x, fy) + fd(y, fx) for all x, y ∈ X, (2.8)

where a+b+c+e+f < 1. The condition (2.8) unified the notion of Kannan’s and Chatterjea’s

mappings and also incorporates with C̀iric̀-Reich-Rus operators as well.

Theorem 2.2.1. (Rhoades [93, Theorm 1]) Let (X, d) be a complete metric space. Assume

the mapping f : X → X is weakly contractive. Then f has a unique fixed point.

Theorem 2.2.2. (Nemytzki-Edelstein [70, 36]) Let (X, d) be a compact metric space and

f : X → X be a contractive mapping. Then f has a unique fixed point.

Theorem 2.2.3. (Kannan [57]) Let (X, d) be a complete metric space and f : X → X be a

Kannan mapping. Then f has a unique fixed point.

Theorem 2.2.4. (Chatterjea [26]) Let (X, d) be a complete metric space and f : X → X

satisfies (2.6). Then f has a unique fixed point.

Theorem 2.2.5. (Hardy and Rogers [45]) Let (X, d) be a complete metric space and f :

X → X satisfies (2.8). Then f has a unique fixed point.

Branciari [23] generalized the Banach contraction principle by proving the existence of

unique fixed point of a mapping on a complete metric space satisfying a general contractive
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condition of integral type. Afterwards, many authors undertook further investigations in this

direction (see, e.g., [6, 35, 94, 110, 112]).

Let Φ denote the class of all mappings φ : [0,+∞)→ [0,+∞) which are Lebesgue integrable,

summable on each compact subset of [0,+∞), nonnegative and for each ε > 0,
∫ ε
0 φ(s)ds > 0.

Theorem 2.2.6. (Branciari [23, Theorem 2.1]) Let (X, d) be a complete metric space, κ ∈

(0, 1), and let f : X → X be a mapping such that for each x, y ∈ X,∫ d(fx,fy)

0
φ(s)ds ≤ κ

∫ d(x,y)

0
φ(s)ds, (2.9)

where φ ∈ Φ. Then f has a unique fixed point ξ ∈ X such that for each x ∈ X, limn→∞ f
nx =

t.

Clearly, when φ(s) = 1 for s ∈ [0,+∞) Theorem 2.2.6 subsumes Banach contraction

principle. But converse may not hold (see, [23, Exmaple 3.6]). Subsequently, Rhoades

[94] further generalized Theorem 2.2.6 by replacing term d(x, y) in (2.9) with m(x, y) =

max{d(x, y), d(x, fx), d(y, fy), d(x,fy)+d(y,fx)2 }.

2.3 ϕ-contractions

Matkowski [66] introduced the class of ϕ-contraction in metric fixed point theory. Afterwards,

many authors contributed to further developments in this direction by analyzing the properties

on function ϕ (see, [11, 76, 77, 85, 97, 99]). Most of the fixed point theorems for such class of

mappings are established wherein iterative sequence converges to the fixed point. But only

a few of them cater with a constructive method to approach the fixed point and also render

information on convergence rate (see, e.g., [11, 85]).

Definition 2.3.1. Let f : X → X and ϕ : R+ → R+ be a gauge function. Then f is said to

be ϕ-contraction if:

d(fx, fy) ≤ ϕ(d(x, y)), for all x, y ∈ X. (2.10)

Theorem 2.3.2. (Rakotch [89]) Let (X, d) be a complete metric space and f : X → X

satisfies

d(fx, fy) ≤ ϕ(d(x, y))d(x, y), for all x, y ∈ X.

15



Where ϕ : R+ → [0, 1) is nondecreasing. Then f is a Picard operator.

Theorem 2.3.3. (Browder [24]) Let (X, d) be a complete metric space and D be a bounded

subset of X. Assume f : D → D satisfies

d(fx, fy) ≤ ϕ(d(x, y)), for all x, y ∈ X,

where ϕ : [0,∞)→ [0,∞) is monotone nondecreasing and right continuous such that ϕ(t) < t

for all t > 0. Then f is Picard operator.

In the following, Berinde [11] calculated the rate of convergence for iterative process by

using (c)-comparison function.

Theorem 2.3.4. (Berinde [11]) Let (X, d) be a complete metric space and f : X → X be

a ϕ-contraction where ϕ is a (c)-comparison function. Then f has a unique fixed point ξ.

Moreover, for any x ∈ X:

1. the iterative sequence {fnx} converges to ξ;

2. the following estimates hold

d(xn, ξ) ≤ s(d(xn, xn+1), n = 0, 1, 2, · · · ,

where s(t) =
∑∞

k=0 ϕ
k(t).

Theorem 2.3.5. (Matkowski [66]) Let (X, d) be a complete metric space and f : X → X

be a ϕ-contraction where ϕ is a comparison function. Then f has a unique fixed point ξ and

{fnx} converges to ξ for any x ∈ X.

Recently, Proinov [85] came up with a very nice variant wherein the constructive iterative

scheme was proposed with a higher order of convergence towards the fixed point.

Lemma 2.3.6. (Proinov [85]) Let ϕ be a gauge function of order r ≥ 1 on J . If φ is a

nonnegative and nondecreasing function on J satisfying:

ϕ(t) = tφ(t) for all t ∈ J. (2.11)

Then it has the following properties:
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1. 0 ≤ φ(t) < 1 for all t ∈ J ;

2. φ(λt) ≤ λr−1φ(t) for all λ ∈ (0, 1) and t ∈ J .

Assume that f : D ⊂ X → X is an operator on X and satisfies the following iterated

contractive condition:

d(fx, f2x) ≤ ϕ(d(x, fx)) for all x ∈ D, fx ∈ D with d(x, fx) ∈ J, (2.12)

where ϕ is a gauge function of order r ≥ 1 on an interval J . A point x0 ∈ D is said to be an

initial point of f if d(x0, fx0) ∈ J and all the iterates x0, x1, · · · , are well defined and belong

to D.

Theorem 2.3.7. (Proinov [85]) Let f : D ⊂ X → X be an operator on a complete metric

space (X, d) such that f satisfies contractive condition (2.12) with a Bianchini Grandolfi gauge

function ϕ on an interval J having order r ≥ 1. Further, suppose that x0 ∈ D is an initial

point of f , then following statements hold true.

1. The iterative sequence {xn} remains in B(x0, ρ0) and converges with rate of convergence at

least r ≥ 1 to a point ξ which belongs to each of the closed balls B(xn, ρn), n = 0, 1, · · · ,

and

ρn = d(xn, xn+1)
∞∑
j=0

[
φ(d(xn, xn+1))

]
≤ d(xn, xn+1)

1− φ(d(xn, xn+1))
, (2.13)

where φ is a nonnegative and nondecreasing function on J satisfying (2.11).

2. Following priori estimate holds for all n ≥ 0,

d(xn, ξ) ≤ d(x0, fx0)
∞∑
j=n

λPj(r) ≤ λPn(r)

1− λrn
d(x0, fx0), (2.14)

where λ = φ(d(x0, fx0)).

3. Following posteriori estimate holds for all n ≥ 1,

d(xn, ξ) ≤ ϕ(d(xn, xn−1))
∞∑
j=0

[
φ(ϕ(d(xn, xn−1)))

]Pj(r)
≤ ϕ(d(xn, xn−1))

1− φ[ϕ(d(xn, xn−1))]

≤ ϕ(d(xn, xn−1))
1− [φ(d(xn, xn−1))]r

. (2.15)
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4. For all n ≥ 1, we have,

d(xn+1, xn) ≤ ϕ(d(xn, xn−1) ≤ λPj(r)d(x0, fx0). (2.16)

5. If ξ ∈ D and f is continuous at ξ, then ξ is a fixed point of f .

2.4 α− ϕ contractive mappings

In [100] Samet et al. introduced the notion of α − ϕ contractive mappings. Soon after that

a huge literature emerged consuming this idea in each and every possible way to extend the

notion (see e.g., [51, 54, 60]).

Definition 2.4.1. (Samet et al. [100]) Let (X, d) be a metric space and f : X → X. Then

f is said to be an α− ϕ contractive mapping if

α(x, y)d(fx, fy) ≤ ϕ(d(x, y)) for all x, y ∈ X, (2.17)

where ϕ : [0,∞) → [0,∞) is nondecreasing such that
∑∞

n=1 ϕ
n(t) < ∞ for each t > 0 and

α : X ×X → [0,∞).

Theorem 2.4.2. (Samet et al. [100]) Let (X, d) be a complete metric space and f : X → X

be an α− ϕ contractive mapping satisfying the following conditions:

(i) f is α-admissible, i.e., α(x, y) ≥ 1⇒ α(fx, fy) ≥ 1 for every x, y ∈ X;

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1;

(iii) f is continuous.

Then f has a fixed point.

Theorem 2.4.3. (Samet et al. [100]) Let (X, d) be a complete metric space and f : X → X

be an α− ϕ contractive mapping satisfying the following conditions:

(i) f is α-admissible, i.e., α(x, y) ≥ 1⇒ α(fx, fy) ≥ 1 for every x, y ∈ X;

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x ∈ X as

n→∞ then α(xn, x) ≥ 1 for all n.

Then f has a fixed point.
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2.5 Contractions on an ordered metric space

Following Turinici [111], Ran and Reurings [90] studied fixed points of self mappings on a

metric space (X, d) endowed with the partial ordering �. In this context, many interesting

results have been established by some authors for partially ordered set endowed with a com-

plete metric (see e.g., [1, 34, 40, 72, 84, 87, 90]). Most of these fixed point results are hybrid

of Banach principle and Knaster-Tarski’s theorem (see, [41, 53]).

Let (X,�) be a partially ordered set and f : X → X. The mapping f is said to be

nonincreasing if x, y ∈ X,x � y ⇒ f(x) � f(y). The mapping f is nondecreasing if

x, y ∈ X,x � y ⇒ f(x) � f(y). The mapping f maps comparable elements to compara-

ble elements if:

for all x, y ∈ X, x � y =⇒ fx � fy or fy � fx.

Theorem 2.5.1. (Ran and Reurings [90]) Let (X, d) be a complete metric space endowed

with a partial ordering �. Let f : X → X satisfies

d(fx, fy) ≤ κd(x, y) for all x, y ∈ X, with x � y,

where κ ∈ (0, 1). Moreover, if the following conditions are satisfied:

1. ∃x0 ∈ X with x0 � fx0 or fx0 � x0;

2. f is monotone and continuous;

3. every pair of elements of X has an upper and a lower bound.

Then f is Picard operator.

Nieto and Rodríguez-López [72] further improved Theorem 2.5.1 and as an application

obtained existence result for the solution of periodic boundary value problem for ordinary

differential equations.

Theorem 2.5.2. (Nieto and Rodríguez-López [72]) Let (X, d) be a complete metric space

endowed with a partial order �. Let f : X → X be nondecreasing (with respect to �) and

satisfies

d(fx, fy) ≤ κd(x, y) for all x, y ∈ X, with x � y,
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where κ ∈ (0, 1). Assume that one of the following conditions hold:

1. f is continuous and there exist some x0 ∈ X such that either x0 � fx0 or fx0 � x0;

2. for any nondecreasing sequence {xn}, xn → x implies xn � x for n ∈ N and there exists

x0 ∈ X such that x0 � fx0;

3. for any nonincreasing sequence {xn}, xn → x implies x � xn and there exists x0 ∈ X

such that fx0 � x0.

Then f has a fixed point. Furthermore, if every pair of elements of X has an upper or a lower

bound then f is a Picard operator.

Following the same direction authors in [71, 73, 84] extended above result by enfeebling

continuity condition in the following way.

Theorem 2.5.3. ([71, 73, 84]) Let (X, d) be a complete metric space endowed with a partial

order �. Let f : X → X preserves comparable elements and satisfies

d(fx, fy) ≤ κd(x, y) for all x, y ∈ X, with x � y,

where κ ∈ (0, 1). Assume that the following conditions hold:

1. either f is orbitally continuous; or

for any sequence {xn} if xn → x and every pair of elements (xn, xn+1) is comparable

for n ∈ N then there exists a subsequence {xnk} such that the pair of elements (xnk , x)

are comparable for k ∈ N;

2. there exists x0 ∈ X such that the pair (x0, fx0) is comparable.

Then f has a fixed point. Furthermore, if every pair of elements of X has an upper or a lower

bound then f is a Picard operator.

Afterwards authors in [2] moved ahead and by weakening contractive condition presented

the following result.
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Theorem 2.5.4. (Agarwal et al. [2]) Let (X, d) be a complete metric space endowed with a

partial order �. Let f : X → X be nondecreasing and for all x, y ∈ X with x � y satisfies

d(fx, fy) ≤ ϕ
(

max{d(x, y), d(x, fx), d(y, fy),
1
2

[d(x, fy) + d(y, fy)]}
)
,

where ϕ : R+ → R+ is nondecreasing with limn→∞ϕn(t) = 0 for each t > 0. Assume that

the following conditions hold:

1. either f is continuous; or

for any nondecreasing sequence {xn} if xn → x then xn ≤ x for n ∈ N;

2. there exists x0 ∈ X such that x0 � fx0.

Then f has a fixed point.

Further developments in this direction were found in [77] by O’Regan and Petruşel. Re-

cently, Harjani and Sadarangani [46] obtained some fixed point results for weakly contractive

mappings defined on partially ordered set endowed with a complete metric space.

We state following results from Harjani and Sadarangani [46] for convenience. In Chapter 2

some generalizations of the following main results will be proposed.

Theorem 2.5.5. (Harjani and Sadarangani [46, Theorem 2]) Let (X, d) be a complete metric

space endowed with a partial order �. Let f : X → X be a continuous and nondecreasing

mapping such that

d(fx, fy) ≤ d(x, y)− ψ(d(x, y)) for all x, y ∈ X with x � y, (2.18)

where ψ : [0,∞) → [0,∞) is continuous nondecreasing such that ψ is positive in (0,∞),

ψ(0) = 0 and limt→∞ ψ(t) = ∞. If there exists x0 ∈ X with x0 � fx0 then f has a fixed

point.

Above result was further refined by making use of the following hypothesis which was

appeared in (Nieto and Rodríguez-López [72, Theorem 1])

If {xn} is a nondecreasing sequence in X such that xn → x then xn � x for all n ∈ N.

(2.19)
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Theorem 2.5.6. (Harjani and Sadarangani [46, Theorem 3]) Let (X, d) be a complete metric

space endowed with a partial order �. Assume that X satisfies (2.19). Let f : X → X be

nondecreasing mapping such that

d(fx, fy) ≤ d(x, y)− ψ(d(x, y)) for all x, y ∈ X with x � y, (2.20)

where ψ : [0,∞) → [0,∞) is continuous nondecreasing such that ψ is positive in (0,∞),

ψ(0) = 0 and limt→∞ ψ(t) = ∞. If there exists x0 ∈ X with x0 � fx0 then f has a fixed

point.

It was shown in Nieto and Rodríguez-López [72] that the following two conditions are

equivalent.

For x, y ∈ (X,�) there exists a lower or an upper bound. (2.21)

For x, y ∈ (X,�) there exists z ∈ X which is comparable to x and y. (2.22)

Theorem 2.5.7. (Harjani and Sadarangani [46, Theorem 4]) Adding condition (2.22) to the

hypothesis of Theorem 2.5.5 (resp. Theorem 2.5.6) we obtain the uniqueness of the fixed

point.

Theorem 2.5.8. (Harjani and Sadarangani [46, Theorem 5]) Let (X, d) be a complete metric

space endowed with a partial order �. Let (X,�) satisfies (2.22) and f : X → X be a

nonincreasing mapping such that

d(fx, fy) ≤ d(x, y)− ψ(d(x, y)) for x � y, (2.23)

where ψ : [0,∞) → [0,∞) is continuous nondecreasing such that ψ is positive in (0,∞),

ψ(0) = 0 and limt→∞ ψ(t) =∞. Suppose also that either

(i) f is continuous, or

(ii) X is such that if xn → x is a sequence in X whose consecutive terms are comparable,

then there exists a subsequence {xnk} of {xn} such that every term is comparable to the limit

x.

(2.24)

If there exists x0 ∈ X with x0 � fx0 or x0 � fx0 then f has a unique fixed point.
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Theorem 2.5.9. (Harjani and Sadarangani [46, Theorem 6]) Let (X, d) be a complete metric

space endowed with a partial order �. Let (X,�) satisfies (2.22) and f : X → X maps

comparable elements to comparable elements, that is,

for x, y ∈ X,x � y ⇒ fx � fy or fx � fy.

Further assume that f satisfies the following condition

d(fx, fy) ≤ d(x, y)− ψ(d(x, y)) for all x, y ∈ X with x � y,

where ψ : [0,∞) → [0,∞) is continuous nondecreasing such that ψ is positive in (0,∞),

ψ(0) = 0 and limt→∞ ψ(t) = ∞. Suppose that either f is continuous or X is such that

condition (2.24) holds. If there exists x0 ∈ X with x0 comparable to fx0 then f has a unique

fixed point ξ. Moreover, for x ∈ X, limn→∞ f
nx = ξ.

For further study on the subject we refer the readers to [2, 25, 29, 39, 71, 72, 74, 90]. In

[72, 73, 90], some applications for the solutions of matrix equations and ordinary differential

equations are furnished.

2.6 Contractions on a metric space endowed with a graph

Jachymski [52] established a generalized and novel variant by utilizing the graph theoretic

approach instead of partial ordering and unified the results given by authors [72, 84, 90].

From then on, investigations have been carried out to obtain better and generalized results by

weakening contraction condition and analyzing connectivity of graph (see, [4, 15, 101, 102]).

Jachymski [52] showed that a mapping on a complete metric space still has a fixed point

provided that the mapping satisfied contraction condition for pairs of points which form edges

in the graph. Subsequently, Beg et al. [10] established a multivalued version of main result

of Jachymski [52]. Later on, Bojor [15] obtained some results in such settings by weakening

the condition of Banach G-contraction and introducing some new type of connectivity of the

graph.

We state, for convenience the following definition and main result due to Jachymski [52]. First

we need to recollect some definitive notations. Let X be a complete metric space with metric
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d (unless specified otherwise) and Ω is the diagonal of the Cartesian product X ×X. Let G

be a directed graph such that the set V (G) of its vertices coincides with X, and the set E(G)

of its edges contains all loops, i.e., E(G) ⊇ Ω. Assume that G has no parallel edges. We may

treat G as a weighted graph by assigning to each edge the distance between its vertices.

Definition 2.6.1. (Jachymski [52, Definition 2.1]) A mapping f : X → X is called a Banach

G-contraction or simply G-contraction if f preserves edges of G, i.e.,

for all x, y ∈ X, (x, y) ∈ E(G)⇒ (fx, fy) ∈ E(G), (2.25)

and f decreases weights of edges of G in the following way:

∃ κ ∈ (0, 1) for all x, y ∈ X, (x, y) ∈ E(G)⇒ d(fx, fy) ≤ κ d(x, y). (2.26)

Theorem 2.6.2. (Jachymski [52, Theorem 3.2]) Let (X, d) be a complete metric space en-

dowed with a graph G and let the triple (X, d,G) have the following property:

(P) : for any sequence {xn} in X, if xn → x ∈ X and (xn, xn+1) ∈ E(G) for n ∈ N then

there exists a subsequence {xnk} such that (xnk , x) ∈ E(G) for k ∈ N.

Assume f : X → X be a G-contraction and Xf := {x ∈ X : (x, fx) ∈ E(G)}. Then the

following assertions hold.

1. card F ixf = card{[x]
G̃

: x ∈ Xf}.

(For a set S card S is the number of elements in S).

2. Fixf 6= ∅ ⇐⇒ Xf 6= ∅.

3. f has a unique fixed point ⇐⇒ there exists x0 ∈ Xf such that Xf ⊆ [x0]
G̃
.

4. For any x ∈ Xf , f |[x]
G̃
is a Picard operator.

5. If Xf 6= ∅ and G is weakly connected then f is a Picard operator.

6. If X ′ := ∪{[x]
G̃

: x ∈ Xf} then f |X′ is a weakly Picard operator.

7. If f ⊆ E(G) then f is a weakly Picard operator.

24



Bojor [15] relaxed the conditionXf 6= ∅ by introducing the following notion of f -connectivity

which is somewhat stronger than connectivity or weak connectivity of a graph.

Definition 2.6.3. ([15, Definition 8]) Let X be a nonempty set endowed with a graph G and

f : X → X. The graphG is called f -connected if for all x, y ∈ V (G) such that (x, y) 6∈ E(G),

there exists a path in G, {xi}Ni=0 from x to y such that x0 = x, xN = y and (xi, fxi) ∈ E(G)

for all i = 1, 2, · · · , N − 1. A graph G is weakly f -connected if G̃ is f -connected.

Definition 2.6.4. ([15, Definition 7]) Let (X, d) be a metric space endowed with a graph G.

The mapping f : X → X is said to be a G-C̀iric̀-Reich-Rus operator if:

for all x, y ∈ X, (x, y) ∈ E(G) =⇒ (fx, fy) ∈ E(G); (2.27)

there exist nonnegative real numbers a, b, c with a+ b+ c < 1 such that

for all x, y ∈ X, (x, y) ∈ E(G) =⇒ d(fx, fy) ≤ ad(x, y) + bd(x, fx) + cd(y, fy). (2.28)

Theorem 2.6.5. (Bojor, [15, Theorem 6]) Let (X, d) be a complete metric space endowed

with a graph G and f : X → X be a G-C̀iric̀-Reich-Rus operator. Assume that:

1. G is f -connected;

2. for any sequence {xn} in X, if xn → x ∈ X and (xn, xn+1) ∈ E(G) for n ∈ N then there

exists a subsequence {xnk} such that (xnk , x) ∈ E(G) for k ∈ N.

Then f is a Picard operator.

In this context, many authors undertook further proceedings and put forth some nice

refinements of Theorem 2.6.2. For some recent developments in this direction we refer the

readers to [4, 10, 15, 16, 33, 42, 101]. In [42], it has been substantiated with the help of

a counter example that Theorem 2.6.2 can not be improved for any ϕ-contractions where

ϕ : R+ → R+ is nondecreasing such that limn→∞ ϕ
n(t) = 0, t > 0.

Example 2.6.6. (Gwóźdź-Łukawska and Jachymski [42]) Let (X, d) be a Euclidean metric

space with X = {sn : n ∈ N}, where sn =
∑n

k=1
1
k . Then (X, d) is complete. Let the graph

G consists of V (G) = X and E(G) = {(sn, sn+1) : n ∈ N} ∪ {(sn, sn) : n ∈ N}. Then G
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is reflexive and connected. Set fsn = sn+1, for n ∈ N. Note that f is edge-preserving. Let

(x, y) ∈ E(G) and x 6= y. Then there is k ∈ N such that x = sk and y = sk+1. Hence,

|x− y| = 1/(k + 1) and |fx− fy| = 1/(k + 2). Define a function φ : R→ R by;

φ(0) = 0, φ(t) = 1/3 for t > 1/2,

and φ|(0,1/2] is the polygonal line with nodes (1/(n+1), 1/(n+2)) for n ∈ N. Then |fx−fy| =

φ(|x − y|). It is easy to see that φ is nondecreasing, continuous and such that φ(t) < t for

t > 0, hence limn→∞ φ
n(t) = 0. Furthermore, f is nonexpansive, hence continuous. Since

every convergent sequence in X is constant for sufficiently large n, which infers that all

conditions Theorem 2.6.2 are satisfied but f has no fixed point.

2.7 Cyclic contractions

Kirk et al. [63] introduced the notion of cyclic representations and cyclic contractions to

generalize Banach contraction principle. This theory has been further investigated and evolved

by many authors (see, e.g., [5, 58, 59, 61, 62, 79, 82, 88]). We recall the definition which is

primitively rooted in [63] but its succinct version is refurnished in [96].

Definition 2.7.1. LetX be a nonempty set, m a positive integer and f : X → X an operator.

