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Abstract 

 
 
In this thesis, I have considered the scenario of the accretion of phantom 
energy onto various types of black holes. The phantom energy is a strange 
kind of energy existing in the universe that drives the cosmic accelerated 
expansion. Among various black holes, we have chosen the following for 
our study: Schwarzschild, Riessner-Nordstrom, primordial and BTZ black 
holes. I also discuss various possibilities of phantom energy as viscous 
Chaplygin gas and modified variable Chaplygin gas. 
 
The first two chapters are devoted to introductions to cosmology and black 
holes. In the former, I discuss the standard cosmological model and focus on 
dark energy theory. In the second chapter, we briefly discuss the 
astrophysical implications of black holes along with the derivation of two 
well-known black hole solutions in general relativity. I also discuss a lower 
space dimensional black hole for our further use. 
 
In the third chapter, we shall discuss the phantom energy accretion onto 
primordial black holes of various masses. These black holes were formed 
from the gravitational collapse of primordial soup in the early Universe. 
They hypothetically radiate energy via Hawking evaporation process. I have 
found some interesting consequences of the accretion of phantom energy 
onto a primordial black hole. One of which is that to have the primordial 
black hole decay now it would have to be more massive initially. 
 
In the fourth chapter, I study the accretion of dark energy on a Reissner-
Nordstrom (RN) black hole. Since the RN black hole contains charge, the 
charge remains unaffected during the accretion of phantom energy. The 
phantom energy interacts only with the mass of the black hole to decrease it. 
Due to mass reduction, a stage is naturally reached when the magnitude of 
charge exceeds the mass of the black hole. At this point, there appears a 
naked singularity. The appearance of a naked singularity is forbidden 
according to the Cosmic Censorship Hypothesis (CCH). Hence charged 
black holes serves the purpose of making naked singularities through my 
suggested mechanism. 
 
 



 vi

In chapter five, I study the accretion of phantom energy onto a 
Schwarzschild black hole but taking the former to be represented by 
extended forms of Chaplygin gas. Our analysis is an extension of the results 
of [1] who used a linear equation of state for phantom energy. I discuss two 
cases of polytropic equation of state for phantom energy. 
 
In the sixth chapter, I study the same problem of the accretion of phantom 
energy on to a Schwarzschild black hole but assuming the former to be 
viscous. The presence of bulk viscosity in the dark energy can produce the 
affect of phantom energy (i.e. the equation of state becomes super-negative) 
and hence cause the accelerated expansion. The accretion mechanism of 
phantom energy is adapted from the fourth chapter. I will find that the mass 
of the black hole decreases faster in the viscous phantom case compared to 
the non-viscous one. Thus bulk viscosity plays a crucial role in the overall 
evolution of black holes. The origin of bulk viscosity is not clear and is 
purely ad hoc in the present context. 
 
In seventh chapter, we study the accretion of phantom energy onto a lower 
space dimensional black hole. An interesting finding is that the rate of 
change mass of this black hole is independent of its mass and depends only 
on energy density and pressure of the phantom energy. I also discuss some 
thermodynamical aspects of the accretion process. In particular, we find that 
the first and second laws of thermodynamics are violated. I then employ the 
generalized second law of thermodynamics. Assuming that the later law 
holds, it yields a condition on the pressure and mass parameters of the 
model. 
 
Finally in chapter eight, I conclude the thesis and present some open 
problems related to this work. 
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Chapter 1

Introduction

Astrophysical observations give mounting evidence that matter and energy in
the Universe are distributed neither uniformly nor clumped all over haphazardly.
Rather matter-energy is organized into more coherent structures of varying com-
plexity. Astrophysically, on the smallest scale, matter is clumped in the form of
dust clouds, planetoids, planets and stars while on the large scale, these stars are
grouped together in small clusters (containing a few thousand stars) or galaxies
(collections of billions of stars in addition to gas and dust). On a still larger scale,
galaxies form clusters and super-clusters and these super-clusters lie on enormous
filaments surrounding large voids. Hence it seems that the Universe is very much
organized on almost all scales as it contains well-formed structures. This poses a
problem of what physical mechanisms brought the Universe to such an organized
state. In other words, the formation and evolution of large scale structures is still
not well understood. Nevertheless, there is extremely strong evidence that long
ago the Universe was remarkably homogeneous. In this thesis I shall model the
Universe as if it was perfectly homogeneous and isotropic while noting that the
observations leading to my interpretation of an accelerating Universe with dark
energy could alternatively be explained by a non-homogeneous cosmology.

In this chapter, I will discuss the standard cosmological model based on the
Friedmann-Robertson-Walker (FRW) metric. I also discuss the implications of
the model in the present cosmic setting by analyzing the dynamics of dark energy.
The FRW model, based on Einstein’s general relativity, also has some drawbacks
in explaining the several observational features like extreme smoothness of cosmic
microwave background, presence of dark matter and recent cosmological acceler-
ation. In the end, I will provide a brief review of well-known black hole solutions
for further use in this thesis.
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I shall use the following conventions and units: the signature of the un-
derlying metrics will be (−, +, +, +), unless otherwise mentioned. The Planck
mass and the reduced Planck mass will be represented by mpl = (

√
G)−1 and

Mpl = (
√

8πG)−1 respectively, and having taken c = ~ (= h
2π

) = 1. Here G

is Newton’s gravitational constant, c is the speed of light and h the Planck’s
constant. The above constants are related as κ2 = 8πG = 8πm−2

pl = M−2
pl .

1.1 Basics of cosmology

1.1.1 Friedmann-Robertson-Walker Universe

In 1917, Einstein applied his field equations to cosmology [2] and realized to his
astonishment, that in general the field equations yield a dynamical Universe. To
Einstein this could not be correct so he inserted a term, now called the cosmolog-
ical constant term, denoted by Λ, into the equations. The equations now yielded
a static Universe, in agreement with Einstein’s beliefs. However, later it was ob-
servationally verified that the Universe was actually expanding, the Universe was
indeed dynamical. This was shown by Edwin Hubble in 1929 [3], and Einstein
had to withdraw his cosmological constant. Later, Einstein called the inclusion
of the cosmological constant ‘the biggest blunder of his life’. By including the
cosmological constant, he produced what he thought was correct, but in this
process failed to be the first to realize that the Universe was expanding. But
his ‘blunder’ was not really as big a blunder as he thought; newer observational
facts, have shown that a cosmological constant most probably is present and can
be interpreted as representing a Lorentz-invariant vacuum energy with constant
density. From the particle physics point of view the cosmological constant nat-
urally arises as an energy density of the vacuum (discussed in detail in section
1.4.2). The cosmological constant turns out to be a measure of the energy density
of the vacuum - the state of the lowest energy.

The Einstein field equations (EFE) with cosmological constant term are

Rµν −
1

2
gµνR + Λgµν = 8πGTµν . (1.1.1)

Here Rµν is the Ricci tensor, R is the Ricci scalar obtained by the contraction of
the Ricci tensor as R = gµνRµν , and gµν is the metric tensor. The cosmological
constant is a dimensional parameter with units of (length)−2. The aim was to
explain the static model of the Universe; the negative pressure induced by the
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cosmological constant could cancel the equal gravitational pull of the matter
keeping the matter distribution in a spherically symmetric form. This idea was
in consonance with Mach’s principle of inertia which forbade the notion of empty
space. But later Friedmann [4] and Lemaitre [5] presented solutions of the EFE,
giving expanding Universe scenarios which was later endorsed and observed by
E.P. Hubble in the late 1920s [3].

From (1.1.1), one can also write

Rµν − Λgµν = 8πG(Tµν −
1

2
Tgµν), (1.1.2)

where I have used 8πGT = −R+4Λ which is obtained by taking trace of (1.1.1).
The spacetime metric that satisfies the requirements of homogeneity and isotropy
is given by the Friedmann-Robertson-Walker (FRW) spacetime

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
. (1.1.3)

The above metric is written in ‘co-moving coordinates’ where a(t) is the scale
factor that determines the scale of the expansion of the Universe. Here k > 0,
k = 0 or k < 0. All of the homogeneous and isotropic Universe models may be
represented by this line-element. For k > 0 the spatial surfaces have constant
positive curvature and are usually called closed models. For k = 0 the spatial
surfaces are Euclidean and are called flat models. Lastly, for k < 0 the spatial
surfaces have constant negative curvature and are called open models.

The geometrical view of the FRW Universe is conveniently obtained by the
following substitution

χ∫
0

dr√
1− kr2

= fk(χ) =


sin−1 χ k = +1

χ k = 0

sinh χ k = −1.

(1.1.4)

Substituting (1.1.4) in (1.1.3) gives

ds2 = −dt2 + a2(t)[dχ2 + f 2
k (χ)(dθ2 + sin2 θdφ2)]. (1.1.5)
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The components of the Ricci tensor are

R0
0 = 3

ä

a
, (1.1.6)

Ri
j =

( ä

a
+ 2

ȧ2

a2
+ 2

k

a2

)
δi
j, (1.1.7)

while the Ricci scalar is
R = 6

( ä

a
+

ȧ2

a2
+

k

a2

)
. (1.1.8)

The stress energy tensor, T µ
ν determines the matter distribution in spacetime. I

consider the perfect fluid approximation for the matter filling the FRW spacetime
given by

T µ
ν = (ρ + p)uµuν − pδµ

ν , (1.1.9)

where uµ is the fluid co-moving four velocity (i.e. the reference frame in which the
fluid is at rest) specified by uµ = (1, 0, 0, 0). Note that in general, the rest frame is
uµ = (

√
|g00|, 0, 0, 0). The fluid approximation holds quite well for the observable

Universe where individual galaxies and clusters of galaxies mimic microscopic
fluid particles on the grand scale. Therefore the field equations with the inclusion
of cosmological constant are

H2 ≡
(

ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
, (1.1.10)

ä

a
= −4πG

3
(ρ + 3p) +

Λ

3
. (1.1.11)

The effective gravitational energy is given by ρ+3p as the pressure also contributes
to gravitation. Note that p < −ρ/3 implies repulsive gravitation. Equation
(1.1.10) is commonly called the Friedmann equation while (1.1.11) is sometimes
termed the Raychaudhri equation [6]. Note that accelerated expansion of the
Universe ä > 0 can be obtained if ρ+3p < 0. Here H = H(t) is called the Hubble
parameter which determines the expansion rate of the Universe. Its current value
is called the Hubble constant, denoted by Ho. According to observations of
supernovae of type Ia, it is estimated that [8, 9, 10]

Ho = 72± 8 km/s/Mpc. (1.1.12)

Generally the uncertainty in the determination of its value is customarily defined
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by introducing another parameter h as

Ho = h× 100 km/s/Mpc, (1.1.13)

where h = 0.72± 0.08 is the uncertainty factor. The Hubble parameter was first
introduced by Edwin Hubble to model the recessional velocities of galaxies [3].
He found on the basis of empirical findings, a linear relationship between the
recessional velocity v of a galaxy and its corresponding distance r from us. The
relation is

v = cz = Hor, (1.1.14)

called the ‘Hubble Law’. Note that this law is valid for small redshift values.
Here z is the cosmological redshift (which is different from the Doppler redshift)
parameter described by the ratio of the stretching of the wavelength to the original
wavelength λo of the incoming light from the distant source i.e.

z =
λ− λo

λo

, (1.1.15)

or
1 + z =

λ

λo

=
ao

a(t)
. (1.1.16)

This result was observationally obtained in 1929 and was taken as evidence for an
expanding Universe. Until then many physicists had believed that the Universe
was static. However, after the observational evidence for a dynamic Universe
was put forward, they had to admit that this was not the case. The Universe is
dynamic and is in a state of expansion.

(1.1.10) and (1.1.11) apparently show that Λ contributes positively to the
total pressure and hence it induces a repulsive effect (note that a negative Λ < 0

produces attractive effect). To obtain Einstein’s static Universe, I set H = 0 and
ä/a = 0 in the above two equations to get

ρ = −3p =
3

8πG

k

a2
. (1.1.17)

This equation shows that either ρ or p has to be negative to keep the Universe
static. Moreover if ρ + 3p < 0, then it yields the expanding solution of the
Universe, which is why Einstein considered the above solution to be invalid and
so added the cosmological constant term in his field equations. For a static
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Universe, using p = 0, one obtains

ρ =
Λ

4πG
, Λ =

k

a2
. (1.1.18)

Since ρ > 0, one requires Λ > 0. This further implies k = +1, representing a
spatially closed Universe of the radius of curvature a = 1/

√
Λ. Moreover all the

energy density is contained in the parameter ρ. The corresponding metric will be
specified as

ds2 = −dt2 +
dX2

1− ΛX2
+ R2(dθ2 + sin2 θdφ2), (1.1.19)

where X = ar, a is the scale factor and r is a dimensionless parameter that
replaces the radial coordinate. From the consideration of the field equations it
was obvious that for any small perturbation different in the static configuration
the perturbation would only magnify itself, eventually leading to the Universe
to collapse on itself due to over-density of the matter. This Universe model is
considered unstable and unphysical.

The Einstein field equations with cosmological constant also yield an exotic
solution representing an empty Universe, the so-called the de Sitter Universe [11]
obtained by taking a positive Λ as the energy-matter source. (A negative Λ gives
the anti-de Sitter Universe.) The field equation (1.1.10) gives

ȧ2 −$2a2 = −k, (1.1.20)

where $2 ≡ Λ/3. The last equation yields solutions

a(t) =


√

k
$

cosh$t, k = +1,

e$t, k = 0,√
|k|

$
sinh$t, k = −1.

(1.1.21)

This solution has no singularities for any value of k or t i.e. finite a(t), however
minimum values of a(t) can be obtained for the three cases: when k > 0, the
minimum lies at t = 0, it also gives a bouncing solution at t = 0 i.e. contraction
phase followed by expansion; while for k = 0, the minimum value of a(t) is
obtained only when t → −∞; and finally for k < 0, a coordinate singularity is
obtained at t = 0.
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The de Sitter metric can also be written in terms of spherical coordinates as

ds2 = −(1−H2r2)dt2 +
dr2

1−H2r2
+ r2(dθ2 + sin2dφ2). (1.1.22)

It is obvious that rs ≡ 1/H makes the metric singular. Note that in these
coordinates, the parameter r has dimensions of length hence the above remark is
seen more easily in these coordinates. Contrary to a black hole horizon, a light
signal can be sent outside the horizon rs but no light signal can be received from
the outside.

Evolution in the FRW Universe

The most studied cosmological model is based on a widely accepted hypothesis
that the observable Universe is spatially homogeneous and isotropic on large
scales. Here the scales are of the order of hundreds of megaparsecs (1Mpc∼
106 pc). It is called the weak ‘cosmological principle’. This principle is the
generalized Copernican principle. Copernicus had said that the Earth is not at
the center of the Universe. The generalization says there is no preferred center of
the Universe. In other words, there is no special point in the Universe. Isotropy
implies that there is no special spatial direction in the Universe, the galaxies are
evenly distributed in different angular directions at large scales, hence isotropic.
The equations of motion corresponding to FRW spacetime are

H2 =
8πG

3
ρ− k

a2
, (1.1.23)

ä

a
= −4πG

3
(ρ + 3p). (1.1.24)

An equation relating the energy, the pressure and the scale factor is required
to complete the above system i.e. (1.1.23) and (1.1.24). The energy-momentum
tensor has to be divergence-free which signals the conservation of energy. The
energy conservation equation (or the continuity equation) corresponding to the
FRW is obtained by T µν

;ν = 0 to get

ρ̇ = −3H(ρ + p). (1.1.25)

(1.1.23) can alternatively be written as

Ω− 1 =
k

(aH)2
, (1.1.26)
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where Ω = ρ/ρcr is the dimensionless density parameter and ρcr = 3H2/8πG is
the critical density and its value approximately is 2× 10−26 kg/m3. The matter
distribution determines the spatial geometry of the Universe i.e.

Ω > 1 ⇔ k = +1, (1.1.27)

Ω = 1 ⇔ k = 0, (1.1.28)

Ω < 1 ⇔ k = −1. (1.1.29)

A Universe with Ω > 1 (total density is more then the critical density) will expand
to a maximum size. After that it will start contracting and will end up in a Big
Crunch. A Universe with Ω < 1 (total density is less than the critical density)
will expand forever and with ever increasing speed and a Ω = 1 (total density
just equal to the critical density), will expand forever with an expansion rate less
than that of Ω < 1. See Fig. 1.1

Note that there are two independent equations (1.1.23) and (1.1.24) for three
dependent variables p, ρ and a(t). To solve these equations, another equation
relating pressure and the density, commonly called the equation of state (EoS) is
needed. The simplest choice is

p = ωρ. (1.1.30)

Here ω is a constant called the EoS parameter. There are three widely accepted
constituents of the Universe i.e. matter, radiation and the vacuum energy.

Astrophysical and cosmological observations of supernova of type Ia, cosmic
microwave background and the distribution properties of the large scale structures
[6, 8, 9, 12, 13, 14] show that the observed Universe is spatially flat. Hence I shall
assume a flat Universe model (k = 0) from here onwards unless otherwise stated.

Thus from the equations (1.1.23), (1.1.25) and (1.1.30), one gets

H =
2

3(1 + ω)(t− to)
, (1.1.31)

a(t) = ao(t− to)
2

3(1+ω) , (1.1.32)

ρ = ρoa
3(1+ω). (1.1.33)

Here ρo is the energy density at time to. Generally matter is assumed to be
pressureless i.e. p = 0 or ω = 0, (1.1.32) and (1.1.33) yield

ρ ∼ a−3, a ∝ t2/3. (1.1.34)
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Figure 1.1: Evolution of the Universe (scale factor vs time) for different choices
of curvature parameter k. For k = −1, the Universe is spatially open and expand
forever (hyperbolic spacetime). k = 0 corresponds to spatially flat Universe and
it also expands forever. However k = +1 is spatially closed Universe having finite
age and it ends up in a Big Crunch. Recent astrophysical observations indicate
that the observable Universe is spatially flat.
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Thus the density of matter falls as the volume of the Universe increases. For
radiation ω = 1/3, (1.1.32) and (1.1.33) yield

ρ ∼ a−4, a ∝ t1/2. (1.1.35)

Thus the density of radiation falls one scale factor faster compared to matter den-
sity. Further, for any exotic vacuum energy with ω = −1 (cosmological constant
as its density remains constant and pressure is negative), one gets

ρ = ρo, a ∝ eHt. (1.1.36)

Thus the energy density (and hence the pressure) of cosmological constant re-
mains unchanged as the Universe expands.

1.1.2 History of the Universe

The problem regarding the origin of the observable Universe is still an open puzzle
in quantum cosmology [15]. The problem arises since almost all cosmological
models (with the exception of the steady state model) predict infinitely high
temperatures and densities at the moment of the origin. That particular moment
is commonly called the ‘Big Bang’. The origin of the Universe from a Big Bang
singularity requires a deeper understanding of the structure of spacetime near the
Planck scale. A theory of quantum gravity, which is as yet not developed, may
explain the Big Bang puzzle. For the time being it can be anticipated that the
known physical Universe originated from a Big Bang singularity at some time,
which can be taken as t = 0 (by choosing t0 = 0 in (1.1.32)). At the Planck scale,
10−43 sec, quantum effects dominate and the dynamics are to be explained by
a theory of quantum gravity. There are several candidates of quantum gravity
including string theory, twistors, canonical quantization, loop quantum gravity,
causal sets and Hawking’s no-boundary proposal, to name a few. However there
are several problems with each of these. At this time, the Universe was filled with
a plasma of relativistic elementary particles, including mainly quarks, leptons and
gauge bosons. It is generally conjectured that the four forces of nature (strong,
weak, electromagnetism and gravity) were unified at that time. As quantum
effects dominate at this small scale, it might be guessed that spacetime was in
a state of chaotic fluctuation. In that case time was not well-defined and the
topology of spacetime could not be defined.
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If the Universe at t = 1s had a temperature of T = 1010 K, say, then the
temperature would have dropped by a factor of 10 to T = 109 K at t = 100 sec.
The initial Universe was a hot Universe dominated by radiation. However, today
the Universe is more dominated by matter (dust) than radiation. The transition
from a radiation to a dust dominated model, is believed to occur around t =44,000
years. Since this time, the dynamics of the Universe has been driven by matter
and vacuum energy. As the temperature of the radiation cooled it reached a point
where it did not have enough energy to keep the atoms ionized. At around t =
400,000 years matter and radiation decoupled. During the period before this time
the radiation was thermalized and in thermal equilibrium with the matter. But
at this point, the free electrons could bind to a nucleus and form a neutral atom.
Hence, the first atoms in the Universe were created about 400,000 years after the
Big Bang. The photons moved freely after this time as there were no free electrons
available for Compton-scattering. Effectively, the Universe became transparent.
This time in the history of the Universe is called the recombination era. These
photons are what make out the cosmic microwave background radiation (CMB).
Today the cosmic microwave background radiation has a temperature of about
2.7 K but the radiation was emitted approximately 300,000 years after the Big
Bang at a temperature of T=3,000 K. Hence, this radiation is the relic of the
Universe, when it was only 300,000 years old.

1.1.3 Some problems in cosmology

Modern cosmology has achieved several successes in explaining various aspects
of the Universe. Together with nuclear physics, particle physics and quantum
theory, it has successfully explained the formation of light chemical elements,
the origin of structures (galaxies and galaxy clusters) and the origin of CMB, to
name a few. But there are still some open problems in cosmology which are big
challenge for cosmologists. I discuss some of them below.

Horizon problem

The horizon problem originates with the observation of extreme isotropy of the
CMB. The CMB data indicates that the radiation is very much like the black
body radiation and can be represented by the Planck distribution. It implies
that the radiation had been in thermal equilibrium in the past and experienced
thermal contact with the matter component. Nevertheless, the CMB data shows
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that the radiation coming out from the surface of last scattering from two opposite
directions could not have thermal contact because the particle horizon of each
photon in the last scattering surface covers only a small patch of the sky. The size
of the particle horizon at the time of decoupling can be determined as follows.
Consider the volume of the particle horizon Vph at the time of decoupling

(Vph)d =

(
td
to

)3

Vo, (1.1.37)

where td and to are the time of decoupling and the present time, respectively
while Vo is the current horizon volume. Events inside the particle horizon are in
causal contact with each other, thus the radiation and everything else inside the
(Vph)d had been in thermal contact and thermal equilibrium.

Let us introduce the magnitude of Vo at the time of decoupling (Vo)d, thus

(Vo)d =
a3(td)

a3(to)
Vo =

(
td
to

)2

Vo. (1.1.38)

Comparing the last two equations gives

(Vph)d

(Vo)d

=
td
to

. (1.1.39)

Using the approximated values td = 3 × 105 years and to = 15 × 109 years, one
obtains the horizon size at the time of decoupling was merely a small patch 2×10−5

of the observable part of our Universe, thus representing a horizon problem.

Flatness problem

The flatness problem naively asks why Ωtot is so close to unity or why the spatial
curvature k is almost zero. Quantitatively, from the first FRW equation,

Ωtot − 1 =
k

aH2 =
k

ȧ2
= Ωk. (1.1.40)

If Ωtot is a constant equal to unity, it will remain that forever. However if it is a
variable then it will evolve as Ωtot(t): In matter dominated phase, |Ωtot−1| ∝ t2/3

while in the radiation dominated phase, it will |Ωtot − 1| ∝ t. Using this last
relation, one can estimate at the time of Big Bang nucleosynthesis, |Ωtot − 1| ∼
10−16 while near the Planck time, the difference was |Ωtot−1| ∼ 10−60. Therefore
some rational explanation is required to justify such an exquisite balance. This
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discussion implies that the Universe started in a state of spatial flatness.

Cosmic coincidence problems

Another puzzle in the standard cosmological model is the coincidence problem
or the ‘why now?’ problem. Briefly put, if Λ is tuned to give ΩΛ ∼ Ωm today,
then for essentially all of the previous history of the Universe, the cosmological
constant was negligible in the dynamics of the expansion, while for the indefinite
future, the Universe will undergo a de Sitter-type expansion with ΩΛ near unity
and all other components negligible. However the present Universe is not entirely
de Sitter type and has other components like matter and radiation. The present
epoch is then very special time in the history of the Universe, the only period when
ΩΛ ∼ Ωm [16]. In the standard FRW model, both matter and dark energy evolve
independently, thus ρm ∝ a−3 and ρΛ ∝ a−3(1+ωΛ). Therefore the two densities
are related as ρΛ ∝ ρma−3. In order to solve the coincidence problem, ρΛ ∝
ρm is required. Hence the standard cosmological model may require sufficient
modification to solve different problems.

