
Replication of Multi-Agent Reinforcement

Learning for “Hide & Seek” Problem

by

Muhammad Haider Kamal

Supervisor: Prof. Dr. Muaz Ahmed Khan Niazi

A thesis submitted to the faculty of the Computer Software Engineering Department,

Military College of Signals, National University of Sciences and Technology,

Rawalpindi in partial fulfillment of the requirements for the degree of MS in Software

Engineering

April 2023

Replication of Multi-Agent Reinforcement

Learning for “Hide & Seek” Problem

by

Muhammad Haider Kamal

NS 00000328503

Supervisor: Prof. Dr. Muaz Ahmed Khan Niazi

A thesis submitted to the faculty of the Computer Software Engineering Department,

Military College of Signals, National University of Sciences and Technology,

Rawalpindi in partial fulfillment of the requirements for the degree of MS in Software

Engineering

April 2023

2

Thesis Acceptance Certificate

This is to certify that the final copy of the thesis written by NS Muhammad Haider Kamal,

Registration no: 00000328503, Course: MSSE-27, on the topic, “Replication of Multi-

Agent Reinforcement Learning for “Hide & Seek” Problem” has been found complete.

The plagiarism report is satisfactory and necessary amendments pointed out by GC

members are incorporated.

 Signature: ___________________________________

Name of Supervisor: Prof. Dr. Muaz Ahmed Khan Niazi

Date: __

Signature (HOD): ________________________________

Date: __

Signature (Dean/Principal): ________________________

Date: _______________________________________

Declaration

I, Muhammad Haider Kamal declare that this thesis titled “Replication of Multi-Agent

Reinforcement Learning for “Hide & Seek” Problem” and the work presented in it is

my own and has been generated by me as a result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a Master of Software

Engineering degree in MCS NUST.

2. Where any part of this thesis has previously been submitted for a degree or any

other qualification at NUST or any other qualification at NUST or any other

institution this has been clearly stated.

3. Where I have consulted the published work of others, this is always clearly

attributed.

4. Where I have quoted from the published work of others the source is always given.

With the exception of such quotations this thesis is entirely my own work.

5. I have acknowledged all main sources of help.

6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Muhammad Haider Kamal.

00000328503

MSSE27

ii

Dedication

“In the name of Allah, the most Beneficent, the most Merciful"

I dedicate this thesis to my parents and teachers.

Who supported me each step of the way.

iii

Acknowledgments

All praise to Allah for the strength and blessings to complete my thesis.

I would like to convey my gratitude to my supervisor, Prof. Dr. Muaz Ahmed Khan Niazi,

and Assoc. Prof. Dr. Hammad Afzal for their supervision and constant support. Their

continuous help, constructive comments, and suggestions throughout the experimental and

thesis works are major contributions to the success of this research. Also, I would thank

my committee members; Assoc Prof Dr. Naima Iltaf, and Lt. Col Khawir Mehmood for

their support and knowledge regarding this topic.

Last, but not least, I am highly thankful to my parents. They have always stood by my side

and have been a great source of inspiration for me. I would like to thank all of them for

their support through my times of stress and excitement.

iv

Abstract

Reinforcement learning generates policies based on reward functions and hyperparameters.

Slight changes in these can significantly affect results. The lack of documentation and

reproducibility in Reinforcement learning research makes it difficult to replicate once-

deduced strategies. While previous research has identified strategies using grounded

maneuver, there is limited work in the more complex environments. The agents in this

study are simulated similarly to Open Al’s hide and seek agents, in addition to a flying

mechanism, enhancing their mobility, and expanding their range of possible actions and

strategies. This added functionality improves the Hider agents to develop chasing strategy

from approximately 2 million steps to 1.6 million steps and hiders shelter strategy from

approximately 25 million steps to 2.3 million steps while using a smaller batch size of 3072

instead of 64000. We also discuss the importance of reward functions design and

deployment in a curriculum-based environment to encourage agents to learn basic skills

along with the challenges in replicating these Reinforcement learning strategies. We

demonstrated that the results of the reinforcement agent can be replicated in more complex

environment and similar strategies are evolved including” running and chasing” and ”fort

building”.

v

Table of Contents

INTRODUCTION --- 1

1.1 Overview -- 1

1.2 Motivation and Problem Statement --- 2

1.3 Objectives --- 3

1.4 Thesis Contribution -- 4

1.5 Background --- 5

1.6 Thesis Organization -- 11

METHOD -- 12

2.1 Agent Structure --- 12

2.2 Agent: -- 13
2.2.1 Hider Agents: -- 13
2.2.2 Seeker Agents: -- 13
2.2.3 Neural Network structure: --- 13

2.3 State Abstraction --- 14
2.3.1 Grid Construction: -- 14
2.3.2 Occupancy Calculation: --- 14
2.3.3 Feature Calculation: --- 14
2.3.4 Frontal Shape Observation --- 15
2.3.5 Spatial Position Observation --- 16
2.3.6 Ray-casts Observation --- 17
2.3.7 Realtime values via script--- 17

2.4 State Diagram: --- 18

2.5 Environmental Design --- 19
2.5.1 Pre-Hider and Seeker Experiments --- 19
2.5.1.1 Hummingbird Agent - Experiment --- 19
2.5.1.2 Drone Agent Experiment -- 20
2.5.1.3 EyeAgent Experiment -- 21

vi

2.6 Instance Setup --- 22
2.6.1 Parallelism --- 23
2.6.2 Multi-Agent Prep-Phase -- 24
2.6.3 Multi-Agent Test-Phase --- 24

2.7 PLAYTESTING RL AGENTS --- 25
2.7.1 Observing Player Progression via Curriculum learning ------------------------------ 25
2.7.2 Seeker's Assault Horizon -- 26
2.7.3 Hider's Prop Use -- 27
2.7.4 Clearing Obstacles -- 28

RESULTS AND ANALYSIS --- 29

3.1 Curriculum Learning vs Traditional Learning -- 31

3.2 Hiders --- 32
3.2.1 Cumulative Reward: -- 32
3.2.2 Episode Length: --- 33
3.2.3 Curiosity Reward:--- 34

3.3 Seekers -- 35
3.3.1 Group Cumulative Reward: -- 35
3.3.2 Episode Length: --- 36
3.3.3 Self-Play ELO --- 37

3.4 Key Difference -- 38

3.5 Discussion and Related Work -- 40

CONCLUSIONS AND FUTURE WORK -------------------------------------- 72

REFERENCES --- 74

vii

List of Figures

FIGURE 1 HIGH-LEVEL ARCHITECTURAL DESIGN OF AGENT -------------------------------------- 12

FIGURE 2 “360⁰” IN 3D SPACE -- 13

FIGURE 3 “135⁰” IN 3D SPACE -- 13

FIGURE 4 "360⁰" IN 2D SPACE -- 13

FIGURE 5 FRONTAL SHAPE SENSOR FOR AGENT'S OBSERVATION ------------------------------ 15

FIGURE 6 SPATIAL SENSOR FOR AGENT'S OBSERVATION --- 16

FIGURE 7 2D RAY CASTS --- 17

FIGURE 8 STATE DIAGRAM OF AGENTS OBSERVATION TO ACTION FLOW -------------------- 18

FIGURE 9 CUMULATIVE REWARD FOR “HUMMINGBIRD” AGENT ------------------------------- 20

FIGURE 10 CUMULATIVE REWARD FOR "DRONE TARGET" AGENT ----------------------------- 20

FIGURE 11 CUMULATIVE REWARD FOR "THE EYE" AGENT --------------------------------------- 21

FIGURE 12 ENVIRONMENT VISUAL (2D VIEW) -- 22

FIGURE 13 PARALLELISM - 12 ENVIRONMENTS --- 23

FIGURE 14 PROP 1 USED SUCCESSFULLY --- 27

FIGURE 15 PROP 2 USED SUCCESSFULLY. -- 27

FIGURE 16 PROP 3 USED SUCCESSFULLY WHILE AVOIDING OBSTACLES. ---------------------- 27

FIGURE 17 PROP 4 WITH MAX DISTANCE AND AVOIDING SEEKERS COLLISION USED

SUCCESSFULLY. -- 27

viii

FIGURE 18 OBSTACLES ARE DEMONSTRATED WITH ORANGE COLOR. ------------------------- 28

FIGURE 19 LEVEL ONE-- 30

FIGURE 20 LEVEL TWO --- 30

FIGURE 21 LEVEL THREE --- 30

FIGURE 22 LEVEL FOUR -- 30

FIGURE 23 REWARD DISTRIBUTION FOR HIDER AGENTS COMPARING CURRICULUM VS

TRADITIONAL ENVIRONMENTAL SETUP. --- 31

FIGURE 24 HIDERS CUMULATIVE REWARD SMOOTHED 0.99 ------------------------------------ 32

FIGURE 25 EPISODE LENGTH OF HIDERS CORRESPONDS TO DECISIONS MADE PER EPISODE.

 --- 33

FIGURE 26 CURIOSITY REWARD FOR HIDERS BASED ON CURRICULUM LEARNING. --------- 34

FIGURE 27 SEEKER'S GROUP CUMULATIVE REWARD SMOOTHED 0.95 ------------------------ 35

FIGURE 28 EPISODE LENGTH FOR SEEKER AGENTS CORRESPONDS TO DECISIONS MADE PER

EPISODE. -- 36

FIGURE 29 ELO FOR SEEKER AGENTS WITH SAVE STEPS EQUAL TO 61440, TEAM CHANGE

EQUAL TO 184320 -- 37

1

Chapter 1

Introduction

1.1 Overview

The word “Artificial” means a replica produced by humans [1]. But replicating AI results

and strategies is considered difficult in large part [2]. Overall low replication rates suggest

unreliable practices (Christensen and Miguel, 2018). Reinforcement learning (RL)

generates policies based on designed reward functions and assigned hyperparameters. The

Reward Function is an incentive mechanism that uses reward and punishment to tell the

agent what is right and wrong. In RL, the goal of agents is to maximize total rewards. We

must sometimes forego immediate gratification to maximize total rewards. Slight changes

in these can yield a huge difference in results. Reinforcement learning is also affected by

experimental conditions i.e. if the gravity of physics-based simulation or force applied to a

working agent changes it can change the behavior pattern of the agent. Thus, replication of

once-deduced strategies is difficult and criticized for not being reproducible. RL research

tends to be not documented well enough to reproduce the exact reported results as it mostly

relies on continuous finetuning and updating of hyperparameters, reward functions,

environment variables, sensor types, etc. Inference and result reproducibility should yield

enough similar results that can benefit further research and can ease improvements rather

than just focusing on reproducing it. But upon minimum info given regarding Agent’s

Academy parameters (Environment Variables like gravity, collider conditions, delta time,

etc.), Agent’s Behavior parameters (vector space, continuous/discrete actions inference

device, collider type, speed, sensors attached, max steps allowed, etc.), calculating similar

results are often considered hard to achieve.

The Tool Use from Multi-Agent Interaction paper by OpenAI explores the concept of

agents in emergent strategies [3]. In this paper, an agent is defined as a software entity that

is capable of perceiving its environment and taking action to achieve a specific goal. Such

strategies can either be generated by designing the reward function specified to goal-

achieving parameters or waiting for the lucky shot action that the agent performs while

moving randomly. This goal of achieving random then becomes the near to best action so

far in the agent’s experience and is used to generate optimal policy. The drawback of this

2

approach is that the agent might never learn to reach the optimal solution if the experience

that it is gathering is not fruitful. For example, if the agent’s goal is vertically upward and

behind a locked door, an agent might take forever to understand a pattern to first move

toward a specific door, unlocking it, passing through it, and tagging the target goal. Thus,

specially designed reward functions are deployed with a simplistic environment at the

beginning to encourage the agent to learn a basic and novice version of the best state of

action. The Open AI paper presents a series of experiments in which agents are placed in

a simulated environment and tasked with completing a set of objectives. The agents are

programmed to learn from their interactions with each other, leading to the development

of strategies such as cooperation and tool use. Our agents are simulated with the inclusion

of a flying mechanism, enabling them to navigate through three-dimensional space. This

feature enhances the agents' mobility and expands their range of possible actions, leading

to more diverse and effective behavior. With the ability to fly, our agents can overcome

obstacles and traverse complex environments more efficiently, ultimately improving their

performance and increasing their chances of success. This added functionality can also

allow for the emergence of novel behaviors and strategies, further improving the agents'

ability to achieve their goals.

1.2 Motivation and Problem Statement

It has been observed that agents tend to acquire better learning outcomes in a simplified

environment [4]. However, such agents may not be well-suited for more complex

environments and may exhibit a bias towards them. To address this challenge, agents can

benefit from the implementation of curriculum learning. This approach involves gradually

increasing the difficulty of the environment once the agent reaches a certain reward

threshold, allowing them to better adapt to complex scenarios.

Recent observations of agents in OpenAI's program indicate a preference for 2-dimensional

movement, limiting their ability to navigate in three dimensions [3]. However, introducing

a third movement direction, such as up and down, can enable agents to fly and discover

novel behaviors, leading to more optimal solutions.

Additionally, the limitations of 2-dimensional lidar-like ray cast in detecting opposing

agents above or below call for the redesign of observation sensors. This modification can

3

provide agents with a more comprehensive understanding of their surroundings and

improve their situational awareness when an ally or opposing team's agent is present.

We are interested in examining the effects of reducing or eliminating negative rewards for

behavior that leads to delayed rewards. For instance, seekers are currently penalized with

a negative reward if they do not have hiders in sight, even if they are moving in the right

direction toward the hiders and are only a few frames away from reaching an optimal

position.

We intend to investigate how the elimination or reduction of these negative rewards would

affect the behavior of the agents. By doing so, we can better understand how agents

perceive and respond to delayed rewards and whether removing negative rewards in these

situations leads to more optimal outcomes. This analysis can provide valuable insights into

how to incentivize agents to navigate more effectively toward their goals, even in situations

where rewards are delayed.

1.3 Objectives

The primary objective of this research is to achieve the following goals:

 We aim to enhance our agents' abilities by introducing drone-like behavior through the

addition of flying movements. This feature enables agents to observe and interact with

their environment more effectively, leading to improved performance and better results.

 Our objective is to create a competitive multi-agent environment utilizing MA-POCA

(MultiAgent POsthumous Credit Assignment) and PPO (Proximal Policy Optimization

algorithm) reinforcement learning techniques. The implementation of these methods

can facilitate the development of effective strategies among agents, resulting in

improved performance and more successful outcomes.

 We aim to fine-tune reward functions and hyperparameters as accurately as possible,

based on the existing documentation. This approach can optimize the performance of

our agents, enabling them to achieve better results and more efficiently reach their goals.

 Our objective is to showcase the potential of our proposed model by conducting various

experiments and comparative studies on reinforcement learning projects using state-of-

the-art approaches. This approach can demonstrate the effectiveness and superiority of

4

our proposed model and enable us to further improve and optimize our agents'

performance.

By accomplishing these goals, we can improve our understanding of reinforcement

learning agents and contribute to the development of more advanced and smart agents.

1.4 Thesis Contribution

This thesis makes a meaningful contribution to the field of reinforcement learning by

proposing new ideas and enhancements that can significantly augment the behavior of

multi-agent reinforcement drone bots. The proposed enhancements aim to enable agents to

learn tool use in a 3-dimensional environment using a combination of competition and

cooperation. In addition, the thesis proposes the implementation of curriculum learning to

enhance the agents' understanding of the environment perception and how to take action

given the specific state they are in.

The proposed enhancements have the potential to improve the performance and

effectiveness of reinforcement learning drone agents, enabling them to better navigate

complex environments and achieve more optimal outcomes. The use of competition and

cooperation can encourage agents to work together towards a common goal, leading to

more efficient and effective decision-making. The implementation of curriculum learning

can help agents gradually improve their skills and understanding, leading to better overall

performance.

Overall, the contributions are offering new insights and approaches to replicating the

behavior of OpenAI’s hide-and-seek agents. The proposed enhancements have the

potential to make reinforcement learning more effective and applicable to a wider range of

real-world scenarios, making them a valuable addition to the field.

5

1.5 Background

B. Baker et al proposed a model in which self-play was accomplished using genetic

algorithms, intrinsic motivation methods, count-based exploration, and transition-based

methods. [3] This is done because, in the previous scenarios, agents were explicitly

incentivized to interact with and use tools, whereas, in this scenario, environment agents

create this incentive implicitly through multi-agent competition. The methodology is as

Hiders are given a reward of 1 if all hiders are hidden and a reward of -1 if any hider is

seen by a seeker. Seekers receive the inverse reward: -1 if all hiders are hidden, and +1

otherwise. Agents are penalized with a -10 reward if they venture too far outside of the

play area (outside an 18-meter square). A policy network generates an action distribution,

and a critic network forecasts discounted future returns. As a result, six emerging strategy

phases are introduced. Our approach is via rewarding agents every frame for optimal action

and not giving rapid negative rewards. The seekers are given a +0.001 reward if any seeker

can have hiders in their field of vision while hiders get a +0.0001 reward every frame they

are hidden from the seekers.