Then X := ∪mi=1Ai is known as a cyclic representation of X with respect to f if

1. Ai, i = 1, 2, · · · ,m are nonempty sets;

2. f(A1) ⊂ A2, · · · , f(Am−1) ⊂ Am, f(Am) ⊂ A1. (2.29)

Theorem 2.7.2. (Kirk et al. [63]) Let (X, d) be a complete metric space. Let m be positive

integer, {Ai}mi=1 be nonempty closed subsets of X, Y := ∪mi=1Ai and f : Y → Y . Assume that

1. ∪mi=1Ai is cyclic representation of Y with respect to f ;

2. ∃κ ∈ (0, 1) such that d(fx, fy) ≤ κ d(x, y) for x ∈ Ai, y ∈ Ai+1 where Am+1 = A1.

Then f has a unique fixed point ξ ∈ ∩mi=1Ai and f
ny → ξ for any y ∈ ∪mi=1Ai.

Petric [82] refined above result by using C̀iric̀-Reich-Rus mappings.
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Theorem 2.7.3. (Petric [82]) Let (X, d) be a complete metric space. Let m be positive

integer, {Ai}mi=1 be nonempty closed subsets of X, Y := ∪mi=1Ai and f : Y → Y . Assume that

1. ∪mi=1Ai is cyclic representation of Y with respect to f ;

2. there exist nonnegative real numbers a, b, c with a + b + c < 1 such that for x ∈ Ai, y ∈

Ai+1 where Am+1 = A1 we have

d(fx, fy) ≤ ad(x, y) + bd(x, fx) + cd(y, fy). (2.30)

Then f has a unique fixed point ξ ∈ ∩mi=1Ai and f
ny → ξ for any y ∈ ∪mi=1Ai.

Karapinar [58] furnished the lore by investigating cyclic weakly contractive mappings.

Theorem 2.7.4. (Karapinar [58, Theorem 6]) Let (X, d) be a complete metric space. Let m

be positive integer, {Ai}mi=1 be nonempty closed subsets of X, Y := ∪mi=1Ai and f : Y → Y .

Assume that:

1. ∪mi=1Ai is cyclic representation of Y with respect to f and

2. there exists ψ : [0,∞)→ [0,∞) where ψ is continuous, nondecreasing, positive on (0,∞),

ψ(0) = 0 and the following holds:

d(fx, fy) ≤ d(x, y)− ψ(d(x, y)) for x ∈ Ai, y ∈ Ai+1; Am+1 = A1.

Then f has a unique fixed point ξ ∈ ∩mi=1Ai and f
ny → ξ for any y ∈ ∪mi=1Ai.

Pǎcurar and Rus [79] undertook further investigations in this context by establishing a

brief study of cyclic ϕ-contractions in metric fixed point theory.

Theorem 2.7.5. (Pǎcurar and Rus [79, Theorem 2.1]) Let (X, d) be a complete metric

space. Let m be positive integer, {Ai}mi=1 be nonempty closed subsets of X, Y := ∪mi=1Ai and

f : Y → Y . Assume that:

1. ∪mi=1Ai is cyclic representation of Y with respect to f and

2. there exists a (c)-comparison function ϕ : [0,∞)→ [0,∞) such that

d(fx, fy) ≤ ϕ(d(x, y)) for x ∈ Ai, y ∈ Ai+1; Am+1 = A1.

Then f has a unique fixed point ξ ∈ ∩mi=1Ai and f
ny → ξ for any y ∈ ∪mi=1Ai.
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Chapter 3

Fixed point theorems in metric spaces
endowed with a graph

Motivation behind this chapter is to generalize the notion of Banach G-contractions by weak-

ening contraction inequality. In this context we introduced two new notions: weakly G-

contractive mappings; integral G-contractions [101, 102].

Subsequently throughout this chapter let (X, d) be a metric space. Let Ω denote the

diagonal of the cartesian product X × X. Let G be a directed graph such that the set of

its vertices V (G) coincides with X, and the set of its edges E(G) contains all loops, that is,

E(G) ⊇ Ω. We assume that G has no parallel edges. We may treat G as a weighted graph

by attributing to each edge the distance between its vertices.

Definition 3.0.6. [52] A mapping f : X → X is called orbitally continuous if for all x, y ∈ X

and any sequence {kn} of positive integers, fknx→ y implies f(fknx)→ fy as n→∞.

Definition 3.0.7. [52] A mapping f : X → X is called orbitally G-continuous if for all x, y ∈

X and any sequence {kn} of positive integers, fknx→ y and (fknx, fkn+1x) ∈ E(G) ∀n ∈ N

imply f(fknx)→ fy.

Definition 3.0.8. Two sequences {xn} and {yn} in a metric space (X, d) are said to be

equivalent if d(xn, yn)→ 0. Moreover if each of them is Cauchy then these are called Cauchy

equivalent.

In [52, 4], the authors put forth the following:
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(C) for any {xn} in X such that xn → x with (xn+1, xn) ∈ E(G) for all n ≥ 1 there exists a

subsequence {xnk} of {xn} such that (x, xnk) ∈ E(G) [52];

(H) for any {xn} in X such that xn → x ∈ X with xn ∈ [x]
G̃
for all n ≥ 1 then r(xn, x)→ 0

[4].

A graph G satisfying property (C) or (H) is called (C)-graph or (H)-graph respectively. It

has been shown that properties (C) and (H) are independent (see, [4, Examples 2.1, 2.2]). In

this context we define the following properties for a graph G. Let f : X → X and the metric

space (X, d) is endowed with a graph G:

(Cf ) for any {fnx} in X such that fnx → y ∈ X with (fn+1x, fnx) ∈ E(G) there exists a

subsequence {fnkx} of {fnx} and n0 ∈ N such that (y, fnkx) ∈ E(G) for all k ≥ n0;

(Hf ) for any {fnx} in X such that fnx → y ∈ X with fnx ∈ [y]
G̃

for all n ≥ 1 then

r(fnx, y)→ 0.

Subsequently, we call a graph G satisfying property (Cf ) or (Hf ) as (Cf )-graph or (Hf )-graph

respectively. It is easily seen that in a graph G the property (C) subsumes property (Cf ) for

any self-mapping f on X but converse may not hold as shown below.

Example 3.0.9. [102] Let X = [0, 1] endowed with usual metric d(x, y) = |x− y|. Consider

a graph G consisting of V (G) := X and E(G) := {( n
n+1 ,

n+1
n+2) : n ∈ N} ∪ {( x

2n ,
x

2n+1 ) : n ∈

N, x ∈ [0, 1]} ∪ {( x
22n , 0) : n ∈ N, x ∈ [0, 1]}. Note that G does not satisfy property (C) as

n
n+1 → 1. Whereas by defining f : X → X as fx = x

2 , G satisfies property (Cf ). Since,

fnx = x
2n → 0 as n→∞.

Similarly, any graphG satisfying the property (H) also satisfies (Hf ) whereas next example

shows that the converse may not hold.

Example 3.0.10. [102]Let X = [0, 1] endowed with usual metric d(x, y) = |x− y|. Consider

a graph G consisting of V (G) := X and E(G) := {( n
n+1 , 0) : n ∈ N} ∪ {( x

2n , 0) : n ∈ N, x ∈

[0, 1]} ∪ {(0, 1)}. Since, n
n+1 → 1 but r( n

n+1 , 1) = | nn+1 − 0|+ |0− 1|9 0. Thus property (H)

does not hold in G. On the other hand by defining f : X → X as fx = x
2 then G satisfies

(Hf ).
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3.1 Weakly G-contractive mappings

Motivated by Jachymski [52] using the language of graph theory, we obtain some fixed point

results that unify and extend main results by Harjani and Sadarangani [46]. In particular,

we show that Theorems 2.5.5−2.5.9 are special cases of our results. Consequently, as an

application of our results we obtain a fixed point result for weakly contractive cyclic mappings

and for α-type weakly contractive mappings. An example has been established to demonstrate

the degree of generality of our result over some pre-existing results. Inspired form [52] we

introduce the following intuitive notion.

Definition 3.1.1. Let (X, d) be a metric space endowed with the a graph G. A mapping

f : X → X is called weakly G-contractive if it satisfies the following two conditions. For

x, y ∈ X:

(fx, fy) ∈ E(G) whenever (x, y) ∈ E(G), (3.1)

d(fx, fy) ≤ d(x, y)− ψ(d(x, y)) whenever (x, y) ∈ E(G), (3.2)

where ψ : [0,∞) → [0,∞) is continuous nondecreasing such that ψ is positive on (0,∞) and

ψ(0) = 0.

Example 3.1.2. Let (X, d) be a metric space. Consider the graph G0 defined by G0 =

(X,X ×X). Then any weakly contractive map is weakly G-contractive.

3.1.1 Fixed point theorems for weakly G-contractive mappings

Let us denote by r(x, y) =
∑m

i=1 d(zi−1, zi), where {zi}mi=0 is a path from x to y in G. We

start with the following lemma.

Lemma 3.1.3. Let (X, d) be a metric space and f : X → X be a weakly G-contractive map.

Then for any x ∈ X and y ∈ [x]G̃ we have

lim
n→∞

d(fnx, fny) = lim
n→∞

r(fnx, fny) = 0. (3.3)

Proof. Let x ∈ X and y ∈ [x]G̃. Then there exists a path x = z0, z1, · · · , zl = y in the graph

G. As f is weakly G-contractive, from (3.1) and (3.2) we get

(fnzi−1, f
nzi) ∈ E(G) ∀i = 1, 2, · · · , l, ∀n ∈ N (3.4)
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and

d(fnzi−1, f
nzi) ≤ d(fn−1zi−1, f

n−1zi)− ψ(d(fn−1zi−1, f
n−1zi)) (3.5)

≤ d(fn−1zi−1, f
n−1zi) ∀i = 1, 2, · · · , l, ∀n ∈ N. (3.6)

This shows that {d(fnzi−1, f
nzi)} is a nonincreasing sequence of nonnegative real numbers,

bounded below by 0, thus convergent. Let d(fnzi−1, f
nzi) → γ. Taking limit as n → ∞ in

(3.5) we get γ ≤ γ − ψ(γ) ≤ γ. Therefore, ψ(γ) = 0 and by using the properties of ψ we get

γ = 0. Thus

lim
n→∞

d(fnzi−1, f
nzi) = 0 ∀i = 1, 2, · · · , l, ∀n ∈ N. (3.7)

By triangular inequality, we have

d(fnx, fny) = d(fnz0, fnzk)

≤ d(fnz0, fnz1) + d(fnz1, fnz2) + · · ·+ d(fnzk−1, f
nzl).

Taking limit as n→∞ and using (3.7), we get

lim
n→∞

d(fnx, fny) ≤ lim
n→∞

r(fnx, fny) = 0.

Assume that x ∈ X and a is any positive real number. For convenience we define the

following:

Ba(x) = {y ∈ [x]
G̃

: r(x, y) < a, for at least one path between x and y in G̃}

and

Ba(x) = {y ∈ [x]
G̃

: r(x, y) ≤ a, for at least one path between x and y in G̃}.

Proposition 3.1.4. Let (X, d) be a metric space and f be a weakly G-contractive mapping

from X into X. Let there exists x0 ∈ X such that fx0 ∈ [x0]
G̃

then the sequence {fnx0} is

Cauchy.
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Proof. Since fx0 ∈ [x0]G̃ then from Lemma 3.1.3 we obtain

lim
n→∞

r(fn+1x0, f
nx0) = 0. (3.8)

Now, we will show that {fnx0} is a Cauchy sequence. Since limn→∞ r(fn+1x0, f
nx0) = 0, for

ε > 0, there exists n0 ∈ N such that

r(fn0+1x0, f
n0x0) ≤ inf

j

{ ε
2
, ψ
(
d(xj , fn0x0)

)}
, (3.9)

where the vertex xj ∈ X is adjacent to fn0x0 with a single edge. Since, fx0 ∈ [x0]G̃ then by

induction there exists a path between fn0x0 and fn0+1x0 in G̃. This evokes the existence of

at least one vertex xj ∈ X adjacent to fn0x0. We claim that f
(
Bε(fn0x0)

)
⊂ Bε(fn0x0). Let

z ∈ Bε(fn0x0). Let {yi}li=0 be a path between z and fn0x0 such that y0 = z and yl = fn0x0

then {fyi}li=0 is a path between fz and ffn0x0. So that fz ∈ [fn0+1x0]
G̃

= [fn0x0]
G̃
.

Then two cases arise:

Case 1. If 0 < r(z, fn0x0) ≤ ε
2 .

Since z ∈ [fn0x0], using (3.2) & (3.9) along the path {fz, · · · , fn0+1x0, · · · , fn0x0}, we

have

r(fz, fn0x0) = r(fz, fn0+1x0) + r(fn0+1x0, f
n0x0)

=
l∑

i=1

d(fyi−1, fyi) + r(fn0+1x0, f
n0x0)

≤
l∑

i=1

d(yi−1, yi)−
l∑

i=1

ψ(d(yi−1, yi)) + r(fn0+1x0, f
n0x0)

≤ r(z, fn0x0) + r(fn0+1x0, f
n0x0)

≤ ε

2
+
ε

2
= ε.

Case 2. If ε
2 < r(z, xn0) ≤ ε.

In this case, again using (3.2) & (3.9) along the path {fz, · · · , fn0+1x0, · · · , fn0x0}, we
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have

r(fz, fn0x0) = r(fz, fn0+1x0) + r(fn0+1x0, f
n0x0)

=
l∑

i=1

d(fyi−1, fyi) + r(fn0+1x0, f
n0x0)

≤
l∑

i=1

d(yi−1, yi)−
l∑

i=1

ψ(d(yi−1, yi)) + r(fn0+1x0, f
n0x0)

≤ r(z, fn0x0)− ψ(d(yl−1, yl)) + r(fn0+1x0, f
n0x0)

≤ r(z, fn0x0)− ψ(d(yl−1, f
n0x0)) + ψ(d(yl−1, f

n0x0)) ≤ ε.

This proves our claim. As fn0+1x0 ∈ Bε(fn0x0) then f(fn0+1x0) ∈ Bε(fn0x0). Thus,

fn0+kx0 ∈ [fn0x0]
G̃

for k = 1, 2, · · · . Repeating the same procedure it follows that fnx0 ∈

Bε(fn0x0), for n ≥ n0. It infers that for each n ≥ n0

d(fnx0, f
n0x0) ≤ r(fnx0, f

n0x0) ≤ ε.

It simply yields fnx0 ∈ B(fn0x0; ε) for all n ≥ n0. Finally, it vindicates that {fnx0} is a

Cauchy sequence in X.

Theorem 3.1.5. Let (X, d) be a complete metric space endowed with a graph G and f :

X → X be a weakly G-contractive mapping. Suppose that the following conditions holds

(i) G satisfies property (Cf ),

(ii) there exists some x0 ∈ Xf := {x ∈ X : (x, fx) ∈ E(G)}.

Then f |[x0]
G̃
has a unique fixed point ξ ∈ [x0]

G̃
and fny → ξ for any y ∈ [x0]

G̃
.

Proof. Let x0 ∈ Xf i.e, (fx0, x0) ∈ E(G) then fx0 ∈ [x0]
G̃
. Thus Proposition 3.1.4 yields

{fnx0} is Cauchy. Since X is complete there exists ξ ∈ X such that fnx0 → ξ.

Suppose condition (i) holds. Then there exists a subsequence {fnkx0} of {fnx0} and p ∈ N

such that (ξ, fnkx0) ∈ E(G) for all k ∈ N and k ≥ p. Now, using (3.2) we have for all k ≥ n0

d(fξ, ξ) ≤ d(fξ, fnk+1x0) + d(fnk+1x0, ξ)

≤ d(ξ, fnkx0)− ψ(d(ξ, fnkx0)) + d(fnk+1x0, ξ)

≤ d(ξ, fnkx0) + d(fnk+1x0, ξ).
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Letting k →∞ we get d(fξ, ξ) = 0. Thus ξ is fixed point of f . We observe that

{x0, fx0, · · · , fn1x0, · · · , fpx0, ξ} is path from x0 to ξ in G̃. It vindicates ξ ∈ [x0]
G̃
. Now let

y ∈ [x0]
G̃
be arbitrary. Then by Lemma 3.1.3 we have

lim
n→∞

d(fny, fnx0) = 0.

Thus limn→∞ f
n(y) = ξ.

Suppose f has two fixed points ξ and η. Then it follows from Lemma 3.1.3 that

d(ξ, η) = d(fnξ, fnη).

Taking limit as n→∞ we get ξ = η.

Remark 3.1.6. Indeed f is a Picard operator on X if G is a weakly connected graph because

X := [x0]
G̃
.

Theorem 3.1.7. Let (X, d) be a complete metric space endowed with a graph G and f :

X → X be a weakly G-contractive mapping. Assume that G is weakly connected satisfying

property (Hf ). Then f is Picard operator.

Proof. Let G is weakly connected and x0 ∈ X then there exists a path between x0 and fx0 in

G̃ or equivalently fx0 ∈ [x0]
G̃
. By Proposition 3.1.4, {fnx0} is Cauchy. Since, X is complete

then fnx0 → ξ ∈ X. Since, G is weakly connected so that for each n there exists a path of

finite length from fnx0 to ξ. Let {zni }mi=0 be a path between fnx0 to ξ with zn0 = fnx0 and

znm = ξ then

d(ξ, fξ) ≤ d(ξ, fn+1x0) + d(fn+1x0, fξ)

≤ d(ξ, fn+1x0) +
m∑
i=1

d(fzni−1, fz
n
i )

≤ d(ξ, fn+1x0) +
m∑
i=1

d(zni−1, z
n
i )−

m∑
i=1

ψ(d(zni−1, z
n
i ))

≤ d(ξ, fn+1x0) + r(fnx0, ξ).

Since G is weakly connected then fnx0 ∈ [ξ]
G̃

for all n so that the right hand side of above

inequality converges to 0 as n → ∞. Thus, we conclude fξ = ξ. Let y ∈ X := [x0] be
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arbitrary then by Lemma 3.1.3, fny → ξ. Uniqueness of fixed point can be proved similarly

as in Theorem 3.1.5.

Theorem 3.1.8. Let (X, d) be a complete metric space endowed with a graph G and f :

X → X be a weakly G-contractive mapping. Suppose that the following conditions holds:

(i) f is orbital G-continuous;

(ii) there exists some x0 ∈ Xf := {x ∈ X : (x, fx) ∈ E(G)}.

Then f has a fixed point ξ ∈ X and fny → ξ for each y ∈ [x0]
G̃
. Moreover, if G is weakly

connected then f is Picard operator.

Proof. Since, (x0, fx0) ∈ E(G) imply fx0 ∈ [x0]
G̃

then from Proposition 3.1.4 {fnx0} is

Cauchy. Since, X is complete there exists ξ ∈ X such that fnx0 → ξ. By orbital G-continuity

as (fnx0, f
n+1x0) ∈ E(G) for all n ≥ 1 we obtain ffnx0 → fξ. Hence, fξ = ξ. Let y ∈ [x0]

G̃

be arbitrary then from Lemma 3.1.3, fny → ξ. Uniqueness can be easily followed.

Theorem 3.1.9. Let (X, d) be a complete metric space endowed with a graph G and f :

X → X be a weakly G-contractive mapping. Suppose that the following conditions holds

(i) f is orbitally continuous,

(ii) there exists some x0 ∈ X such that fx0 ∈ [x0]
G̃
.

Then f has a fixed point ξ ∈ X and fny → ξ for any y ∈ [x0]
G̃
. Moreover, if G is weakly

connected then f is Picard operator.

Proof. Since, fx0 ∈ [x0]
G̃
then from Proposition 3.1.4 {fnx0} is Cauchy so that the Complete-

ness propert of X yields fnx0 → ξ ∈ X. Since, f is orbitally continuous then ffnx0 → fξ.

Hence, fξ = ξ. Let y ∈ [x0]
G̃
be arbitrary then from Lemma 3.1.3, fny → ξ.

Remark 3.1.10. Let (X, d) be a metric space and � be a partial order in X. Define the

graph G1 by

E(G1) = {(x, y) ∈ X ×X : x � y}.
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Note that for this graph, condition (3.1) means f is nondecreasing with respect to this order.

Furthermore for the graph G1 property (C) is equivalent to the statement; that any nonde-

creasing sequences {xn}, with xn → x has a subsequence {xnk} such that x � xnk for all

k ∈ N, which is certainly weaker than condition (2.19). Furthermore, the weak connectivity

of the graph gives condition (2.22). Therefore, Theorems 2.5.5, 2.5.6 and 2.5.7 are special

cases of Theorem 3.1.5 when G = G1 which satisfies property (C).

Proposition 3.1.11. Let (X, d) be a metric space endowed with a graph G and f : X → X

be a weakly G-contractive mapping. Then f is weakly G−1-contractive as well as weakly

G̃-contractive.

Proof. Let (x, y) ∈ E(G−1), then (y, x) ∈ E(G). Since f is weakly G-contractive, (fy, fx) ∈

E(G). Thus (fx, fy) ∈ E(G−1). Therefore, condition (3.1) is satisfied for the graph G−1. As

(y, x) ∈ E(G) and f is weakly G-contractive, from (3.2) we get d(fy, fx) ≤ d(y, x)−ψ(d(y, x))

and symmetry of d implies that d(fx, fy) ≤ d(x, y) − ψ(d(x, y)). Thus condition (3.2) also

holds for the graph G−1. Hence f is weakly G−1-contractive mapping. Similar argument

shows that f is weakly G̃-contractive mapping.

Remark 3.1.12. Consider the following graph in the metric space (X, d)

E(G2) = {(x, y) ∈ X ×X : x � y ∨ y � x}.

For this graph (3.1) holds if f is monotone with respect to the order. Moreover, G2 = G̃1 and

it follows from above proposition that if f is weakly G1-contractive it is weakly G2-contractive.

Therefore Theorems 2.5.8 and 2.5.9 are special cases of Theorem 3.1.5 when G = G2 which

satisfies property (C).

Lemma 3.1.13. Let (X, d) be a metric space endowed with a graph and f : X → X be a

G-contractive map. Suppose for some x0 ∈ X, fx0 ∈ [x0]G̃. Then

(i) f([x0]G̃) ⊆ [x0]G̃,

(ii) f |[x0]G̃
is a G̃x0-contractive.
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Proof. Let x ∈ [x0]G̃. Then there is a path x = z0, z1, · · · , zl = x0 between x and x0. Since f

is G-contractive, (fzi−1, fzi) ∈ E(G)∀i = 1, 2, · · · , l. Thus fx ∈ [fx0]G̃ = [x0]G̃.

Suppose (x, y) ∈ E(G̃x0). Then (fx, fy) ∈ G, since f is G-contractive. But [x0]G̃ is f

invariant, so we conclude that (fx, fy) ∈ E(G̃x0). Condition (3.2) is satisfied automatically,

since G̃x0 is a subgraph of G.

3.1.2 Applications and an illustrative example

The following example substantiates the validity of our results over some pre-existing results

in literature.

Example 3.1.14. Let X := [0,∞) equipped with the usual metric d. Let ψ : [0,∞)→ [0,∞)

be defined as ψ(t) = t2

2 . Define a mapping f : X → X as

fx =

{
x− x2

2 , if x ∈ [0, 1] \ {1, 1
2 ,

2
3 ,

3
4 , · · · }

2x, otherwise.

Consider the graph G such that V (G) := X and E(G) := Ω ∪
{

(0, x) : x ∈ [0, 1] \

{1, 1
2 ,

2
3 ,

3
4 , · · · }

}
.

It can be easily seen thatG satisfies (3.1) and (3.2). Theorem 3.1.5 yields 0 is a fixed point of f .

On the other hand one cannot invoke Theorem 2.2.1 (specifically by taking x = 0, y = 1, (2.4)

does not hold). Also we note that f is not a BanachG-contraction. Since, {(0, 1
n)}n≥3 ⊂ E(G),

then

d(f0, f
1
n

) = | 1
n
− 1

2n2
| ≤ κ | 1

n
| = κ d(0,

1
n

). (3.10)

Letting n→∞, (3.10) yields κ ≥ 1.

