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Abstract 

 

 

Reinforcement learning generates policies based on reward functions and hyperparameters. 

Slight changes in these can significantly affect results. The lack of documentation and 

reproducibility in Reinforcement learning research makes it difficult to replicate once-

deduced strategies. While previous research has identified strategies using grounded 

maneuver, there is limited work in the more complex environments. The agents in this 

study are simulated similarly to Open Al’s hide and seek agents, in addition to a flying 

mechanism, enhancing their mobility, and expanding their range of possible actions and 

strategies. This added functionality improves the Hider agents to develop chasing strategy 

from approximately 2 million steps to 1.6 million steps and hiders shelter strategy from 

approximately 25 million steps to 2.3 million steps while using a smaller batch size of 3072 

instead of 64000. We also discuss the importance of reward functions design and 

deployment in a curriculum-based environment to encourage agents to learn basic skills 

along with the challenges in replicating these Reinforcement learning strategies. We 

demonstrated that the results of the reinforcement agent can be replicated in more complex 

environment and similar strategies are evolved including” running and chasing” and ”fort 

building”.   
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Chapter 1 

Introduction 

1.1 Overview 

The word “Artificial” means a replica produced by humans [1]. But replicating AI results 

and strategies is considered difficult in large part [2]. Overall low replication rates suggest 

unreliable practices (Christensen and Miguel, 2018). Reinforcement learning (RL) 

generates policies based on designed reward functions and assigned hyperparameters. The 

Reward Function is an incentive mechanism that uses reward and punishment to tell the 

agent what is right and wrong. In RL, the goal of agents is to maximize total rewards. We 

must sometimes forego immediate gratification to maximize total rewards. Slight changes 

in these can yield a huge difference in results. Reinforcement learning is also affected by 

experimental conditions i.e. if the gravity of physics-based simulation or force applied to a 

working agent changes it can change the behavior pattern of the agent. Thus, replication of 

once-deduced strategies is difficult and criticized for not being reproducible. RL research 

tends to be not documented well enough to reproduce the exact reported results as it mostly 

relies on continuous finetuning and updating of hyperparameters, reward functions, 

environment variables, sensor types, etc. Inference and result reproducibility should yield 

enough similar results that can benefit further research and can ease improvements rather 

than just focusing on reproducing it. But upon minimum info given regarding Agent’s 

Academy parameters (Environment Variables like gravity, collider conditions, delta time, 

etc.), Agent’s Behavior parameters (vector space, continuous/discrete actions inference 

device, collider type, speed, sensors attached, max steps allowed, etc.), calculating similar 

results are often considered hard to achieve. 

The Tool Use from Multi-Agent Interaction paper by OpenAI explores the concept of 

agents in emergent strategies [3]. In this paper, an agent is defined as a software entity that 

is capable of perceiving its environment and taking action to achieve a specific goal. Such 

strategies can either be generated by designing the reward function specified to goal-

achieving parameters or waiting for the lucky shot action that the agent performs while 

moving randomly. This goal of achieving random then becomes the near to best action so 

far in the agent’s experience and is used to generate optimal policy. The drawback of this 
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approach is that the agent might never learn to reach the optimal solution if the experience 

that it is gathering is not fruitful. For example, if the agent’s goal is vertically upward and 

behind a locked door, an agent might take forever to understand a pattern to first move 

toward a specific door, unlocking it, passing through it, and tagging the target goal. Thus, 

specially designed reward functions are deployed with a simplistic environment at the 

beginning to encourage the agent to learn a basic and novice version of the best state of 

action.  The Open AI paper presents a series of experiments in which agents are placed in 

a simulated environment and tasked with completing a set of objectives. The agents are 

programmed to learn from their interactions with each other, leading to the development 

of strategies such as cooperation and tool use. Our agents are simulated with the inclusion 

of a flying mechanism, enabling them to navigate through three-dimensional space. This 

feature enhances the agents' mobility and expands their range of possible actions, leading 

to more diverse and effective behavior. With the ability to fly, our agents can overcome 

obstacles and traverse complex environments more efficiently, ultimately improving their 

performance and increasing their chances of success. This added functionality can also 

allow for the emergence of novel behaviors and strategies, further improving the agents' 

ability to achieve their goals. 

1.2 Motivation and Problem Statement 

It has been observed that agents tend to acquire better learning outcomes in a simplified 

environment [4]. However, such agents may not be well-suited for more complex 

environments and may exhibit a bias towards them. To address this challenge, agents can 

benefit from the implementation of curriculum learning. This approach involves gradually 

increasing the difficulty of the environment once the agent reaches a certain reward 

threshold, allowing them to better adapt to complex scenarios. 

Recent observations of agents in OpenAI's program indicate a preference for 2-dimensional 

movement, limiting their ability to navigate in three dimensions [3]. However, introducing 

a third movement direction, such as up and down, can enable agents to fly and discover 

novel behaviors, leading to more optimal solutions. 

Additionally, the limitations of 2-dimensional lidar-like ray cast in detecting opposing 

agents above or below call for the redesign of observation sensors. This modification can 
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provide agents with a more comprehensive understanding of their surroundings and 

improve their situational awareness when an ally or opposing team's agent is present. 

We are interested in examining the effects of reducing or eliminating negative rewards for 

behavior that leads to delayed rewards. For instance, seekers are currently penalized with 

a negative reward if they do not have hiders in sight, even if they are moving in the right 

direction toward the hiders and are only a few frames away from reaching an optimal 

position. 

We intend to investigate how the elimination or reduction of these negative rewards would 

affect the behavior of the agents. By doing so, we can better understand how agents 

perceive and respond to delayed rewards and whether removing negative rewards in these 

situations leads to more optimal outcomes. This analysis can provide valuable insights into 

how to incentivize agents to navigate more effectively toward their goals, even in situations 

where rewards are delayed. 

 

1.3 Objectives 

The primary objective of this research is to achieve the following goals: 

 We aim to enhance our agents' abilities by introducing drone-like behavior through the 

addition of flying movements. This feature enables agents to observe and interact with 

their environment more effectively, leading to improved performance and better results. 

 Our objective is to create a competitive multi-agent environment utilizing MA-POCA 

(MultiAgent POsthumous Credit Assignment) and PPO (Proximal Policy Optimization 

algorithm) reinforcement learning techniques. The implementation of these methods 

can facilitate the development of effective strategies among agents, resulting in 

improved performance and more successful outcomes. 

 We aim to fine-tune reward functions and hyperparameters as accurately as possible, 

based on the existing documentation. This approach can optimize the performance of 

our agents, enabling them to achieve better results and more efficiently reach their goals. 

 Our objective is to showcase the potential of our proposed model by conducting various 

experiments and comparative studies on reinforcement learning projects using state-of-

the-art approaches. This approach can demonstrate the effectiveness and superiority of 
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our proposed model and enable us to further improve and optimize our agents' 

performance. 

By accomplishing these goals, we can improve our understanding of reinforcement 

learning agents and contribute to the development of more advanced and smart agents. 

1.4 Thesis Contribution 

This thesis makes a meaningful contribution to the field of reinforcement learning by 

proposing new ideas and enhancements that can significantly augment the behavior of 

multi-agent reinforcement drone bots. The proposed enhancements aim to enable agents to 

learn tool use in a 3-dimensional environment using a combination of competition and 

cooperation. In addition, the thesis proposes the implementation of curriculum learning to 

enhance the agents' understanding of the environment perception and how to take action 

given the specific state they are in. 

 

The proposed enhancements have the potential to improve the performance and 

effectiveness of reinforcement learning drone agents, enabling them to better navigate 

complex environments and achieve more optimal outcomes. The use of competition and 

cooperation can encourage agents to work together towards a common goal, leading to 

more efficient and effective decision-making. The implementation of curriculum learning 

can help agents gradually improve their skills and understanding, leading to better overall 

performance. 

 

Overall, the contributions are offering new insights and approaches to replicating the 

behavior of OpenAI’s hide-and-seek agents. The proposed enhancements have the 

potential to make reinforcement learning more effective and applicable to a wider range of 

real-world scenarios, making them a valuable addition to the field. 
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1.5 Background 

B. Baker et al proposed a model in which self-play was accomplished using genetic 

algorithms, intrinsic motivation methods, count-based exploration, and transition-based 

methods. [3] This is done because, in the previous scenarios, agents were explicitly 

incentivized to interact with and use tools, whereas, in this scenario, environment agents 

create this incentive implicitly through multi-agent competition. The methodology is as 

Hiders are given a reward of 1 if all hiders are hidden and a reward of -1 if any hider is 

seen by a seeker. Seekers receive the inverse reward: -1 if all hiders are hidden, and +1 

otherwise. Agents are penalized with a -10 reward if they venture too far outside of the 

play area (outside an 18-meter square). A policy network generates an action distribution, 

and a critic network forecasts discounted future returns. As a result, six emerging strategy 

phases are introduced. Our approach is via rewarding agents every frame for optimal action 

and not giving rapid negative rewards. The seekers are given a +0.001 reward if any seeker 

can have hiders in their field of vision while hiders get a +0.0001 reward every frame they 

are hidden from the seekers.  

E Alonso et al created a navigation system combining the 3D occupancy map, 2D depth 

map, and absolute goal and agent positions, passing through independent feature extraction 

layers (3D convolutions, 2D convolutions, and linear layers respectively). [4] The output 

of each feature extractor is then combined with other state variables, such as relative goal 

position, speed, acceleration, and previous action. The combined output is fed through 

several linear layers, followed by an LSTM, to create the final embedding shared by both 

the policy and critic heads. Our approach was to introduce a frontal vision sensor and 

spatial grid sensor. The essential functionality needed for visual grid observations is 

provided by the GridSensorComponent. It offers a GridBuffer that may be used to write 

normalized float data and encapsulates a GridSensor. I have also provided the shape 

options. If performing PNG compression on the observation, a ColorGridBuffer is 

generated (which extends GridBuffer and holds color values). The sensor is based on points 

rather than verifying collider overlaps for each grid place. This implies that the shape of an 

item is represented as a collection of local points that have been stored and are subsequently 

translated into the sensor's frame of reference. This approach has the advantage of scaling 

well for numerous sensor instances because it needs far fewer overlap checks.  
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A. Tucker et al deduced a model in which CNN-AIRL is used to reduce the image space 

and then feed the Adversarial IRL, which is a continuous action space and uses a fully 

connected policy and reward network [5]. They use Proximal Policy Optimization (PPO) 

to train the policy network instead of Trust-Region Policy Optimization (TRPO). M. Lukas 

developed a multi-agent competition environment in which each Bot, using a State 

Machine, has 6 states. The Security Agents use Proximity Policy Optimization (PPO) 

reinforcement learning algorithms which observe the Player’s positions, rotation, velocity, 

carrying a box, box positions of your team and rotations, blue team score, red team score, 

and deduce if a player is a player, neutral or bot (true, neutral or false) and vice versa. 2 

tests were performed. Test 1 with the Player on Red Team and Bot on the Blue team, this 

test failed when the player changed teams because the agent needed a more diverse 

environment to learn, So, the 2nd Test was performed having the Player and Bot both at 

each team. In my approach, 2 separate training sessions were held in which once the seekers 

are trained enough for the “running and chasing” task, the training of hiders begins. This 

is because hiders needed a much smarter agent to train against in competition. They needed 

to observe the severity of staying outside the safe room and not locking the doors and 

windows. Thus the hiders were trained using the Proximity Policy Optimization (PPO) 

reinforcement learning algorithms while the seekers are trained using the MultiAgent 

POsthumous Credit Assignment (MA-POCA). 

Multi-agents gain skills including scouting for foes in new regions, looking for cartridges 

after an injury, and delivering ammo to many threatening targets. J. Lai et al utilized the 

PPO method which determines a conservative lower limit of the objective function using a 

simple clip, boosting sampling efficiency. [6] Two networks are being trained by 

ActorCritic. One network estimates or criticizes Q-values, while the other decides the 

actor’s or agent’s policy or behaviors. [19] Our method is using the curriculum learning 

approach in which lowering the complexity of the environment increases the agent's 

learning speed and makes the agents more dynamic to changing environment. 

I. M. A. Nahrendra et al proposed the Retro-RL paper which intends a method for training 

a deep reinforcement learning algorithm to improve the control of a tilting-rotor drone. [7] 

The approach involves combining a nominal controller with a deep Q-network (DQN) that 
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learns to adjust the controller's output based on the drone's state and the desired trajectory. 

The authors evaluate their approach in simulation and on a physical drone, demonstrating 

improved performance compared to the nominal controller alone. However, the approach 

requires a large amount of training data and may not be easily generalizable to other drone 

platforms or control tasks. Our approach uses the 3-axis based locomotion in the x, y, and 

z axis while having a rotation on the y-axis with the ability to drag the objects as well.  

R. Zhang et al paper "Game of Drones: Multi-UAV Pursuit-Evasion Game with Online 

Motion Planning by Deep Reinforcement Learning" proposes a method for online motion 

planning and decision-making in a multi-UAV pursuit-evasion game using deep 

reinforcement learning (RL). The authors design a neural network-based policy that takes 

as input the positions and velocities of all UAVs and outputs the actions for each UAV. [8] 

They use an actor-critic algorithm to learn this policy from scratch, without relying on any 

prior knowledge of the environment or system dynamics. The proposed method is 

evaluated in a simulated multi-UAV game, where a team of pursuer UAVs tries to capture 

a single evader UAV. The results show that the proposed method outperforms several 

baseline methods, including a centralized planner and a non-learning decentralized planner. 

The authors also demonstrate the scalability of their method by increasing the number of 

UAVs in the game. The paper contributes to the growing field of using RL for decision-

making and control in multi-agent systems. The proposed method has potential 

applications in surveillance, security, and search and rescue scenarios where multiple 

UAVs must work together to achieve a common goal. However, the proposed method only 

considers a simplified pursuit-evasion game, and further research is needed to evaluate its 

performance in more complex scenarios. Our approach is a multi-agent competition where 

team A will compete with an already trained and smart team B. This is done as agents learn 

better in the simpler and more non-complex environment faster rather than against a super 

brain or very complex environment. 