One way to attempt to resolve this problem is to proceed with some kind
of scaling relation like ρm/ρΛ = rm and study its dynamics under a constraint
equation rm(t = t0) = 1. The corresponding solutions are called scaling solutions
and they have provided a natural solution to the cosmic coincidence problem.
The cosmic coincidence problem states: why the cosmic acceleration is so recent
or in my presence? Also why the two energy densities of vacuum energy and the
matter are so closely comparable at the present time/epoch? In an investigation,
Dodelson et al [17] have proposed that the dark energy has periodically dominated
in the past so that its preponderance today is natural.

Fine tuning problem

The fine tuning problem asks why is the energy density today so small compared
to typical particle physics scale? If Ωm ∼ 0.3 today the missing energy density is
of order 10−47GeV 4, which appears to require the introduction of a new mass scale
14 or so order of magnitude smaller than the electroweak scale. The transition
from the earlier matter dominated phase to the current dark energy dominated
requires fine tuning of density parameters [18].
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The matter energy density is related to the redshift parameter z as

ρm(z) = (1 + z)3ρmo, (1.1.41)

where ρmo is the current matter density. In standard FRW model

t(a) =

a∫
0

da′

a′H(a′)
=

a∫
0

da′

Ho

√
Ωma′−1 + ΩΛa′2

, (1.1.42)

where
a =

1

1 + z
(1.1.43)

for z = 0 at current time, ao = 1. Taking Ωm ≈ 0.3, and ΩΛ ≈ 0.7 for today,
a relationship between the energy density of dark energy to the current matter
density is

ρΛ =
ΩΛ

Ωm

ρmo ≈ 2.33ρmo. (1.1.44)

Therefore the dark energy occupies more then two times the normal matter den-
sity in the observable Universe. One can also obtain the redshift corresponding
the transition, using (1.1.16) and (1.1.23)

1 + ztr =

(
2ΩΛ

Ωm

)1/3

≈ 1.67 (1.1.45)

More precisely from the observational point of view, it is 1 + ztr = 1.46 + 0.13.
To determine the age of the Universe, we substitute the following in (1.1.23),

x ≡ a =
1

1 + z
, (1.1.46)

to obtain

t(z) =

t∫
0

dt = H−1
o

1
1+z∫
0

dx√
Ωmx−1 + ΩΛx2

. (1.1.47)

Using H−1
o ≈ to (current age of the Universe) and z ≈ 0.6, one obtains ttr ∼ 7.14

Gyr, showing that the transition time is not that older than the total age of the
Universe. However, this estimate for transition time is very crude because the
energy density of radiation is ignored.

I would like to mention here that several important problems in cosmology are
not discussed here due to their irrelevance like the entropy problem, monopole
problem and topological defects, matter- anti-matter asymmetry etc.



17

1.1.4 Cosmological inflation: a possible solution to cosmic
puzzles

A solution to these cosmological problems was suggested by Alan Guth in 1981
[19] by introducing the so-called inflationary model of the Universe. Another
motivation to discuss inflation here is that this rapid expansion was driven by
the vacuum energy (dark energy) of the ‘false vacuum’ (i.e. local minimum of
the potential function) which interestingly has more energy than the ‘true vac-
uum’ (i.e. global minimum of the potential function). Let us first sketch the
basic idea behind inflation. The fundamental idea is that the Universe under-
goes exponential accelerated expansion, at some time in the past i.e. ä > 0 and
a(t) ∼ eHt. It is assumed that the driving force behind inflation was some sort
of dark energy, which satisfies p = −ρ (or a cosmological constant). Generically
it is thought to occur closer to the GUT scale (∼ 1016 GeV). Due to this rapid
expansion, small regions of the Universe expanded quickly to much larger sizes,
thereby diminishing any spatial curvature and making the Universe flat. The
size of the horizon apparently increased indefinitely and topological defects (in
particular magnetic monopoles) produced as a result of phase transitions were
diluted. Cosmic inflation later on also produced density fluctuations which lead
to structure formation.

The vacuum energy density is represented by a scalar field (or an inflaton
field) with the Lagrangian density given by

LΦ =
1

2
gµν∂µΦ∂νΦ− V (Φ), (1.1.48)

where V (Φ) is the potential energy. The action integral is

S =

∫
d4x
√
−gLΦ, (1.1.49)

where g is the determinant of the metric tensor. The corresponding energy mo-
mentum tensor is

TΦ
µν = ∂µΦ∂νΦ +

1

2
(gσγ∂σΦ∂γΦ)gµν − V (Φ)gµν . (1.1.50)

The lowest energy density of the scalar field is obtained if the kinetic (or the
gradient) term vanishes i.e. ∂µΦ = 0 and that the potential is at the minimum
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V (Φmin). Hence from (1.1.50) one gets

T vac
µν = −V (Φmin)gµν = −ρvacgµν , (1.1.51)

which is the Lorentz invariant form of the vacuum energy (the cosmological con-
stant). The dark energy may also be considered as a perfect fluid with the
equation of state

pvac = −ρvac (1.1.52)

The equation of motion of the scalar field is

Φ̈ + 3Hφ̇ + V ′(Φ) = 0. (1.1.53)

The scalar field Φ is not itself a physically observable quantity but in the flat
Friedmann model, it is related to the pressure and the energy density parameters
as

ρ = −T 0
0 =

1

2
Φ̇2 + V (Φ), p = T i

i =
1

2
Φ̇2 − V (Φ). (1.1.54)

Thus Friedmann equations becomes

H2 =
κ2

3

[
1

2
Φ̇2 + V (Φ)

]
, (1.1.55)

ä

a
= −κ2

3

[
Φ̇2 − V (Φ)

]
. (1.1.56)

Note that κ2 = 8πG. Inflation will take place if the slow roll approximation is
satisfied i.e. neglecting the Φ̈ in (1.1.53) and neglecting the kinetic energy of Φ

compared to the potential energy [20]. Hence the scalar field dynamical equation
and the first Friedmann equation becomes

Φ̇ ' −V ′(Φ)

3H
, (1.1.57)

H2 ' κ2

3
V (Φ). (1.1.58)

Here prime denotes differentiation w.r.t. Φ. Differentiating the previous equation
and using the value of Φ̇ gives

Φ̈ = −V
′′
Φ̇

3H
+

ḢΦ̇

H
. (1.1.59)
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Now using (1.1.57) and (1.1.58) yields

φ̈ = (−η + ε)Hφ̇, (1.1.60)

where the slow roll parameters are defined as

ε ≡
M2

p

2

(
V ′

V

)2

, (1.1.61)

η ≡ M2
p

V ′′

V
. (1.1.62)

These parameters will give the slow roll approximation if the slow roll conditions
|ε| � 1 and |η| � 1, are satisfied. It can easily be seen that the slow roll
conditions indeed yield inflation by ä/a > 0. One can write

ä

a
= Ḣ + H2, (1.1.63)

so that inflation will occur when

Ḣ

H2
> −1. (1.1.64)

Under slow roll, it becomes
Ḣ

H2
' −ε, (1.1.65)

which is small, hence inflation ensured i.e. the Hubble parameter changes very
slowly during inflation.

The number of e-foldings during inflation is

N = ln

(
af

ai

)
, (1.1.66)

where ai and af are the initial and final values of the scale factor. In the slow
roll approximation, the potential is almost constant in time and therefore the
parameter H is also constant. Then the number of e-foldings is given by

N =

tf∫
ti

Hdt. (1.1.67)
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Since dt = −(3H/V ′)dΦ, thus the last equation gives

N = − 1

M2
p

Φf∫
Φi

V

V ′dΦ. (1.1.68)

Numerical value of N turns out to be 60 [15].
The mechanism of cosmological inflation is introduced here since it was driven

by the vacuum energy much like that for present accelerated expansion.

1.2 Dark energy

Numerous astrophysical and cosmological observations of supernovae of type Ia
[8, 9], Wilkinson Microwave Anisotropy Probe (WMAP) data of the CMB [21],
Sloan Digital Sky Survey (SDSS) of the extragalactic Universe [14] and X-ray [22]
have shown that the observable Universe is undergoing an accelerated expansion.
The type Ia supernova is one of the most powerful tool to probe the expansion rate
of the Universe. The type Ia supernova is a burst of a white dwarf star which just
reaches the Chandrasekhar limit (1.4 solar mass) due to accretion of matter from
its neighboring binary normal (main-sequence) star and then explodes. These
supernovae have the same local luminosity since they have roughly the same mass
and explosion process. They can serve as ‘standard candles’ in the Universe. A
sample of type Ia supernovae will generate a diagram of Hubble parameter versus
distance, through which the information of the expanding velocity in the history of
the Universe is obtained. In 1998, two independent teams found that the Universe
is accelerating using the observational data of these supernova [8, 9]. I assume that
the present evolution is well described by the general relativity theory with the
FRW spacetime and the source of gravity is matter in perfect fluid form. Since
any normal matter (baryons and radiation) cannot manifest this phenomenon,
it can be proposed that some mysterious ‘dark energy’ is responsible. When
dark energy is incorporated in the FRW equations, then the structure of the
field equations might be modified. Theoretically, there are many candidates to
explain accelerated expansion (to be discussed later in next section), yet there
are inherent problems in each of them. One of the problems is to determine
the equation of state parameter for dark energy ωΛ. Observations suggest that
−1.38 < ωΛ < −0.82 is not a constant but possesses a parametric form [23].
Another problem is to explain the phantom divide i.e. the transition from the
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quintessence to the phantom regime. Another unresolved problem is to explain
why the energy densities of matter and dark energy are almost of the same order
of magnitude, at same time.

Thermodynamic studies of dark energy show that a dark energy dominated
Universe will become increasingly hotter [24], while other studies show that phan-
tom dominated Universe possess negative temperature. The same study suggests
that dark energy particles can be only massless bosons. There is also an at-
tempt to describe the accelerated expansion without invoking the dark energy
i.e. ΩΛ = 0 [25]. In this model, the dark energy phenomenon is explained by
some form of particle creation process out of gravitational field.

An explanation of accelerated expansion is to assume a quantum field theoretic
vacuum energy ρΛ (or ρvac) or any other dark energy agent/fluid having positive
energy density and negative pressure satisfying pvac < −ρvac/3. If dark energy
exists then its magnitude is certainly close to the cosmological energy density
i.e. ρcr ≈ 4 × 10−47GeV 4, which essentially correspond to 70% to the total
cosmological energy density. From theoretical considerations (see section 1.4.2),
the value of ρvac is roughly 1050 − 10120 times higher then is deduced from the
empirical data. Thus the dark energy scenario poses three main problems:

1. Why the observed vacuum energy so small or why do all the contributions
to the effective cosmological constant term cancel each other up to a very large
number of decimal places?

2. Why vacuum energy density is comparable with the matter energy density?
In principle, this density should decline so the natural question is to ask why the
observed ratio ρm/ρvac ∼ 1?

3. If the agent behind causing this accelerated expansion is not vacuum energy
then what alternative source could be identified at least theoretically? or what is
causing the cosmic acceleration? or why is the acceleration happening during the
present epoch of the cosmic evolution? Is new physics required to explain this?

1.2.1 What is the vacuum?

Apparently vacuum is a state of emptiness or nothingness. In various branches
of theoretical physics, the state of vacuum is interpreted quite differently [26]:
In classical physics, vacuum corresponds to a state of a system without any
particle. In quantum physics, the vacuum is not an ‘emptiness’ rather a more
exquisite form of particle-antiparticle production and annihilation. In relativity,
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the vacuum corresponds to a space which is not curved, so-called Minkowskian
space. In cosmology, the notion of the vacuum and an associated concept of
vacuum energy is introduced to describe the mysterious ‘dark energy’, an energy
which induces negative pressure on the cosmological scale (i.e. on the length
scale greater than a billion light year) and causes accelerated expansion of the
Universe.

Recent astrophysical observations have shown convincingly that the energy
density corresponding to vacuum energy ΩΛ dominates in the Ωtot, the total
energy density of the Universe. Before the dark energy domination at a redshift
z ∼ 0.5, the Universe was undergoing decelerated expansion.

Ωtot = ΩΛ + Ωdm + Ωb + Ωγ. (1.2.1)

Here Ωdm is the density of dark matter; Ωb corresponds to density of baryons and
Ωγ, the density of photons or radiations. Their approximate values are [27, 28]

ΩΛ ≈ 0.73, Ωdm ≈ 0.27, Ωb ≈ 0.045, Ωγ ≈ 5× 10−5. (1.2.2)

In literature, several candidates of dark energy are considered including cosmo-
logical constant, quintessence, Chaplygin gas and phantom energy, to name a few.
I shall discuss these various alternatives in the coming subsections. A contrary
viewpoint to dark energy is presented by Wilshire [29, 30, 31] which suggests that
cosmic acceleration can be understood as an apparent effect, and dark energy as
a misidentification of those aspects of cosmological gravitational energy which by
virtue of the strong equivalence principle cannot be localized, namely gradients in
the quasi-local gravitational energy associated with spatial curvature gradients,
and the kinetic energy of expansion, between bound systems and the volume-
average position in freely expanding space. It should be noted that in this thesis,
I shall discuss dark energy in the former context.

1.3 Candidates of dark energy

1.3.1 Cosmological constant

The simplest candidate for dark energy is the cosmological constant which is so
called because its energy density is constant in time and space. As mentioned
earlier, the cosmological constant, was originally introduced by Einstein in 1917
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to achieve a static universe (see section 1.1 for details). After Hubble’s discovery
of the expansion of the universe in 1929, it was dropped by Einstein as it was no
longer required. From the point of view of particle physics, however, the cosmo-
logical constant naturally arises as an energy density of the vacuum. Moreover,
the energy scale of Λ should be much larger than that of the present Hubble
constant H0, if it originates from the vacuum energy density. This is the “cosmo-
logical constant problem” and was well known to exist long before the discovery
of the accelerated expansion of the universe in 1998.

There have been a number of attempts to solve this problem. An incomplete
list includes: adjustment mechanisms, anthropic considerations, changing grav-
ity, quantum gravity, degenerate vacua, causal sets, higher dimensional gravity,
supergravity, string theory spacetime foam approach and vacuum fluctuations of
the energy density (see [6] for a comprehensive review regarding these attempts).

Special relativity reduces to classical mechanics in the limit of slow speeds
v/c → 0 i.e. by setting c → ∞ or 1/c = 0. General relativity reduces to special
relativity if we have sufficiently low masses for the gravitational source. As M

appears only in the combination GM/c2, we can take G → 0 for the ‘special
relativity limit’. Further, by Dirac quantization procedure we know that the
classical limit for quantum theory is ~ → 0. If in any physical situation none of
these can be taken to be zero, we will need a consistent theory of quantum gravity.
If we construct dimensional quantities involving the above three constants of
nature,we can be sure that at those values quantum gravity cannot be ignored.

lp =
√

G~/c3 ∼ 10−33cm, Planck length,

tp =
√

G~/c5 ∼ 10−42sec, Planck time,

mp =
√

~c/G ∼ 10−5g, Planck mass.

Note that the above argument does not say that ‘quantum gravity effects start
at Planck scale’, only says ‘quantum gravity effects must have started by Planck
scale’.

Quantum field theory applied naively gives infinite probability for all fields
(even for electrodynamics). To get meaningful answers we re-normalize the vec-
tors of the Hilbert space. This re-normalization gives finite answers but modi-
fies the lowest approximation answers. Quantization of the Einstein-Hilbert La-
grangian generically yields a cosmological term related to the onset of quantum
gravity. The natural expectation is that it occurs at Planck scale and hence the
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vacuum cosmological energy density will ∼ mc2. Thus the vacuum energy den-
sity should be ∼ 1016erg/cc. The observed accelerated expansion of the Universe
corresponds to ∼ 10−9 erg/cc !

The similarity of the cosmological constant with the vacuum energy density
arises from the equivalence of the vacuum energy momentum tensor in (1.1.17)
with the cosmological term in (1.1.18). It is due to this fact many authors use
vacuum energy and cosmological constant interchangeably. Thus adding these
terms one gets the effective cosmological constant term as

Λeff

8πG
=

Λ

8πG
+ ρvac. (1.3.1)

From the quantum field theory point of view, the vacuum energy density arises
by the sum zero point energy density of all the harmonic oscillators as

ρvac =
1

2

∑
~ω (1.3.2)

A free quantum field can be considered as a collection of an infinite number of
harmonic oscillators in the momentum space. Incidently, the zero point vacuum
energy of all these oscillators will be infinite collectively. If however the high
momentum modes are ignored then

ρvac =
1

2

∞∫
0

d3k
(2π)3

√
k2 + m2

=
1

4π2

∞∫
0

dkk2
√

k2 + m2 (1.3.3)

where m is the mass of the quantum field and the above equation implies

ρvac ∝ k4. (1.3.4)

Assuming a cut-off scale the QFT in which the above integral is finite

ρvac '
k4

max

16π2
(1.3.5)

If one takes kmax = mpl = 1.22× 1019GeV , then

ρvac ≈ 1074GeV 4, (1.3.6)
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which is about 10121 order of magnitude larger than the observed value ρΛ =

Λ/4π ' 10−47GeV 4. Even if we take an energy scale of quantum chromodynamics
(QCD) for kmax, we obtain ρvac ≈ 10−3GeV 4, which is still much larger than ρΛ.
This problem was present even before the observational discovery of dark energy
in 1998. At that time most people believed that the cosmological constant was
exactly zero and tried to explain why it was so. The vanishing of a constant
usually implies the existence of some symmetry. In super-symmetric theories, for
example, the bosonic degree of freedom as its Fermi counterpart that contributes
to the zero-point energy with an opposite sign. If super-symmetry is unbroken,
there exists an equal number of bosonic and fermionic degrees of freedom such that
the total vacuum energy vanishes [7]. However it is known that super-symmetry
is broken at sufficiently high energies (around the scale 103 GeV). Hence the
vacuum energy is generally non-zero in the world of broken super-symmetry. The
origin of this vacuum energy could be a scalar field that comes after the quantum
gravity scale.

1.3.2 Quintessence

As discussed earlier, that Λ possesses ωΛ = −1; remains practically constant in
time i.e. static; having constant negative pressure and energy density and is also
spatially homogeneous. Quintessence is mathematically rich concept to describe
dark energy. It is represented by a time dependent and spatially heterogeneous
scalar field Φ which is minimally coupled to gravity. Its equation of state is
dependent on the redshift parameter ω(z), in particular, ω(z) > −1 and it also
evolves with time. The action for the quintessence is given by (1.1.49). From
(1.1.56), ä > 0 if Φ̇2 < V (Φ). The equation of state for the quintessence field is

ωΦ =
p

ρ
=

Φ̇2 − 2V (Φ)

Φ̇2 + 2V (Φ)
(1.3.7)

Thus the continuity equation becomes

ρ = ρo exp

[
−
∫

3(1 + ωΦ)
da

a

]
, (1.3.8)

where ρo is the constant of integration. Note that if ωΦ = −1, then it gives
ρ = const which corresponds to the slow roll limit i.e. Φ̇2 � V (Φ). Conversely
if Φ̇2 � V (Φ) then it implies ωΦ = 1 which yields ρ ∝ a−6. In general for
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−1 < ωΦ < 1,
ρ ∝ a−m, 0 < m < 6. (1.3.9)

The range 0 ≤ m < 2 corresponds to accelerated expansion of the Universe
as ωΦ = −1/3 is the border of acceleration and deceleration. The model of
quintessence has also been investigated in the context of ‘tracker field’, in which
the field Q rolls down a potential V (Q) according to an attractor-like solution
to the equations of motion [18]. The tracker solution is an attractor in the sense
that a very wide range of initial conditions for Q and Q̇ rapidly approach a
common evolutionary track, so that the cosmology is insensitive to the initial
conditions. The tracker field satisfies the similar equation as in (1.2.53). It has
also been demonstrated that quintessence field coupled with matter fluid can also
drive late cosmic accelerated expansion and simultaneously solve the coincidence
problem [32].

The dynamics of ω can be studied as follows: Differentiation of (1.1.23) w.r.t.
t and taking k = 0 yields

Ḣ = −4πG(ρ + p). (1.3.10)

Now using (1.1.23) and (1.3.4) yields

ω = −1− 2Ḣ

3H2
. (1.3.11)

For an accelerated Universe, ω < −1/3. When −1 < ω < −1/3, the Universe
is in quintessence phase and when ω = −1, it is dominated by the cosmological
constant. While for ω < −1, the Universe is in the phantom phase. For an
accelerating Universe, Ḣ > 0 while for a decelerating state, Ḣ < 0 is needed.
While for a cosmological constant dominated phase, Ḣ = 0. From theoretical
point of view, a justification to describe the transition from ω > −1 to ω < −1

or from Ḣ < 0 to Ḣ > 0 is needed.

1.3.3 Chaplygin gas

The dark energy can also be described by an interesting equation of state com-
monly called the Chaplygin gas given by

p = −X

ρ
(1.3.12)
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where X is a non-zero constant parameter which can be either positive or negative.
The Chaplygin gas was introduced by Chaplygin in constructing a model to study
the lifting force on a plane wing in aerodynamics [33]. It was first used in the
cosmological context by Kamenshchik et al [34]. With this equation of state the
continuity equation gives

ρ =

√
X +

Y

a6
, (1.3.13)

where Y is a constant of integration. In the asymptotic limit of the parameters,
the behavior of the density is

ρ ∼
√

Y a−3, a � (Y/X)1/6, (1.3.14)

ρ ∼ −p ∼
√

A, a � (Y/X)1/6. (1.3.15)

Therefore at sufficiently early times the Chaplygin gas behaves as pressureless
dust when a was small, while for large a the gas behaves like cosmological constant
leading to accelerated expansion. One can also calculate the kinetic and the
potential parts of the gas using (1.1.54) to get

Φ̇2 =
Y

a6
√

X + Y/a6
, (1.3.16)

V (Φ) =
1

2

[√
X + Y/a6 +

X√
X + Y/a6

]
. (1.3.17)

Several generalizations of Chaplygin gas has been proposed in the literature.
Each generalization leads to the inclusion of new parameters. It makes the corre-
sponding mathematics of the cosmological model much richer yet the model loses
its predictive power. A commonly studied extension of Chaplygin gas is termed
generalized Chaplygin gas (GCG) given by [35]

p = −X

ρα
, (1.3.18)

where α is a constant to be determined and constrained by the observations. Re-
cently it is proposed that the cosmological model based on Chaplygin gas coupled
with dust best fits with the latest supernovae data [36, 37, 38, 39]. Debnath [41]
proposed the most general form of the Chaplygin gas EoS by

p = Xρ− Y

ρα
. (1.3.19)
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p = −B(a)

ρα
, B(a) = Boa

n. (1.3.20)

The last equation was proposed by Yi et al [40]. Merging the last two equations
to get

p = Xρ− B(a)

ρα
, B(a) = Boa

n. (1.3.21)

Above α, n and X are constant parameters. Note that for X = 0, the general-
ized Chaplygin gas is obtained while B(a) = Bo yields the modified Chaplygin
gas. If α < 0, then it represents a polytropic equation of state. Analysis of
cosmic microwave background radiation data put constraints on its parameters
as −0.35 ≤ X ≤ 0.025 and −0.021 ≤ α ≤ 0.54 [42]. Another such investigation
by Bertolami et al [43] suggests that α > 1 with 68% confidence level. Ther-
modynamical evolution of MCG shows that it best fits with other cosmological
parameters if α = 1/4 and X = 1/3 [44]. It is also recently shown that stable at-
tractor solution for MCG exists at ω = −1 i.e. that the EoS of MCG approaches
it from the either ω > −1 or ω < −1, independent of the choice of its initial
density parameter and the ratio of pressure to critical density [45]. This result
suggests that the Universe would not end up in a Big Rip. However another
investigation suggests that phantom like Chaplygin gas (which violates the null
energy condition ρ+p > 0) yields a future singularity, which is different from the
Big Rip since it will occur for a finite value of scale factor [46], thus their model
supplied a dual singular model. Stability analysis of hybrid Chaplygin gas shows
that it can also explain the phantom crossing scenario [47].

Another extension of Chaplygin gas is the ‘new generalized Chaplygin gas’
and the ‘new modified Chaplygin gas’ [48], respectively

p = γρ− Ã

ρα
, α > 0. (1.3.22)

Here Ã = −ωAa−3(1+ω)(1+α), with A > 0 constant.

