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Abstract 

Hypertensive retinopathy (HR) is a well-known eye disease that is caused by high blood pressure 

(hypertension). In this illness, symptoms typically develop later. The AV nicking, cotton wool 

patches, constricted veins in the optic nerve, and blood pouring into the eye’s optic nerve all 

contribute to the appearance of the HR symptoms. HR disease may have different types of serious 

complications, including retinal artery blockage, destruction of the visual nerves, and maybe vision 

loss. The automated early detection of this illness can be aided by AI and deep learning models. In 

this research, a novel dataset for HR is collected from Pakistani hospitals (Pak-HR) and internet 

sources. Second, a brand-new methodology (Incept-HR) is developed to evaluate hypertensive 

retinopathy using InceptionV3 and residual blocks. 6,000 digital fundus images from the collected 

datasets were used to train the Incept-HR system. The proposed classification method, Incept-HR, 

has 99% classification accuracy and an f1-score of 0.99. The results show that this model produces 

useful outcomes and can be applied as a diagnostic testing tool. The system is not intended to 

replace optometrists; rather, it aims to assist professionals. The proposed methodology outperforms 

both the cutting-edge models VGG19 and VGG16 in terms of classification accuracy. 
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Chapter 1 

Introduction 
 

The World Health Organization (WHO) reported that the number of people who have hypertension 

increased from 594 million in 1975 to 1.13 billion in 2015, with the majority of the increases taking 

place in low- and middle-income countries. The main cause of this development is the prevalence 

of diseases that already exist and increase the likelihood that hypertension will develop. 1.56 

billion people are expected to have hypertension by the year 2025. Additionally, over 66% of 

people with hypertension reside in developing or underdeveloped countries, where the lack of 

resources for proper health care to diagnose, track, and treat hypertension exacerbates the issue[1]. 

The most widespread type of eye disease (HR) that has spread over the entire world is caused by 

hypertension, which is brought on by rising vascular resistance. [2]. Hypertension damages several 

human tissues, including vascular disease, the eyes, and the heart. [3]. In addition to all of these 

harms, hypertensive retinopathy (HR) is the most notable cause of cardiovascular disease and the 

one that ultimately results in mortality [4].Hypertensive retinopathy (HR) is an abnormality of the 

retina caused by hypertension. Significant signs of HR-related eye illness include the development 

of arteriolar narrowing, arteriovenous nicking, retinal hemorrhage , microaneurysms, Cotton wool 

spots , papilledema and in extreme situations, optic disc, and macular edema [5]. For medical 

intervention and the protection of human life, early diagnosis of HR-related eye illnesses is 

essential [6]. Clinical experts (optometrists) are using retinal fundus image recognition technology 

to determine the presence of eye illness linked to HR in a non-invasive and cost-effective way. The 

major goal of employing an automated detection mechanism is to relieve the burden of an image 

assessment by optometrists by offering a crucial step for determining and treating the existence of 

retinopathy [7]. In earlier studies, the researchers developed a number of methods for processing 

retinal images, such as image enhancement through pre-processing, categorization of HR-related 

regions and arteries, feature extraction, and finally, a monitored machine-learning automated 

system to classify HR-related eye problems. [4]. Extremely large veins with a low percentage of 

the typical size of arteries to veins are a significant indicator of HR-related diseases. However, 

getting accurate measurements of vascular widths is quite difficult for optometrists. Micro fundus 

images captured with an optical camera have recently been shown in a number of studies to be 
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useful for observing retinal microvascular diseases. Due to its low cost, ease of use, and ability to 

clearly depict most clinical lesion forms in its fundus pictures, this fundus camera is frequently 

and safely used to check the eyes of a large number of HR patients [4]. Optometrists use automated 

evaluation of digital retinal images to spot alterations in the images and identify HR. The HR-

related areas as well as other crucial eye areas are damaged by these alterations, as was previously 

described. If these alterations are not recognized at an early stage, hypertensive retinopathy 

develops. Optometrists are helped by computerized methods to identify various retinal diseases, 

such as eye illnesses associated with HR [8]. By enabling self-diagnosis, these technologies benefit 

academia and the worldwide medical community. Optometrists employ these tools to treat and 

diagnose eye-related disorders, particularly those that are HR-related. There are a few research 

papers that really on feature extraction to automatically detect hypertensive retinopathy (HR). 

These feature extraction techniques involves segmenting the structural elements of the retina, such 

as the macular, optic nerves, arteries, and vasculature, as shown in Fig 1. 

Deep-learning techniques were also developed to extract certain structures. These characteristics 

were statistically evaluated in order to detect anomalies and, ultimately, to identify HR or non-HR 

illness. For automated systems to find these pathological conditions and use them to diagnose HR 

illness, they have to go through a long and difficult process. Researchers spent a lot of time just 

pulling out the characteristics, as opposed to other symptoms like cotton-wool patches or bleeding. 

They demonstrated that whereas other lesions were crucial for determining the presence of 

malignant HR-related illnesses, aneurysms defined the initial phases of HR. On the other hand, a 

lot of computer vision algorithms [9] and biological imagery behavior analytics [10] have heavily 

relied on deep learning techniques in recent years. 

 

Fig. 1: Illustration of vascular system: (a) optic disk, cotton wool spots, hemorrhages (b) tortuosity 

(c) A/V ratio 
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1.1. Research Motivation 

Although a few methods have been established to identify images of the optical fundus as HR or 

non-HR, there are still some major challenges. 

• Even with the use of sophisticated pre- or post-image processing technologies, defining 

HR features from retinography pictures is challenging because to the difficulty in locating 

and retrieving HR-related lesion features.  

• A few datasets with no expert medical annotations that detail a wide range of HR-related 

harm features are publicly available. This makes it difficult for computerized systems to 

identify the symptoms of some diseases. 

Consequently, the primary objective of the research is to create a dataset for HR classification 

(PAK-HR). the second objective is to develop a multilayered deep learning model for completely 

autonomous processing of retina images, particularly in the situation of HR-related eye disease. In 

this research, a multilayered InceptionV3 system is used to construct an Inception-HR (Incept-HR) 

system that integrates residual blocks. A fully trained Incept-HR system can identify HR with 

accuracy on various HR-related retina images that include anatomic components. An experienced 

optometrist has identified certain HR-related diseases and anatomic features. a training technique 

developed by the CNN model to recognize abnormalities from fundus images. This study is very 

important in real world as it proposes a new system for hypertensive retinopathy classification. 

1.2. Research Contribution 

In this framework we propose a novel deep learning model to solve the problem of hypertensive 

retinopathy. we also propose a new dataset that was collected from PAKISTAN hospitals PAK-

HR. In this study, the Inception-HR (Incept-HR) model is created to address the issues raised above 

by classifying data into HR and non-HR using deep learning architectures with multiple layers and 

image processing methods. Here we highlight the major contributions of the Incept-HR system.  