A. Devo et al paper "Autonomous Single-Image Drone Exploration with Deep 

Reinforcement Learning and Mixed Reality" proposes a method for autonomous 

exploration with a drone using deep reinforcement learning (RL) and mixed reality. [9] 

The authors train a neural network-based policy using RL to control the drone's movement 



 

8 
 

and optimize its exploration behavior based on a single RGB image as input. The proposed 

method is evaluated in both simulation and a real-world environment using a DJI Mavic 

Pro drone. The results show that the proposed method outperforms several baseline 

methods, including random exploration and an information-gain-based exploration 

algorithm. The authors also introduce a mixed reality interface that provides the user with 

a first-person view of the drone's perspective, enabling real-time feedback and intervention 

to adjust the exploration trajectory. The paper contributes to the growing field of using RL 

and mixed reality to enable more autonomous and intuitive control of drones. The proposed 

method has potential applications in search and rescue, inspection, and surveillance 

scenarios where a drone needs to autonomously explore and map an unknown environment. 

However, the proposed method assumes a known environment, and further research is 

needed to evaluate its performance in more complex and dynamic environments. 

Additionally, the mixed reality interface requires a human operator, and future work could 

explore ways to make the exploration process more fully autonomous. Our approach is 

using mbaske’s 3d grid sensors that help create a frontal sensor that is used to generate 

shapes and get position data of detectable objects. And a spatial sensor that detects the 

position of the objects around the agent. 

G. Wu et al proposed the "Reinforcement Learning based Truck-and-Drone Coordinated 

Delivery" paper which intends a method for optimizing the delivery process of a truck-and-

drone system using reinforcement learning (RL). [10] The authors use a deep RL algorithm 

to learn the optimal coordination strategy between a truck and a drone to minimize the 

overall delivery time. The proposed method is evaluated in a simulated delivery scenario, 

where the truck and drone must coordinate to deliver packages to different locations. The 

results show that the proposed method outperforms several baseline methods, including a 

random coordination strategy and a heuristic-based coordination strategy. The paper 

contributes to the growing field of using RL for decision-making and control in multi-agent 

systems. The proposed method has potential applications in logistics and transportation, 

where a truck-and-drone system can be used to deliver goods more efficiently and cost-

effectively. However, the proposed method only considers a simplified delivery scenario, 

and further research is needed to evaluate its performance in more complex and dynamic 

environments. Additionally, the proposed method assumes that the locations of the 
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packages are known in advance, and future work could explore ways to incorporate 

uncertainty and adaptability into the delivery process. Our approach uses a curiosity 

hyperparameter to increase agents’ randomness and promote the explore ways to 

incorporate vagueness. 

C. de Souza et al proposed the "Decentralized Multi-Agent Pursuit Using Deep 

Reinforcement Learning" paper proposes a method for coordinating a team of agents to 

pursue a target using deep reinforcement learning (RL). [11] The authors use a deep Q-

network (DQN) to learn a decentralized policy that enables each agent to make independent 

decisions based on its local observations. The proposed method is evaluated in a simulated 

pursuit scenario, where a team of agents must coordinate to capture a moving target. The 

results show that the proposed method outperforms several baseline methods, including a 

centralized planner and a non-learning decentralized planner. The paper contributes to the 

growing field of using RL for decision-making and control in multi-agent systems. The 

proposed method has potential applications in surveillance, security, and search and rescue 

scenarios where multiple agents must work together to achieve a common goal. However, 

the proposed method only considers a simplified pursuit scenario, and further research is 

needed to evaluate its performance in more complex and dynamic environments. 

Additionally, the proposed method assumes that the agents have perfect communication, 

and future work could explore ways to incorporate communication constraints and failures 

into the coordination process. Our approach uses PPO and MA-POCA in a competition.  

D. Hong et al proposed the "Energy-Efficient Online Path Planning of Multiple Drones 

Using Reinforcement Learning" paper which suggests a method for optimizing the energy 

consumption of a fleet of drones during online path planning using reinforcement learning 

(RL). [12] The authors use a deep RL algorithm to learn a policy that determines the 

optimal path for each drone to minimize energy consumption, considering the dynamic 

nature of the environment. The proposed method is evaluated in a simulated scenario, 

where a fleet of drones must visit a set of target locations while minimizing their energy 

consumption. The results show that the proposed method outperforms several baseline 

methods, including a random path planner and a heuristic-based path planner. The paper 

contributes to the growing field of using RL for decision-making and control in drone 
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systems. The proposed method has potential applications in surveillance, inspection, and 

search and rescue scenarios where a fleet of drones must operate for extended periods and 

cover large areas. However, the proposed method only considers a simplified path-planning 

scenario, and further research is needed to evaluate its performance in more complex and 

dynamic environments. Additionally, the proposed method assumes that drones have 

perfect communication and coordination, and future work could explore ways to 

incorporate communication constraints and failures into the planning process. Our 

approach introduces curriculum learning where the complexity of the environment is 

gradually increased in four different stages. Level one has one doorway and one prop. Level 

two has one doorway, one window, and two props, level three has two doorways, one 

window, and three props while level four has two doorways two windows, and four props. 
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1.6 Thesis Organization 

 
The structure of the thesis is as follows: 

 Chapter 2 contains the literature reviewed in the thesis. The previous related work 

regarding reinforcement learning multi-agents. Competing and cooperating techniques 

and existing case study-based approaches applied to the learning agents are covered in 

the chapter. 

 

 Chapter 3 covers the method and research methodology, details of the structure of 3-

dimensional agents, frontal camera sensor, spatial sensors, and method used in 

conducting the experiments and environmental setups. 

 

 

 Chapter 4 contains the reinforcement learning models executed. The simulation results 

for each model and the attributes used are discussed in detail. The discussion and 

Analysis of the results are also part of this chapter. 

 

 Chapter 5 is the concluding chapter. The conclusion and future research gaps are 

described in this chapter. 
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Chapter 2 

Method 
2.1 Agent Structure 

 

 

 

Figure 1 High-level architectural design of Agent 

Figure 1 represents the architectural structure of an agent. The types of observations it's 

receiving, the reward types it's getting, and the pilot parameters that include movement 

and physics-related types. 

To explain further, the upcoming section of this chapter includes descriptions regarding 

the following: 
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2.2 Agent: 

An agent is characteristically represented as a neural network that takes in Observational 

inputs from its environment and outputs actions. The agent learns to perform these actions 

in response to its environment by training on a dataset of observations and rewards. The 

following are the three observation types our agents are receiving which are thoroughly 

explained further in this chapter: 

Spatial Sensor Frontal Sensor Raycasts 

 
Figure 2 “360⁰” in 3d space 

 
Figure 3 “135⁰” in 3d space 

 

 
Figure 4 "360⁰" in 2d space 

 

2.2.1 Hider Agents: 

One of our agents, whose objective is to flee from the seeker agents and build a shelter out 

of the environment's objects. These agents are rewarded when they are successful in hiding 

from seekers either by staying out of their sight or by building a fort for more security. 

2.2.2 Seeker Agents: 

The other type of our agents whose objective is to find and tag hider agents. They must 

learn to navigate toward the hiders and collide with them. Seeker agents get rewards if 

hider agents are in their sight or they tagged any hider. These seekers are responsible to 

learn movement in flying like drone maneuvers, identify the target (Hiders), locate that 

target, adjust it to face directly to the target, and move toward it avoiding obstacles and 

static walls. 

2.2.3 Neural Network structure: 

Agents are assigned 256 hidden units along with 2 hidden layers.  



 

14 
 

2.3 State Abstraction 

A special Grid sensor is designed for capturing agents in 3d space. It contains a set of 

sensors that capture the state of the environment by dividing the space into a 3D grid 

of cells and recording the occupancy or other features of each cell.  

 

2.3.1 Grid Construction:  

To construct the grid, we divide the 3D space into a set of uniformly sized cells. 

Each cell is defined by its center point, which can be calculated as: 

𝐶𝑖 =  𝐵𝑖 + (
1

2
) ∗ 𝑆𝑖 

Were: 

𝐶𝑖 is the center point of the i-th cell. 

𝐵𝑖  is the bottom-left corner of the i-th cell. 

𝑆𝑖 is the size of the i-th cell. 

 

2.3.2 Occupancy Calculation:  

The occupancy of each cell in the grid is calculated by checking if any part of the 

object or agent is inside the cell. This is done using a binary function 𝐵(𝑥) that 

returns 1 if x is inside the object and 0 otherwise. The occupancy 𝑂𝑖 of the i-th cell 

can be calculated as: 

𝑜𝑖 = 𝑚𝑎𝑥𝑗∈𝑂𝐵(𝑐𝑖 − 𝑝𝑗) 

Where: 

𝑂 is the set of all objects in the environment. 

𝑃𝑖  is a point on the surface of the i-th object. 

𝐵(𝐶𝑖 − 𝑃𝑖) is a binary function that returns 1 if x is inside the object and 0 otherwise. 

 

2.3.3 Feature Calculation: 

 In addition to occupancy, we can also calculate other features of each cell, such 

as distance to the nearest object or the average color of objects inside the cell. The 

feature value 𝑓𝑖,𝑘 of the k-th feature in the i-th cell can be calculated as: 

 

𝑓𝑖,𝑘 = 𝑛 ∑ 𝐵(𝑐𝑖 − 𝑝𝑗)𝑓𝑗,𝑘

𝑗∈𝑂

 

Where: 

𝑂 is the set of all objects in the environment. 

𝑃𝑖  is a point on the surface of the i-th object. 

𝐵(𝐶𝑖 − 𝑃𝑖) is a binary function that returns 1 if x is inside the object and 0 otherwise. 

𝑛 is the number of objects in the environment. 
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2.3.4 Frontal Shape Observation 

The Frontal Shape Sensor is a type of visual sensor that captures the shape and 

appearance of objects in the environment from a frontal perspective. The sensor works 

by capturing an image of the environment from the agent's current position and angle 

and then processing the image to detect and classify objects based on their shape and 

appearance. 

Debug View Grid Buffer 

  

 

 

The frontal field of vision is responsible for getting the position and shape of detectable 

objects in Infront of the viewing agent. The initial collider buffer is set to 400 and if in 

case of agents detect more; the buffer will double itself. The latitude angle north and 

south are set to 90 degrees each while the longitudinal angle is set to 84 degrees yielding 

a smaller field of vision. The arc angle of a single FOV grid cell in degrees. Determines 

the sensor resolution: 

𝐶𝑑 =  𝜋 ∗ 2 ∗ 𝐷
360

𝐶𝑑
 

where Cd is equal to cell size at distance and Ca equals cell arc value. 

The following is the terminology used to setup values in the sensors: 

Lat Angle North - The FOV's northern latitude (up) angle in degrees. 

Lat Angle South - The FOV's southern latitude (down) angle in degrees. 

Lon Angle - The FOV's longitude (left & right) angle in degrees. 

Min Distance - The lowest possible detection distance (near clipping). 

Figure 5 Frontal Shape Sensor for Agent's Observation 
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Max Distance - The upper limit detection distance (far clipping). 

Normalization - How to normalize object distances. 1 for linear normalization. Set 

the value to < 1 if observing distance changes at close range is more critical to agents 

than what happens farther away. 

 

2.3.5 Spatial Position Observation 

 The Spatial Sensor can be used to detect the presence of specific objects in the 

environment and can provide information about the relative location and orientation of 

those objects with respect to the agent. The Spatial field of vision which is the surround 

positioning lidar used to identify the position, as well as the distance to the surrounding 

detectable objects its initial collider buffer, is set to 32, and if in case of agents detect 

more the buffer will double itself. The latitude angle north and south are set to 90 

degrees each while the longitudinal angle is set to 180 degrees yielding a 360 field of 

vision. and 2d ray casts pointing outward along the x and z-axis around the agent and 

agents’ velocity with its facing direction along the z-axis. 

Debug View Grid Buffer 

  

 

Figure 6 Spatial Sensor for Agent's Observation 

The Spatial Sensor represents the environment as a set of spatial features. This sensor captures 

information about the location and characteristics of objects in the environment, such as their 

position, orientation, and size. 

 

 

 



 

17 
 

2.3.6 Ray-casts Observation  

Agents have 2d Ray-casts that surround them observing. In ML-Agents, Ray-cast 

Sensors are a type of sensor that provides information about the environment to the 

agent. A Ray-cast Sensor works by casting a ray or multiple rays from a point on 

the agent's body to detect objects in the environment. The sensor returns 

information about the distance, angle, and type of the detected objects. Ray- cast 

Sensors are commonly used in robotics and game development to simulate 

perception and enable agents to interact with the environment. In ML-Agents, Ray-

cast Sensors can be used to provide the agent with information about the 

environment, such as the location of obstacles, the distance to objects, and the 

presence of other agents. 

 

Figure 7 2d Ray casts 

The agent has 8 ray casts per direction with a max ray degree of 180 which means by adding both 

directions we get a 360 view. The sphere ray cast radius is 0.3 while the ray length is set to 20. 

2.3.7 Realtime values via script 

Values include normalized potion of self, normalized velocity, facing direction 

vector, normalized rotation, a bool telling if the agent is dragging prop, and a 

normalized timer that finishes when environmental steps finish. 
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2.4 State Diagram: 

 

 

Figure 8 State Diagram of Agents observation to action flow 

Figure 8 represents the observation being provided to the agents to generate actions and develop the 
best policies. The observations are then fed into MA-Poca for Seekers and PPO for Hiders. 

Observations including relative position, current velocity, target relative position, 3d 

spatial sensor, 3d frontal sensor which includes 84x84 RGB camera, and 2d ray-casts are 

taken from the agent to the observation buffer and sent to generate optimal policy to 

generate the best result.  
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2.5 Environmental Design 

2.5.1 Pre-Hider and Seeker Experiments 

we conducted three different yet progressive experiments including the 

“hummingbird experiment”, “target drone experiment” and the “eye experiment”.  

 

Hummingbird Target Drone The Eye 

 
  

Info: 

Training a humming bot 

to collect nectar [14] 

Info: 

Training a drone bot to 

tag target 

Info: 

Training an eye bot to 

avoid collision with an 

ally and reach the target 

Conditions: 

Stationary Target 

Wide boundaries 

Known Target 

 

Conditions: 

Dynamic Target 

Normal boundaries 

Known Target 

 

Conditions: 

Dynamic Target 

Small boundaries 

unknown Target 

 

 

2.5.1.1 Hummingbird Agent - Experiment 

Observing Agents Behavior, the Agent seems to wobble around trying different 

actions to be able to achieve reward and avoid punishment. 

Reward = +.01f if Agent is in Nectar 

Reward = -0.5 if Agent Collides 
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Figure 9 Cumulative Reward for “Hummingbird” agent 

 

After approx. 2.5M Steps, Agent seems to figure out a pattern to successfully 

navigate to the nectar Collider. 