1.3.4 Phantom energy

Phantom-like dark energy (or simply phantom energy) possesses strong negative
pressure which can be simulated by a scalar field Φ with negative kinetic energy
term in the Lagrangian given by

LΦ =
l

2
∂µΦ∂µΦ− V (Φ), (1.3.23)
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here l = −1 corresponds to the phantom while l = +1 represents the standard
scalar field which represent the quintessence field, also V (Φ) is the potential. Con-
sidering the perfect fluid energy momentum tensor, the above Lagrangian gives
the following expressions for the energy density and the pressure respectively:

ρΦ =
l

2
Φ̇2 + V (Φ), ρΦ =

l

2
Φ̇2 − V (Φ). (1.3.24)

It results in the violation of the Null energy condition (NEC) ρΦ+pΦ = lΦ̇2 > 0, if
l = −1. Since the NEC is the basic condition, its violation yields other standard
energy conditions to be violated likewise Dominant energy condition (ρΦ > 0,
ρΦ ≥ |pΦ|) and the Strong energy condition (ρΦ+pΦ > 0, ρΦ+3pΦ > 0). Due to the
energy condition violations, it makes the failure of cosmic censorship conjecture
and theorems related to black hole thermodynamics. The prime motivation to
introduce this weird concept in cosmology does not come from the theory but
from the observational data.

The most striking property of phantom energy is that its energy density varies
as proportional to the power of the scale factor a(t) and hence grows as the
Universe expands (or as a(t) increases) hence

ρ ∝ a3|1+ω|, ω < −1. (1.3.25)

which is quite unlike the behavior of normal matter whose density decreases with
the growth of the Universe. Thus phantom energy presents a novel scenario of the
evolution of the Universe, causing a future singularity commonly called the ‘Big
Rip’. At the singularity, the energy density of the phantom energy will become
infinite and the scale factor shoot to infinity, all in a finite time [49]. Near
the imminent singularity, everything is pulled apart and disassociate into the
elementary particles. The phantom energy will destroy first the super-gigantic
structures like galactic clusters, then galaxies, solar system, atoms and nuclei.
Eventually at the Big Rip, even the very fabric of spacetime will be pulled apart.

The novel idea of Big Rip was proposed by Caldwell et al [50]. They asked a
question: why restrict our attention exclusively to ω ≥ −1? Earlier Caldwell [51]
called the matter with ω < −1 as the ‘phantom energy’. It was later proposed
that phantom energy can support the existence of wormholes (to be discussed
later). A Universe starts from the initial Big Bang singularity and ends up with
another Big Rip singularity. The prediction of the initial and the final singularity
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are consistent with the observations.
There is a considerable deal of scientific literature that suggests that Big Rip

may not be the necessary final outcome and can be avoided due to quantum
processes near the singularity. Such studies are performed with the inclusion
of back reaction effects in the calculations. One study by Baushev [52] shows
that the phantom field will decay into matter near the Big Rip singularity. As
the ripping effect of the phantom energy get stronger, the stretching of quark
and anti-quark (qq̄) pair increase the potential energy which will be sufficient to
produce another such pair. This stretching effect will proceed in every qq̄ pair.
This pair production will eventually lead to a matter dominated Universe again,
thus Big Rip will be avoided with the formation of matter. In this particular
model which mimics a cyclic cosmology, there are no cosmological singularities
since closer to each such event, matter production takes the lead. In another
scenario, it is suggested that phantom fields can decay into one or more phantom
particles in addition to ordinary matter particles [53].

In another investigation of phantom energy with the use of phantom scalar
field dynamics [55], it is shown that infinite energy density of the phantom field (a
consequence of Big Rip) depends on the parameter α in the power-law potential
V (Φ) ∼ Φα. If α ≤ 4, than ρ → ∞ for t → ∞. Also ρ → ∞ in a finite time if
α > 4.

In this thesis, I will consider dark energy as a homogeneous and isotropic fluid.
In this way, we can characterize the dark energy by an equation of state which
parameterizes homogeneous pressure and energy density. However if dark energy
is essentially a scalar field, then the strong curvature near the black hole induces
inhomogeneity in dark energy. It is expected that in this case the accretion of
phantom energy on to the black hole would be somewhat different.

Any viable cosmological model must explain the phantom crossing (ωde = −1)
or the phantom divide i.e. the transition of dark energy parameter ωde > −1 to
ωde < −1. This problem originates from the observational data which suggests
that ωde is not a constant but varies over cosmological times. The two stages
of evolution are described separately by quintessence field and the phantom field
which correspond to ωde > −1 and ωde < −1 respectively. The phantom transition
cannot be described by a single (quintessence or phantom) scalar field alone.
However this problem can be avoided by invoking a two-scalar field model and
connecting them in a single Lagrangian [56, 57]. This model is termed the quintom



31

model, a merger of two words quintessence and phantom. Alternatively, one may
consider single scalar field decomposed into two fields, quintessence and phantom,
such that one field dominates at one instant while the other remains negligible
[58, 59, 60]. Both of these considerations have gathered much interest in recent
years since these explain the phantom crossing scenario.

For the sake of completeness, I would also mention some other possible can-
didates for dark energy: interacting dark energy-dark matter model [61, 62] age-
graphic dark energy [63, 64], holographic dark energy [65, 66], tachyons [67] and
K-essence [68] etc. I will not discuss these further due to their irrelevance for the
present work.

1.4 Luminosity distance

There are several ways of measuring distances in the expanding universe. For
instance one often deals with the co-moving distance which remains unchanged
during the evolution and the physical distance which scales proportionally to the
scale factor. An observationally relevant way of defining a distance is through the
luminosity of a stellar object. The distance dL known as the luminosity distance,
plays a very important role in astronomy including supernova observations.

In Minkowski spacetime, the absolute luminosity Ls of the source and the
energy flux F at a distance d is related through F = Ls/(4πd2). By generalizing
this to an expanding universe, the luminosity distance, dL, is defined as

d2
L ≡

Ls

4πF
. (1.4.1)

Let us consider an object with absolute luminosity Ls located at a coordinate
distance χs from an observer at χ = 0. The energy of light emitted from the object
with time interval ∆t1 is denoted as ∆E1, whereas the energy which reaches at the
sphere with radius χs is written as ∆E0. Note that ∆E1 and ∆E0 are proportional
to the frequencies of light at χ = χs and χ = 0, respectively, i.e. ∆E1 ∝ ν1 and
∆E0 ∝ ν0. The luminosities Ls and L0 are given by

Ls =
∆E1

∆t1
, L0 =

∆E0

∆t0
. (1.4.2)
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The speed of light is given by c = ν1λ1 = ν0λ0, where λ1 and λ0 are the wave-
lengths at χ = χs and χ = 0. Then, from (1.1.16) one finds

λ0

λ1

=
ν1

ν0

=
∆t0
∆t1

=
∆E1

∆E0

= 1 + z. (1.4.3)

Combining the last two equations gives

Ls = L0(1 + z)2. (1.4.4)

The light traveling along the χ-direction satisfies the geodesic equation ds2 =

−dt2 + a(t)2dχ2 = 0. One obtains

χs =

χs∫
0

dχ =

t0∫
t1

dt

a(t)
=

1

a0H0

z∫
0

dz′

h(z′)
, (1.4.5)

where h(z) = H(z)/H0. From the FRW metric, the area of the sphere at t = t0

is given by S = 4π(a0fk(χs))
2. Hence the observed energy flux is

F =
L0

4π(a0fk(χs))2
. (1.4.6)

Substituting (1.4.5) and (1.4.6) in (1.4.1), the luminosity distance in an expanding
universe:

dL = a0fk(χs)(1 + z). (1.4.7)

In the flat FRW model with fk(χ) = χ,

dL =
1 + z

H0

z∫
0

dz′

h(z′)
, (1.4.8)

where (1.4.5) is used in obtaining (1.4.8). Then, the Hubble rate H(z) can be
expressed in terms of dL(z):

H(z) =
{ d

dz

(dL(z)

1 + z

)}−1

. (1.4.9)

Measuring the luminosity distance observationally, one can determine the expan-
sion rate of the universe.

The energy density ρ includes all components present in the Universe i.e.

ρ =
∑

i

ρ
(0)
i (a/a0)

−3(1+ωi) =
∑

i

ρ
(0)
i (1 + z)3(1+ωi). (1.4.10)
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Here ωi and ρ
(0)
i correspond to the equation of state and the present energy

density of each component, respectively. Using the first Friedmann equation, the
last equation takes the form

H2 = H2
0

∑
i

Ω
(0)
i (1 + z)3(1+ωi), (1.4.11)

where Ω
(0)
i = ρ

(0)
i /ρcr is the density parameter for an individual component at

the present epoch. Hence, the luminosity distance in a flat geometry is given by

dL =
1 + z

H0

z∫
0

dz′√∑
i Ω

(0)
i (1 + z′)3(1+ωi)

. (1.4.12)

In Figure 1.2, we provide the luminosity distance versus the redshift for a variety
of data sets from the observations of supernovae Ia. The Type Ia supernova (SN
Ia) can be observed when white dwarf stars exceed the mass of the Chandrasekhar
limit and explode. The belief is that SN Ia are formed in the same way irrespective
of where they are in the universe, which means that they have a common absolute
magnitude independent of the redshift z. Thus, they can be treated as ideal
standard candles. We can measure the apparent magnitude and the redshift
observationally, which of course depends upon the objects we observe.
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Figure 1.2: The luminosity distance versus the redshift for a flat cosmological
model. The black dots come from the ‘Gold’ data sets by Riess et al [8] whereas
the red points show the recent data from the Hubble Space Telescope (HST). The
top curve (i) shows data fit with only cosmological constant; the middle curve (ii)
shows data fit with 31 percent matter and 69 percent cosmological constant while
the bottom curve (iii) provides data fit with the matter only and no cosmological
constant. It turns out that the best fit model to the data is the middle curve.



Chapter 2

Black holes in astrophysics, general
relativity and beyond

2.1 Black holes in astrophysics

The black hole idea is fairly old. At the end of the eighteenth century, John
Michell and Laplace gave heuristic reasoning within Newtonian mechanics show-
ing that light cannot escape from an object more compact than a radius less
than 2GM (with c = 1). This is what is now called the Schwarzschild radius rs

and I shall discuss it in detail in the next section. A particle of mass m cannot
escape from an object with mass M only if kinetic energy mv2/2 is larger than
the absolute value of the potential energy GMm/R. For v = c, one gets the limit
on the size of the object M for which nothing can escape. Note that here light
to behave as particle-like.

At that time, the necessary conditions for ‘dark stars’ as these were named
by Michel, seemed physically impossible, since these would have extremely high
density. In the early 1800’s experiments on optical interference led to predomi-
nance of the wave theory of light and the end of the corpuscular theory. Since
light waves were thought to be unaffected by gravitation, interest in the hypo-
thetical dark stars ceased. But in 1915 Einstein published his General Theory
of Relativity, a new theory of gravitation that made fundamental predictions on
the effect of gravity on light. A few months after the publication of Einstein’s
general relativity, Carl Schwarzschild solved the Einstein field equations by as-
suming a static and spherically symmetric geometry, obtaining what is now called

35
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the Schwarzschild solution or metric:

ds2 = −
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1

dr2 + r2dΩ2, (2.1.1)

where dΩ2 is the line element of the two-sphere. It is easy to recognize that
something strange happens at rs: Firstly, a clock placed at rest at r shows a
proper time dτ = (1−rs/r)

1/2dt that shows that at rs, the clock will run infinitely
slow with respect to a clock placed sufficiently far away. An interesting picture
of black holes is provided by light cones that allow one to depict the causal
structure of any spacetime. The particle trajectories are defined to be timelike,
i.e. when ds2 < 0 since physical particles cannot travel faster than light and their
trajectories remain confined within the light cones. It is straight forward to draw
the light cones in the case of the Schwarzschild spacetime by solving ds2 < 0

for various values of the radial distance r outside and inside rs. The light cones
get squeezed as r → rs and the role of r and t reverses at r < rs. Hence every
particle, once it crosses the event horizon, is trapped forever.

Black holes may form in a complete gravitational collapse. It can be shown
that eventual deformations of the event horizon are quickly dissipated as gravita-
tional radiation: the horizon vibrates according to the quasi-normal modes and
finally settles down to an axi-symmetric equilibrium configuration. The most
interesting physical property is that black holes are described by only three pa-
rameters: mass M , electric charge Q and angular momentum J . Due to its this
structural simplicity, John Wheeler coined a famous phrase: A black hole has no
hair, which was called the ‘no hair theorem’. As a consequence, there are now
four most famous solutions of Einstein’s field equations that represent black hole:

• The Schwarzschild solution [69] is static, spherically symmetric and depends
only on M ;

• The Reissner-Nordström solution [70, 71] is static, spherically symmetric
and depends only on mass M and electric charge Q;

• The Kerr solution [72] is stationary, axis symmetric and depends on M and
angular momentum J ;

• The Kerr-Newmann solution [73] is stationary, axis-symmetric and depends
on all three parameters M , J and Q.
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The fact is that the theory of general relativity reliably predicts the existence
of black holes but it does not necessarily prove the existence of black holes in
the observable Universe because the general theory does not describe the as-
trophysical processes by which a black hole may form. Thus the astronomical
credibility of black holes crucially depends on a good understanding of gravita-
tional collapse of stars and stellar cluster and of direct observational evidence of
their existence. Light cannot classically escape black holes but one can hope to
detect them indirectly by observing the electromagnetic energy released during
accretion processes, typically in the X-ray domain. Search for black holes, there-
fore, consists in looking for variable X-ray sources, which are binary systems and
estimate the mass function that relates observed quantities to unknown masses
[74]:

f(Mc, M∗) ≡
pv3

∗
2πG

=
(Mcsini)3

(Mc + M∗)2
, (2.1.2)

where Mc is the mass of the compact (accreting) object, M∗ is the mass of the
companion star, v∗ is the velocity of the companion star along the line of sight, p is
the orbital period of the binary and i is the inclination angle of the binary system.
A crucial fact is that Mc cannot be smaller than the value of the mass function
- the limit would correspond to a zero mass companion viewed at the maximum
angle. Therefore, the best black hole candidates are obtained when the mass
function exceeds about three solar masses. Binary systems with compact objects
can be divided in two families: the high-mass X-ray binary where the companion
star is of high mass and the low mass X-ray binary where the companion star is
typically below a solar mass. There are two dozen black hole candidates in binary
systems.

In addition to these candidates strongly convincing evidence for the existence
of black holes comes from the study of the centers of galaxies (like the Milky
Way and many others) and among these are the so-called active galactic nuclei
(AGNs). This generic term covers a large family of galaxies including quasars,
radio galaxies, Seyfert galaxies, blazers and so on. Recent studies have confirmed
that quasars lie at the hearts of galaxies which are themselves too dim to be
visible. They are thought to be of the order of the size of our solar system but
radiate more than 1000 times as much energy as our entire galaxy. The current
explanation is that this enormous power comes from a supermassive black hole
which is consuming matter from its surrounding galaxy. It can be considered as
established that most galaxies harbor a supermassive black hole (sometimes even
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a binary system of supermassive black holes) in their centers. The mass of the
supermassive black hole roughly linearly correlates with the mass of the galaxy’s
bulge velocity dispersion σ exhibiting a proportionality MBH ∝ σ4 [75]. Today
the detection of these objects is one of the major goals of extragalactic astronomy.
The most convincing method of detection consists in the dynamical analysis of
the surrounding matter: gas or stars near the invisible central mass have large
dispersion velocities that can be measured spectroscopically.

How do supermassive black holes form? Some theories hold that the first
generation of stars included a large proportion of very massive stars all of which
formed black holes that somehow merged. Other theories hold that a single seed
black hole accreted stars and gas thereby growing more and more with time. The
best studied black hole in our galaxy center is very likely the supermassive black
hole and is named as Sgr A∗. The later is an unusual radio source with nonthermal
spectrum, compact size and no detectable motion. Stellar proper motion study
[76] found that the motion of the nearby stars is dominated by a compact object
with mass about 3.6 × 106 solar mass confined within about 0.05 pc. A point
in favor of the Sgr A∗ black hole interpretation is that it has been observed to
flare in X-rays exhibiting large luminosity variations over short time scales (of
the order of minutes). This is consistent with the light crossing and dynamical
timescales for the inner few Schwarzschild radii of the accretion flow around a
few million solar masses black hole. A problem still open with this black hole is
the blackness problem - that is the inferred bolometric luminosity is only a few
1036 erg/s that is about eight orders of magnitude below the expected accretion
luminosity for a black hole with the same mass. However, the blackness of Sgr
A∗ is not necessarily a problem since several different models to account for it
have been proposed (for a review see de Paolis et al [77]).

2.2 Black holes in general relativity

In this section, I provide a derivation of the Schwarzschild solution which repre-
sents a static point-like object which is gravitationally isolated lying in a vacuum.
The solution will show that this object is not exactly point-like but have a simple
structure of a singularity hidden inside a horizon. In general a singularity can
be ring-like rather than being point-like. Also the event horizon is more then
a surface of infinite redshift: the horizon can expand (due to matter accretion),
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contract (due to Hawking radiation), radiate energy and rotate thereby producing
an effect called the frame-dragging. These are entities that are not only where
the coordinates break down but have some geometric significance.

2.2.1 The Schwarzschild solution

Let us start with the line element of flat spacetime in spherical coordinates as
[78]:

ds2 = −dt2 + dr′
2
+ r′

2
(dθ2 + sin2θdφ2) (2.2.1)

Introducing at the origin a mass with spherical symmetry. In doing so, the
above metric must be modified in a way that it retains spherical symmetry and
symmetry with regard to time reversal. This leads to

ds2 = −f0(r
′, t)dt2 + f1(r

′, t)dr′
2
+ f2(r

′, t)r′
2
(dθ2 + sin2θdφ2). (2.2.2)

Choosing a new coordinate r such that f2(r
′, t)r′2 = r2. Setting f0 = eν , f1 = eλ,

to obtain g00 = −eν , g11 = eλ, g22 = r2, g33 = r2sin2θ; then

ds2 = −eνdt2 + eλdr2 + r2(dθ2 + sin2θdφ2). (2.2.3)

For the empty space surrounding the body, Tµν = 0, and the field equations
become

Eµν ≡ Rµν −
1

2
gµνR = 0. (2.2.4)

Multiplying this by gµν and contracting gives R = 0. The gravitational field
equations for vacuum become

E0
0 = e−λ

( 1

r2
− 1

r

∂λ

∂r

)
− 1

r2

E1
0 =

e−λ

r

∂λ

∂t

E2
2 = E3

3 =
1

2
e−λ
[∂2ν

∂r2
+

1

2

(∂ν

∂r

)2

+
1

r

(∂ν

∂r
− ∂λ

∂r

)
− 1

2

∂ν

∂r

∂λ

∂r

]
−1

2
e−ν
[∂2λ

∂t2
+

1

2

(∂λ

∂t

)2

− 1

2

(∂λ

∂t

)(∂ν

∂t

)]
E1

1 = e−λ
(1

r

∂ν

∂r
+

1

r2

)
− 1

r2
.
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Setting the above equations to zero gives the following independent equations

∂ν

∂r
+

1

r
− eλ

r
= 0, (2.2.5)

∂λ

∂r
− 1

r
+

eλ

r
= 0, (2.2.6)

∂λ

∂t
= 0. (2.2.7)

The sum of Eqs. (2.2.6) and (2.2.7) gives

∂

∂r
(ν + λ) = 0. (2.2.8)

There is no space dependence of the sum of the two functions. It is the fact
that R01 = 0 that gives the time independence. (2.2.7) indicates that such a
time dependence can be eliminated anywhere by a coordinate transformation
involving only time. This is equivalent to the statement that the assumption of
spherical symmetry guarantees the possibility of a time-independent description
of the geometry of the space. It is referred as Birchoff theorem. Consequently all
time derivatives appearing in the above equations must vanish. The solution of
(2.2.6) and (2.2.7) is

e−λ = eν = 1 +
K0

r
(2.2.9)

The constant K0 may be determined from the requirement that Newton’s law
of gravitation be approached, at large distances from the mass. Thus from the
geodesic equations, one finds

K0 = −2GM

c2
(2.2.10)

Therefore the Schwarzschild metric takes the form

ds2 = −
(
1− 2GM

r

)
dt2 +

dr2(
1− 2GM

r

) + r2(dθ2 + sin2θdφ2). (2.2.11)

There are a couple of points worth noting. First, for large r, the metric is approx-
imately that of flat Minkowski spacetime. Second, the metric appears singular
when r = 0 and when r = 2GM . The two values of r have very special physical
importance. However their nature is quite different; at r = 0 there is a physical
singularity where the curvature tensor diverges; at r = 2GM , the curvature ten-
sor is well-behaved and finite, but the spacetime has a horizon at r = 2GM in
these coordinates.
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The physical interpretation of M can be understood by considering a free
particle instantaneously at rest outside a spherical body and comparing with the
Newtonian limit. In a Newtonian gravitational field the (magnitude of) acceler-
ation of a free particle is

g = −Gm

r2
(2.2.12)

where m is the mass of the attracting body. According to the theory of general
relativity, the acceleration of a test particle is given by the geodesic equation:

d2xµ

dτ 2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
= 0 (2.2.13)

Assuming that the particle is instantaneously at rest in a weak gravitational field,
the proper time dτ can be approximated with dt and set dxµ

dτ
= (1, 0, 0, 0) at that

particular moment of time. The geodesic equation now simplifies to

g =
d2xµ

dt2
≈ −Γr

tt. (2.2.14)

Since the coordinate basis is used, the connection coefficients are Christoffel sym-
bols and Γr

tt is given by

Γr
tt =

1

2
grα
(∂gαt

∂t
+

∂gαt

∂t
− ∂gtt

∂xα

)
(2.2.15)

= −1

2
(grr)

−1∂gtt

∂r
. (2.2.16)

Inserting the found solution into the above equation, to the lowest order

g = −Γr
tt = −M

r2
. (2.2.17)

Comparing with the classical case one can see that the constant M must be
interpreted as the mass of the gravitational body, m times the G i.e. M = Gm.
If one includes the speed of light c, one gets g = −Mc2/r2, and hence,

M =
Gm

c2
. (2.2.18)

For mass m the radius
RS =

2Gm

c2
, (2.2.19)

is called the ‘Schwarzschild radius’. The singularity behavior at the RS is only a
coordinate singularity. Calculating the ‘Kretschmann’s curvature scalar’ defined
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as the square of the Riemann tensor, one gets

RαβγδRαβγδ =
48M2

r6
. (2.2.20)

This scalar diverges only at the origin.

2.2.2 Reissner-Nordström metric

I now come to gravitational and electromagnetic fields due to a point mass M ,
with charge Q at rest at the origin. The metric is again spherically symmetric
and static. The solution obtained is not only for the Einstein equations but the
Maxwell equations as well. When I require a solution to two different sets of
field equations, each of which has an effect on the other, one solves the coupled
field equations. In this case the coupled Einstein-Maxwell field equations to be
solved. The gravitational field enters into the Maxwell equations as I require
the covariant divergence of the field tensor to be zero (or more general current
density). In the reverse direction, the electromagnetic stress energy tensor given
by

T ν
µ =

−1

4π

(
− FµρF

νρ +
1

4
δν
µFρπF ρπ

)
, (2.2.21)

acts as a source term for the gravitational field. Physically, the energy distribution
due to the electromagnetic field has an effective mass, which causes a gravitational
field. I will not solve the Maxwell equations but will assume that the usual
solution works and verify that my assumption is valid at the end.

Taking the electromagnetic 4-vector potential to be

Aµ = (Q/r,0). (2.2.22)

Then it is easy to see that

Fµν = −Fνµ = 2δ0
[µδ

1
ν]Q/r2. (2.2.23)

Inserting this value in the stress-energy tensor gives

T 0
0 = T 1

1 = −T 2
2 = −T 3

3 = Q2e−(ν+λ)/8πr4. (2.2.24)

Since T 0
0 = T 1

1 , the corresponding field equations yield ν ′(r) + λ′(r) = 0. Hence
once again I can take ν(r)+λ(r) = 0. Remembering that here T = 0, the Einstein
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equation for the 22 component is R2
2 = 8πT 2

2 , which gives

− 1

r2

[
(−re−λ) + 1

]
= −Q2

r4
. (2.2.25)

Hence solving the above equation yields

eν = e−λ = 1 +
α

r
+

Q2

r2
. (2.2.26)

Again choosing zero charge should yield the Schwarzschild exterior solution.
Hence α = −2M . Thus

ds2 = −
(
1− 2M

r
+

Q2

r2

)
dt2 +

dr2

1− 2M
r

+ Q2

r2

+ r2dΩ2, (2.2.27)

which is the Reissner-Nordström metric which describes a black hole with an
electric charge. By inspecting the above line-element, This spacetime has two
horizons

r± = M ±
√

M2 −Q2. (2.2.28)

These horizons merge into to one in the extremal limit M = ±Q. For M <

|Q|, there are no horizons, and the singularity at r = 0 becomes a so-called
naked singularity because it has no surrounding horizons. This is however an
nonphysical situation so the bound is M ≥ |Q|. Also the coordinate singularity
at the horizon for this metric can be removed by introducing Kruskal-Szekeres
coordinates. The horizons are only coordinate singularities, there are no physical
singularities except at r = 0.