In [63] authors introduced the notions of cyclic representations and cyclic contractions.

From Theorem 3.1.5 one can easily invoke [58, Theorem 6] as follows.

Corollary 3.1.15. ([58, Theorem 6]) Let (X, d) be a complete metric space. Let m be a

positive integer, {Ai}mi=1 be nonempty closed subsets of X, Y := ∪mi=1Ai and f : Y → Y .

Assume that the following conditions hold:

1.∪mi=1Ai is cyclic representation of Y with respect to f and
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2. there exists ψ : [0,∞)→ [0,∞) where ψ is continuous, nondecreasing, positive on (0,∞),

ψ(0) = 0 and the following holds:

d(fx, fy) ≤ d(x, y)− ψ(d(x, y)) for x ∈ Ai, y ∈ Ai+1; Am+1 = A1.

Then f has a unique fixed point ξ ∈ ∩mi=1Ai and f
ny → ξ for any y ∈ ∪mi=1Ai.

Proof. Since, Ai, i ∈ {1, · · · ,m} are closed then (Y, d) is a complete metric space. Consider

a graph G consisting of V (G) := Y and E(G) := Ω ∪ {(x, y) ∈ Y × Y : x ∈ Ai, y ∈

Ai+1; i = 1, · · · ,m}. For such a graph the first condition in view of Definition 2.7.1 infers that

f preserves edges. Thus from second condition it follows that f is a weakly G-contractive

mapping. Now let fnx → x∗ ∈ Y such that (fnx, fn+1x) ∈ E(G) for all n ≥ 1 then in view

of Definition (2.7.1), sequence {fnx} has infinitely many terms in each Ai so that one can

easily extract a subsequence of {fnx} converging to x∗ in each Ai, since Ai’s are closed then

x∗ ∈ ∩mi=1Ai. Now it is easy to form a subsequence {fnkx} in some Aj , j ∈ {1, · · · ,m} such

that (fnkx, x∗) ∈ E(G) for k ≥ 1. Thus G is weakly connected and satisfies property (C).

Hence, conclusion follows from Theorem 3.1.5.

Definition 3.1.16. ([36, 37]) A metric space (X, d) is said to be ε-chainable, for some ε > 0, if

for x, y ∈ X there exist xi ∈ X; i = 0, 1, 2, · · · , l with x0 = x, xl = y such that d(xi−1, xi) < ε

for i = 1, 2, · · · , l.

Now we state and prove another consequence of Theorem 3.1.9.

Theorem 3.1.17. Let (X, d) be a complete ε-chainable metric space. Let ψ : [0,∞)→ [0,∞)

is continuous, nondecreasing, positive on (0,∞) and ψ(0) = 0. Assume that f : X → X

satisfies,

d(x, y) < ε =⇒ d(fx, fy) ≤ d(x, y)− ψ(d(x, y)), (3.11)

for all x, y ∈ X. Then f is a Picard operator.

Proof. Let G := (V (G), E(G)) such that V (G) := X and E(G) := {(x, y) ∈ X×X : d(x, y) <

ε}. Since X is ε-chainable which shows G is weakly connected. Let (x, y) ∈ E(G), from (3.11)

we have,

d(fx, fy) ≤ d(x, y)− ψ(d(x, y)) ≤ d(x, y) < ε.
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Thus (fx, fy) ∈ E(G) so that f is weakly G-contractive. Further, (3.11) implies that f is

continuous. The conclusion follows from Theorem 3.1.9.

Now we define the following.

Definition 3.1.18. Let (X, d) be a metric space and f : X → X. The mapping f is said to

be an α-type weakly contractive mapping if

α(x, y)d(fx, fy) ≤ (.x, y)− ψ(d(x, y)), for all x, y ∈ X, (3.12)

where α : X ×X → [0,∞) and ψ : [0,∞) → [0,∞) is continuous nondecreasing such that ψ

is positive on (0,∞) and ψ(0) = 0.

Theorem 3.1.19. Let (X, d) be a complete metric space. Suppose that f : X → X be an

α-type weakly contractive mapping and satisfies the following conditions:

(i) f is α-admissible, i.e., α(x, y) ≥ 1⇒ α(fx, fy) ≥ 1 for every x, y ∈ X;

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x ∈ X as

n→∞ then α(xn, x) ≥ 1 for all n.

Then f has a fixed point.

Proof. Consider a graph G :=
(
V (G), E(G)

)
consisting of

V (G) := X and E(G) := {(x, y) ∈ X ×X : α(x, y) ≥ 1}.

Then for such a graph condition (i) implies that f preserves edges and condition (ii) invokes

the existence of some x0 ∈ X with (x0, fx0) ∈ E(G). Let (x, y) ∈ E(G) then α(x, y) ≥ 1 and

inequality (3.12) yields

d(fx, fy) ≤ α(x, y)d(fx, fy) ≤ (.x, y)− ψ(d(x, y)). (3.13)

Thus f is weakly G-contractive mapping. Moreover it is easy to observe that condition (iii)

is equivalent to property (C). Hence all the conditions of Theorem 3.1.7 are satisfied and the

conclusion follows.
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3.2 Integral G-contractions

Branciari [23] generalized the Banach contraction principle by proving the existence of unique

fixed point of a mapping on a complete metric space satisfying a general contractive condition

of integral type. In this section motivated by the work of Jachymski [52] and Branciari [23], we

introduce two new contraction conditions for mappings on complete metric spaces. Moreover,

using these contractive conditions, we obtain some fixed point theorems for mappings on

complete metric spaces. Our results generalize and unify some results by above mentioned

authors. In the following we introduce the notion of integral G-contraction which basically

unifies the two different concepts of contractions in (Jachymski [52], Branciari [23]).

Definition 3.2.1. A mapping f : X → X is called an integral G-contraction if for all

x, y ∈ X:

(fx, fy) ∈ E(G) whenever (x, y) ∈ E(G) (3.14)

and

(x, y) ∈ E(G) implies
∫ d(fx,fy)

0
φ(s)ds ≤ κ

∫ d(x,y)

0
φ(s)ds (3.15)

for some κ ∈ (0, 1) and φ ∈ Φ. Here Φ denote the class of all mappings φ : [0,+∞)→ [0,+∞)

which are Lebesgue integrable, summable on each compact subset of [0,+∞), nonnegative

and for each ε > 0,
∫ ε
0 φ(s)ds > 0.

Remark 3.2.2. Note that if f : X → X satisfies (2.9) then f is an integral G1-contraction

where G1 = (X,X ×X). Moreover, every Banach G-contraction is an integral G-contraction

(take φ(x) = 1), but the converse may not hold.

3.2.1 Fixed point theorems for integral G-contractions

We start by proving the following trivial proposition.

Proposition 3.2.3. Let f : X → X be an integral G-contraction with contraction constant

κ ∈ (0, 1) and φ ∈ Φ, then

(i) f is both an integral G−1-contraction and an integral G̃-contraction with the same con-

traction constant κ ∈ (0, 1) and φ.
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(ii) [x]
G̃

is f -invariant and f |[x0]
G̃
is an integral G̃x0-contraction provided that there exists

some x0 ∈ X such that fx0 ∈ [x0]
G̃
.

Proof. (i) It is a direct consequence of symmetry of d.

(ii) Let x ∈ [x0]
G̃
. Then there is a path x = z0, z1, · · · , zm = x0 between x and x0 in

G̃. Since f is an integral G-contraction then (fzi−1, fzi) ∈ E(G̃)∀i = 1, 2, · · · , l. Thus

fx ∈ [fx0]
G̃

= [x0]
G̃
.

Suppose that (x, y) ∈ E(G̃x0) then (fx, fy) ∈ E(G) as f is an integral G-contraction. But

[x0]
G̃

is f invariant, so we conclude that (fx, fy) ∈ E(G̃x0). Furthermore, (3.15) is satisfied

automatically because G̃x0 is a subgraph of G.

Lemma 3.2.4. Let f : X → X be an integral G-contraction and y ∈ [x]
G̃
, then

lim
n→∞

d(fnx, fny) = 0. (3.16)

Proof. Let x ∈ X and y ∈ [x]
G̃

then there exists N ∈ N such that x0 = x, xN = y and

(xi−1, xi) ∈ E(G̃) for all i = 1, 2, · · · , N . By Proposition 3.2.3 it follows that (fnxi−1, f
nxi) ∈

E(G̃) and ∫ d(fnxi−1,f
nxi)

0
φ(s)ds ≤ κ

∫ d(fn−1xi−1,f
n−1xi)

0
φ(s)ds, (3.17)

holds for all n ∈ N and i = 0, 1, 2, · · · , N . Denoting, dn = d(fnxi−1, f
nxi) for all n ∈ N. If

dm = 0 for some m ∈ N then it follows from (3.17) that dn = 0 for all n ∈ N with n > m.

Therefore, in this case, limn→∞ dn = 0. Now, assume that dn > 0. We claim that {dn} is

non-increasing sequence. Otherwise, there exists n◦ ∈ N such that dn◦ > dn◦−1. Now, using

properties of φ, it follows from (3.17) that

0 <
∫ dn◦−1

0
φ(s)ds ≤

∫ dn◦

0
φ(s)ds ≤ κ

∫ dn◦−1

0
φ(s)ds.

Since, 0 < c < 1, this yields a contradiction. Therefore, limn→∞ dn = r ≥ 0. Let r > 0, then

it follows from (3.17) that∫ r

0
φ(s)ds = lim

n→∞

∫ dn

0
φ(s)ds ≤ κ lim

n→∞

∫ dn−1

0
φ(s)ds = κ

∫ r

0
φ(s)ds. (3.18)

It implies (1− κ)
∫ r
0 φ(s)ds ≤ 0 and it further implies

∫ r
0 φ(s)ds = 0 which is a contradiction.

Thus, limn→∞ dn = limn→∞ d(fnxi−1, f
nxi) = 0,∀i = 1, 2, · · · , N , in both cases. From
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triangular inequality we have d(fnx, fny) ≤
∑N

i=1 d(fnxi−1, f
nxi) and letting n → ∞ gives

limn→∞ d(fnx, fny) = 0.

Now we define a subclass of integral G-contractions. We call this a class of sub-integral

G-contractions. Let us denote with Ψ the class of all mappings φ ∈ Φ satisfying the following

condition: ∫ α+β

0
φ(s)ds ≤

∫ α

0
φ(s)ds+

∫ β

0
φ(s)ds (3.19)

for every α, β ≥ 0. Note that every constant function φ(x) = k > 0 belongs to the class Ψ.

Example 3.2.5. Define φ1, φ2 : [0,∞)→ [0,∞) by

φ1(x) =
1

x+ 1
, φ2(x) =

{
1

2
√
x

if x 6= 0
0, otherwise.

It is easy to see that φ1, φ2 satisfy (3.19) and thus belong to the class Ψ.

Definition 3.2.6. We say that an integral G-contraction is a sub-integral G-contraction if

φ ∈ Ψ.

Lemma 3.2.7. Let f : X → X be a sub-integral G-contraction and y ∈ [x]
G̃
. Then there

exists p(x, y) ≥ 0 such that∫ d(fnx,fny)

0
φ(s)ds ≤ κnp(x, y), ∀ n ∈ N. (3.20)

Proof. Let x ∈ X and y ∈ [x]
G̃

then there exists N ∈ N such that x0 = x, xN = y and

(xi−1, xi) ∈ E(G̃) for all i = 1, 2, · · · , N . Since φ ∈ Ψ using triangular inequality, it follows

that ∫ d(fnx,fny)

0
φ(s)ds ≤

N∑
i=1

∫ d(fnxi−1,f
nxi)

0
φ(s)ds, (3.21)

and ∫ d(fnxi−1,f
nxi)

0
φ(s)ds ≤ κn

∫ d(xi−1,xi)

0
φ(s)ds. (3.22)

Since, (fnxi−1, f
nxi) ∈ E(G) for all i = 1, 2, 3, ..., N and n ∈ N so that from (3.21) and (3.22)

we get ∫ d(fnx,fny)

0
φ(s)ds ≤ κn

N∑
i=0

∫ d(xi−1,xi)

0
φ(s)ds

= κnp(x, y), (3.23)
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where p(x, y) =
∑N

i=0

∫ d(xi−1,xi)
0 φ(s)ds.

Theorem 3.2.8. Let f : X → X be a sub-integral G-contraction. Assume that:

(i) Xf := {x ∈ X : (x, fx) ∈ E(G)} 6= ∅;

(ii) G is a (Cf )-graph.

Then, for any x0 ∈ Xf , f |[x0]
G̃
is a Picard operator. Further, if G is weakly connected then f

is a Picard operator.

Proof. Let x0 ∈ Xf then fx0 ∈ [x0]
G̃
. Suppose m > n ≥ 1 so that using Lemma (3.2.7), we

obtain∫ d(fmx0,fnx0)

0
φ(s)ds ≤

∫ d(fnx0,fn+1x0)

0
φ(s)ds+ · · ·+

∫ d(fm−1x0,fmx0)

0
φ(s)ds

≤ (κn + κn+1 + κn+2 + ...+ κm−1)p(x0, fx0)

≤
[ κn

1− κ
]
p(x0, fx0) → 0 as n→∞.

It follows that {fnx0} is a Cauchy sequence in X. Therefore, fnx0 → ξ ∈ X. Let y is another

element in [x0]
G̃

then it follows from Lemma 3.2.4 that fny → ξ, too. Next, we show that

ξ is a fixed point of f . Since, fnx0 → ξ ∈ X and (fnx0, f
n+1x0) ∈ E(G) for all n ∈ N

and G is (Cf )-graph then there exists a subsequence {fnkx0} of {fnx0} and p ∈ N such that

(fnkx0, ξ) ∈ E(G) for all k ≥ p. Therefore, (x0, fx0, f
2x0, ..., f

npx0, ξ) is a path in G and so

in G̃ from x0 to ξ, thus ξ ∈ [x0]
G̃
. From (3.15), we get∫ d(fnk+1x0,fξ)

0
φ(s)ds ≤ κ

∫ d(fnkx0,ξ)

0
φ(s)ds ∀ k ∈ N,

letting k →∞, we have
∫ d(ξ,fξ)
0 φ(s)ds = 0, which implies that d(ξ, fξ) = 0. This shows that

f |[x0]
G̃
is a Picard operator. Moreover, if G is weakly connected then f is a Picard operator,

since [x0]
G̃

= X.

Remark 3.2.9. Theorem 3.2.8 generalizes claims 40 & 50 of [52, Theorem 3.2].

Corollary 3.2.10. Let (X, d) be a complete metric space endowed with a graph G such that

G is a (Cf )-graph. Then the following statements are equivalent:
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(1) G is weakly connected.

(2) Every sub-integral G-contraction f on X is a Picard operator provided that Xf 6= ∅.

Proof. (1) =⇒ (2) : It is immediate from Theorem 3.2.8.

(2) =⇒ (1) : On the contrary suppose that G is not weakly connected then G̃ is disconnected,

i.e., there exists x◦ ∈ X such that [x◦]G̃ 6= ∅ andX\[x◦]G̃ 6= ∅. Let y◦ ∈ X\[x◦]G̃, we construct

a self-mapping f as:

fx =

{
x◦ if x ∈ [x◦]G̃
y◦ if x ∈ X \ [x◦]G̃.

Let (x, y) ∈ E(G) then [x]
G̃

:= [y]
G̃

which implies fx = fy. Hence (fx, fy) ∈ E(G) as G

contains all loops and further (3.15) is trivially satisfied. But x◦ and y◦ are two fixed points

of f contradicting the fact that f has a unique fixed point.

Theorem 3.2.11. Let f : X → X be a sub-integral G-contraction. Assume that f is orbitally

G-continuous and Xf := {x ∈ X : (x, fx) ∈ E(G)} 6= ∅. Then for any x0 ∈ Xf and y ∈ [x0]
G̃
,

limn→∞ f
ny = ξ ∈ X where ξ is a fixed point of f . Further, if G is weakly connected then f

is a Picard operator.

Proof. Let x0 ∈ Xf then the arguments used in the proof of Theorem 3.2.8 imply that {fnx0}

is a Cauchy sequence. Therefore, fnx0 → ξ ∈ X. Since (fnx0, f
n+1x0) ∈ E(G) for all n ∈ N

and f is orbitally G-continuous therefore ξ = limn→∞ ff
nx0 = ft. Note that if y is another

element from [x0]
G̃

then it follows from Lemma 3.2.4 that limn→∞ f
ny = ξ. Finally, if G is

weakly connected then [x0]
G̃

:= X which yields that f is a Picard operator.

Remark 3.2.12. Theorem 3.2.11 generalizes claims 20 & 30 of [52, Theorem 3.3].

Theorem 3.2.13. Let f : X → X be a sub-integral G-contraction. Assume that f is orbitally

continuous and if there exists some x0 ∈ X such that fx0 ∈ [x0]
G̃

then, for y ∈ [x0]
G̃
,

limn→∞ f
ny = ξ ∈ X where ξ is a fixed point of f . Further, if G is weakly connected then f

is a Picard operator.

Proof. Let x0 ∈ X be such that fx0 ∈ [x0]
G̃

then using the same arguments as in the

proof of Theorem 3.2.8, {fnx0} is Cauchy and thus limn→∞ f
nx0 = ξ ∈ X. Moreover,
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ξ = limn→∞ ff
nx0 = fξ, as f is orbitally continuous. Note that if y is another element from

[x0]
G̃
then it follows from Lemma 3.2.4 that limn→∞ f

ny = ξ. If G is weakly connected then

[x0]
G̃

:= X this yields that f is a Picard operator.

Remark 3.2.14. Theorem 3.2.13 generalizes claims 20 & 30 of [52, Theorem 3.4] and thus

generalizes and extends the results of Nieto and Rodrťýguez-Lťopez [72, Theorems 2.1 and

2.3], Petrusel and Rus [84, Theorem 4.3] and Ran and Reurings [90, Theorem 2.1].

Corollary 3.2.15. Let (X, d) be a complete metric space endowed with a graph G. Then

the following statements are equivalent:

(1) G is weakly connected.

(2) Every sub-integral G-contraction f on X is a Picard operator provided f is orbitally

continuous.

Proof. (1) =⇒ (2): It is obvious from Theorem 3.2.13.

(2) =⇒ (1): Note that the example constructed in Corollary 3.2.10 is orbitally continuous.

Remark 3.2.16. Corollary 3.2.15 generalizes claims 20 & 30 of [52, Corollary 3.3].

Theorem 3.2.17. Let f : X → X be an integral G-contraction. Assume that the following

assertions hold:

(i) there exists x0 ∈ Xf such that∫ d(fx,fy)

0
φ(s)ds ≤ κ

∫ d(x,y)

0
φ(s)ds ∀x, y ∈ O(x0) ⊂ [x0]

G̃
(3.24)

where, O(x0) = {x0, fx0, f
2x0, · · · };

(ii) G is a (Cf )-graph.

Then, for any x0 ∈ Xf , f |[x0]
G̃
is a Picard operator. Furthermore, if G is weakly connected

then f is a Picard operator.
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Proof. Let x0 ∈ Xf , then fx0 ∈ [x0]
G̃
. Now, it follows from Proposition 3.2.3(ii) that

O(x0) ⊂ [x0]
G̃
. Moreover, from Lemma 3.2.4 we get

lim
n→∞

d(fnx0, f
n+1x0) = 0. (3.25)

We claim that {fnx0} is Cauchy sequence. Otherwise, there exists some ε > 0 in such a way

that for each k ∈ N there are mk, nk ∈ N with nk > mk > k, satisfying

d(fmkx0, f
nkx0) ≥ ε. (3.26)

We may choose sequences {mk}, {nk} such that corresponding to mk the natural number nk

is the smallest satisfying (3.26). Therefore,

ε ≤ d(fnkx0, f
mkx0) ≤ d(fnkx0, f

nk−1x0) + d(fnk−1x0, f
mkx0) < d(fnkx0, f

nk−1x0) + ε.

On letting k →∞ and using (3.25) we get

lim
k→∞

d(fnkx0, f
mkx0) = ε. (3.27)

Moreover, using (3.25) and(3.27), it follows from

d(fnk−1x0, f
mk−1x0) ≤ d(fnk−1x0, f

nkx0) + d(fnkx0, f
mkx0) + d(fmkx0, f

mk−1x0),

and

d(fnkx0, f
mkx0) ≤ d(fnkx0, f

nk−1x0) + d(fnk−1x0, f
mk−1x0) + d(fmk−1x0, f

mkx0),

that

lim
n→∞

d(fnk−1x0, f
mk−1x0) = ε. (3.28)

Since fnk−1x0, f
mk−1x0 ∈ O(x0) it follows from assertion (ii) that∫ d(fnkx0,f

mkx0)

0
φ(s)ds ≤ κ

∫ d(fnk−1x0,f
mk−1x0)

0
φ(s)ds. (3.29)

Letting k → ∞ and using (3.27) and (3.28) we get (1 − κ)
∫ ε
0 φ(s)ds ≤ 0. As 0 < κ < 1 this

implies that ε = 0. Therefore, {fnx0} is Cauchy sequence in X. The rest of the proof runs

on same lines as the proof of Theorem 3.2.8.
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Remark 3.2.18. Theorem 3.2.17 generalizes [23, Theorem 2.1].

Remark 3.2.19. The conclusion of Theorem 3.2.17 that f is a Picard operator provided

that G is weakly connected remains valid if we replace assertion (ii) by (ii)′ f is orbital

G-continuous or (ii)′′ f is orbitally continuous.

3.2.2 Applications and illustrative example

Following example elucidates the degree of generality of Theorem 3.2.17 over main results of

Branciari [23] and Jachymski [52].

Example 3.2.20. Let X := [0, 1] be equipped with the usual metric d. Define f : X → X,

φ : [0,+∞)→ [0,+∞) by

fx =

{
x

1+px if x = 1
n ,

0 if x 6= 1
n ,

and φ(s) =

{
s

1
s
−2(1− log s) if s > 0,

0 if s = 0,

for all n ∈ N and p ≥ 1 is any fixed positive integer. Consider the graph G such that

V (G) := X and E(G) := Ω ∪ {(0, x) : x ∈ X} ∪ {( 1
n+1 ,

1
n) : n ∈ N}. We observe that (3.14)

holds. Moreover,
∫ τ
0 φ(s)ds = τ

1
τ , so that (3.15) is equivalent to

d(fx, fy)
1

d(fx,fy) ≤ κ d(x, y)
1

d(x,y) for (x, y) ∈ E(G). (3.30)

Next we show that (3.30) is satisfied for κ = 1
1+p < 1.

Case i. Let (x, x) ∈ E(G) then (3.15) is trivially satisfied.

Case ii. Let (0, x) ∈ E(G);x 6= 1
n for n ∈ N the condition (3.15) is trivially satisfied. Let

(0, x) ∈ E(G);x = 1
n for n ∈ N then

d(fx, fy)
1

d(fx,fy) =
∣∣∣ 1
n+ p

− 0
∣∣∣ 1∣∣ 1
n+p−0

∣∣
=

1
(n+ p)(n+p)

, (3.31)

and

d(x, y)
1

d(x,y) =
∣∣∣ 1
n
− 0
∣∣∣ 1∣∣ 1
n−0

∣∣
=

1
(n)n

. (3.32)

From inequality (3.30) we need to show that

1
(n+ p)(n+p)

≤ 1
(1 + p)(n)n

(3.33)
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or equivalently, [ n

n+ p

]n 1
(n+ p)p

≤ 1
1 + p

,

Since, 1
(n+p)p ≤

1
(n+p) <

1
(1+p) for all n ∈ N and n

n+p < 1. Thus inequality (3.33) is satisfied.