 

2.5.1.2 Drone Agent Experiment  

Observing Agents Behavior, we find Drone Agent seems to wobble around 

trying different actions to be able to achieve reward and avoid punishment. 

Reward = +1f if Agent is in Nectar 

Reward = -1 if Agent Collides 

 

Figure 10 Cumulative Reward for "Drone Target" agent 
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2.5.1.3 EyeAgent Experiment 

Observing Agents Behavior, the Agent seems to wobble around trying different actions to 

be able to achieve reward and avoid punishment. 

Reward = +1f if Agent is in Target 

Reward = +0.001 if Agent Looks at Target 

Reward = -0.2 if Agent Collides 

Reward = -0.5 if Agent Collides 

 

Figure 11 Cumulative Reward for "The Eye" agent 

After approx. 6.5M Steps, Agent seems to figure out a pattern to successfully stop colliding 

with walls and with other agents. 
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2.6 Instance Setup 

For our research, we are conducting two separate training sequentially. Seekers are 

using MA-POCA, which is used to train a group of seekers (1-4). While the hider 

agents are using PPO (Proximal Policy Optimization) which is used to train hider 

agents. They use the props available in the environment to shield themselves for a 

shorter reward or use it to block the windows and doorways (best policy).  

 

Figure 12 Environment visual (2d view) 

Figure 12 demonstrates the training and testing environment that consists of 1-2 Hiders Drones, 

1-4 Seeker Drones, 1-4 Props (doors, windows), 5 obstacles, 4 “L-shaped” walls, and 4 boundaries 
around the whole setup. 
Seeker: (MA-POCA) The Hunter Drone Agent tasked to locate and hit Hider to avoid walls and 
obstacles. 
Hider: (PPO) The Escaping Drone Agent tasked to Lock doors and clear obstacles. 
Props: Draggable/Lockable entity used by agents for their gain. 
Walls: Static non-movable entity used to teach navigation. 
Obstacle: Physics-based Rigid bodies blocking agents’ path to the desired goal. 
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2.6.1 Parallelism 

Training is performed using the principle of parallelism. “n” consecutive similar 

environment prefabs are initialized altogether. Each prefab instance has an identical list of 

agents and a similar environment structure. Experience can refer to the dataset of 

observations and rewards used to train an agent's neural network. Let 𝐸 be the experience 

in n instances: 

𝐸𝑡 =  ∑(𝐸1 +  𝐸2

𝑛

𝑛=1

+ 𝐸3 . . . . . . 𝐸𝑛 )  

By training multiple agents at once, the overall training time can be reduced, as the agents 

can learn from their experiences in parallel rather than one at a time. It is achieved using a 

technique called asynchronous training, where multiple agents are trained concurrently, 

and their experiences are used to update the neural network at different times.  

Figure 13 demonstrates Trajectory-based parallelism which involves running multiple instances of the 
simulation environment in parallel, with each instance running a different agent. Each agent collects a 
sequence of experiences, or "trajectory", from interacting with the environment, and these trajectories are 
used to update the agent's model.  
 
 

 

 

 

 

 

 

Figure 13 Parallelism - 12 Environments 
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2.6.2 Multi-Agent Prep-Phase 

Agents are given a total of 3072 steps in which they can make decisions every third step 

and update their actions accordingly. Hiders are given a 40% preparation time before the 

seekers are allowed to move. In this “prep phase” hiders are allowed to move freely while 

avoiding contact with seekers. Hiders can learn to identify, drag, and lock movable props 

(i.e., boxes) to use them to their advantage. During this period, seekers are observing the 

hider’s location and shapes (if hiders accidentally stay in Infront of the seeker’s field of 

vision) but they are restricted with their movement. 

𝑆𝑝 =  𝑆𝑚 ∗ (
40

100
) 

Where 𝑆𝑝 are the Steps for the prep phase and 𝑆𝑚 are the Max Steps. 

 

prep_phase_steps = Max_env_steps * (40/100) 

1228.8 ~ 3072 * (40/100) 

 

2.6.3 Multi-Agent Test-Phase 

The test phase refers to that portion of training in which the seekers are let loose and given 

control over themselves. That means seekers can now also move along with hider agents 

and try to hunt them and tag them. After 40% of steps are completed out of max 

environment steps, for the rest 60% of the steps, seekers are allowed to move and use their 

learned policy to focus on targets and reach them. 

𝑆𝑡 =  𝑆𝑚 ∗ (
60

100
) 

Where 𝑆𝑡 are the Steps for the test phase and 𝑆𝑚 are the Max Steps. 

 

test_phase_steps = max_env_steps * (60 / 100) 

1843.2 ~ 3072 * (60 / 100) 
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2.7 PLAYTESTING RL AGENTS 

2.7.1 Observing Player Progression via Curriculum learning 

Our Hider agents are trained via a form of machine learning method known as 

curriculum learning which includes progressively raising the level of complexity of 

the training examples provided to an AI agent. Task Sequencing: The first step in 

curriculum learning is to define a sequence of tasks with increasing difficulty. This 

sequence can be represented as a function that maps the current training iteration to 

the corresponding task. For example, the task at iteration 𝑡 could be represented as: 

𝑓(𝑡) = 𝑇𝑎𝑠𝑘𝑡 

The plan is to start with simple instances and progressively get more complicated 

as the agent gets better at the task. 

𝐶𝑟 >  𝑇𝑟 → 𝐷 += 1 

Where 𝐶𝑟  is the current reward, 𝐶𝑟 is the Cumulative threshold reward. 𝐷 is the 

difficulty as in levels. That is the current reward exceeds a given number of 

episodes, the environment will evolve to complex itself to make it harder for an 

agent to learn gradually. Agents are introduced with four different levels of 

environmental setup in Figure 12. Levels are made difficult to complete 

progressively. For example, level one has the least difficulty while level four has 

the maximum.  Curriculum learning is applied to educate the agents on how to play 

the game of hide and seek more effectively. The hiders and the seekers are two 

different teams of agents in this game. The hiders must conceal themselves in their 

surroundings, while the seekers must track them down and tag them. By gradually 

escalating the level of difficulty, curriculum learning is integrated into the game of 

hide and seek with the students. The hiding places could be harder to locate as the 

hiders get more adept at doing so. Similar to this, as the game goes The curriculum 

learning in ml-agents hide and seek is intended to assist the agents in learning more 

quickly and effectively. The agents can learn the game in a more organized and 

effective manner by starting with simple instances and progressively adding 

complexity. 
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2.7.2 Seeker's Assault Horizon 

The idea behind this is inspired by the military term “Dog Fight”. A dogfight is a 

kind of aerial conflict in which two or more aircraft engage in a close-quarters battle. 

High-speed maneuvers and intricate strategies are frequently used, with each pilot 

attempting to outwit their rival. Dogfights may be quite dangerous since they 

frequently take place at great heights and make use of cutting-edge equipment. Our 

agent’s navigational capabilities are designed by keeping the “running and chasing” 

ability in mind. Seekers are to keep hiders in their assault horizon to gain rewards 

and even tag them to get an additional reward.  

With the help of a specially designed target field of vision “reward strength” signal, 

seekers can identify what angle suits best to adjust its rotation and position 

accordingly, so it is facing and is right in Infront of its target. 

Let 𝑇 = forward vector “z-axis” i.e. (0,0,1) and let 𝑎 = difference between this 

agent’s position  𝑃1 and other agent’s position 𝑃2. 

𝑎 =  𝑃2 − 𝑃1 

𝑅𝑑 =  |𝑎| 

𝑑 = 𝑇. (
𝑎

𝑅𝑑
) 

𝑆𝑠 = (
𝑑

𝑅𝑑
) 

Where 𝑆𝑠  is the Signal Strength, 𝑅𝑑 is the magnitude of 𝑎 , 𝑑  represents the dot product 

between the forward vector and (
𝑎

𝑅𝑑
) 

 
Top View Side View 
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2.7.3 Hider's Prop Use 

As our agents have flying-like capabilities, introducing a ramp was of no use as 

agents might learn to just fly over the wall. So, we introduced windows and 

doorways which when blocked with props, make a safe house for the hiders. There 

is a single prop assigned for each window or door. Agent must learn to efficiently 

learn to handle the props to minimize the time required to close that door and also 

learn which prop is best for quickly closing a specific location door. If the agent is 

using the farthest prop to close a door It will damage the efficiency as it needs to 

close the rest of the doors too. 

 

Figure 14 Prop 1 used successfully 
 

Figure 15 Prop 2 was used successfully. 

 

 
Figure 16 Prop 3 was used successfully while 

Avoiding obstacles. 

 
Figure 17 Prop 4 with max distance and avoiding 

seekers collision used successfully. 
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2.7.4 Clearing Obstacles 

 

 

Figure 18 Obstacles are demonstrated with orange color. 

 

Agents have an additional problem of clearing the obstacles to make a path for closing the 

doorway. These orange blocks have mass and light gravity. This light gravity increases the 

difficulty as it's more complex to clear them away with one stroke as they start to float in the 

path of agents. Agents need to constantly move away from the obstacles and clear their path to 

the optimal solution. 
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Chapter 3 

Results and Analysis 

In the previous section, the methodology of our two agents including the algorithms, 

observations, and their reward distribution has been described. The following section 

includes the results and analysis of Hiders and Seekers agents. This section will be divided 

into two major portions each highlighting the resulting behavior and analytical outcome of 

Seekers and Hiders. 

By using the methodology explained in the above section it’s been deduced that training 

agents with a lesser negative reward or lesser penalties yield a quicker learning behavior 

and can result in faster convergence to the optimal policy. This occurs especially in 

navigation-related tasks where an agent might be in the right direction to target but is 

getting a penalty for not looking at it. PPO and MA-Poca tend to increase its reward based 

on observations so it is beneficial to leave the negative rewards at a minimum. Hiders are 

given a 0.001 reward for every frame they are hidden while seekers are given a 0.001 

reward if hiders are in the field of vision and +1 if they crash hiders.  

Seekers are trained in a group of 2-4 multi-agents and assigned cumulative rewards i.e. 

each will get the reward for good action and each will get a penalty if one does a bad action. 

It resulted in the occurrence of cooperation among them. Seeker’s behavior shows they 

tend to, with time, explore random paths lesser and use the target’s (Hider) location 

observation to calculate the shortest path and shortest facing direction. This behavior helps 

the seekers to put hiders easily in their FOV (field of vision). Seekers were successful in 

emerging “Running and chasing” which includes sub-strategies like locating, navigating, 

finding Hiders, navigating around walls, and door identification. As Seekers are already 

flying (drones) they learned to ramp themselves up with an upward thrust through the 

windows. As windows do not allow the drone to enter without moving vertically up or 

down (‘down’, in our case as the agent can be near the roof) thus “ramp use” strategy is 

also satisfied as they are successful in entering the hider’s rooms via learning vertical 

movement and clearing obstacles Infront of windows. 
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Hiders are trained solo and as a group of 2 multi-agents. As their main reward is based on 

isolating themselves in a safe location so their rewards are quite far in the future i.e. agents 

need to perform more random actions to identify the best state-action situation to push in 

the buffer to generate an optimal policy. To overcome this barrier, we used curriculum 

learning which by increasing the complexity of the environment gradually yields an agent 

understanding of the basic concept of what actions are required to get a max reward in an 

episode.  

 

Figure 19 Level One 

 

Figure 20 Level Two 

 

Figure 21 Level Three 

 

Figure 22 Level Four 

Figure 19 represents the easy environmental setup showing a basic training scenario where the Hider 
Agent (white box) just needs to drag the prop (green box) to the doorway and lock it there so the Seeker 
Agents are not able to get into the confined safe space of the Hiders. Figure 20 represents a medium 
environmental setup showing a simple layout with twice the number of doorways and tools (props) that 
can be used to block the seekers and make a safe place for hiders. Figure 21 represents a moderately 
hard setup with three doorways and three props. This introduced unidirectional movement for the hider 
to push and pull props in both the left and right directions. Figure 22 represents the hardest environment, 
where the hider agent has four doorways and just four props, so it has to use them in the given time 
(40% of the full episode) and introduces obstacles that hinder the path and cause physical barriers in 
movement and visual barriers in the field of visual input. 
 

The environment has six key components. Walls, Props, Hiders, Seekers, Boundaries, and 

obstacles. Walls are static objects designed specifically to gradually increase the difficulty 

by enabling or disabling a chunk of it as shown in figures 1-4 above. Props are used as a 

door or a shield that can be dragged into the vacant door/window spaces and locked there 

so seekers are unable to get inside the hider’s safe hideout. While obstacles are pure 

physical rigid bodies that can be pushed. They have gravity involved with much less weight 

which ends in gliding behavior that continues to stay in the path of agents even after being 

pushed once. By inducing such curriculum learning behavior, hider agents tend to grab the 

concept of safely dragging the prop to the opening and closing it more quickly and 

efficiently than directly starting the training at level four. One can reduce or increase the 

levels just to get optimal results from the agents. This subtle increase in the complexity of 
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the environment rather than forcing the agent to adapt to the more complex one yields 

beneficial results. We did two experiments by training the hider agents until 3.3M steps in 

both traditional and curriculum learning. With comparing to traditional non-curriculum 

learning experiments there was found no increase in reward cumulative rewards as shown 

in the graph. 

3.1 Curriculum Learning vs Traditional Learning 

 

 

Figure 23 is representing cumulative reward comparison over 3.3M environmental steps between 
curriculum vs traditional learning environmental setup. The solid magenta-colored line represents the 
traditional approach where Hider agents were able to just run away from seekers satisfying the first strategy 
and not yielding to the second. While the solid orange line represents curriculum learning where training 
was divided in the forms of levels (Figure 19) which yields better continuous reward per frame as hiders 
were able to hide for more time steps and get more reward every frame. 

Reward, in the case of hiders, is given on the bases of how many frames the hiders can hide 

from the field of vision sensor of seeker agents. More the frames they are hidden the more 

they can get rewarded. With the curriculum, learning involved hiders were able to learn a 

basic behavior and adopt a converging policy that results in a better hiding behavior. 

Therefore the curriculum learning approach was adopted for further experimentation. 
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Environmental Steps 

Figure 23 Reward Distribution for Hider Agents comparing curriculum vs traditional 
environmental setup. 
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3.2  Hiders 

3.2.1  Cumulative Reward: 

 

The solid orange line represents Hider’s cumulative reward over the environmental steps. Training is 
initialized using Level One. Level Two is introduced at 5.7M environmental steps. Level Three at 12.8 steps 
while Level Four with decreased reward per frame at 15.7M steps. 