• In this study the authors gathered a huge dataset from Pakistani hospitals name (Pak-HR) 

and internet sources. The 6,000 photos in this dataset allowed the trained model to achieve 

very high accuracy.  

• In this study, residual blocks and trained InceptionV3 convolutional neural networks 

(CNN) are used to make a multi-layer architecture for the Incept-HR system.  
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• To identify HR-eye-related disease, four layers are added to the system architecture of the 

Incept-HR model. To build the trained features layer, the CNN model is first utilized to 

extract characteristics of HR-related lesions. The residual block technique is then used to 

extend those characteristics further.  

• The building color space’s deep properties and phases serve as the foundation for the 

algorithm developed in this work to classify HR. The author claims that this was the first 

attempt to create an automated system that was more effective than existing approaches for 

identifying HR diseases.  

• Our systems achieved very high accuracy 99% that is higher than proposed methodologies 

in literature. 

1.3. Thesis Outline 

This thesis is divided into seven chapters: 

• Chapter 1: This chapter includes the basic introduction, establish the research 

motivation and research contribution. 

• Chapter 2:  This chapter describes the literature survey of articles related to this 

research. 

• Chapter3:    This chapter describes the scientific background of the research. 

• Chapter 4:   This chapter describes the proposed architecture. 

• Chapter 5:   This chapter describes the experiments results. 

• Chapter 6:   This chapter compares our work with state-of-the-art research. 

• Chapter 7:   This chapter presents the results of the research. 

• Chapter 8:  This chapter concludes the report and highlights the direction for future 

work. 
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Chapter 2 

Literature Review 
 

In this work the authors propose deep learning model to investigate the classification problem of 

HR illness. Deep learning (DL) is a subset of Machine learning algorithms where human designed 

rules are not required. DL can be used in different applications. In [11] A survey on the application 

of deep learning to free-hand sketch problem is presented. The paper provides a review on different 

datasets and algorithms that can be applied for this problem. In [12] Enhancing sketch-based image 

retrieval by CNN sematic re-ranking is proposed. Numerous automated methods have already been 

proposed to detect retinal conditions. Despite this, there aren’t many automated methods for 

detecting HR eye illness. To automatically recognize the HR state, several researchers have already 

used a fundus image processing technique. Optometrists may be able to save a lot of time and 

effort by adopting fundus image analysis to detect HR illnesses early, according to [11]. The most 

recent research in the area is provided in this section. We divided the articles we looked at into two 

categories: learning-based techniques with handcrafted features and learning based techniques 

with deep features. 

 

2.1.  Hand-crafted feature-based methodology 

According to the composition research, retinal fundus images might be used to identify 

hypertensive retinopathy [11] by using a feature extraction method. The following manually 

created features are used in automated mechanisms to identify optic anomalies such as arterial 

branching and grade HR: the ocular disc (OD) position, the mean fractal dimension (mean-D), the 

arteriolar-venular equivalent diameter (AVR), the papilledema symptoms, and the compressibility 

index [12–18]. The Gabor 2D, Cake Wavelet and Canny edge detection algorithms were used for 

segmented and low-level applications. The following datasets were utilized to assess the efficacy 

of such systems: INSPIR-AVR, AVRDB, VICAVR, STARE, DRIVE, DR-HAGIS, and IOSTAR. 

While in [18], they used a supervised classifier to conduct initial segment and refinement 

procedures in order to find hemorrhagic lesions. To identify eye disease associated with HR, a 

different method was used in [19]. The authors identified cotton wool spots (CWS) as one of the 
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critical clinical indicators for identifying HR-related optical disease. The candidate areas were 

improved using the Gabor filter bank, and the picture was then binarized using the thresholding 

approach. For such a localized dataset, the researchers have reported sensitivity and PPV of 

82.21% and 82.38%, respectively. Including diabetic retinopathy (DR), hypertensive retinopathy 

(HR), macular degeneration (MD), vein branch occlusion (VBO), vitreous hemorrhage (VH), and 

normal retina, the full system of five categories of retina abnormalities was recognized in [20]. 

They used a wavelet-based neural network approach with pre-processed photos to find all of these 

retinal diseases. Through a features-based classification technique, they reported that the %50, 

%70, %83, %90, %93 and %95 for testing five retinopathy instances, respectively. The systems 

developed in [21–24]employed the AVR method on a small subset of color fundus images obtained 

from sizable datasets like DCCT and ETDRS. Either the OD region is segmented, and the blood 

is divided into veins and arteries, or the arterial diameters are calculated using gradients, 

morphological edge detection, and the Gabor wavelet. In order to implement semi-automatic 

recognition and measuring of the optic disc for the detection of eye-related HR disease, a graphical 

user interface (GUI) was created in [25]. This interactive GUI can be used to measure the diameters 

of any regions of interest (ROI) to help people with HR figure out their vascular risk. This method 

demonstrated improved classification outcomes when it was evaluated on two datasets, namely 

DRIVE and STARE. 

The AVR ratios were used in combination with a clustering method in [26] to identify veins and 

arteries. As opposed to [27], which classified blood vessels into arteries and veins using intensity 

variation and color data after extracting the shade of grey and the time characteristics to identify 

pixels that belonged to blood vessels. On 101 photos gathered from the VICAVR dataset, different 

phases of HR-related eye illness are identified by estimating vessel width. In the VICAVR dataset, 

they used 25 for normal and 76 for hypertensive retinopathy. The transformations of Radon and 

Hough were used by the authors in [28] to segment blood vessels, after which the tortuosity index 

and vessel diameter were evaluated, and lastly the AVR was computed using fundus images, from 

which one may identify hypertensive retinopathy. Similar to this, the authors of [29]used harmonic 

sub-bands for individual component analysis to identify the many alterations that may be seen in 

the retina fundus, including blood vessels, the optic disc, exudates, hemorrhages, the macula, and 

drusen. On 50 photos, this approach was tried, and it correctly identified the alterations. To 

categorize the various retinal blood vessel types, the authors in [30] used a deep convolutional 
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neural network technique that was supplied using moment-based element characteristics and 

Gabor wavelets. The authors achieved noticeably better segmentation results on the DRIVE 

dataset. [15] describes the development of a nine-step, automatically generated system for 

extracting the OD region, segmenting the vessels, detecting color features, computing the AVR 

ratio, classifying the vessels as arteries or veins, computing the mean red intensity, computing the 

AM-FM features, and finally classifying the patients as having HR-related or non-HR-related eye 

disease. The ROC-AUC of 0.84 was attained on a collection of 74 color fundus pictures with 

sensitivity and specificity of 90% and 67%, respectively. Last but not least, Table 1 showed a 

comparison between standard machine learning approaches and state-of-the-art automated 

detection strategies for recognizing HR based on features taken from pictures of the retinal fundus. 