Case iii. Let ( 1
n+1 ,

1
n) ∈ E(G) for n ∈ N then we have

d(fx, fy)
1

d(fx,fy) =
∣∣∣ 1
n+ 1 + p

− 1
n+ p

∣∣∣ 1∣∣ 1
n+1+p−

1
n+p

∣∣
=
[ 1

(n+ 1 + p)(n+ p)

](n+1+p)(n+p)

(3.34)

and

d(x, y)
1

d(x,y) =
∣∣∣ 1
n
− 1
n+ 1

∣∣∣ 1∣∣ 1
n−

1
n+1

∣∣
=
[ 1
n(n+ 1)

]n(n+1)

. (3.35)

We need to show that[ 1
(n+ 1 + p)(n+ p)

](n+1+p)(n+p)

≤ 1
(1 + p)

[ 1
n(n+ 1)

]n(n+1)

, (3.36)

on rearranging we have

[n(n+ 1)]n(n+1)

[(n+ 1 + p)(n+ p)](n+1+p)(n+p)
≤ 1

(p+ 1)
,

or, [ n

n+ p

]n(n+1)[ n+ 1
n+ 1 + p

]n(n+1) 1
[(n+ 1 + p)(n+ p)](p2+2np+p)

≤ 1
1 + p

.

By analyzing L.H.S, we see that n
n+p < 1 and n+1

n+1+p < 1 for all n ∈ N and 1

[(n+1+p)(n+p)](p
2+2np+p)

<

1
[(n+1+p)(n+p)] <

1
(n+p) ≤

1
(1+p) for all n ∈ N. Which infers that inequality (3.36) is indeed

true. Therefore, f is an integral G-contraction with contraction constant κ = 1
1+p . Note that

G is weakly connected (C)-graph and (3.24) also holds for O(0). Thus all the conditions of

Theorem 3.2.17 are satisfied and f is a Picard operator with fixed point 0. Note that f is not

a Banach G-contraction, since, for ( 1
n+1 ,

1
n) ∈ E(G),

d(f 1
n+1 , f

1
n)

d( 1
n+1 ,

1
n)

=

∣∣ 1
n+1+p −

1
n+p

∣∣∣∣ 1
n −

1
n+1

∣∣ → 1, as n→∞.

By setting p = 2 in above example we have

d(f
1
2
, f

3
4

)
1

d(f 1
2 ,f

3
4 ) = (

1
4

)4 = d(
1
2
,
3
4

)
1

d( 1
2 ,

3
4 ) .

Therefore one can not apply Theorem 2.2.6 [23].
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Following result is an important consequence of Theorem 3.2.8.

Theorem 3.2.21. Let (X, d) be a complete metric space. Letm be a positive integer, {Ai}mi=1

be nonempty closed subsets of X, Y := ∪mi=1Ai and f : Y → Y . Assume:

(i) ∪mi=1Ai is a cyclic representation of Y with respect to f ;

(ii) there exists φ ∈ Ψ such that
∫ d(fx,fy)
0 φ(s)ds ≤ κ

∫ (d(x,y))
0 φ(s)ds whenever, x ∈ Ai, y ∈

Ai+1, where Am+1 = A1.

Then f has a unique fixed point ξ ∈ ∩mi=1Ai and f
ny → ξ for any y ∈ ∪mi=1Ai.

Proof. Since, Ai, i ∈ {1, · · · ,m} are closed then (Y, d) is complete metric space. Consider a

graph G consisting of V (G) := Y and E(G) := Ω ∪ {(x, y) ∈ Y × Y : x ∈ Ai, y ∈ Ai+1; i =

1, · · · ,m}. By (i) & (ii) it follows that f is sub-integral G-contraction. Now let fnx→ x∗ ∈ Y

such that (fnx, fn+1x) ∈ E(G) for all n ≥ 1 then in view of (2.29) the sequence {fnx} has

infinitely many terms in each Ai so that one can easily extract a subsequence of {fnx}

converging to x∗ in each Ai, since Ai’s are closed then x∗ ∈ ∩mi=1Ai. Now it is easy to form

a subsequence {fnkx} in some Aj , j ∈ {1, · · · ,m} such that (fnkx, x∗) ∈ E(G) for k ≥ 1,

it vindicates G is weakly connected (Cf )-graph. Hence, conclusion follows from Theorem

3.2.8.

Remark 3.2.22. Taking φ(s) = 1, Theorem 3.2.21 subsumes the main result of [63].

Definition 3.2.23. Let (X, d) be a metric space and f : X → X. We call the mapping f an

α-type sub-integral contraction if

α(x, y)
∫ d(fx,fy)

0
φ(s)ds ≤ κ

∫ d(x,y)

0
φ(s)ds, for all x, y ∈ X, (3.37)

where α : X ×X → [0,∞), κ ∈ (0, 1) and φ ∈ Ψ.

Theorem 3.2.24. Let (X, d) be a complete metric space. Suppose that f : X → X be an

α-type sub-integral contraction and satisfies the following conditions:

(i) f is α-admissible, i.e., α(x, y) ≥ 1⇒ α(fx, fy) ≥ 1 for every x, y ∈ X;

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1;
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(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x ∈ X as

n→∞ then α(xn, x) ≥ 1 for all n.

Then f has a fixed point.

Proof. Consider a graph G :=
(
V (G), E(G)

)
consisting of

V (G) := X and E(G) := {(x, y) ∈ X ×X : α(x, y) ≥ 1}.

Then for such a graph condition (i) implies that f preserves edges i.e., (x, y) ∈ E(G) ⇒

(fx, fy) ∈ E(G). Let (x, y) ∈ E(G) then α(x, y) ≥ 1 and inequality (3.37) yields∫ d(fx,fy)

0
φ(s)ds ≤ α(x, y)

∫ d(fx,fy)

0
φ(s)ds ≤ κ

∫ d(x,y)

0
φ(s)ds. (3.38)

Thus f is sub-integral G-contraction. The condition (ii) invokes the existence of some x0 ∈ X

with (x0, fx0) ∈ E(G) so that Xf 6= ∅. Furthermore it is easy to observe that condition (iii)

yields that G is a (C)-graph. Hence all the conditions of Theorem 3.2.8 are satisfied and the

conclusion follows.

3.3 Conclusion

1. In Section 3.1 we introduced the notion of weakly G-contractive maps and established

some fixed point theorems for such mappings. The notion of weakly G-contractive maps

generalizes and unifies the notion of Banach G-contractions and weakly contractive

maps. Therefore Theorems 3.1.5, 3.1.7 subsume not only the class of weakly contractive

maps but also class of all Banach G-contractions. This elicits the novelty of the results.

Moreover, Example 3.1.14 illuminates the degree of generality of our result over some

pre-existing results.

2. The purpose of Section 3.2 is stipulated with the concept of integral G-contractions.

The notion of an integral G-contraction not only generalizes/extends the notion of a

Banach G-contraction but it also improves the integral inequality (2.9). Whereas, the

notion of a sub-integral G-contraction generalizes the notion of a Banach G-contraction

and partially generalizes the integral inequality (2.9). Therefore, Theorem 3.2.8 gen-

eralizes/extends some results of Jachymski [52] and provides partial improvement to
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the main result of Branciari [23]. At this point, a very natural question is bound to

be posed: Are the conclusions of Theorem 3.2.8, 3.2.11, 3.2.13 still valid for integral

G-contractions? We have provided a partial answer to this question in Theorem 3.2.17

on the expense of inequality (3.24). But it remains open to investigate an affirmative

answer without the crucial condition of (3.24). Moreover, Example 3.2.20 invokes and

elucidates the generality of Theorem 3.2.17.
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Chapter 4

Fixed point theorems in b-metric
spaces

The motivation behind the present chapter is stipulated with the notion of b-metric space

which propelled us to undertake some investigations by flavoring the underlying ambient

structure with a graph G [103]. The idea intrigued us to present two different classes of

contraction mappings which are discussed in Section 4.2. Consequently, we apply our results

to obtain fixed point theorems for cyclic contractions. Moreover, we also obtain b-metric

version of Theorem 2.4.3 due to Samet et al.[100].

In Section 4.3 two convergence theorems are presented for the class of ϕ-contractions in b-

metric space where ϕ is a gauge function of order r ≥ 1. Furthermore, the error estimates for

the convergence of proposed iterative process are also calculated. To illuminate the novelty

of obtain result an example is furnished. As an application we obtain an existence theorem

for the solution of first order differential equation wherein the iterative scheme converges to

the solution with the higher order as compared to the Picard method where the convergence

to the solution is linear.

4.1 Preliminaries

Subsequently, throughout this chapter let (X, d) be a b-metric space (unless specified other-

wise) with a coefficient s ≥ 1. We recall some auxiliary notions and results in a b-metric space

[8, 22, 31, 49] which are needed subsequently.
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Definition 4.1.1. Let (X, d) be a b-metric space. A sequence {xn} in X is:

(i) convergent if and only if there exists x ∈ X such that d(xn, x) → 0 as n → ∞ and we

write limn→∞ xn = x;

(ii) Cauchy if and only if d(xn, xm)→ 0 as m,n→∞.

Definition 4.1.2. A b-metric space (X, d) is complete if every Cauchy sequence in X con-

verges.

Remark 4.1.3. Let (X, d) be a b-metric space then:

(i) every convergent sequence has a unique limit;

(ii) every convergent sequence is Cauchy;

(iii) in general the b-metric d is not a continuous functional [32].

Definition 4.1.4. Let (X, d) be a b-metric space and A be a nonempty subset of X then

closure A of A is the set consisting of all points of A and its limit points. Moreover, A is

closed if and only if A = A.

In the following the b-metric version of Cantor’s intersection theorem is given which can

be easily established running on the same lines as in the proof of its metric version.

Theorem 4.1.5. [18] Let (X, d) be a complete b-metric space then every nested sequence of

closed balls has a non-empty intersection.

Definition 4.1.6. [48] Let f : D ⊂ X → X and there exist some x ∈ D such that the set

O(x) = {x, fx, f2x, · · · } ⊂ D. The set O(x) is known as an orbit of x ∈ D. A function G

from D into the set of real numbers is said to be f -orbitally lower semi-continuous at t ∈ X

if {xn} ⊂ O(x) and xn → t implies G(t) ≤ lim inf G(xn).

Matkowski [66] introduced the class of ϕ-contractions in metric fixed point theory to

generalize Banach contraction principle and subsequently further study was developed in this

setting by different authors when underlying space was taken to be a partially ordered set

(see, e.g., [2, 77]). For details on ϕ contractions we refer the readers to [11, 97].
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Berinde [12] took a further step to investigate ϕ contractions when the framework was taken

to be a b-metric space and for some technical reasons he had to introduce the notion of b-

comparison function in particular he obtained some estimations for rate of convergence [12].

See also [12, 20, 78, 83].

Definition 4.1.7. (Berinde, [12]) Let s ≥ 1 be a fixed real number. A non-decreasing function

ϕ : R+ → R+ is known as a b-comparison function if the following holds;

(vi)ϕ
∑∞

n=0 s
nϕn(t) converges for all t ∈ R+.

The concept of b-comparison function coincides with the comparison function when s = 1.

Let (X, d) be a b-metric space with coefficient s ≥ 1, then ϕ(t) = at ; t ∈ R+ with 0 < a < 1
s

is a b-comparison function.

4.2 b-metric endowed with a graph G

Throughout this section let (X, d) be a b-metric space with coefficient s ≥ 1 and Ω is the

diagonal of the cartesian product X ×X. G is a directed graph such that the set V (G) of its

vertices coincides with X, and the set E(G) of its edges contains all loops, i.e., E(G) ⊇ Ω.

Assume that G has no parallel edges. We assign to each edge having vertices x and y a unique

element d(x, y).

4.2.1 Fixed point theorems for mappings in b-metric endowed a graph

We introduce the following definition.

Definition 4.2.1. We say that a mapping f : X → X is a b-(ϕ,G) contraction if for all

x, y ∈ X:

(fx, fy) ∈ E(G) whenever (x, y) ∈ E(G); (4.1)

d(fx, fy) ≤ ϕ(d(x, y)) whenever (x, y) ∈ E(G), (4.2)

where ϕ : R+ → R+ is a comparison function.

Remark 4.2.2. Note that a Banach G-contraction is a b-(ϕ,G) contraction.
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Example 4.2.3. Any constant mapping f : X → X is a b-(ϕ,G) contraction for any graph

G with V (G) = X.

Example 4.2.4. Any self mapping f on X is trivially a b-(ϕ,G1) contraction, where G1 =

(V (G), E(G)) = (X,Ω).

Example 4.2.5. Let X = R and define d : X × X → R by d(x, y) = |x − y|2. Then d is

a b-metric on X with s = 2. Assume the self mapping fx = x
2 , for all x ∈ X. Then f is a

b-(ϕ,G0) contraction with ϕ(t) = t
4 and G0 = (X,X ×X). Note that d is not a metric on X.

Definition 4.2.6. Two sequences {xn} and {yn} inX are said to be equivalent if limn→∞ d(xn, yn) =

0 and if each of them is a Cauchy sequence then they are called Cauchy equivalent.

As a direct consequence of Definition 4.2.6, we get the following remark.

Remark 4.2.7. Let {xn} and {yn} be equivalent sequences in X. (i) If {xn} converges to x

then {yn} also converges to x and vice versa. (ii) {yn} is a Cauchy sequence whenever {xn}

is a Cauchy sequence and vice versa.

Proposition 4.2.8. Let f : X → X be a b-(ϕ,G) contraction where ϕ : R+ → R+ is a

comparison function then

(i). f is a b-(ϕ, G̃) contraction and a b-(ϕ,G−1) contraction as well.

(ii). [x0]
G̃
is f -invariant and f |[x0]

G̃
is a b-(ϕ, G̃x) contraction provided that x0 ∈ X is such

that fx0 ∈ [x0]
G̃
.

Proof. (i). It follows from (d2) (Definition 1.4.1).

(ii). Let x ∈ [x0]G̃. Then there is a path x = x0, z1, · · · , zl = x0 between x and x0. Since f

is a b-(ϕ,G) contraction then (fzi−1, fzi) ∈ E(G)∀i = 1, 2, · · · , l. Thus fx ∈ [fx0]G̃ = [x0]G̃.

Suppose (x, y) ∈ E(G̃x0). Then (fx, fy) ∈ E(G) as f is a b-(ϕ,G) contraction. But [x0]G̃ is f

invariant, so we conclude that (fx, fy) ∈ E(G̃x0). the condition (4.2) is satisfied automatically

as G̃x0 is a subgraph of G.
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From now on we assume that coefficient of b-comparison function ϕ is at least as large as

the coefficient of b-metric s.

Lemma 4.2.9. Let f : X → X be a b-(ϕ,G) contraction where ϕ : R+ → R+ is a b-

comparison function. Then given any x ∈ X and y ∈ [x]
G̃
, two sequences {fnx} and {fny}

are equivalent.

Proof. Let x ∈ X and y ∈ [x]
G̃
then there exists a path {xi}li=0 in G̃ from x to y with x0 = x,

xl = y and (xi−1, xi) ∈ E(G̃). From Proposition 4.2.8 as f is a b-(ϕ, G̃) contraction. So that

(fnxi−1, f
nxi) ∈ E(G̃) implies d(fnxi−1, f

nxi) ≤ ϕ(d(fn−1xi−1, f
n−1xi)) (4.3)

for all n ∈ N and i = 0, 1, 2, · · · , l. Hence,

d(fnxi−1, f
nxi) ≤ ϕn(d(xi−1, xi)) ∀n ∈ N and i = 0, 1, 2, · · · , l. (4.4)

We observe that {fnxi}li=0 is a path in G̃ from fnx to fny. From (d3) Definition 1.4.1 and

(4.4) we have,

d(fnx, fny) ≤
l∑

i=1

sid(fnxi−1, f
nxi) ≤

l∑
i=1

siϕn(d(xi−1, xi)). (4.5)

Letting n→∞ we obtain d(fnx, fny)→ 0.

Proposition 4.2.10. Let f be a b-(ϕ,G) contraction where ϕ : R+ → R+ is a b-comparison

function. Suppose that there is x0 in X such that fx0 ∈ [x0]G̃. Then {fnx0} is a Cauchy

sequence in X.

Proof. Since fx0 ∈ [x0]G̃. Let {yi}
r
i=0 be a path from x0 to fx0 then using the same arguments

as in Lemma 4.2.9, we arrive at

d(fnx0, f
n+1x0) ≤

r∑
i=1

siϕn(d(yi−1, yi)), for all n ∈ N. (4.6)

Let m > n ≥ 1, then from above inequality it follows for p ≥ 1

d(fnx0, f
n+px0) ≤ sd(fnx0, f

n+1x0) + s2d(fn+1x0, f
n+2x0) + · · ·+ spd(fn+p−1x0, f

n+px0)

≤ 1
sn−1

[ n+p−1∑
j=n

sjd(f jx0, f
j+1x0)

]
≤ 1

sn−1

[ r∑
i=1

si
n+p−1∑
j=n

sjϕj(d(yi−1, yi))
]
. (4.7)

56



Denoting for each i = 1, 2, · · · , r

Sin =
n∑
k=0

skϕk(d(yi−1, yi)), n ≥ 1

relation (4.7) becomes

d(fnx0, f
n+px0) ≤ 1

sn−1

[ r∑
i=1

si[Sin+p−1 − Sin−1]
]
, (4.8)

Since, ϕ is a b-comparison function, so that for each i = 1, 2, · · · , r we obtain

∞∑
k=0

skϕk(d(yi−1, yi)) <∞.

Then corresponding to each i there is a real number Si such that

lim
n→∞

Sin = Si. (4.9)

In view of (4.9) relation (4.8) gives d(fnx0, f
n+px0)→ 0 as n→∞. It infers that {fnx0} is

a Cauchy sequence in X.

In the following the notions of (Cf ) and (Hf ) graphs are refurnished in the settings of

b-metric space.

Definition 4.2.11. Let f : X → X, y ∈ X and the sequence {fny} in X is such that

fny → x∗ with (fny, fn+1y) ∈ E(G) for n ∈ N.

1. We say that a graph G is a (Cf )-graph if there exists a subsequence {fnky} and a natural

number p such that (fnky, x∗) ∈ E(G) for all k ≥ p [101].

2. We say that a graph G is an (Hf )-graph if fny ∈ [x∗]
G̃

for n ≥ 1 then r(fny, x∗) →

0 (as n → ∞). Where r(fny, x∗) =
∑M

i=1 s
id(zi−1, zi) ; {zi}Mi=0 is a path from fny to

x∗ in G̃.

Obviously every (C)-graph is a (Cf )-graph for any self mapping f on X but the converse

may not hold as shown in Chapter 2 (see, Example 3.0.9).
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Example 4.2.12. LetX = { 1
n : n ∈ N}∪{0}∪N with respect to the b-metric d(x, y) = |x−y|2

and I is an identity map on X. Consider a graph G2 consisting of V (G2) = X and

E(G2) = {( 1
n ,

1
n+1), ( 1

n+1 , n), (n, 0), ( 1
5n , 0);n ∈ N}.

Since, xn = 1
n → 0 as n→∞. We note that G2 is a (CI)-graph but r(xn, 0) = 2| 1n −

1
n+1 |

2 +

22| 1
n+1 − n|

2 + 22n2 9 0 as n→∞. Thus G2 is not an (HI)-graph.

Example 4.2.13. Let X = { 1
n : n ∈ N} ∪ {

√
5
n : n ∈ N} ∪ {0} with respect to b-metric

d(x, y) = |x− y|2 and I is identity map on X. Consider a graph G3 consisting of V (G3) = X

and

E(G3) = {( 1
n ,

1
n+1), ( 1

n+1 ,
√

5
n ), (

√
5
n , 0);n ∈ N}.

Since, xn = 1
n → 0 as n→∞. Clearly G3 is not a (CI)-graph but it is easy to verify that G3

is an (HI)-graph.

Above examples show that for a given f the notions of (Cf )-graph and (Hf )-graph remain

independent when the underlying space is a nontrivial b-metric space even if f is an identity

map.

Theorem 4.2.14. Let (X, d) be a complete b-metric space such that d is continuous. Let

f : X → X be a b-(ϕ,G) contraction where ϕ is a b-comparison function. Assume that the

following conditions hold:

(i) there is x0 in X for which (x0, fx0) is an edge in G̃;

(ii) G is a (Cf )-graph.

then f has a unique fixed point ξ ∈ [x0]
G̃

and for any y ∈ [x0]
G̃
, fny → ξ. Further if G is

weakly connected then f is Picard operator.

Proof. It follows from Proposition 4.2.10 that {fnx0} is a Cauchy sequence in X. Since X

is complete there exists ξ ∈ X such that fnx0 → t. Since, (fnx0, f
n+1x0) ∈ E(G) for all

n ∈ N and G is a (Cf ) graph there exists a subsequence {fnkx0} of {fnx0} and p ∈ N such

that (fnkx0, ξ) ∈ E(G) for all k ≥ p. Observe that (x0, fx0, f
2x0, · · · , fn1x0, · · · , fnpx0, ξ) is

a path in G̃. Therefore, ξ ∈ [x0]
G̃
. From (4.2), we get

d(fnk+1x0, fξ) ≤ ϕ(d(fnkx0, ξ)) < d(fnkx0, ξ) ∀k ≥ n0, (4.10)

58



letting k → ∞ we obtain limk→∞ f
nk+1x0 = fξ, as d is continuous. Since {fnkx0} is a

subsequence of {fnx0}, we conclude that fξ = ξ. Finally, if y ∈ [x0]
G̃
, it follows from Lemma

4.2.7 that fny → ξ.

Theorem 4.2.15. Let (X, d) be a complete b-metric space such that d is continuous. Let

f : X → X be a b-(ϕ,G) contraction where ϕ is a b-comparison function. If G is weakly

connected (Hf )-graph then f is Picard operator.

Proof. Let G is weakly connected (Hf )-graph. From the Proposition 4.2.10 fnx0 → ξ ∈ X,

then r(fnx0, ξ)→ 0 as n→∞. Now for each n ∈ N let {yni }; i = 0, 1, · · · ,Mn be a path from

fnx0 to ξ with y0 = ξ and ynMn
= fnx0 in G̃ then

d(ξ, fξ) ≤ s[d(ξ, fn+1x0) + d(fn+1x0, fξ)]

≤ s[d(ξ, fn+1x0) +
Mn∑
i=1

sid(fyni−1, fy
n
i )]

≤ s[d(ξ, fn+1x0) +
Mn∑
i=1

siϕ(d(yni−1, y
n
i ))]

< s[d(ξ, fn+1x0) +
Mn∑
i=1

sid(yni−1, y
n
i )] = s[d(ξ, fn+1x0) + r(fnx0, ξ)],

letting n → ∞ above inequality yields fξ = ξ. Let y ∈ [x0]
G̃

:= X be arbitrary then from

Lemma 4.2.9 and Remark 4.2.7 it is easily seen that fny → ξ.

Following example shows that the condition of (Cf )-gragh or (Hf )-graph in the hypothesis

of Theorem 4.2.14 & 4.2.15 can’t be dropped.

Example 4.2.16. Let X = [0, 1], d(x, y) = |x − y|2 and fx = x/2 for all x ∈ (0, 1] and

f0 = 1/2. Then (X, d) is a complete b-metric space with s = 2. Further, d is continuous

and f is a b-(ϕ,G1) contraction (with ϕ(t) = t/4) where V (G1) = X and E(G1) = {(x, y) ∈

(0, 1]×(0, 1];x ≥ y}∪{(0, 0), (0, 1)}. Note thatG1 is weakly connected but f has no fixed point

in [x0]
G̃1

= X. Observe that G1 is not a (Cf )-graph because the sequence fnx = x
2n → 0 for

x ∈ (0, 1] and (fnx, fn+1x) ∈ E(G1);n ∈ N but it does not contain any subsequence such that
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(xnk , 0) ∈ E(G1). Also we note that for any fixed x ∈ (0, 1], r(fnx, 0) = 2[| x2n−1|2+|1−0|2] 9

0 as n→∞.

The notions of orbital and orbital G-continuity for a self-mapping f can be induced in

b-metric space intuitively as follows.