 

A spike at 160k environmental steps axis represents Hider Agents were able to learn to get 

some reward by crudely running and escaping from the seekers. Until 2.3M steps, Hiders 

were running and escaping from the seekers more efficiently and thus were getting more 

rewards per episode. From 2.3M to 5.7M a sudden increase in reward was observed as 

level one (Figure 19) of curriculum learning was finally working and yielding maximum 

reward. At the 5.7M step, level two was introduced and agents experienced a sharp 

decrease in rewards as the difficulty was increased. But as they have already a semi-trained 

brain, so they continued to update the policy and adopt it. At the 12.8M step, the third level 

was introduced which shows a steep downfall indicating complexity for the agent to learn. 

And finally, at the 15.2M step level, four was introduced and the reward was also reduced 

for an agent to learn from the very complex condition, but it still manages to maintain a 

solid positive reward after 16.5M steps. 

  

Environmental Steps 
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Figure 24 Hiders Cumulative Reward Smoothed 0.99 
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3.2.2 Episode Length: 

 

The graph represents the gradual decrease in episode length as few decisions are required to complete an 
episode. The solid orange line represents the episode length over the environmental steps. 

Training starts with 768 decisions made per episode. 

episode_length = max_episode_steps / decision_requests 

768 = 3072 / 4 

The training environment is designed in such a way that it will reset the episode as soon as 

one of the agents is successful in making the next strategy. i.e., if “running/chasing” hider 

performs “fort building”. , the environment will reset to promote the use of lesser episode 

length. This behavior encourages the agents to find the optimal next policy and strategy 

faster. Observing the graph we can see a slight increase in episode length at 5.7M steps 

where level two of the environment is introduced. This means the agent requires more steps 

to find a new policy to get more rewards. At the 15.8M step, another bump is observed 

showing level three is deployed and it affected the current behavior such that it needs more 

time to converge. After 18M steps, there seems a steady graph representing a steady and 

constant episode length. This means agents need at least 21 steps to converge to the optimal 

policy.  

Required_episode_steps = episode_length / decision_requests 

21 = 84 / 4 
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Figure 25 Episode Length of Hiders Corresponds to decisions made per episode. 
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3.2.3 Curiosity Reward: 

 

Figure 26 Curiosity reward for hiders based on curriculum learning. 

Hider Agents is given a curiosity-based reward based on the exploration it does. The solid orange line 
represents the curiosity reward given over environmental steps. 

The Agent's aim in reinforcement learning is to develop a behavior that maximizes a reward. 

A reward is often determined by the surroundings and relates to achieving some goal. These 

are known as "extrinsic" rewards since they are defined outside of the learning process. 

However, rewards can be specified outside of the environment to encourage the agent to 

act in specific ways or to help in the learning of the genuine extrinsic reward. These are 

known as "intrinsic" reward signals. The agent will learn to maximize the overall reward 

by combining extrinsic and intrinsic reward signals. ML-Agents allow reward signals to be 

specified in a modular manner. The extrinsic Reward Signal, which is by default activated, 

symbolizes the rewards established in the surroundings. When extrinsic incentives are 

scarce, the curiosity reward signal encourages your agent to investigate. As seen from the 

graph, the curiosity reward is very high at the beginning of the training. This means the 

agent is performing more random actions and being rewarded to explore the environment 

more. But with time it decreases it showing it got the rewarding behavior and is now using 

lesser random and curious actions. At 5.7 with the addition of level two of curriculum 

learning, we observe a slight bump in the graph representing agent got curious about the 

newly added walls and props. 
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3.3 Seekers 

3.3.1 Group Cumulative Reward: 

 

Training is initialized using Level Four. At 630k steps, seekers learned to rotate toward the hiders and keep 
them in the field of vision.  At 1.6M step seekers were successful in traversing obstacles, navigating through 
walls, and moving toward hiders. At 5.3M step seekers were trained again just to check how they behave 
when hiders are also trained for level four environmental setup, and it shows a steep descent in reward as 
they were not unable to see hiders.  The solid red line represents the group cumulative reward given over 
environmental steps.  

 

Seekers are trained in two phases, first one is from 0-5.3M steps. This phase includes the 

“running & chasing” hiders as a competition so they will learn this strategy as well. While 

phase two starts at 5.3M steps which includes training with “fort building” hiders that 

yields a sharp descent in the graph. This indicates the complexity and difficulty the seekers 

were facing in locating the hiders once they emerge to the second strategy. Seekers are 

given a +0.001 reward for every frame they see hiders in their field of vision. And no 

reward when they do not have them in sight. This is done because if we give a negative 

reward for such a constant frame rate just because the seeker’s field of vision does not 

contain hiders, we are damaging the path navigation behavior. Such that an agent might be 

on the right path but is getting penalized just because it is not there yet. Seekers are tested 

in a group of 2-4 multi-agent setup and solo as well. While training the 2-seeker agent with 

the same brains are being trained. Dual input is used but the rewards are given on team 

bases. If one agent is successful both agents will get rewarded and will share the updated 

best policy while if one is getting panelized both will face this. 
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Figure 27 Seeker's Group Cumulative Reward Smoothed 0.95 
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3.3.2 Episode Length: 

 

The graph represents the gradual decrease in episode length as few decisions are required to complete an 
episode and a sudden increase demonstrating agents require more decisions when the opponent is far 
more difficult. The solid red line represents the episode length over the environmental steps. 

Seeker agents are programmed in such a way that if they have hider agents in sight they 

get 0.001 rewards per frame but if they collide with them the episode ends. Thus, the more 

the seekers can collide quickly the lesser the episode length gets. This is done to encourage 

quick navigation and faster resetting of the training environment because if the seeker can 

collide with the hider, the hiders are not protected well, and there is less benefit in training 

again in an already won episode.  

episode_length = (max_episode_steps  - remaining_steps) / decision_requests 

443 = 3072 - 1300 / 4 

 

0-630k steps seekers took longer to make an optimal policy. Soon after 630k steps, seekers 

took lesser decisions to get to the best possible state and achieve a better goal. At 5.35M 

step seekers were trained again for phase two. In which hiders were successful in fort 

building. We can observe a rapid growth in episode length which indicates that the current 

policy was not enough to encounter much smarter competition and is taking much more 

decisions than before.  
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Figure 28 Episode Length for Seeker agents Corresponds to decisions made per episode. 
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3.3.3 Self-Play ELO 

 

Figure 29 ELO for seeker agents with save steps equal to 61440, team change equal to 184320 

Self-play training adds extra complicating elements to the standard problems associated 

with reinforcement learning. In general, the tradeoff is between the final policy's skill level 

and generality and the stability of learning. Training against a group of slowly changing or 

unchanging enemies with low diversity yields a more consistent learning process than 

training against a set of rapidly changing adversaries with high diversity. This tutorial 

addresses the disclosed self-play hyperparameters and intuitions for tweaking them in this 

context. 

The graph ascended gradually until the hiders learned to hide successfully. At this point, 

the learned policy to follow and hit the hiders was not so fruitful as hiders are in a confined 

safe room and cannot be seen at all, so it descends. 
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3.4 Key Difference  

As Larger batch sizes require more GPU memory and processing power (Rotenberg, 2020), with 

our approach and methodology, we proved that agents emerged strategies much faster and 

efficiently with much less processing power. While batch size is equal to number of steps in an 

episode, buffer size was selected using the following formulae: 

 

𝐵 = 𝑏 ∗ 𝐸𝑛 ∗ 𝑃𝑛 

Where: 

𝐵 = Buffer Size 

𝑏 = Batch Size 

𝐸𝑛 = Environment Count 

𝑃𝑛 = Instances Count 

 

 

Figure 30 Batch & Buffer size requirements for the experiment’s vs Open AI's requirements 

Our method utilizes significantly fewer system resources compared to Open AI's experiment for 

deriving strategies as the buffer size required by our approach is approximately one-fourth of 

what was needed in the Open AI experiment. Similarly, the batch size required by our model is 

approximately one-twentieth of what was required by Open AI. This significant reduction in 

resource requirements demonstrates the efficiency and effectiveness of our approach. 
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Figure 31 Strategies emerged of our method vs Open AI's method. 

In addition to requiring fewer resources, our approach also deduces strategies in a much earlier 

environmental step count. For instance, the Running and Chasing strategy was identified 

approximately 0.4 million steps earlier in our approach than in the Open AI experiment. 

Similarly, our model was able to discover the strategy for creating shelter 22.7 million steps 

earlier than in the Open AI experiment. This early identification of strategies could prove to be a 

significant advantage in certain contexts. 

Overall, our approach offers a more resource-efficient and time-efficient method for deducing 

strategies than Open AI's experiment. By requiring significantly fewer resources and identifying 

strategies earlier in the environmental step count, our model could prove to be an effective tool 

in various domains. The results of our experiment demonstrate the potential of our approach to 

advance the field of strategy identification and inform decision-making in a range of practical 

applications. 
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3.5 Discussion and Related Work 

D. Yang et.al proposes a method for adaptive inner-reward shaping in sparse reward games 

where the agent receives only occasional feedback. [13] The authors argue that inner-

reward shaping can help improve the agent's learning efficiency and speed. They propose 

an algorithm called AIRS (Adaptive Inner Reward Shaping) that dynamically adjusts the 

shaping weight during training based on the agent's learning progress. The authors evaluate 

the algorithm on two Atari games and show that it outperforms existing methods in terms 

of sample efficiency and final performance. Instead of adaptive rewards we used 

curriculum learning in which the environment’s difficulty level is adaptive in the sense as 

it increased once met with an assigned reward threshold. 

M. Lukas et.al proposed previous cheating in multiplayer video games, and the need for 

effective anti-cheat systems. The problem statement is that existing anti-cheat systems are 

often reactive and not effective against new forms of cheating. The method used is 

reinforcement learning to develop an adaptive and proactive anti-cheat system based on 

agents that can learn to detect and respond to cheating behaviors in real-time. [14] An 

outcome is a promising approach to developing effective anti-cheat systems that can adapt 

and evolve to new forms of cheating. We used multi-agent competition between two teams 

of agents which enables agents to learn from an experienced brain. 

X. Wenwen et.al discusses the application of end-to-end behavior decision-making based 

on deep reinforcement learning (DRL) in autonomous driving. The problem statement is 

to develop an agent that can learn to make decisions based on visual inputs from a car's 

camera. [15] The method used in the paper is a DRL approach that maps inputs to actions 

through a neural network. The outcome of the paper is the successful training of an agent 

that can make safe and efficient driving decisions in a simulated environment. We 

introduced frontal and spatial sensors for the agent’s real-time locational and shape 

structure observation. 

R. Dawkins et.al explores the concept of arms races, both between and within species, and 

how they evolve through natural selection. The problem statement is to understand the 

dynamics of arms races and how they lead to the evolution of certain traits. The method 

used is a combination of theoretical models and empirical data from various species. The 
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outcome of the paper is a deeper understanding of the mechanisms behind arms races and 

their evolutionary implications. [16] We introduced competition between said two races 

i.e., hiders and seekers. 

B.W.Wirtz et.al examines the potential of Artificial Intelligence (AI) to transform the 

public sector and improve efficiency and effectiveness in areas such as healthcare, 

education, and governance. [17] The problem statement highlights the ethical and legal 

considerations, data quality, and workforce implications that arise with AI adoption in the 

public sector. The paper reviews existing literature and case studies of AI applications in 

the public sector and provide recommendations for policymakers and practitioners. The 

result emphasizes the potential benefits of AI in the public sector but also highlights the 

need for careful planning and management to address the challenges and risks associated 

with AI adoption. Introducing auto-pilot in drones enables better use of resources and saves 

the economy by reducing human controllers.  

M. Asplund et.al proposes an Artificial Intelligence (AI) based marine autopilot trained 

using reinforcement learning in the Unity simulation environment. [18] The background 

highlights the potential benefits of AI-based autopilots in marine navigation, including 

improved safety and efficiency. The problem statement discusses the challenges of 

designing an AI-based autopilot and the need for training in a simulation environment. The 

paper uses a combination of Deep Q-Network (DQN) and Proximal Policy Optimization 

(PPO) algorithms to train the autopilot, and the result shows promising performance in 

avoiding obstacles and navigating through complex environments. The paper suggests that 

AI-based autopilots have the potential to revolutionize marine navigation and reduce the 

risk of accidents. We introduced a flying-like mechanism that includes the x,y, and z axis 

for movement. 

L. Pinto proposes an Asymmetric Actor Critic (AAC) algorithm for image-based robot 

learning. [19] The background highlights the potential of image-based robot learning in 

complex environments where traditional sensor-based methods may not be effective. The 

problem statement discusses the challenges of designing an effective image-based learning 

algorithm and the need for efficient feature extraction. The paper uses a combination of 

convolutional neural networks (CNN) and AAC to learn robotic tasks from raw images, 
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and the result shows promising performance in grasping and manipulation tasks, 

outperforming existing methods. The paper suggests that AAC has the potential to enable 

more efficient and effective image-based robot learning in a variety of applications. We 

not only added a camera for image observation but also added a spatial sensor and 2d ray 

casts for observations. 

P. Reizinger proposes an attention-based curiosity-driven exploration method to tackle the 

exploration problem in deep reinforcement learning. [20] Traditional exploration strategies 

are not effective in complex environments with high-dimensional state and action spaces. 

The proposed approach uses curiosity-driven exploration, guided by an attention 

mechanism, to explore uncertain or unexpected areas of the state space. Experimental 

results demonstrate that the proposed approach outperforms traditional exploration 

strategies and achieves state-of-the-art performance on several benchmark environments, 

including Atari games and continuous control tasks. The attention mechanism enables the 

agent to focus on relevant information and learn faster with fewer samples. We used 

curiosity along with curriculum learning that enabled agents to earn rewards more quickly. 

J. Z. Leibo proposes an auto-curricular framework for multi-agent intelligence research 

that enables agents to learn dynamically from each other using methods such as self-play 

and population-based training. [21] The framework is evaluated on several benchmark 

environments, and results show that it can lead to the emergence of innovation and the 

development of novel solutions to complex problems in multi-agent intelligence. The 

proposed approach offers a promising direction for future research in this field. We enabled 

agents to use this along with curiosity and curriculum learning. 