[31]proposed a method for extracting characteristics from color fundus pictures before HR 

recognition. The vessels could be clearly seen after first using CLAHE to convert the fundus 

picture to the green channel. Second, it used morphological closure to eliminate the optic disc. 

Third, the backdrop was removed by subtracting. Then, utilizing zoning, characteristics were 

retrieved. As a classifier, an ANN with feed-forward activation was utilized at the end. It had a 

95% accuracy rate. The ELM classifier was used to demonstrate a method for segmenting features 

of the image from fundus pictures [32]. 39 morphological features in a feature vector and other 

characteristics were fed to the classifier. On the DRIVE dataset, this approach has a 96.07% 

accuracy rate, a 71.4% sensitivity rate, and a 98.68% specificity rate. 

Table 1: Handcrafted feature-based HR classification 

Methodologies CWS H T Results 

AVR and Optic neuritis are used in an automated CAD 

approach to discriminate between blood vessels and 

arteries using fundus images[14] 

No No No Accuracy = 95% 

Semi-automatic CAD method for examining fundus 

images to determine retinal vascular shape [15] 

No No No Accuracy = 96% 

AVR and OD to identify HR with various degrees. 

[14] 

No No No Accuracy = 95% 

A technique of density analysis was used to analyze 

A/V ratio to diagnose arteriolar constriction. [16] 

No No No Accuracy = 98% 
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Methods used for image pre-processing and 

classification evaluate the AVR and the OD.[17] 

No No No Accuracy = 98% 

 

2.2.  Models-based on deep learning 

The second method described in the literature uses deep learning models to categorize fundus 

images into HR or non-HR eye disorders. Preprocessing time required by manually created 

feature-based techniques is decreased by such models. A deep learning-based model (DLM) was 

used to identify HR, and it was published in [6]. Several image processing tasks, including 

segmentation and feature extraction, are handled directly by a deep-learning architecture. The 

authors employed scaled batches of 32 by 32 tiles that had been converted into grayscale fundus 

images in order to train a CNN. The identification accuracy rate was 98.6%. In [33], the authors 

used random Boltzmann machine (RBM) and deep neural network (DNN) methods to assess the 

change in arterial blood vessels. To define the features for the deep-learning system, they combined 

the OD region and AVR ratio. The authors achieved much greater accuracy in that research. In 

[34], a technique for extracting the center fovea of the optical disc and retinal arteries was 

presented. CNN’s seven levels comprise its architecture. The output of their CNN design consists 

of four nodes that represent the fovea centralis, optic disc, retinal vasculature, and retinal backdrop. 

An average classification accuracy of 92.68 percent was reached in the DRIVE dataset. Many 

research employed CNN for the classification and segmentation of the retinal vasculature into 

arteries and veins [35–37]. 

For the Drive dataset, these methods yielded outstanding classification accuracy rates of 93.5%, 

and 88.89% for a collection of 100 low-quality pictures. In [38], a CNN-based automated approach 

was presented to identify exudates in microscopic retinography. Throughout the CNN training 

procedure, all of the characteristics were retrieved. The modified pixel was situated at the patch’s 

center, which was CNN’s input. Convolutional layers were employed to calculate the likelihood 

that each particular pixel would exude fluid or not. Since there are no exudates in the optic disc 

region, they are eliminated. The input and output layers are not the only ones; the CNN design also 

includes four convolutional and pooling layers. Using the DRiDB dataset for evaluation, the 

method demonstrated equal sensitivity, a 77% F-score, and a positive predictive value (PPV). 
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In [39] a technique for classifying arteriovenous nicking using the patient’s retinal pictures that 

was developed using deep learning. Using the suggested model, the dataset from the Structured 

Analysis of the Retina project (STARE) has been utilized to train and then classify the presence 

and absence of arteriovenous nicking.  

A performance measure evaluation of the proposed model, aggregate residual neural network 

(ResNeXt), showed that it was more accurate than 94% on the test dataset. A comparison of recent 

research projects using DL approaches for either HR identification or the extraction of A/V, OD, 

and other HR symptom aspects is shown in Table 2. 
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CHAPTER 3 

Background Information 
 

There are two sorts of systems that have been established in the past for the automated recognition 

system of HR. One kind is connected to approaches based on complicated image processing [13–

17, 19–21, 23, 27, 31, [32, 40]. The second group, however, is concerned with deep learning 

models [6, 15, 34–37], whose traits are automatically extracted without concentrating on image 

processing techniques. Tables 1and 2 compare the systems in terms of datasets, models, and 

accuracy. The systems based on deep learning outperformed those that extracted characteristics 

via complex image processing in terms of accuracy. However, these deep learning model networks 

require huge datasets to be trained without overfitting. when it comes to deep learning models 

There are two ways to train a CNN in the literature: either from scratch, or via transfer learning to 

tune an already learned model. Pre-trained models are a useful representation of transfer learning 

in a wide variety of computer vision applications. A few examples include the pre-trained models 

ResNet50 [9], InceptionV3 [41], and VGG [42]. The ImageNet dataset was used to assess how 

well these pre-train models performed [43, 44]. Large CNN models are a foundational component 

of many pre-trained transfer learning algorithms [45]. Two of the primary aspects influencing 

CNN’s appeal over the last several years are its great performance and simplicity of training [46]. 

The convolutional base, which combines features. 

Table 2: Deep learning model-based HR classification 

Methodologies  DL Models Dataset Limitations 

HR detection directly from greyish fundus 

images using CNN [6] 

CNN DRIVE limited image 

dataset 

A method that detection HR 

characteristics using CNN-RBM 

classifier[33 

CNN-RBM DRIVE 

STARE 

Without statistical 

results 

A technique for employing CNN to 

identify the retinal vessels and the optic 

disc’s fovea centralis. [34] 

CNN DRIVE Just normal or HR, 

not classify four 

stages of HR 
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A/V and OD classification using a CNN 

based method [35] 

CNN 100 images 

Subset of 

EPIC 

limited dataset 

CNN-based method for identifying and 

segmenting arteries and veins (A/V)[36] 

CNN 100 images 

UK 

Biobank 

limited image 

dataset 

An autonomous vessels segmentation 

technique using CNN. [37] 

CNN DRIVE Just normal or HR, 

not classify four 

stages of HR 

An automated technique based on CNN to 

generalize the features and classify fundus 

into HR or non-HR [38] 

CNN DRiDB Limited dataset 

 

maps and pooling layers, is one of the two sections of the architecture of a conventional CNN 

model. With the help of convolutional filters of different sizes, the feature map layer was created. 