E Alonso et al created a navigation system combining the 3D occupancy map, 2D depth

map, and absolute goal and agent positions, passing through independent feature extraction

layers (3D convolutions, 2D convolutions, and linear layers respectively). [4] The output

of each feature extractor is then combined with other state variables, such as relative goal

position, speed, acceleration, and previous action. The combined output is fed through

several linear layers, followed by an LSTM, to create the final embedding shared by both

the policy and critic heads. Our approach was to introduce a frontal vision sensor and

spatial grid sensor. The essential functionality needed for visual grid observations is

provided by the GridSensorComponent. It offers a GridBuffer that may be used to write

normalized float data and encapsulates a GridSensor. I have also provided the shape

options. If performing PNG compression on the observation, a ColorGridBuffer is

generated (which extends GridBuffer and holds color values). The sensor is based on points

rather than verifying collider overlaps for each grid place. This implies that the shape of an

item is represented as a collection of local points that have been stored and are subsequently

translated into the sensor's frame of reference. This approach has the advantage of scaling

well for numerous sensor instances because it needs far fewer overlap checks.

6

A. Tucker et al deduced a model in which CNN-AIRL is used to reduce the image space

and then feed the Adversarial IRL, which is a continuous action space and uses a fully

connected policy and reward network [5]. They use Proximal Policy Optimization (PPO)

to train the policy network instead of Trust-Region Policy Optimization (TRPO). M. Lukas

developed a multi-agent competition environment in which each Bot, using a State

Machine, has 6 states. The Security Agents use Proximity Policy Optimization (PPO)

reinforcement learning algorithms which observe the Player’s positions, rotation, velocity,

carrying a box, box positions of your team and rotations, blue team score, red team score,

and deduce if a player is a player, neutral or bot (true, neutral or false) and vice versa. 2

tests were performed. Test 1 with the Player on Red Team and Bot on the Blue team, this

test failed when the player changed teams because the agent needed a more diverse

environment to learn, So, the 2nd Test was performed having the Player and Bot both at

each team. In my approach, 2 separate training sessions were held in which once the seekers

are trained enough for the “running and chasing” task, the training of hiders begins. This

is because hiders needed a much smarter agent to train against in competition. They needed

to observe the severity of staying outside the safe room and not locking the doors and

windows. Thus the hiders were trained using the Proximity Policy Optimization (PPO)

reinforcement learning algorithms while the seekers are trained using the MultiAgent

POsthumous Credit Assignment (MA-POCA).

Multi-agents gain skills including scouting for foes in new regions, looking for cartridges

after an injury, and delivering ammo to many threatening targets. J. Lai et al utilized the

PPO method which determines a conservative lower limit of the objective function using a

simple clip, boosting sampling efficiency. [6] Two networks are being trained by

ActorCritic. One network estimates or criticizes Q-values, while the other decides the

actor’s or agent’s policy or behaviors. [19] Our method is using the curriculum learning

approach in which lowering the complexity of the environment increases the agent's

learning speed and makes the agents more dynamic to changing environment.

I. M. A. Nahrendra et al proposed the Retro-RL paper which intends a method for training

a deep reinforcement learning algorithm to improve the control of a tilting-rotor drone. [7]

The approach involves combining a nominal controller with a deep Q-network (DQN) that

7

learns to adjust the controller's output based on the drone's state and the desired trajectory.

The authors evaluate their approach in simulation and on a physical drone, demonstrating

improved performance compared to the nominal controller alone. However, the approach

requires a large amount of training data and may not be easily generalizable to other drone

platforms or control tasks. Our approach uses the 3-axis based locomotion in the x, y, and

z axis while having a rotation on the y-axis with the ability to drag the objects as well.

R. Zhang et al paper "Game of Drones: Multi-UAV Pursuit-Evasion Game with Online

Motion Planning by Deep Reinforcement Learning" proposes a method for online motion

planning and decision-making in a multi-UAV pursuit-evasion game using deep

reinforcement learning (RL). The authors design a neural network-based policy that takes

as input the positions and velocities of all UAVs and outputs the actions for each UAV. [8]

They use an actor-critic algorithm to learn this policy from scratch, without relying on any

prior knowledge of the environment or system dynamics. The proposed method is

evaluated in a simulated multi-UAV game, where a team of pursuer UAVs tries to capture

a single evader UAV. The results show that the proposed method outperforms several

baseline methods, including a centralized planner and a non-learning decentralized planner.

The authors also demonstrate the scalability of their method by increasing the number of

UAVs in the game. The paper contributes to the growing field of using RL for decision-

making and control in multi-agent systems. The proposed method has potential

applications in surveillance, security, and search and rescue scenarios where multiple

UAVs must work together to achieve a common goal. However, the proposed method only

considers a simplified pursuit-evasion game, and further research is needed to evaluate its

performance in more complex scenarios. Our approach is a multi-agent competition where

team A will compete with an already trained and smart team B. This is done as agents learn

better in the simpler and more non-complex environment faster rather than against a super

brain or very complex environment.

A. Devo et al paper "Autonomous Single-Image Drone Exploration with Deep

Reinforcement Learning and Mixed Reality" proposes a method for autonomous

exploration with a drone using deep reinforcement learning (RL) and mixed reality. [9]

The authors train a neural network-based policy using RL to control the drone's movement

8

and optimize its exploration behavior based on a single RGB image as input. The proposed

method is evaluated in both simulation and a real-world environment using a DJI Mavic

Pro drone. The results show that the proposed method outperforms several baseline

methods, including random exploration and an information-gain-based exploration

algorithm. The authors also introduce a mixed reality interface that provides the user with

a first-person view of the drone's perspective, enabling real-time feedback and intervention

to adjust the exploration trajectory. The paper contributes to the growing field of using RL

and mixed reality to enable more autonomous and intuitive control of drones. The proposed

method has potential applications in search and rescue, inspection, and surveillance

scenarios where a drone needs to autonomously explore and map an unknown environment.

However, the proposed method assumes a known environment, and further research is

needed to evaluate its performance in more complex and dynamic environments.

Additionally, the mixed reality interface requires a human operator, and future work could

explore ways to make the exploration process more fully autonomous. Our approach is

using mbaske’s 3d grid sensors that help create a frontal sensor that is used to generate

shapes and get position data of detectable objects. And a spatial sensor that detects the

position of the objects around the agent.

G. Wu et al proposed the "Reinforcement Learning based Truck-and-Drone Coordinated

Delivery" paper which intends a method for optimizing the delivery process of a truck-and-

drone system using reinforcement learning (RL). [10] The authors use a deep RL algorithm

to learn the optimal coordination strategy between a truck and a drone to minimize the

overall delivery time. The proposed method is evaluated in a simulated delivery scenario,

where the truck and drone must coordinate to deliver packages to different locations. The

results show that the proposed method outperforms several baseline methods, including a

random coordination strategy and a heuristic-based coordination strategy. The paper

contributes to the growing field of using RL for decision-making and control in multi-agent

systems. The proposed method has potential applications in logistics and transportation,

where a truck-and-drone system can be used to deliver goods more efficiently and cost-

effectively. However, the proposed method only considers a simplified delivery scenario,

and further research is needed to evaluate its performance in more complex and dynamic

environments. Additionally, the proposed method assumes that the locations of the

9

packages are known in advance, and future work could explore ways to incorporate

uncertainty and adaptability into the delivery process. Our approach uses a curiosity

hyperparameter to increase agents’ randomness and promote the explore ways to

incorporate vagueness.

C. de Souza et al proposed the "Decentralized Multi-Agent Pursuit Using Deep

Reinforcement Learning" paper proposes a method for coordinating a team of agents to

pursue a target using deep reinforcement learning (RL). [11] The authors use a deep Q-

network (DQN) to learn a decentralized policy that enables each agent to make independent

decisions based on its local observations. The proposed method is evaluated in a simulated

pursuit scenario, where a team of agents must coordinate to capture a moving target. The

results show that the proposed method outperforms several baseline methods, including a

centralized planner and a non-learning decentralized planner. The paper contributes to the

growing field of using RL for decision-making and control in multi-agent systems. The

proposed method has potential applications in surveillance, security, and search and rescue

scenarios where multiple agents must work together to achieve a common goal. However,

the proposed method only considers a simplified pursuit scenario, and further research is

needed to evaluate its performance in more complex and dynamic environments.

Additionally, the proposed method assumes that the agents have perfect communication,

and future work could explore ways to incorporate communication constraints and failures

into the coordination process. Our approach uses PPO and MA-POCA in a competition.

D. Hong et al proposed the "Energy-Efficient Online Path Planning of Multiple Drones

Using Reinforcement Learning" paper which suggests a method for optimizing the energy

consumption of a fleet of drones during online path planning using reinforcement learning

(RL). [12] The authors use a deep RL algorithm to learn a policy that determines the

optimal path for each drone to minimize energy consumption, considering the dynamic

nature of the environment. The proposed method is evaluated in a simulated scenario,

where a fleet of drones must visit a set of target locations while minimizing their energy

consumption. The results show that the proposed method outperforms several baseline

methods, including a random path planner and a heuristic-based path planner. The paper

contributes to the growing field of using RL for decision-making and control in drone

10

systems. The proposed method has potential applications in surveillance, inspection, and

search and rescue scenarios where a fleet of drones must operate for extended periods and

cover large areas. However, the proposed method only considers a simplified path-planning

scenario, and further research is needed to evaluate its performance in more complex and

dynamic environments. Additionally, the proposed method assumes that drones have

perfect communication and coordination, and future work could explore ways to

incorporate communication constraints and failures into the planning process. Our

approach introduces curriculum learning where the complexity of the environment is

gradually increased in four different stages. Level one has one doorway and one prop. Level

two has one doorway, one window, and two props, level three has two doorways, one

window, and three props while level four has two doorways two windows, and four props.

11

1.6 Thesis Organization

The structure of the thesis is as follows:

 Chapter 2 contains the literature reviewed in the thesis. The previous related work

regarding reinforcement learning multi-agents. Competing and cooperating techniques

and existing case study-based approaches applied to the learning agents are covered in

the chapter.

 Chapter 3 covers the method and research methodology, details of the structure of 3-

dimensional agents, frontal camera sensor, spatial sensors, and method used in

conducting the experiments and environmental setups.

 Chapter 4 contains the reinforcement learning models executed. The simulation results

for each model and the attributes used are discussed in detail. The discussion and

Analysis of the results are also part of this chapter.

 Chapter 5 is the concluding chapter. The conclusion and future research gaps are

described in this chapter.

12

Chapter 2

Method
2.1 Agent Structure

Figure 1 High-level architectural design of Agent

Figure 1 represents the architectural structure of an agent. The types of observations it's

receiving, the reward types it's getting, and the pilot parameters that include movement

and physics-related types.

To explain further, the upcoming section of this chapter includes descriptions regarding

the following:

13

2.2 Agent:

An agent is characteristically represented as a neural network that takes in Observational

inputs from its environment and outputs actions. The agent learns to perform these actions

in response to its environment by training on a dataset of observations and rewards. The

following are the three observation types our agents are receiving which are thoroughly

explained further in this chapter:

Spatial Sensor Frontal Sensor Raycasts

Figure 2 “360⁰” in 3d space

Figure 3 “135⁰” in 3d space

Figure 4 "360⁰" in 2d space

2.2.1 Hider Agents:

One of our agents, whose objective is to flee from the seeker agents and build a shelter out

of the environment's objects. These agents are rewarded when they are successful in hiding

from seekers either by staying out of their sight or by building a fort for more security.

2.2.2 Seeker Agents:

The other type of our agents whose objective is to find and tag hider agents. They must

learn to navigate toward the hiders and collide with them. Seeker agents get rewards if

hider agents are in their sight or they tagged any hider. These seekers are responsible to

learn movement in flying like drone maneuvers, identify the target (Hiders), locate that

target, adjust it to face directly to the target, and move toward it avoiding obstacles and

static walls.

2.2.3 Neural Network structure:

Agents are assigned 256 hidden units along with 2 hidden layers.

14

2.3 State Abstraction

A special Grid sensor is designed for capturing agents in 3d space. It contains a set of

sensors that capture the state of the environment by dividing the space into a 3D grid

of cells and recording the occupancy or other features of each cell.

2.3.1 Grid Construction:

To construct the grid, we divide the 3D space into a set of uniformly sized cells.

Each cell is defined by its center point, which can be calculated as:

𝐶𝑖 = 𝐵𝑖 + (
1

2
) ∗ 𝑆𝑖

Were:

𝐶𝑖 is the center point of the i-th cell.

𝐵𝑖 is the bottom-left corner of the i-th cell.

𝑆𝑖 is the size of the i-th cell.

2.3.2 Occupancy Calculation:

The occupancy of each cell in the grid is calculated by checking if any part of the

object or agent is inside the cell. This is done using a binary function 𝐵(𝑥) that

returns 1 if x is inside the object and 0 otherwise. The occupancy 𝑂𝑖 of the i-th cell

can be calculated as:

𝑜𝑖 = 𝑚𝑎𝑥𝑗∈𝑂𝐵(𝑐𝑖 − 𝑝𝑗)

Where:

𝑂 is the set of all objects in the environment.

𝑃𝑖 is a point on the surface of the i-th object.

𝐵(𝐶𝑖 − 𝑃𝑖) is a binary function that returns 1 if x is inside the object and 0 otherwise.

2.3.3 Feature Calculation:

 In addition to occupancy, we can also calculate other features of each cell, such

as distance to the nearest object or the average color of objects inside the cell. The

feature value 𝑓𝑖,𝑘 of the k-th feature in the i-th cell can be calculated as:

𝑓𝑖,𝑘 = 𝑛 ∑ 𝐵(𝑐𝑖 − 𝑝𝑗)𝑓𝑗,𝑘

𝑗∈𝑂

Where:

𝑂 is the set of all objects in the environment.

𝑃𝑖 is a point on the surface of the i-th object.

𝐵(𝐶𝑖 − 𝑃𝑖) is a binary function that returns 1 if x is inside the object and 0 otherwise.

𝑛 is the number of objects in the environment.

15

2.3.4 Frontal Shape Observation

The Frontal Shape Sensor is a type of visual sensor that captures the shape and

appearance of objects in the environment from a frontal perspective. The sensor works

by capturing an image of the environment from the agent's current position and angle

and then processing the image to detect and classify objects based on their shape and

appearance.

Debug View Grid Buffer

The frontal field of vision is responsible for getting the position and shape of detectable

objects in Infront of the viewing agent. The initial collider buffer is set to 400 and if in

case of agents detect more; the buffer will double itself. The latitude angle north and

south are set to 90 degrees each while the longitudinal angle is set to 84 degrees yielding

a smaller field of vision. The arc angle of a single FOV grid cell in degrees. Determines

the sensor resolution:

𝐶𝑑 = 𝜋 ∗ 2 ∗ 𝐷
360

𝐶𝑑

where Cd is equal to cell size at distance and Ca equals cell arc value.

The following is the terminology used to setup values in the sensors:

Lat Angle North - The FOV's northern latitude (up) angle in degrees.

Lat Angle South - The FOV's southern latitude (down) angle in degrees.

Lon Angle - The FOV's longitude (left & right) angle in degrees.

Min Distance - The lowest possible detection distance (near clipping).

Figure 5 Frontal Shape Sensor for Agent's Observation

16

Max Distance - The upper limit detection distance (far clipping).

Normalization - How to normalize object distances. 1 for linear normalization. Set

the value to < 1 if observing distance changes at close range is more critical to agents

than what happens farther away.

2.3.5 Spatial Position Observation

 The Spatial Sensor can be used to detect the presence of specific objects in the

environment and can provide information about the relative location and orientation of

those objects with respect to the agent. The Spatial field of vision which is the surround

positioning lidar used to identify the position, as well as the distance to the surrounding

detectable objects its initial collider buffer, is set to 32, and if in case of agents detect

more the buffer will double itself. The latitude angle north and south are set to 90

degrees each while the longitudinal angle is set to 180 degrees yielding a 360 field of

vision. and 2d ray casts pointing outward along the x and z-axis around the agent and

agents’ velocity with its facing direction along the z-axis.

Debug View Grid Buffer

Figure 6 Spatial Sensor for Agent's Observation

The Spatial Sensor represents the environment as a set of spatial features. This sensor captures

information about the location and characteristics of objects in the environment, such as their

position, orientation, and size.

17

2.3.6 Ray-casts Observation

Agents have 2d Ray-casts that surround them observing. In ML-Agents, Ray-cast

Sensors are a type of sensor that provides information about the environment to the

agent. A Ray-cast Sensor works by casting a ray or multiple rays from a point on

the agent's body to detect objects in the environment. The sensor returns

information about the distance, angle, and type of the detected objects. Ray- cast

Sensors are commonly used in robotics and game development to simulate

perception and enable agents to interact with the environment. In ML-Agents, Ray-

cast Sensors can be used to provide the agent with information about the

environment, such as the location of obstacles, the distance to objects, and the

presence of other agents.

Figure 7 2d Ray casts

The agent has 8 ray casts per direction with a max ray degree of 180 which means by adding both

directions we get a 360 view. The sphere ray cast radius is 0.3 while the ray length is set to 20.

2.3.7 Realtime values via script

Values include normalized potion of self, normalized velocity, facing direction

vector, normalized rotation, a bool telling if the agent is dragging prop, and a

normalized timer that finishes when environmental steps finish.

18

2.4 State Diagram:

Figure 8 State Diagram of Agents observation to action flow

Figure 8 represents the observation being provided to the agents to generate actions and develop the
best policies. The observations are then fed into MA-Poca for Seekers and PPO for Hiders.

Observations including relative position, current velocity, target relative position, 3d

spatial sensor, 3d frontal sensor which includes 84x84 RGB camera, and 2d ray-casts are

taken from the agent to the observation buffer and sent to generate optimal policy to

generate the best result.

19

2.5 Environmental Design

2.5.1 Pre-Hider and Seeker Experiments

we conducted three different yet progressive experiments including the

“hummingbird experiment”, “target drone experiment” and the “eye experiment”.