I must verify that Aµ is a solution of the source-free Maxwell equations when
coupled with gravity. Thus

F µν
;ν =

1√
|g|

(
√
|g|F µν),ν = 0 (2.2.29)

Since ν + λ = 0,
√
|g| = r2sinθ. Also from (127),

F µν = −2δ
[µ
0 δ

ν]
1 e−(ν+λ)Q/r2 = −2δ

[µ
0 δ

ν]
1 Q/r2. (2.2.30)

Hence (2.2.29) is automatically satisfied. It is truly remarkable that the usual
solution of Maxwell’s equation holds for the coupled Einstein-Maxwell system.
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2.2.3 The BTZ (2+1)- dimensional black hole

Let us briefly describe how general relativity is modified in (2+1) dimensions.
The Einstein-Hilbert actions becomes

S =
1

16πG

∫
d3x
√
−g(R− 2Λ) + Sm, (2.2.31)

where Sm is the matter action. As in (3+1)-dimensions, the resulting Euler-
Lagrange equations are the standard Einstein field equations

RAB −
1

2
gABR + ΛgAB = 8πGTAB. A, B = 0, 1, 2 (2.2.32)

These field equations are written in covariant form and are invariant under the
action of the group of diffeomorphisms of the spacetime. The fundamental differ-
ence between general relativity in (2+1) and (3+1) dimensions originates in the
fact that the curvature tensor in (2+1) dimensions depends linearly on the Ricci
tensor [79, 80]. It means that every solution of the vacuum Einstein field equa-
tions with Λ = 0 is flat and that every solution with a non-vanishing cosmological
constant has constant curvature. Physically a (2+1) dimensional spacetime has
no local degrees of freedom: curvature is concentrated at the location of matter,
and there are no gravitational waves. It should also be noted that the New-
tonian theory cannot be obtained in (2+1) dimensional gravity (see [79] for more
discussion on (2+1) dimensional gravity and its applications).

The unified treatment of space and time is a cornerstone of general relativ-
ity. As a practical matter, however, it is sometimes useful to introduce and
explicit-although largely arbitrary - division of spacetime into spatial and tempo-
ral directions. Such a division is described by the Arnowitt-Deser-Misner (ADM)
formalism [79].

Beginning with a spacetime manifold with the topology [0, 1] × Σ, where Σ

is an open or closed two-surface. Such a spacetime represents a segment of a
Universe between an initial surface {0} × Σ and a final surface {1} × Σ, which
are assumed to be spacelike. The ADM approach to (2+1)-dimensional general
relativity starts with a slicing of the spacetime manifold M into constant time
surfaces Σt, each provided with a coordinate system {xi} and an induced metric
gij(t, x

i). To obtain the full 3D geometry, I describe the way nearby time slices
Σt and Σt+dt fit together. To do so, starting at a point on Σt with coordinates
xi, and displace it infinitesimally in the direction normal to Σt. The resulting
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change in proper time can be written as

dτ = Ndt, (2.2.33)

where N(t, xi) is called the lapse function. Such a displacement will not only
shift the time coordinate, but will alter the spatial coordinates as well. To allow
for this possibility,

xi(t + dt) = xi(t)−N idt, (2.2.34)

where N i(t, xi) is called the shift vector. By the Lorentzian version of the
Pythagoras theorem, the interval between points (t, xi) and (t + dt, xi + dxi)

is then
ds2 = −N2dt2 + gij(dxi + N idt)(dxj + N idt). (2.2.35)

The last equation is the ADM form of the metric. It is customary in the ADM
formalism to establish a new set of conventions that emphasize the role of the
surface Σ. For the remainder of this section, spatial indices i, j, ... will be lowered
and raised with the spatial metric gij and its inverse gij, and not with the full
spacetime metric. Note that the components of gij are not simply the spatial
components of the full three-metric gµν ; the inverse of the last expression

gµν =

(
− 1

N2
N i

N2

Nj

N2

(
gij − N iNj

N2

) ) . (2.2.36)

This convention can cause confusion at first, but it simplifies later notation.
The geometry of the slice Σt comprises two elements: the intrinsic geometry

of the slice as a two-manifold, and the extrinsic geometry, which describes the
embedding of Σt in the spacetime M . Just as the intrinsic geometry is determined
by the behavior of vectors tangent to Σt under parallel transport, the extrinsic
geometry is determined by the behavior of vectors normal to Σt. In particular,
the extrinsic curvature Kij of a surface Σ is defined by

Kµν = −∇µnν + nµn
ρ∇ρnν , (2.2.37)

where ∇ is the full three-dimensional covariant derivative and nµ is the unit nor-
mal to Σ. In the ADM decomposition (2.2.35), the normal to Σt has components
nµ = (N, 0, 0) and an easy calculation gives

Kij =
1

2N
(∂tgij −(2) ∂iNj −(2) ∂jNi). (2.2.38)
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A general stationary, axially symmetric (2+1)-dimensional metric can be written
in the form

ds2 = −N(r)2dt2 + f(r)2dr2 + r2(dφ−Nφ(r)dt)2. (2.2.39)

The spatial metric gij takes the form

gij =

(
f 2 0

0 r2

)
(2.2.40)

The only non-zero Ricci scalars are

(2)Rrr =
f ′

fr
, (2.2.41)

(2)Rφφ =
rf ′

f 3
. (2.2.42)

and hence √
(2)g(2)R = 2

f ′

f 2
. (2.2.43)

Since the metric under consideration is stationary, the extrinsic curvature be-
comes

Kij = − 1

2N
((2)∇jNi +(2) ∇iNj). (2.2.44)

The only non-vanishing component is

Krφ = − r2

2N
(Nφ)′, (2.2.45)

and the corresponding canonical momentum is

πr
φ = − r3

2Nf
(Nφ)′. (2.2.46)

Evaluating the momentum constraint

(2)∇jπ
ij = 0 = gil∂Kπk

l −
1

2
gil(∂lgjk)π

jk. (2.2.47)

Since gjk has only diagonal elements and πjk is entirely off-diagonal, the last term
of the last equation vanishes. Hence

πr
φ = A, A = constant. (2.2.48)
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Further, the Hamiltonian constraint equation becomes

2A2f

r3
− 2

f ′

f
= 0. (2.2.49)

Its solution is
1

f 2
= B2 +

A2

r2
, (2.2.50)

where B2 is a constant of integration which is required to be positive to ensure
that f 2 remains positive for large values of r. To proceed further, one of the
dynamical equations of motion coming from varying gij in the action is needed.
The Hamiltonian constraint is

H = 2fr(πφr)2 − 2
f ′

f 2
, (2.2.51)

the momentum constraint is independent of f and all time derivatives vanish, so
the action is

Ieff ∼ −
∫

dt

∫
dr
{

2Nrf(πφr)2 − 2N
f ′

f 2

}
+ terms independent of f. (2.2.52)

The field equation obtained by varying f is thus

N ′

f 2
+ Nr(πrφ)2 = 0. (2.2.53)

Combining the last two equations and the constraint H = 0, yields

N ′

N
= −f ′

f
, (2.2.54)

or
N = f−1 (2.2.55)

up to a constant factor that can be absorbed by a suitable rescaling of the time
coordinate t. To complete the solution, using (2.2.49) to determine Nφ:

(Nφ)′ =
2Nf

r3
πr

φ = −2
A

r3
, (2.2.56)

so
Nφ = C +

A

r2
. (2.2.57)

One has to restrict attention to solutions for which C = 0, since otherwise the
metric has nonphysical asymptotic behavior.
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Substituting (2.2.50), (2.2.55) and (2.2.57) in (2.2.39), one gets

ds2 = −
(
B2 +

A2

r2

)
dt2 +

(
B2 +

A2

r2

)−1

dr2 + r2
(
dφ +

A

r2
dt
)2

, (2.2.58)

= −
(
Bdt− A

B
dφ
)2

+
(
B2 +

A2

r2

)−1

dr2 +
(
r2 +

A2

B2

)
dφ2. (2.2.59)

This metric can be put in a slightly more standard form by defining

r̃ =
1

B2
(A2 + B2r)1/2 (2.2.60)

and hence by the use of above rescaling transformation, one gets

ds2 = −
(
dt− A

B
dφ
)2

+ dr̃2 + B2r̃2dφ2. (2.2.61)

To find a physical interpretation for the constants of A and B, it is useful to
examine the ADM equations of motion in the presence of sources, treating the
conical singularity at r = 0 as a point particle. In the presence of matter, the
field equations obtained from the variation of N and N ′ become

H = −
√

(2)gT 0
0 , (2.2.62)

Hi = −
√

(2)gT 0
i . (2.2.63)

and the mass of an isolated source is then

m =

∫
d2x
√

(2)gT 0
0 = −

∫
d2xH (2.2.64)

The only term in the Hamiltonian constraint that has a chance of behaving pe-
culiarly at r = 0 is the spatial curvature (2)R. Indeed, recall that curvature can
be written in the form∫

Σ

d2x
√

(2)g
(2)

R =

∫
∂Σ

dφv⊥ = 2πv⊥, (2.2.65)

where it is evident from (2.2.46) that

v⊥ = − 2

f
+ const ∼ −2B + const, (2.2.66)

as r →∞. Fixing the constant by noting that when B = 1 and A = 0, the metric
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gij is that of flat Euclidean two-space for which the last integral vanish. Hence

v⊥ = 2− 2B =
β

π
, (2.2.67)

and the total curvature integral is 2β. Restoring factors of G, the equation for
mass becomes

m =
1

16πG

∫
d2x
√

(2)(2)R =
β

8πG
. (2.2.68)

A similar analysis can be applied to the angular momentum of the source, which
in asymptotically Cartesian coordinates is

J ij =

∫
d2x(xiT 0j − xjT 0i) = 2

∫
∂Σ

dφ(xiπ⊥j − xjπ⊥i). (2.2.69)

Setting

π⊥i = njπ
jφ∂φx

i = − A

Br2
εikxk (2.2.70)

near infinity and see that

J ij =
1

4G

A

B
εij, (2.2.71)

so A/B is a measure of the angular momentum of the source.
Considering the axially symmetric spacetime with negative cosmological con-

stant Λ = −1/l2, for which the spacetime is asymptotically anti-de Sitter.
The Hamiltonian constraint is now

2A2f

r3
− 2

f ′

f 2
− 2r

l2
f = 0, (2.2.72)

which has its solution
1

f 2
= B2 +

A2

r2
+

r2

l2
. (2.2.73)

The equation of motion for N now becomes

N ′

f 2
+ Nr(πφr)2 − Nr

l2
= 0. (2.2.74)

The solution however is still N = f−1.
Renaming some of the constants to get

ds2 = −N2dt2 + r2(dφ2 + Nφdt)2 + N−2dr2. (2.2.75)

with
N2 = −M +

r2

l2
+

J2

4r2
, Nφ = − J

2r2
. (2.2.76)
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This spacetime is the (2+1) dimensional black hole of Banados, Teitelboim and
Zanelli (BTZ). It has an event horizon at r = r+ and an inner horizon r = r−,
where

r2
± =

l2

2

[
M ±

(
M2 − J2

l2

)]
(2.2.77)

are the zeros of the lapse function N . That r = r+ is a genuine event horizon is
most easily seen by changing to Eddington-Finkelstein coordinates

dv = dt +
1

N2
dr, dφ̃ = dφ− Nφ

N2
dr, (2.2.78)

in which the metric becomes

ds2 = −N2dv2 + 2dvdr + r2(dφ̃ + Nφdv)2 (2.2.79)

It is now evident that the surface r = r+ is a null surface, generated by the
geodesics

r(λ) = r+,
dφ̃

dλ
+ Nφ(r+)

dv

dλ
= 0. (2.2.80)

Note that the lapse function N2(r) can be factorized as

N2(r) = − 1

r2l2
(r − r1)(r − r2)(r − r3)(r − r4), (2.2.81)

where r1 = r+, r2 = r−, r3 = −r− and r4 = −r+. Calling r1, r2 the outer and
inner black hole horizons, and r3, r4 are the negative horizons. In order for these
horizons to be real, the conditions M > 0, −ΛJ2 ≤ M2 must be met.

The rotating BTZ with the incorporation of the charge Q (the charge rotating
BTZ) is given by

N2(r) = −M +
r2

l2
+

J2

4r2
− π

2
Q2lnr. (2.2.82)

Horizons of the CR-BTZ metric are roots of the lapse function.
1. Usual CR-BTZ black hole when two distinct real roots exist.
2. Extreme CR-BTZ black hole in case of two repeated real roots.
3. Naked CR-BTZ singularity when no real roots exist.

2.3 Energy conditions in general relativity

In the context of general relativity, it is reasonable to expect that the stress-energy
tensor will satisfy certain conditions, such as positivity of the energy density
and dominance of the energy density over the pressure. Such requirements are
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embodied in the energy conditions.
To put the energy conditions in concrete form it is useful to assume that the

stress energy tensor admits the decomposition

Tαβ = ρêα
0 êβ

0 + p1ê
α
1 êβ

0 + p2ê
α
2 êβ

2 + p3ê
α
3 êβ

3 (2.3.1)

in which the vectors êα
µ form an orthonormal basis; they satisfy the relations

gαβ êα
µ êβ

ν = ηµν , (2.3.2)

where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric. The above two equations
(2.3.1) and (2.3.2) imply that the quantities ρ and pi are eigenvalues of the stress-
energy tensor and êβ

ν are the normalized eigenvectors.
The inverse metric can neatly be expressed in terms of the basis vectors. It is

easy to check that the relation

gαβ = ηµν êα
ν êβ

ν , (2.3.3)

where ηµν = diag(−1, 1, 1, 1) is the inverse of ηµν .
If the stress-energy tensor is that of a perfect fluid, then p1 = p2 = p3 ≡ p.

substituting this into (2.3.1) and using (2.3.3) yields

Tαβ = ρêα
0 êβ

0 + p(êα
1 êβ

0 + êα
2 êβ

2 + êα
3 êβ

3 )

= ρêα
0 êβ

0 + p(gαβ + êα
0 êβ

0 )

= (ρ + p)êα
0 êβ

0 + pgαβ

The vector êβ
0 is identified with the four-velocity of the perfect fluid.

Some of the energy conditions are formulated in terms of a normalized, fu-
ture directed, but otherwise arbitrary timelike vector vα; this represents the four
velocity of an arbitrary observer in spacetime. Such a vector can be decomposed
as

vα = γ(êα
0 + aêα

1 + bêα
2 + cêα

3 ), γ = (1− a2 − b2 − c2)−1/2 (2.3.4)

where a, b and c are arbitrary functions of the coordinates, restricted by a2 + b2 +

c2 < 1. I will also need an arbitrary, future directed null vector kα which can be
expressed as

kα = êα
0 + a′êα

1 + b′êα
2 + c′êα

3 , (2.3.5)

where a′, b′, and c′ are arbitrary functions of the coordinates, restricted by a′2 +
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b′2 + c′2 = 1. Note that the normalization of a null vector is always arbitrary.

Weak energy condition

The weak energy condition states that the energy density of any matter distrib-
ution as measured by any observer in spacetime, must be non-negative. Because
an observer with four-velocity vα measures the energy density to be Tαβvαvβ,

Tαβvαvβ ≥ 0, (2.3.6)

for any future-directed timelike vector vα. To put this in concrete form, substi-
tuting (2.3.1) and (2.3.4)

ρ + a2p1 + b2p2 + c2p3 ≥ 0. (2.3.7)

Because a, b and c are arbitrary, choose a = b = c = 0, and this gives ρ ≥ 0.
Alternatively, choose b = c = 0, which gives ρ+ a2p1 ≥ 0. Recalling that a2 must
be smaller than unity, obtaining 0 ≤ ρ+a2p1 < ρ+p1. So ρ+p1 > 0, and similar
expressions hold for p2 and p3. The weak energy condition therefore implies

ρ ≥ 0, ρ + pi > 0. (2.3.8)

Null energy condition

The null energy condition makes the same statement as the weak form, except
that vα is replaced by an arbitrary, future directed null vector kα. Thus,

Tαβkαkβ ≥ 0, (2.3.9)

is the statement of the null energy condition. Substitution of Eqs. (2.3.1) and
(2.3.4) gives

ρ + a′
2
p1 + b′

2
p2 + c′

2
p3 ≥ 0. (2.3.10)

Choosing b′ = c′ = 0 enforces a′ = 1, and obtaining ρ + pi ≥ 0, with similar
expressions holding for p2 and p3. the null energy condition therefore implies

ρ + pi ≥ 0. (2.3.11)

Notice that the energy condition implies the null form.
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Strong energy condition

The statement of the strong energy condition is(
Tαβ −

1

2
Tgαβ

)
vαvβ ≥ 0, (2.3.12)

or Tαβvαvβ ≥ −1
2
T , where vα is any future directed, normalized, timelike vector.

Because Tαβ − 1
2
Tgαβ = Rαβ/8π by virtue of the Einstein field equations, the

strong energy condition is really a statement about the Ricci tensor. Substituting
Eqs (2.3.1) and (2.3.4) gives

γ2(ρ + a2p1 + b2p2 + c2p3) ≥
1

2
(ρ− p1 − p2 − p3). (2.3.13)

Choosing a = b = c = 0 enforces γ = 1, and obtain ρ + p1 + p2 + p3 ≥ 0.
Alternatively, choosing b = c = 0 implies γ2 = 1/(1− a2) and after some algebra
obtain ρ + p1 + p2 + p3 ≥ a2(p2 + p3 − ρ − p1). Because this must hold for any
a2 < 1, I have ρ+p1 ≥ 0, with similar relations holding for p2 and p3. The strong
energy condition therefore implies

ρ + p1 + p2 + p3 ≥ 0, ρ + pi ≥ 0. (2.3.14)

It should be noted that the strong energy condition does not imply the weak
form.

Dominant energy condition

The dominant energy condition embodies the notion that matter should flow
along timelike or null world lines. Its precise statement is that if vα is an arbitrary,
future directed, timelike vector field, then

−Tα
β vβ is a future directed, timelike or null, vector field. (2.3.15)

The quantity −Tα
β vβ is the matter’s momentum density as measured by an ob-

server with four-velocity vα, and is required to be timelike or null. Substituting
(2.3.1) and (2.3.4) and demanding that −Tα

β vβ not be spacelike gives

ρ2 − a2p2
1 − b2p2

2 − c2p2
3 ≥ 0. (2.3.16)

Choosing a = b = c = 0 gives ρ2 ≥ 0, and demanding that −Tα
β vβ be future

directed selects the positive branch: ρ ≥ 0. Alternatively choosing b = c = 0
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gives ρ2 ≥ a2p2
1. Because this must hold for any a2 < 1, and ρ ≥ |p1|, having

taken the future direction for −Tα
β vβ. Similar relations hold for p2 and p3. The

dominant energy condition therefore implies

ρ ≥ 0, ρ ≥ |pi|. (2.3.17)



Chapter 3

Primordial black holes in phantom
cosmology

Hawking’s discovery that black holes emit thermal radiation due to quantum
effects was one of the most important results in 20th century physics [81, 82, 83].
This is because it unified three previously disparate areas of physics - quantum
theory, general relativity and thermodynamics - and like all such unifying ideas it
has led to deep insights. In practice, only “primordial black holes” (PBH) which
formed in the early Universe could be small enough for Hawking radiation to be
important. The idea of PBHs did form and their discovery would provide a unique
probe of at least four areas of physics: the early Universe; gravitational collapse,
high energy physics and quantum gravity. The first topic is relevant because
studying PBH formation and evaporation can impose important constraints on
primordial inhomogeneities, cosmological phase transitions (including inflation)
and varying gravitational constant models [84, 85, 86].

The high density of the early Universe is a necessary but not sufficient condi-
tion for PBH formation. One also needs density fluctuations, so that over-dense
regions can eventually stop expanding and recollapse. One reason for study-
ing PBH formation and evaporation is that it imposes important constraints on
primordial inhomogeneities. PBHs may also form at various phase transitions
expected to occur in the early Universe. In some of these one require pre-existing
density fluctuations, but in others the PBHs form spontaneously, even if the
Universe starts off perfectly smooth.

It was realized many years ago that black holes with a wide range of masses
could have formed in the early Universe as a result of the great compression
associated with the Big Bang. A comparison of the cosmological density at a

55
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time t after the Big Bang with the density associated with a black hole of mass M

shows that PBHs would have of order the particle horizon mass at their formation
epoch [86]:

MH(t) ∼ c3t

G
∼ 1015

( t

10−23s

)
g. (3.0.1)

Therefore PBHs that formed in the early history of the Universe must be less
massive while those that formed later must be more massive. Black holes formed
at Planck time 10−43s would have Planck mass 10−8kg. PBHs could thus span an
enormous mass range: those formed at the Planck time (10−43s) would have the
Planck mass (10−5g), whereas those formed at 1 s would be as large as 105M�,
comparable to the mass of the holes thought to reside in galactic nuclei. By
contrast, black holes forming at the present epoch could never be smaller than
about 1M�. Zeldovich & Novikov [87] first derived (3.0.1) and Hawking [83] was
the first person to realize that primordial density perturbations might lead to
gravitational collapse on scales above the Planck mass. For a while the existence
of PBHs seemed unlikely since Zeldovich & Novikov [87] had pointed out that
they might be expected to grow catastrophically. Since a PBH must be of order
the horizon size at formation, this suggests that all PBHs could grow to have a
mass of order 1015M� (the horizon mass at the end of the radiation era). There
are strong observational limits on how many such black holes the Universe could
contain, so the implication seemed to be that very few PBHs ever existed. Since a
PBH must therefore soon become much smaller than the horizon, at which stage
cosmological effects become unimportant, it can be concluded that PBHs cannot
grow very much at all.

The realization that small PBHs might exist after all prompted Hawking to
study their quantum properties. This led to his famous discovery that black holes
radiate thermally with a temperature

T ∼ 10−7
( M

M�

)−1

K, (3.0.2)

so they evaporate on a timescale

τ(M) ∼ 1064
( M

M�

)3

yr. (3.0.3)

Only black holes smaller than 1015g would have evaporated by the present epoch,
so (3.0.3) implies that this effect could be important only for black holes which
formed before 10−23s.
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Despite the conceptual importance of this result, it was bad news for PBH
enthusiasts. For since PBHs with a mass of 1015g would be producing photons
with energy of order 100 MeV at the present epoch, the observational limit on
the gamma-ray background intensity at 100 MeV immediately implied that their
density is much lower then the critical density [88]. Not only did this render PBHs
unlikely dark matter candidates, it also implied that there was little chance of
detecting black hole explosions at the present epoch [89]. Nevertheless, it was
realized that PBH evaporations could still have interesting cosmological conse-
quences. In particular, they might generate the microwave background [90] or
modify the standard cosmological nucleosynthesis scenario [91] or contribute to
the cosmic baryon asymmetry [92]. Over the last decade PBHs have been as-
signed various other cosmological roles. Some people have speculated that PBH
evaporation, rather than proceeding indefinitely, could cease when the black hole
gets down to the Planck mass. In this case, one could end up with stable Planck
mass relics, which would provide dark matter candidates [93].

Physically, black hole region with gravity is so strong that not even light can
escape from it. Mathematically one imposes additional conditions of time trans-
lation invariance K.K>0, where K is a time-like killing vector and asymptotic
flatness R → 0 as r → ∞, with r is the radial spacelike parameter. These
conditions are not consistent with cosmological requirements. Since there exists
K, therefore energy is conserved. The first law of thermodynamics is energy
conservation. This law carries over to black holes.