The softmax classifier, which recognizes classes, is a second component. The categorization layer 

is completely linked in real life. The characteristics that are extracted in the first layer of the CNN 

deep-learning architecture are generic, but the features that are specified in the final layer are the 

most specialized [45]. ”Features transform” refers to the change from generic to more focused 

features. In Fig. 2, this standard CNN model is shown. There have been systems for identifying 

objects utilizing feature extraction and identification tasks in the past, and they frequently used 

deep learning models[47]. 

 

Fig. 2: CNN architecture 
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CHAPTER 4 

Inception V3, VGG16 and VGG19 Architecture 
 

4.1. Inception V3 

The Inception v3 model, which was introduced in 2015, has 42 layers overall and a reduced 

mistake rate than its forerunners. Let's examine the many improvements that the Inception V3 

model has received. The Inception V3 model has changed significantly, including: 

• Factorization into Smaller Convolutions 

• Spatial Factorization into Asymmetric Convolutions 

• Utility of Auxiliary Classifiers 

• Efficient Grid Size Reduction 

Let's examine the implementation of each of these improvements and how they benefited the 

model. 

4.1.1.  Factorization into Smaller Convolutional 

The extensive dimension reduction was one of the Inception V1 model's key advantages. The 

model's bigger Convolutions were factorized into smaller Convolutions to make it even better. 

 

Fig. 3: Take the conception V1 module's basic module as an illustration. 
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It contains a 55 convolutional layer, which as was previously said was computationally costly. The 

55 convolutional layer was therefore replaced with two 33 convolutional layers in order to lower 

the computational cost, as seen below. 

 

Fig. 4: 33 Convolutional layers in order 

See how the use of two 33 convolutions minimizes the amount of parameters to have a better 

understanding of it. 

 

Fig. 5: Two 33 convolutions minimizes 

The computing expenses also decrease as a result of the fewer parameters. A relative gain of 28% 

was obtained as a result of factorizing bigger convolutions into smaller convolutions. 



14 
 

4.1.2.  Spatial Factorization into Asymmetric Convolutions 

Despite the fact that bigger convolutions are split into smaller convolutions. You might be curious 

what would happen if we were to factorize any more, perhaps to a 22 convolution. But asymmetric 

convolutions were a superior option to improve the model's efficiency. 

Asymmetric convolutions are of the form n×1 

They therefore substituted a 13 convolution followed by a 31 convolution for the 33 convolutions. 

This is equivalent to sliding a two-layer network with a 33 convolution's receptive field. 

 

Fig. 6: Asymmetric convolutions 

Structure of Asymmetric Convolutions 

If both the input and output filter counts are the same, the two-layer approach is 33% less 

expensive. This is how the inception module appears following the use of the first two optimization 

approaches. 
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Fig. 7: Structure of Asymmetric Convolutions 

4.1.3.  Utility of Auxiliary classifier 

Auxiliary classifiers are used to accelerate the convergence of extremely deep neural networks. In 

very deep networks, the vanishing gradient problem is mostly addressed by the auxiliary classifier. 

Early on in the training, there was no improvement as a result of the auxiliary classifiers. However, 

as the experiment progressed, the network with auxiliary classifiers outperformed the network 

without auxiliary classifiers in terms of accuracy. 

As a result, the Inception V3 model architecture's auxiliary classifiers function as a regularizer. 

4.1.4.  Efficient Grid Size Reduction 

Traditionally, the grid size of the feature maps was decreased using average and maximum pooling. 

The activation dimension of the network filters is enhanced in the Inception V3 model to more 

effectively minimize the grid size. 

For instance, reduction produces a d/2 d/2 grid with 2k filters from a dd grid with k filters. 

And two concurrent blocks of convolution and pooling that were subsequently concatenated are 

used to accomplish this. 
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Fig. 8: Efficient Grid Size Reduction 

The aforementioned figure demonstrates how the grid size is effectively decreased while the filter 

banks are expanded. 

4.1.5.  Inception V3 Explanation 

The final Inception V3 model after all the improvements seems like this: 

 

Fig. 9: Inception V3 Architecture 
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The inception V3 model has 42 layers in total, which is a little more than the inception V1 and V2 

models. However, this model's effectiveness is absolutely remarkable. We'll get to it shortly, but 

let's first take a closer look at the parts that make up the Inception V3 model. 

 

Fig. 10: Inception V3 Model Layers 

The inception V3 model's general structure is shown in the accompanying table. Each module's 

output size serves as the subsequent module's input size in this situation. 

4.2. VGG16 Model 

VGG16 is a VGG model variation with 16 convolution layers, and we have thoroughly 

investigated the VGG16 architecture. 

VGGNet-16 has 16 convolutional layers and is desirable because to its relatively consistent 

architecture. It, like AlexNet, contains just 3x3 convolutions but a large number of filters. It may 

be trained on four GPUs for two to three weeks. It is now the most popular option for extracting 

features from photographs in the community. The VGGNet weight setting is freely accessible and 

has been utilised as a baseline feature extractor in many different applications and challenges. 

It can be a little difficult to manage VGGNet's 138 million parameters, though. Transfer Learning 

can help people reach VGG. When the parameters are updated for greater precision and the model 



18 
 

is pretrained on a dataset, the parameter values may be used.

 

Fig. 11: VGG16 Model Layers 

4.2.1. 16 Layers of VGG16 

16 Layers of VGG16 are as following: 

1.Convolution using 64 filters 

2.Convolution using 64 filters + Max pooling 

3.Convolution using 128 filters 

4. Convolution using 128 filters + Max pooling 

5. Convolution using 256 filters 

6. Convolution using 256 filters 

7. Convolution using 256 filters + Max pooling 

8. Convolution using 512 filters 

9. Convolution using 512 filters 

10. Convolution using 512 filters+Max pooling 

11. Convolution using 512 filters 

12. Convolution using 512 filters 

13. Convolution using 512 filters+Max pooling 

14. Fully connected with 4096 nodes 

15. Fully connected with 4096 nodes 

16. Output layer with Softmax activation with 1000 nodes.  
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4.2.2. VGG 16 Architecture 

 

 

Fig. 12: VGG 16 Architecture 

 

4.3. VGG19 Model 

VGG19 is a variation of the VGG model that, in essence, has 19 levels (16 convolution layers, 3 

Fully connected layer, 5 MaxPool layers and 1 SoftMax layer). Other VGG variations include 

VGG11, VGG16, and more. FLOPs in VGG19 total 19.6 billion. 