Hummingbird Target Drone The Eye

Info:

Training a humming bot

to collect nectar [14]

Info:

Training a drone bot to

tag target

Info:

Training an eye bot to

avoid collision with an

ally and reach the target

Conditions:

Stationary Target

Wide boundaries

Known Target

Conditions:

Dynamic Target

Normal boundaries

Known Target

Conditions:

Dynamic Target

Small boundaries

unknown Target

2.5.1.1 Hummingbird Agent - Experiment

Observing Agents Behavior, the Agent seems to wobble around trying different

actions to be able to achieve reward and avoid punishment.

Reward = +.01f if Agent is in Nectar

Reward = -0.5 if Agent Collides

20

Figure 9 Cumulative Reward for “Hummingbird” agent

After approx. 2.5M Steps, Agent seems to figure out a pattern to successfully

navigate to the nectar Collider.

2.5.1.2 Drone Agent Experiment

Observing Agents Behavior, we find Drone Agent seems to wobble around

trying different actions to be able to achieve reward and avoid punishment.

Reward = +1f if Agent is in Nectar

Reward = -1 if Agent Collides

Figure 10 Cumulative Reward for "Drone Target" agent

21

2.5.1.3 EyeAgent Experiment

Observing Agents Behavior, the Agent seems to wobble around trying different actions to

be able to achieve reward and avoid punishment.

Reward = +1f if Agent is in Target

Reward = +0.001 if Agent Looks at Target

Reward = -0.2 if Agent Collides

Reward = -0.5 if Agent Collides

Figure 11 Cumulative Reward for "The Eye" agent

After approx. 6.5M Steps, Agent seems to figure out a pattern to successfully stop colliding

with walls and with other agents.

22

2.6 Instance Setup

For our research, we are conducting two separate training sequentially. Seekers are

using MA-POCA, which is used to train a group of seekers (1-4). While the hider

agents are using PPO (Proximal Policy Optimization) which is used to train hider

agents. They use the props available in the environment to shield themselves for a

shorter reward or use it to block the windows and doorways (best policy).

Figure 12 Environment visual (2d view)

Figure 12 demonstrates the training and testing environment that consists of 1-2 Hiders Drones,

1-4 Seeker Drones, 1-4 Props (doors, windows), 5 obstacles, 4 “L-shaped” walls, and 4 boundaries
around the whole setup.
Seeker: (MA-POCA) The Hunter Drone Agent tasked to locate and hit Hider to avoid walls and
obstacles.
Hider: (PPO) The Escaping Drone Agent tasked to Lock doors and clear obstacles.
Props: Draggable/Lockable entity used by agents for their gain.
Walls: Static non-movable entity used to teach navigation.
Obstacle: Physics-based Rigid bodies blocking agents’ path to the desired goal.

23

2.6.1 Parallelism

Training is performed using the principle of parallelism. “n” consecutive similar

environment prefabs are initialized altogether. Each prefab instance has an identical list of

agents and a similar environment structure. Experience can refer to the dataset of

observations and rewards used to train an agent's neural network. Let 𝐸 be the experience

in n instances:

𝐸𝑡 = ∑(𝐸1 + 𝐸2

𝑛

𝑛=1

+ 𝐸3 𝐸𝑛)

By training multiple agents at once, the overall training time can be reduced, as the agents

can learn from their experiences in parallel rather than one at a time. It is achieved using a

technique called asynchronous training, where multiple agents are trained concurrently,

and their experiences are used to update the neural network at different times.

Figure 13 demonstrates Trajectory-based parallelism which involves running multiple instances of the
simulation environment in parallel, with each instance running a different agent. Each agent collects a
sequence of experiences, or "trajectory", from interacting with the environment, and these trajectories are
used to update the agent's model.

Figure 13 Parallelism - 12 Environments

24

2.6.2 Multi-Agent Prep-Phase

Agents are given a total of 3072 steps in which they can make decisions every third step

and update their actions accordingly. Hiders are given a 40% preparation time before the

seekers are allowed to move. In this “prep phase” hiders are allowed to move freely while

avoiding contact with seekers. Hiders can learn to identify, drag, and lock movable props

(i.e., boxes) to use them to their advantage. During this period, seekers are observing the

hider’s location and shapes (if hiders accidentally stay in Infront of the seeker’s field of

vision) but they are restricted with their movement.

𝑆𝑝 = 𝑆𝑚 ∗ (
40

100
)

Where 𝑆𝑝 are the Steps for the prep phase and 𝑆𝑚 are the Max Steps.

prep_phase_steps = Max_env_steps * (40/100)

1228.8 ~ 3072 * (40/100)

2.6.3 Multi-Agent Test-Phase

The test phase refers to that portion of training in which the seekers are let loose and given

control over themselves. That means seekers can now also move along with hider agents

and try to hunt them and tag them. After 40% of steps are completed out of max

environment steps, for the rest 60% of the steps, seekers are allowed to move and use their

learned policy to focus on targets and reach them.

𝑆𝑡 = 𝑆𝑚 ∗ (
60

100
)

Where 𝑆𝑡 are the Steps for the test phase and 𝑆𝑚 are the Max Steps.

test_phase_steps = max_env_steps * (60 / 100)

1843.2 ~ 3072 * (60 / 100)

25

2.7 PLAYTESTING RL AGENTS

2.7.1 Observing Player Progression via Curriculum learning

Our Hider agents are trained via a form of machine learning method known as

curriculum learning which includes progressively raising the level of complexity of

the training examples provided to an AI agent. Task Sequencing: The first step in

curriculum learning is to define a sequence of tasks with increasing difficulty. This

sequence can be represented as a function that maps the current training iteration to

the corresponding task. For example, the task at iteration 𝑡 could be represented as:

𝑓(𝑡) = 𝑇𝑎𝑠𝑘𝑡

The plan is to start with simple instances and progressively get more complicated

as the agent gets better at the task.

𝐶𝑟 > 𝑇𝑟 → 𝐷 += 1

Where 𝐶𝑟 is the current reward, 𝐶𝑟 is the Cumulative threshold reward. 𝐷 is the

difficulty as in levels. That is the current reward exceeds a given number of

episodes, the environment will evolve to complex itself to make it harder for an

agent to learn gradually. Agents are introduced with four different levels of

environmental setup in Figure 12. Levels are made difficult to complete

progressively. For example, level one has the least difficulty while level four has

the maximum. Curriculum learning is applied to educate the agents on how to play

the game of hide and seek more effectively. The hiders and the seekers are two

different teams of agents in this game. The hiders must conceal themselves in their

surroundings, while the seekers must track them down and tag them. By gradually

escalating the level of difficulty, curriculum learning is integrated into the game of

hide and seek with the students. The hiding places could be harder to locate as the

hiders get more adept at doing so. Similar to this, as the game goes The curriculum

learning in ml-agents hide and seek is intended to assist the agents in learning more

quickly and effectively. The agents can learn the game in a more organized and

effective manner by starting with simple instances and progressively adding

complexity.

26

2.7.2 Seeker's Assault Horizon

The idea behind this is inspired by the military term “Dog Fight”. A dogfight is a

kind of aerial conflict in which two or more aircraft engage in a close-quarters battle.

High-speed maneuvers and intricate strategies are frequently used, with each pilot

attempting to outwit their rival. Dogfights may be quite dangerous since they

frequently take place at great heights and make use of cutting-edge equipment. Our

agent’s navigational capabilities are designed by keeping the “running and chasing”

ability in mind. Seekers are to keep hiders in their assault horizon to gain rewards

and even tag them to get an additional reward.

With the help of a specially designed target field of vision “reward strength” signal,

seekers can identify what angle suits best to adjust its rotation and position

accordingly, so it is facing and is right in Infront of its target.

Let 𝑇 = forward vector “z-axis” i.e. (0,0,1) and let 𝑎 = difference between this

agent’s position 𝑃1 and other agent’s position 𝑃2.

𝑎 = 𝑃2 − 𝑃1

𝑅𝑑 = |𝑎|

𝑑 = 𝑇. (
𝑎

𝑅𝑑
)

𝑆𝑠 = (
𝑑

𝑅𝑑
)

Where 𝑆𝑠 is the Signal Strength, 𝑅𝑑 is the magnitude of 𝑎 , 𝑑 represents the dot product

between the forward vector and (
𝑎

𝑅𝑑
)

Top View Side View

27

2.7.3 Hider's Prop Use

As our agents have flying-like capabilities, introducing a ramp was of no use as

agents might learn to just fly over the wall. So, we introduced windows and

doorways which when blocked with props, make a safe house for the hiders. There

is a single prop assigned for each window or door. Agent must learn to efficiently

learn to handle the props to minimize the time required to close that door and also

learn which prop is best for quickly closing a specific location door. If the agent is

using the farthest prop to close a door It will damage the efficiency as it needs to

close the rest of the doors too.

Figure 14 Prop 1 used successfully

Figure 15 Prop 2 was used successfully.

Figure 16 Prop 3 was used successfully while

Avoiding obstacles.

Figure 17 Prop 4 with max distance and avoiding

seekers collision used successfully.

28

2.7.4 Clearing Obstacles

Figure 18 Obstacles are demonstrated with orange color.

Agents have an additional problem of clearing the obstacles to make a path for closing the

doorway. These orange blocks have mass and light gravity. This light gravity increases the

difficulty as it's more complex to clear them away with one stroke as they start to float in the

path of agents. Agents need to constantly move away from the obstacles and clear their path to

the optimal solution.

29

Chapter 3

Results and Analysis

In the previous section, the methodology of our two agents including the algorithms,

observations, and their reward distribution has been described. The following section

includes the results and analysis of Hiders and Seekers agents. This section will be divided

into two major portions each highlighting the resulting behavior and analytical outcome of

Seekers and Hiders.

By using the methodology explained in the above section it’s been deduced that training

agents with a lesser negative reward or lesser penalties yield a quicker learning behavior

and can result in faster convergence to the optimal policy. This occurs especially in

navigation-related tasks where an agent might be in the right direction to target but is

getting a penalty for not looking at it. PPO and MA-Poca tend to increase its reward based

on observations so it is beneficial to leave the negative rewards at a minimum. Hiders are

given a 0.001 reward for every frame they are hidden while seekers are given a 0.001

reward if hiders are in the field of vision and +1 if they crash hiders.

Seekers are trained in a group of 2-4 multi-agents and assigned cumulative rewards i.e.

each will get the reward for good action and each will get a penalty if one does a bad action.

It resulted in the occurrence of cooperation among them. Seeker’s behavior shows they

tend to, with time, explore random paths lesser and use the target’s (Hider) location

observation to calculate the shortest path and shortest facing direction. This behavior helps

the seekers to put hiders easily in their FOV (field of vision). Seekers were successful in

emerging “Running and chasing” which includes sub-strategies like locating, navigating,

finding Hiders, navigating around walls, and door identification. As Seekers are already

flying (drones) they learned to ramp themselves up with an upward thrust through the

windows. As windows do not allow the drone to enter without moving vertically up or

down (‘down’, in our case as the agent can be near the roof) thus “ramp use” strategy is

also satisfied as they are successful in entering the hider’s rooms via learning vertical

movement and clearing obstacles Infront of windows.

30

Hiders are trained solo and as a group of 2 multi-agents. As their main reward is based on

isolating themselves in a safe location so their rewards are quite far in the future i.e. agents

need to perform more random actions to identify the best state-action situation to push in

the buffer to generate an optimal policy. To overcome this barrier, we used curriculum

learning which by increasing the complexity of the environment gradually yields an agent

understanding of the basic concept of what actions are required to get a max reward in an

episode.

Figure 19 Level One

Figure 20 Level Two

Figure 21 Level Three

Figure 22 Level Four

Figure 19 represents the easy environmental setup showing a basic training scenario where the Hider
Agent (white box) just needs to drag the prop (green box) to the doorway and lock it there so the Seeker
Agents are not able to get into the confined safe space of the Hiders. Figure 20 represents a medium
environmental setup showing a simple layout with twice the number of doorways and tools (props) that
can be used to block the seekers and make a safe place for hiders. Figure 21 represents a moderately
hard setup with three doorways and three props. This introduced unidirectional movement for the hider
to push and pull props in both the left and right directions. Figure 22 represents the hardest environment,
where the hider agent has four doorways and just four props, so it has to use them in the given time
(40% of the full episode) and introduces obstacles that hinder the path and cause physical barriers in
movement and visual barriers in the field of visual input.

The environment has six key components. Walls, Props, Hiders, Seekers, Boundaries, and

obstacles. Walls are static objects designed specifically to gradually increase the difficulty

by enabling or disabling a chunk of it as shown in figures 1-4 above. Props are used as a

door or a shield that can be dragged into the vacant door/window spaces and locked there

so seekers are unable to get inside the hider’s safe hideout. While obstacles are pure

physical rigid bodies that can be pushed. They have gravity involved with much less weight

which ends in gliding behavior that continues to stay in the path of agents even after being

pushed once. By inducing such curriculum learning behavior, hider agents tend to grab the

concept of safely dragging the prop to the opening and closing it more quickly and

efficiently than directly starting the training at level four. One can reduce or increase the

levels just to get optimal results from the agents. This subtle increase in the complexity of

31

the environment rather than forcing the agent to adapt to the more complex one yields

beneficial results. We did two experiments by training the hider agents until 3.3M steps in

both traditional and curriculum learning. With comparing to traditional non-curriculum

learning experiments there was found no increase in reward cumulative rewards as shown

in the graph.

3.1 Curriculum Learning vs Traditional Learning

Figure 23 is representing cumulative reward comparison over 3.3M environmental steps between
curriculum vs traditional learning environmental setup. The solid magenta-colored line represents the
traditional approach where Hider agents were able to just run away from seekers satisfying the first strategy
and not yielding to the second. While the solid orange line represents curriculum learning where training
was divided in the forms of levels (Figure 19) which yields better continuous reward per frame as hiders
were able to hide for more time steps and get more reward every frame.

Reward, in the case of hiders, is given on the bases of how many frames the hiders can hide

from the field of vision sensor of seeker agents. More the frames they are hidden the more

they can get rewarded. With the curriculum, learning involved hiders were able to learn a

basic behavior and adopt a converging policy that results in a better hiding behavior.

Therefore the curriculum learning approach was adopted for further experimentation.

C
u
m

u
la

ti
v
e

R
ew

ar
d

Environmental Steps

Figure 23 Reward Distribution for Hider Agents comparing curriculum vs traditional
environmental setup.

32

3.2 Hiders

3.2.1 Cumulative Reward:

The solid orange line represents Hider’s cumulative reward over the environmental steps. Training is
initialized using Level One. Level Two is introduced at 5.7M environmental steps. Level Three at 12.8 steps
while Level Four with decreased reward per frame at 15.7M steps.

A spike at 160k environmental steps axis represents Hider Agents were able to learn to get

some reward by crudely running and escaping from the seekers. Until 2.3M steps, Hiders

were running and escaping from the seekers more efficiently and thus were getting more

rewards per episode. From 2.3M to 5.7M a sudden increase in reward was observed as

level one (Figure 19) of curriculum learning was finally working and yielding maximum

reward. At the 5.7M step, level two was introduced and agents experienced a sharp

decrease in rewards as the difficulty was increased. But as they have already a semi-trained

brain, so they continued to update the policy and adopt it. At the 12.8M step, the third level

was introduced which shows a steep downfall indicating complexity for the agent to learn.

And finally, at the 15.2M step level, four was introduced and the reward was also reduced

for an agent to learn from the very complex condition, but it still manages to maintain a

solid positive reward after 16.5M steps.

Environmental Steps

C
u

m
u

la
ti

ve
 R

e
w

ar
d

Figure 24 Hiders Cumulative Reward Smoothed 0.99

33

3.2.2 Episode Length:

The graph represents the gradual decrease in episode length as few decisions are required to complete an
episode. The solid orange line represents the episode length over the environmental steps.

Training starts with 768 decisions made per episode.

episode_length = max_episode_steps / decision_requests

768 = 3072 / 4

The training environment is designed in such a way that it will reset the episode as soon as

one of the agents is successful in making the next strategy. i.e., if “running/chasing” hider

performs “fort building”. , the environment will reset to promote the use of lesser episode

length. This behavior encourages the agents to find the optimal next policy and strategy

faster. Observing the graph we can see a slight increase in episode length at 5.7M steps

where level two of the environment is introduced. This means the agent requires more steps

to find a new policy to get more rewards. At the 15.8M step, another bump is observed

showing level three is deployed and it affected the current behavior such that it needs more

time to converge. After 18M steps, there seems a steady graph representing a steady and

constant episode length. This means agents need at least 21 steps to converge to the optimal

policy.

Required_episode_steps = episode_length / decision_requests

21 = 84 / 4

E
p

is
o
d

e
L

en
g
th

Environment Steps

Figure 25 Episode Length of Hiders Corresponds to decisions made per episode.

34

3.2.3 Curiosity Reward:

Figure 26 Curiosity reward for hiders based on curriculum learning.

Hider Agents is given a curiosity-based reward based on the exploration it does. The solid orange line
represents the curiosity reward given over environmental steps.

The Agent's aim in reinforcement learning is to develop a behavior that maximizes a reward.

A reward is often determined by the surroundings and relates to achieving some goal. These

are known as "extrinsic" rewards since they are defined outside of the learning process.