The area of a black hole can only increase (classically) because the area in-
creases with mass, mass is the same as energy, and energy can only go into a
black hole but never come out. It implied that there must be an entropy of the
black hole that increases when energy goes into a black hole. Bekenstein [94, 95]
proposed that entropy of the black hole is the same as its area. Consequently the
area is proportional to square of the mass of the black hole. Later on Hawking
[81, 82] gave an explicit constant of proportionality (i.e. 1/4) for the area of the
black hole.

In classical thermodynamics if there is an ‘extensive’ variable for some quantity
there will be an ‘intensive’ variable associated with it. For instance with volume
there is pressure and with entropy there is temperature. These quantities are
combined in an expression dE = TdS + pdV . If the entropy is the black hole
area, the temperature will have to be the surface gravity so that the product
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contributes to the total internal energy. Now surface gravity κ ∼ M/r2 and
r ∼ M , so the surface gravity is ∼ 1/M . Thus the larger the black hole the lower
the temperature T ∼ 1/M since T ∼ κ. It implies that a black hole temperature
diverges if mass vanishes or gradually reduces to zero. Thus the ‘zeroth law’ for
the black hole thermodynamics defining temperature, a ‘first law’ of conservation
of energy and a ‘second law’ defining an entropy that is an increasing quantity
with time. However there is no equivalent of the third law “that it takes an infinite
number of steps to get to zero temperature”.

I am interested in studying the effects of accretion of phantom energy on
a static primordial black hole. Carr and Hawking [96] in 1974 considered the
formation of black holes of mass 102kg and upwards in the early evolution of the
Universe. After their attempt, several authors investigated various scenarios of
PBH formation [97, 98, 99, 100]. The existence of these small mass black holes
was based on the assumption that the early Universe was not entirely spatially
smooth but there were density fluctuations or inhomogeneities in the primordial
plasma which gravitationally collapsed to form these black holes. Unlike the
conventional black holes that are formed by the gravitational collapse of stars or
mergers of neutron stars, the primordial black holes (PBH) are formed due to the
gravitational collapse of matter without forming any initial stellar object.

Using classical arguments, Penrose and Floyd showed that one can extract
rotational energy from a rotating black hole [101]. Penrose went on to argue
(see [102] and references therein) that one could take thermal energy from the
environs of a black hole and throw it into the black hole to get usable energy out.
This would apparently reduce the entropy around the black hole. As such, he
had argued that there must be an entropy of the black hole that increases at least
as much as that of its environs decreases. Hawking had pointed out that in any
physical process the area of a black hole always increases [103] just as entropy
always increases. This led Bekenstein [94] to propose a linear relationship between
the area and entropy of a black hole. Thus Bekenstein [95, 104] generalized the
second law of thermodynamics to state that the sum of the entropy of the black
hole and its environs never decreases. However, at this stage it seemed that
the connection between black holes and thermodynamics was purely formal. At
this stage Fulling pointed out that quantization of scalar fields in accelerated
frames gives an ambiguous result [105], which seemed to yield radiation seen
in the accelerated with a fractional number of particles. Hawking repeated the
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calculation for an observer near a black hole and obtained the same result by
various methods and found that the radiation had a thermal spectrum [83]. This
led him to propose that mini-PBHs would evaporate away in a finite time [81, 82].

The corresponding Hawking evaporation process reduces the mass of the black
hole by [106]

dM

dt

∣∣∣∣
hr

= −~c4

G2

α

M2
, (3.0.4)

where α is the spin parameter of the emitting particles. Integration of (3.0.4)
gives the evolution of PBH mass as

Mhr = Mi

(
1− t

thr

)1/3

, (3.0.5)

where the Hawking evaporation time scale thr is

thr =
G2

~c4

M3
i

3α
. (3.0.6)

It is obvious from (3.0.5) that as t → thr, the mass Mhr → 0. Plugging in
thr = to (the current age of the Universe) in (3.0.6) gives the mass 1012kg of
the PBH that should have been evaporating now. Hence from (3.0.6), it can
be estimated that these PBHs were formed before about 10−23sec. For Mi �
1014kg, α = 2.011 × 10−4, hence (3.0.6) implies thr ' 2.16 × 10−18

(
M
kg

)3

sec.
While for 5 × 1011kg � Mi � 1014kg, α = 3.6 × 10−4 then (3.0.6) gives thr '
4.8 × 10−18

(
M
kg

)3

sec. Therefore detecting PBHs would be a good tool to probe
the very early Universe (closer to the Planck time). The evaporation of PBHs
could still have interesting cosmological implications: they might generate the
microwave background [87] or modify the standard cosmological nucleosynthesis
scenario [108] or contribute to the cosmic baryon asymmetry [93]. Some authors
have also considered the possibility of the accretion of matter and dust onto the
seed PBH resulting in the formation of super-massive black holes which reside in
the centers of giant spiral and elliptical galaxies [109].
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3.1 Phantom energy accretion onto a black hole

The FRW equations governing the dynamics of my gravitational system are given
by

H2 ≡
(

ȧ

a

)2

=
8πG

3
(ρm + ρx), (3.1.1)

ä

a
= −4πG

3
[ρm + ρx(1 + ω)] . (3.1.2)

Here ρm and ρx denote the energy densities of matter and the exotic energy
densities respectively. The scale factor a(t) goes like [49]

a(t) =
a(t0)

[−ω + (1 + ω)t/t0]
− 2

3(1+ω)

(t > t0), (3.1.3)

where t0 is the time when the Universe transits from matter to exotic energy
domination (which is roughly equal to the age of the Universe). Notice that
the scale factor a(t) diverges when the quantity in the square brackets in (3.1.3)
vanishes identically i.e.

t∗ =
ω

1 + ω
t0 . (3.1.4)

Subtracting t0 from (3.1.4), I get

t∗ − t0 = − 1

1 + ω
t0 . (3.1.5)

The evolution of energy density of the exotic energy is given by

ρ−1
x = 6πG(1 + ω)2(t∗ − t)2. (3.1.6)

A black hole accreting only the exotic energy has the following rate of change in
mass [1]

dM(t)

dt

∣∣∣∣
x

=
16πG2

c5
M2(ρx + px) . (3.1.7)

It is clear that when ρx + px < 0, the mass of the black hole will decrease. I am
particularly interested in the evolution of black holes about and after t = t0 since
the dark energy is presumably negligible before that time and may not have any
noticeable effects on the black hole. Using (3.1.5) and (3.1.6) in (3.1.7), I get

dM(t)

dt

∣∣∣∣
x

=
8G

3c3

M2

t20
(1 + ω) . (3.1.8)
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Therefore the mass change rate for a black hole accreting pure exotic energy
is determined by (3.1.8). For the phantom energy accretion, the time scale is
obtained by integrating (3.1.8) to get

M(t) = Mi

(
1− t

tx

)−1

, (3.1.9)

where tx is the characteristic accretion time scale given by

t−1
x =

16πG2

c5
Mi(ρx + px). (3.1.10)

Using (3.1.5) and (3.1.6) in (3.1.10), I get

tx =
3c3

8G

t20
Mi(1 + ω)

. (3.1.11)

3.2 Evolution of mass due to phantom energy ac-
cretion and Hawking evaporation

The expression determining the cumulative evolution of the black hole is obtained
by adding (3.0.4) and (3.1.8) i.e.

dM(t)

dt

∣∣∣∣
Total

=
dM

dt

∣∣∣∣
hr

+
dM

dt

∣∣∣∣
x

, (3.2.1)

= −~c4

G2

α

M2
+

8G

3c3

M2

t20
(1 + ω). (3.2.2)

I write the above equation as

dM

dt
= −aM2 − b

M2
, (3.2.3)

where
a =

8G

3c3

ε

t20
, b =

~c4α

G2
. (3.2.4)

Here ε = −ω − 1. Thus (3.2.3) can be written in the form

−
∫

dt =
1

b

∫
M2dM

1 + a
b
M4

To integrate above equation, I assume

x =
(a

b

)1/4

M, (3.2.5)
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which yields

−
∫

dt =
1

(a3b)1/4

∫
x2dx

1 + x4
, (3.2.6)

Note that [110]∫
xu−1dx

1 + x2n
= − 1

2n

n∑
k=1

cos
(uπ(2k − 1)

2n

)
ln
∣∣∣1− 2xcos

(2k − 1

2n

)
π + x2

∣∣∣
+

1

n

n∑
k=1

sin
(uπ(2k − 1)

2n

)
tan−1

[x− cos
(

2k−1
2n

)
π

sin
(

2k−1
2n

)
π

]
, u < 2n.

(3.2.7)

In my case, u = 3 and n = 2, hence the above equation yields∫
x2dx

1 + x4
=

1

4
√

2
ln
∣∣∣1−√2x + x2

1 +
√

2x + x2

∣∣∣+ 1

2
√

2
tan−1

( √2x

1 + x2

)
. (3.2.8)

On substituting the value of x above gives

t = t0 +
1

4
√

2
ln
∣∣∣1−

√
2
(

a
b

)1/4

M +
(

a
b

)1/2

M2

1 +
√

2
(

a
b

)1/4

M +
(

a
b

)1/2

M2

∣∣∣+ 1

2
√

2
tan−1

[ √2
(

a
b

)1/4

M

1 +
(

a
b

)1/2

M2

]
.

(3.2.9)
Redefining the values of a and b by assuming M = mMi, where m is a dimen-
sionless parameter and Mi is the initial mass of the black hole. Thus (3.2.3)
becomes

dm

dt
= −a′m2 − b′

m2
, (3.2.10)

where a′ = aMi and b′ = b/M3
i . For the terms to be equal strength, I require

a′ ≈ b′. Thus
Mi ≈

( b

a

)1/4

. (3.2.11)

Now
b

a
=

3~c7t20α

8G3ε
, or, ε =

3~c7t20α

8G3M4
i

. (3.2.12)
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I can normalize

t = t0


1−

1
4
√

2
ln
∣∣∣1−√2

(
a′
b′

)1/4

m+

(
a′
b′

)1/2

m2

1+
√

2

(
a′
b′

)1/4

m+

(
a′
b′

)1/2

m2

∣∣∣+ 1
2
√

2
tan−1

[ √2

(
a′
b′

)1/4

m

1+

(
a′
b′

)1/2

m2

]

1
4
√

2
ln
∣∣∣1−√2

(
a′
b′

)1/4

+

(
a′
b′

)1/2

1+
√

2

(
a′
b′

)1/4

+

(
a′
b′

)1/2

∣∣∣+ 1
2
√

2
tan−1

[√2

(
a′
b′

)1/4

1+

(
a′
b′

)1/2

]


.

(3.2.13)
Replacing p′ = a′/b′ = 8εG3

3α~c7t20
M4

i ∼ M4
i (the ratio of the phantom component to

the Hawking component, in the energy radiated) the above equation becomes

t = t0

1−
1

4
√

2
ln
∣∣∣1−√2p′1/4m+p′1/2m2

1+
√

2p′1/4m+p′1/2m2

∣∣∣+ 1
2
√

2
tan−1

( √
2p′1/4m

1+p′1/2m2

)
1

4
√

2
ln
∣∣∣ 1−

√
2p′1/4+p1/2

1+
√

2p′1/4+p′1/2

∣∣∣+ 1
2
√

2
tan−1

(√
2p′1/4

1+p′1/2

)
 . (3.2.14)

Moveover, the power emission due to Hawking evaporation from the stationary
black hole of mass M � 1017g [106]

P = 3.458× 1046(M/g)−2ergs−1, (3.2.15)

and for mass 5× 1014g � M � 1017g,

P ≈ 3.6× 1016(M/1015g)−2ergs−1. (3.2.16)

In my analysis, the mass in the above two expressions is replaced by

M =
(3~c7t20α

8G3ε

)1/4

g. (3.2.17)

Now choosing ε = 0.1, I obtain M = 8.74029 × 1022g which will be evaporat-
ing now due to the combined effects of phantom energy and Hawking radiation.
Then using (3.2.15), the corresponding power emission will be P = 4.52661 erg
s−1. Compare this result with that of a black hole of mass M ' 1.05 × 1012g
evaporating just now due to Hawking radiation only. The corresponding power
emission will be P ' 3.144 × 1022erg s−1. Note that the power emission from a
black hole increases when the effects of phantom energy are incorporated. Simi-
larly, for very large values of ε ∼ 1025 would give M = 2.763923 × 1016g. Using
this mass in (3.2.16), the power emitted is 4.52661× 1013erg s−1. However, such
large values would lead to a very early Big Rip and hence must be excluded. Thus
black holes ∼ 1022g are of more interest for observational purposes since these
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are the ones that should be evaporating now.

3.3 Conclusion

In this chapter, I have analyzed the Hawking radiation effects combined with
the phantom energy accretion on a stationary black hole. The former process
has been thoroughly investigated in the literature. However there is as yet no
observational evidence to support it. According to standard theory it is assumed
that after the formation of PBHs (of mass ∼ 1012kg with a Hawking temperature
1012K), they would absorb virtually no radiation or matter whatsoever during
their evolution and radiate continuously till they evaporate in a burst of gamma
rays at the present time. This scenario assumes that the Hawking temperature
for such black holes was always larger than the background temperature of the
CMB. Strictly speaking, this cannot be true. Consequently PBHs could have
accreted the background radiation (and even some matter) and grown in mass.
Hence there should be no PBH left to be evaporating right now [111]. However,
the above scenario is modified when phantom energy comes into play. When
phantom energy and the Hawking process are relevant the total life time scale of
the PBH is significantly shortened and the formation of the PBH exploding now
is delayed.

From (3.2.14) I obtain the time as a function of mass instead of getting mass
as a function of time. To make sense of the results I need to obtain the evolution
with time. This is done by inverting the explicit function. I have plotted the
normalized time τ = t/t0 against the dimensionless mass parameter m and m

against τ for different choices of the parameter p, in Figures 3.1 - 3.10. It is
observed that increasing p′ increases the steepness of the curve specifying the
mass evolution. Therefore the black hole loses mass faster for larger p′ till it
vanishes at τ = 1, the present time. In particular, Figures 3.7 and 3.9 show the
same evolution of mass for larger values of p′. It appears that the graphs contain
a redundant (or nonphysical) part of the mass evolution and the only physically
interesting section is above the horizontal curve crossing t = 0. Thus in effect, see
Figures 3.8 and 3.10, the initial mass of the black hole must be taken as 0.45Mi

of the value given by for p′ = 5 and about 0.315Mi for p′ = 10. It is obvious that
the results are very insensitive to changes of the parameter ε for the phantom
energy. As such, they can be regarded as fairly robust.
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Figure 3.1: The normalized time is plotted against the mass parameter for p′ =
0.1. The physical picture of decrease in mass of BH is not very clear. Hence
in the Figure 3.2, we have re-plotted it with the parameters replaced along the
horizontal and vertical axes.
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Figure 3.2: The mass parameter is plotted against the normalized time for p′ =
0.1. Due to the re-definition of mass and time parameters, they don’t correspond
to the real mass of BH and time. The mass starts to decrease from the initial
normalized value (which holds for all masses of BH), and starts decreasing very
fast near the Big Rip time (again not real time but it corresponds to the present
time) between 0.8 and 1, the later value at which the BH vanishes.
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Figure 3.3: The normalized time is plotted against the mass parameter for p′ =
0.5. Thus the rate of the evaporation of black hole due to phantom energy is
50 percent stronger than that of the Hawking evaporation. It turns out that
increasing p′ increases the steepness of the evolution curve above.

Figure 3.4: The mass parameter is plotted against the normalized time for p′ =
0.5.
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Figure 3.5: The normalized time is plotted against the mass parameter for p′ = 1.
Thus the rate of evaporation of black hole due to phantom energy is equal to that
of the Hawking evaporation.

Figure 3.6: The mass parameter is plotted against the normalized time for p′ = 1.
It shows that the evaporation of BH is faster in the beginning and near the end
of the normalized time.
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Figure 3.7: The normalized time is plotted against the mass parameter for p′ = 5.
It shows that the rate of the evaporation of black hole due to phantom energy
is 5 times stronger(greater) than that of the Hawking evaporation. Notice that
the above figure also contains a non-physical region of the evolution curve in
which the normalized time acquires negative values. In Figure 3.8 below, we have
replotted this figure by removing the non-physical part.

Figure 3.8: The mass parameter is plotted against the normalized time. Here the
initial mass of the black hole must be taken as 0.45Mi of the value given by for
p′ = 5.
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Figure 3.9: The normalized time is plotted against the mass parameter for p′ = 10.
Similar to Figure 3.7 above, this figure contains a huge unphysical portion, which
we have removed in Fig. 3.10

Figure 3.10: The mass parameter is plotted against the normalized time. Here
the initial mass of the black hole must be taken as about 0.315Mi for p′ = 10



Chapter 4

Charged black holes in phantom
cosmology

In the last chapter, I discussed the accretion of phantom energy onto a primordial
black hole. I now turn my attention to Reissner-Nordström (RN) black hole,
which is a spherically symmetrical object with mass M and electric charge Q.
I study accretion of phantom energy on a RN black hole (ignoring the case of
Hawking radiation by the RN black hole).

In the literature, the RN black hole is discussed in wider contexts. In [112],
the author investigated the gravitational lensing by an RN black hole in the weak
deflection limit. The author obtained the basic equations for the deflection angle
and time delay and found analytical expressions for the positions and amplifica-
tions of the primary and secondary images. Due to a net positive charge, the
separation between images increases, but no change in the total magnification
occurs for an RN black hole. In another study [113], the authors showed that an
extremal RN black hole (Q2 = M2) may be turned into a Kerr-Newmann naked
singularity after the capture of a flat and electrically neutral spinning body which
is initially gravitationally bound and plunges in radially with its spin aligned to
a radial direction. They argued that back-reaction and emission of gravitational
radiation would not help to preserve the black hole condition and that conver-
sion to a naked singularity was inevitable. The proposal discussed in [113] was
criticized in [114]. The later study showed that no physically reasonable model
of such an object can be made. I provide an alternative mechanism of converting
a RN black hole into a naked singularity. The mechanism involves accretion of
phantom energy onto the black hole.

As discussed in the previous chapter, the accretion of phantom energy reduces

71
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the mass of the black hole. In the case of an RN black hole, the charge remains
conserved and a stage is reached when the magnitude of the mass becomes smaller
than that of the charge. This leads to the formation of a naked singularity.

Penrose proposed the cosmic censorship hypothesis so as to avoid the possi-
bility of unpredictable influences emerging from the singularity, where physical
laws break down. As he put it [115], “it is as if there is a cosmic censor board
that objects to naked singularities being seen and ensures that they only appear
suitably clothed by an event horizon”. Due to this conjecture, naked singularities
are seldom studied seriously in themselves. A naked singularity is the outcome of
a continued gravitational collapse when no event horizon forms hiding the singu-
larity to the asymptotic region [116]. A generic feature of a naked singularity is
that of being infinitely red-shifted with respect to any of the non-singular space-
time points. Since no physical influence reaches infinity from the singularity, it is
justified to assume the existence of a regular flat (past and future) infinity after
the formation of the singularity. In some studies [117, 118], the authors have
proposed that a naked singularity, specifically a spinning one, can convert into a
black hole as a result of its interaction with the surrounding matter. Moreover
if a naked singularity decays into a black hole, then the later will most likely be
of a Kerr type. The production of naked singularities as a result of gravitational
collapse is still a matter of debate. Naked singularities have far reaching conse-
quences; their spacetime can be causally ill-behaved and they may be sources of
cosmic events with anomalously high energy. If they exist it would be legitimate
to invoke the validity of a theorem due to Clarke and de Felice [119] which states
that a generic strong-curvature naked singularity would give rise to a Cosmic
Time Machine (CTM). A CTM is a spacetime which is asymptotically flat and
admits closed non-spacelike curves which extend to future infinity.

In the astrophysical context, charged black holes are very unlikely to exist. A
charged black hole may form if the initial matter distribution forming it possesses
a net electric charge. However, the electrically charged black hole eventually
becomes neutral by interacting with surrounding matter (only if that matter
carries the opposite electric charge) and converts into a Schwarzschild black hole.
One of the motivations to study electrically charged black holes is its role in
providing a mechanism to convert it into a naked singularity. A model proposed
by Hubeny [120] suggests a mechanism of the conversion of RN black hole into a
naked singularity by dropping in a charge. However there some objections to the



73

suggested mechanism [114]. Astrophysically, the only appealing solution is the
Kerr-Newmann spacetime, which I shall not deal with in this thesis.

The fate of a stationary uncharged black hole in the phantom energy domi-
nated Universe was investigated by Babichev et al [1]. The phantom energy was
assumed to be a perfect fluid. The phantom energy was allowed to fall onto the
black hole horizon only in the radial direction. It was concluded that black hole
will lose mass steadily due to phantom energy accretion and disappear near the
Big Rip. I here adopt their procedure for a static, stationary and charged black
hole. Gravitational units (c = G = 1) are chosen for this work.

4.1 Accretion onto a charged black hole

In the framework of Newtonian gravity, the accretion of matter onto a compact
object was first investigated and formulated by Bondi in 1952 [121]. His work
dealt with stationary accretion i.e. model parameters are time-independent. How-
ever, this work was not ideally suitable to model accretion onto objects like black
holes and compact stars (neutron stars and white dwarfs). A relativistic version
of Bondi’s work was presented by Michel, almost twenty years later [122]. Using
basic principles of conservation laws, he studied the dynamics of accretion and
flows near a Schwarzschild black hole. The fluid was taken as a perfect fluid while
a polytropic equation of state (relating pressure and density) was chosen for the
analysis. He predicted that the accreting gas will get heated up to 1012 K while
high energy X-rays and gamma rays will be emitted in the process. Michel’s work
was later on explored in various astrophysical scenarios of accretion onto black
holes and quasars etc.

There is strong evidence that the present Universe contains dark energy which
is causing accelerated expansion of the Universe. The empirical findings categori-
cally suggests that this dark energy is not due to cosmological constant but a time
varying dark energy is responsible. The equation of state parameter of this energy
is blow −1, which suggests the presence of phantom energy. This had motivated
Babichev et al to study the accretion of phantom energy onto a Schwarzschild
black hole. Based on the work of Michel, they concluded that the mass of the
black hole decreases with time, finally vanishing near a Big Rip singularity. They
mentioned that this disappearance means that even the naked singularities might
not get formed and these will also be ripped apart. One can argue against the
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accretion of phantom energy onto any object by claiming that dark energy is a
property of spacetime and that its accretion will be meaningless. Apparently it
is true but one can study accretion if dark energy is considered as ‘dark energy
fluid’, and particularly a perfect fluid.

Here I shall assume the steady state accretion of a test perfect fluid with an
arbitrary equation of state p = p(ρ), onto a stationary charged black hole, when
the event horizon satisfies M2 > Q2, while the cases of extreme RN black hole
Q2 = M2 and naked singularity Q2 > M2 are not taken into account. I will
show below that when phantom energy is accreted on the black hole, the extreme
state of electrically charged black hole is reached during a finite time. It might
be asked whether this extreme black hole might convert to a naked singularity or
not. Notice that in the case of a Schwarzschild black hole, the naked singularity
does not form and it disappears before the Big Rip, however, in the RN case the
naked singularity does form. Apparently, this violates the third law of black hole
thermodynamics, which says that no physical process can lead a black hole to a
naked singularity.

I consider the Reissner-Nordström line element (2.2.27). If Q2 > M2 then
the metric is non-singular everywhere except at the curvature or the irremovable
singularity at r = 0. Also if Q2 ≤ M2 then the function f(r) has two real roots
given by (2.2.28). These roots physically represent the apparent horizons of the
RN black hole. The two horizons are termed the inner rh− and the outer rh+.
The outer horizon is effectively called the event horizon while the inner one is
called the Cauchy horizon of the black hole. The metric (2.2.27) is then regular
in the regions specified by the inequalities: ∞ > r > rh+, rh+ > r > rh− and
rh− > r > 0. Note that if Q2 = M2, then it represents an extreme RN black hole
while if Q2 > M2, it yields a naked singularity at r = 0 [123, 124].