AlexNet, which was released in 2012 and improved on conventional Convolutional neural 

networks, can be seen as the successor to AlexNet. However, VGG was developed by a different 

team at Oxford University, hence the name Visual Geometry Group. It takes some concepts from 

its predecessors and builds on them while using deep Convolutional neural layers to increase 

accuracy. 

Let's examine VGG19, compare it to previous iterations of the VGG architecture, and examine 

some of the VGG architecture's beneficial and real-world applications. 

Before getting started, let's look into what the VGG19 Architecture is and have a look at ImageNet 

and CNN in general. 
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4.3.1. Convolutional Neural Network(CNN) 

Let's first examine what ImageNet is. It is an image database with 14,197,122 pictures that are 

arranged in accordance with the WordNet hierarchical structure. This program aims to support 

image and vision researchers, students, and other stakeholders. 

 

The ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), one of the competitions it 

hosts, tasked researchers from around the world with developing solutions that would produce the 

lowest top-1 and top-5 error rates (the top-5 error rate would be the percentage of images where 

the correct label is not one of the model's five most likely labels). A validation set of 50,000 photos, 

a test set of 150 000 images, and a 1,000 class training set of 1.2 million images are provided for 

the competition. 

4.3.2. VGG 19 Layers and Architecture 

Here's the VGG Architecture, which in 2014 outperformed other cutting-edge models and is still 

favored for many difficult tasks today. 

VGG is a deep CNN that is used to identify pictures, to put it simply. The VGG19 model's layers 

are as follows: 

• Conv3x3 (64) 

• Conv3x3 (64) 

• MaxPool 

• Conv3x3 (128) 

• Conv3x3 (128) 

• MaxPool 

• Conv3x3 (256) 

• Conv3x3 (256) 

• Conv3x3 (256) 

• Conv3x3 (256) 

• MaxPool 

https://iq.opengenus.org/convolutional-neural-networks/
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• Conv3x3 (512) 

• Conv3x3 (512) 

• Conv3x3 (512) 

• Conv3x3 (512) 

• MaxPool 

• Conv3x3 (512) 

• Conv3x3 (512) 

• Conv3x3 (512) 

• Conv3x3 (512) 

• MaxPool 

• Fully Connected (4096) 

• Fully Connected (4096) 

• Fully Connected (1000) 

• SoftMax 

 

4.3.3. VGG 19 Architecture 

• This network received a fixed-size (224 * 224) RGB picture as input, indicating that the 

matrix was shaped (224,224,3).The only preprocessing that was done is that they subtracted 

the mean RGB value from each pixel, computed over the whole training set. 

• They covered the entire idea of the image by using kernels of (3 * 3) size with a stride size 

of 1 pixel. 

• To maintain the image's spatial resolution, spatial padding was applied. 

• Using sride 2, max pooling was carried out over a 2 * 2 pixel frame. 

• Rectified linear unit (ReLu) was used after this to add non-linearity to the model in order 

to enhance classification accuracy and computation time. As opposed to earlier models that 

employed tanh or sigmoid functions, this one performed far better. 
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• Developed three fully linked layers, the first two of which had a size of 4096, followed by 

a layer with 1000 channels for classification using the 1000-way ILSVRC, and the third 

layer being a softmax function. 

The VGG net was primarily created with the intention of winning the ILSVRC, but it has been 

used to many other uses as well. 

• Used simply as a good classification architecture for several different datasets, and since 

the authors made the models accessible to the public, they may be used without 

modification for more jobs that are comparable. 

• Transfer learning is also applicable to facial recognition tasks. 

• With other frameworks, like as Keras, weights are conveniently accessible and may be 

adjusted and utilised anyway the user sees fit. 

• Loss of style and content while utilising VGG-19 network 

 

Fig. 13: VGG 19 Architecture 
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CHAPTER 5 

Proposed Approach 
 

In this study, the CNN (InceptionV3) and residual blocks are combined to create the Incept-HR 

system. Incept-HR system is used to categorize eye images as either non-HR infected eyes or HR 

infected eyes. In the Incept-HR system, valuable characteristics are extracted using the residual 

blocks method. To train on HR-related lesions, transform learning of residual blocks is used. The 

Incept-HR uses key processes to diagnose retinal fundus pictures and identify HR. Figure 3 

graphically illustrates the phases in a systematic diagram. The characteristics that were retrieved 

from CNN (InceptionV3) and the residual block are combined. The Residual Blocks’ settings are 

continuously changed throughout training. Next, a feature transform layer is created, which makes 

advantage of combining characteristics using element-wise multiplication Finally, the SVM 

classifier with a liner activation function were used to enhance classification outcomes. 

 

Fig. 14: An organized flow diagram of the Incept-HR system for classifying eye diseases  
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5.1.  Dataset Acquisition and Pre-processing 

Data acquisition is the process of capturing signals that gauge actual physical circumstances and 

transforming the resulting samples into computer-handling digital numeric values. To train and 

evaluate the Incept-HR model, a 6,000-image dataset Pak-HR as well as from well-known internet 

sources. The training dataset was created with the help of a professional ophthalmologist (manual 

separation of HR and non-HR fundus images from dataset collected). The doctor examined 6000 

fundus pictures for HR-related features to create a benchmark, as shown in Figure1. In Table 3, we 

can see the breakdown of the three datasets (with different dimension settings) that were utilized 

to construct our testing and training fundus set. This experimentation required resizing all of these 

photographs to (700 x 600) pixels. After processing, binary labels are produced from these pictures. 

The dataset consists of 6,000 images in total, of which 3000 were utilized to test the system. The 

initial dataset converts the dataset of two classes into a binary dataset. By balancing the total of 

images with and without the disease, this is done to ensure that the dataset is objective. Images 

from the dataset are reduced in size to (700 x 600) pixels for pre-processing before being delivered 

to an algorithm designed especially for the Incept-HR model. Images are standardized to lower the 

variance between data points. 

Table 3: Image dataset of the retina for the Incept-HR system. 

Reference Name HR Non-HR Image-size Fundus Images 

[41] DRIVE 100 150 (768 × 584) 

pixels 

250 

[48] DiaRetDB0 80 80 (1152 × 

1500) pixels 

160 

Private Pak-HR 2100 3490 (1125 x 1264) 

pixels 

5,590 

  2,280 3,720 (700 × 600) 

pixels 

6,000 

 

Furthermore, data from Pak-HR is used to train and evaluate the proposed Incept-HR system. The 

dataset included 5590 retinal samples; 2100 were all from HR patients and the remaining 3490 
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were from non-HR patients. All of the JPEG files were saved at a resolution of 1125 x1264. The 

photographs were taken as part of routine testing for hypertension. Using information from three 

different sources, these pictures were reduced to a more usual resolution of 700 x 600 pixels. Also, 

expert ophthalmologists are engaged in the process of producing both HR and non-HR data for 

ground truth examination. Figure 4 is a fundus picture taken from one of the datasets utilized in 

this investigation. 