However, rewards can be specified outside of the environment to encourage the agent to

act in specific ways or to help in the learning of the genuine extrinsic reward. These are

known as "intrinsic" reward signals. The agent will learn to maximize the overall reward

by combining extrinsic and intrinsic reward signals. ML-Agents allow reward signals to be

specified in a modular manner. The extrinsic Reward Signal, which is by default activated,

symbolizes the rewards established in the surroundings. When extrinsic incentives are

scarce, the curiosity reward signal encourages your agent to investigate. As seen from the

graph, the curiosity reward is very high at the beginning of the training. This means the

agent is performing more random actions and being rewarded to explore the environment

more. But with time it decreases it showing it got the rewarding behavior and is now using

lesser random and curious actions. At 5.7 with the addition of level two of curriculum

learning, we observe a slight bump in the graph representing agent got curious about the

newly added walls and props.

C
u

ri
o

si
ty

 R
ew

ar
d

Environment Steps

35

3.3 Seekers

3.3.1 Group Cumulative Reward:

Training is initialized using Level Four. At 630k steps, seekers learned to rotate toward the hiders and keep
them in the field of vision. At 1.6M step seekers were successful in traversing obstacles, navigating through
walls, and moving toward hiders. At 5.3M step seekers were trained again just to check how they behave
when hiders are also trained for level four environmental setup, and it shows a steep descent in reward as
they were not unable to see hiders. The solid red line represents the group cumulative reward given over
environmental steps.

Seekers are trained in two phases, first one is from 0-5.3M steps. This phase includes the

“running & chasing” hiders as a competition so they will learn this strategy as well. While

phase two starts at 5.3M steps which includes training with “fort building” hiders that

yields a sharp descent in the graph. This indicates the complexity and difficulty the seekers

were facing in locating the hiders once they emerge to the second strategy. Seekers are

given a +0.001 reward for every frame they see hiders in their field of vision. And no

reward when they do not have them in sight. This is done because if we give a negative

reward for such a constant frame rate just because the seeker’s field of vision does not

contain hiders, we are damaging the path navigation behavior. Such that an agent might be

on the right path but is getting penalized just because it is not there yet. Seekers are tested

in a group of 2-4 multi-agent setup and solo as well. While training the 2-seeker agent with

the same brains are being trained. Dual input is used but the rewards are given on team

bases. If one agent is successful both agents will get rewarded and will share the updated

best policy while if one is getting panelized both will face this.

C
u

m
u

la
ti

ve
 R

e
w

ar
d

Environmental Steps

Figure 27 Seeker's Group Cumulative Reward Smoothed 0.95

36

3.3.2 Episode Length:

The graph represents the gradual decrease in episode length as few decisions are required to complete an
episode and a sudden increase demonstrating agents require more decisions when the opponent is far
more difficult. The solid red line represents the episode length over the environmental steps.

Seeker agents are programmed in such a way that if they have hider agents in sight they

get 0.001 rewards per frame but if they collide with them the episode ends. Thus, the more

the seekers can collide quickly the lesser the episode length gets. This is done to encourage

quick navigation and faster resetting of the training environment because if the seeker can

collide with the hider, the hiders are not protected well, and there is less benefit in training

again in an already won episode.

episode_length = (max_episode_steps - remaining_steps) / decision_requests

443 = 3072 - 1300 / 4

0-630k steps seekers took longer to make an optimal policy. Soon after 630k steps, seekers

took lesser decisions to get to the best possible state and achieve a better goal. At 5.35M

step seekers were trained again for phase two. In which hiders were successful in fort

building. We can observe a rapid growth in episode length which indicates that the current

policy was not enough to encounter much smarter competition and is taking much more

decisions than before.

Ep
is

o
d

e
Le

n
gt

h

Environmental Steps

Figure 28 Episode Length for Seeker agents Corresponds to decisions made per episode.

37

3.3.3 Self-Play ELO

Figure 29 ELO for seeker agents with save steps equal to 61440, team change equal to 184320

Self-play training adds extra complicating elements to the standard problems associated

with reinforcement learning. In general, the tradeoff is between the final policy's skill level

and generality and the stability of learning. Training against a group of slowly changing or

unchanging enemies with low diversity yields a more consistent learning process than

training against a set of rapidly changing adversaries with high diversity. This tutorial

addresses the disclosed self-play hyperparameters and intuitions for tweaking them in this

context.

The graph ascended gradually until the hiders learned to hide successfully. At this point,

the learned policy to follow and hit the hiders was not so fruitful as hiders are in a confined

safe room and cannot be seen at all, so it descends.

38

3.4 Key Difference

As Larger batch sizes require more GPU memory and processing power (Rotenberg, 2020), with

our approach and methodology, we proved that agents emerged strategies much faster and

efficiently with much less processing power. While batch size is equal to number of steps in an

episode, buffer size was selected using the following formulae:

𝐵 = 𝑏 ∗ 𝐸𝑛 ∗ 𝑃𝑛

Where:

𝐵 = Buffer Size

𝑏 = Batch Size

𝐸𝑛 = Environment Count

𝑃𝑛 = Instances Count

Figure 30 Batch & Buffer size requirements for the experiment’s vs Open AI's requirements

Our method utilizes significantly fewer system resources compared to Open AI's experiment for

deriving strategies as the buffer size required by our approach is approximately one-fourth of

what was needed in the Open AI experiment. Similarly, the batch size required by our model is

approximately one-twentieth of what was required by Open AI. This significant reduction in

resource requirements demonstrates the efficiency and effectiveness of our approach.

73728 73728

3072

320000 320000

64000

Buffer Size (Seekers) Buffer Size (Hiders) Batch Size

Replicating Demand of Batch & Buffer size of Our
Experiment vs Open AI

Our Approach Open AI

39

Figure 31 Strategies emerged of our method vs Open AI's method.

In addition to requiring fewer resources, our approach also deduces strategies in a much earlier

environmental step count. For instance, the Running and Chasing strategy was identified

approximately 0.4 million steps earlier in our approach than in the Open AI experiment.

Similarly, our model was able to discover the strategy for creating shelter 22.7 million steps

earlier than in the Open AI experiment. This early identification of strategies could prove to be a

significant advantage in certain contexts.

Overall, our approach offers a more resource-efficient and time-efficient method for deducing

strategies than Open AI's experiment. By requiring significantly fewer resources and identifying

strategies earlier in the environmental step count, our model could prove to be an effective tool

in various domains. The results of our experiment demonstrate the potential of our approach to

advance the field of strategy identification and inform decision-making in a range of practical

applications.

1600000 23000002000000

25000000

Seeker’s chasing strategy Hider’s shelter strategy

Strategies Emerged of Our Experiment vs Open AI

Our Approach Open AI

40

3.5 Discussion and Related Work

D. Yang et.al proposes a method for adaptive inner-reward shaping in sparse reward games

where the agent receives only occasional feedback. [13] The authors argue that inner-

reward shaping can help improve the agent's learning efficiency and speed. They propose

an algorithm called AIRS (Adaptive Inner Reward Shaping) that dynamically adjusts the

shaping weight during training based on the agent's learning progress. The authors evaluate

the algorithm on two Atari games and show that it outperforms existing methods in terms

of sample efficiency and final performance. Instead of adaptive rewards we used

curriculum learning in which the environment’s difficulty level is adaptive in the sense as

it increased once met with an assigned reward threshold.

M. Lukas et.al proposed previous cheating in multiplayer video games, and the need for

effective anti-cheat systems. The problem statement is that existing anti-cheat systems are

often reactive and not effective against new forms of cheating. The method used is

reinforcement learning to develop an adaptive and proactive anti-cheat system based on

agents that can learn to detect and respond to cheating behaviors in real-time. [14] An

outcome is a promising approach to developing effective anti-cheat systems that can adapt

and evolve to new forms of cheating. We used multi-agent competition between two teams

of agents which enables agents to learn from an experienced brain.

X. Wenwen et.al discusses the application of end-to-end behavior decision-making based

on deep reinforcement learning (DRL) in autonomous driving. The problem statement is

to develop an agent that can learn to make decisions based on visual inputs from a car's

camera. [15] The method used in the paper is a DRL approach that maps inputs to actions

through a neural network. The outcome of the paper is the successful training of an agent

that can make safe and efficient driving decisions in a simulated environment. We

introduced frontal and spatial sensors for the agent’s real-time locational and shape

structure observation.

R. Dawkins et.al explores the concept of arms races, both between and within species, and

how they evolve through natural selection. The problem statement is to understand the

dynamics of arms races and how they lead to the evolution of certain traits. The method

used is a combination of theoretical models and empirical data from various species. The

41

outcome of the paper is a deeper understanding of the mechanisms behind arms races and

their evolutionary implications. [16] We introduced competition between said two races

i.e., hiders and seekers.

B.W.Wirtz et.al examines the potential of Artificial Intelligence (AI) to transform the

public sector and improve efficiency and effectiveness in areas such as healthcare,

education, and governance. [17] The problem statement highlights the ethical and legal

considerations, data quality, and workforce implications that arise with AI adoption in the

public sector. The paper reviews existing literature and case studies of AI applications in

the public sector and provide recommendations for policymakers and practitioners. The

result emphasizes the potential benefits of AI in the public sector but also highlights the

need for careful planning and management to address the challenges and risks associated

with AI adoption. Introducing auto-pilot in drones enables better use of resources and saves

the economy by reducing human controllers.

M. Asplund et.al proposes an Artificial Intelligence (AI) based marine autopilot trained

using reinforcement learning in the Unity simulation environment. [18] The background

highlights the potential benefits of AI-based autopilots in marine navigation, including

improved safety and efficiency. The problem statement discusses the challenges of

designing an AI-based autopilot and the need for training in a simulation environment. The

paper uses a combination of Deep Q-Network (DQN) and Proximal Policy Optimization

(PPO) algorithms to train the autopilot, and the result shows promising performance in

avoiding obstacles and navigating through complex environments. The paper suggests that

AI-based autopilots have the potential to revolutionize marine navigation and reduce the

risk of accidents. We introduced a flying-like mechanism that includes the x,y, and z axis

for movement.

L. Pinto proposes an Asymmetric Actor Critic (AAC) algorithm for image-based robot

learning. [19] The background highlights the potential of image-based robot learning in

complex environments where traditional sensor-based methods may not be effective. The

problem statement discusses the challenges of designing an effective image-based learning

algorithm and the need for efficient feature extraction. The paper uses a combination of

convolutional neural networks (CNN) and AAC to learn robotic tasks from raw images,

42

and the result shows promising performance in grasping and manipulation tasks,

outperforming existing methods. The paper suggests that AAC has the potential to enable

more efficient and effective image-based robot learning in a variety of applications. We

not only added a camera for image observation but also added a spatial sensor and 2d ray

casts for observations.

P. Reizinger proposes an attention-based curiosity-driven exploration method to tackle the

exploration problem in deep reinforcement learning. [20] Traditional exploration strategies

are not effective in complex environments with high-dimensional state and action spaces.

The proposed approach uses curiosity-driven exploration, guided by an attention

mechanism, to explore uncertain or unexpected areas of the state space. Experimental

results demonstrate that the proposed approach outperforms traditional exploration

strategies and achieves state-of-the-art performance on several benchmark environments,

including Atari games and continuous control tasks. The attention mechanism enables the

agent to focus on relevant information and learn faster with fewer samples. We used

curiosity along with curriculum learning that enabled agents to earn rewards more quickly.

J. Z. Leibo proposes an auto-curricular framework for multi-agent intelligence research

that enables agents to learn dynamically from each other using methods such as self-play

and population-based training. [21] The framework is evaluated on several benchmark

environments, and results show that it can lead to the emergence of innovation and the

development of novel solutions to complex problems in multi-agent intelligence. The

proposed approach offers a promising direction for future research in this field. We enabled

agents to use this along with curiosity and curriculum learning.

A. Devo et.al proposed Autonomous single-image drone exploration with deep

reinforcement learning and mixed reality" using the Proximal Policy Optimization (PPO)

algorithm, a popular deep reinforcement learning algorithm. The authors also use a variant

of PPO called Curiosity-Driven Exploration (CDE) to train the drone agent to explore its

environment. [9] CDE incorporates an intrinsic reward signal based on prediction error to

encourage the agent to explore areas it has not visited before. The algorithm is trained on

a large dataset of simulated and real-world drone images and is used to guide the drone in

43

real-time to explore unknown environments. We introduced a competition for agents and

a curiosity element thus forcing agents to explore more states to gain reward.

C. Ofria et al present Avida, a software platform for conducting computational experiments

in evolutionary biology. Avida uses digital organisms, which are self-replicating computer

programs, to simulate the process of biological evolution [22]. The platform provides a

flexible and customizable environment for studying a wide range of evolutionary processes

and has been used extensively in evolutionary biology research. The paper demonstrates

the utility of Avida by presenting several examples of research studies conducted using the

platform. We perform our experimentations in unity3d. Also used parallelism for quick

learning of the brain.

A. E. Youssef, et al The paper "Building your kingdom: Imitation Learning for a Custom

Gameplay Using Unity ML-agents" proposes an imitation learning method based on

convolutional neural networks (CNNs) for training non-player characters (NPCs) in a game

environment. The method involves recording the gameplay data of a human player and

using it to train a CNN using supervised learning. [23] The trained CNN is then used to

control the behavior of NPCs in the game using Unity ML agents. The results show that

the method can effectively train NPCs to mimic the behavior of human players, leading to

more realistic and engaging gameplay experiences. We used PPO and MA-Poca for

training the hiders and seekers respectively.

J. Paredis et al present the concept of coevolutionary computation, which involves evolving

two or more populations that interact with each other. The problem statement involves the

limitations of traditional genetic algorithms in finding optimal solutions for complex

problems. The method proposed is to use coevolutionary computation to evolve the

populations simultaneously, with one population representing the problem solutions and

the other representing the problem environment. The outcome is a more efficient and

effective method of solving complex problems, demonstrated through simulations and

experiments. [24] The algorithms used include Genetic Algorithms, Coevolutionary

Genetic Algorithms, and Fitness Sharing. We made competition between two different

agents that need to coevolve with each other to be able to successfully compete and gain

their desired rewards.

44

R. Miikkulainen et.al proposes a coevolutionary approach to generating complex and

adaptive solutions in competitive environments. The problem statement is that traditional

evolutionary algorithms may struggle to produce complex solutions in such environments.

The method involves multiple populations evolving in a competitive setting, with

complexity being the term used to describe the process of generating increasingly complex

solutions through the competitive interactions of the populations. [25] Two algorithms,

CCEA and HyperNEAT, are introduced and evaluated in the paper. The outcome is a

demonstration of the effectiveness of competitive coevolution and complexity in

generating solutions to complex problems, with both algorithms showing significant

improvements over traditional evolutionary algorithms. We introduced four levels of

complication for the environment. The harder one replaces itself with the difficult one once

the reward threshold is met.

L. Panait et.al proposes that review of the current state of research on cooperative multi-

agent learning. The background is that multi-agent systems are becoming increasingly

important in many fields, and there is a need for effective learning methods for these

systems. The problem statement is that cooperative multi-agent learning is challenging

because the agents must learn to coordinate their actions and communicate effectively. [26]

The method involves reviewing and categorizing the existing literature on cooperative

multi-agent learning. The term "learning architectures" is introduced to describe the

different approaches used in the literature. The outcome is a comprehensive review of the

current state of research on cooperative multi-agent learning, including the different

learning architectures and their relative strengths and weaknesses. We added competition

among two different agents. They did not have similar rewarding behaviors. Instead, they

have separate ones.

G. Ostrovski et.al proposes a new exploration method for reinforcement learning. The

background is that exploration is critical for effective reinforcement learning, but existing

methods can be inefficient in large state spaces. The problem statement is that uncertainty-

based exploration methods can struggle in structured state spaces. The method uses a neural

density model to estimate state probability density and compute a count-based exploration

bonus. [27] The Q-learning algorithm is used in the paper, and the proposed method is

45

named "Count-based Exploration with Neural Density Models (C51)." The outcome is a

demonstration that the proposed method can outperform existing exploration strategies in

complex environments with large state spaces, with significantly fewer environment

interactions. We used PPO vs MA-POCA on two different agents.

J. Foerster et.al proposes a new multi-agent reinforcement learning algorithm. The

background is that multi-agent systems are becoming increasingly important, but existing

algorithms can struggle with non-stationarity and credit assignment. [28] The problem

statement is that current methods for multi-agent policy gradients can suffer from high

variance and poor convergence. The method involves using counterfactual reasoning to

estimate the value of actions taken by other agents, improving credit assignment. The

proposed algorithm is named "Counterfactual Multi-Agent Policy Gradient (COMA)." The

outcome is a demonstration that the proposed algorithm can outperform existing methods

in several multi-agent environments. We used PPO and MA-POCA.

G. R. Hunt et.al investigates the tool-making ability of New Caledonian crows. The

background is that tool use is a rare and impressive ability, and crows have been shown to

use tools in the wild. The problem statement is to understand the cognitive processes and

mechanisms behind this behavior. The method involves observing and recording the crows'

tool-making behavior and analyzing the resulting data. [29] The outcome is a

demonstration that New Caledonian crows can create complex tools by modifying branches

and twigs, indicating that they possess advanced cognitive abilities. We used props for the

agents to use to modify the environment for their reward gains.