Definition 4.2.17. Let (X, d) be a b-metric space. A mapping f : X → X is called orbitally

continuous if for all x, y ∈ X and any sequence {kn}n∈N of positive integers, fknx→ y implies

f(fknx) → fy as n → ∞. A mapping f : X → X is called orbitally G-continuous if for

all x, y ∈ X and any sequence {kn}n∈N of positive integers, fknx → y and (fknx, fkn+1x) ∈

E(G) ∀n ∈ N imply f(fknx)→ fy.

Theorem 4.2.18. Let (X, d) be a complete b-metric space, f be a b-(ϕ,G) contraction where

ϕ is a b-comparison function. Assume that d is continuous, f is orbitally G-continuous and

there is x0 inX for which (x0, fx0) is an edge in G. Then f has a fixed point ξ ∈ X. Moreover,

for any y ∈ [x0]
G̃
, fny → ξ.

Proof. It follows from Proposition 4.2.10 that {fnx0} is a Cauchy sequence in (X, d). Since

X is complete there exists ξ ∈ X such that limn→∞ f
nx0 = ξ. Since (fnx0, f

n+1x0) ∈ E(G)

for all n ∈ N and f is orbitally G-continuous. Therefore, continuity of d implies that fξ = ξ.

Let y ∈ [x0]
G̃
be arbitrary then it follows from Lemma 4.2.9 that limn→∞ f

ny = ξ.

Slightly strengthening the continuity condition on f our next theorem deals with the graph

G which may fail to have the property that there is x0 in X for which (x0, fx0) is an edge in

G.

Theorem 4.2.19. Let (X, d) be a complete b-metric space, f be a b-(ϕ,G) contraction where

ϕ is a b-comparison function. Assume that d is continuous, f is orbitally continuous and there

is x0 in X for which fx0 ∈ [x0]
G̃
. Then for any y ∈ [x0]

G̃
, fny → ξ ∈ X where ξ is a fixed

point of f .

Proof. It follows from Proposition 4.2.10 that {fnx0} is a Cauchy sequence in X. Since X

is complete there exists ξ ∈ X such that fnx0 → ξ. Since, f is orbitally continuous then

limn→∞ ff
nx0 = fξ which yields fξ = ξ. Let y ∈ [x0]

G̃
be arbitrary then from Lemma 4.2.9,

limn→∞ f
ny = ξ.
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Remark 4.2.20. In addition to the hypothesis of Theorem 4.2.18 and Theorem 4.2.19 if we

assume that G is weakly connected then f will become Picard operator [84] on X.

Remark 4.2.21. Theorem 4.2.14 generalizes/extends claims 40 & 50 of [52, Theorem 3.2] and

[78, Theorem 4(1)]. Theorem 4.2.18 generalizes claims 20 & 30 of [52, Theorem 3.3]. Theorem

4.2.19 generalizes claims 20 & 30 of [52, Theorem 3.4] and thus generalizes extends results

of Nieto and Rodríguez-López [72, Theorems 2.1 and 2.3], Petrusel and Rus [84, Theorem

4.3] and Ran and Reurings [90, Theorem 2.1]. We mention here that Theorem 4.2.14 can not

be improved using comparison function instead of b-comparison function (see, Łukawska and

Jachymski [42, Example 2])

We observe that Theorem 4.2.19 can be used to extend famous fixed point theorem of

Edelstein to the case of b−metric space. We need to define the notion of ε-chainable property

for the b-metric space.

Definition 4.2.22. A b-metric space (X, d) is said to be ε-chainable for some ε > 0 if for each

x, y ∈ X there exist xi ∈ X; i = 0, 1, 2, · · · , l with x0 = x, xl = y such that d(xi−1, xi) < ε

for i = 1, 2, · · · , l.

Corollary 4.2.23. Let (X, d) be a complete ε-chainable b-metric space. Assume that d is

continuous. Let there exists a b-comparison function ϕ : R+ → R+ such that f : X → X

satisfies,

d(x, y) < ε implies d(fx, fy) ≤ ϕ(d(x, y)), (4.11)

for all x, y ∈ X. Then f is a Picard operator.

Proof. Consider a graph G consisting of V (G) := X and E(G) := {(x, y) ∈ X×X : d(x, y) <

ε}. Since X is ε-chainable so G is weakly connected. Let (x, y) ∈ E(G), from (4.11) we have,

d(fx, fy) ≤ ϕ(d(x, y)) < d(x, y) < ε.

Then d(fx, fy) ∈ E(G). Therefore, in view of (4.11) f is b-(ϕ,G) contraction. Further, (4.11)

implies that f is continuous. Now the conclusion follows by using Theorem 4.2.19.

Now we establish a fixed point theorem using a general contractive condition.
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Theorem 4.2.24. Let (X, d) be a complete b-metric space, G be a (Cf )-graph in X×X such

that V (G) = X and f : X → X be an edge preserving mapping. Assume that d is continuous

and there exist δ, β, γ ≥ 0 with sδ + (s+ 1)β + s(s+ 1)γ < 1 and for all (x, y) ∈ E(G)

d(fx, fy) ≤ δd(x, y) + β[d(x, fx) + d(y, fy)] + γ[d(x, fy) + d(y, fx)]. (4.12)

If there is x0 in X for which (x0, fx0) is an edge in G then f has a fixed point in [x0]
G̃
.

Proof. Since f is edge preserving then (fnx0, f
n+1x0) ∈ E(G) for all n ∈ N. From (4.12) and

using (d3) Definition 1.4.1 it follows that

d(fnx0, f
n+1x0) ≤ δd(fn−1x0, f

nx0) + β[d(fn−1x0, f
nx0) + d(fnx0, f

n+1x0)]

+ γs[d(fn−1x0, f
nx0) + d(fnx0, f

n+1x0)].

On rearranging,

d(fnx0, f
n+1x0) ≤

[δ + β + γs

1− β − γs

]
d(fn−1x0, f

nx0).

Repeating iteratively we have,

d(fnx0, f
n+1x0) ≤

[δ + β + γs

1− β − γs

]n
d(x0, fx0). (4.13)

For m > n ≥ 1 and using (d3) Definition 1.4.1, we have

d(fnx0, f
mx0) ≤ sd(fnx0, f

n+1x0) + s2d(fn+1x0, f
n+2x0) + ...+ sm−nd(fm−1x0, f

mx0)

≤ 1
sn−1

d(x0, fx0)
m−1∑
j=n

sj
[δ + β + γs

1− β − γs

]j
(using 4.13)

<
1

sn−1
d(x0, fx0)

∞∑
j=n

sj
[δ + β + γs

1− β − γs

]j
. (4.14)

Since, s
[
δ+β+γs
1−β−γs

]
< 1 then {fnx0} is a Cauchy sequence in X. By completeness of X the

sequence {fnx0} converges to some ξ ∈ X. Since, G is a (Cf )-graph, there exists a subsequence

{fnkx0} and a natural number p such that (fnkx0, ξ) ∈ E(G) for all k ≥ p. From (4.12) for

all k ≥ p we have

d(fnk+1x0, fξ) ≤ δd(fnkx0, ξ) + β[d(fnkx0, f
nk+1x0) + d(ξ, fξ)]

+ γ[d(fnkx0, fξ) + d(ξ, fnk+1x0)]. (4.15)
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Since the b-metric d is continuous and β + γ < 1 so letting k → ∞ inequality (4.15) yields

fξ = ξ. Also note that (x0, fx0, f
2x0, · · · , fn1x0, · · · , fnpx0, ξ) is a path in G and hence in

G̃, therefore ξ ∈ [x0]
G̃
.

We note that Theorem 4.2.24 does not guarantee the uniqueness of fixed point but this

can be accomplished under some assumptions as in the following theorem.

Theorem 4.2.25. In addition to the hypothesis of Theorem 4.2.24 we further assume that if

δ+ 2sβ+ 2γ < 1 for the same set of δ, β, γ ≥ 0 and for any two fixed points ξ1, ξ2 there exists

z ∈ X such that (ξ1, z) and (ξ2, z) ∈ E(G). Then f has a unique fixed point.

Proof. Let ξ1 and ξ2 are two fixed points of f then there exists z ∈ X such that (ξ1, z), (ξ2, z) ∈

E(G). By induction we have (ξ1, fnz), (ξ2, fnz) ∈ E(G) for all n = 0, 1, · · · . From (4.12) we

have,

d(ξ1, fnz) ≤ δd(ξ1, fn−1z) + βd(fn−1z, fnz) + γ[d(ξ1, fnz) + d(fn−1z, ξ1)]

≤ δd(ξ1, fn−1z) + βs[d(fn−1z, ξ1) + d(ξ1, fnz)] + γ[d(ξ1, fnz) + d(fn−1z, ξ1)].

On rearranging,

d(ξ1, fnz) ≤
[δ + sβ + γ

1− sβ − γ
]
d(ξ1, fn−1z), for all n = 1, 2, · · · . (4.16)

Continuing recursively, (4.16) gives

d(ξ1, fnz) ≤
[δ + sβ + γ

1− sβ − γ
]n
d(ξ1, z). (4.17)

Since,
[ δ+sβ+γ

1−sβ−γ
]
< 1 then limn→∞ d(ξ1, fnz) = 0. Similarly one can show that limn→∞ d(ξ2, fnz) =

0. Thus by using (d3) Definition 1.4.1 it infers that d(ξ1, ξ2) = 0.

Suppose that (X,�) is a partially ordered set. Consider graph G2 consisting of E(G2) =

{(x, y) ∈ X × X : x � y or y � x} and V (G2) coincides with X. We note that if a self

mapping f is monotone with respect to the order � then for the graph G2, it is obvious

that f is edge preserving or equivalently we can say that f maps comparable elements onto

comparable elements.

Following corollaries are the direct consequences of Theorem 4.2.25.
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Corollary 4.2.26. Let (X, d) be a complete metric space where X is a partially ordered set

with respect to �. Let f : X → X be nondecreasing (or nonincreasing) with respect to �.

Assume that there exists δ, β, γ ≥ 0 with δ + 2β + 2γ < 1 such that,

d(fx, fy) ≤ δd(x, y) + β[d(x, fx) + d(y, fy)] + γ[d(x, fy) + d(y, fx)],

for all comparable x, y ∈ X. If the following conditions hold:

(i) there exists x0 ∈ X such that x0 � fx0,

(ii) for nondecreasing (or nonincreasing) sequence {xn} → x ∈ X, there exists a subsequence

{xnk} such that xnk � x, for all k.

Then f has a fixed point. Moreover, if for all x, y ∈ X there exists z ∈ X such that x � z

and y � z then the fixed point is unique.

Corollary 4.2.27. Let (X, d) be a complete metric space where X is a partially ordered set

with respect to �. Let f : X → X be nondecreasing (or nonincreasing) with respect to �.

Assume that there exists a constant 0 < c < 1/2 such that,

d(fx, fy) ≤ c[d(x, fx) + d(y, fy)],

for all comparable x, y ∈ X. If the following conditions hold:

(i) there exists x0 ∈ X such that x0 � fx0,

(ii) for nondecreasing (or nonincreasing) sequence {xn} → x ∈ X, there exists a subsequence

{xnk} such that xnk � x, for all k.

Then f has a fixed point. Moreover, if for all x, y ∈ X there exists z ∈ X such that x � z

and y � z then the fixed point is unique.

Corollary 4.2.28. Let (X, d) be a complete metric space where X is a partially ordered set

with respect to �. Let f : X → X be nondecreasing (or nonincreasing) with respect to �.

Assume that there exists a constant 0 < c < 1/2 such that,

d(fx, fy) ≤ c[d(x, fy) + d(y, fx)],

for all comparable x, y ∈ X. If the following conditions hold:
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(i) there exists x0 ∈ X such that x0 � fx0,

(ii) for nondecreasing (or nonincreasing) sequence {xn} → x ∈ X, there exists a subsequence

{xnk} such that xnk � x, for all k.

Then f has a fixed point. Moreover, if for all x, y ∈ X there exists z ∈ X such that x � z

and y � z then the fixed point is unique.

4.2.2 Some consequences and applications

We note that in Theorem 4.2.24 the condition "there is x0 in X for which (x0, fx0) is an edge

in G" yields fnx0 → ξ, where ξ ∈ X is a fixed point of f . Consider a graph G := (X,X×X).

For such graph under the assumptions of Theorems 4.2.24, 4.2.25 it infers that f is a Picard

operator. Thus many standard fixed point theorems can be easily deduced from Theorem

4.2.25.

Corollary 4.2.29. (Hardy and Rogers [45]). Let (X, d) be a complete metric space and let

f : X → X. Suppose that there exists constants δ, β, γ ≥ 0 such that

d(fx, fy) ≤ δd(x, y) + β[d(x, fx) + d(y, fy)] + γ[d(x, fy) + d(y, fx)],

for all x, y ∈ X, where δ + 2β + 2γ < 1 then f has a unique fixed point in X.

Corollary 4.2.30. (Kannan [57]). Let (X, d) be a complete metric space and let f : X → X.

Suppose that there exists a constants c such that

d(fx, fy) ≤ c[d(x, fx) + d(y, fy)],

for all x, y ∈ X, where 0 < c < 1/2 then f is Picard operator.

Corollary 4.2.31. (Chatterjea [26]). Let (X, d) be a complete metric space and let f : X →

X. Suppose that there exists a constants c such that

d(fx, fy) ≤ c[d(x, fy) + d(y, fx)],

for all x, y ∈ X, where 0 < c < 1/2 then f is Picard operator.
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The concept of cyclic representations and cyclic contractions can also be invoked intuitively

when the underlying space is a b-metric. Let X be a nonempty set endowed with a b-metric d.

Let m be a positive integer and {Xi}mi=1 be nonempty closed subsets of X and f : ∪mi=1Xi →

∪mi=1Xi be an operator. Then X := ∪mi=1Xi is known as a cyclic representation of X with

respect to f if

f(X1) ⊂ X2, · · · , f(Xm−1) ⊂ Xm, f(Xm) ⊂ X1 (4.18)

and operator f is known as cyclic operator.

Theorem 4.2.32. Let (X, d) be a complete b-metric space such that d is a continuous func-

tional on X × X. Let m be a positive integer, {Xi}mi=1 nonempty closed subsets of X,

Y := ∪mi=1Xi, ϕ : R+ → R+ be a b-comparison function and f : Y → Y . Further suppose

that

(i) ∪mi=1Xi is cyclic representation of Y with respect to f ;

(ii) d(fx, fy) ≤ ϕ(d(x, y)) whenever, x ∈ Xi, y ∈ Xi+1, where Xm+1 = X1.

Then f has a unique fixed point ξ ∈ ∩mi=1Xi and fny → ξ for any y ∈ ∪mi=1Xi.

Proof. We note that (Y, d) is a complete b-metric space. Let us consider a graph G consisting

of V (G) := Y and E(G) := Ω ∪ {(x, y) ∈ Y × Y : x ∈ Xi, y ∈ Xi+1; i = 1, · · · ,m}. By (i) it

follows that f preserves edges. Thus for this graph G in view of condition (ii) the mapping f

is b− (ϕ,G) contraction. Now let fnx→ x∗ in Y such that (fnx, fn+1x) ∈ E(G) for all n ≥ 1

then in view of (4.18) the sequence {fnx} has infinitely many terms in each Xi so that one

can easily extract a subsequence of {fnx} converging to x∗ in each Xi. Since Xi’s are closed

then x∗ ∈ ∩mi=1Xi. Now it is easy to form a subsequence {fnkx} in some Xj , j ∈ {1, · · · ,m}

such that (fnkx, x∗) ∈ E(G) for k ≥ 1, it implies that G is a weakly connected (Cf )-graph

and thus conclusion follows from Theorem 4.2.14.

Remark 4.2.33. [79, Theorem 2.1(1)] can be deduced from Theorem 4.2.32 if (X, d) is a

metric space.

On the same lines as in proof of Theorem 4.2.32 we obtain the following consequence of

Theorem 4.2.25.
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Theorem 4.2.34. Let (X, d) be a complete b-metric space such that d is continuous functional

on X ×X. Let m be positive integer, {Xi}mi=1 nonempty closed subsets of X, Y := ∪mi=1Xi

and f : Y → Y . Further suppose that

(i) ∪mi=1Xi is cyclic representation of Y with respect to f ;

(ii) there exist δ, β, γ ≥ 0 with sδ + s(s+ 1)β + s(s+ 1)γ < 1 such that

d(fx, fy) ≤ δd(x, y) + β[d(x, fx) + d(y, fy)] + γ[d(x, fy) + d(y, fx)],

whenever, x ∈ Xi, y ∈ Xi+1, where Xm+1 = X1.

Then f has a fixed point ξ ∈ ∩mi=1Xi.

Remark 4.2.35. [15, Theorem 7] and [82, Theorem 3.1] can be deduced from Theorem 4.2.34

but it does not ensure f to be a Picard operator.

Remark 4.2.36. We note that in proof [15, Theorem 7] author’s argument to prove G

(as assumed in proof of Theorem 4.2.32) a (C)-graph is valid only if the terms of sequence

{xn} are Picard iterations otherwise it is void. For example let Y = ∪3
i=1Xi where X1 =

{ 1
n : n is odd} ∪ {0}, X2 = { 1

n : n is even} ∪ {0}, X3 = {0} and define f : Y → Y as

fx = x
2 ;x ∈ Y \ X2 and fx = 0;x ∈ X2. We see that (4.18) is satisfied and 1

n → 0 but

X3 does not contain infinitely many terms of {xn}. In the following we give the corrected

argument to prove G a (C)-graph.

Let xn → x in X such that (xn, xn+1) ∈ E(G) for all n ≥ 1. Keeping in mind construction

of G there exists at least one pair of closed sets {Xj , Xj+1} for some j ∈ {1, 2, · · · ,m} such

that both sets contain infinitely many terms of sequence {xn}. Since Xi’s are closed so that

x ∈ Xj ∩Xj+1 for some j ∈ {1, · · · ,m} and thus one can easily extract a subsequence such

that (xnk , x) ∈ E(G) holds for k ≥ 1.

Definition 4.2.37. Let (X, d) be a b-metric space and f : X → X. We call the mapping f

a (b, α− ϕ) contraction if

α(x, y)ϕ(fx, fy) ≤ d(x, y), for all x, y ∈ X, (4.19)

where α : X ×X → [0,∞) and ϕ : R+ → R+ be a b-comparison functions.
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Remark 4.2.38. We note that if (X, d) is a simple metric space i.e., s = 1 then Definition

4.2.37 coincides with Definition 2.4.1 due to Samet et al. [100].

Theorem 4.2.39. Let (X, d) be a complete b-metric space such that d is a continuous func-

tional. Suppose that f : X → X be a (b, α − ϕ) contraction and satisfies the following

conditions:

(i) f is α-admissible, i.e., α(x, y) ≥ 1⇒ α(fx, fy) ≥ 1 for every x, y ∈ X;

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x ∈ X as

n→∞ then α(xn, x) ≥ 1 for all n.

Then f has a fixed point.

Proof. Consider a graph G :=
(
V (G), E(G)

)
consisting of

V (G) := X and E(G) := {(x, y) ∈ X ×X : α(x, y) ≥ 1}.

For the graph G the condition (i) implies that f preserves edges i.e., (x, y) ∈ E(G) ⇒

(fx, fy) ∈ E(G). Let (x, y) ∈ E(G) then α(x, y) ≥ 1 and from inequality (4.19) we obtain

ϕ(fx, fy) ≤ α(x, y)ϕ(fx, fy) ≤ d(x, y) (4.20)

Thus f is b-(ϕ,G) contraction. The condition (ii) vindicates the existence of some x0 ∈ X

with (x0, fx0) ∈ E(G). Furthermore it is easy to observe that the condition (iii) implies

that G is a (C)-graph. Hence all the conditions of Theorem 3.2.8 (1) are satisfied and the

conclusion follows.

Remark 4.2.40. Theorem 4.2.39 extends Theorems 2.4.2 and 2.4.3 due to Samet et al. [100]

to the case of b-metric spaces. Thus for (s = 1) when d is a simple metric, Theorem 4.2.39

subsumes Theorems 2.4.2 and 2.4.3 as special cases.

Theorem 4.2.41. Let (X, d) be a complete b-metric space such that d is a continuous

functional. Suppose that there exist δ, β, γ ≥ 0 with sδ + s(s + 1)β + s(s + 1)γ < 1 and
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α : X ×X → [0,∞) such that f : X → X satisfies the following contractive condition:

α(x, y)d(fx, fy) ≤ δd(x, y) + β[d(x, fx) + d(y, fy)] + γ[d(x, fy) + d(y, fx)], for all x, y ∈ X.

(4.21)

Assume the following conditions hold:

(i) f is α-admissible, i.e., α(x, y) ≥ 1⇒ α(fx, fy) ≥ 1 for every x, y ∈ X;

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x ∈ X as

n→∞ then α(xn, x) ≥ 1 for all n.

Then f has a fixed point.

Proof. The proof follows the same lines as in Theorem 4.2.39. Consider a graph G :=(
V (G), E(G)

)
consisting of

V (G) := X and E(G) := {(x, y) ∈ X ×X : α(x, y) ≥ 1}.

For the graph G the condition (i) implies that f preserves edges i.e., (x, y) ∈ E(G) ⇒

(fx, fy) ∈ E(G). Let (x, y) ∈ E(G) then α(x, y) ≥ 1 and from inequality (4.21) we obtain

d(fx, fy) ≤ α(x, y)d(fx, fy) ≤ δd(x, y)+β[d(x, fx)+d(y, fy)]+γ[d(x, fy)+d(y, fx)]. (4.22)

Thus f satisfies (4.12). The condition (ii) infers the existence of some x0 ∈ X such that

(x0, fx0) ∈ E(G). Furthermore, the condition (iii) implies that G is a (C)-graph. Hence all

the conditions of Theorem 4.2.24 are satisfied and the conclusion follows.

Now we establish an existence theorem for the solution of an integral equation as a con-

sequence of our Theorem 4.2.14.

Theorem 4.2.42. Consider the integral equation

x(t) =
∫ b

a
k(t, s, x(s))ds+ g(t), t ∈ [a, b], (4.23)

where k : [a, b]× [a, b]× Rn → Rn and g : [a, b]→ Rn is continuous. Assume that
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(i) k(t, s, .) : Rn → Rn is nondecreasing for each t, s ∈ [a, b];

(ii) there exists a (c)−comparison function ϕ : R+ → R+ and a continuous function p :

[a, b]× [a, b]→ R+ such that

|k(t, s, x(s)) − k(t, s, y(s))| ≤ p(t, s)ϕ(|x(s) − y(s)|) for each t, s ∈ [a, b] and x ≤ y

(i.e., x(t) ≤ y(t); ∀t ∈ [a, b]);

(iii) supt∈[a,b]

∫ b
a p(t, s)ds ≤ 1;

(iv) there exists x0 ∈ C([a, b],Rn) such that x0(t) ≤
∫ b
a k(t, s, x0(s))ds+g(t) for all t ∈ [a, b].

Then the integral equation (4.23) has a unique solution in the set {x ∈ C([a, b],Rn) : x(t) ≤

x0(t) or x(t) ≥ x0(t);∀t ∈ [a, b]}.

Proof. Let (X, ||.||∞) where X = C([a, b],Rn) and define a mapping T : C([a, b],Rn) →

C([a, b],Rn) by

Tx(t) =
∫ b

a
k(t, s, x(s))ds+ g(t), t ∈ [a, b]. (4.24)

Consider a graph G consisting of V (G) := X and E(G) = {(x, y) ∈ X ×X : x(t) ≤ y(t)∀t ∈

[a, b]}. From property (i) we observe that the mapping T is nondecreasing, thus T preserves

edges. Furthermore G is a (C)-graph that is for every nondecreasing sequence {xn} ⊂ X

which converges to some z ∈ X then xn(t) ≤ z(t) for all t ∈ [a, b]. Now for every x, y ∈ X

with (x, y) ∈ E(G) we have,

|Tx(t)− Ty(t)| ≤
∫ b

a
|k(t, s, x(s))− k(t, s, y(s))|ds

≤
∫ b

a
p(t, s)ϕ(|x(s)− y(s)|)ds

≤ ϕ(||x− y||∞)
∫ b

a
p(t, s)ds.