 

 

Fig. 15: An HR fundus image used for Incept-HR system training 

5.2.  Data Augmentation 

Data augmentation is the technique of creating additional data points from current data in order to 

artificially increase the amount of data. In order to amplify the dataset, this may include making 

small adjustments to the data or utilizing machine learning models to produce new data points in 

the latent space of the original data. The dataset table makes clear that the dataset that was gathered 

is uneven. As a result, the model might be biased in favor of one class during training. In order to 

train a model with more diverse data without collecting new data, a procedure known as ”data 

augmentation” can be used. Data augmentation is the technique of creating additional data points 

from current data in order to artificially increase the amount of data. It helps to improve and 

stabilize the model’s performance. Aids in avoiding the problem of over-fitting as well. The Keras 
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deep learning package has a feature for data augmentation. We used the ImageDataGenerator class 

to add to our data. We used rotation, width shift, shear, zoom, crop, horizontal-flip, vertical-flip, 

and fill mode. some of these augmentation techniques results are shown in Fig 5. Also the 

parameters used for images augmentation are given in Table 4 As a result of the augmentation 

procedure, more image data were generated. We only used the data augmentation strategy for the 

training dataset. And for our model evaluation, we used the original photos rather than the 

augmented ones. To shift an image, all of its pixels must be moved in the same direction. Two 

different types of shifting exist (width shift and height shift). Flipping of an image means reversing 

the columns or rows of pixels in case of When a picture is flipped, the pixels’ rows or columns are 

reversed, depending on whether the image is horizontal or vertical. It resembles turning an item 

up or down or left or right. 

 

Fig. 16: Image augmentation techniques 

Table 4: Data Augmentation table 

Techniques for Augmentation Values 

Rotation range 15 

Width shift range 0.2 

Shear range 0.2 

Zoom range 0.2 

Crop Ture 

Horizontal-flip True 

Vertical-flip False 

Fill mood Nearest 
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5.3.  Incept-HR Architecture 

The suggested Incept-HR system’s architecture is designed to detect HR from retinography 

images. The design was built on the specifications of the InceptionV3 and Residual blocks. It 

focuses on utilizing fewer processing resources and is more computationally effective. This is a 

multi-level feature extraction. The Incept-HR model is made up of residual blocks, symmetrical 

building blocks, and asymmetrical building blocks. It contains completely linked layers, 

convolution, maximum pooling, average pooling, and is concatenated. Below Fig. 6, a schematic 

diagram is shown. We are using several fundus images to apply our approaches. Using an enhanced 

training dataset, we trained the Incept-HR model. To generate the feature map, this architecture 

uses 1 input layer, 93 Cov2d layers, 93 batch normalization layers, 92 activation layers, 10 mixed 

layers, 9 average pooling layers, 3 maximum pooling levels, 1 concatenate layers, and residual 

blocks with two separable convolutional layers and one convolutional layer of kernel size one. 

Following that, one flattened layer, one dense layer, and an SVM classifier with a liner activation 

function were used for classification. Test-fundus photos were used to assess our model. Our 

algorithm will also be able to distinguish between fundus pictures that are normal or diseased. 

 

Fig. 17: Schematic diagram of Incept-HR 
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5.4.  Recognition of HR 

Computer-aided diagnostic (CAD) systems have a difficult time automatically identifying HR 

from retinal fundus images. The residual blocks are added to the InceptionV3 model to address 

this issue. The multi-layer design of the Incept-HR process is utilized to categorize retinal fundus 

images. Additionally, the network introduces the skip connection to quicken the learning process. 

Fig. 3 provides a graphic representation of these actions. Incept-HR is the name of the system as a 

whole. There are several convolutional layers in the case of residual blocks, which are followed 

by the activated ReLU function, a maxpooling layer, a batch normalization layer, which are dense 

layers. All of these layers are linked together with a skip connection so that the residual network 

can be trained well. The three Residual Blocks (RBs) are further economical for creating trained 

three-CNN-feature maps with deep depths in order to produce the dense block. Every RB’s input 

and output are of identical size in the feature learning stage. Down sampling from each RB by a 

factor of two is used for the feature maps. Three RB were created for this model. The last fully 

linked output of the network is expanded by a layer to carry out the categorization operation. This 

layer is used to divide the characteristics of the residual learning sub-network into two groups. To 

guarantee that this network performs to its full potential, the number of neurons is fixed at 850. As 

a preprocessing step, InceptionV3 inserts a batch normalization layer between the auxiliary 

classifier and the fully connected layer. The batch stochastic gradient approach may be used in the 

batch normalization model to accelerate deep neural network training and model completion. The 

batch normalization formulas are described as follows: 

B = { 𝑋1…..𝑚}, 𝛾, 𝛽                     (1) 

 

{𝑦𝑖 = 𝐵𝑁𝛾𝛽(𝑋𝑖)}                      (2) 

 

𝜇𝐵 ←
1

𝑚
 ∑ 𝑋𝑖𝑚

𝑖=1                        (3) 

 

𝜎𝐵 ←  
1

𝑚
 ∑ 𝑋𝑖𝑚

𝑖=1 −  𝜇𝐵             (4) 

𝑋𝑖 ←  
𝑋𝑖− 𝜇𝐵

𝜎𝐵
2+ 𝜖

                               (5) 

 

𝑦𝑖 ← 𝑌𝑋𝑖 +  𝛽 = 𝐵𝑁𝛾𝛽(𝑋𝑖)      (6) 
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Table 5: Notation table 

Techniques for Augmentation values Values 

B Batch 

X batch minimum activating value 

μB mini-batch mean 

σ2B mini-batch variance 

ϵ constant added for numerical stability 

β learning parameter 

γ learning parameter 

 

Here, x is the batch B minimal activating value, m is the number of activating values, and are 

accessible variables ( is responsible for modifying the value distribution’s volatility and is in charge 

of moving the averaged value’s location), depict the overall average in a single dimension, are the 

point differences for each feature map dimension, and are a constant. InceptionV3 introduces batch 

normalization to address the standard deep neural network’s distribution discrepancy among inputs 

and outputs, which poses significant challenges to feature selection. The learning impact is 

improved by normalizing the inputs through each layer. 

 

Fig. 18: Residual Blocks 

 

𝑅𝐵(𝑦) = 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝐼𝑛𝑝𝑢𝑡 = 𝐻(𝑦) − 𝑦              (7) 

                                                   𝐻(𝑦) = 𝑅𝐵(𝑦) + 𝑦                                (8) 
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The residual block as a whole is analyzing the real output to improve its performance H(y). If you 

examine Fig.7 attentively, you’ll see that because of the y-identity link, the residual that the layers 

are attempting to learn, RB(y). So, the conventional network layers are gaining an accurate 

understanding of the output (H(y)), while a residual network’s layers are acquiring knowledge 

about the residual RB(y). 