M. S. Abdul Hameed et.al proposes a curiosity-driven approach to reinforcement learning

for robots in a manufacturing setting. The background is that traditional reinforcement

learning can be slow and inefficient in industrial settings, and there is a need for more

effective methods. The problem statement is to find a way to improve exploration in these

settings, where trial and error can be costly. The method involves using a curiosity-driven

approach that rewards the robot for exploring new and interesting states. [30] The outcome

is a demonstration that the proposed method can improve the learning speed and efficiency

of a robot in a manufacturing cell, leading to better performance and reduced production

time. In addition to curiosity, we added a continuous but very small negative reward for

46

the agents that are given to them until they somehow learn to finish the episode. And by

finishing the episode we mean either seeker finds and tags the hiders or hiders successfully

arrange the props in such a manner that they are well hidden for the entire run.

D. Pathak et al propose a curiosity-driven approach to reinforcement learning. The

background is that traditional exploration methods can be inefficient and may not scale to

complex environments. The problem statement is to find a way to improve exploration in

reinforcement learning algorithms. The method involves using a self-supervised prediction

task to train the agent to predict its future states and using the prediction error as a curiosity-

driven exploration bonus. The proposed algorithm is called the "Intrinsic Curiosity Module

(ICM)." The outcome is a demonstration that the proposed method can outperform existing

exploration strategies in several environments, leading to faster learning and better

performance. [31] We provided agents with curiosity. curiosity encourages an agent to seek

out new experiences and learn from them, rather than simply repeating actions that have

been rewarded in the past. This can be especially useful in complex, dynamic environments

where the optimal action may be uncertain or constantly changing.

C. Rosser et al propose a curiosity-driven approach to prevent undesired actions in

autonomous agents. The background is that traditional reinforcement learning algorithms

can lead to agents taking unintended actions in certain situations. The problem statement

is to find a way to prevent agents from taking these undesired actions. The method involves

using a curiosity-driven approach that rewards the agent for exploring states that are

unlikely to lead to undesired actions. [32] The proposed algorithm is called "Curiosity-

Driven Undesirable Action Avoidance (CD-UAA)." The outcome is a demonstration that

the proposed method can effectively prevent agents from taking undesired actions in

several environments, leading to improved safety and performance. We used negative

rewards or penalties for certain actions like hitting the boundary. This enables the agent to

learn which actions are not to be taken under consideration.

A. Price et.al proposes a curriculum learning approach to improve the training of

reinforcement learning agents using the Unity ML-Agents platform. The background is

that traditional reinforcement learning methods can be inefficient and slow to learn in

complex environments. The problem statement is to find a way to improve the learning

47

speed and efficiency of agents. The method involves gradually increasing the difficulty of

the environment and the task, using a curriculum that is designed to guide the agent toward

the final goal. [33] The outcome is a demonstration that the proposed curriculum learning

approach can significantly improve the learning speed and performance of agents in several

Unity-based environments, compared to standard training methods. We used curriculum

learning which involves gradually increasing the complexity of the task or environment

that an agent is asked to learn. This is done by breaking down the overall task into smaller,

easier subtasks and gradually increasing the difficulty level as the agent improves.

C. de Souza et al pursuit using deep reinforcement learning" is a paper that proposes a

decentralized deep reinforcement learning approach to enable a team of agents to

collaboratively pursue a target in a dynamic environment. The background is that

traditional centralized approaches to multi-agent reinforcement learning can become

computationally infeasible as the number of agents increases. The problem statement is to

develop a decentralized approach that can scale to many agents. The method involves using

a deep reinforcement learning approach, where each agent has its local policy that is trained

using experience gained from its interactions with the environment and other agents. The

proposed algorithm is called "Decentralized Deep Q-Network (DDQN)." [11] The outcome

is a demonstration that the proposed approach can effectively enable a team of agents to

pursue a target in a dynamic environment, leading to improved performance and scalability.

We used MA-POCA for training agents that are up to mark for multi-agents as if they get

spawned or deleted during training, MA-POCA supports this behavior and distributes the

rewards accordingly.

G. Zuin et al propose techniques for explainable resource scales in collectible card games"

this is a paper that explores the use of deep learning techniques to improve the balancing

of resources in collectible card games. [34] The background is that balancing resources in

these games is critical to ensure fairness and enjoyable gameplay, but it is challenging due

to the large number of factors that need to be considered. The problem statement is to

develop an approach that can effectively balance resources in a way that is explainable to

players. The method involves using a deep learning model to learn the relationship between

game features and resource scales and then using this model to provide explanations for

48

the chosen resource scales. The proposed algorithm is called "Explainable Resource

Scaling using Deep Learning (XRL)." The outcome is a demonstration that the proposed

approach can effectively balance resources in a way that is explainable to players, leading

to an improved gameplay experience. We used curriculum learning introducing one prop

for the door at a time. This enables agents to identify the concept that agents have to use

one prop for one door and have to take the other prop to another door.

T. T. Nguyen et.al provides an overview of the challenges and solutions in applying deep

reinforcement learning (DRL) to multiagent systems. The background is that multiagent

systems are prevalent in many real-world applications, but traditional methods for

coordinating agents can be limited. The problem statement is to explore how DRL can be

used to improve the coordination of agents in multiagent systems. [35] The method

involves reviewing the challenges and solutions in applying DRL to multiagent systems

and examining various applications of DRL in this context. The outcome is a

comprehensive review of the challenges, solutions, and applications of DRL in multiagent

systems, highlighting the potential of DRL to address coordination problems in complex

systems.

E. Alonso et al present a method for training agents to navigate complex environments in

AAA video games using deep reinforcement learning (DRL). The background is that

navigation in complex video game environments can be challenging for traditional AI

techniques. The problem statement is to explore the use of DRL for navigation in video

games. The method involves using a DRL algorithm called Deep Q-Network (DQN) to

learn navigation policies from raw pixel inputs. [4]The outcome is a successful application

of DRL to navigation in complex video game environments, demonstrating the potential

of DRL for improving game AI. We used PPO and MA-POCA for agents to learn

navigation using rewarding behaviors.

P. Xu et.al presents a method to improve exploration in deep reinforcement learning

algorithms for video games by incorporating a part-aware exploration bonus to encourage

the agent to interact with all parts of the game environment and evaluates the effectiveness

of this method on several Atari games using the DQN algorithm, showing significant

49

performance improvements compared to baseline methods. We used the curiosity element

for agents to explore and get the reward.

N. D. Dung et.al presents an algorithm for drone-following models in smart cities to

improve traffic flow and reduce congestion. The problem statement is how to effectively

and safely use drones in urban environments. The method involves developing a drone-

following algorithm that takes into account traffic conditions, vehicle speeds, and the

presence of other drones. [36] The algorithm used in the paper is a fuzzy control system.

The outcome of the paper is a proposed model for a drone-following algorithm that can be

applied in real-world scenarios. We used fontal special sensors and ray casts for agents to

explore the environment.

I. Mordatch et.al investigates how compositional language emerges in a population of

agents, which can interact with each other and their environment through a shared

communication protocol. The problem statement is to understand how a group of agents,

each with their own goals and limited abilities, can develop a common language to achieve

their objectives in a collaborative setting. The method used in the paper involves training

agents with a variant of the Reinforcement Learning algorithm to learn to communicate

and collaborate in a simulated environment. [37] The outcome of the paper demonstrates

that grounded compositional language can emerge spontaneously in a population of agents

without explicit language supervision, paving the way for further research in this area. We

used MA-POCA for multi-agents so they can train parallel because MA-POCA supports

when an agent from a group of agents de-spawns or gets destroyed.

N. Heess et.al presents a study of artificial intelligence agents learning to walk in various

terrains using reinforcement learning. The background discusses the importance of

locomotion in robotics and the potential for AI to solve this problem. The problem

statement is the difficulty of training agents to walk in complex environments without

hand-engineering solutions. The method used is reinforcement learning, where agents

receive rewards for successful locomotion and are penalized for falling [38]. The algorithm

used is Deep Deterministic Policy Gradient (DDPG). The outcome of the paper is the

successful training of agents to walk in various terrains, demonstrating the potential for AI

50

to solve complex locomotion problems. Along with giving positive rewards we also

introduced curiosity and curriculum learning that helped agents in successful locomotion.

T. Bansal et.al proposes a method for generating complex behaviors in artificial

intelligence agents through competition. The background discusses the importance of

emergent complexity in AI and the potential for multi-agent systems to create it. The

problem statement is the difficulty of designing agents to exhibit complex behaviors

without hand-engineering solutions. The method used is a competition-based approach

where agents compete to complete a task. [39] The algorithm used is Multi-Agent Deep

Deterministic Policy Gradient (MADDPG). The outcome of the paper is the successful

generation of complex behaviors in multi-agent systems, demonstrating the potential for

competition-based approaches to generate emergent complexity in AI. we use two different

types of agents that were in a competition based on the hide-and-seek principle.

S. Liu et.al presents a method for generating coordinated behavior in artificial intelligence

agents through competition. The background discusses the importance of coordination in

multi-agent systems and the potential for competition to induce it. The problem statement

is the difficulty of designing agents to exhibit coordinated behavior without hand-

engineering solutions. The method used is a competition-based approach where agents

compete with each other to complete a task that requires coordination. [40] The algorithm

used is Multi-Agent Deep Q-Network (MADQN). The outcome of the paper is the

successful generation of coordinated behavior in multi-agent systems, demonstrating the

potential for competition-based approaches to generate emergent coordination in AI. We

introduce two different agents that competed one agent was a hider and the other was seeker

secret agents were using the proximal policy optimization algorithm while the hiders were

using MAPOCA.

M. Alwateer et.al presents a method for enabling drone services through crowdsourcing

and scripting. The background discusses the potential for drones to provide various services

and the challenges of designing systems to support these services. The problem statement

is the difficulty of creating a platform that allows users to easily request drone services and

script drone behavior. The method used is a crowdsourcing and scripting approach where

users can request services and specify drone behavior through a web-based platform. [41]

51

The outcome of the paper is the successful implementation of a platform that enables drone

services, demonstrating the potential for crowdsourcing and scripting approaches to enable

the use of drones in various applications. We use frontal and spatial sensors for the drones

which enabled the drones to identify and observe the environment around them. We also

introduced a level of difficulty by adding windows and doors. The agent has to pick up the

probes and take them to the windows which were higher than the doors to create a safe

surrounding.

D. Hong et.al presents a method for energy-efficient path planning of multiple drones using

reinforcement learning. The background discusses the importance of energy efficiency in

drone applications and the potential for AI to optimize drone behavior. The problem

statement is the difficulty of designing systems to optimize energy consumption for

multiple drones flying in a dynamic environment. The method used is a reinforcement

learning approach where agents learn to navigate through an environment while

minimizing energy consumption. [12] The algorithm used is Deep Deterministic Policy

Gradient (DDPG). The outcome of the paper is the successful implementation of an energy-

efficient path planning system for multiple drones, demonstrating the potential for

reinforcement learning to optimize drone behavior. If you talk about optimization our

agents are designed for the shortest earliest path as we were giving negative rewards per

frame if the agent is not able to finish the episode earliest.

J. Weng et.al proposes a method for accelerating the training of reinforcement learning

agents through parallelization. The background discusses the importance of parallelization

in reinforcement learning and the potential for faster training times. The problem statement

is the difficulty of training agents with large amounts of data without parallelization. The

method used is a parallelization approach where multiple environments are executed

simultaneously on a single machine. [42] The algorithm used does not apply to this paper.

The outcome of the paper is the successful implementation of a parallelization engine

called EnvPool, demonstrating the potential for parallelization to accelerate the training of

reinforcement learning agents. Unity’s ML agent provides a methodology known as

parallelism in which we introduce 12 similar environments prefabs each with a set of

52

similar numbered agents. during the training phase each prefab was initialized and the

agents inside them get to train differently.

T. S. Ray et.al presents a method for studying evolution and ecology in digital organisms

through a simulation platform called Avida. The background discusses the importance of

understanding evolution and ecology in biological systems and the potential for digital

simulations to provide insights into these processes. The problem statement is the difficulty

of studying evolution and ecology in biological systems due to the complexity of

interactions and the limitations of empirical data. The method used is a simulation-based

approach where digital organisms evolve and interact with each other in a controlled

environment. [43] The outcome of the paper is the successful implementation of a

simulation platform that allows researchers to study evolution and ecology in digital

organisms, demonstrating the potential for digital simulations to provide insights into

complex biological processes. we introduce the evolution of two different drones one was

the seeker and one was the hider they need to evolve to compete with each other and get

the reward. we can observe them evolving according to the complexity of the environment

and the complexity of other agents' brains.

S. Leonardos et.al proposes a method for balancing exploration and exploitation in multi-

agent learning using catastrophe theory and game theory. The background discusses the

importance of balancing exploration and exploitation in multi-agent learning and the

potential for AI to optimize learning strategies. The problem statement is the difficulty of

designing systems that balance exploration and exploitation in multi-agent learning. The

method used is a hybrid approach that combines catastrophe theory and game theory to

optimize learning strategies [44]. The algorithm used is the Replicator Dynamics algorithm.

The outcome of the paper is the successful implementation of a learning system that

balances exploration and exploitation in multi-agent learning, demonstrating the potential

for hybrid approaches to optimize learning strategies in complex environments. We

introduced curiosity for the exploration of the multi-agents but we also added negative

divorce for the agents does not deviate from the main rewarding actions.

53

D. A. Suyikno et.al proposes a method for designing feasible NPC hiding behavior in a

hide-and-seek 3D game simulation using goal-oriented action planning. The background

discusses the importance of designing realistic NPC behavior in-game simulations and the

potential for AI to improve game design. The problem statement is the difficulty of

designing feasible NPC hiding behavior in a complex game simulation. The method used

is a goal-oriented action-planning approach that generates plans for NPC behavior based

on predefined goals. [45] The algorithm used is the Fast Downward planner. The outcome

of the paper is the successful implementation of a system that generates feasible NPC

hiding behavior in a hide-and-seek 3D game simulation, demonstrating the potential for

goal-oriented action planning to improve NPC behavior in game simulations. In this paper,

the target was stationary while our experimentation contained both of the agents having a

separate brain and separate training. Our experiment contains two different agents that were

competing with each other and with time they were getting more experience.

R. Zhang et.al proposes a method for online motion planning in a multi-UAV pursuit-

evasion game using deep reinforcement learning. The background discusses the

importance of efficient motion planning in UAV applications and the potential for AI to

improve performance. The problem statement is the difficulty of designing efficient motion

planning strategies for multiple UAVs in complex environments. The method used is a

deep reinforcement learning approach that learns to generate motion plans in real-time. The

algorithm used is the deep Q-network algorithm. The outcome of the paper is the successful

implementation of a system that generates efficient motion plans for multiple UAVs in a

pursuit-evasion game, demonstrating the potential for deep reinforcement learning to

improve motion planning strategies in complex environments [8]. We used PPO and MA-

POCA to train the agents and we also introduced a continuous negative reward which was

very small and was given at each frame until the agent learns to end the episode quickly by

doing this the agent was able to end the episode as soon as possible to reduce the quantities

negative reward.

M. Jaderberg et.al proposes a method for achieving human-level performance in 3D

multiplayer games using population-based reinforcement learning. The background

54

discusses the potential for AI to improve game performance and the challenges of

achieving human-level performance. The problem statement is the difficulty of designing

game AI that can perform at a human level in complex, dynamic environments. The method

used is a population-based reinforcement learning approach that trains multiple agents

simultaneously using an evolutionary algorithm. The algorithm used is the Covariance

Matrix Adaptation Evolution Strategy (CMA-ES). [46] The outcome of the paper is the

successful demonstration of a system that achieves human-level performance in a 3D

multiplayer game, demonstrating the potential for population-based reinforcement learning

to improve game AI performance in complex environments. With the help of curriculum

learning, we made our agents this much smarter that they were able to identify and

overcome the challenges of the gradually difficult environment end with the help of

competition between the two hiders and seekers.

A. T. Bourdillon et.al proposes a method for integrating reinforcement learning in a virtual

robotic surgical simulation. The background discusses the potential for using

reinforcement learning to improve surgical training and the challenges of designing

effective simulation environments. The problem statement is the difficulty of designing

realistic surgical simulations that can effectively train surgeons. The method used is a

reinforcement learning approach that trains a virtual robot to perform surgical tasks. The

algorithm used is the Q-learning algorithm [47]. The outcome of the paper is the successful

demonstration of a system that can effectively train a virtual robot to perform surgical tasks,

demonstrating the potential for reinforcement learning to improve surgical training in a

simulated environment. we used a unities simulation environment in which we introduce

two different drones that for training with two different algorithms PPO and MA-POCA.

S. Sukhbaatar et.al proposes a method for automatic curriculum generation in

reinforcement learning through asymmetric self-play. The background discusses the

challenges of designing effective curricula in reinforcement learning and the potential

benefits of using an intrinsic motivation to guide learning. The problem statement is the

difficulty of designing effective curricula and the need for a method that can automatically

generate curricula tailored to individual agents. The method used is an asymmetric self-

play approach that encourages agents to explore novel strategies and tasks. The algorithm

55

used is a combination of Proximal Policy Optimization (PPO) and Curiosity-Driven

Exploration (CDE) [48]. The outcome of the paper is the successful demonstration of a

system that can automatically generate effective curricula for individual agents,

demonstrating the potential for intrinsic motivation and asymmetric self-play to improve

reinforcement learning. We used a combination of proximal policy optimization and MA-

POCA to create effective curricula using reinforcement learning intrinsic motivation.

S. Forestier et.al proposes a method for intrinsic motivation and automatic curriculum

learning for reinforcement learning agents. The problem statement is to enable agents to

autonomously explore their environments and learn new skills without explicit external

rewards or human intervention. The method involves creating an automatic curriculum of

increasingly challenging goals for the agent to pursue based on its current skill level. The

algorithm used is called Intrinsically Motivated Goal Exploration Processes (IMGEP) [49].