Hence, d(Tx, Ty) ≤ ϕ(d(x, y)). From (iv) we have, (x0, Tx0) ∈ E(G), so that [x0]
G̃

= {x ∈

C([a, b],Rn) : x(t) ≤ x0(t) or x(t) ≥ x0(t);∀t ∈ [a, b]}. The conclusion follows from Theorem

4.2.14.

Note that Theorem 4.2.42 specifies the region of solution which invokes the novelty of our

result.
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4.3 Contractions using gauge function ϕ

Recently, Proinov [85] extended Banach contraction principle with higher order of conver-

gence. He proposed an iterative scheme for a mapping satisfying a contractive condition

which involves gauge function of order r ≥ 1 and obtained error estimates as well. His re-

sults include as special cases some results of Mysovskih [69], Rheinboldt [92], Gel’man [38]

and Huang [50] and others. In [64] authors extended the results of Proinov to the case of

multi-valued mappings.

Inspired by the work of Proinov [85] in this section we investigate whether the consequences

of his results hold when the underlying structure is replaced with a b-metric space. We give

an affirmative answer to this question. Our results generalize main results of Proinov [85] and

thus subsume many results of authors [38, 50, 69, 92]. We establish an example to substanti-

ate the validity of our results. Consequently, in Subsection 3.3.2 we also obtain an existence

theorem for the solution of an initial value problem.

A gauge function ϕ : J → J satisfies: ϕ(λt) ≤ λrϕ(t) for all λ ∈ (0, 1) and t ∈ J ; and ϕ(t) < t

for all t ∈ J \ {0}.

Definition 4.3.1. ([14]) A nondecreasing function ϕ : J → J is said to be a Bianchini

Grandolfi gauge function if
∑∞

n=0 ϕ
n(t) <∞ for all t ∈ J .

Subsequently, Let (X, d) be a b-metric space with coefficient s ≥ 1. We assume that

f : D ⊂ X → X be an operator and there exist some x0 ∈ D such that O(x0) ⊂ D. Let the

operator f satisfies the following iterated contractive condition:

d(fx, f2x) ≤ ϕ(d(x, fx)) for all x ∈ O(x0) such that d(x, fx) ∈ J, (4.25)

where ϕ is a gauge function of order r ≥ 1 on an interval J . We establish two convergence

theorems for iterative processes of the type

xn+1 = fxn, n = 0, 1, 2, · · · , (4.26)

where f satisfies (4.25).
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4.3.1 b-Bianchini Grandolfi gauge functions

In [85] Proinov proved his main results by assuming Bianchini Grandolfi gauge functions and

the mapping f satisfying contractive condition (4.36) when the underlying set is endowed

with a metric (see, Corollary 4.3.16). But in the setting of b-metric space for some technical

reasons we have to restrict ourselves to the gauge functions satisfying
∑∞

n=0 s
nϕn(t) < ∞

for all t ∈ J where s is the coefficient of b-metric space. Furthermore, taking into account

such crucial condition in order to calculate a priori and a posteriori estimates we consider the

gauge functions of the form:

ϕ(t) = t
φ(t)
s

for all t ∈ J, (4.27)

where s ≥ 1 is the coefficient of b-metric d and φ is nonnegative nondecreasing function on J

such that

0 ≤ φ(t) < 1 for all t ∈ J. (4.28)

Remark 4.3.2. One can always define a non-negative non-decreasing function φ on J satis-

fying (4.27) and (4.28) as follows:

φ(t) =

{
sϕ(t)
t , if t ∈ J \ {0}

0, if t = 0,
(4.29)

where s is the coefficient of b-metric d.

For a fixed s ≥ 1, let us consider the following simple examples of gauge functions of order

r:

(i) ϕ(t) = ct
s , 0 < c < 1 is a gauge function of order 1 on J = [0,∞);

(ii) ϕ(t) = ctr

s , (c > 0, r > 1) is a gauge function of order r on J = [0, h) where h = (1
c )

1
(r−1) .

It is essential to mention here that to establish the fixed point theorem (see, Theorem 4.3.14)

we do not necessarily require the gauge functions ϕ satisfying (4.27),(4.28). But we consider

the gauge function such that
∑∞

n=0 s
nϕn(t) < ∞ for all t ∈ J where s is a coefficient of

b-metric space.
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Lemma 4.3.3. Let ϕ be a gauge function of order r ≥ 1 on J . If φ is a nonnegative and

nondecreasing function on J satisfying (4.27) and (4.28). Then,

(1). 0 ≤ φ(t)
s < 1 for all t ∈ J ,

(2). φ(µt) ≤ µr−1φ(t) for all µ ∈ (0, 1) and t ∈ J .

Remark 4.3.4. When d is a simple metric then s = 1. In such case every gauge function

satisfying
∑∞

n=0 ϕ
n(t) <∞ is of the form ϕ(t) = tφ(t) where φ is nonnegative nondecreasing

function on J [85]. Thus the condition 0 ≤ φ(t) < 1 for all t ∈ J becomes superfluous and is

directly followed from Lemma 4.3.3.

Lemma 4.3.5. Let ϕ be a gauge function of order r ≥ 1 on J . If φ is a nonnegative and

nondecreasing function on J satisfying (4.27) and (4.28). Then for every n ≥ 0 we have

(1). ϕn(t) ≤ t
[φ(t)

s

]Pn(r) for all t ∈ J ,

(2). φ(ϕn(t)) ≤ s
[φ(t)

s

]rn for all t ∈ J .

Proof. (1). Set µ = φ(t)
s and let t ∈ J . Then from Lemma 4.3.3 we obtain 0 ≤ µ < 1. For

µ = 0 the case is trivial. We shall prove (1) by using mathematical induction. For n = 0, 1

the property (1) is trivially satisfied as it reduces to an equality. Let it also holds for any

integer n ≥ 1, i.e.,

ϕn(t) ≤ tµPn(r).

Since ϕ is nondecreasing on J so we obtain (as tµPn(r) ∈ J because t ∈ J and µ < 1)

ϕn+1(t) ≤ ϕ[tµPn(r)] ≤ µrPn(r)ϕ(t) ≤ µrPn(r)t
φ(t)
s

= tµrPn(r)+1 = tµPn+1(r).

(2). By making use of Lemma 4.3.3 and monotonicity of φ then (1) leads to the following

φ
(
ϕn(t)

)
≤ φ

(
t
[φ(t)
s

]Pn(r)) ≤ [φ(t)
s

](r−1)Pn(r)
φ(t) = s

[φ(t)
s

]1+(r−1)Pn(r) = s
[φ(t)
s

]rn
which completes the proof.

Definition 4.3.6. Let q ≥ 1 be a fixed real number. A nondecreasing function ϕ : J → J is

said to be a b-Bianchini Grandolfi gauge function with a coefficient q on J if:

σ(t) =
∞∑
n=0

qnϕn(t) <∞ for all t ∈ J. (4.30)
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We note that a b-Bianchini Grandolfi gauge function also satisfies following functional

equation:

σ(t) = qσ(ϕ(t)) + t. (4.31)

It is easy to see that every b-Bianchini Grandolfi gauge function is also Bianchini Grandolfi

[14] gauge function but converse may not hold. A b-Bianchini Grandolfi gauge function having

coefficient q1 ≥ 1 is also a b-Bianchini Grandolfi gauge function having coefficient q2 ≥ 1 for

every q2 ≤ q1.

From now on, we always assume that the coefficient of b-Bianchini Grandolfi gauge function

is at least as large as the coefficient of b-metric space.

Lemma 4.3.7. Every gauge function of order r ≥ 1 defined by (4.27) and (4.28) is a b-

Bianchini Grandolfi gauge function with coefficient s ≥ 1.

Proof. It is immediately followed from first part of Lemma 4.3.5 and using the fact that

Pn(r) ≥ n for r ≥ 1 and n ≥ 0.

4.3.2 Fixed point theorems using gauge function ϕ

For convenience we define a function E : D → R+ by E(x) = d(x, fx) and assume that there

exist some x0 ∈ D such that O(x0) ⊂ D so that the condition (4.25) can be put in the form:

E(fx) ≤ ϕ(E(x)) for all x ∈ O(x0) such that E(x) ∈ J. (4.32)

Lemma 4.3.8. Suppose x0 ∈ X be such that O(x0) ⊂ D. Assume that E(x0) ∈ J then

E(xn) ∈ J for all n ≥ 0.

Proof. Since, x0, x1, x2, · · · , xn are well defined and belong to D. From (4.32) we have

E(x1) = d(x1, x2) ≤ ϕ(d(x0, x1)) = ϕ(E(x0)) ∈ J (as E(x0) ∈ J).

Hence, E(x1) ∈ J . Similarly, iterating successively we get E(xn) ∈ J for all n ≥ 0.

Definition 4.3.9. Suppose x0 ∈ D be such that O(x0) ⊂ D and E(x0) ∈ J . Then for

every iterate xn ∈ D,n ≥ 0 we define the closed ball B(xn, ρn) with center at xn and radius

ρn = sσ(E(xn)), where σ : J → R+ is defined by (4.30).
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Lemma 4.3.10. Suppose x0 ∈ D be such that O(x0) ⊂ D and E(x0) ∈ J . Assume that

B(xn, ρn) ⊂ D for some n ≥ 0 then xn+1 ∈ D and B(xn+1, ρn+1) ⊂ B(xn, ρn).

Proof. Since, E(x0) ∈ J then Lemma 4.3.8 invokes E(xn) ∈ J for all n ≥ 0. The condition

(4.31) implies σ(t) ≥ t for all t ∈ J . We have

d(xn, xn+1) ≤ σ(d(xn, xn+1)) ≤ sσ(d(xn, xn+1)) = ρn.

Thus xn+1 ∈ B(xn, ρn) ⊂ D. Now let x ∈ B(xn+1, ρn+1). As E(xn) ∈ J so that from (4.32)

we have E(xn+1) ≤ ϕ(E(xn)). By making use of (4.31) we get

d(x, xn) ≤ s[d(x, xn+1) + E(xn)]

≤ s[ρn+1 + E(xn)] = s[sσ(E(xn+1)) + E(xn)]

≤ s[sσ(ϕ(E(xn))) + E(xn)] = sσ(E(xn)) = ρn.

Hence, x ∈ B(xn, ρn).

Definition 4.3.11. (Initial Orbital Point). We say that a point x0 ∈ D is an initial orbital

point of f if E(x0) ∈ J and O(x0) ⊂ D.

Following lemma is obvious.

Lemma 4.3.12. For every initial orbital point x0 ∈ D of f and every n ≥ 0 we have

E(xn+1) ≤ ϕ(E(xn)) and E(xn) ≤ ϕn(E(x0)).

Furthermore, if ϕ is a gauge function of order r ≥ 1 defined by (4.27) and (4.28) then

E(xn) ≤ E(x0)µPn(r) and φ(E(xn)) ≤ sµrn = φ(x0)µr
n−1,

where µ = φ(E(x0))
s and φ is nonnegative nondecreasing on J satisfying (4.27) and (4.28).

Proof. By making use of Lemma 4.3.8 we obtain E(xn+1) ≤ ϕ(E(xn)). Since ϕ is nonde-

creasing then it is easily followed that E(xn) ≤ ϕn(E(x0)). Now from Lemma 4.3.5 (1) we

have

E(xn) ≤ ϕn(E(x0)) ≤ E(x0)
[φ(E(x0)

s

]Pn(r)
= E(x0)µPn(r).
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By using Lemma 4.3.5 (2) we obtain

φ(E(xn)) ≤ φ(ϕn(E(x0))) ≤ s
[φ(E(x0))

s

]rn
= sµr

n
.

Following lemma gives bounds for inclusion radii and throughout its proof we will make

use of the following facts,

0 ≤ φ(t) < 1, Pj(r) ≥ j, 0 ≤ µrn < 1,

where r ≥ 1, µ = φ(E(x0))
s and j = 0, 1, 2, · · · .

Lemma 4.3.13. Suppose x0 ∈ D is an initial orbital point of f and ϕ is a gauge function of

order r ≥ 1. Let φ be a nonnegative and nondecreasing on J defined by (4.27) and (4.28).

Then for radii ρn = sσ(E(xn)), n = 0, 1, 2, · · · , the following estimates hold:

1. ρn ≤ sE(xn)
∑∞

j=0

[
φ(E(xn))

]Pj(r) ≤ sE(xn)
1−φ(E(xn)) ,

2. ρn ≤ sE(xn)
∑∞

j=0

[
φ(E(x0))µr

n−1
]Pj(r) ≤ sE(xn)

1−φ(E(x0))µrn−1 ,

3. ρn ≤ sE(x0)µPn(r)
∑∞

j=0

[
φ(E(x0))µr

n−1
]Pj(r) ≤ sE(x0) µPn(r)

1−φ(E(x0))µrn−1 ,

4. ρn+1 ≤ sϕ(E(xn))
∑∞

j=0

[
φ(ϕ(E(xn)))

]Pj(r) ≤ sϕ(E(xn))
1−φ(ϕ(E(xn))) ,

5. ρn+1 ≤ sϕ(E(xn))
∑∞

j=0

[
φ(E(x0))µr

n+1−1
]Pj(r) ≤ sϕ(E(xn))

1−φ(E(x0))µrn+1−1
,

where µ = φ(E(x0))
s .

Proof. 1. From definition of ρn we have

ρn = sσ(E(xn)) = s
∞∑
j=0

sjϕj(E(xn))

≤ s
∞∑
j=0

sjE(xn)
[φ(E(xn))

s

]Pj(r) (using Lemma 4.3.5)

= sE(xn)
∞∑
j=0

sj [
φ(E(xn))

s

]Pj(r) (4.33)

≤ sE(xn)
∞∑
j=0

[φ(E(xn))
]j =

sE(xn)
1− φ(E(xn))

.
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2. From (4.33) we have

ρn ≤ sE(xn)
∞∑
j=0

[
φ(E(xn))

]Pj(r)
≤ sE(xn)

∞∑
j=0

[
sµr

n]Pj(r) (using second part of Lemma 4.3.12)

= sE(xn)
∞∑
j=0

[
φ(E(x0))µr

n−1
]Pj(r)

≤ sE(xn)
∞∑
j=0

[
φ(E(x0))µr

n−1
]j =

sE(xn)
1− φ(E(x0))µrn−1

.

3. By making use of first part of Lemma 4.3.12 in above we have

ρn ≤ sE(xn)
∞∑
j=0

[
φ(E(x0))µr

n−1
]Pj(r)

≤ sE(x0)µPn(r)
∞∑
j=0

[
φ(E(x0))µr

n−1
]j

≤ sE(x0)µPn(r)

1− φ(E(x0))µrn−1
.

4. Now by making use of Lemma 4.3.5 we have

ρn+1 = sσ(E(xn+1)) =
∞∑
j=0

sjϕ(E(xn+1))

≤ sE(xn+1))
∞∑
j=0

sj
[φ(E(xn+1))

s

]Pj(r)
(as E(xn+1) ≤ ϕ(E(xn) and φ is nondecreasing)

≤ sϕ(E(xn))
∞∑
j=0

[
φ(ϕ(E(xn)))

]Pj(r)
≤ sϕ(E(xn))

∞∑
j=0

[
φ(ϕ(E(xn)))

]j =
sϕ(E(xn))

1− φ(ϕ(E(xn)))
.
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5. From (4) we have,

ρn+1 ≤ sϕ(E(xn))
∞∑
j=0

[
φ(E(xn+1))

]Pj(r)
≤ sϕ(E(xn))

∞∑
j=0

[
φ(E(x0))µr

n+1−1
]Pj(r) (using Lemma 4.3.12)

≤ sϕ(E(xn))
1− φ(E(x0))µrn+1−1

.

Now we proceed to formulate the following fixed point theorems.

Theorem 4.3.14. Let f : D ⊂ X → X be an operator on a complete b-metric space

(X, d) such that the b-metric is continuous and f satisfies (4.25) with a b-Bianchini Grandolfi

gauge function ϕ of order r ≥ 1 on an interval J with coefficient s ≥ 1. Then starting

from an initial orbital point x0 of f the iterative sequence (4.26) remains in B(x0, ρ0) and

converges to a point ξ which belongs to each of the closed balls B(xn, ρn), n = 0, 1, 2, · · · ,

where ρn = sσ(d(xn, xn+1)), σ defined in (4.31) and s ≥ 1 is a coefficient of b-metric space.

Furthermore, for each n ≥ 1 we have

d(xn+1, xn) ≤ ϕ(d(xn, xn−1)).

If ξ ∈ D and the function E(x) = d(x, fx) on D is f -orbitally lower semi-continuous at ξ

then ξ is a fixed point of f .

Proof. Since x0 ∈ D is an initial orbital point of f then from Lemma 4.3.10 we have

B(xn+1, ρn+1) ⊂ B(xn, ρn) for all n ≥ 0.

So that xn ∈ B(x0, ρ0) for all n ≥ 0. According to the definition of ρ and using Lemma 4.3.12

we have

ρn = sσ(E(xn)) ≤ sσ(ϕn(E(x0)))

= s

∞∑
j=0

sjϕj(ϕn(E(x0)))

=
1

sn−1

∞∑
j=n

sjϕj(ϕn(E(x0))) for all n ≥ 0. (4.34)
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Since ϕ is a b-Bianchini Grandolfi gauge function then from (4.34) we obtain

ρn → 0 as n→∞, (4.35)

which implies that {B(xn, ρn)} is a nested sequence of closed balls. By Cantor’s theorem (for

complete b-metric spaces), we deduce that there exists a unique point ξ such that ξ ∈ B(xn, ρn)

for all n ≥ 0 and xn → ξ or equivalently, limn→∞ d(xn, ξ) = 0. From (d3) Definition 1.4.1 we

have

d(ξ, fxn) ≤ s[d(ξ, xn) + d(xn, fxn)] = s[d(ξ, xn) + d(xn, xn+1)].

Letting n→∞ and since the b-metric is continuous we obtain

lim
n→∞

d(ξ, fxn) = 0.

If ξ ∈ D and E(x) = d(x, fx) is f -lower semi continuous at ξ then

d(ξ, fξ) = E(ξ) ≤ lim
n→∞

inf E(xn) = lim
n→∞

inf d(xn, xn+1) = 0,

which infers ξ = fξ. Furthermore, from Lemma 4.3.12 we obtain the following

d(xn, xn+1) = E(xn) ≤ ϕ(E(xn−1))

= ϕ(d(xn−1, xn)).

Remark 4.3.15. Theorem 4.3.14 gives a generalization of [85, Theorem 4.1] and extends it to

the case of b-metric spaces. It reduces to [85, Theorem 4.1] when s = 1. Hence Theorem 4.3.14

not only extends the result of Proinov [85] but in turn it also includes results of Bianchini

and Grandolfi [14] and Hicks [47] as special cases.

Corollary 4.3.16. ([85, Theorem 4.1]) Let (X, d) be a complete metric space and f : D ⊂

X → X be an operator satisfying

d(fx, f2x) ≤ ϕ(d(x, fx)) for all x ∈ D and fx ∈ D with d(x, fx) ∈ J, (4.36)

where ϕ is a Bianchini Grandolfi gauge function on an interval J . Then starting from an

initial point x0 of f the iterative sequence {xn} remains in B(x0, ρ0) and converges to a point
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ξ which belongs to each of the closed balls B(xn, ρn) : n = 0, 1, · · · where ρn = σ(d(xn, fxn))

and σ(t) =
∑∞

n=0 ϕ
n(t). Moreover, if ξ ∈ D and f is continuous at ξ then ξ is a fixed point

of f .

Proof. Let x0 ∈ D be an initial point then it is an initial orbital point. It follows from Lemma

4.3.8 that E(xn) ∈ J for n = 0, 1, 2, · · · . Thus from (4.36) we have

d(fx, f2x) ≤ ϕ(d(x, fx)) for all x ∈ O(x0) with d(x, fx) ∈ J. (4.37)

Thus Theorem 4.3.14 yields xn → ξ ∈ X. Also since the iterative sequence {xn} ∈ O(x0) and

the mapping f is continuous at point ξ then fxn → fξ. Thus

E(ξ) = d(ξ, fξ) ≤ lim
n→∞

s[d(ξ, xn+1) + d(xn+1, fξ)] = 0 ≤ lim
n→∞

inf E(xn).

This yiels f -orbital lower semi-continuity of E(x) = d(x, fx) at point ξ. Hence the conclusion

follows from Theorem 4.3.14.

Theorem 4.3.17. Let f : D ⊂ X → X be an operator on a complete b-metric space (X, d)

such that the b-metric is continuous and let f satisfies (4.25) with a b-Bianchini Grandolfi

gauge function ϕ of order r ≥ 1 and coefficient s on an interval J . Further, suppose that

x0 ∈ D is an initial orbital point of f then following statements hold true.

1. The iterative sequence (4.26) remains in B(x0, ρ0) and converges with rate of convergence

at least r ≥ 1 to a point ξ which belongs to each of the closed balls B(xn, ρn), n =

0, 1, · · · , and

ρn = sd(xn, xn+1)
∞∑
j=0

[
φ(d(xn, xn+1))

]
≤ sd(xn, xn+1)

1− φ(d(xn, xn+1))
(4.38)

where φ is nonnegative and nondecreasing function on J satisfying (4.27) and (4.28).

2. For all n ≥ 0 the following priori estimate holds:

d(xn, ξ) ≤
E(x0)
sn−1

∞∑
j=n

φ(E(x0))Pj(r)

= d(x0, fx0)
φ(E(x0))Pn(r)

sn−1[1− φ(E(x0))rn ]
. (4.39)
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3. For all n ≥ 1 the following posteriori estimate holds:

d(xn, ξ) ≤ sϕ(d(xn, xn−1))
∞∑
j=0

[
φ(ϕ(d(xn, xn−1)))

]Pj(r)
≤ sϕ(d(xn, xn−1))

1− φ[ϕ(d(xn, xn−1))]

≤ sϕ(d(xn, xn−1))

1− φ(d(xn, xn−1))
[φ(d(xn,xn−1))

s

]r−1
. (4.40)

4. For all n ≥ 1, we have

d(xn+1, xn) ≤ ϕ(d(xn, xn−1) ≤ µPn(r)d(x0, fx0). (4.41)

5. If ξ ∈ D and the function G(x) = d(x, fx) on D is f -orbitally lower semi-continuous at ξ

then ξ is a fixed point of f .