A. Devo et.al proposed Autonomous single-image drone exploration with deep 

reinforcement learning and mixed reality" using the Proximal Policy Optimization (PPO) 

algorithm, a popular deep reinforcement learning algorithm. The authors also use a variant 

of PPO called Curiosity-Driven Exploration (CDE) to train the drone agent to explore its 

environment. [9] CDE incorporates an intrinsic reward signal based on prediction error to 

encourage the agent to explore areas it has not visited before. The algorithm is trained on 

a large dataset of simulated and real-world drone images and is used to guide the drone in 
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real-time to explore unknown environments. We introduced a competition for agents and 

a curiosity element thus forcing agents to explore more states to gain reward. 

C. Ofria et al present Avida, a software platform for conducting computational experiments 

in evolutionary biology. Avida uses digital organisms, which are self-replicating computer 

programs, to simulate the process of biological evolution [22]. The platform provides a 

flexible and customizable environment for studying a wide range of evolutionary processes 

and has been used extensively in evolutionary biology research. The paper demonstrates 

the utility of Avida by presenting several examples of research studies conducted using the 

platform. We perform our experimentations in unity3d. Also used parallelism for quick 

learning of the brain. 

A. E. Youssef, et al The paper "Building your kingdom: Imitation Learning for a Custom 

Gameplay Using Unity ML-agents" proposes an imitation learning method based on 

convolutional neural networks (CNNs) for training non-player characters (NPCs) in a game 

environment. The method involves recording the gameplay data of a human player and 

using it to train a CNN using supervised learning. [23] The trained CNN is then used to 

control the behavior of NPCs in the game using Unity ML agents. The results show that 

the method can effectively train NPCs to mimic the behavior of human players, leading to 

more realistic and engaging gameplay experiences. We used PPO and MA-Poca for 

training the hiders and seekers respectively. 

J. Paredis et al present the concept of coevolutionary computation, which involves evolving 

two or more populations that interact with each other. The problem statement involves the 

limitations of traditional genetic algorithms in finding optimal solutions for complex 

problems. The method proposed is to use coevolutionary computation to evolve the 

populations simultaneously, with one population representing the problem solutions and 

the other representing the problem environment. The outcome is a more efficient and 

effective method of solving complex problems, demonstrated through simulations and 

experiments. [24] The algorithms used include Genetic Algorithms, Coevolutionary 

Genetic Algorithms, and Fitness Sharing. We made competition between two different 

agents that need to coevolve with each other to be able to successfully compete and gain 

their desired rewards. 
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R. Miikkulainen et.al proposes a coevolutionary approach to generating complex and 

adaptive solutions in competitive environments. The problem statement is that traditional 

evolutionary algorithms may struggle to produce complex solutions in such environments. 

The method involves multiple populations evolving in a competitive setting, with 

complexity being the term used to describe the process of generating increasingly complex 

solutions through the competitive interactions of the populations. [25] Two algorithms, 

CCEA and HyperNEAT, are introduced and evaluated in the paper. The outcome is a 

demonstration of the effectiveness of competitive coevolution and complexity in 

generating solutions to complex problems, with both algorithms showing significant 

improvements over traditional evolutionary algorithms. We introduced four levels of 

complication for the environment. The harder one replaces itself with the difficult one once 

the reward threshold is met. 

L. Panait et.al proposes that review of the current state of research on cooperative multi-

agent learning. The background is that multi-agent systems are becoming increasingly 

important in many fields, and there is a need for effective learning methods for these 

systems. The problem statement is that cooperative multi-agent learning is challenging 

because the agents must learn to coordinate their actions and communicate effectively. [26] 

The method involves reviewing and categorizing the existing literature on cooperative 

multi-agent learning. The term "learning architectures" is introduced to describe the 

different approaches used in the literature. The outcome is a comprehensive review of the 

current state of research on cooperative multi-agent learning, including the different 

learning architectures and their relative strengths and weaknesses. We added competition 

among two different agents. They did not have similar rewarding behaviors. Instead, they 

have separate ones. 

G. Ostrovski et.al proposes a new exploration method for reinforcement learning. The 

background is that exploration is critical for effective reinforcement learning, but existing 

methods can be inefficient in large state spaces. The problem statement is that uncertainty-

based exploration methods can struggle in structured state spaces. The method uses a neural 

density model to estimate state probability density and compute a count-based exploration 

bonus. [27] The Q-learning algorithm is used in the paper, and the proposed method is 
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named "Count-based Exploration with Neural Density Models (C51)." The outcome is a 

demonstration that the proposed method can outperform existing exploration strategies in 

complex environments with large state spaces, with significantly fewer environment 

interactions. We used PPO vs MA-POCA on two different agents. 

J. Foerster et.al proposes a new multi-agent reinforcement learning algorithm. The 

background is that multi-agent systems are becoming increasingly important, but existing 

algorithms can struggle with non-stationarity and credit assignment. [28] The problem 

statement is that current methods for multi-agent policy gradients can suffer from high 

variance and poor convergence. The method involves using counterfactual reasoning to 

estimate the value of actions taken by other agents, improving credit assignment. The 

proposed algorithm is named "Counterfactual Multi-Agent Policy Gradient (COMA)." The 

outcome is a demonstration that the proposed algorithm can outperform existing methods 

in several multi-agent environments. We used PPO and MA-POCA. 

G. R. Hunt et.al investigates the tool-making ability of New Caledonian crows. The 

background is that tool use is a rare and impressive ability, and crows have been shown to 

use tools in the wild. The problem statement is to understand the cognitive processes and 

mechanisms behind this behavior. The method involves observing and recording the crows' 

tool-making behavior and analyzing the resulting data. [29] The outcome is a 

demonstration that New Caledonian crows can create complex tools by modifying branches 

and twigs, indicating that they possess advanced cognitive abilities. We used props for the 

agents to use to modify the environment for their reward gains. 

M. S. Abdul Hameed et.al proposes a curiosity-driven approach to reinforcement learning 

for robots in a manufacturing setting. The background is that traditional reinforcement 

learning can be slow and inefficient in industrial settings, and there is a need for more 

effective methods. The problem statement is to find a way to improve exploration in these 

settings, where trial and error can be costly. The method involves using a curiosity-driven 

approach that rewards the robot for exploring new and interesting states. [30]   The outcome 

is a demonstration that the proposed method can improve the learning speed and efficiency 

of a robot in a manufacturing cell, leading to better performance and reduced production 

time. In addition to curiosity, we added a continuous but very small negative reward for 
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the agents that are given to them until they somehow learn to finish the episode. And by 

finishing the episode we mean either seeker finds and tags the hiders or hiders successfully 

arrange the props in such a manner that they are well hidden for the entire run. 

D. Pathak et al propose a curiosity-driven approach to reinforcement learning. The 

background is that traditional exploration methods can be inefficient and may not scale to 

complex environments. The problem statement is to find a way to improve exploration in 

reinforcement learning algorithms. The method involves using a self-supervised prediction 

task to train the agent to predict its future states and using the prediction error as a curiosity-

driven exploration bonus. The proposed algorithm is called the "Intrinsic Curiosity Module 

(ICM)." The outcome is a demonstration that the proposed method can outperform existing 

exploration strategies in several environments, leading to faster learning and better 

performance. [31] We provided agents with curiosity. curiosity encourages an agent to seek 

out new experiences and learn from them, rather than simply repeating actions that have 

been rewarded in the past. This can be especially useful in complex, dynamic environments 

where the optimal action may be uncertain or constantly changing. 

C. Rosser et al propose a curiosity-driven approach to prevent undesired actions in 

autonomous agents. The background is that traditional reinforcement learning algorithms 

can lead to agents taking unintended actions in certain situations. The problem statement 

is to find a way to prevent agents from taking these undesired actions. The method involves 

using a curiosity-driven approach that rewards the agent for exploring states that are 

unlikely to lead to undesired actions. [32] The proposed algorithm is called "Curiosity-

Driven Undesirable Action Avoidance (CD-UAA)." The outcome is a demonstration that 

the proposed method can effectively prevent agents from taking undesired actions in 

several environments, leading to improved safety and performance. We used negative 

rewards or penalties for certain actions like hitting the boundary. This enables the agent to 

learn which actions are not to be taken under consideration. 

A. Price et.al proposes a curriculum learning approach to improve the training of 

reinforcement learning agents using the Unity ML-Agents platform. The background is 

that traditional reinforcement learning methods can be inefficient and slow to learn in 

complex environments. The problem statement is to find a way to improve the learning 
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speed and efficiency of agents. The method involves gradually increasing the difficulty of 

the environment and the task, using a curriculum that is designed to guide the agent toward 

the final goal. [33] The outcome is a demonstration that the proposed curriculum learning 

approach can significantly improve the learning speed and performance of agents in several 

Unity-based environments, compared to standard training methods. We used curriculum 

learning which involves gradually increasing the complexity of the task or environment 

that an agent is asked to learn. This is done by breaking down the overall task into smaller, 

easier subtasks and gradually increasing the difficulty level as the agent improves. 

C. de Souza et al pursuit using deep reinforcement learning" is a paper that proposes a 

decentralized deep reinforcement learning approach to enable a team of agents to 

collaboratively pursue a target in a dynamic environment. The background is that 

traditional centralized approaches to multi-agent reinforcement learning can become 

computationally infeasible as the number of agents increases. The problem statement is to 

develop a decentralized approach that can scale to many agents. The method involves using 

a deep reinforcement learning approach, where each agent has its local policy that is trained 

using experience gained from its interactions with the environment and other agents. The 

proposed algorithm is called "Decentralized Deep Q-Network (DDQN)." [11] The outcome 

is a demonstration that the proposed approach can effectively enable a team of agents to 

pursue a target in a dynamic environment, leading to improved performance and scalability. 

We used MA-POCA for training agents that are up to mark for multi-agents as if they get 

spawned or deleted during training, MA-POCA supports this behavior and distributes the 

rewards accordingly. 

G. Zuin et al propose techniques for explainable resource scales in collectible card games" 

this is a paper that explores the use of deep learning techniques to improve the balancing 

of resources in collectible card games. [34] The background is that balancing resources in 

these games is critical to ensure fairness and enjoyable gameplay, but it is challenging due 

to the large number of factors that need to be considered. The problem statement is to 

develop an approach that can effectively balance resources in a way that is explainable to 

players. The method involves using a deep learning model to learn the relationship between 

game features and resource scales and then using this model to provide explanations for 
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the chosen resource scales. The proposed algorithm is called "Explainable Resource 

Scaling using Deep Learning (XRL)." The outcome is a demonstration that the proposed 

approach can effectively balance resources in a way that is explainable to players, leading 

to an improved gameplay experience. We used curriculum learning introducing one prop 

for the door at a time. This enables agents to identify the concept that agents have to use 

one prop for one door and have to take the other prop to another door.  

T. T. Nguyen et.al provides an overview of the challenges and solutions in applying deep 

reinforcement learning (DRL) to multiagent systems. The background is that multiagent 

systems are prevalent in many real-world applications, but traditional methods for 

coordinating agents can be limited. The problem statement is to explore how DRL can be 

used to improve the coordination of agents in multiagent systems. [35] The method 

involves reviewing the challenges and solutions in applying DRL to multiagent systems 

and examining various applications of DRL in this context. The outcome is a 

comprehensive review of the challenges, solutions, and applications of DRL in multiagent 

systems, highlighting the potential of DRL to address coordination problems in complex 

systems. 

E. Alonso et al present a method for training agents to navigate complex environments in 

AAA video games using deep reinforcement learning (DRL). The background is that 

navigation in complex video game environments can be challenging for traditional AI 

techniques. The problem statement is to explore the use of DRL for navigation in video 

games. The method involves using a DRL algorithm called Deep Q-Network (DQN) to 

learn navigation policies from raw pixel inputs. [4]The outcome is a successful application 

of DRL to navigation in complex video game environments, demonstrating the potential 

of DRL for improving game AI. We used PPO and MA-POCA for agents to learn 

navigation using rewarding behaviors. 

P. Xu et.al presents a method to improve exploration in deep reinforcement learning 

algorithms for video games by incorporating a part-aware exploration bonus to encourage 

the agent to interact with all parts of the game environment and evaluates the effectiveness 

of this method on several Atari games using the DQN algorithm, showing significant 



 

49 
 

performance improvements compared to baseline methods. We used the curiosity element 

for agents to explore and get the reward. 

N. D. Dung et.al presents an algorithm for drone-following models in smart cities to 

improve traffic flow and reduce congestion. The problem statement is how to effectively 

and safely use drones in urban environments. The method involves developing a drone-

following algorithm that takes into account traffic conditions, vehicle speeds, and the 

presence of other drones. [36] The algorithm used in the paper is a fuzzy control system. 

The outcome of the paper is a proposed model for a drone-following algorithm that can be 

applied in real-world scenarios. We used fontal special sensors and ray casts for agents to 

explore the environment. 

I. Mordatch et.al investigates how compositional language emerges in a population of 

agents, which can interact with each other and their environment through a shared 

communication protocol. The problem statement is to understand how a group of agents, 

each with their own goals and limited abilities, can develop a common language to achieve 

their objectives in a collaborative setting. The method used in the paper involves training 

agents with a variant of the Reinforcement Learning algorithm to learn to communicate 

and collaborate in a simulated environment. [37] The outcome of the paper demonstrates 

that grounded compositional language can emerge spontaneously in a population of agents 

without explicit language supervision, paving the way for further research in this area. We 

used MA-POCA for multi-agents so they can train parallel because MA-POCA supports 

when an agent from a group of agents de-spawns or gets destroyed. 

N. Heess et.al presents a study of artificial intelligence agents learning to walk in various 

terrains using reinforcement learning. The background discusses the importance of 

locomotion in robotics and the potential for AI to solve this problem. The problem 

statement is the difficulty of training agents to walk in complex environments without 

hand-engineering solutions. The method used is reinforcement learning, where agents 

receive rewards for successful locomotion and are penalized for falling [38]. The algorithm 

used is Deep Deterministic Policy Gradient (DDPG). The outcome of the paper is the 

successful training of agents to walk in various terrains, demonstrating the potential for AI 
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to solve complex locomotion problems. Along with giving positive rewards we also 

introduced curiosity and curriculum learning that helped agents in successful locomotion. 

T. Bansal et.al proposes a method for generating complex behaviors in artificial 

intelligence agents through competition. The background discusses the importance of 

emergent complexity in AI and the potential for multi-agent systems to create it. The 

problem statement is the difficulty of designing agents to exhibit complex behaviors 

without hand-engineering solutions. The method used is a competition-based approach 

where agents compete to complete a task. [39] The algorithm used is Multi-Agent Deep 

Deterministic Policy Gradient (MADDPG). The outcome of the paper is the successful 

generation of complex behaviors in multi-agent systems, demonstrating the potential for 

competition-based approaches to generate emergent complexity in AI. we use two different 

types of agents that were in a competition based on the hide-and-seek principle. 