The outcome is that the proposed method improves exploration and learning efficiency,

leading to better performance on a variety of tasks compared to existing methods. we edit

curiosity elements in our agents that introduced an exploration bonus and enable the agent

to explore more and learn more feasible and suitable actions.

S. Singh talks about intrinsically motivated reinforcement learning. The background of this

paper is reinforcement learning, where an agent learns to take actions in an environment to

maximize a reward signal. The problem statement is that most RL algorithms require an

explicit reward function, which can be difficult or expensive to define in some domains.

The method used is intrinsically motivated RL, which generates its reward signal based on

the agent's internal states and goals [50]. The name of the algorithm used is Intrinsic

Motivation and Procedural Generation (IMAP). The outcome of this paper is that IMAP

can achieve better performance and sample efficiency compared to traditional RL methods

in some domains. We added the curiosity element that introduced the intrinsically

motivated agents Heather was first given a bonus upon exploring the environment and

getting such actions that resulted in rewarding them even more.

A. Tucker wrote on inverse reinforcement learning for video games. The background of

this paper is the use of Inverse Reinforcement Learning (IRL) in video games, which aims

to infer the reward function from demonstrations of expert gameplay. The problem

56

statement is how to apply IRL to learn the reward function in video games where the reward

signal is not explicitly defined. The method used is an IRL algorithm that infers the reward

function based on observations of the expert's actions. The name of the algorithm used is

Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL) [5]. The outcome of

this paper is that the MaxEnt IRL algorithm is effective in learning the reward function in

video games and can be used to train agents to perform well in those games.

Y. Burda et.al worked on a Large-scale study of curiosity-driven learning. In his paper, the

background of this paper is the use of curiosity-driven learning as a method for artificial

agents to acquire skills and knowledge. The problem statement is that there is a need for

an effective and scalable approach to curiosity-driven learning. The method used in this

paper involves training a large number of agents in a variety of environments and analyzing

the resulting data. The algorithm used is a form of intrinsic motivation called the "intrinsic

curiosity module" (ICM), which encourages agents to explore their environment and learn

new skills. The outcome of the study shows that the use of curiosity-driven learning with

ICM can lead to significant improvements in agent performance and skill acquisition,

especially in complex and dynamic environments [51]. With the decision to add curiosity-

based agents, we also introduce competition among two different types of agents hiders

and seekers.

The paper "Layer Normalization" by Ba, Kiros, and Hinton proposes a normalization

method for deep neural networks that helps to overcome the degradation problem of deep

architectures. The problem statement is that the performance of deep neural networks tends

to saturate or even degrade as the network depth increases. The proposed method, named

"Layer Normalization," normalizes the inputs to each layer based on the statistics of their

activations [52]. This is achieved by computing the mean and standard deviation of the

activations across the feature dimensions and normalizing them. The outcome of the paper

is a method that improves the training speed and performance of deep neural networks on

various tasks such as image classification and language modeling. In the scenario of hard-

coded observations, we normalize these values to get the neural network to train much

faster as compared to training on larger numerical values.

57

A. Rajeswaran et.al works on Learning complex dexterous manipulation with deep

reinforcement learning and demonstrations. The background of the paper is the

development of robotic manipulation skills using deep reinforcement learning and

demonstrations. The problem statement is to overcome the challenge of high-dimensional

state and action spaces in robotic manipulation tasks. The method used is combining

reinforcement learning with demonstrations from human experts. The algorithm used is

Deep Deterministic Policy Gradient (DDPG) [53]. The outcome of the paper is that the

proposed method can learn complex manipulation tasks with high-dimensional action

spaces and improve the sample efficiency of reinforcement learning.

OpenAi et.al proposed work on learning Dexterous In-Hand Manipulation. The

background of the paper is the challenge of in-hand manipulation for robotic grasping and

manipulation tasks. The problem statement is to learn a policy for dexterous in-hand

manipulation from scratch without human demonstrations. The method used is

reinforcement learning, specifically the soft actor-critic algorithm, which is a deep

reinforcement learning algorithm that allows for continuous control [54]. The outcome of

the paper is a trained policy that can perform complex in-hand manipulation tasks, such as

rotating an object in the hand or flipping it over, without prior demonstrations or guidance.

We used two competing agents one in one the higher second one is the seeker, and also to

introduce competition among them. Seekers were using PPO while hiders were using MA-

POCA.

S. Sukhbaatar et.al proposes a method for learning communication protocols between

multiple agents using backpropagation. The problem statement is to enable multiple agents

to learn to communicate with each other in a decentralized way without explicit

coordination. The method involves using an autoencoder to learn a shared communication

space between agents and using backpropagation to train the agents to map their

observations to this shared space [55]. The algorithm used is called Differentiable Inter-

Agent Learning (DIAL), which is an extension of the REINFORCE algorithm. The

outcome is that DIAL enables agents to learn communication protocols in a decentralized

way and outperforms other communication methods in various multi-agent environments.

This methodology is a lot similar to imitation learning in which the hiders and seekers can

58

learn from expert human beings' demonstrations but that disables the ideology behind

emergent behavior so we'd rather use curriculum learning to train agents gradually.

J. N. Foerster et.al proposed work on Learning to communicate with deep multi-agent

reinforcement learning. The background of this paper is that communication is a

fundamental aspect of human cooperation and a key component of successful multi-agent

systems. The problem statement is to design agents that can learn to communicate with

each other to achieve a common goal. The method used in this paper is deep multi-agent

reinforcement learning, which employs a centralized critic and decentralized actors. The

algorithm used is called MADDPG (Multi-Agent Deep Deterministic Policy Gradient) [49].

The outcome of this paper is that the proposed method achieved successful communication

between agents in a cooperative navigation task and outperformed other baseline methods.

To achieve cooperation between the agents we introduce multiple agents in a single team

they learned to coordinate among themselves to achieve a greater goal

N. Haber et.al proposes a framework for self-aware agents that can play a variety of games

without explicit rewards. The problem statement is to enable agents to develop their own

goals, rather than relying on predefined objectives, by using curiosity-based intrinsic

motivation. The method used is a combination of reinforcement learning and meta-learning.

The proposed algorithm is called "Intrinsically Motivated Goal Exploration Processes with

automatic curriculum learning" (IMGEP-AC), which involves generating goals using a

self-organizing map and learning an exploration policy with intrinsic motivation [56]. The

outcome is that the proposed framework can learn to play several games, including some

that require long-term planning and coordination between agents, without the need for

external rewards or supervision. This experimentation is done without the mentioning of

specific goals, we on the other hand introduced reward functions that enable the agent to

learn from them more quickly and efficiently rather than exploring all of the environment

so that it can learn on a very lucky shot.

S. Hochreiter et.al proposed a new type of artificial neural network called LSTM that is

capable of handling long-term dependencies, which was a major limitation of traditional

neural networks. The problem statement was that standard recurrent neural networks

(RNNs) failed to capture the long-term dependencies in sequences due to the vanishing

59

gradient problem. The LSTM architecture addressed this issue by introducing memory

cells with gating mechanisms that selectively forget and update information over time [57].

The algorithm used in this paper is called LSTM, which is a type of RNN with memory

cells and gating mechanisms. The outcome of this paper was the development of a new

neural network architecture that could overcome the problem of vanishing gradients and

handle long-term dependencies in sequences, which has become widely used in various

applications such as natural language processing, speech recognition, and image captioning.

We also introduce LSCM in our agents with a sequencing length of 64 and a memory size

of 256. This enabled the agents to identify what observations were taken and when those

observations were fruitful to generate a rewarding action.

J. Z. Leibo proposed work on Malthusian reinforcement learning in which the background

of the paper "Malthusian reinforcement learning" is to address the problem of catastrophic

forgetting in reinforcement learning models. The paper introduces a novel method to avoid

catastrophic forgetting by limiting the capacity of the agent's neural network through a

Malthusian growth constraint [58]. The algorithm used in this paper is a modified version

of Q-learning called "Malthusian reinforcement learning". The outcome of the paper shows

that the proposed approach can effectively avoid catastrophic forgetting and improve the

agent's performance on a variety of tasks. The proximal policy optimization algorithm

already addresses this problem in which when the new policy drastically changes from the

previous policy, it normalizes the change so that the newer and more variants of policy do

not affect the existing good policy.

C. D. Rosin et.al propose a method to generate high-quality opponents in competitive

games by co-evolving them alongside the player agents. The problem statement is to create

challenging and adaptive opponents in games that can provide a stimulating experience for

players. The method involves co-evolving a population of players and opponents using a

fitness function that incentivizes the players to win against increasingly challenging

opponents. The algorithm used is called Competitive Co-evolution. The outcome of the

paper is a set of techniques to create adaptive and challenging opponents that can help

improve the player experience in competitive games. To create such opponents that are

worth trading against we trained the opponents until they were showing very prominent

60

results and then we switched the training to the other agents such that the other agent has

now a much stronger brain rather than a random action brain to train against

R. Lowe et.al proposes a multi-agent actor-critic algorithm for learning in mixed

cooperative-competitive environments, where agents have to balance between cooperation

and competition. The authors highlight the importance of developing algorithms that can

handle both types of situations, as many real-world scenarios fall into this category. They

use a centralized critic and decentralized actors to ensure scalability and efficiency [59].

The algorithm is tested on a variety of tasks, including a predator-prey game and a traffic

intersection control problem, and outperforms other baseline methods. The algorithm's

name is Multi-Agent Deep Deterministic Policy Gradient (MADDPG). Our methodology

included training seekers first so that hiders can learn the main hiding function Otherwise

hiders cannot learn whether they have to confine themselves and use the tools properly so

that they can hide in a specific room odyssey place.

J. Z. Leibo et.al proposed work on Multi-agent reinforcement learning in sequential social

dilemmas. The background of the paper "Multi-agent reinforcement learning in sequential

social dilemmas" is on the challenges of cooperation and competition among multiple

agents in complex environments. The problem statement is on finding effective strategies

for agents to collaborate and compete in a way that maximizes their collective reward. The

method used is multi-agent reinforcement learning, where agents learn from their

individual experiences and interactions with other agents to improve their policies [21].

The algorithm used is a variant of deep Q-learning called Deep Recurrent Q-Networks

(DRQN). The outcome of the paper is a framework for multi-agent reinforcement learning

that addresses social dilemmas and demonstrates the effectiveness of the DRQN algorithm

in complex multi-agent environments. We introduced a competition between PPO and

MAPOCA two generate new emerging strategies.

J. Perolat et.al aims to develop a computational model to study the dynamics of common-

pool resource appropriation in a multi-agent setting. The problem statement focuses on

understanding how different agents interact with each other while competing for limited

resources, and how these interactions affect the overall system behavior. The method used

is a multi-agent reinforcement learning approach, where agents learn from their past

61

experiences to optimize their behavior over time. [60] The specific algorithm used in this

paper is Q-learning. The outcome of this study helps to provide insights into the factors

that drive common-pool resource appropriation and could inform the design of better

policies to manage such resources.

L. Buşoniu proposed an overview of Multi-agent Reinforcement Learning. The

background of this paper is the growing interest in multi-agent systems, which can be found

in several domains, such as robotics, economics, and social networks. The problem

statement is that multi-agent systems are complex and challenging to design due to the

interactions and dependencies among the agents. The method used is reinforcement

learning, which provides a framework for agents to learn and adapt to their environment

based on rewards and punishments. [61] The name of the algorithm is Multi-Agent

Reinforcement Learning (MARL). The outcome of this paper is an overview of the state-

of-the-art in MARL, including its challenges, applications, and future directions. We not

only introduces multi-agent reinforcement learning agents but also introduced computing

agents such that their reward function was entirely different from each other.

H. Wafa et.al describes a method for simulating multi-agent hide-and-seek games, where

the hiders aim to remain hidden while the seekers try to find them, using trust region policy

optimization with a modified policy gradient algorithm. The goal is to demonstrate the

effectiveness of reinforcement learning algorithms in solving complex, dynamic problems

with multiple agents, as well as to explore the dynamics of competitive and cooperative

interactions in multi-agent systems [62]. The outcome shows that the proposed approach

can learn effective policies for both the hiders and seekers and that the performance of the

agents improves as the number of agents and complexity of the environment increases. We

introduced a third dimension which enables the agents to fly like drones and also introduces

a complex environment that they have to solve by using the props and dragging the props

on a heightened opening or doorway such that hiders can confine themselves in a safe

environment.

D. D. Ningombam et.al proposes a novel exploration technique, called "Unexplored Move

Pruning" (UMP), for multi-agent reinforcement learning (MARL) in competitive games.

The problem statement is that traditional exploration techniques often require a large

62

number of samples to find effective policies in MARL. The method combines UMP with

an existing MARL algorithm, Counterfactual Multi-Agent (COMA), to improve

exploration efficiency [63]. The outcome of the paper demonstrates that UMP can

significantly improve the exploration efficiency in MARL, leading to better performance

in competitive games with fewer samples. We enabled the agent to explore the environment

and reward them for exploring as curiosity was added to it. This enabled the agent to use

the prop to drag it and take it to a farther down-the-lane doorway so that it can close it.

C. Diuk et.al proposed work on an object-oriented representation for efficient

reinforcement learning. The background of this paper is on reinforcement learning and its

representation in an object-oriented form, which can be used to build efficient models for

a range of applications. The problem statement is to represent the world state in a structured

way that can be learned and updated by an agent. The method used is object-oriented

representation, which defines the state of the world in terms of objects, their attributes, and

relationships [64]. The algorithm used in this paper is Q-learning, which is a well-known

model-free reinforcement learning algorithm. The outcome of this paper is that the object-

oriented approach can be a powerful tool for building efficient models for a range of

applications. We not only use obey rented representation but also introduced an

environmental master class that was able to control all of the agent's reward functions and

reset the environment when the episode was finished this master class was able to identify

and sync all of the agent's episode length.

C. Jestel et.al proposes a method to obtain robust control and navigation policies for multi-

robot navigation via deep reinforcement learning. The problem statement is to improve the

navigation and control policies for multiple robots in dynamic environments, considering

the uncertainties and disturbances. The method uses a deep reinforcement learning

algorithm called Trust Region Policy Optimization (TRPO) to learn the policies [65]. The

outcome shows that the proposed approach can effectively learn robust navigation policies

for multiple robots in dynamic environments, outperforming the traditional rule-based

method. We use the successor of TRPO which is PPO and MAPOCA. Which resulted in

faster and quicker convergence of strategies.

63

A. Cohen et.al states in multi-agent reinforcement learning" discusses the use of absorbing

states, which are states from which the agents cannot escape, in multi-agent reinforcement

learning (MARL). The problem statement is that the use of absorbing states can lead to

suboptimal policies, and the paper proposes a method to address this issue. The method

used in the paper involves modifying the reward function to discourage agents from

entering absorbing states [66]. No specific algorithm name is mentioned in the paper. The

outcome is that the proposed method improves the performance of MARL agents in tasks

with absorbing states. We addressed this issue by introducing a curiosity module in the

agent which enables the agent to explore the environment to get more rewarding actions.

Y. Duan proposed work on One-shot imitation learning. the background of this paper is on

imitation learning, a popular technique for teaching agents to perform tasks by learning

from expert demonstrations. The problem statement is that traditional imitation learning

algorithms typically require a large amount of data to learn from, which can be time-

consuming and expensive. The authors propose a method called one-shot imitation learning,

which allows an agent to learn a new task from a single demonstration [67]. The algorithm

used is a variation of Siamese neural networks that use a shared weight structure to compare

the input of the demonstration and the current state of the environment. The outcome of

the paper shows that their approach is effective and efficient, allowing agents to learn new

tasks quickly and with fewer data than traditional imitation learning methods. Ml-Agents

just provide imitation learning in which the agent can be trained with an existing demo

brain. but we didn't use imitation learning as it will eliminate the emerging behavior of

strategies as it will only learn from the demonstrations and build upon those demonstrations.

J. Ren et.al proposes a method to balance the reward function in reinforcement learning to

account for orientation-preserving actions. The problem statement involves cases where

the optimal policy requires a robot to rotate an object and perform other actions that change

the object's orientation, but the reward function only values the final object configuration.

The method uses a balancing term to reward orientation-preserving actions, and it applies

a projection to ensure that the final reward is non-negative [68]. The outcome of the paper

is an approach to improve reinforcement learning in tasks that require orientation

preservation, such as manipulation tasks. The proximal policy optimization algorithm

64

already addresses this issue that the agent at the end of the episode needs to increase the

reward from the baseline 0 and it will take a lot of episodes to do this.

R. Wang et.al proposes a new approach to generating diverse and complex environments

for reinforcement learning, called Paired Open-Ended Trailblazer (POET). The problem

statement is to create a learning environment that can continuously generate increasingly

complex and diverse challenges for agents to learn from. The method involves evolving

pairs of environments and agents, where the fittest agents are paired with the fittest

environments and vice versa [69]. The algorithm used is a combination of novelty search

and multi-objective optimization. The outcome is a system that can generate an endless

stream of diverse and challenging environments for reinforcement learning, resulting in

agents that can generalize better and perform well in unseen environments. We adopted

this ideology that a trained brain should compete with a non-trained brain we trained the

seekers first and then started training on the hiders this enables the hider to completely

understand how difficult the task is and randomly moving or staying behind a prop will not

solve their permanent issue.