Proof. 1. From Theorem 4.3.14 it follows that iterative sequence (4.26) converges to ξ ∈ X

and further ξ ∈ B(xn, ρn) for all n = 0, 1, 2, · · · . Moreover, estimate (1) of Lemma 4.3.13

implies

ρn ≤ sd(xn, xn+1)
∞∑
j=0

[
φ(d(xn, xn+1))

]Pj(r) ≤ sd(xn, xn+1)
1− φ(d(xn, xn+1))

2. For m > n

d(xn, xm) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + · · ·+ sm−n−1d(xm−2, xm−1) + sm−nd(xm−1, xm)

=
1

sn−1

m−1∑
j=n

sjE(xj)

≤ 1
sn−1

m−1∑
j=n

sjϕj(E(x0)) (from Lemma 4.3.12 E(xn) ≤ ϕn(E(x0)))

≤ 1
sn−1

m−1∑
j=n

sjE(x0)
[φ(E(x0))

s

]Pj(r)
(using Lemma 4.3.5)

≤ E(x0)
sn−1

m−1∑
j=n

λPj(r),

where λ = φ(E(x0)). Keeping n fixed and letting m→∞ we get

d(xn, ξ) ≤
E(x0)
sn−1

∞∑
j=n

λPj(r) =
d(x0, fx0)
sn−1

∞∑
j=n

λPj(r). (4.42)
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Since,

rn + rn+1 ≥ 2rn, rn + rn+1 + rn+2 ≥ 3rn, · · · ,

then,

λr
n+rn+1 ≤ λ2rn , λr

n+rn+1+rn+2 ≤ λ3rn , · · · ,

which gives

∞∑
j=n

λPj(r) = λPj(r) + λPj+1(r) + · · ·

= λPn(r)
[
1 + λr

n
+ λr

n+rn+1
+ λr

n+rn+1+rn+2
+ · · ·

]
≤ λPj(r)

[
1 + λr

n
+ λ2rn + λ3rn + · · ·

]
=

λPn(r)

1− λrn
. (4.43)

Hence from (4.42) we obtain

d(xn, ξ) ≤
E(x0)
sn−1

∞∑
j=n

φ(E(x0))Pj(r) = d(x0, fx0)
φ(E(x0))Pn(r)

sn−1[1− φ(E(x0))rn ]

3. From (4.42) we have for n ≥ 0

d(xn, ξ) ≤
d(x0, x1)
sn−1

∞∑
j=n

[
φ(d(x0, x1))

]Pj(r).
Setting n = 0, y0 = x0 and y1 = x1 we have

d(y0, ξ) ≤ sd(y0, y1)
∞∑
j=0

[
φ(d(y0, y1))

]Pj(r).
Setting again y0 = xn and y1 = xn+1 gives

d(xn, ξ) ≤ sd(xn, xn+1)
∞∑
j=0

[
φ(d(xn, xn+1))

]Pj(r)
≤ sϕ(d(xn, xn−1))

∞∑
j=0

[
φ(ϕ(d(xn, xn−1)))

]Pj(r)
≤ sϕ(d(xn, xn−1))

∞∑
j=0

[
φ(ϕ(d(xn, xn−1)))

]j
=

sϕ(d(xn, xn−1))
1− φ(ϕ(d(xn, xn−1)))

. (4.44)
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From Lemma 4.3.5(2) we obtain

φ(ϕ(d(xn, xn−1))) ≤ s
[φ(d(xn, xn−1))

s

]r = φ(d(xn, xn−1))
[φ(d(xn, xn−1))

s

]r−1 (4.45)

which implies

1
1− φ(ϕ(d(xn, xn−1)))

≤ 1

1− φ(d(xn, xn−1))
[φ(d(xn,xn−1))

s

]r−1
. (4.46)

Thus from (4.44) and (4.46) we deduce for n ≥ 1,

d(xn, ξ) ≤
sϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))

≤ sϕ(d(xn, xn−1))

1− φ(d(xn, xn−1))
[φ(d(xn,xn−1))

s

]r−1
.

4.

d(xn+1, xn) = E(xn) ≤ ϕ(E(xn−1))

= E(xn−1)
φ(E(xn−1))

s

≤ E(x0)µPn−1(r)µr
n−1

using Lemma (4.3.3)

= E(x0)µPn−1(r)+rn−1

= E(x0)µPn(r) = µPn(r)d(x0, fx0).

5. Its proof runs on the same lines as the proof of Theorem 4.3.14.

Remark 4.3.18. For s = 1 Theorem 4.3.17 reduces to [85, Theorem 4.2]. It also generalizes

(taking s = 1 and ϕ(t) = λt, 0 < λ < 1) results of Rheinboldt [92, 12.3.2], Kornstaedt [65,

Satz 4.1], Hicks and Rhoades [48] and Park [80, Theorem 2]. First two conclusions of Theorem

4.3.17 are due to Gel’man [38, Theorem3] (taking s = 1 and ϕ(t) = ctr, c ≥ 0, r ≥ 1). It also

yields some results of Hicks [47, Theorem 3].

Corollary 4.3.19. Let f : X → X be an operator on a complete b-metric space (X, d) such

that the b-metric is continuous. Further, assume that f satisfies:

d(fx, fy) ≤ ϕ(d(x, y)) for all x, y ∈ X with d(x, y) ∈ J, (4.47)

where ϕ is a b-Bianchini Grandolfi gauge function of order r ≥ 1 on an interval J and with

coefficient s ≥ 1. Assume that x0 ∈ X is such that d(x0, fx0) ∈ J. Then the following

statements hold.
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(i) The iterative sequence (4.26) converges to a fixed point ξ of f .

(ii) The operator f has a unique fixed point in S = {x ∈ X : d(x, ξ) ∈ J}.

(iii) The estimates (4.38)-(4.41) are valid.

Proof. From (4.47) we have

d(fx, fy) ≤ ϕ(d(x, y)) < d(x, y),

which gives the continuity of f in b-metric space (X, d). Thus conclusions (i) and (iii) follow

immediately from Theorem 4.3.17. Let ξ′ is another fixed point of f in S then d(ξ, ξ′) ∈ J .

It follows from (4.47) that d(ξ, ξ′) ≤ ϕ(d(ξ, ξ′)) which yields ξ′ = ξ.

Remark 4.3.20. For s = 1 when b-metric space under consideration is a simple metric space

then above corollary coincides with [85, Corollary 4.4]. Thus conclusions of Corollary 4.3.19

are consequences of results of Matkowski [66].

4.3.3 Application and illustrative example

The following example elucidates the degree of generality of our results.

Example 4.3.21. Let X := {x1, x2, x3}. Define a function d : X ×X → R+ as

d(x1, x2) =
1
k2
, d(x2, x3) =

1
k − 1

, d(x1, x3) =
1
k
, d(xi, xj) = d(xj , xi)

and d(xi, xi) = 0 for all i, j = 1, 2, 3,

where k ≥ 3 is any positive integer. It is an easy exercise to see that d is a b-metric with

coefficient s ≥ k2

k2−1
> 1. Define f : X → X as

fx1 = x1, fx2 = x1, fx3 = x2.

Setting ϕ(t) = t2 on J = [0, 1
k−1 ] then ϕ is a b-Bianchini Grandolfi gauge function with

coefficient k2

(k2−1)
having order 2. Moreover, it is easily seen that all conditions of Theorem

4.3.14 are satisfied.

On the other hand assume that x1, x2, x3 are real numbers and the set {x1, x2, x3} is endowed
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with the Euclidean metric de. For each gauge function ϕ defined on some interval [0, h) one

can find 1
n0
∈ [0, h) for some n0 ∈ N. In such case, identifying as x1 = 1

n0
, x2 = 2

n0
, x3 = 3

n0
.

Assume f as defined above then with respect to Euclidean metric de we have,

de(f
2
n0
, f

3
n0

) = de(
1
n0
,

2
n0

) =
1
n0
≤ ϕ(de(

2
n0
,

3
n0

)) = ϕ(
1
n0

)

which contradicts the definition of ϕ. Hence, one can not invoke main results of Proinov [85,

Theorem 4.1, 4.2, Cororraly 4.4].

Theorem 4.3.22. Consider the following initial value problem,

x′(t) = f(t, x(t)), x(t0) = x0. (4.48)

Assume that:

(i) f is continuous;

(ii) f satisfies the condition

|f(t, x)− f(t, y)| ≤ k|x(t)− y(t)|r for (t, x), (t, y) ∈ R; (4.49)

(iii) f is bounded on R i,e.,

|f(t, x)| ≤ kr

2
; (4.50)

where R = {(t, x) : |t− t0| ≤ ( 1
k )r−1, |x− x0| ≤ k

2}, r ≥ 2 and 0 < k < 1.

Then the initial value problem (4.48) has a unique solution on the interval I = [t0−( 1
k )r−1, t0+

( 1
k )r−1].

Proof. Let C(I) be the space of all continuous real valued functions on I where I = [t0 −

( 1
k )r−1, t0 + ( 1

k )r−1] with the usual supremum metric, i.e.,

d(x, y) = max
t∈I
|x(t)− y(t)|.

Integrating 4.48 gives

x(t) = x0 +
∫ t

t0

f(τ, x(τ))dτ. (4.51)
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Indeed finding the solution of initial value problem (4.48) is equivalent of finding the fixed

point of self mapping T : X → X defined by

Tx(t) = x0 +
∫ t

t0

f(τ, x(τ))dτ, (4.52)

where X = {x ∈ C(I) : |x(t) − x0| ≤ k
2 ; k > 0} then X is closed subspace of C(I). We see

that if τ ∈ I then |τ − t0| ≤ ( 1
k )r−1 and x ∈ X gives |x(τ) − x0| ≤ k

2 . Thus (τ, x(τ)) ∈ R

and since f is continuous on R therefore the integral in (4.52) exists and T is defined for each

x ∈ X. To see that T maps X to itself. We use (4.52) to write

|Tx(t)− x0| = |
∫ t

t0

f(τ, x(τ))dτ |

≤
∫ t

t0

|f(τ, x(τ))|dτ

≤ kr

2
|t− t0| (using (4.50))

≤ kr

2
(
1
k

)r−1 =
k

2
.

Now by using (4.49) we have

|Tx(t)− Ty(t)| ≤
∫ t

t0

|f(τ, x(τ))− f(τ, y(τ))|

≤ k

∫ t

t0

|x(τ)− y(τ)|rdτ

≤ k
(

max
τ∈I
|x(τ)− y(τ)|

)r|t− t0|
≤ k

(
max
τ∈I
|x(τ)− y(τ)|

)r( 1
k

)r−1

= (
1
k

)r−2
(

max
τ∈I
|x(τ)− y(τ)|

)r
, (4.53)

Thus (4.53) implies

d(Tx, Ty) ≤ (
1
k

)r−2(d(x, y))r. (4.54)

We take J = [0, k]. So that it suffices to take ϕ(u) = ( 1
k )r−2ur for u ∈ [0, k]; k < 1 then ϕ is

a gauge function of order r ≥ 2. Also, for u ∈ J − {0} we have

ϕ(u) = (
1
k

)r−2ur = (
1
k

)r−2u2ur−2 ≤ (
1
k

)r−2u2kr−2 = u2 < u. (4.55)

Thus from (4.54) we obtain d(Tx, Ty) ≤ ϕ(d(x, y)) for all x, y ∈ X and d(x, y) ∈ J . Further,

for any x ∈ X it is easily seen that d(x, x0) ≤ k
2 which yields d(x, y) ≤ k for x, y ∈ X.
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Therefore, all the conditions of Corollary 4.3.19 are satisfied. Hence the iterative sequence

xn = Txn−1; n = 1, 2, · · · converges to the unique fixed point of T at a rate of convergence

r ≥ 2. On the other hand Picard iterations converges to the solution linearly.

4.4 Conclusion

1. Section 4.2 is devoted to some fixed point theorems in b-metric space endowed with a

graph G. In this context we defined the notions of b-(ϕ,G) contractions and Hardy

and Rogers type G-contractions and established fixed point theorems for such classed

(see, Theorem 4.2.14 & 4.2.25). Consequently, our results evoke the notions of cyclic

contractions in b-metric space which substantiates the validity of results (see, Theorem

4.2.32 & 4.2.34). Moreover, b-(ϕ,G) contractions subsumes the so called notion of α−ϕ

contractions due to Samet et al. [100] (see, Theorem 4.2.39).

2. In Section 4.3 we have established two convergence theorems in the setting of a b-metric

such that the self-mapping satisfies a contraction condition involving a gauge function

of order r ≥ 1. The gauge function ϕ has to satisfy the condition
∑∞

n=0 s
nϕn(t) < ∞

where s ≥ 1 is the coefficient of underlying b-metric space. An example (Example 4.3.21)

has been furnished to assess the degree of generality of our results. As an application

we established an existence theorem for the solution of an initial value problem which

not only gives the unique solution but also locates the domain for solution.
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Chapter 5

Fixed point theorems in probabilistic
metric spaces

Because of its comprehensive and panoptic aspect the Banach contraction principle has been

extended in many different directions for single and multi-valued mappings not only in metric

space but in probabilistic metric space as well. As we have mentioned earlier that Nieto

and Rodríguez-López [73], Ran and Reurings [90], Petruşel and Rus [84] established some

elegant results for contractions in partially ordered metric spaces. Afterwards Jachymski [52]

established a nice generalization by utilizing graph theoretic approach.

Motivated by the work of Jachymski one can pose a very natural question: Is it possible to

establish a probabilistic version of the main result of Jachymski [52] (see, Corollary 5.2.12)?

In this chapter we give an affirmative answer to this question [56]. Our results are substantial

generalizations and improvements of corresponding the results of Jachymski [52] and Sehgal

[104] and others (see, e.g., [72, 73, 90]). Subsequently, we apply our main results to the setting

of cyclical contractions and to that of (ε, δ)-contractions as well.

5.1 Preliminaries

In the following we recall some basic notions which can be found in [67, 104, 107].

Definition 5.1.1. A mapping ∆ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm (briefly,

t-norm) if the following conditions hold:

(i) ∆ is associative and commutative,
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(ii) ∆(a, 1) = a for all a ∈ [0, 1],

(iii) ∆(a, b) ≤ ∆(c, d) for all a, b, c, d ∈ [0, 1] with a ≤ c and b ≤ d.

Typical examples of t-norms are ∆M (a, b) = min{a, b} and ∆P (a, b) = ab.

Definition 5.1.2. (Hadzić [43], Hadzić and Pap [44]) A t-norm ∆ is said to be of H -type

if the family of functions {∆n(t)}n∈N is equicontinuous at t = 1, where ∆n : [0, 1] → [0, 1] is

recursively defined by:

∆1(t) = ∆(t, t), and ∆n(t) = ∆(∆n−1(t), t); t ∈ [0, 1], n = 2, 3, · · · .

A trivial example of a t-norm of H -type is ∆M := min, but there exists t-norms of

H -type with ∆ 6= ∆M (see, e.g.,[43]).

Definition 5.1.3. A Menger probabilistic metric space (briefly, Menger PM-space) is a triple

(X,F ,∆) where (X,F ) is a PM-space, ∆ is a t-norm and instead of (PM3) in Definition

1.5.2 it satisfies the following triangle inequality:

(PM3)′ Fx,z(t+ s) ≥ ∆(Fx,y(t), Fy,z(s)),

for all x, y, z ∈ X and t, s ≥ 0.

Remark 5.1.4. (Sehgal [104]) Let (X, d) be a metric space. Define Fxy(t) = ε0(t − d(x, y))

for all x, y ∈ X and t > 0. Then the triple (X,F ,∆M ) is a Menger PM-space induced by the

metric d. Furthermore, (X,F ,∆M ) is complete if and only if d is complete.

Schweizer et al. [108] introduced the concept of neighborhood in PM-spaces. For ε > 0

and δ ∈ (0, 1] the (ε, δ)-neighborhood of x ∈ X is denoted by Nx(ε, δ) and is defined by

Nx(ε, δ) = {y ∈ X : Fx,y(ε) > 1− δ}.

Furthermore, if (X,F ,∆) is a Menger PM-space with sup0<a<1 ∆(a, a) = 1 then the family

of neighborhoods {Nx(ε, δ) : x ∈ X, ε > 0, δ ∈ (0, 1]} determines a Hausdorff topology for X.

Definition 5.1.5. Let (X,F ,∆) be a Menger PM-space.
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(1) A sequence {xn} in X converges to an element x in X (we write xn → x or limn→∞ xn =

x) if for every ε > 0 and δ > 0 there exists a natural numberN(ε, δ) such that Fxn,x(ε) >

1− δ whenever n ≥ N .

(2) A sequence {xn} in X is Cauchy sequence if, for every ε > 0 and δ > 0 there exists a

natural number N(ε, δ) such that Fxn,xm(ε) > 1− δ, whenever n,m ≥ N .

(3) A Menger PM-space is complete if and only if every Cauchy sequence in X converges to

a point in X.

Theorem 5.1.6. (Sehgal [104]) Let (X,F ,∆) be a complete Menger PM-space where ∆ is a

continuous t-norm satisfying ∆(x, x) > x for each x ∈ [0, 1]. Let f : X → X and there exists

κ; 0 < κ < 1 such that f satisfies the following contraction condition

Ffx,fy(κt) ≥ Fx,y(t), (t > 0) for all x, y ∈ X. (5.1)

Then there exists a unique fixed point ξ ∈ X. Furthermore, fny → ξ for every y ∈ X.

Sherwood [109] established the following fixed point theorem for the class of t-norms of

H -type.

Theorem 5.1.7. Let (X,F ,∆) be a complete Menger PM-space where ∆ is a t-norm of

H -type. Let f : X → X and there exists κ; 0 < κ < 1 such that f satisfies the following

contraction condition

Ffx,fy(κt) ≥ Fx,y(t), (t > 0) for all x, y ∈ X. (5.2)

Then there exists a unique fixed point ξ ∈ X. Furthermore, fny → ξ for every y ∈ X.

Now we attribute to some basic notations from graph theory which are needed subse-

quently. Let (X, d) be a metric space, Ω be the diagonal of the Cartesian product X ×X, G

be a directed graph such that the set V (G) of its vertices coincides with X and the set E(G)

of its edges contains all loops, i.e., E(G) ⊇ Ω. Assume that G has no parallel edges. For each

(x, y) ∈ E(G) we attribute a unique distance distribution function Fx,y.
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5.2 Probabilistic G-contractions

We start with the following instinctive definition.

Definition 5.2.1. Let (X,F ,∆) be a PM-space. A mapping f : X → X is said to be a

probabilistic G-contraction if there exists κ ∈ (0, 1) such that the following condition holds

for all x, y ∈ X:

(fx, fy) ∈ E(G) whenever (x, y) ∈ E(G), (5.3)

(x, y) ∈ E(G) implies Ffx,fy(κt) ≥ Fx,y(t) (t > 0). (5.4)

Example 5.2.2. Let (X, d) be a metric space endowed with a graph G and the mapping

f : X → X be a Banach G-contraction. Then the induced Menger PM space (X,F ,∆M ) is

a probabilistic G-contraction.

To see this, let (x, y) ∈ E(G) then (fx, fy) ∈ E(G) as f is a Banach G-contraction. Further,

there exists κ ∈ (0, 1) such that for x, y ∈ X with (x, y) ∈ E(G) we have

d(fx, fy) ≤ κd(x, y). (5.5)

Now for t > 0 we have

Ffx,fy(κt) = ε0(κt− d(fx, fy))

≥ ε0(κt− κd(x, y)) = Fx,y(t).

Thus f satisfies (5.4).

From Example 5.2.2 it infers that every BanachG-contraction is a probabilisticG-contraction

with the same contraction constant.

5.2.1 Fixed point theorems for probabilistic G-contractions

We start with the following proposition.

Proposition 5.2.3. Let f : X → X be a probabilistic G-contraction with a contraction

constant κ ∈ (0, 1). Then
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(i) f is a probabilistic G̃−contraction and a probabilistic G−1−contraction with the same

contraction constant κ.

(ii) [x0]
G̃
is f−invariant and f |[x0]

G̃
is probabilistic G̃x0−contraction provided that x0 ∈ X

is such that fx0 ∈ [x0]
G̃
.

Proof. (i) It follows from symmetry of Fx,y.

(ii) Let x ∈ [x0]G̃. Then there is a path x = z0, z1, · · · , zl = x0 between x and x0. Since f is

a probabilistic G−contraction then (fzi−1, fzi) ∈ E(G)∀i = 1, 2, · · · , l. Thus fx ∈ [fx0]G̃ =

[x0]G̃.

Suppose (x, y) ∈ E(G̃x0). Then (fx, fy) ∈ E(G) as f is a probabilistic G−contraction. But

[x0]G̃ is f invariant, so we conclude that (fx, fy) ∈ E(G̃x0). The condition (5.4) is satisfied

automatically, since G̃x0 is a subgraph of G.

Lemma 5.2.4. Let (X,F ,∆) be a Menger PM-space under a t−norm ∆ satisfying supa<1

∆(a, a) = 1. Assume that the mapping f : X → X is a probabilistic G-contraction. Let

y ∈ [x]
G̃

then Ffnx,fny(t) → 1 as n → ∞ (t > 0). Moreover, fnx → z ∈ X (n → ∞) if and

only if fny → z (n→∞).

Proof. Let x ∈ X and y ∈ [x]
G̃

then there exists a path (xi); i = 0, 1, 2, · · · , l in G̃ from x

to y with x0 = x, xl = y and (xi−1, xi) ∈ E(G̃). From Proposition 5.2.3 it infers that f is

a probabilistic G̃−contraction. By induction for t > 0 we have, (fnxi−1, f
nxi) ∈ E(G̃) and

Ffnxi−1,fnxi(κt) ≥ Ffn−1xi−1,fn−1yi(t) for all n ∈ N and i = 1, · · · , l. Thus we obtain

Ffnxi−1,fnxi(t) ≥ Ffn−1xi−1,fn−1xi(
t

κ
)

≥ Ffn−2xi−1,fn−2xi(
t

κ2
)

· · ·

≥ Fxi−1,xi(
t

κn
)→ 1 (as n→∞).

Let t > 0 and δ > 0 be given and since supa<1 ∆(a, a) = 1 then there exists λ(δ) ∈ (0, 1) such

that ∆(1 − λ, 1 − λ) > 1 − δ. Choose a natural number n′ such that for all n ≥ n′ we have,
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Ffnx0,fnx1( t2) > 1− λ and Ffnx1,fnx2( t2) > 1− λ. We get for all n ≥ n′

Ffnx0,fnx2(t) ≥ ∆(Ffnx0,fnx1(
t

2
), Ffnx1,fnx2(

t

2
))

≥ ∆(1− λ, 1− λ) > 1− δ,

so that Ffnx0,fnx2(t)→ 1 as n→∞, (t > 0). Continuing recursively one can easily show that

Ffnx0,fnxl(t)→ 1 as n→∞, (t > 0).

Let fnx → z ∈ X. Let t > 0 and δ > 0 be given, since supa<1 ∆(a, a) = 1 then there exists

λ(δ) ∈ (0, 1) such that ∆(1− λ, 1− λ) > 1− δ. Choose a natural number n0 such that for all

n ≥ n0 we have, Ffnx,fny( t2) > 1− λ and Fz,fnx( t2) > 1− λ. So that for all n ≥ n0, we have,

Fz,fny(t) ≥ ∆(Fz,fnx(
t

2
), Ffnx,fny(

t

2
))

≥ ∆(1− λ, 1− λ) > 1− δ.

Hence, fny → z as n→∞.

Every t-norm can be extended in a unique way to an n-array as: ∆0
i=1xi = 0, ∆n

i=1xi =

∆(∆n−1
i=1 xi, xn) for n = 1, 2, · · · . Let (xi)li=1 be a path between two vertices x and y in a

graph G. Let us denote with Lx,y(t) = ∆l
i=1Fxi−1,xi(t) for all t. Clearly the function Lx,y is

monotone nondecreasing.

In the following we extend the notions of (Cf ) and (Hf ) graphs to probabilistic metric spaces.

Definition 5.2.5. Let (X,F ,∆) be a PM-space and f : X → X. Suppose there exists a

sequence {fnx} in X such that fnx −→ x∗ and (fnx, fn+1x) ∈ E(G) for n ∈ N. We say that:

(i) G is a (Cf )-graph in X if there exists a subsequence {fnkx} of {fnx} and a natural

number N such that (fnkx, x∗) ∈ E(G) for k ≥ N ;

(ii) G is an (Hf )-graph in X if fnx ∈ [x∗]
G̃

for n ≥ 1 and the sequence of functions

{Lfnx,x∗(t)} converges to ε0(t) uniformly as n→∞ (t > 0).

Example 5.2.6. Let (X,F ,∆) be a Menger PM-space induced by the metric d(x, y) = |x−y|

on X = { 1
n : n ∈ N} ∪ {0} ∪ N and I be an identity map on X.
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Consider the graph G2 consisting of V (G2) = X and

E(G2) = {( 1
n ,

1
n+1), ( 1

n+1 , n), (n, 0), ( 1
5n , 0);n ∈ N}.

We note that xn = 1
n → 0 as n → ∞. Also it is easy to see that G2 is a (CI)-graph. But

since, ∆(a, b) = min{a, b} then

Lxn,0(t) = ∆(∆(ε0(t− | 1
n
− 1
n+ 1

|), ε0(t− | 1
n+ 1

− n|)), ε0(t− n))

= ε0(t− n) 9 ε0(t) as n→∞.