S. Liu et.al presents a method for generating coordinated behavior in artificial intelligence 

agents through competition. The background discusses the importance of coordination in 

multi-agent systems and the potential for competition to induce it. The problem statement 

is the difficulty of designing agents to exhibit coordinated behavior without hand-

engineering solutions. The method used is a competition-based approach where agents 

compete with each other to complete a task that requires coordination. [40] The algorithm 

used is Multi-Agent Deep Q-Network (MADQN). The outcome of the paper is the 

successful generation of coordinated behavior in multi-agent systems, demonstrating the 

potential for competition-based approaches to generate emergent coordination in AI. We 

introduce two different agents that competed one agent was a hider and the other was seeker 

secret agents were using the proximal policy optimization algorithm while the hiders were 

using MAPOCA. 

M. Alwateer et.al presents a method for enabling drone services through crowdsourcing 

and scripting. The background discusses the potential for drones to provide various services 

and the challenges of designing systems to support these services. The problem statement 

is the difficulty of creating a platform that allows users to easily request drone services and 

script drone behavior. The method used is a crowdsourcing and scripting approach where 

users can request services and specify drone behavior through a web-based platform. [41] 
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The outcome of the paper is the successful implementation of a platform that enables drone 

services, demonstrating the potential for crowdsourcing and scripting approaches to enable 

the use of drones in various applications. We use frontal and spatial sensors for the drones 

which enabled the drones to identify and observe the environment around them. We also 

introduced a level of difficulty by adding windows and doors. The agent has to pick up the 

probes and take them to the windows which were higher than the doors to create a safe 

surrounding. 

D. Hong et.al presents a method for energy-efficient path planning of multiple drones using 

reinforcement learning. The background discusses the importance of energy efficiency in 

drone applications and the potential for AI to optimize drone behavior. The problem 

statement is the difficulty of designing systems to optimize energy consumption for 

multiple drones flying in a dynamic environment. The method used is a reinforcement 

learning approach where agents learn to navigate through an environment while 

minimizing energy consumption. [12] The algorithm used is Deep Deterministic Policy 

Gradient (DDPG). The outcome of the paper is the successful implementation of an energy-

efficient path planning system for multiple drones, demonstrating the potential for 

reinforcement learning to optimize drone behavior. If you talk about optimization our 

agents are designed for the shortest earliest path as we were giving negative rewards per 

frame if the agent is not able to finish the episode earliest. 

J. Weng et.al proposes a method for accelerating the training of reinforcement learning 

agents through parallelization. The background discusses the importance of parallelization 

in reinforcement learning and the potential for faster training times. The problem statement 

is the difficulty of training agents with large amounts of data without parallelization. The 

method used is a parallelization approach where multiple environments are executed 

simultaneously on a single machine. [42] The algorithm used does not apply to this paper. 

The outcome of the paper is the successful implementation of a parallelization engine 

called EnvPool, demonstrating the potential for parallelization to accelerate the training of 

reinforcement learning agents. Unity’s ML agent provides a methodology known as 

parallelism in which we introduce 12 similar environments prefabs each with a set of 
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similar numbered agents. during the training phase each prefab was initialized and the 

agents inside them get to train differently. 

T. S. Ray et.al presents a method for studying evolution and ecology in digital organisms 

through a simulation platform called Avida. The background discusses the importance of 

understanding evolution and ecology in biological systems and the potential for digital 

simulations to provide insights into these processes. The problem statement is the difficulty 

of studying evolution and ecology in biological systems due to the complexity of 

interactions and the limitations of empirical data. The method used is a simulation-based 

approach where digital organisms evolve and interact with each other in a controlled 

environment. [43] The outcome of the paper is the successful implementation of a 

simulation platform that allows researchers to study evolution and ecology in digital 

organisms, demonstrating the potential for digital simulations to provide insights into 

complex biological processes. we introduce the evolution of two different drones one was 

the seeker and one was the hider they need to evolve to compete with each other and get 

the reward. we can observe them evolving according to the complexity of the environment 

and the complexity of other agents' brains. 

S. Leonardos et.al proposes a method for balancing exploration and exploitation in multi-

agent learning using catastrophe theory and game theory. The background discusses the 

importance of balancing exploration and exploitation in multi-agent learning and the 

potential for AI to optimize learning strategies. The problem statement is the difficulty of 

designing systems that balance exploration and exploitation in multi-agent learning. The 

method used is a hybrid approach that combines catastrophe theory and game theory to 

optimize learning strategies [44]. The algorithm used is the Replicator Dynamics algorithm. 

The outcome of the paper is the successful implementation of a learning system that 

balances exploration and exploitation in multi-agent learning, demonstrating the potential 

for hybrid approaches to optimize learning strategies in complex environments. We 

introduced curiosity for the exploration of the multi-agents but we also added negative 

divorce for the agents does not deviate from the main rewarding actions. 
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D. A. Suyikno et.al proposes a method for designing feasible NPC hiding behavior in a 

hide-and-seek 3D game simulation using goal-oriented action planning. The background 

discusses the importance of designing realistic NPC behavior in-game simulations and the 

potential for AI to improve game design. The problem statement is the difficulty of 

designing feasible NPC hiding behavior in a complex game simulation. The method used 

is a goal-oriented action-planning approach that generates plans for NPC behavior based 

on predefined goals. [45] The algorithm used is the Fast Downward planner. The outcome 

of the paper is the successful implementation of a system that generates feasible NPC 

hiding behavior in a hide-and-seek 3D game simulation, demonstrating the potential for 

goal-oriented action planning to improve NPC behavior in game simulations. In this paper, 

the target was stationary while our experimentation contained both of the agents having a 

separate brain and separate training. Our experiment contains two different agents that were 

competing with each other and with time they were getting more experience. 

R. Zhang et.al proposes a method for online motion planning in a multi-UAV pursuit-

evasion game using deep reinforcement learning. The background discusses the 

importance of efficient motion planning in UAV applications and the potential for AI to 

improve performance. The problem statement is the difficulty of designing efficient motion 

planning strategies for multiple UAVs in complex environments. The method used is a 

deep reinforcement learning approach that learns to generate motion plans in real-time. The 

algorithm used is the deep Q-network algorithm. The outcome of the paper is the successful 

implementation of a system that generates efficient motion plans for multiple UAVs in a 

pursuit-evasion game, demonstrating the potential for deep reinforcement learning to 

improve motion planning strategies in complex environments [8]. We used PPO and MA-

POCA to train the agents and we also introduced a continuous negative reward which was 

very small and was given at each frame until the agent learns to end the episode quickly by 

doing this the agent was able to end the episode as soon as possible to reduce the quantities 

negative reward. 

 

M. Jaderberg et.al proposes a method for achieving human-level performance in 3D 

multiplayer games using population-based reinforcement learning. The background 
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discusses the potential for AI to improve game performance and the challenges of 

achieving human-level performance. The problem statement is the difficulty of designing 

game AI that can perform at a human level in complex, dynamic environments. The method 

used is a population-based reinforcement learning approach that trains multiple agents 

simultaneously using an evolutionary algorithm. The algorithm used is the Covariance 

Matrix Adaptation Evolution Strategy (CMA-ES). [46] The outcome of the paper is the 

successful demonstration of a system that achieves human-level performance in a 3D 

multiplayer game, demonstrating the potential for population-based reinforcement learning 

to improve game AI performance in complex environments. With the help of curriculum 

learning, we made our agents this much smarter that they were able to identify and 

overcome the challenges of the gradually difficult environment end with the help of 

competition between the two hiders and seekers. 

A. T. Bourdillon et.al proposes a method for integrating reinforcement learning in a virtual 

robotic surgical simulation. The background discusses the potential for using 

reinforcement learning to improve surgical training and the challenges of designing 

effective simulation environments. The problem statement is the difficulty of designing 

realistic surgical simulations that can effectively train surgeons. The method used is a 

reinforcement learning approach that trains a virtual robot to perform surgical tasks. The 

algorithm used is the Q-learning algorithm [47]. The outcome of the paper is the successful 

demonstration of a system that can effectively train a virtual robot to perform surgical tasks, 

demonstrating the potential for reinforcement learning to improve surgical training in a 

simulated environment. we used a unities simulation environment in which we introduce 

two different drones that for training with two different algorithms PPO and MA-POCA.  

S. Sukhbaatar et.al proposes a method for automatic curriculum generation in 

reinforcement learning through asymmetric self-play. The background discusses the 

challenges of designing effective curricula in reinforcement learning and the potential 

benefits of using an intrinsic motivation to guide learning. The problem statement is the 

difficulty of designing effective curricula and the need for a method that can automatically 

generate curricula tailored to individual agents. The method used is an asymmetric self-

play approach that encourages agents to explore novel strategies and tasks. The algorithm 
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used is a combination of Proximal Policy Optimization (PPO) and Curiosity-Driven 

Exploration (CDE) [48]. The outcome of the paper is the successful demonstration of a 

system that can automatically generate effective curricula for individual agents, 

demonstrating the potential for intrinsic motivation and asymmetric self-play to improve 

reinforcement learning. We used a combination of proximal policy optimization and MA-

POCA to create effective curricula using reinforcement learning intrinsic motivation. 

S. Forestier et.al proposes a method for intrinsic motivation and automatic curriculum 

learning for reinforcement learning agents. The problem statement is to enable agents to 

autonomously explore their environments and learn new skills without explicit external 

rewards or human intervention. The method involves creating an automatic curriculum of 

increasingly challenging goals for the agent to pursue based on its current skill level. The 

algorithm used is called Intrinsically Motivated Goal Exploration Processes (IMGEP) [49]. 

The outcome is that the proposed method improves exploration and learning efficiency, 

leading to better performance on a variety of tasks compared to existing methods. we edit 

curiosity elements in our agents that introduced an exploration bonus and enable the agent 

to explore more and learn more feasible and suitable actions. 

S. Singh talks about intrinsically motivated reinforcement learning. The background of this 

paper is reinforcement learning, where an agent learns to take actions in an environment to 

maximize a reward signal. The problem statement is that most RL algorithms require an 

explicit reward function, which can be difficult or expensive to define in some domains. 

The method used is intrinsically motivated RL, which generates its reward signal based on 

the agent's internal states and goals [50]. The name of the algorithm used is Intrinsic 

Motivation and Procedural Generation (IMAP). The outcome of this paper is that IMAP 

can achieve better performance and sample efficiency compared to traditional RL methods 

in some domains. We added the curiosity element that introduced the intrinsically 

motivated agents Heather was first given a bonus upon exploring the environment and 

getting such actions that resulted in rewarding them even more. 

A. Tucker wrote on inverse reinforcement learning for video games. The background of 

this paper is the use of Inverse Reinforcement Learning (IRL) in video games, which aims 

to infer the reward function from demonstrations of expert gameplay. The problem 
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statement is how to apply IRL to learn the reward function in video games where the reward 

signal is not explicitly defined. The method used is an IRL algorithm that infers the reward 

function based on observations of the expert's actions. The name of the algorithm used is 

Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL) [5]. The outcome of 

this paper is that the MaxEnt IRL algorithm is effective in learning the reward function in 

video games and can be used to train agents to perform well in those games. 

Y. Burda et.al worked on a Large-scale study of curiosity-driven learning. In his paper, the 

background of this paper is the use of curiosity-driven learning as a method for artificial 

agents to acquire skills and knowledge. The problem statement is that there is a need for 

an effective and scalable approach to curiosity-driven learning. The method used in this 

paper involves training a large number of agents in a variety of environments and analyzing 

the resulting data. The algorithm used is a form of intrinsic motivation called the "intrinsic 

curiosity module" (ICM), which encourages agents to explore their environment and learn 

new skills. The outcome of the study shows that the use of curiosity-driven learning with 

ICM can lead to significant improvements in agent performance and skill acquisition, 

especially in complex and dynamic environments [51]. With the decision to add curiosity-

based agents, we also introduce competition among two different types of agents hiders 

and seekers. 

The paper "Layer Normalization" by Ba, Kiros, and Hinton proposes a normalization 

method for deep neural networks that helps to overcome the degradation problem of deep 

architectures. The problem statement is that the performance of deep neural networks tends 

to saturate or even degrade as the network depth increases. The proposed method, named 

"Layer Normalization," normalizes the inputs to each layer based on the statistics of their 

activations [52]. This is achieved by computing the mean and standard deviation of the 

activations across the feature dimensions and normalizing them. The outcome of the paper 

is a method that improves the training speed and performance of deep neural networks on 

various tasks such as image classification and language modeling. In the scenario of hard-

coded observations, we normalize these values to get the neural network to train much 

faster as compared to training on larger numerical values. 
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A. Rajeswaran et.al works on Learning complex dexterous manipulation with deep 

reinforcement learning and demonstrations. The background of the paper is the 

development of robotic manipulation skills using deep reinforcement learning and 

demonstrations. The problem statement is to overcome the challenge of high-dimensional 

state and action spaces in robotic manipulation tasks. The method used is combining 

reinforcement learning with demonstrations from human experts. The algorithm used is 

Deep Deterministic Policy Gradient (DDPG) [53]. The outcome of the paper is that the 

proposed method can learn complex manipulation tasks with high-dimensional action 

spaces and improve the sample efficiency of reinforcement learning. 

OpenAi et.al proposed work on learning Dexterous In-Hand Manipulation. The 

background of the paper is the challenge of in-hand manipulation for robotic grasping and 

manipulation tasks. The problem statement is to learn a policy for dexterous in-hand 

manipulation from scratch without human demonstrations. The method used is 

reinforcement learning, specifically the soft actor-critic algorithm, which is a deep 

reinforcement learning algorithm that allows for continuous control [54]. The outcome of 

the paper is a trained policy that can perform complex in-hand manipulation tasks, such as 

rotating an object in the hand or flipping it over, without prior demonstrations or guidance. 

We used two competing agents one in one the higher second one is the seeker, and also to 

introduce competition among them. Seekers were using PPO while hiders were using MA-

POCA. 