N. Matsumura et.al proposes a novel method for improving the performance of a drone-

based multi-input multi-output (MIMO. The problem statement is to find the optimal

placement of the drone to maximize the system's capacity and minimize power

consumption. The method uses a genetic algorithm to search for the optimal placement of

the drone based on various constraints and objectives. The proposed algorithm is named

the Genetic Algorithm for Drone Placement (GADP) [70]. The outcome of the paper shows

that the proposed algorithm significantly improves the system's performance compared to

conventional methods. Reinitialize the drones in a random position so that they can learn

to navigate to the goal whether they are near or farther away. This enables the agent to

adapt to the localization and to navigate in a complex environment.

M. Jaderberg et.al proposes a method for training neural networks using a population-based

approach that searches for optimal hyperparameters such as learning rates and weight

initialization schemes. The problem statement is to improve the efficiency and

effectiveness of training neural networks. The method used is a combination of

evolutionary algorithms and reinforcement learning, where populations of neural networks

65

are trained and evaluated in parallel to optimize the hyperparameters [71]. The algorithm

used is called Population Based Training (PBT). The outcome of the paper shows that PBT

can achieve state-of-the-art performance on various deep learning benchmarks while being

computationally efficient. He used a population of 12 environments running parallel with

each other each environment contains a set of agents that are training and learning

experiences based on their actions in the given state.

G. Wu et.al proposes a reinforcement learning-based approach to optimize the coordination

of trucks and drones for delivery. The problem statement is to find the optimal allocation

of delivery tasks between trucks and drones to minimize the delivery cost. The method uses

a centralized RL algorithm with a shared value function and a decentralized actor policy

[10]. The name of the algorithm is "Multi-Agent Deep Deterministic Policy Gradient

(MADDPG)." The outcome of the paper shows that the proposed approach can

significantly reduce the delivery cost and improve delivery efficiency compared to the

traditional delivery methods.

A. Ahadi et.al focuses on the replication crisis in computing education research, where

several studies are non-replicable. The problem statement is the lack of rigor and

transparency in research practices, leading to unreliable results. The method used in this

paper is a survey of computing education researchers to understand their attitudes and

experiences related to replication [2]. The outcome of this paper is the identification of

barriers to replication and recommendations for improving research practices in computing

education. We adopted the ideology of an open AI hydrogen secret experiment and

replicated it in a drone-like fashion in which the agents can fly and they have to learn to

use the props and close heightened entry points.

A. Ahadi et.al addresses the lack of replication studies in computing education research

(CER) and the potential consequences for the validity and reliability of research findings

in this field. The authors conducted an online survey to investigate the attitudes and

experiences of CER researchers regarding replication studies. While most respondents

viewed replication as important, only a small percentage had conducted replication studies

themselves, citing time and resource constraints as barriers [2]. The study highlights the

need for more support and incentives for replication studies in CER to ensure the rigor and

66

credibility of the research in this field. I would experiment and manage to generate similar

results much faster with very less batch size and resources required during the hide-and-

seek experimentation. Thus replicating using our methodology resulted in better behavior.

Y. Liu et.al addresses the issue of replication in AI research. Replication is essential to

verify and validate the results of AI research, but it is often overlooked or considered

unimportant. The authors propose the use of replication markets to incentivize and facilitate

replication studies in AI. Replication markets are prediction markets that allow researchers

to bet on the likelihood of a replication study producing the same results as the original

study. The authors conducted a replication market for two AI studies and found that the

markets provided an effective and efficient way to incentivize replication and encourage

transparency in AI research [40]. The study highlights the potential of replication markets

to improve the rigor and credibility of AI research and calls for further experimentation

and refinement of the approach.

I. M. A. Nahrendra proposed that tilting-rotor drones are a promising technology for

autonomous aerial transportation, but they are challenging to control due to their complex

dynamics. The existing nominal controllers for tilting-rotor drones are not optimal and do

not account for all the complex dynamics of the drone, leading to suboptimal performance.

To address this problem, the authors propose a new approach called Retro-RL, which

combines a nominal controller with deep reinforcement learning (RL) to learn a better

control policy for the drone [7]. The Retro-RL algorithm uses a policy gradient method to

train the RL agent, which is then combined with the nominal controller retroactively. The

authors evaluate the Retro-RL approach on a simulated tilting-rotor drone and demonstrate

that it outperforms the nominal controller in terms of stability, tracking performance, and

robustness to disturbances. The study highlights the potential of RL to improve the

performance of complex systems and the importance of combining RL with existing

control methods to achieve better results.

C. Florens et.al tackle the problem of designing an effective curriculum for reinforcement

learning (RL) agents. Traditional RL algorithms often assume a fixed curriculum, which

can be suboptimal for complex tasks. The authors propose a new approach called reverse

curriculum generation, which uses a generative adversarial network (GAN) to generate a

67

sequence of increasingly difficult tasks for the RL agent. The GAN is trained to generate

tasks that are easy for the RL agent to solve but difficult for a fixed heuristic agent. The

RL agent is then trained on the generated tasks in reverse order, starting from the most

difficult task and working backward. The authors evaluate the approach on several Atari

games and demonstrate that it outperforms traditional RL algorithms and other curriculum

generation methods. The study highlights the potential of using GANs to generate effective

curricula for RL agents and the importance of tailoring the curriculum to the agent's

capabilities [72]. Emulation provides the ability to imitate from a demo generated by an

experienced player this can also be identified as reverse reinforcement learning In such a

manner that the agents are given a demonstration of exact actions that will yield them better

rewards. But in our case, the environment was very complex and the agents were spawning

randomly thus having a demonstration of every possible state to action was not a very

bright idea thus we introduced curriculum learning which enabled the agent to learn

gradually with the increase of difficulty in the environment.

M. Seo et.al proposes a novel method to solve the credit assignment problem in RL agents

receiving sparse binary rewards, which involves using a neural network to predict the

expected future rewards for each action in the current state, and then assigning credit to the

actions that contribute to the future rewards. The authors evaluate the proposed method on

several sparse reward environments and demonstrate that it outperforms traditional RL

algorithms and other credit assignment methods [73]. The study emphasizes the importance

of developing new approaches to address the challenges of sparse reward environments

and highlights the potential of rewards prediction for solving the credit assignment problem.

With the help of curriculum learning and curiosity, items were able to identify the sparse

rewards and learned very quickly how to end the episode while on their best behavior.

M. M. M. van Dooren et.al investigates the impact of different types of rewards on play

persistence in adolescents with and without substance dependence. The authors note that

gaming can be addictive and that understanding how different types of rewards affect play

persistence could inform strategies for mitigating problematic gaming behaviors. The study

uses a controlled experiment to compare the effects of monetary rewards, virtual points,

and social rewards on play persistence in both groups [74]. The authors find that monetary

68

rewards have the strongest effect on play persistence, followed by social rewards, with

virtual points having the weakest effect. The study provides insights into the factors that

motivate play in adolescents and could inform the development of interventions for

problematic gaming behaviors.

N. Jaques et.al proposes a method to improve the performance of multi-agent RL by using

social influence as intrinsic motivation for agents. The authors note that in multi-agent

environments, agents must learn to cooperate and coordinate their actions, which can be

challenging. The study proposes using social influence as a form of intrinsic motivation,

where agents are rewarded for influencing the actions of other agents in the environment.

The authors evaluate the proposed method on several multi-agent environments and

demonstrate that it outperforms traditional RL algorithms and other intrinsic motivation

methods. The study provides insights into how social influence can be used to incentivize

cooperative behavior in multi-agent environments and highlights the potential of intrinsic

motivation for improving RL performance [75]. With the help of curiosity and continuous

increase in the difficulty of the environment, we induce the agent with the ability to learn

in a gradually difficult environment. The social influence can be demonstrated as the

gradual increase in the difference of the environment that makes it much more difficult for

the agent to identify and navigate with the newer level.

O. E. Gundersen et.al examines the issue of reproducibility in AI research. The authors

note that many AI research results are difficult to reproduce due to the complexity of the

models and the lack of standardization in the field. The study proposes several guidelines

and best practices for improving reproducibility in AI research, including using open-

source software, providing detailed documentation, and making data and code publicly

available. The authors also review several reproducibility initiatives in the field and

highlight the need for greater collaboration and standardization [76]. The study provides

important insights into the challenges of reproducibility in AI research and proposes

actionable solutions for improving the reliability and transparency of AI research results.

V. Bapst et.al proposes a structured approach to training agents for physical construction

tasks, using a combination of RL and supervised learning. The study highlights the

complexity of physical construction tasks and the need for coordinated planning and

69

execution. The proposed method outperforms traditional RL methods and demonstrates the

potential for using structured agents in real-world applications [77]. The study provides

insights into how structured agents can be designed and trained for complex tasks, such as

physical construction. With the help of unity 3D, we introduce physics in the agent's

properties including mass drag angular drag clean gravity, etc. this enabled the agent to

learn in a real lifelike manner rather than just a physics-less simulation.

J. Achiam et.al proposes a novel approach to incorporating intrinsic motivation in RL by

using surprise as a reward signal. The study argues that surprise can be used to encourage

exploration and learning more efficiently in complex environments. The proposed method

is based on an extension of Q-learning called Surprise Q-learning, which uses a separate

module to compute surprise values [78]. The study demonstrates the effectiveness of the

proposed method in several benchmark tasks and shows that it outperforms traditional RL

methods. The study suggests that surprise-based intrinsic motivation can be a useful tool

for RL agents operating in complex and uncertain environments. once the price element in

our research was the enabling of curriculum learning on the environmental prefabs once

the agent learned to get a certain amount of reward the environment was made difficult test

new challenges arises as a surprise for the agent

J. Lehman proposed work on the surprising creativity of digital evolution: A collection of

anecdotes from the evolutionary computation and artificial life research communities. The

background of this paper is the study of evolutionary computation and artificial life

research communities. The problem statement is to examine the surprising creativity of

digital evolution. The method used is to collect anecdotes from researchers in these fields.

The paper presents a collection of stories that demonstrate the creative capabilities of

digital evolution, highlighting the importance of exploring new ideas and approaches in AI

research [79]. We use the principle of coevolution in agents. hydrants and seekers were

given the competition in cooperation to themselves stop

G. Tesauro et.al describes a reinforcement learning algorithm, TD-Gammon, which uses

temporal difference learning to train a neural network to play backgammon. The

background of the paper is the field of machine learning, specifically reinforcement

learning, and the problem statement is how to train an agent to play backgammon using

70

TD learning. The method used is a combination of supervised learning and reinforcement

learning with a neural network as the function approximator, and the algorithm used is

temporal difference learning [80]. The outcome of the paper was a successful

demonstration of the TD-Gammon algorithm, which was able to achieve human-level

performance in playing backgammon. instead of using temporal difference learning we

introduce proximal policy optimization and MA-POCA.

J. Lai et.al present a method for training an AI agent to play a third-person shooter game

using Unity's ML-Agents toolkit. The problem statement is how to develop an agent that

can navigate the game environment, avoid obstacles, collect items, and engage in combat

effectively. The method used involves designing reward functions and using deep

reinforcement learning with a neural network architecture [6]. The algorithm used is a

variant of deep Q-learning. The outcome of the paper is that the trained agent demonstrates

improved performance in the game compared to a baseline model, indicating the

effectiveness of the proposed method. Our experimentation introduced the flying leg

mechanism along with two different brains that were training concurrent with each other

rather than a similar brain with different reward functions pool shop.

T. Singh et.al focuses on the problem of predicting trajectories of moving objects in a 3D

virtual environment. The method used involves training a deep reinforcement learning

model using Unity's ML-Agents toolkit, which allows for training in a realistic simulated

environment [81]. The algorithm used is a deep neural network trained with reinforcement

learning. The outcome is a model that can accurately predict trajectories in real-time,

making it suitable for applications such as autonomous driving and robotics. We introduce

spatial sensors, frontal camera sensors, vectors, and ray casts.

S. Mohamed et.al introduces a novel approach for intrinsically motivated reinforcement

learning by maximizing information gain through variational inference. The problem

statement is the lack of a general-purpose intrinsic motivation algorithm, which can be used

across different tasks without manual tuning. The method utilizes variational autoencoders

to learn a representation of the state space and trains the agent to maximize the information

gained between the current state and its future representation [82]. The name of the

algorithm is Variational Information Maximization (VIM). The outcome of the paper

71

shows that VIM outperforms several state-of-the-art intrinsic motivation algorithms on

various tasks. We on the other hand used the curiosity element in the proximal policy

optimization for the agents to learn to observe and explore the environment to get such

actions that can result in rewards even more.

R. Houthoof et.al present VIME (Variational Information Maximizing Exploration), a

method for exploring environments in reinforcement learning. The background is that

exploration is crucial for effective learning, but current methods have limitations. The

problem statement is that current methods do not effectively balance exploitation and

exploration. The method involves using variational inference to approximate the

exploration bonus that guides the agent's behavior [83]. The algorithm used is VIME. The

outcome of the paper is that VIME outperforms other exploration methods in several

benchmarks. Reintroduce the combination of curriculum learning and curiosity, this

reducibility to learn the specific environment and then gradually increase the difficulty of

the environment while the agent is still curious so that it can observe and re-evaluate the

environment to get better action to state results.

72

Conclusions and Future work

In conclusion, our research has shown that replication of strategies is possible by utilizing

a combination of simple game rules, fostering multi-agent competition, and implementing

standard reinforcement learning algorithms at scale, and agents can acquire complex

strategies and skills. The introduction of curriculum learning has further accelerated the

learning process, allowing agents to utilize their environments and props more efficiently.

This approach has the potential to significantly reduce costs and improve efficiency in real-

world environments, particularly in the field of autonomous systems.

Furthermore, the development of autonomous systems has been a crucial area of research

in recent years. The ability to deploy autonomous systems in a range of industries has the

potential to improve safety, reduce costs, and increase efficiency. Our research has

contributed to this field by providing a framework for the development of intelligent agents

capable of learning complex strategies and skills.

Overall, the potential applications of this research are vast, particularly in industries such

as transportation, logistics, and agriculture. By utilizing intelligent agents capable of

learning complex behaviors, these industries could reduce costs, improve efficiency, and

enhance safety. Therefore, our research has the potential to make a significant impact on

the development of autonomous systems and has promising implications for a range of

industries.

The training of agents can be extended to encompass more complex environments, where

additional agent types can be introduced to heighten the level of training difficulty. The

incorporation of weather parameters can also enable agents to adapt to challenging weather

conditions, thereby enhancing their overall performance. However, it has been observed

that agents may exploit the physics of their environment to manifest glitched, cheat-like

behaviors. For instance, seekers have been observed to glitch through walls when hit with

high velocity, while hiders tend to immobilize themselves in corners of the boundary to

avoid incurring a significant collision penalty from seekers. The elimination of such

73

glitched behaviors through the design of an environment that precludes their manifestation

can dramatically reduce the time and resources expended in the agent training phase. As

such, the creation of an environment that discourages such undesirable behaviors is a

crucial aspect of effective agent training.

74

References

[1] F. E. S. L. a. C. F. A. Xie, "Improvisation through physical understanding: Using novel

objects as tools with visual foresight," arXiv, 2019.

[2] D. R. A. S. V. B. Y. L. I. B. K. T. D. R. T. L. E. L. M. S. V. L. R. P. M. B. O. V. P. B. Vinicius

Zambaldi, "Relational Deep Reinforcement Learning," 2018.

[3] J. C. W. a. C. G. B. W. Wirtz, "artificial intelligence and the public sector—applications and

challenges," Int. J. Publ. Adm, vol. 42, no. 7, pp. 1-20, 2018.

[4] A. Ahadi, A. Hellas, P. Ihantola, A. Korhonen and A. Petersen, "Replication in computing

education research: Researcher attitudes and experiences," Proceedings of the 16th Koli

Calling International Conference on Computing Education Research, pp. 2-11, 2016.

[5] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew and I. Mordatch,

"Emergent Tool Use From Multi-Agent Autocurricula," arXiv [cs.LG], 2019.

[6] R. Miikkulainen and K. O. Stanley, "Competitive Coevolution through Evolutionary

Complexification," arXiv [cs.AI], 2011.

[7] E. Alonso, M. Peter, D. Goumard and J. Romoff, "Deep Reinforcement Learning for

navigation in AAA video," Proceedings of the Thirtieth International Joint, 2021.

[8] A. Tucker, A. Gleave, and S. Russell, "Inverse reinforcement learning for video games,"

2018.

[9] J. Lai, X.-L. Chen and X.-Z. Zhang, "Training an agent for third-person shooter game using

unity," DEStech trans. Comput. sci. eng., no. icaic, 2019.

[10] I. M. A. Nahrendra, C. Tirtawardhana, B. Yu, E. M. Lee and H. Myung, "Retro-RL:

Reinforcing nominal controller with deep reinforcement," IEEE Robot. Autom. Lett., vol. 7,

no. 4, pp. 9004-9011, 2022.

[11] R. Zhang, Q. Zong, X. Zhang and D. Liqian, "Game of drones: Multi-UAV pursuit-evasion

game with online," vol. PP, pp. 1-10, 2022.

[12] A. Devo, J. Mao, G. Costante and G. Loianno, "Autonomous single-image drone

exploration with deep reinforcement," IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 5031-

5038, 2022.

[13] G. Wu, M. Fan, J. Shi and Y. Feng, "Reinforcement Learning based Truck-and-Drone

Coordinated," IEEE Trans. Artif. Intell., p. 1, 2021.