The phantom energy is assumed to be a perfect fluid specified by the stress
energy tensor (1.2.9). Denoting p as the pressure and ρ as the energy density of
the phantom energy. I assume that p = p(ρ) is an arbitrary function of energy
density only. Also uµ = (ut(r), ur(r), 0, 0), is the four velocity of the phantom
fluid which satisfies the normalization condition uµuµ = 1. Assuming that the
in-falling phantom fluid does not disturb the global spherical symmetry of the
black hole. The energy-momentum conservation T µν

;ν = 0, gives

ur2M−2(ρ + p)

√
1− 2M

r
+

Q2

r2
+ u2 = C1, (4.1.1)
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where ur = u = dr/ds is the radial component of the velocity four vector and
C1 > 0 is a constant of integration. While performing the integration in (4.1.1),
I chose the positive branch of the logarithmic function since the LHS in (4.1.1)
is positive (u < 0 for an inward flow and ρ + p < 0, the violation of NEC
for the phantom energy). Moreover, the second constant of motion is obtained
by projecting the energy conservation equation onto the velocity four vector as
uµT

µν
;ν = 0, which yields

ur2M−2 exp

 ρh∫
ρ∞

dρ′

ρ′ + p(ρ′)

 = −A. (4.1.2)

Here A > 0 is a constant of integration. Similarly while performing the integration
in (4.1.2), I chose the negative branch of the logarithmic function since the LHS
in (4.1.2) is negative (u < 0). The above ρh and ρ∞ are the energy densities of
the phantom energy at the horizon and at infinity respectively. Using (4.1.1) and
(4.1.2) gives

(ρ + p)

√
1− 2M

r
+

Q2

r2
+ u2 exp

− ρh∫
ρ∞

dρ′

ρ′ + p(ρ′)

 = C2, (4.1.3)

where C2 = −C1/A = ρ∞+p(ρ∞). Integrating the flux of the fluid over the entire
cross-section of the event horizon gives the rate of change of mass of black hole
as

Ṁ = −4πr2T r
t , (4.1.4)

where T r
t determines the momentum density in the radial direction. From (4.1.1)

to (4.1.4),
dM

dt
= 4πAM2(ρ∞(t) + p∞(t)), (4.1.5)

which clearly demonstrates that mass of black hole decreases if ρ∞ + p∞ < 0.

Note that (4.1.5) can be solved for any equation of state of the form p = p(ρ)

or in particular p = ωρ. In general, (4.1.5) holds for all ρ and p violating the
dominant energy condition, thus [125, 126]

dM

dt
= 4πAM2(ρ(t) + p(t)). (4.1.6)

In the astrophysical context, the mass of black hole is a dynamic quantity. The
mass increases by the accretion of matter and can decrease by the accretion of
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the phantom energy. Since I am not incorporating matter in my model, the mass
of black hole will decrease correspondingly.

4.2 Critical accretion

Only in those solutions are relevant that pass through the critical point as these
correspond to the material falling into the black hole with monotonically increas-
ing speed. The falling fluid can exhibit variety of behaviors near the critical point
of accretion, close to the compact object. For instance, for a given critical point
r = rc, the following possibilities arise [127]: (a) u2 = c2

s at r = rc, u2 → 0 as
r → ∞, u2 < c2

s for r > rc and u2 > c2
s for r < rc. Thus for large distance, the

speed of flow becomes negligible (subsonic), at the critical point it is sonic, while
the flow becomes supersonic for very small r. Other solutions for the flow near rc

are not of much interest due to their impracticality, like (b) u2 < c2
s for all values

of r and (c) u2 > c2
s for all values of r. Solutions (b) and (c) are not realistic since

they describe both subsonic and super-sonic flows for all r. Similarly, (d) u2 = c2
s

for all values of r > rc and (e) u2 = c2
s for all values of r < rc. Last two solutions

are also useless since they give same value of speed at a given r. Hence from this
discussion, solution (a) is the only physically motivated, near the critical point.
To determine the critical points of accretion I adapt the procedure as specified in
Michel [122]. The equation of mass flux Jr

;r = 0 gives

ρur2 = k1, (4.2.1)

where k1 is constant of integration. Dividing and then squaring (4.1.1) and (4.2.1)
gives (

ρ + p

ρ

)2(
1− 2M

r
+

Q2

r2
+ u2

)
=

(
C1

k1

)2

= C3. (4.2.2)

Here C3 is a positive constant. Differentiation of (4.2.1) and (4.2.2) and then
elimination of dρ gives

dr

r

[
2V 2 −

M
r
− Q2

r2

1− 2M
r

+ Q2

r2 + u2

]
+

du

u

[
V 2 − u2

1− 2M
r

+ Q2

r2 + u2

]
= 0, (4.2.3)

where
V 2 ≡ d ln(ρ + p)

d ln ρ
− 1. (4.2.4)
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It is assumed that the flow is smooth at all points of spacetime, however if at
any point the denominator D vanishes then the numerator N must also vanish
at that point. Mathematically this point is called the critical point of the flow
[128]. Equating the denominator D and numerator N to zero, so-called critical
point conditions are given by

u2
c =

Mrc −Q2

2r2
c

, (4.2.5)

and
V 2

c =
Mrc −Q2

2r2
c − 3Mrc + Q2

. (4.2.6)

Note that by choosing Q = 0 in the above equations, one can retrieve the results
for the accretion of fluid onto a Schwarzschild black hole [122]. All the quantities
with subscript c are defined at the critical point correspondingly. Physically,
the critical points represent the sonic point of the flow i.e. the point where the
speed of flow becomes equal to the speed of sound, u2

c = c2
s or the corresponding

Mach number Mc = 1. This transition may occur from the initial subsonic to
the supersonic or trans-sonic speeds. For any spherically symmetric spacetime, a
surface where every point is a sonic point is called a sound horizon which itself
will be spherical. Any perturbation or disturbance generated in the flow inside
the sound horizon (r < rc) is eventually pulled towards the black hole singularity
and hence cannot escape to infinity.

It can be seen that the speed of sound (squared) c2
s = ∂p/∂ρ has no physical

meaning if the EoS parameter ω < 0 (in p = ωρ). Thus it will apparently
make the exotic cosmic fluids like the cosmological constant, quintessence and
the phantom energy unstable that can not be accreted onto the black hole. In
order to avoid this problem, Babichev et al [129] introduced a non-homogeneous
linear equation of state (nEoS) given by p = α(ρ − ρo), where the constants α

and ρo are free parameters. The nEoS can describe both hydrodynamically stable
(α > 0) and unstable (α < 0) fluids. The parameter ω is related to the nEoS
as ω = α(ρ − ρo)/ρ. Notice that ω < 0 corresponds to α > 0 and ρ > ρo,
thus making the phantom energy as hydrodynamically stable fluid. Therefore
the speed of sound cs is now well-defined with the nEoS for the phantom energy.
Hence, the phantom energy can fall onto the RN black hole and can reduce the
black hole mass. Since phantom energy reduces only mass and not charge, a stage
is reached when the cosmic censorship conjecture becomes violated i.e. Q2 > M2,
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the so-called emergence of a naked singularity.
Now physically acceptable solution of (4.2.3) is obtained if u2

c > 0 and V 2
c > 0,

hence
2r2

c − 3Mrc + Q2 ≥ 0, (4.2.7)

and
Mrc −Q2 ≥ 0. (4.2.8)

(4.2.7) can be factorized as

2r2
c − 3Mrc + Q2 = (rc − rc+)(rc − rc−) ≥ 0, (4.2.9)

where
rc± =

1

4
(3M ±

√
9M2 − 8Q2), (4.2.10)

which are positive satisfying rc+ > rc− > 0. It is worthwhile to notice that in
contrast to the case of accretion onto a Schwarzschild black hole, there are for-
mally two different critical points, with plus and minus signs in the last equation.
The limit Q → 0 suggests that the inner critical point rc− is unphysical since it
becomes zero if Q = 0. In general, for Q ≤ M , the inner critical point will lie
between rh− ≤ rc− ≤ rh+, while the outer one will satisfy rc+ ≥ rh+. Thus only
rc+ is a physical one since it corresponds to a regular RN spacetime. It is obvious
that these roots will be real valued if 9M2 − 8Q2 ≥ 0 or

M2

Q2
≥ 8

9
. (4.2.11)

These roots physically represent the locations of the critical or sonic points of the
flow near the black hole. Notice that both mass and charge have same dimension
of length, therefore all the inequalities here and below represent dimensionless
ratios. From (4.2.9), I can see that these critical points specify two regions for
the flow: (1) rc > rc+ or (2) 0 < rc < rc−. I shall now solve (4.2.7) using (4.2.8)
and then deduce a condition for the black hole mass and charge.

To get solutions about the critical points, substitute rc± in (4.2.8). For rc+,
(4.2.8) gives

M
√

9M2 − 8Q2 ≥ 4Q2 − 3M2, (4.2.12)

which is satisfied if
M2

Q2
≤ 1, (4.2.13)
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and
M2

Q2
<

4

3
. (4.2.14)

A comparison of inequalities (4.2.11), (4.2.13) and (4.2.14) imply

8

9
≤ M2

Q2
<

4

3
. (4.2.15)

Thus accretion through rc+ is possible if the above inequality (4.2.15) is satisfied.
It encompasses the two types of black holes in itself: regular and the extreme RN
black hole. Interestingly, the naked singularity also falls within the prescribed
limits. Thus for all these spacetimes, the accretion is allowed through the critical
point rc+. Using Q = 0 in the inequality (4.2.15) to retrieve same condition for
the Schwarzschild black hole can be misleading. The inequality is deduced using
the outer apparent horizon and a critical point. Since Schwarzschild black hole
(Q → 0) possesses unique horizon and the critical point, the above inequality
cannot be reduced for an uncharged black hole.

Now I consider case (2) when 0 < rc < rc−. Substitution of rc− in (4.2.8)
gives

M
√

9M2 − 8Q2 ≤ 3M2 − 4Q2. (4.2.16)

If 3M2 − 4Q2 < 0 then (4.2.12) does not yield any solution. So 3M2 − 4Q2 > 0

which yields
M2

Q2
>

4

3
, (4.2.17)

Further inequality (4.2.12) is satisfied if

M2

Q2
< 1. (4.2.18)

Since (4.2.17) and (4.2.18) are mutually inconsistent, there is no solution for rc

in case (2). Thus accretion is not possible through rc−.
Since the mass of black hole is decreasing by the accretion of phantom energy

(see 4.1.6), it implies that at least one critical point must exist for the fluid flow,
which is specified by rc+. This critical point yields the mass to charge ratio of
the black hole in the range specified by (4.2.15) which allows that accretion onto
all charged spherically symmetric black holes.
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4.3 Conclusion

I have analyzed the effects of accretion of phantom energy onto a charged black
hole. When the accreting fluid is phantom, ρ + p < 0, the mass of the Reissner-
Nordström black hole decreases. This immediately leads us to the question,
whether it is possible to transform the Reissner-Nordström black hole into the
naked singularity by accretion of phantom. Formally it seems so, since the accret-
ing phantom decreases the black hole mass, while the electric charge of the black
hole remains the same. Thus, one can expect that at some finite moment of time
a black hole will turn into the naked singularity. Indeed it takes the finite time
for the Reissner-Nordström black hole to reach the extreme case. The similar
result also holds for the Kerr black hole.

The analysis is performed using two critical points rc±. It turns out that
accretion is possible only through rc+ which yields a constraint on the mass
to charge ratio given by (4.2.15). This expression incorporates both extremal
and non-extremal black holes. Thus all charged black holes will diminish near
the Big Rip. Apparently this condition predicts the existence of large charges
onto black holes, although astrophysically no such evidence has been successfully
deduced from the observations. In theory, the existence of large charges onto
black holes is consistently deduced by the general theory of relativity. It needs to
be stressed that there is no analogous condition for the Schwarzschild black hole
(Q = 0). This analysis can be extended for a rotating charged black hole (so-
called Kerr-Neumann black hole) to get a deeper insight of the accretion process.
This work also serves as the generalization of Michel [122] in terms of the accretion
of phantom dark energy onto a charged black hole.

Note that in this study, I ignored the back-reaction effects. Recently Gao
et al [130] contested the validity of this result, claiming that the inclusion of
the back reaction would result in the opposite process, namely, the mass of a
black hole increases in the process of phantom accretion. The particular solution
was presented in [130] to support this point. However, the conclusion of [130]
is doubtful. It is only valid for imperfect fluids, thus making impossible the
application of their arguments to the perfect fluids, for which the effect of black
hole mass decreasing was found.

Finally, I stress that the Reissner-Nordström black hole in a phantom energy
dominated Universe would, indeed, provide a mechanism to produce a naked
singularity.



Chapter 5

Evolution of a Schwarzschild black
hole in a Chaplygin gas dominated
Universe

I here discuss the accretion of phantom like modified variable Chaplygin gas
and the viscous Chaplygin gas severalty onto a black hole. This accretion of
the phantom fluid reduces the mass of the black hole. This works serves as the
generalization of the earlier work by Babichev et al [1] who initiated the concept
of accretion of exotic matter on the black hole. I have built my model on the
same pattern by choosing more general EoS for the dark energy.

The outline of the chapter is as follows: In the next section, I discuss the
relativistic model of accretion onto a black hole. In third section, I investigate
the evolution of the mass of black hole by the accretion of modified variable
Chaplygin Gas (MVG) while in the fourth section, I discuss the similar scenario
with the viscous generalized Chaplygin gas (VCG).

5.1 Accretion onto a black hole

I consider a Schwarzschild black hole of mass M which is gravitationally isolated
and is specified by the line element (2.2.11). The black hole is accreting a Chap-
lygin gas, which is assumed to be a perfect fluid specified by the stress energy
tensor (1.2.9). Represent the pressure and energy density of the Chaplygin gas
by p and ρ respectively. Due to static and spherically symmetric nature of the
black hole, the velocity four vector is uµ = (ut(r), ur(r), 0, 0) which satisfies the
normalization condition uµuµ = 1. Thus I am considering only radial in-fall of the
Chaplygin gas on the event horizon. Using the energy-momentum conservation

81
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for T µν
;ν = 0,

ux2(ρ + p)

√
1− 2

x
+ u2 = C1, (5.1.1)

where x = r/M and u = ur = dr/ds, is the radial component of the velocity four
vector uµ and C1 is a positive constant of integration1. The second constant of
motion is obtained from uµT

µν
;ν = 0, which describes flow of energy in the radial

direction and it gives

ux2 exp

 ρh∫
ρ∞

dρ′

ρ′ + p′(ρ′)

 = −A, (5.1.2)

where A is a positive constant of integration2 which is determined below for two
models of Chaplygin gas. The quantities ρ∞ and ρh are the densities of Chaplygin
gas at infinity and at the black hole horizon respectively. Further using (5.1.1)
and (5.1.2),

(ρ + p)

√
1− 2

x
+ u2 exp

− ρh∫
ρ∞

dρ′

ρ′ + p′(ρ′)

 = C2, (5.1.3)

where C2 = −C1/A = ρ∞ + p(ρ∞). In order to calculate Ṁ , the rate of change of
mass of black hole I integrate the Chaplygin gas flux over the entire horizon as,
Ṁ =

∮
T r

t dS where T r
t denotes the momentum density of Chaplygin gas in the

radial direction and dS =
√
−gdθdϕ is the surface element of black hole horizon.

Using (5.1.1 - 5.1.3), this rate of change is

dM

dt
= 4πAM2(ρ + p). (5.1.4)

Integration of (5.1.4) yields

M = Mi

(
1− t

τ

)−1

, (5.1.5)

which determines the evolution of mass of black hole of initial mass Mi and τ is
the characteristic accretion time scale given by

τ−1 = 4πAMi(ρ + p). (5.1.6)
1The reasoning is adapted from (4.1.1).
2The reasoning is adapted from (4.1.2).
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The number density and energy density of Chaplygin gas are related as

n(ρh)

n(ρ∞)
= exp

 ρh∫
ρ∞

dρ′

ρ′ + p′(ρ′)

 , (5.1.7)

here n(ρh) and n(ρ∞) are the number densities of the Chaplygin gas at the hori-
zon and at infinity respectively. Further the constant A appearing in (5.1.2) is
determined as

n(ρh)

n(ρ∞)
ux2 = −A, (5.1.8)

which is an alternative form of energy momentum conservation. Moreover, the
critical points of accretion (i.e. the points where the speed of flow achieves the
speed of sound V 2 = c2

s = ∂p/∂ρ) are determined as follows

u2
∗ =

1

2x∗
, V 2

∗ =
u2
∗

1− 3u2
∗
, (5.1.9)

where V 2 ≡ n
ρ+p

d(ρ+p)
dn

− 1. Finally, the above (5.1.7 - 5.1.9) are combined in a
single expression as

ρ∗ + p∗(ρ∗)

n(ρ∗)
= [1 + 3c2

s(ρ∗)]
1/2ρ∞ + p(ρ∞)

n(ρ∞)
. (5.1.10)

5.2 Accretion of modified variable Chaplygin gas

The Chaplygin gas had been proposed to explain the accelerated expansion of the
Universe [34]. The observational evidence in favor of cosmological models based
on Chaplygin gas is quite encouraging [131, 132, 133, 134]. The Chaplygin gas
model favors a spatially flat Universe which agrees with the observational data
of Sloan Digital Sky Survey (SDSS) and Supernova Legacy Survey (SNLS) with
95.4 % confidence level [135]. Consequently, various generalizations of Chaplygin
gas have been proposed in the literature to incorporate any other dark component
in the Universe (see e.g. [136, 137, 138, 139] and references therein).

Consider an equation of state which combines various EoS of Chaplygin gas
[41]

p = A′ρ− B(a)

ρα
, B(a) = Boa

−α1 . (5.2.1)

Here A′, Bo and α1 are constant parameters with 0 ≤ α ≤ 1. For A′ = 0, (5.2.1)
gives generalized Chaplygin gas. Further if B = Bo and α = 1, it yields the usual
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Chaplygin gas. Also (5.2.1) reduces to modified Chaplygin gas if only B = Bo.
Moreover, if only A′ = 0, the same equation represents variable Chaplygin gas.

Considering the background spacetime to be spatially flat (k = 0), homoge-
neous and isotropic represented by Friedmann-Robertson-Walker (FRW) metric.
The spacetime is assumed to contain only one component fluid i.e. the phantom
energy represented by the Chaplygin gas EoS. The corresponding field equations
are

H2 ≡
( ȧ

a

)2

=
κ2

3
ρ, (5.2.2)

and
ä

a
= Ḣ + H2 = −κ2

2
(ρ + 3p), (5.2.3)

The energy conservation equation gives the evolution of energy density by

ρ =

[
3Bo(1 + α)

{3(1 + α)(1 + A′)− α1}
1

aα1
+

Ψ

a3(1+α)(1+A′)

] 1
1+α

. (5.2.4)

Here Ψ is a constant of integration. Note that to obtain the increasing en-
ergy density of phantom energy with respect to scale factor a(t), Requiring the
coefficients of a(t) in (5.2.4) to be positive i.e. Ψ ≥ 0, Bo(1 + α) > 0 and
3(1 + α)(1 + A′) − α1 > 0. Moreover, the exponents of a(t) must be negative
i.e. α1 < 0 and 3(1 + α)(1 + A′) < 0 to obtain increasing ρ. These constraints
together imply that α1 > 3(1 + α)(1 + A′). Another way of getting positive ρ is
by setting α1 > 0, 1 + A′ > 0 and α1 < 3(1 + α)(1 + A′). Further, using (5.1.7)
the ratio of the number density of Chaplygin gas near horizon and at infinity is
calculated to be

n(ρh)

n(ρ∞)
=

[
ρ1+α

h (1 + A′)−B(a)

ρ1+α
∞ (1 + A′)−B(a)

] 1
(1+α)(1+A′)

≡ ∆1. (5.2.5)

Notice that the function B(a) can be expressed in terms of ρ implicitly and is
determined from (5.2.4). Making use of (5.1.9), the critical points of accretion
are given by

u2
∗ =

∆2

1 + 3∆2

, x∗ =
1 + 3∆2

2∆2

, (5.2.6)

where
V 2
∗ = A′ +

αB(a)

ρα+1
∗

≡ ∆2 (5.2.7)

Thus for the critical points to be finite and positive, either ∆2 > 0 or ∆2 < 0

and ∆2 < −1/3. For the accretion to be critical, the quantity V 2 must become
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supersonic from the initial subsonic somewhere near the black hole horizon. For
the MVG, ω = A′ − B/ρ1+α < 0, since A′ < −1. One can observe that fluids
having EoS ω < 0 are hydrodynamically unstable i.e. the speed of sound in that
medium can not be defined since c2

s < 0. In order to overcome this problem
Babichev et al [129] proposed a redefinition of ω with the help of a generalized
linear EoS given by p = β(ρ − ρo), where β and ρo are constant parameters.
Here β > 0 refers to a hydrodynamically stable while β < 0 corresponds to
hydrodynamically unstable fluid. I will not be interested in the later case here.
Note that now two parameters ω and β are related by ω = β(ρ− ρo)/ρ. Further
ω < 0 now corresponds to β > 0 and ρo > ρ thereby making the previously
unstable fluid, now stable. Alsoc2

s ≡ ∂p/∂ρ = β. Since for stability, I require
β > 0 and 0 < c2

s < 1, it leads to 0 < 1
ρ−ρo

(A′ρ − B/ρα) < 1 and 0 < β < 1.
Hence the EoS parameter is now well-defined with A′ < −1 and ρo > ρ. Thus
the stability of the phantom like MVG is guaranteed with the use of generalized
linear EoS.

The constant A is determined from (5.1.8) to give

−A =
∆1

4

(
1 + 3∆2

∆2

)3/2

. (5.2.8)

Using (5.1.6) the characteristic evolution time scale becomes

τ−1 = πMi(ρ + p)
∆1

4

(
1 + 3∆2

∆2

)3/2

. (5.2.9)

Using (5.2.9) in (5.1.5), the black hole mass is given by

M(t) = Mi

[
1− πMit(ρ + p)

∆1

4

(
1 + 3∆2

∆2

)3/2
]−1

, (5.2.10)

which determines the evolution of mass of black hole accreting phantom MVG.
It can be seen that if the phantom MVG violates the dominant energy condition
ρ+ p > 0 than mass M of the black hole will decrease. Contrary if this condition
is satisfied than M will increase. Thus in the classical relativistic regime, this
result is in conformity with the result of Babichev et al [1, 129]. I also stress here
that although metric (2.2.11) is static, I get a dynamical mass M(t) in (5.2.10).
Astrophysically the mass of a black hole is a dynamical quantity: the mass will
increase if the black hole accretes classical matter (which satisfies ρ + p > 0)
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however it will decrease for the exotic phantom energy accretion. The mass can
also decrease if the Hawking evaporation process is invoked. Hence the static
black holes may not necessarily correspond to the astrophysical black holes. Note
that ω > 0 (ω < 0) corresponds to non-phantom (phantom) MVG fluid; although
the accretion through the critical point is possible in both the cases, only phantom
MVG violating the dominant energy condition will reduce the mass of black hole.

5.3 Accretion of viscous generalized Chaplygin gas

In viscous cosmology, the presence of viscosity corresponds to space isotropy and
hence is important in the background of FRW spacetime [140, 141, 142]. The
presence of viscous fluid can explain the observed high entropy per baryon ratio
in the Universe [143]. It can cause exponential expansion of the Universe and can
rule out the initial singularity which mares the standard Big Bang picture. The
matter power spectrum in bulk viscous cosmology is also well behaved as there
are no instabilities or oscillations on small perturbation scale [144]. Any cosmic
fluid having non-zero bulk viscosities has the EoS peff = p + Π, where p is the
usual isotropic pressure and Π is the bulk viscous stress given by Π ≡ ξ(ρ)uµ

;µ

[145]. The scaling of viscosity coefficient is ξ = ξoρ
n where n is a constant para-

meter and ξ(to) = ξo. Note that for 0 ≤ n ≤ 1/2, I have de Sitter solution and
for n > 1/2, deflationary solutions. The viscosity coefficient is generally taken to
be positive for positive entropy production in conformity with the second law of
thermodynamics [146]. Moreover, the entropy corresponding to viscous cosmol-
ogy is always positive and increasing which is consistent with the thermodynamic
arrow of time. Infact the cosmological model with viscosity is consistent with the
observational SN Ia data at lower redshifts while it mimics the ΛCDM model in
the later cosmic evolution [147]. It is proved in [148, 149] that FRW spacetime
filled with perfect fluid and the bulk viscous stresses will violate the dominant
energy condition.