4.5. Train Feature on HR 

To efficiently extract features from HR or Non-HR photos, a lightweight pre-trained CNN model 

based on a depth-wise separable convolution neural network is used. This is the first time, to our 

knowledge, that a depth-wise separable convolution neural network for feature extraction is 

employed in an HR detection system. The depth-wise separable convolution divides the ordinary 

convolution into two components. The first component is depth-wise convolution, which is used 

to extract features from each input channel individually. The second phase is the pointwise 

convolution, which combines the result of the depth-wise convolution using 1 1 convolution. When 

compared to ordinary convolution, depth-wise separable convolution reduces the number of 

parameters and the computational cost of the convolution layer dramatically. 

 

Table 6: Algorithm 1: Implementation of the Incept-HR model for feature map extraction. 

 

Input Array X Array X 

output procedure Feature map extraction x = (x1, x2 . . . , xn) 

step1 Input normalization of raw data 

step2 Function definition 

Step3 Kernel sizes and array X, 

which comprises a number of filters, 

are the inputs to the Conv-batch Norm. 

a. X = Conv (X) and b. bX = BN (X) then 

applied 

Step4 Depthwise Conv2D was used rather than 

Conv2D. 

Step5 Establishing the network 

a. 14 Conv layers, each comprising 

32,64,128,256,512,1024 

make up the first step of the procedure After 

each of them, 

the ReLU is subsequently activated. 

b. The next step is to use Add to use Skip 

Connection. 
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c.Three distinct skip connections were 

utilized. 

Each Skip Connection has two Depthwise 

Conv 

layers after the Maxpool layer The skip 

connection has two 

strides and a conversion ratio of 1 to 1. 

Step6 After that, using the flattened layer, the 

feature map 

x = (x1, x2,., xn) was created and flattened. 

 

 

4.6. LSVM 
 

The linear SVM machine learning classifier is used for the automatic classification of HR using a 

train test splitting strategy of 75% to 25%. Linear SVM is used because of its effectiveness in 

dealing with small datasets and as well as its performance. SVM is a machine learning 

classification strategy that outperforms other types of classifiers and is commonly used to tackle 

real-world issues. For computer vision or image classification challenges, the authors developed a 

depth-wise separable CNN instead of a deep learning or machine learning classifier. We picked 

the Linear SVM classifier for our research because it can handle small datasets while still 

performing well in high-dimensional settings. Given that we were working with binary 

classification issues, it seemed logical to use linear SVM. Another reason for employing linear 

SVM was to improve the efficacy of our approach and to identify the optimum hyperplane that 

divides the feature space of ill and normal cells in retinal pictures. An LSVM generally accepts a 

vector Y = (z1, z2,..., zn) and produces a value y c Rn, 

which may be written as: 

Y out = (Weig,Ziv) + c (9) 

 

Weig represents the weight and c represents the offset in Equation (9); both Weig and c belong 

to R and are learned during training. Ziv is the input vector, and it is allocated to class 1 or class 

1 depending on whether y is larger than or less than 0. 

 

 

 

 



32 
 

Table 7: Algorithm 2: Proposed LSVM classifier 

 

Input Extracted feature map x = (z1, z2,. , zn) with 

annotations x = 0,1, Test data Ztest 

output Classification of normal and abnormal 

samples 

step1 Initially, the classifier and Kernel 

Regularize L2 parameters are defined for 

optimization. 

Step2 Construction of LSVM 

a. The training process of LSVM is completed 

using extracted features x = (z1, z2,. , zn) by 

our Algorithm 1. 

b For the generation of the hyperplane, use 

Equation (6). 

Step3 The class label is allocated for 

testing samples ztest using the decision 

function of the equation below. 

Ztest = (Weig, Ziv) + c 
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                                                                                           CHAPTER 6 

Results 
 

Incept-HR is trained using a dataset of 3000 retinal images, both HR and non-HR. These 

retinography images were obtained from a number of respected hospitals in Pakistan (Pak-HR) as 

well as from well-known internet sources. To perform feature extraction and categorization tasks, 

all 6,000 photos were downsized to (700 x 600) pixels. The Incept-HR system is developed using 

the InceptionV3 and residual blocks. The Incept-HR model has been trained for 100 epochs; the 

best model, with a f1-score of 0.99, was found in the 20th epoch. Accuracy (ACC), specificity 

(SP), and sensitivity (SE) scores were calculated using statistical analysis to evaluate the proposed 

Incept-HR system’s efficacy. The created Incept-HR system’s performance is measured against 

these metrics and compared to that of other systems. 

A computer with an HP-i7 processor, 8 cores, 16 GB of RAM, and a 2 GB Gigabyte NIVIDA GPU 

was utilized to construct and develop the Incept-HR system. Windows 11 Professional 64-bit is 

installed on this machine. 

6.1.  Experiment 1 

In the first experiment, we use a 10-fold cross validation testing strategy to evaluate the AUC 

metric obtained against those obtained from different DL techniques. The area under the curve 

(AUC) was the primary parameter used to evaluate the classification performance. Table 5 displays 

the results of our quantitative analysis of the produced Incept-HR system’s performance. The 

developed approach has a low training error (0.1) and high AUC (99%) for detecting HR eye 

disease. 

Table 8: Performance metrics of Incept-HR 

Hypertensive Type SE SP ACC AUC Error Rate 

Diabetic Hypertension 

(HR) 

98% 99% 99% 0.99 .01 
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Non-hypertension 

(non-HR) 

99% 98% 99% 0.99 .01 

Average Result 99% 99% 99% 0.99 .01 

 

6.2.  Experiment 2 

In this experiment we train deep learning models(VGG16, VGG19) to compare them with the 

proposed system Incept-HR. It is worth mentioning that these deep-learning models employed the 

same number of epochs in their training. After selecting the best performing network with a 

validation accuracy, two identical Deep neural Networks were trained. Table 6 and Figure 8 display 

the results of a comparison between the Incept-HR system and the VGG16, VGG19 models in 

terms of sensitivity, specificity, accuracy, and area under the curve (AUC). The comparison shows 

the superior performance of Incept-HR over VGG16 and VGG19. 

Table 9. Comparison of the effectiveness of the Incept-HR system developed with other 

deep learning systems using a dataset of 6000 examples. 