S. Sukhbaatar et.al proposes a method for learning communication protocols between 

multiple agents using backpropagation. The problem statement is to enable multiple agents 

to learn to communicate with each other in a decentralized way without explicit 

coordination. The method involves using an autoencoder to learn a shared communication 

space between agents and using backpropagation to train the agents to map their 

observations to this shared space [55]. The algorithm used is called Differentiable Inter-

Agent Learning (DIAL), which is an extension of the REINFORCE algorithm. The 

outcome is that DIAL enables agents to learn communication protocols in a decentralized 

way and outperforms other communication methods in various multi-agent environments. 

This methodology is a lot similar to imitation learning in which the hiders and seekers can 
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learn from expert human beings' demonstrations but that disables the ideology behind 

emergent behavior so we'd rather use curriculum learning to train agents gradually. 

J. N. Foerster et.al proposed work on Learning to communicate with deep multi-agent 

reinforcement learning. The background of this paper is that communication is a 

fundamental aspect of human cooperation and a key component of successful multi-agent 

systems. The problem statement is to design agents that can learn to communicate with 

each other to achieve a common goal. The method used in this paper is deep multi-agent 

reinforcement learning, which employs a centralized critic and decentralized actors. The 

algorithm used is called MADDPG (Multi-Agent Deep Deterministic Policy Gradient) [49]. 

The outcome of this paper is that the proposed method achieved successful communication 

between agents in a cooperative navigation task and outperformed other baseline methods. 

To achieve cooperation between the agents we introduce multiple agents in a single team 

they learned to coordinate among themselves to achieve a greater goal 

N. Haber et.al proposes a framework for self-aware agents that can play a variety of games 

without explicit rewards. The problem statement is to enable agents to develop their own 

goals, rather than relying on predefined objectives, by using curiosity-based intrinsic 

motivation. The method used is a combination of reinforcement learning and meta-learning. 

The proposed algorithm is called "Intrinsically Motivated Goal Exploration Processes with 

automatic curriculum learning" (IMGEP-AC), which involves generating goals using a 

self-organizing map and learning an exploration policy with intrinsic motivation [56]. The 

outcome is that the proposed framework can learn to play several games, including some 

that require long-term planning and coordination between agents, without the need for 

external rewards or supervision. This experimentation is done without the mentioning of 

specific goals, we on the other hand introduced reward functions that enable the agent to 

learn from them more quickly and efficiently rather than exploring all of the environment 

so that it can learn on a very lucky shot. 

S. Hochreiter et.al proposed a new type of artificial neural network called LSTM that is 

capable of handling long-term dependencies, which was a major limitation of traditional 

neural networks. The problem statement was that standard recurrent neural networks 

(RNNs) failed to capture the long-term dependencies in sequences due to the vanishing 
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gradient problem. The LSTM architecture addressed this issue by introducing memory 

cells with gating mechanisms that selectively forget and update information over time [57]. 

The algorithm used in this paper is called LSTM, which is a type of RNN with memory 

cells and gating mechanisms. The outcome of this paper was the development of a new 

neural network architecture that could overcome the problem of vanishing gradients and 

handle long-term dependencies in sequences, which has become widely used in various 

applications such as natural language processing, speech recognition, and image captioning. 

We also introduce LSCM in our agents with a sequencing length of 64 and a memory size 

of 256. This enabled the agents to identify what observations were taken and when those 

observations were fruitful to generate a rewarding action. 

J. Z. Leibo proposed work on Malthusian reinforcement learning in which the background 

of the paper "Malthusian reinforcement learning" is to address the problem of catastrophic 

forgetting in reinforcement learning models. The paper introduces a novel method to avoid 

catastrophic forgetting by limiting the capacity of the agent's neural network through a 

Malthusian growth constraint [58]. The algorithm used in this paper is a modified version 

of Q-learning called "Malthusian reinforcement learning". The outcome of the paper shows 

that the proposed approach can effectively avoid catastrophic forgetting and improve the 

agent's performance on a variety of tasks. The proximal policy optimization algorithm 

already addresses this problem in which when the new policy drastically changes from the 

previous policy, it normalizes the change so that the newer and more variants of policy do 

not affect the existing good policy. 

C. D. Rosin et.al propose a method to generate high-quality opponents in competitive 

games by co-evolving them alongside the player agents. The problem statement is to create 

challenging and adaptive opponents in games that can provide a stimulating experience for 

players. The method involves co-evolving a population of players and opponents using a 

fitness function that incentivizes the players to win against increasingly challenging 

opponents. The algorithm used is called Competitive Co-evolution. The outcome of the 

paper is a set of techniques to create adaptive and challenging opponents that can help 

improve the player experience in competitive games. To create such opponents that are 

worth trading against we trained the opponents until they were showing very prominent 
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results and then we switched the training to the other agents such that the other agent has 

now a much stronger brain rather than a random action brain to train against 

R. Lowe et.al proposes a multi-agent actor-critic algorithm for learning in mixed 

cooperative-competitive environments, where agents have to balance between cooperation 

and competition. The authors highlight the importance of developing algorithms that can 

handle both types of situations, as many real-world scenarios fall into this category. They 

use a centralized critic and decentralized actors to ensure scalability and efficiency [59]. 

The algorithm is tested on a variety of tasks, including a predator-prey game and a traffic 

intersection control problem, and outperforms other baseline methods. The algorithm's 

name is Multi-Agent Deep Deterministic Policy Gradient (MADDPG). Our methodology 

included training seekers first so that hiders can learn the main hiding function Otherwise 

hiders cannot learn whether they have to confine themselves and use the tools properly so 

that they can hide in a specific room odyssey place. 

J. Z. Leibo et.al proposed work on Multi-agent reinforcement learning in sequential social 

dilemmas. The background of the paper "Multi-agent reinforcement learning in sequential 

social dilemmas" is on the challenges of cooperation and competition among multiple 

agents in complex environments. The problem statement is on finding effective strategies 

for agents to collaborate and compete in a way that maximizes their collective reward. The 

method used is multi-agent reinforcement learning, where agents learn from their 

individual experiences and interactions with other agents to improve their policies [21]. 

The algorithm used is a variant of deep Q-learning called Deep Recurrent Q-Networks 

(DRQN). The outcome of the paper is a framework for multi-agent reinforcement learning 

that addresses social dilemmas and demonstrates the effectiveness of the DRQN algorithm 

in complex multi-agent environments. We introduced a competition between PPO and 

MAPOCA two generate new emerging strategies. 

J. Perolat et.al aims to develop a computational model to study the dynamics of common-

pool resource appropriation in a multi-agent setting. The problem statement focuses on 

understanding how different agents interact with each other while competing for limited 

resources, and how these interactions affect the overall system behavior. The method used 

is a multi-agent reinforcement learning approach, where agents learn from their past 
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experiences to optimize their behavior over time. [60] The specific algorithm used in this 

paper is Q-learning. The outcome of this study helps to provide insights into the factors 

that drive common-pool resource appropriation and could inform the design of better 

policies to manage such resources. 

L. Buşoniu proposed an overview of Multi-agent Reinforcement Learning. The 

background of this paper is the growing interest in multi-agent systems, which can be found 

in several domains, such as robotics, economics, and social networks. The problem 

statement is that multi-agent systems are complex and challenging to design due to the 

interactions and dependencies among the agents. The method used is reinforcement 

learning, which provides a framework for agents to learn and adapt to their environment 

based on rewards and punishments. [61] The name of the algorithm is Multi-Agent 

Reinforcement Learning (MARL). The outcome of this paper is an overview of the state-

of-the-art in MARL, including its challenges, applications, and future directions. We not 

only introduces multi-agent reinforcement learning agents but also introduced computing 

agents such that their reward function was entirely different from each other. 

H. Wafa et.al describes a method for simulating multi-agent hide-and-seek games, where 

the hiders aim to remain hidden while the seekers try to find them, using trust region policy 

optimization with a modified policy gradient algorithm. The goal is to demonstrate the 

effectiveness of reinforcement learning algorithms in solving complex, dynamic problems 

with multiple agents, as well as to explore the dynamics of competitive and cooperative 

interactions in multi-agent systems [62]. The outcome shows that the proposed approach 

can learn effective policies for both the hiders and seekers and that the performance of the 

agents improves as the number of agents and complexity of the environment increases. We 

introduced a third dimension which enables the agents to fly like drones and also introduces 

a complex environment that they have to solve by using the props and dragging the props 

on a heightened opening or doorway such that hiders can confine themselves in a safe 

environment. 

D. D. Ningombam et.al proposes a novel exploration technique, called "Unexplored Move 

Pruning" (UMP), for multi-agent reinforcement learning (MARL) in competitive games. 

The problem statement is that traditional exploration techniques often require a large 
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number of samples to find effective policies in MARL. The method combines UMP with 

an existing MARL algorithm, Counterfactual Multi-Agent (COMA), to improve 

exploration efficiency [63]. The outcome of the paper demonstrates that UMP can 

significantly improve the exploration efficiency in MARL, leading to better performance 

in competitive games with fewer samples. We enabled the agent to explore the environment 

and reward them for exploring as curiosity was added to it. This enabled the agent to use 

the prop to drag it and take it to a farther down-the-lane doorway so that it can close it. 

C. Diuk et.al proposed work on an object-oriented representation for efficient 

reinforcement learning. The background of this paper is on reinforcement learning and its 

representation in an object-oriented form, which can be used to build efficient models for 

a range of applications. The problem statement is to represent the world state in a structured 

way that can be learned and updated by an agent. The method used is object-oriented 

representation, which defines the state of the world in terms of objects, their attributes, and 

relationships [64]. The algorithm used in this paper is Q-learning, which is a well-known 

model-free reinforcement learning algorithm. The outcome of this paper is that the object-

oriented approach can be a powerful tool for building efficient models for a range of 

applications. We not only use obey rented representation but also introduced an 

environmental master class that was able to control all of the agent's reward functions and 

reset the environment when the episode was finished this master class was able to identify 

and sync all of the agent's episode length. 

C. Jestel et.al proposes a method to obtain robust control and navigation policies for multi-

robot navigation via deep reinforcement learning. The problem statement is to improve the 

navigation and control policies for multiple robots in dynamic environments, considering 

the uncertainties and disturbances. The method uses a deep reinforcement learning 

algorithm called Trust Region Policy Optimization (TRPO) to learn the policies [65]. The 

outcome shows that the proposed approach can effectively learn robust navigation policies 

for multiple robots in dynamic environments, outperforming the traditional rule-based 

method. We use the successor of TRPO which is PPO and MAPOCA. Which resulted in 

faster and quicker convergence of strategies. 
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A. Cohen et.al states in multi-agent reinforcement learning" discusses the use of absorbing 

states, which are states from which the agents cannot escape, in multi-agent reinforcement 

learning (MARL). The problem statement is that the use of absorbing states can lead to 

suboptimal policies, and the paper proposes a method to address this issue. The method 

used in the paper involves modifying the reward function to discourage agents from 

entering absorbing states [66]. No specific algorithm name is mentioned in the paper. The 

outcome is that the proposed method improves the performance of MARL agents in tasks 

with absorbing states. We addressed this issue by introducing a curiosity module in the 

agent which enables the agent to explore the environment to get more rewarding actions. 

Y. Duan proposed work on One-shot imitation learning. the background of this paper is on 

imitation learning, a popular technique for teaching agents to perform tasks by learning 

from expert demonstrations. The problem statement is that traditional imitation learning 

algorithms typically require a large amount of data to learn from, which can be time-

consuming and expensive. The authors propose a method called one-shot imitation learning, 

which allows an agent to learn a new task from a single demonstration [67]. The algorithm 

used is a variation of Siamese neural networks that use a shared weight structure to compare 

the input of the demonstration and the current state of the environment. The outcome of 

the paper shows that their approach is effective and efficient, allowing agents to learn new 

tasks quickly and with fewer data than traditional imitation learning methods. Ml-Agents 

just provide imitation learning in which the agent can be trained with an existing demo 

brain. but we didn't use imitation learning as it will eliminate the emerging behavior of 

strategies as it will only learn from the demonstrations and build upon those demonstrations. 

J. Ren et.al proposes a method to balance the reward function in reinforcement learning to 

account for orientation-preserving actions. The problem statement involves cases where 

the optimal policy requires a robot to rotate an object and perform other actions that change 

the object's orientation, but the reward function only values the final object configuration. 

The method uses a balancing term to reward orientation-preserving actions, and it applies 

a projection to ensure that the final reward is non-negative [68]. The outcome of the paper 

is an approach to improve reinforcement learning in tasks that require orientation 

preservation, such as manipulation tasks. The proximal policy optimization algorithm 
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already addresses this issue that the agent at the end of the episode needs to increase the 

reward from the baseline 0 and it will take a lot of episodes to do this. 

R. Wang et.al proposes a new approach to generating diverse and complex environments 

for reinforcement learning, called Paired Open-Ended Trailblazer (POET). The problem 

statement is to create a learning environment that can continuously generate increasingly 

complex and diverse challenges for agents to learn from. The method involves evolving 

pairs of environments and agents, where the fittest agents are paired with the fittest 

environments and vice versa [69]. The algorithm used is a combination of novelty search 

and multi-objective optimization. The outcome is a system that can generate an endless 

stream of diverse and challenging environments for reinforcement learning, resulting in 

agents that can generalize better and perform well in unseen environments. We adopted 

this ideology that a trained brain should compete with a non-trained brain we trained the 

seekers first and then started training on the hiders this enables the hider to completely 

understand how difficult the task is and randomly moving or staying behind a prop will not 

solve their permanent issue. 

N. Matsumura et.al proposes a novel method for improving the performance of a drone-

based multi-input multi-output (MIMO. The problem statement is to find the optimal 

placement of the drone to maximize the system's capacity and minimize power 

consumption. The method uses a genetic algorithm to search for the optimal placement of 

the drone based on various constraints and objectives. The proposed algorithm is named 

the Genetic Algorithm for Drone Placement (GADP) [70]. The outcome of the paper shows 

that the proposed algorithm significantly improves the system's performance compared to 

conventional methods. Reinitialize the drones in a random position so that they can learn 

to navigate to the goal whether they are near or farther away. This enables the agent to 

adapt to the localization and to navigate in a complex environment. 

M. Jaderberg et.al proposes a method for training neural networks using a population-based 

approach that searches for optimal hyperparameters such as learning rates and weight 

initialization schemes. The problem statement is to improve the efficiency and 

effectiveness of training neural networks. The method used is a combination of 

evolutionary algorithms and reinforcement learning, where populations of neural networks 
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are trained and evaluated in parallel to optimize the hyperparameters [71]. The algorithm 

used is called Population Based Training (PBT). The outcome of the paper shows that PBT 

can achieve state-of-the-art performance on various deep learning benchmarks while being 

computationally efficient. He used a population of 12 environments running parallel with 

each other each environment contains a set of agents that are training and learning 

experiences based on their actions in the given state. 