75

[14] C. de Souza, R. Newbury, A. Cosgun, P. Castillo, B. Vidolov and D. Kuli, "Decentralized

multi-agent pursuit using deep reinforcement," IEEE Robot. Autom. Lett., vol. 6, no. 3, pp.

4552-4559, 2021.

[15] D. Hong, S. Lee, Y. H. Cho, D. Baek, J. Kim and N. Chang, "Energy-efficient online path

planning of multiple drones using," IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 9725-

9740, 2021.

[16] "ML-Agents: Hummingbirds," Unity Learn.

[17] D. Yang and Y. Tang, "Adaptive inner-reward shaping in sparse reward games," 2020

International Joint Conference on Neural Networks (IJCNN), pp. 1-8, 2020.

[18] M. Lukas, I. Tomicic and A. Bernik, "Anticheat system based on reinforcement learning

agents in Unity," Information (Basel), vol. 13, no. 4, p. 173, 2022.

[19] X. Wenwen, "Application Research of end to end behavior decision based on deep

reinforcement learning," Proceedings of the 2021 5th International Conference on

Electronic Information Technology and Computer Engineering, 2021.

[20] R. Dawkins and J. R. Krebs, "Arms races between and within species," Proc. R. Soc. Lond. B

Biol. Sci., vol. 205, no. 1161, pp. 489-511, 1979.

[21] B. W. Wirtz, J. C. Weyerer and C. Geyer, "Artificial intelligence and the public sector—

applications and challenges," Int. J. Publ. Adm., vol. 42, no. 7, pp. 1-20, 2018.

[22] M. Asplund and D. Näslund, "Artificial intelligence based marine autopilot: Trained using

reinforcement learning in the Unity simulation environment," 2022.

[23] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba and P. Abbeel, "Asymmetric actor

critic for image-based robot learning," arXiv [cs.RO], 2017.

[24] P. Reizinger and M. Szemenyei, "Attention-based curiosity-driven exploration in deep

reinforcement learning," ICASSP 2020 - 2020 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 3542-3546, 2020.

[25] J. Z. Leibo, E. Hughes, M. Lanctot and T. Graepel, "Autocurricula and the emergence of

innovation from social interaction: A manifesto for multi-agent intelligence research,"

arXiv [cs.AI], 2019.

[26] C. Ofria and C. O. Wilke, "Avida: a software platform for research in computational

evolutionary biology," Artif. Life, vol. 10, no. 2, pp. 191-229, 2004.

[27] A. E. Youssef, S. E. Missiry, I. Nabil El-gaafary, J. S. ElMosalami, K. M. Awad and K. Yasser,

"Building your kingdom Imitation Learning for a Custom Gameplay Using Unity ML-

agents," 2019 IEEE 10th Annual Information Technology, Electronics and Mobile

Communication Conference (IEMCON), pp. 509-514, 2019.

76

[28] J. Paredis, "Coevolutionary computation," Artif. Life, vol. 2, no. 4, pp. 355-375, 1995.

[29] L. Panait and S. Luke, "Cooperative multi-agent learning: The state of the art," Auton.

Agent. Multi. Agent. Syst., vol. 11, no. 3, pp. 387-434, 2005.

[30] G. Ostrovski, M. G. Bellemare, A. van den Oord and R. Munos, "Count-based exploration

with neural density models," arXiv [cs.AI], 2017.

[31] S. Forestier, R. Portelas, Y. Mollard and P.-Y. Oudeyer, "Intrinsically Motivated Goal

Exploration Processes with automatic curriculum learning," arXiv [cs.AI], 2017.

[32] G. R. Hunt and R. D. Gray, "The crafting of hook tools by wild New Caledonian crows,"

Proc. Biol. Sci., vol. 271 Suppl 3, no. suppl_3, pp. S88-90, 2004.

[33] M. S. Abdul Hameed, M. M. Khan and A. Schwung, "Curiosity based RL on robot

manufacturing cell," 2021 22nd IEEE International Conference on Industrial Technology

(ICIT), vol. 1, pp. 1048-1053, 2021.

[34] D. Pathak, P. Agrawal, A. A. Efros and T. Darrell, "Curiosity-driven exploration by self-

supervised prediction," arXiv [cs.LG], 2017.

[35] C. Rosser and K. Abed, "Curiosity-driven reinforced learning of undesired actions in

autonomous intelligent agents," 2021 IEEE 19th World Symposium on Applied Machine

Intelligence and Informatics (SAMI), pp. 39-42, 2021.

[36] A. Price, "Curriculum Learning With Unity ML-Agents," 2020.

[37] G. Zuin, L. Chaimowicz and A. Veloso, "Deep learning techniques for explainable resource

scales in collectible card games," IEEE trans. games, vol. 14, no. 1, pp. 46-55, 2022.

[38] T. T. Nguyen, N. D. Nguyen and S. Nahavandi, "Deep reinforcement learning for

multiagent systems: A review of challenges, solutions, and applications," IEEE Trans.

Cybern., vol. 50, no. 9, pp. 3826-3839, 2020.

[39] N. D. Dung and J. Rohacs, "The drone-following models in smart cities," 2018 IEEE 59th

International Scientific Conference on Power and Electrical Engineering of Riga Technical

University (RTUCON), pp. 1-6, 2018.

[40] I. Mordatch and P. Abbeel, "Emergence of grounded compositional language in multi-

agent populations," arXiv [cs.AI], 2017.

[41] N. Heess, D. Tb, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang, S. M.

A. Eslami, M. Riedmiller and D. Silver, "Emergence of locomotion behaviours in rich

environments," arXiv [cs.AI], 2017.

[42] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever and I. Mordatch, "Emergent Complexity via

Multi-Agent Competition," arXiv [cs.AI], 2017.

77

[43] Y. Liu, M. Gordon, J. Wang, M. Bishop, Y. Chen, T. Pfeiffer, C. Twardy and D. Viganola,

"Replication markets: Results, lessons, challenges and opportunities in AI replication,"

arXiv [cs.CY], 2020.

[44] M. Alwateer, S. W. Loke and N. Fernando, "Enabling drone services: Drone crowdsourcing

and drone scripting," IEEE Access, vol. 7, pp. 110035-110049, 2019.

[45] J. Weng, M. Lin, S. Huang, B. Liu, D. Makoviichuk, V. Makoviychuk, Z. Liu, Y. Song, T. Luo,

Y. Jiang, Z. Xu and S. Yan, "EnvPool: A highly parallel reinforcement learning environment

execution engine," arXiv [cs.LG], 2022.

[46] T. S. Ray, "Evolution, ecology and optimization of digital organisms".

[47] S. Leonardos and G. Piliouras, "Exploration-exploitation in multi-agent learning:

Catastrophe theory meets game theory," Artif. Intell., vol. 304, no. 103653, p. 103653,

2022.

[48] D. A. Suyikno and A. Setiawan, "Feasible NPC hiding behaviour using goal oriented action

planning in case of hide-and-seek 3D game simulation," 2019 Fourth International

Conference on Informatics and Computing (ICIC), pp. 1-6, 2019.

[49] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi, O. Vinyals,

T. Green, I. Dunning, K. Simonyan, C. Fernando and K. Kavukcuoglu, "Population Based

Training of neural networks," arXiv [cs.LG], 2017.

[50] A. T. Bourdillon, A. Garg, H. Wang, Y. J. Woo, M. Pavone and J. Boyd, "Integration of

reinforcement learning in a virtual robotic surgical simulation," Surg. Innov., p.

15533506221095298, 2022.

[51] S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam and R. Fergus, "Intrinsic

motivation and automatic curricula via asymmetric self-play," arXiv [cs.LG], 2017.

[52] J. N. Foerster, Y. M. Assael, N. de Freitas and S. Whiteson, "Learning to communicate with

deep multi-agent reinforcement learning," arXiv [cs.AI], 2016.

[53] S. Singh, A. G. Barto and N. Chentanez, "Intrinsically Motivated Reinforcement Learning,"

Advances in Neural Information Processing Systems 17 [Neural Information Processing

Systems, NIPS 2004, December 13-18, 2004, Vancouver, British Columbia, Canada], 2004.

[54] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell and A. A. Efros, "Large-scale study

of curiosity-driven learning," arXiv [cs.LG], 2018.

[55] J. L. Ba, J. R. Kiros and G. E. Hinton, "Layer Normalization," arXiv [stat.ML], 2016.

[56] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov and S. Levine,

"Learning complex dexterous manipulation with deep reinforcement learning and

demonstrations," arXiv [cs.LG], 2017.

78

[57] OpenAi, M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A.

Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L.

Weng and W. Zaremba, "Learning Dexterous In-Hand Manipulation," arXiv [cs.LG], 2018.

[58] S. Sukhbaatar, A. Szlam and R. Fergus, "Learning Multiagent Communication with

Backpropagation," arXiv [cs.LG], 2016.

[59] N. Haber, D. Mrowca, L. Fei-Fei and D. L. K. Yamins, "Learning to play with intrinsically-

motivated self-aware agents," arXiv [cs.LG], 2018.

[60] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no.

8, pp. 1735-1780, 1997.

[61] J. Z. Leibo, J. Perolat, E. Hughes, S. Wheelwright, A. H. Marblestone, E. Duéñez-Guzmán,

P. Sunehag, I. Dunning and T. Graepel, "Malthusian reinforcement learning," arXiv

[cs.NE], 2018.

[62] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel and I. Mordatch, "Multi-agent actor-critic for

mixed cooperative-competitive environments," arXiv [cs.LG], 2017.

[63] J. Perolat, J. Z. Leibo, V. Zambaldi, C. Beattie, K. Tuyls and T. Graepel, "A multi-agent

reinforcement learning model of common-pool resource appropriation," arXiv [cs.MA],

2017.

[64] L. Buşoniu, R. Babuška and B. De Schutter, "Multi-agent Reinforcement Learning: An

Overview," Innovations in Multi-Agent Systems and Applications - 1, pp. 183-221, 2010.

[65] H. Wafa and J. Santoso, "Multiagent simulation on hide and seek games using policy

gradient trust region policy optimization," 2020 7th International Conference on Advance

Informatics: Concepts, Theory and Applications (ICAICTA), pp. 1-5, 2020.

[66] D. D. Ningombam, "A novel exploration technique for multi-agent reinforcement

learning," 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT), pp. 1-

6, 2022.

[67] C. Diuk, A. Cohen and M. L. Littman, "An object-oriented representation for efficient

reinforcement learning," Proceedings of the 25th international conference on Machine

learning - ICML '08, pp. 240-247, 2008.

[68] C. Jestel, H. Surmann, J. Stenzel, O. Urbann and M. Brehler, "Obtaining robust control and

navigation policies for multi-robot navigation via deep reinforcement learning," arXiv

[cs.RO], 2022.

[69] A. Cohen, E. Teng, V.-P. Berges, R.-P. Dong, H. Henry, M. Mattar, A. Zook and S. Ganguly,

"On the use and misuse of absorbing states in multi-agent reinforcement learning," arXiv

[cs.LG], 2021.

79

[70] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider, I. Sutskever, P. Abbeel and W.

Zaremba, "One-shot imitation learning," arXiv [cs.AI], 2017.

[71] J. Ren, S. Guo and F. Chen, "Orientation-preserving rewards' balancing in reinforcement

learning," IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 11, pp. 6458-6472, 2022.

[72] R. Wang, J. Lehman, J. Clune and K. O. Stanley, "Paired Open-Ended Trailblazer (POET):

Endlessly generating increasingly complex and diverse learning environments and their

solutions," arXiv [cs.NE], 2019.

[73] N. Matsumura, K. Nishimori, R. Taniguchi, T. Mitsui and T. Hiraguri, "Performance

improvement of drone MIMO relay station using selection of drone placement," 2018

IEEE International Workshop on Electromagnetics:Applications and Student Innovation

Competition (iWEM), p. 1, 2018.

[74] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G. Castañeda, C. Beattie,

N. C. Rabinowitz, A. S. Morcos, A. Ruderman, N. Sonnerat, T. Green, L. Deason, J. Z. Leibo,

D. Silver, D. Hassabis, K. Kavukcuoglu and T. Graepel, "Human-level performance in 3D

multiplayer games with population-based reinforcement learning," Science, vol. 364, no.

6443, pp. 859-865, 2019.

[75] C. Florensa, D. Held, M. Wulfmeier, M. Zhang and P. Abbeel, "Reverse curriculum

generation for reinforcement learning," arXiv [cs.AI], 2017.

[76] M. Seo, L. F. Vecchietti, S. Lee and D. Har, "Rewards prediction-based credit assignment

for reinforcement learning with sparse binary rewards," IEEE Access, vol. 7, pp. 118776-

118791, 2019.

[77] M. M. M. van Dooren, V. T. Visch and R. Spijkerman, "Rewards that make you play: The

Distinct effect of monetary rewards, virtual points and social rewards on play persistence

in substance dependent and non-dependent adolescents," 2018 IEEE 6th International

Conference on Serious Games and Applications for Health (SeGAH), pp. 1-7, 2018.

[78] N. Jaques, A. Lazaridou, E. Hughes, C. Gulcehre, P. A. Ortega, D. J. Strouse, J. Z. Leibo and

N. de Freitas, "Social influence as intrinsic motivation for Multi-agent deep reinforcement

learning," arXiv [cs.LG], 2018.

[79] O. E. Gundersen and S. Kjensmo, "State of the art: Reproducibility in artificial

intelligence," Proc. Conf. AAAI Artif. Intell., vol. 32, no. 1, 2018.

[80] V. Bapst, A. Sanchez-Gonzalez, C. Doersch, K. L. Stachenfeld, P. Kohli, P. W. Battaglia and

J. B. Hamrick, "Structured agents for physical construction," arXiv [cs.LG], 2019.

[81] J. Achiam and S. Sastry, "Surprise-based intrinsic motivation for deep reinforcement

learning," arXiv [cs.LG], 2017.

80

[82] J. Lehman, J. Clune, D. Misevic, C. Adami, L. Altenberg, J. Beaulieu, P. J. Bentley, S.

Bernard, G. Beslon, D. M. Bryson, P. Chrabaszcz, N. Cheney, A. Cully, S. Doncieux, F. C.

Dyer, K. O. Ellefsen, R. Feldt, S. Fischer, S. Forrest, A. Frénoy, C. Gagné, L. L. Goff, L. M.

Grabowski, B. Hodjat, F. Hutter, L. Keller, C. Knibbe, P. Krcah, R. E. Lenski, H. Lipson, R.

MacCurdy, C. Maestre, R. Miikkulainen, S. Mitri, D. E. Moriarty, J.-B. Mouret, A. Nguyen,

C. Ofria, M. Parizeau, D. Parsons, R. T. Pennock, W. F. Punch, T. S. Ray, M. Schoenauer, E.

Shulte, K. Sims, K. O. Stanley, F. Taddei, D. Tarapore, S. Thibault, W. Weimer, R. Watson

and J. Yosinski, "The surprising creativity of digital evolution: A collection of anecdotes

from the evolutionary computation and artificial life research communities," arXiv

[cs.NE], 2018.

[83] G. Tesauro, "Temporal difference learning and TD-Gammon," Commun. ACM, vol. 38, no.

3, pp. 58-68, 1995.

[84] T. Singh, "Trajectory prediction through deep reinforcement learning in unity," 2021.

[85] S. Mohamed and D. J. Rezende, "Variational information maximisation for intrinsically

motivated reinforcement learning," arXiv [stat.ML], 2015.

[86] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck and P. Abbeel, "VIME: Variational

Information Maximizing Exploration," arXiv [cs.LG], 2016.

[87] A. Kelly, "AI Flight with Unity ML-Agents Course —," 2020.

[88] "Concrete Problems in AI Safety".

[89] N. Justesen, P. Bontrager, J. Togelius and S. Risi, "Deep learning for video game playing,"

IEEE trans. games, vol. 12, no. 1, pp. 1-20, 2020.

[90] "grid-sensor: Grid Sensor Components for Unity ML-Agents".

[91] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli and S. Whiteson, "Counterfactual Multi-

Agent Policy Gradients," arXiv [cs.AI], 2017.

[92] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup and D. Meger, "Deep

Reinforcement Learning that Matters," arXiv [cs.LG], 2017.

[93] P. Xu, Q. Yin, J. Zhang and K. Huang, "Deep reinforcement learning with part-aware

exploration bonus in video games," IEEE trans. games, p. 1, 2021.

[94] S. Liu, G. Lever, J. Merel, S. Tunyasuvunakool, N. Heess and T. Graepel, "Emergent

coordination through competition," arXiv [cs.AI], 2019.

[95] C. D. Rosin and R. K. Belew, "Methods for Competitive Co-Evolution: Finding Opponents

Worth Beating," Proceedings of the 6th International Conference on Genetic Algorithms,

pp. 373-381, 1995.

81

[96] J. Z. Leibo, V. Zambaldi, M. Lanctot, J. Marecki and T. Graepel, "Multi-agent

reinforcement learning in sequential social dilemmas," arXiv [cs.MA], 2017.

[97] "Perpetuating evolutionary emergence".

[98] R. Herbrich, T. Minka and T. Graepel, "TrueSkill™: A Bayesian Skill Rating System,"

Advances in Neural Information Processing Systems, vol. 19, 2006.

[99] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton and R. Munos, "Unifying

count-based exploration and intrinsic motivation," arXiv [cs.AI], 2016.

[100] C. L. Keefer, "Artificial cloning of domestic animals," Proc. Natl. Acad. Sci. U. S. A.,, vol.

112, p. 8874–8878, 2015.