Methodologies SE SP AUC ACC 

VGG19 87.0 88.0 0.89 91 

VGG16 84.0 87.0 0.87 90 

Developed Incept-HR System 99.0 99.0 0.99 99 

 

Fig. 19: Compares the proposed Incept-HR system with the area under the receiver operating 

curve (AUC) of several deep learning methods on a chosen dataset. 
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6.3.  Final Experiment 

In this experiment, we use a new dataset Pak-HR collected from Pakistani hospitals to evaluate 

the efficacy of our proposed Incept-HR system. We started by comparing the model’s 

performance on the training and validation sets, as well as the loss function, by utilizing both sets 

of data. Figure 9 displays the training and validation accuracy of the dataset-using Incept-HR 

model. Figure 9 shows that our model is effective in both training and validation settings. Using 

the retina dataset, we were able to obtain perfect accuracy on both the training and validation 

sets. 

 

Fig. 20: Accuracy and loss on training and validation 

 

Fig. 21: Confusion matrix of implemented Incept-HR. 
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  CHAPTER 7 

State of the art comparison 
 

Only a few researchers have attempted to use deep learning methods to find HR in retinal pictures. 

The most recent research that uses DL for detecting HR in retinal pictures are Triwijoyo-2017 [6] 

and CAD-HR [49]. CAD-HR is state of the art deep learning model used for detecting HR. It can 

be seen from Table 7 that Incept-HR has a superior performance over CAD-HR. 

Table 10: performance comparison between Incept-HR, Trivijoyo-2017 and CAD-HR 

Methods SE SP ACC AUC 

Triwijoyo-2017 [7] 78.5% 81.5% 80% 0.84 

CAD-HR [14] 94% 96% 95% 0.96 

Proposed Incept-HR 99% 99% 99% 0.99 

 

Consequently, in comparison, the developed Incept-HR system produced better results, with 92%, 

97%, 99%, and 0.99 for SE, SP, ACC, and AUC, respectively. The identification accuracy in CAD-

HR was 95%, according to the authors of this study [49]. In Triwijoyo-2017 [6] we observe that 

they employed a very restricted collection of input fundus for training, as they only comprise 40 

retina images, of which 20 are normal and 20 are HR, which led to the high degree of precision 

and accuracy but the same their dataset is not approved from expert optometrists. Therefore, with 

the approval of expert optometrists, our Incept-HR system was tested and trained on a balanced 

6000 images dataset. As a result, we achieved 99% accuracy in our classification, which is 

considered a big improvement over state of the artwork. As a result, we achieved 99% accuracy in 

our classification which is considered a big improvement over state of the artwork. 
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          CHAPTER 8 

Discussion 
 

The Incept-HR system uses a trained CNN model called InceptionV3 as an input to classify the 

HR using four successive residual blocks and an output layer that is fully linked. A multilayered 

hierarchical architecture was built to learn enhanced properties. Without the aid of a specialist, this 

multilayer architecture used learning processes to automatically extract features from the input 

picture. The remaining blocks are added to the original model to add more universal outcomes and 

features for the development of the Incept-HR architecture. The CNN model, which is used to 

learn deep features, consists mostly of convolutional, pooling, and fully connected layers. Before 

being utilized to build the model, these layers must be trained and shown to be effective in 

extracting valuable features. An independent feature learning technique allowed for the success in 

detecting HR. This makes our method superior to handcrafted-based classification systems that 

rely on the pre-processing, segmentation, and localization of HR-related data, which are highly 

time-consuming and complicated algorithms, for the diagnosis of HR sickness. 

There were a number of significant issues when HR automated systems were developed using 

conventional methods. The first issue is that it is extremely challenging to identify and extract 

crucial HR-related lesion features when using advanced pre- or post-image processing techniques 

from retinography photographs. The network cannot be trained or tested since there are no datasets 

with clinical expert labelling to describe specific HR-related lesion patterns. As a result, it is 

difficult for automated systems to Such disease related characteristics are difficult for automated 

systems to recognize. Our system solves both issues first, we propose using deep learning models 

for the extraction of important features from the eye. Second, we introduce a new dataset PAK-

HR. To learn feature extraction, several models, however, used trained models created from 

scratch, although they all used the same weighting technique at each stage. When this happens, it 

may be challenging for layers to transmit weights to the deeper network layer for exact choices. 

This study develops the Incept-HR system, which uses two multi-layer deep learning approaches 

to distinguish between HR and non-HR without concentrating on techniques for image processing 

to overcome the aforementioned problems. The following are some of the Incept-HR system most 

significant contributions. Incept-HR system to the best of our knowledge is the first attempt of 
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using InceptinV3 and residual blocks in HR classification. To determine the most useful feature 

maps, establish the precedence of features, and enhance the effectiveness of the learning process, 

the first model was used to acquire four distinct HR-related injuries. The initial system created for 

this HR classification uses a perceptual-oriented color space, and the deep features are categorized 

using InceptionV3 and Residual blocks. In this research, the multilayer deep learning network 

needs to be trained on a large number of samples before it can be used to make the Incept-HR 

system. This is so that the learned features will be more general. Future versions of the Incept-HR 

system for HR identification might include a greater selection of retinography images that have 

been obtained from diverse sources. To enhance the model’s classification performance, it might 

additionally incorporate handmade features in addition to deep features. Since much research used 

the saliency maps approach [50– 52] to segregate HR-related injuries, those injuries were then 

extracted from retinography pictures using a classifier. These studies merely segmented the 

population. In the future, these saliency maps will be put together to improve how well HR eye-

related sickness is categorized. Also In the future, classification of the degree of the HR illness 

will be considered. Numerous studies conducted recently suggest that clinical characteristics are 

crucial criteria for determining the degree of HR intensity. However, in order to determine the 

degree of HR illness, those HR-related lesions with varying thresholds will be extracted which is 

a challenging task. 
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                                                                                                  Chapter 9 

Conclusion 
 

The current method focuses on collecting dataset for HR classification from different sources and 

classifying HR-related traits (such as the ratio of arteries to veins, cotton wool patches, 

microaneurysms, vascularity, and hemorrhages), using deep learning techniques. Therefore, this 

hypertensive retinopathy identification system is constructed using feature selection and image 

processing skills. A few research publications classify HR diseases in the eye using deep learning, 

according to the presented literature review. primarily due to their inability to locate a suitable 

dataset for training such models. Due to this, categorization accuracy was similarly poor. Due to 

these shortcomings, it is deemed inappropriate to use these approaches as a screening tool for HR 

detection. An innovative computerized HR system called Incept-HR has been created to address 

these issues. The proposed system uses InceptionV3 and residual blocks to classify images. Adding 

residual blocks to the model makes increased its performance even though dynamic acceleration 

and compression of the system should reduce the accuracy of classification. The system achieves 

high accuracy around 99%. 

Data Availability Statement 

The datasets generated during and/or analyzed during the current study are available from the 

corresponding author on reasonable request. 
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