G. Wu et.al proposes a reinforcement learning-based approach to optimize the coordination 

of trucks and drones for delivery. The problem statement is to find the optimal allocation 

of delivery tasks between trucks and drones to minimize the delivery cost. The method uses 

a centralized RL algorithm with a shared value function and a decentralized actor policy 

[10]. The name of the algorithm is "Multi-Agent Deep Deterministic Policy Gradient 

(MADDPG)." The outcome of the paper shows that the proposed approach can 

significantly reduce the delivery cost and improve delivery efficiency compared to the 

traditional delivery methods. 

A. Ahadi et.al focuses on the replication crisis in computing education research, where 

several studies are non-replicable. The problem statement is the lack of rigor and 

transparency in research practices, leading to unreliable results. The method used in this 

paper is a survey of computing education researchers to understand their attitudes and 

experiences related to replication [2]. The outcome of this paper is the identification of 

barriers to replication and recommendations for improving research practices in computing 

education. We adopted the ideology of an open AI hydrogen secret experiment and 

replicated it in a drone-like fashion in which the agents can fly and they have to learn to 

use the props and close heightened entry points. 

A. Ahadi et.al addresses the lack of replication studies in computing education research 

(CER) and the potential consequences for the validity and reliability of research findings 

in this field. The authors conducted an online survey to investigate the attitudes and 

experiences of CER researchers regarding replication studies. While most respondents 

viewed replication as important, only a small percentage had conducted replication studies 

themselves, citing time and resource constraints as barriers [2]. The study highlights the 

need for more support and incentives for replication studies in CER to ensure the rigor and 
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credibility of the research in this field. I would experiment and manage to generate similar 

results much faster with very less batch size and resources required during the hide-and-

seek experimentation. Thus replicating using our methodology resulted in better behavior. 

Y. Liu et.al addresses the issue of replication in AI research. Replication is essential to 

verify and validate the results of AI research, but it is often overlooked or considered 

unimportant. The authors propose the use of replication markets to incentivize and facilitate 

replication studies in AI. Replication markets are prediction markets that allow researchers 

to bet on the likelihood of a replication study producing the same results as the original 

study. The authors conducted a replication market for two AI studies and found that the 

markets provided an effective and efficient way to incentivize replication and encourage 

transparency in AI research [40]. The study highlights the potential of replication markets 

to improve the rigor and credibility of AI research and calls for further experimentation 

and refinement of the approach. 

I. M. A. Nahrendra proposed that tilting-rotor drones are a promising technology for 

autonomous aerial transportation, but they are challenging to control due to their complex 

dynamics. The existing nominal controllers for tilting-rotor drones are not optimal and do 

not account for all the complex dynamics of the drone, leading to suboptimal performance. 

To address this problem, the authors propose a new approach called Retro-RL, which 

combines a nominal controller with deep reinforcement learning (RL) to learn a better 

control policy for the drone [7]. The Retro-RL algorithm uses a policy gradient method to 

train the RL agent, which is then combined with the nominal controller retroactively. The 

authors evaluate the Retro-RL approach on a simulated tilting-rotor drone and demonstrate 

that it outperforms the nominal controller in terms of stability, tracking performance, and 

robustness to disturbances. The study highlights the potential of RL to improve the 

performance of complex systems and the importance of combining RL with existing 

control methods to achieve better results. 

C. Florens et.al tackle the problem of designing an effective curriculum for reinforcement 

learning (RL) agents. Traditional RL algorithms often assume a fixed curriculum, which 

can be suboptimal for complex tasks. The authors propose a new approach called reverse 

curriculum generation, which uses a generative adversarial network (GAN) to generate a 
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sequence of increasingly difficult tasks for the RL agent. The GAN is trained to generate 

tasks that are easy for the RL agent to solve but difficult for a fixed heuristic agent. The 

RL agent is then trained on the generated tasks in reverse order, starting from the most 

difficult task and working backward. The authors evaluate the approach on several Atari 

games and demonstrate that it outperforms traditional RL algorithms and other curriculum 

generation methods. The study highlights the potential of using GANs to generate effective 

curricula for RL agents and the importance of tailoring the curriculum to the agent's 

capabilities [72]. Emulation provides the ability to imitate from a demo generated by an 

experienced player this can also be identified as reverse reinforcement learning In such a 

manner that the agents are given a demonstration of exact actions that will yield them better 

rewards. But in our case, the environment was very complex and the agents were spawning 

randomly thus having a demonstration of every possible state to action was not a very 

bright idea thus we introduced curriculum learning which enabled the agent to learn 

gradually with the increase of difficulty in the environment. 

M. Seo et.al proposes a novel method to solve the credit assignment problem in RL agents 

receiving sparse binary rewards, which involves using a neural network to predict the 

expected future rewards for each action in the current state, and then assigning credit to the 

actions that contribute to the future rewards. The authors evaluate the proposed method on 

several sparse reward environments and demonstrate that it outperforms traditional RL 

algorithms and other credit assignment methods [73]. The study emphasizes the importance 

of developing new approaches to address the challenges of sparse reward environments 

and highlights the potential of rewards prediction for solving the credit assignment problem. 

With the help of curriculum learning and curiosity, items were able to identify the sparse 

rewards and learned very quickly how to end the episode while on their best behavior. 

M. M. M. van Dooren et.al investigates the impact of different types of rewards on play 

persistence in adolescents with and without substance dependence. The authors note that 

gaming can be addictive and that understanding how different types of rewards affect play 

persistence could inform strategies for mitigating problematic gaming behaviors. The study 

uses a controlled experiment to compare the effects of monetary rewards, virtual points, 

and social rewards on play persistence in both groups [74]. The authors find that monetary 
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rewards have the strongest effect on play persistence, followed by social rewards, with 

virtual points having the weakest effect. The study provides insights into the factors that 

motivate play in adolescents and could inform the development of interventions for 

problematic gaming behaviors.  

N. Jaques et.al proposes a method to improve the performance of multi-agent RL by using 

social influence as intrinsic motivation for agents. The authors note that in multi-agent 

environments, agents must learn to cooperate and coordinate their actions, which can be 

challenging. The study proposes using social influence as a form of intrinsic motivation, 

where agents are rewarded for influencing the actions of other agents in the environment. 

The authors evaluate the proposed method on several multi-agent environments and 

demonstrate that it outperforms traditional RL algorithms and other intrinsic motivation 

methods. The study provides insights into how social influence can be used to incentivize 

cooperative behavior in multi-agent environments and highlights the potential of intrinsic 

motivation for improving RL performance [75]. With the help of curiosity and continuous 

increase in the difficulty of the environment, we induce the agent with the ability to learn 

in a gradually difficult environment. The social influence can be demonstrated as the 

gradual increase in the difference of the environment that makes it much more difficult for 

the agent to identify and navigate with the newer level. 

O. E. Gundersen et.al examines the issue of reproducibility in AI research. The authors 

note that many AI research results are difficult to reproduce due to the complexity of the 

models and the lack of standardization in the field. The study proposes several guidelines 

and best practices for improving reproducibility in AI research, including using open-

source software, providing detailed documentation, and making data and code publicly 

available. The authors also review several reproducibility initiatives in the field and 

highlight the need for greater collaboration and standardization [76]. The study provides 

important insights into the challenges of reproducibility in AI research and proposes 

actionable solutions for improving the reliability and transparency of AI research results. 

V. Bapst et.al proposes a structured approach to training agents for physical construction 

tasks, using a combination of RL and supervised learning. The study highlights the 

complexity of physical construction tasks and the need for coordinated planning and 
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execution. The proposed method outperforms traditional RL methods and demonstrates the 

potential for using structured agents in real-world applications [77]. The study provides 

insights into how structured agents can be designed and trained for complex tasks, such as 

physical construction. With the help of unity 3D, we introduce physics in the agent's 

properties including mass drag angular drag clean gravity, etc. this enabled the agent to 

learn in a real lifelike manner rather than just a physics-less simulation. 

J. Achiam et.al proposes a novel approach to incorporating intrinsic motivation in RL by 

using surprise as a reward signal. The study argues that surprise can be used to encourage 

exploration and learning more efficiently in complex environments. The proposed method 

is based on an extension of Q-learning called Surprise Q-learning, which uses a separate 

module to compute surprise values [78]. The study demonstrates the effectiveness of the 

proposed method in several benchmark tasks and shows that it outperforms traditional RL 

methods. The study suggests that surprise-based intrinsic motivation can be a useful tool 

for RL agents operating in complex and uncertain environments. once the price element in 

our research was the enabling of curriculum learning on the environmental prefabs once 

the agent learned to get a certain amount of reward the environment was made difficult test 

new challenges arises as a surprise for the agent 

J. Lehman proposed work on the surprising creativity of digital evolution: A collection of 

anecdotes from the evolutionary computation and artificial life research communities. The 

background of this paper is the study of evolutionary computation and artificial life 

research communities. The problem statement is to examine the surprising creativity of 

digital evolution. The method used is to collect anecdotes from researchers in these fields. 

The paper presents a collection of stories that demonstrate the creative capabilities of 

digital evolution, highlighting the importance of exploring new ideas and approaches in AI 

research [79]. We use the principle of coevolution in agents. hydrants and seekers were 

given the competition in cooperation to themselves stop 

G. Tesauro et.al describes a reinforcement learning algorithm, TD-Gammon, which uses 

temporal difference learning to train a neural network to play backgammon. The 

background of the paper is the field of machine learning, specifically reinforcement 

learning, and the problem statement is how to train an agent to play backgammon using 
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TD learning. The method used is a combination of supervised learning and reinforcement 

learning with a neural network as the function approximator, and the algorithm used is 

temporal difference learning [80]. The outcome of the paper was a successful 

demonstration of the TD-Gammon algorithm, which was able to achieve human-level 

performance in playing backgammon. instead of using temporal difference learning we 

introduce proximal policy optimization and MA-POCA. 

J. Lai et.al present a method for training an AI agent to play a third-person shooter game 

using Unity's ML-Agents toolkit. The problem statement is how to develop an agent that 

can navigate the game environment, avoid obstacles, collect items, and engage in combat 

effectively. The method used involves designing reward functions and using deep 

reinforcement learning with a neural network architecture [6]. The algorithm used is a 

variant of deep Q-learning. The outcome of the paper is that the trained agent demonstrates 

improved performance in the game compared to a baseline model, indicating the 

effectiveness of the proposed method. Our experimentation introduced the flying leg 

mechanism along with two different brains that were training concurrent with each other 

rather than a similar brain with different reward functions pool shop. 

T. Singh et.al focuses on the problem of predicting trajectories of moving objects in a 3D 

virtual environment. The method used involves training a deep reinforcement learning 

model using Unity's ML-Agents toolkit, which allows for training in a realistic simulated 

environment [81]. The algorithm used is a deep neural network trained with reinforcement 

learning. The outcome is a model that can accurately predict trajectories in real-time, 

making it suitable for applications such as autonomous driving and robotics. We introduce 

spatial sensors, frontal camera sensors, vectors, and ray casts. 

S. Mohamed et.al introduces a novel approach for intrinsically motivated reinforcement 

learning by maximizing information gain through variational inference. The problem 

statement is the lack of a general-purpose intrinsic motivation algorithm, which can be used 

across different tasks without manual tuning. The method utilizes variational autoencoders 

to learn a representation of the state space and trains the agent to maximize the information 

gained between the current state and its future representation [82]. The name of the 

algorithm is Variational Information Maximization (VIM). The outcome of the paper 
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shows that VIM outperforms several state-of-the-art intrinsic motivation algorithms on 

various tasks. We on the other hand used the curiosity element in the proximal policy 

optimization for the agents to learn to observe and explore the environment to get such 

actions that can result in rewards even more. 

R. Houthoof et.al present VIME (Variational Information Maximizing Exploration), a 

method for exploring environments in reinforcement learning. The background is that 

exploration is crucial for effective learning, but current methods have limitations. The 

problem statement is that current methods do not effectively balance exploitation and 

exploration. The method involves using variational inference to approximate the 

exploration bonus that guides the agent's behavior [83]. The algorithm used is VIME. The 

outcome of the paper is that VIME outperforms other exploration methods in several 

benchmarks. Reintroduce the combination of curriculum learning and curiosity, this 

reducibility to learn the specific environment and then gradually increase the difficulty of 

the environment while the agent is still curious so that it can observe and re-evaluate the 

environment to get better action to state results. 
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Conclusions and Future work 

In conclusion, our research has shown that replication of strategies is possible by utilizing 

a combination of simple game rules, fostering multi-agent competition, and implementing 

standard reinforcement learning algorithms at scale, and agents can acquire complex 

strategies and skills. The introduction of curriculum learning has further accelerated the 

learning process, allowing agents to utilize their environments and props more efficiently. 

This approach has the potential to significantly reduce costs and improve efficiency in real-

world environments, particularly in the field of autonomous systems. 

 

Furthermore, the development of autonomous systems has been a crucial area of research 

in recent years. The ability to deploy autonomous systems in a range of industries has the 

potential to improve safety, reduce costs, and increase efficiency. Our research has 

contributed to this field by providing a framework for the development of intelligent agents 

capable of learning complex strategies and skills. 

 

Overall, the potential applications of this research are vast, particularly in industries such 

as transportation, logistics, and agriculture. By utilizing intelligent agents capable of 

learning complex behaviors, these industries could reduce costs, improve efficiency, and 

enhance safety. Therefore, our research has the potential to make a significant impact on 

the development of autonomous systems and has promising implications for a range of 

industries. 

 

The training of agents can be extended to encompass more complex environments, where 

additional agent types can be introduced to heighten the level of training difficulty. The 

incorporation of weather parameters can also enable agents to adapt to challenging weather 

conditions, thereby enhancing their overall performance. However, it has been observed 

that agents may exploit the physics of their environment to manifest glitched, cheat-like 

behaviors. For instance, seekers have been observed to glitch through walls when hit with 

high velocity, while hiders tend to immobilize themselves in corners of the boundary to 

avoid incurring a significant collision penalty from seekers. The elimination of such 
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glitched behaviors through the design of an environment that precludes their manifestation 

can dramatically reduce the time and resources expended in the agent training phase. As 

such, the creation of an environment that discourages such undesirable behaviors is a 

crucial aspect of effective agent training. 
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