Thus G2 is not an (HI)-graph.

Example 5.2.7. Let (X,F ,∆) be a Menger PM space induced by the metric d(x, y) = |x−y|

on X = { 1
n : n ∈ N} ∪ {

√
5

n+1 : n ∈ N} ∪ {0} and I be an identity map on X. Consider the

graph G3 consisting of V (G3) = X and

E(G3) = {( 1
n ,

1
n+1), ( 1

n ,
√

5
n+1), (

√
5

n+1 , 0);n ∈ N}.

Since, xn = 1
n → 0 as n→∞. Clearly G4 is not a (CI)-graph. But,

Lxn,0(t) = ε0(t−
√

5
n+ 1

)→ ε0(t) as n→∞(t > 0).

Thus G3 is an (HI)-graph.

From above examples we note that the notions of (Cf )-graph and (Hf )-graph are inde-

pendent even if f is an identity map.

Following lemma is essential to prove our fixed point results.

Lemma 5.2.8. (Miheţ [68]) Let (X,F ,∆) be a Menger PM-space under a t-norm ∆ of

H -type. Let {xn} be a sequence in X and there exists κ ∈ (0, 1) such that:

Fxn,xn+1(κt) ≥ Fxn−1,xn(t) for all n ∈ N, t > 0.

Then {xn} is a Cauchy sequence.

Theorem 5.2.9. Let (X,F ,∆) be a complete Menger PM-space under a t-norm ∆ of H -

type. Assume that the mapping f : X → X is a probabilistic G-contraction and there exists

x0 ∈ X such that (x0, fx0) ∈ E(G) then the following assertions hold.
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(i). IfG is a (Cf )-graph then f has a unique fixed point ξ ∈ [x0]
G̃
and for any y ∈ [x0]

G̃
, fny →

ξ. Moreover, if G is weakly connected then f is a Picard operator .

(ii). If G is weakly connected (Hf )-graph then f is a Picard operator .

Proof. Since f is a probabilistic G-contraction and there exists x0 ∈ X such that (x0, fx0) ∈

E(G). By induction (fnx0, f
n+1x0) ∈ E(G) for all n ≥ 1 and for t > 0,

Ffnx0,fn+1x0
(κt) ≥ Ffn−1x0,fnx0

(t) for all n ≥ 1. (5.6)

(i). Since, t-norm ∆ is H -type then from Lemma 5.2.8 it infers that {fnx0} is a Cauchy

sequence in X. From completeness of Menger PM-space X there exists ξ ∈ X such that

lim
n→∞

fnx0 = ξ. (5.7)

Now we prove that ξ is a fixed point of f . Let G be a (Cf )-graph. Then there exists a

subsequence {fnkx0} of {fnx0} and N ∈ N such that (fnkx0, ξ) ∈ E(G) for all k ≥ N . Note

that (x0, fx0, f
2x0, ..., f

n1x0, · · · , fnNx0, ξ) is a path in G and so in G̃ from x0 to ξ, thus

ξ ∈ [x0]
G̃
. Since f is probabilistic G-contraction and (fnkx0, ξ) ∈ E(G) for all k ≥ N . For

t > 0 and k ≥ N , we get

Ffnk+1x0,fξ
(t) ≥ Ffnk+1x0,fξ

(κt)

≥ Ffnkx0,ξ(t)→ 1 as k →∞.

Thus we obtain,

lim
k→∞

fnk+1x0 = fξ. (5.8)

Hence, we conclude that fξ = ξ. Now let y ∈ [x0]
G̃
then from Lemma 5.2.4 we get

lim
n→∞

fny = ξ. (5.9)

Next we prove the uniqueness of fixed point. Suppose ξ∗ ∈ [x0]
G̃

= [ξ]
G̃

such that fξ∗ = ξ∗,

then from Lemma 5.2.4 for t > 0, we have,

Fξ,ξ∗(t) = Ffnξ,fnξ∗(t)→ 1 n→∞. (5.10)

Hence, ξ∗ = ξ. Moreover, if G is weakly connected then f is Picard operator as [x0]
G̃

:= X.
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(ii). Let G be a weakly connected (Hf )-graph. By using the same arguments as in the first

part of proof we obtain limn→∞ f
nx0 = ξ. Since G is weakly connected for each n ∈ N there

exist a finite Mn ∈ N such that (zni ); i = 0, · · · ,Mn be a path in G̃ from fnx0 to ξ with

zn0 = fnx0, znMn
= ξ and (zni−1, z

n
i ) ∈ E(G̃).

Fξ,fξ(t) ≥ Fξ,fξ(κt)

≥ ∆(Fξ,fn+1x0
(
κt

2
), Ffn+1x0,fξ(

κt

2
))

≥ ∆(Fξ,fn+1x0
(
κt

2
),∆Mn

i=1Ffzni−1,fz
n
i
(
κt

2Mn
))

≥ ∆(Fξ,fn+1x0
(
κt

2
),∆Mn

i=1Fzni−1,z
n
i
(

t

2Mn
))

= ∆(Fξ,fn+1x0
(
κt

2
), Lfnx0,ξ(

t

2Mn
))

≥ ∆(Fξ,fn+1x0
(
κt

2
), Lfnx0,ξ(

t

2M
)), (5.11)

where M = max{Mn : n ∈ N}. Since, G is an (Hf )-graph and (fnx0, f
n+1x0) ∈ E(G)

for n ∈ N with limn→∞ f
nx0 = ξ ∈ X. Then sequence of functions {Lfnx0,ξ(t)} converges

to ε0(t), (t > 0) uniformly. Let t > 0 and δ > 0 be given, as the family {∆p(t)}p ∈ N is

equicontinuous at point t = 1 there exists λ(δ) ∈ (0, 1) such that ∆p(1 − λ) > 1 − δ for

every p ∈ N. Choose n0 ∈ N such that for all n ≥ n0 we have, Fξ,fn+1x0
(κt2 ) > 1 − λ and

Lfnx0,ξ(
t

2M ) > 1− λ. So that in view of (5.11) for all n ≥ n0 we have

Fξ,fξ(t) ≥ ∆(1− λ, 1− λ)

= ∆1(1− λ) > 1− δ. (5.12)

Hence, we deduce fξ = ξ. Finally, let y ∈ X := [x0]
G̃

be arbitrary then from Lemma 5.2.4,

limn→∞ f
ny = ξ.

Corollary 5.2.10. Let (X,F ,∆) be a complete Menger PM-space under a t-norm ∆ of H -

type. Assume that X is endowed with a graph G which is either (Cf )-graph or (Hf )-graph.

Then following statements are equivalent:

(i) G is weakly connected.

(ii) For every probabilistic G-contraction f on X if there exists x0 ∈ X such that (x0, fx0) ∈

E(G) then f is a Picard operator .
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Proof. (i) ⇒ (ii): It is immediate from Theorem 5.2.9.

(ii)⇒ (i): Suppose that G is not weakly connected. Then G̃ is disconnected, i.e., there exists

x∗ ∈ X such that [x∗]
G̃
6= ∅ and X \ [x∗]

G̃
6= ∅. Let y∗ ∈ X \ [x∗]

G̃
, we construct a self

mapping f by:

fx =

{
x∗ if x ∈ [x∗]

G̃

y∗ if x ∈ X \ [x∗]
G̃
.

Let (x, y) ∈ E(G) then [x]
G̃

:= [y]
G̃

which implies fx = fy hence (fx, fy) ∈ E(G) as G

contains all loops. Thus the mapping f preserves edges. Also, for t > 0 and κ ∈ (0, 1) we

have, Ffx,fy(κt) = 1 ≥ Fx,y(t) thus (5.4) is trivially satisfied. But x∗ and y∗ are two fixed

points of f contradicting the fact that f is a Picard operator.

Remark 5.2.11. Taking G = (X,X × X), Theorem 5.2.9 improves and extends result of

Sehgal [104, Theorem 3] to all Menger PM-spaces with t-norms of H -type. Theorem 5.2.9

generalizes claim 40 of [52, Theorem 3.2] and thus we have the following consequence.

Corollary 5.2.12. (Jachymski [52, Theorem 3.2]) Let (X, d) be a complete metric space

endowed with a graph G. Assume that the mapping f : X → X is a Banach G-contraction

and the following property is satisfied:

(P) for any sequence {xn} in X, if xn → x in X and (xn, xn+1) ∈ E(G) for all n ≥ 1 then

there exists a subsequence {xnk} with (xnk , x) ∈ E(G) for all k ≥ 1.

If there exists x0 ∈ X with (x0, fx0) ∈ E(G). Then f |[x0]
G̃
is a Picard operator . Furthermore,

if G is weakly connected then f is a Picard operator.

Proof. Let (X,F ,∆M ) be the Menger PM-space induced by the metric d. Since, the mapping

f is a Banach G-contraction then it is a probabilistic G-contraction (see, Example 5.2.2)

and property (P) invokes G is a (Cf )-graph. Hence the conclusion follows from Theorem

5.2.9(i).

Example 5.2.13. Let (X,F ,∆M ) be a Menger PM-space where X = [0,∞) and Fx,y(t) =
t

t+|x−y| for t > 0. Then (X,F ,∆M ) is complete. Define a selfmapping f on X by:

fx =

{
x2

p if x = 1
n and p ≥ 3 is fixed integer,

0, otherwise.
(5.13)
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Further assume that X is endowed with a graph G consisting of V (G) := X and E(G) :=

Ω ∪ {( 1
n ,

1
m) : n,m ∈ N and n|m} ∪ {(x, 0) : x 6= 1

n}. It can be seen that f is a probabilistic

G-contraction with κ = 2
p and satisfies all conditions of Theorem 5.2.9 (i).

Note that for x = 1 and y = 5
6 and for each κ ∈ (0, 1) we can easily set 0 < t < 1

6(1−κ) such

that,
κt

κt+ |13 − 0|
<

t

t+ |1− 5
6 |
,

or,

Ff1,f 5
6
(κt) < F1, 5

6
(t) for 0 < t <

1
6(1− κ)

.

Hence, one can not invoke [104, Theorem 3].

In the following we extend the notions of orbital continuity and orbital G-continuity of a

self-mapping to the case of probabilistic metric spaces.

Definition 5.2.14. Let (X,F ,∆) be a Menger PM-space under a t-norm ∆ of H -type. A

mapping f : X → X is said to be: (i) continuous at point x ∈ X if whenever xn → x in X

implies fxn → fx as n → ∞; (ii) orbitally continuous if for all x, y ∈ X and any sequence

{kn}n∈N of positive integers, fknx → y implies f(fknx) → fy as n → ∞; (iii) orbitally

G-continuous if for all x, y ∈ X and any sequence {kn}n∈N of positive integers, fknx→ y and

(fknx, fkn+1x) ∈ E(G) ∀n ∈ N imply f(fknx)→ fy (see, [52]).

Theorem 5.2.15. Let (X,F ,∆) be a complete Menger PM-space under a t−norm ∆ of

H -type. Assume that the mapping f : X → X is a probabilistic G-contraction such that f

is orbitally G-continuous and let there exists x0 ∈ X such that (x0, fx0) ∈ E(G). Then f

has a unique fixed point ξ ∈ X and for every y ∈ [x0]
G̃
, fny → ξ. Moreover, if G is weakly

connected then f is a Picard operator .

Proof. Let (x0, fx0) ∈ E(G) then by induction (fnx0, f
n+1x0) ∈ E(G) for all n ∈ N. By

using Lemma 5.2.8 it follows that fnx0 → ξ ∈ X. Since, f orbitally G-continuous then

f(fnx0)→ fξ. This gives ξ = fξ. From Lemma 5.2.4 for any y ∈ [x0]
G̃
, fny → ξ.

Remark 5.2.16. We note that in Theorem 5.2.15 the assumption that f is orbitally G-

continuous can be replaced by orbital continuity or continuity of f .
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Remark 5.2.17. Theorem 5.2.15 generalizes and extends claims 20 & 30 [52, Theorem 3.3]

and claim 30 [52, Theorem 3.4].

As a consequence of Theorems 5.2.9, 5.2.15 we obtain following corollary which is actually

a probabilistic version of Theorem 2.5.3 and thus generalizes and extends results of Nieto and

Rodríguez-López [72, Theorems 2.1 and 2.3], Petruşel and Rus [84, Theorem 4.3] and Ran

and Reurings [90, Theorem 2.1].

Corollary 5.2.18. Let (X,�) be a partially ordered set and (X,F ,∆) be a complete Menger

PM-space under a t-norm ∆ of H -type. Assume that the mapping f : X → X is nonde-

creasing (nonincreasing) with respect to the order "�" on X and there exists κ ∈ (0, 1) such

that:

Ffx,fy(κt) ≥ Fx,y(t) for all x, y ∈ X, with x � y, (t > 0). (5.14)

Also suppose that either

(i) f is continuous, or

(ii) for every nondecreasing sequence {xn} in X such that xn → x in X we have xn � x for

all n ≥ 1.

If there exists x0 ∈ X with x0 � fx0, then f has a fixed point. Furthermore, if (X,�) is such

that: every pair of elements of X has an upper or lower bound, then f is a Picard operator .

Proof. Consider a graph G1 consisting of V (G1) = X and E(G1) = {(x, y) ∈ X × X : x �

y}. If f is nondecreasing then it preserves edges with respect to graph G1 and condition

(5.14) becomes equivalent to (5.4). Thus f is a probabilistic G1-contraction. In case f is

nonincreasing consider G2 with E(G2) = {(x, y) ∈ X ×X : x � y or x � y} and vertex set

which coincides with X. Actually, G2 := G̃1 and from Proposition 5.2.3 if f is a probabilistic

G1-contraction then it is a probabilistic G2 contraction. Now if f is continuous then conclusion

follows from Theorem 5.2.15. On the other hand if (ii) holds then G1 and G2 are (Cf )-graphs

and conclusions follow from first part of Theorem 5.2.9.

By relaxing H -type condition on t-norm, our next result deals with compact Menger

PM-space using the following class of graphs as fixed point property is closely related to

connectivity of graph.
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Definition 5.2.19. Let (X,F ) be a PM-space endowed with a graph G and f : X → X. As-

sume the the sequence {fnx} in X with (fnx, fn+1x) ∈ E(G) for n ∈ N and Ffnx,fn+1x(t)→

1(t > 0). We say that the graph G is an (Ef )-graph if for any subsequence fnkx → z ∈ X

there exists a natural number N such that (fnkx, z) ∈ E(G) for all k ≥ N .

Theorem 5.2.20. Let (X,F ,∆) be a compact Menger PM-space under a t−norm ∆ satisfy-

ing supa<1 ∆(a, a) = 1. Assume that the mapping f : X → X is a probabilistic G-contraction

and let there exists x0 ∈ X such that (x0, fx0) ∈ E(G). If G is an (Ef )-graph then f has a

unique fixed point ξ ∈ [x0]
G̃
.

Proof. Since, (x0, fx0) ∈ E(G) then (fnx0, f
n+1x0) ∈ E(G) for n ∈ N and

Ffnx0,fn+1x0
(t) ≥ Ffn−1x0,fnx0

(
t

κ
)

...

≥ Fx0,fx0(
t

κn
)→ 1 as n→∞ (t > 0).

From compactness let {fnkx0} be a subsequence such that fnkx0 → ξ ∈ X. Let t > 0

and δ > 0 be given, since supa<1 ∆(a, a) = 1 then there exists λ(δ) ∈ (0, 1) such that

∆(1 − λ, 1 − λ) > 1 − δ choose n′ ∈ N such that for all k ≥ n′ we have, Ffnkx0,ξ(
t
2) > 1 − λ

and Ffnkx0,f
nk+1x0

( t2) > 1− λ. Then we obtain

Ffnk+1x0,ξ
(t) ≥ ∆(Ffnk+1x0,f

nkx0
(
t

2
), Ffnkx0,ξ(

t

2
))

≥ ∆(1− λ, 1− λ) > 1− δ.

Thus, fnk+1x0 → ξ.

Choose n1 ∈ N such that for all k ≥ n1 we have, Ffnk+1x0,ξ
( t2) > 1−λ and Ffnkx0,ξ(

t
2κ) > 1−λ.

Since, G is an (Ef )-graph there exists N ∈ N such that (fnkx0, ξ) ∈ E(G) for all k ≥ N . Let

n0 = max{n1, N} then for k ≥ n0 we get

Ffξ,ξ(t) ≥ ∆(Ffnk+1x0,fξ
(
t

2
), Ffnk+1x0,ξ

(
t

2
)

≥ ∆(Ffnkx0,ξ(
t

2κ
), Ffnk+1x0,ξ

(
t

2
)

≥ ∆(1− λ, 1− λ) > 1− δ.
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Hence, fξ = ξ. Note that {x0, fx0, · · · , fn1x0, · · · , fnNx0, ξ} is a path in G̃, so that ξ ∈

[x0]
G̃
.

So far it remains to be investigated. Is it possible to extend Theorem 5.2.20 to all complete

Menger PM-spaces?

Definition 5.2.21. [104] Let (X,F ) be a PM-space. Let ε > 0 and 0 < δ < 1 be a fixed real

numbers. A mapping f : X → X is said to be an (ε, δ)-contraction if there exists a constant

κ ∈ (0, 1) such that for x ∈ X and y ∈ Nx(ε, δ) we have,

Ffx,fy(κt) ≥ Fx,y(t) for all t > 0 (5.15)

The PM space (X,F ) is said to be (ε, δ)-chainable if for each x, y ∈ X there exists a finite

sequence (xn)Nn=0 of elements in X with x0 = x and xN = y such that xi+1 ∈ Nxi(ε, δ) for

i = 0, 1, · · · , N − 1.

It is important to note that every (ε, δ)-contraction mapping is continuous. Let xn → x

in X then there exists a natural number N(ε, δ) such that xn ∈ Nx(ε, δ) for all n ≥ N . Thus

for t > 0 and for all n ≥ N we obtain,

Ffxn,fx(t) ≥ Ffxn,fx(κt)

≥ Fxn,x(t)→ 1 as n→∞.

Hence, fxn → fx.

Theorem 5.2.22. Let (X,F ,∆) be a complete (ε, δ)-chainable Menger PM-space under a

t-norm ∆ of H -type. Let the mapping f : X → X is an (ε, δ)-contraction. Then f is a

Picard operator .

Proof. Consider the graph G consisting of E(G) = {(x, y) ∈ X × X : Fx,y(ε) > 1 − δ} and

V (G) coincides with X. Let x, y ∈ X. Since the PM-space (X,F ) is (ε, δ)-chainable there

exists a finite sequence (xi)Ni=0 in X with x0 = x and xN = y such that Fxi,xi+1(ε) > 1 − δ

for i = 0, 1, · · ·N − 1. Hence, (xi, xi+1) ∈ E(G) for i = 0, 1, · · · , N − 1. This implies G is
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connected. Let (x, y) ∈ E(G) then y ∈ Nx(ε, δ). Since, the mapping f is an (ε, δ)-contraction

thus (5.4) is satisfied. Finally we have,

Ffx,fy(ε) ≥ Ffx,fy(κε)

≥ Fx,y(ε) > 1− δ.

Thus, (fx, fy) ∈ E(G). Hence, f is a probabilistic G-contraction and the conclusion follows

from Theorem 5.2.15.

Remark 5.2.23. Theorem 5.2.22 has an advantage over Theorem 7 of Sehgal and Bharucha-

Reid [104] which is only restricted to continuous t-norms satisfying ∆(t, t) ≥ t. Moreover, the

proof of our result is rather simple and easy which evokes novelty of Theorem 5.2.22.

Definition 5.2.24. (Edelstein [36, 37]) The metric space (X, d) is ε-chainbale for some ε > 0

if for every x, y ∈ X there exists finite sequence (xi)Nn=0 of elements in X with x0 = x, xN = y

and d(xi, xi+1) < ε for i = 0, 1, · · · , N − 1.

Remark 5.2.25. [104] If (X, d) is an ε-chainable metric space then induced Menger PM-space

(X,F ,∆M ) is an (ε, δ)-chainable space.

Corollary 5.2.26. (Edelstein [36, 37]) Let (X, d) be a complete ε-chainable metric space.

Let f : X → X and there exists κ ∈ (0, 1) such that

∀x,y∈X{d(x, y) < ε =⇒ d(fx, fy) ≤ κ d(x, y)}. (5.16)

Then f is a Picard operator.

Proof. Since the metric space (X, d) is ε-chainable then the induced Menger PM-space (X,F ,∆)

is (ε, δ)-chainable for each 0 < δ < 1. We only need to show that the self mapping f

on X is (ε, δ)-contraction. Let x, y ∈ X be such that y ∈ Nx(ε, δ), i.e, Fx,y(ε) > 1 − δ or

ε0(ε−d(x, y)) > 1−δ. By definition of ε0 it implies d(x, y) < ε and thus d(fx, fy) ≤ κ d(x, y).

Now for t > 0 we get

Ffx,fy(κ t) = ε0(κ t− d(fx, fy))

≥ ε0(t− d(x, y))

= Fx,y(t).

Hence the conclusion follows from Theorem 5.2.22.
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5.2.2 Application

The notion of cyclic contractions by Kirk et al. [63] can be extended in probabilistic metric

space as well.

Let X be a nonempty set and (X,F ,∆) be a PM-space. Suppose m be a positive integer and

{Ai}mi=1 be nonempty closed subsets of X and f : ∪mi=1Ai → ∪mi=1Ai be an operator. Then

X := ∪mi=1Ai is known as cyclic representation of X with respect to f if;

f(A1) ⊂ A2, · · · , f(Am−1) ⊂ Am, f(Am) ⊂ A1 (5.17)

and the operator f is known as cyclic operator [63].

In the following we present the probabilistic version of main result of [63], as a last consequence

of Theorem 5.2.9.

Theorem 5.2.27. Let (X,F ,∆) be a complete Menger PM-space under a t-norm ∆ of H -

type. Let m be a positive integer, {Ai}mi=1 nonempty closed subsets of X, Y := ∪mi=1Ai and

f : Y → Y . Assume that:

(i) ∪mi=1Ai is cyclic representation of Y with respect to f ;

(ii) ∃ κ ∈ (0, 1) such that Ffx,fy(κt) ≥ Fx,y(t), (t > 0) whenever, x ∈ Ai, y ∈ Ai+1, where

Am+1 = A1.

Then f has a unique fixed point ξ ∈ ∩mi=1Ai and f
ny → ξ for any y ∈ ∪mi=1Ai.

Proof. Since, ∪mi=1Ai is closed then (Y,F ,∆) is complete. Let us consider a graphG consisting

of V (G) := Y and E(G) := Ω ∪ {(x, y) ∈ Y × Y : x ∈ Ai, y ∈ Ai+1; i = 1, · · · ,m}. By (i)

it follows that f preserves edges. Now let fnx → x∗ in Y such that (fnx, fn+1x) ∈ E(G)

for all n ∈ N. Then by (5.17) it infers that the sequence {fnx} has infinitely many terms in

each Ai; i ∈ {1, 2, · · · ,m}. So that one can easily identify a subsequence of {fnx} converging

to x∗ in each Ai and since Ai’s are closed then x∗ ∈ ∩mi=1Ai. Thus, we can easily form a

subsequence {fnkx} in some Aj , j ∈ {1, · · · ,m} such that (fnkx, x∗) ∈ E(G) for k ≥ 1. It

elicits G is weakly connected (Cf )-graph. Hence, by Theorem 5.2.9 conclusion follows.
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5.3 Conclusion

The notion of probabilisticG-contractions extends/generalizes the notion of BanachG-contractions

and the contractions on partially order sets. The obtained results based on this intuitive ap-

proach are of great agrement to that presented in [104]. Probabilistic cyclic contractions eluci-

date the novelty of our results. Moreover Example 5.2.2 substantiates the degree of generality

of our main results. Our further goal is to extend this notion by weakening contractiveness

assumption.
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