Thus the effective pressure is given by

peff ≡ p + Π, (5.3.1)

where Π = −3Hξ and p = χ/ρα with χ is a constant. Thus in the VCG case, the
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standard FRW equation becomes [150]

ä

a
= −1

3
(ρ + 3peff). (5.3.2)

Further the energy conservation principle gives

ρ̇ + 3H(ρ + peff) = 0, (5.3.3)

which shows that the viscosity term serves as the source term. Using (5.2.2) and
(5.3.1) in (5.3.3), gives

a

3

dρ

da
+ ρ +

χ

ρα
− 3κξ(ρ)

√
ρ = 0. (5.3.4)

Thus solving (5.3.4) yields

a(t) = ao exp

− ρ∫
ρo

ρ′αdρ′

ρ′α+1 − 3κξ(ρ′)ρ′α+ 1
2 + χ

 1
3

. (5.3.5)

For my further analysis I assume ξ to be constant.
The ratio of the number density of VCG near black hole horizon and at infinity

is given by

n(ρh)

n(ρ∞)
= exp

 ρh∫
ρ∞

ρ′αdρ′

ρ′α+1 − 3κξρ′α+ 1
2 + χ

 ≡ ∆3. (5.3.6)

The corresponding critical points of accretion are

u2
∗ =

∆4

3∆4 − 1
, x∗ =

3∆4 − 1

2∆4

, (5.3.7)

where
V 2
∗ = −

(
αχ

ρα+1
∗

+
3

2
√

ρ∗
κξ

)
≡ ∆4. (5.3.8)

Notice that for the critical points to be finite and positive valued either ∆4 < 0

or ∆4 > 1/3. Using (5.1.9) the speed of flow at the critical point is V 2 = −∆4.
Further, the EoS parameter is ω = χ/ρ1+α − 3ξH/ρ (= χ/ρ1+α −

√
3κξ/

√
ρ).

Note that if χ < 0 then ω < 0 and stability of VCG is lost. However, if I here
invoke the argument presented in the last section, I can consider accretion with
ω < 0. Using the generalized linear EoS p = β(ρ − ρo) for the phantom energy,
I obtain β > 0 and ρo > ρ for ω < 0. Using the definition c2

s ≡ ∂p/∂ρ = β and
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stability requirements β > 0 and 0 < c2
s < 1 lead to 0 < 1

ρ−ρo
(χ/ρα−

√
3ρκξ) < 1

and 0 < β < 1. The EoS parameter β is now well-defined with χ < 0 and
ρo > ρ. Therefore the stability of the phantom like VCG is assured with the use
of generalized linear EoS.

Using (5.1.8) the constant A is now determined to be

−A = ∆3

(
3∆4 − 1

2∆4

)3/2

. (5.3.9)

The characteristic evolution time scale is

τ−1 = 4πMi(ρ + p)∆3

(
3∆4 − 1

2∆4

)3/2

. (5.3.10)

Using (5.3.9) and (5.3.10) in (5.1.5), the black hole mass evolution as

M(t) = Mi

[
1− 4πMit(ρ + p)∆3

(
3∆4 − 1

2∆4

)3/2
]−1

. (5.3.11)

It can be seen that black hole mass will decrease when ρ + p < 0 and increase in
the opposite case. It is emphasized that this result is valid till the contribution of
viscous stress is negligible compared to isotropic stress. For the sake of clarity, it
is emphasize that fluid violating the standard energy conditions is termed ‘exotic’
and hydrodynamically unstable i.e. its existence is not fully guaranteed. But this
conclusion is drawn due to the ‘bad’ choice of the EoS (p = ωρ) in the analysis.
The result is reversed and remedied when the generalized linear EoS in our model
is introduced which makes the accretion of exotic fluid much more practical.

5.4 Conclusion

I have investigated the accretion of two different forms of phantom-like Chap-
lygin gas onto a Schwarzschild black hole. The time scale of accretion and the
evolution of mass of black hole are derived in the context of two widely studied
Chaplygin gas models namely the modified variable Chaplygin gas and the vis-
cous generalized Chaplygin gas. Although the phantom energy seems to be an
unstable fluid as it corresponds to a medium with indeterminate speed of sound
and super-luminal speeds. These pathologies arise due to bad choices of the equa-
tions of state for the phantom energy and hence can be removed by choosing some
suitable transformation from one EoS to another or a totally new EoS for this
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purpose. This work serves as the generalization of the earlier work by Babichev et
al [1]. It should be noted that I have ignored matter component in the accretion
model. Thus it will be more insightful to incorporate the contributions of matter
along with the Chaplygin gas during accretion onto black hole. Moreover my
analysis can be extended to the case of rotating black holes as well.



Chapter 6

Black holes in bulk-viscous
cosmology

The phenomenon of cosmic-acceleration is among the most compelling problems
in cosmology. Our deepest intuition about gravity - that all objects should be
attracted to each other - just simply does not holds at cosmological distance
scales. Rather than slowing, as Newtonian gravity predicts, the relative velocities
of distant galaxies are increasing. The implication is that gravity behaves far
differently than it was previously thought or that some mysterious fluid (dark
energy) with exotic gravitational properties fills the Universe. Either way, there
is new physics beyond the four fundamental forces described by the Standard
Particle Physics Model and general relativity [151].

Dark energy with bulk viscosity has a peculiar property to cause accelerated
expansion of phantom type in the late evolution of the Universe [140]. It can
also alleviate several cosmological puzzles like cosmic age problem [152], coinci-
dence problem [153] and phantom crossing [154]. I will consider phantom energy
as an imperfect fluid, implying that the PE could contain non-zero bulk and
shear viscosities [142]. The bulk viscosities are negligible for non-relativistic and
ultra-relativistic fluids but are important for the intermediate cases. In viscous
cosmology, shear viscosities arise in relation to space anisotropy while the bulk
viscosity accounts for the space isotropy [140, 141]. Generally, shear viscosities
are ignored (as the CMB does not indicate significant anisotropies) and only bulk
viscosities are taken into account for the fluids in the cosmological context. More-
over, bulk viscosity related to a grand unified theory phase transition may lead
to an explanation of the accelerated cosmic expansion [155].

Babichev et al [1] studied the effects of the accretion of phantom energy onto

90
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a Schwarzschild black hole taking PE to be a perfect fluid. As a first approxi-
mation, the bulk viscosity can be ignored, but to get a better picture I need to
incorporate it into the phantom fluid. I have adapted the procedure of [1, 122]
for my calculations.

The plan is as follows: in the next section I review viscous cosmology; in
section three I discuss the relativistic model of accretion onto a black hole; in the
subsequent section I use results from viscous cosmology for the accretion model;
next I give two examples to illustrate the accretion process with a constant and
power law viscosity. Later I study black hole evolution in the presence of matter
and viscous phantom energy. Finally I conclude with a brief discussion of my
results.

6.1 Bulk-viscous cosmology

I assume the background spacetime to be spatially flat, homogeneous, isotropic
and spatially flat (k = 0) and described by the Friedmann-Robertson-Walker.
Introducing p as the effective pressure containing the isotropic pressure ppe and
the bulk viscous pressure pvis, given by

p = ppe + pvis. (6.1.1)

Here ρ = ρpe + ρvis and pvis = −ξuµ
;µ, where uµ is the velocity four vector and

ξ = ξ(ρvis, t) is the bulk viscosity of the fluid [145]. (6.1.1) shows that negative
pressure due to viscosity contributes in the effective pressure which cause accel-
erated expansion. In the FRW model, the expression uµ

;µ = 3ȧ/a holds. Also, ξ

is generally taken to be positive in order to avoid the violation of second law of
thermodynamics [146].

Assume that the viscous fluid equation of state is

p = ωρ = (γ − 1)ρ. (6.1.2)

Note that if γ = 0 (or ω = −1), (6) represents the EoS for cosmological constant.
Furthermore if γ < 0, it represents phantom energy. In general, for normal matter
1 ≤ γ < 2.

The equation governing the evolution of H(t) for a given ξ is

2Ḣ + 3γH2 − 3ξH = 0. (6.1.3)
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On integration, (6.1.3) gives

H(t) =
exp {3

2

∫
ξ(t)dt}

C + 3
2
γ exp{3

2

∫
ξ(t)dt}

, (6.1.4)

where C is a constant of integration. Note that (6.1.4) can further be solved to
get the evolution of a(t) as

a(t) = D
(
C +

3

2
γ

∫
exp

{3

2

∫
ξ(t)dt

}
dt
) 2

3γ
, (6.1.5)

where D is a constant of integration. Thus for a given value of ξ one can obtain
expressions of a(t) and hence calculate ρ(t) and p(t).

6.1.1 Accretion onto a black hole

In the background of FRW spacetime, I consider, as an approximation, a gravita-
tionally isolated Schwarzschild black hole (BH) of mass M whose metric is speci-
fied by the Schwarzschild line element (2.2.11) with chosen units (c = 8πG = 1).
The background spacetime is assumed to contain one test fluid, namely the phan-
tom energy with non-vanishing bulk viscous stress pvis. The fluid is assumed to
fall onto the BH horizon in the radial direction only which is in conformity with
the spherical symmetry of the BH. Thus, the velocity four vector of the phan-
tom fluid is uµ = (ut(r), ur(r), 0, 0) which satisfies the normalization condition
uµuµ = −1. This phantom fluid is specified by the stress energy tensor (1.2.9)
[142, 146]. Using the energy momentum conservation for T µν ,

ur2M−2(ρ + p)

√
1− M

4πr
+ u2 = C1, (6.1.6)

where ur = u = dr/ds is the radial component of the velocity four vector and
C1 > 0 is a constant of integration. The second constant of motion is obtained by
contracting the velocity four vector of the phantom fluid with the stress energy
tensor uµT

µν
;ν = 0, which gives

ur2M−2 exp
[ ρh∫
ρ∞

dρ′

ρ′ + p(ρ′)

]
= −A, (6.1.7)

where A > 0 is a constant of integration. Also ρh and ρ∞ are the energy densities
of the phantom fluid at the horizon of the BH, and at infinity respectively. From
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(6.1.6) and (6.1.7) I have

(ρ + p)

√
1− M

4πr
+ u2 exp

[
−

ρh∫
ρ∞

dρ′

ρ′ + p(ρ′)

]
= C2, (6.1.8)

with C2 = −C1/A = ρ∞+p(ρ∞). In order to calculate the rate of change of mass
of black hole Ṁ , I integrate the flux of the bulk viscous phantom fluid over the
entire BH horizon to get

Ṁ =

∮
T r

t dS. (6.1.9)

Here T r
t determines the energy momentum flux in the radial direction only and

dS =
√
−gdθdϕ is the infinitesimal surface element of the BH horizon. Using

(6.1.6) - (6.1.9), gives
dM

dt
=

AM2

16π
(ρ + p), (6.1.10)

which clearly demonstrates the vanishing mass of the black hole if ρ + p < 0.
Integration of (6.1.10) leads to

M = M0

(
1− t

τ

)−1

, (6.1.11)

where M0 is the initial mass of the black hole and modified characteristic accretion
time scale τ−1 = [AM0

16π
{(ρpe + ppe) − 3ξ

t
ln( a

a0
)}], a0 being the value of the scale

factor at time t0. Note that during the integration of (6.1.10), I assumed ρpe

and ppe to be constants. In the coming subsections, I shall take these as time
dependent entities.

6.1.2 Accretion of viscous phantom fluid

I now study the BH mass evolution in two special cases: (a) constant viscosity;
and (b) power law viscosity.

6.1.3 Constant bulk viscosity

For constant viscosity ξ = ξo, the evolution of a(t) is determined by using (9). It
gives

a(t) = a0

[
1 +

γHoB(t)

ξo

] 2
3γ

, (6.1.12)

where
B(t) ≡ exp

(3tξo

2

)
− 1. (6.1.13)
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Using (6.1.12) and the Friedmann equation, the density evolution is given by

ρ(t) =
ρo exp (3ξot)[
1 + γHoB(t)

ξo

]2 . (6.1.14)

Here ρo = 3H2
o . Further, for γ < 0 the BR singularity occurs in a finite time at

τ =
2

3ξo

ln
(
1− ξo

Hoγ

)
. (6.1.15)

Finally, the BH mass evolution is determined by solving (6.1.10) and (6.1.14) to
get

M = M0

[
1− AM0

8πγ

(ξo

∆
− 1
)
(ξo − γHo)

]−1

, (6.1.16)

where
∆ ≡ ξo + (−1 + e

3tξo
2 )γHo. (6.1.17)

This mass is displayed for different values of viscosity at different times in
Table 1.

t ↓ ξ → ξ1 = 10−17 ξ2 = 10−18 ξ3 = 10−19 ξ4 = 10−20

t1 = 107 3.43427× 10−4 2.44662× 10−3 6.31285× 10−3 7.49184× 10−3

t2 = 1010 3.43544× 10−7 2.45261× 10−6 6.35248× 10−6 7.55357× 10−6

t3 = 1013 3.43516× 10−10 2.45258× 10−9 6.35247× 10−9 7.55358× 10−9

t4 = 1017 1.23994× 10−14 2.10182× 10−13 5.86096× 10−13 7.01997× 10−13

Table 1. The mass ratio M/M0 of black hole for different choices of
constant viscosity ξo. The initial mass is, throughout, taken to be 50M� or 1032kg.
The higher the viscosity of the phantom fluid, the sharper the decrease in the BH
mass. BHs of all masses, ranging from the solar mass to the intermediate mass
to the super-massive, will all meet the same fate

It is apparent from Table.1 that for a fixed viscosity, the mass ratio decreases
with time implying that mass of black hole is decreasing for an initial mass.
Similarly, at any given time, the mass ratio also decreases with the increase in
viscosity. Thus the greater the value of viscosity parameter, the greater would be
its effects on the BH mass.
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Power law viscosity

If the viscosity has power law dependence upon density i.e. ξ = αρs
vis, where

α and s are constant parameters, it has been shown [148, 156] that it yields
cosmologies with a BR if

√
3α > γ and s = 1/2. Thus I take ξ = αρ

1
2 as a special

case. Then the scale factor evolves as

a(t) = a0

(
1− t

τ

) 2
3(γ−

√
3α)

. (6.1.18)

The density of phantom fluid evolves as

ρ(t) =
4

3τ 2(γ −
√

3α)2

(
1− t

τ

)−2

, (6.1.19)

or in terms of critical density ρcr as

ρ(t) = ρcr

(
1− t

τ

)−2

. (6.1.20)

The corresponding BR time τ is given by

τ =
2

3(
√

3α− γ)
H−1

o . (6.1.21)

Finally, the mass evolution of BH is determined by using (6.1.10) and (6.1.19) is

M = M0

[
1 +

AM0

4π(
√

3α− γ)

t

τ(τ − t)

]−1

. (6.1.22)

Note that when α = 0, this case reduces to that of Babichev et al [1]. The
mass in (6.1.22) in displayed for different values of EoS parameter γ at different
times in Table 2 and displayed graphically in Figure 6.1. As shown, the mass
decreases gradually with the decrease in the EoS parameter γ. Note that I have
not graphically displayed the mass for different viscosities given in Table 1 because
the variation is not significantly different for most time scales.

t ↓ γ → γ1 = −1× 10−1 γ2 = −2× 10−1 γ3 = −3× 10−1 γ4 = −4× 10−1

t1 = 1010 4.71915× 10−5 2.35963× 10−5 1.5731× 10−5 1.17983× 10−5

t2 = 1013 4.79136× 10−8 2.35968× 10−8 1.57312× 10−8 1.17984× 10−8

t3 = 1017 4.66492× 10−12 2.30523× 10−12 1.51867× 10−12 1.12539× 10−12

t4 = 1020 4.97349× 10−14 5.20946× 10−14 5.28811× 10−14 5.32744× 10−14

Table 2. The mass ratio M/M0 of black hole for different choices of
equation of state. The initial mass is 50M� or 1032kg. From this table, I can
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draw the conclusion that PE containing viscous stresses can play a significant role
in the BH mass evolution if the viscosity is sufficiently high for an appropriate
EoS.

6.1.4 Examples

I now solve examples to demonstrate the accretion of viscous phantom energy
onto a BH. The formalism is adapted from [1].

Viscous linear EoS

I choose the viscous linear EoS, p = ωρpe − 3Hξo with ω < −1. The ratio of the
number densities of phantom fluid particles at the horizon and at infinity is given
by

n(ρpe
h )

n(ρpe
∞)

=
[ρpe

h (1 + ω)− 3ξoH

ρpe
∞(1 + ω)− 3ξoH

] 1
(1+ω)

. (6.1.23)

The critical points of accretion (the point where the speed of fluid flow becomes
equal to the speed of sound i.e. u2

∗ = c2
s) are given by

u2
∗ =

ω

1 + 3ω
; x∗ =

1 + 3ω

2ω
. (6.1.24)

The constant A appearing in (6.1.10) is determined to be

A =
|1 + 3ω|
4|ω|3/2

1+ω
2ω

. (6.1.25)

Notice that the constant A is the same as for the non-viscous case [1]. Also, the
density of phantom energy at the horizon is given by

ρpe
h =

3ξoH

1 + ω
+
( 4

A

)ω−1
ω+1
(
ρ∞ −

3ξoH

1 + ω

)
. (6.1.26)

Moreover, the speed of flow at the horizon is

uh = −
(A

4

) ω
(ω+1)

. (6.1.27)

The speed is negative as it is directed towards the BH. Also, the characteristic
evolution time scale of the BH is given by

τ−1 = 4πM0
(1 + 3ω)

4ω3/2

1+ω
2ω {

ρpe
∞(1 + ω)− 3ξo

t
ln
( a

a0

)}
. (6.1.28)
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Finally, substituting (6.1.28) in (6.1.11) gives the mass evolution of a BH in bulk
viscous cosmology

M = M0

[
1− 4πM0t

(1 + 3ω)

4ω3/2

1+ω
2ω {

ρpe
∞(1 + ω)− 3ξo

t
ln
( a

a0

)}]−1

. (6.1.29)

Since ρpe
∞ is unknown for my purpose, I have not evaluated M for different times

numerically for tabular and graphical presentation.

Viscous non-linear EoS

I here choose the EoS, p = ωρpe − 3Hξ(ρvis) with ω < −1, where ξ(ρpe) = αρs
pe

with α and s are constants. The ratio of number densities is given by

n(ρpe
h )

n(ρpe
∞)

=
( ρh

ρ∞

) s
(s−1)(1+ω)

(ρ∞(1 + ω)− 3Hαρs
∞

ρh(1 + ω)− 3Hαρs
h

)
(6.1.30)

The constant A is determined to be

A =
∣∣∣( ρh

ρ∞

) 2s
(s−1)(1+ω)

(ρ∞(1 + ω)− 3Hαρs
∞

ρh(1 + ω)− 3Hαρs
h

)3∣∣∣. (6.1.31)

The speed of flow at the horizon becomes

uh = −
( ρh

ρ∞

) 2s
(s−1)(1+ω)

(ρ∞(1 + ω)− 3Hαρs
∞

ρh(1 + ω)− 3Hαρs
h

)2

. (6.1.32)

The critical points of accretion are given by

u2
∗ =

ω − 3sαρs−1
h

1 + 3(ω − 3sαρs−1
h )

; x∗ =
1 + 3(ω − 3sαρs−1

h )

2(ω − 3sαρs−1
h )

. (6.1.33)

The characteristic evolution time scale τ is given by

τ =
[
4πM0

( ρh

ρ∞

) 2s
(s−1)(1+ω)

(ρ∞(1 + ω)− 3Hαρs
∞

ρh(1 + ω)− 3Hαρs
h

)3{
ρ∞(1+ω)−3

αρs
∞

t
ln
( a

a0

)}]−1

.

(6.1.34)
Finally, using (6.1.34) in (6.1.10), the BH mass evolution is given by

M = M0

[
1− 4πM0t

( ρh

ρ∞

) 2s
(s−1)(1+ω)

(ρ∞(1 + ω)− 3Hαρs
∞

ρh(1 + ω)− 3Hαρs
h

)3

×
{

ρ∞(1 + ω)− 3
αρs

∞
t

ln
( a

a0

)}]−1

. (6.1.35)
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As before, ρ∞ is unknown, but further ρh is also unknown. As such, I again do
not provide a tabular or graphical presentation.

6.1.5 Black holes accreting both matter and viscous phan-
tom fluid

I now consider a two component fluid, the viscous dark energy and matter. The
matter part may be composed of both baryonic and non-baryonic matter. It is
taken to be a perfect fluid while the PE is taken as a bulk viscous fluid. The
corresponding Einstein field equations (EFE) for the two component fluid become:

Rµν −
1

2
gµν = Tµν + Tm

µν . (6.1.36)

The stress-energy tensor representing the two component fluid is given by

T µν = (ρ + p + ρm)uµuν + pgµν . (6.1.37)

Here ρm is the energy density of the pressureless matter. Energy conservation
holds independently for both fluids:

ρ̇ + 3H(ρ + p) = 0, (6.1.38)

ρ̇m + 3Hρm = 0. (6.1.39)

Integrating (6.1.39) yields
ρm = ρm0a

−3, (6.1.40)

where ρm0 = ρm(t0). Similarly, integrating (6.1.38) leads to

ρ = ρm

[(
Ξ +

K

3
a3/2

)2

− 1
]
, (6.1.41)

where Ξ is a constant and K is given by

K =
3
√

3ξo√
ρm0

, (6.1.42)

Thus the total energy density of the two component fluid is given by [144]

ρ ≡ ρ + ρm = ρm0a
−3
(
Ξ +

K

3
a3/2

)2

. (6.1.43)
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Using Eqs. (45) in (16) the evolution of black hole mass is given by

M = M0

[
1− 4πAM0

[γρm0

H(t)

{K2

9
ln
( a

a0

)
− Ξ

9a3
(3Ξ + 4a3/2K)

+
Ξ

9a3
0

(3Ξ + 4a
3/2
0 K)

}]]−1

, (6.1.44)

where the scale factor a(t) evolves as

a(t) =
[ 3

K
(e

K
2

√
ρm0/3t+D1 − Ξ)

]2/3

, (6.1.45)

and D1 is the constant of integration determined by choosing t = 0 to get

D1 =
2

K
ln
(K

3
a

3/2
0 + Ξ

)
. (6.1.46)

6.2 Conclusion

Up to now have investigated the accretion of two different forms of phantom-
like Chaplygin gas onto a Schwarzschild black hole. The time scale of accretion
and the evolution of mass of black hole are derived in the context of two widely
studied Chaplygin gas models namely the modified variable Chaplygin gas and the
viscous generalized Chaplygin gas. Although the phantom energy is an unstable
fluid as it corresponds to a medium with indeterminate speed of sound and super-
luminal speeds. These pathologies arise due to bad choices of the equations of
state for the phantom energy and hence can be removed by choosing some suitable
transformation from one EoS to another or a totally new EoS for this purpose.
This work serves as the generalization of the earlier work by Babichev et al [1, 129].
It should be noted that I have ignored matter component in the accretion model.
Thus it will be more insightful to incorporate the contributions of matter along
with the Chaplygin gas during accretion onto black hole. Moreover my analysis
can be extended to the case of rotating black holes as well.

As pointed out in the next section, I cannot correctly discuss a BR scenario.
However I can take a spacetime approximating it sufficiently earlier than the BR.
One can than see its asymptotic behavior when the scale factor shoots to infinity,
the three terms in (6.1.44) will contribute significantly in the BH mass evolution.
The mass will decrease by the accretion of PE (γ < 0) due to its strong negative
pressure and is manifested in (6.1.44). Notice that the final expression for BH
mass depends only on the initial matter density ρm0 in addition to constant bulk
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viscosity ξo. The corresponding behavior of BH mass evolution is shown in Figures
6.2 and 6.3 for different values of model parameters. Thus for a shift of parameter
γ by 2, yields in the decline of mass ratio by a factor of 2. The decline in the
mass of the BH is observed with time showing that phantom energy accretion
will be dominant over matter accretion.

I have analyzed the accretion of bulk viscous phantom energy onto a BH. The
modeling is based on the relativistic model of accretion for compact objects. The
viscosity effects in cosmology are used to give an alternative to cosmic accelerated
expansion other then dark energy and quintessence. The evolution of BHs in such
a Universe accreting viscous phantom energy would result in a gradual decrease
in mass. This gradual decline would be faster than the non-viscous case [1] due
to additional terms containing viscosities coupled with mass. Lastly, it is shown
that BHs accreting both matter and viscous PE will also meet with the same fate
as the viscous forces dominate over the matter component for sufficiently large
scale factor a(t).

From this analysis, I can draw the conclusion that PE containing viscous
stresses can play a significant role in the BH mass evolution if the viscosity is
sufficiently high for an appropriate EoS. Though the viscous stresses are negli-
gibly small O(10−8Nsm−2) at the local scale of space and time they can play a
significant role in time scales of ∼ Gyrs. The higher the viscosity of the phantom
fluid, the sharper the decrease in the BH mass. BHs of all masses, ranging from
the solar mass to the intermediate mass to the supermassive, will all meet the
same fate.

Notice that I have used the Friedmann model which is represented by an
asymptotically curved spacetime and at the same time the Schwarzschild black
hole, which is asymptotically flat. This may seem contradictory. Schwarzschild
black hole has been dealt with in the context of closed Friedmann cosmology
[157, 158, 159]. Any global problem in approximating the full situation by a
Schwarzschild black hole inserted into Friedmann model arise near the Big Bang
or the Big Crunch, defined in terms of the york time [80] as shown elsewhere [160],
the effect will be at extremely late times in terms of the usual time parameter.
More complete analysis of the asymptotic behavior near a singularity is also
available [161], as such near to a singularity in spacetime, the approximation
will be extremely good. Consequently our analysis will be satisfactory for black
holes formed well after the Big Bang greater then 10−40s and of the Big Rip
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(presumably much more before 10−40s the rip). Whether there would/would not
be a Big Rip as my analysis excludes it.



102

Figure 6.1: For an initial mass of black hole M0 = 1032kg, the evolution of the
mass parameter m = M/M0 − 1 is plotted against the logarithmic time with
α = 10−5 and tH = 1017s. It is shown that the mass of black hole (in suitably
normalized units) decreases.

Figure 6.2: For an initial mass of black hole M0 = 1032kg, the evolution of m is
plotted against the time parameter t with A = 1/3, Ξ = 3, ξo = 10−16kgm−1s−1

and γ = −10−1 while H ≈ 2.33×10−18m. It is shown that the mass of black hole
(in suitably normalized units) decreases. Here only a small portion of the total
evolution profile in Fig. 6.1 is shown.
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Figure 6.3: For an initial mass of black hole M0 = 1032kg, the evolution of m is
plotted against the time parameter t with A = 1/3, Ξ = 3, ξo = 10−16kgm−1s−1

and γ = −2× 10−1 while H ≈ 2.33× 10−18m. It is shown that the mass of black
hole (in suitably normalized units) decreases. Here only a small portion of the
total evolution profile in Fig. 6.1 is shown.



Chapter 7

Phantom energy accretion on a
stationary BTZ black hole

7.1 Introduction

Interest in (2+1)-dimensional gravity - general relativity in two spatial dimensions
plus time - dates back at least to 1963, when Staruszkiewicz first showed that
point particles in a (2+1)-dimensional spacetime could be given a simple and
elegant geometrical description [162]. Over the next twenty years occasional
papers on classical [163] and quantum mechanical [164] aspects appeared but
until recently the subject remains largely a curiosity.

There were some discoveries in (2+1) dimensional gravity that ignited the
interests of researchers. In 1984, Deser and Jackiw began a systematic investiga-
tion of the behavior of classical and quantum mechanical point sources in (2+1)
dimensional gravity [165, 166], showing that such systems exhibit interesting be-
havior both as toy models for (3+1)-dimensional quantum gravity and as realistic
models of cosmic strings. Later on in 1988, Witten showed that (2+1) dimen-
sional general relativity could be rewritten as a Chern-Simons theory, permitting
exact computations of topology-changing amplitudes [167, 168]. Over the past
decade, (2+1)-dimensional gravity has become an active field of research, drawing
insights from general relativity, differential geometry and topology, high energy
particle physics, topological field theory and string theory.

In general relativity, there is a serious difficulty concerning the second law
of thermodynamics. Although the ordinary second law fails in the presence of
black holes and the second law of black hole mechanics fails when quantum effects
are taken into account, there is a possibility that the GSL may always hold. If
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the GSL does hold, it seems clear that one can interpret Sbh as representing the
physical entropy of a black hole (see Chp. 3 for more details on GSL).

In this chapter I investigate the accretion of exotic phantom energy onto a
static uncharged 3-dimensional BTZ black hole. As is obvious that the usual
spacetime has three spatial dimensions, so the BTZ black hole is merely a math-
ematical construct. In the present chapter, I am interested in understanding how
the accretion of phantom energy will effect a lower dimensional black hole. I will
show that the expression of the evolution of BTZ black hole mass is indepen-
dent of its mass and dependents only on the energy density and pressure of the
phantom energy. Although the mass decreases due to accretion, here the mass is
a dimensionless quantity and does not correspond to the physical mass of three
dimensional objects. It is well-known that the horizon area of the black hole
decreases with the accretion of phantom energy, hence it is essential to study
the generalized second law of thermodynamics (GSL) in this case. I show that
the validity of GSL in the present model yields an upper bound on the phantom
energy pressure. I also demonstrate that the first law of thermodynamics holds
in the present construction.

7.2 Model of accretion

Consider the field equations for a (2+1)-dimensional spacetime with a negative
cosmological constant Λ

Gab + Λgab = πTab, (a, b = 0, 1, 2) (7.2.1)

where Gab is the Einstein tensor in (2+1)-dimension while Tab is the stress energy
tensor of the matter field. The units are chosen such that c = 1 and G3 = 1/8.
Considering the stress-energy tensor to be vacuum, one can obtain the following
spherically symmetric metric, a (2+1)-dimensional BTZ black hole [169, 170]

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dφ2, (7.2.2)

where f(r) = −M + r2/l2, M is the dimensionless mass of the black hole and
l2 = −1/Λ, is a positive constant. The coefficient g00 is termed as the lapse
function. The event horizon of the BTZ black hole is obtained by setting f(r) = 0,
which turns out, re = l

√
M . Also have

√
|g| = r, where g is the determinant
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of the metric. To analyze the accretion of phantom energy onto the BTZ black
hole, I employ the formalism from the work by Babichev et al [1]. The stress
energy momentum tensor representing the phantom energy is the perfect fluid. I
denote ρ and p as the energy density and pressure of the phantom energy while
ua = (u0, u1, 0) is the velocity three vector of the fluid flow. Also u1 = u is the
radial velocity of the flow while the third component u2 is zero due to spherical
symmetry of the BTZ black hole. There are two important equations of motion
in our model: one which controls the conservation of mass flux is Ja

;a = 0, where
Ja is the current density and the other that controls the energy flux T a

0;a = 0,
across the horizon. Thus the equation of energy conservation T 0a

;a = 0 is

ur(ρ + p)
√

f(r) + u2 = C1, (7.2.3)

where C1 is an integration constant. Since the flow is inwards the black hole
therefore u < 0. Also the projection of the energy momentum conservation along
the velocity three vector uaT

ab
;b = 0 (the energy flux equation) is

ur exp
[ ρh∫
ρ∞

dρ

ρ + p

]
= −A1. (7.2.4)

Here A1 is a constant and the associated minus sign is taken for convenience.
Also ρh and ρ∞ are the energy densities of phantom energy at the BTZ horizon
and at infinity respectively. From (7.2.3) and (7.2.4), one gets

(ρ + p)
√

f(r) + u2 exp
[
−

ρh∫
ρ∞

dρ

ρ + p

]
= C2, (7.2.5)

where C2 = −C1/A1 = ρ∞ + p(ρ∞). The rate of change in the mass of black hole
is

dM = 2πA1(ρ∞ + p∞)dt. (7.2.6)

Note that ρ∞ + p∞ < 0 (violation of null energy condition) leads to decrease in
the mass of the black hole. Moreover, the above expression is also independent of
mass contrary to the Schwarzschild black hole and the Reissner-Nordström black
hole [171]. Further, the last equation is valid for any general ρ and p violating
the null energy condition, thus I can write

dM = 2πA1(ρ + p)dt. (7.2.7)
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7.3 Critical accretion

Only in those solutions that pass through the critical point are relevant as these
correspond to the material falling into the black hole with monotonically increas-
ing speed. The falling fluid can exhibit variety of behaviors near the critical
point of accretion, close to the compact object. The equation of mass flux or the
continuity equation Ja

;a = 0 is
ρur = k1. (7.3.1)

Here k1 is integration constant. From (7.2.4) and (7.3.1), I have(ρ + p

ρ

)2(
f(r) + u2

)
=
(C1

k1

)2

= C3. (7.3.2)

Taking differentials of (7.3.1) and (7.3.2) after simplification, I obtain

du

u

[
− V 2 +

u2

f(r) + u2

]
+

dr

r

[
− V 2 +

r2

l2
(
f(r) + u2

)] = 0. (7.3.3)

Here
V 2 ≡ dln(ρ + p)

dlnρ
− 1, (7.3.4)

From (7.3.3) if one or the other bracket factor is zero, one gets a turnaround point
corresponding double-valued solution in either r or u. The only solution that
passes through a critical point is feasible. The feasible solution will correspond
to material falling into the object with monotonically increasing velocity. The
critical point is obtained by taking the both bracketed factors in (7.3.3) to be
zero. This will give us the critical points of accretion. Thus

V 2
c =

r2
c

(f(rc) + u2
c)l

2
, (7.3.5)

V 2
c =

u2
c

f(rc) + u2
c

. (7.3.6)

Above the subscript c refers to the critical quantity. On comparing (7.3.5) and
(7.3.6), gives

u2
c =

r2
c

l2
, V 2

c =
u2

c

−M + 2u2
c

. (7.3.7)

Here uc is the critical speed of flow at the critical points which I determine below.
For physically acceptable solution, V 2

c > 0, hence the restrictions on speeds and
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the location of the critical points are

u2
c >

M

2
, r2

c >
r2
+

2
. (7.3.8)

7.4 Generalized second law of thermodynamics
and BTZ black hole

In this section I will discuss the thermodynamic of phantom energy accretion that
crosses the event horizon of BTZ black hole. Let us first write the BTZ metric in
the form

ds2 = hmndxmdxn + r2dφ2, m, n = 0, 1 (7.4.1)

where hmn = diag(−f(r), 1/f(r)), is a 2-dimensional metric. From the condition
of normalized velocities uaua = −1, one can obtain the relations

u0 = f(r)−1
√

f(r) + u2, u0 = −
√

f(r) + u2. (7.4.2)

The components of stress energy tensor are T 00 = f(r)−1[(ρ + p)(f(r)+u2

f(r)
) − p],

and T 11 = (ρ + p)u2 + f(r)p. These two components help us in calculating the
work density which is defined by W = −1

2
Tmnhmn [172]. In my case it comes out

W =
1

2
(ρ− p). (7.4.3)

The energy supply vector is defined by

Ψn = Tm
n ∂mr + W∂nr. (7.4.4)

The components of the energy supply vector are Ψ0 = T 1
0 = −u(ρ+p)

√
f(r) + u2,

and Ψ1 = T 1
1 +W = (ρ+ p)

(
1
2
+ u2

f(r)

)
. The change of energy across the apparent

horizon is determined through −dE ≡ −AΨ, where Ψ = Ψ0dt + Ψ1dr. The
energy crossing the event horizon of the BTZ black hole is given by

dE = 4πreu
2(ρ + p)dt. (7.4.5)

Assuming E = M and comparing (7.2.8) and (7.4.5), one can determine the value
of constant A1 = 2u2l

√
M .

The entropy of BTZ black hole is

Sh = 4πre. (7.4.6)
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It can be shown easily that the thermal quantities, change of phantom energy dE,
horizon entropy Sh and horizon temperature Th satisfy the first law dE = ThdSh,
of thermodynamics. After differentiation of (7.4.6) w.r.t. t, and using (7.2.8), I
have

Ṡh = 8π2l2u2(ρ + p). (7.4.7)

Since all the parameters are positive in (7.4.7) except that ρ + p < 0, it shows
that the second law of thermodynamics is violated i.e. Ṡh < 0, as a result of
accretion of phantom energy on a BTZ black hole.

Now I proceed to the generalized second law of thermodynamics. It is defined
by

Ṡtot = Ṡh + Ṡph ≥ 0. (7.4.8)

In other words, the sum of the rate of change of entropies of black hole horizon
and phantom energy must be positive. I consider event horizon of the BTZ black
hole as a boundary of thermal system and the total matter energy within the
event horizon is the mass of the BTZ black hole. I also assume that the horizon
temperature is in equilibrium with the temperature of the matter-energy enclosed
by the event horizon, i.e. Th = Tph = T , where Tph is the temperature of the
phantom energy. Similar assumptions for the temperatures Th and Tph has been
studied in [173]. The Einstein field equations satisfy first law of thermodynamics
ThdSh = pdA + dE, at the event horizon [174]. I also assume that the matter-
energy enclosed by the event horizon of BTZ black hole also satisfy the first law
of thermodynamics given by

TphdSph = pdA + dE. (7.4.9)

Here the horizon temperature is given by

Th =
f ′(r)

4π

∣∣∣∣
r=re

=

√
M

2πl
. (7.4.10)

Assuming that Th = Tph = T , therefore (7.4.9) gives

T Ṡtot = T (Ṡh + Ṡph) = 4πl2u(ρ + p)(2
√

M + πlp). (7.4.11)

From the above equation, it is clear that the GSL holds provided

p ≥ −2
√

M

πl
. (7.4.12)
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Since the pressure of the phantom energy is negative, therefore the GSL gives us
the lower bound on the pressure of the phantom energy.

7.5 Conclusion

In this chapter, I have investigated the accretion of exotic phantom energy onto
a BTZ black hole. The motivation behind this work is to study the accretion
dynamics in low dimensional gravity.myanalysis has shown that evolution of mass
of a BTZ black hole would be independent of its mass and will be dependent only
on the energy density and pressure of the phantom energy in its vicinity. Due to
spherical symmetry, the accretion process is simple since the phantom energy falls
radially on the black hole. The accretion would be much more interesting when
additional parameters like charge and angular momentum are also incorporated
in the BTZ spacetime. Similarly, it would be of much interest to perform the
above analysis in higher (n + 1) dimensional black hole spacetimes.

I also discussed GSL in the BTZ black hole spacetime. I assumed that the
event horizon of BTZ black hole acts as a boundary of the thermal system and
the phantom energy crossing the event horizon will change the mass of the black
hole. I assumed that the horizon temperature is in local equilibrium with the
temperature of the matter energy at the event horizon. Under these constraints
it is shown that the GSL holds provided the pressure of the phantom energy p

has an lower bound p ≥ −2
√

M
πl

, on the black hole parameters (M and l).



Chapter 8

Conclusion

In this thesis I have dealt with the consequences of the observed accelerated
expansion of the Universe on the evolution of black holes [171, 183, 184, 185, 186].
I considered only static black holes which evolve with time by accretion (of matter,
phantom energy, Chaplygin gas etc) in an expanding Universe. Astrophysically,
black holes may not be static objects and can undergo one of the two processes
inevitably: absorption of energy-matter from their environs and a relatively slow
process of Hawking evaporation which involves emission of massive particles from
their horizons. It should be abundantly clear that the former process works
efficiently for supermassive black holes (of the order of few million solar masses)
while the later one is crucial for small mass black holes (masses of the order of
Planck mass). Since I have dealt with astrophysical black holes, with rotations
ignored, the evolution of black hole mass is an inevitable phenomenon. Moreover
in all cases, the rate of change of BH mass is a decreasing function of time.

Notice that I have used the Friedmann model which is represented by an
asymptotically curved spacetime and at the same time black holes, which are
asymptotically flat. This may seem contradictory. Any global problem in ap-
proximating the full situation by a black hole inserted into Friedmann model
arise near the Big Bang or the Big Crunch, the effect will be at extremely late
times in terms of the usual time parameter (see conclusion of Chapter 6 for more
details).

Dark energy has generally been described by an equation of state. This state
parameterization of dark energy assumes that it is homogeneous and isotropic at
cosmological scales. However near the black hole horizon, the strong curvature
can induce inhomogeneity in the dark energy relative to that of spatial infinity.
In such a scenario, the dark energy should be modeled by an inhomogeneous
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scalar field possessing inhomogeneous pressure and energy density. It is expected
that in this case the accretion of phantom energy on to the black hole would be
somewhat different. In this connection, a study was performed by Gonzalez and
Guzman [177] who deduced that the accretion rate and localization of the scalar
field around the black hole depends on the scalar field potential. In the case of
the zero potential the scalar field is quickly accreted whereas in the other case the
scalar field gets packed near the horizon and some scalar field is radiated away.
Moreover the event horizon shrinks with the accretion of the scalar field.

One can ask how dark energy can possibly be absorbed by a black hole. It may
seem impossible if dark energy is taken as a property of spacetime. But according
to Einstein’s field equations which connect geometry with energy-matter, one can
treat dark energy as a fluid, and more specifically a perfect fluid. I am not sure
about the micro-physical interpretation of dark energy and so I kept my analysis
macrophysical. One of the obvious features of dark energy is that it causes cosmic
expansion to speed up from the simple expansion to the accelerated one. However,
I studied another new feature of dark energy when it interacted with the black
holes in the Universe. It was earlier claimed by some people [175] that if dark
energy is taken as a quintessence field, then its accretion onto small stellar mass
black holes would make them grow to supermassive black holes that reside in the
centers of massive elliptical and spiral galaxies. However, drastic features of dark
energy emerges as phantom energy.

In the third chapter, I analyzed the Hawking radiation effects combined with
the phantom energy accretion on a stationary black hole. The former process
has been thoroughly investigated in the literature. However there is as yet no
observational support to it. When phantom energy and the Hawking process are
relevant the total life time scale of the PBH is significantly shortened and the
formation of the PBH that would be exploding now is delayed. In particular,
to have the primordial black hole decay now it would have to be more massive
initially. I find that the effect of the phantom energy is substantial and the black
holes decaying now would be much more massive — over 10 orders of magnitude!
This effect will be relevant for determining the time of production and hence the
number of evaporating black holes expected in a Universe accelerating due to
phantom energy.

In the fourth chapter, I analyzed the effects of accretion of phantom energy
onto a charged black hole. The analysis is performed using two critical points rc±.
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It turns out that accretion is possible only through rc+ which yields a constraint
on the mass to charge ratio given by (4.2.16). This expression incorporates both
extremal and non-extremal black holes. Thus all charged black holes will diminish
near the Big Rip causing the formation of naked singularity. Thus my suggested
mechanism leads to the violation of cosmic censorship hypothesis. This work also
serves as a generalization of Babichev et al [1] and Michel [122] in terms of the
accretion of phantom dark energy onto a charged black hole.

I have analyzed the accretion of bulk viscous phantom energy onto a BH. The
modeling is based on the relativistic model of accretion for compact objects. The
viscosity effects in cosmology are used to give an alternative to cosmic accelerated
expansion other then dark energy and quintessence. The evolution of BHs in such
a Universe accreting viscous phantom energy would result in a gradual decrease
in mass. This gradual decline would be faster than the non-viscous case [1] due
to additional terms containing viscosities coupled with mass. Lastly, it is shown
that BHs accreting both matter and viscous PE will also meet with the same fate
as the viscous forces dominate over the matter component for sufficiently large
scale factor a(t).

In the fifth chapter, I reached the conclusion that phantom energy containing
viscous stresses can play a significant role in the BH mass evolution provided the
viscosity is sufficiently high for an appropriate EoS. Though the viscous stresses
are negligibly small O(10−8Nsm−2) at the local scale of space and time they can
play a significant role in time scales of ∼ Gyrs. The higher the viscosity of the
phantom fluid, the sharper the decrease in the BH mass. BHs of all masses,
ranging from the solar mass to the intermediate mass to the supermassive, will
meet the same fate.

In the sixth chapter, I investigated the accretion of two different forms of
phantom-like Chaplygin gas onto a Schwarzschild black hole. The time scale of
accretion and the evolution of mass of black hole were derived in the context of two
widely studied Chaplygin gas models, namely the modified variable Chaplygin gas
and the viscous generalized Chaplygin gas. Although the phantom energy seems
to be an unstable fluid as it corresponds to a medium with indeterminate speed
of sound and super-luminal speeds, these pathologies arise due to bad choices
of the equations of state for the phantom energy and hence can be removed by
choosing some suitable transformation from one EoS to another or a totally new
EoS for this purpose. This work serves as a generalization of the earlier work by
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Babichev [1].
In the seventh chapter, I investigated the accretion of exotic phantom energy

onto a BTZ black hole. The motivation behind this work is to study the accretion
dynamics in low dimensional gravity. Our analysis showed that the evolution of
mass of a BTZ black hole would be independent of its mass and will be dependent
only on the energy density and pressure of the phantom energy in its vicinity. I
also discussed GSL in the BTZ black hole spacetime. I assumed that the event
horizon of a BTZ black hole acts as a boundary of the thermal system and the
phantom energy crossing the event horizon will change the mass of the black
hole. I assumed that the horizon temperature is in local equilibrium with the
temperature of the matter energy at the event horizon. Under these constraints
it was shown that the GSL holds provided the pressure of the phantom energy p

has an upper bound p ≤ −2
√

M
πl

, on the black hole parameters (M and l).

8.1 Further lines of work

In this thesis, I focused on accretion of dark energy (more specifically phantom
energy) onto black holes. The analysis was performed within the framework of
Einstein’s general relativity. The process of accretion of dark energy onto black
holes can be extended in various other ways: it would be of worth checking how
the accretion processes and variation of black hole mass changes over time due to
rotation. For this purpose, one can take Kerr-Newmann black hole and consider
the effects of Hawking radiation and phantom energy accretion on it. Another
line of work that needs to be pursued is the investigation of the accretion of inho-
mogeneous dark energy e.g. scalar field near the EH of black hole. Furthermore,
one could consider the evolution of black hole in Friedmann-de Sitter model. This
would be worth doing.

In the past few years, several alternative gravity theories, commonly termed
‘modified gravity’ theories are proposed as an alternative to Einstein’s gravity.
The most prominent of these are f(R) gravity [176], Gauss-Bonnet gravity [178]
(which in fact is a special case of the former theory), Braneworld gravity [179],
Divali-Gabadadze-Poratti gravity [180] and scalar-tensor gravity [181]. It would
be most interesting to study the accretion of dark energy onto the black hole
solutions of these theories and obtain relations which determine how the mass of
respective black hole varies over time.
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There are numerous black hole solutions in higher dimensional spacetimes
including Schwarzschild, RN and Kerr spacetimes. One can study accretion of
phantom energy in such spacetimes as well. Moreover, the study of dark en-
ergy accretion need not be restricted to black holes only; it can be extended for
wormholes (both static and evolving) [182] and also for string theory inspired
dilaton-axion black hole.

One can also investigate the thermodynamic features of dark energy accretion
onto black holes. This analysis should be similar to that performed in chapter 7 for
the BTZ black hole. It is important to verify whether the laws of thermodynamics
are respected in the processes under investigation. In particular, it is evident that
the second law of thermodynamics is violated, i.e. Ṡ < 0 due to violation of the
null energy condition. This suggests that I use the generalized second law of
thermodynamics for black holes accreting dark energy. Given the fact that GSL
holds in most cases, its utility puts constraints on the model parameters.

Besides phantom energy, one can also consider other types of dark energy
candidates including tachyons, quintessence and dilaton fields accreted by various
black holes taken in the thesis and calculate the expression for mass variation and
critical accretion.
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Abstract In the classical relativistic regime, the accretion
of phantom-like dark energy onto a stationary black hole
reduces the mass of the black hole. We have investigated
the accretion of phantom energy onto a stationary charged
black hole and have determined the condition under which
this accretion is possible. This condition restricts the mass-
to-charge ratio in a narrow range. This condition also chal-
lenges the validity of the cosmic-censorship conjecture since
a naked singularity is eventually produced due to accretion
of phantom energy onto black hole.

1 Introduction

Accelerated expansion of the universe has been observed
and confirmed by a myriad of sources including the analysis
of cosmic microwave background radiation [1], large-scale
structure [2] and supernovae SNe Ia data [3, 4]. This expan-
sion is supposedly driven by an exotic vacuum energy hav-
ing ρ > 0 and p < 0 (or ω < 0 where p = ωρ in the equation
of state (EoS) relating pressure to energy density), dominat-
ing the observable universe. Inspection of WMAP data sug-
gests that its magnitude is more than 70% of the total energy
density of the universe [5]. Among other forms of exotic en-
ergies (e.g. quintessence, cosmological constant, k-essence,
etc.), the phantom energy with ω < −1 exhibits a similar
behavior on a large cosmic scale. The genesis of phantom
energy is not clear but it violates the null and weak energy
conditions. As these conditions are the weaker one, they en-
sure that the stronger conditions (i.e. strong and dominant)
will be violated automatically [6–8]. These energy condi-
tions guarantee the positive definiteness of the energy den-
sities and pressure densities of all the matter content in the
universe. Recent observational data constrain the range of
the dark energy by −1.38 < ω < −0.82 at 95% confidence
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b e-mail: aqadirmath@yahoo.com
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level [9]. Rather the supernova data favor an evolving ω(z)

varying from quintessence (ω > −1) to the phantom regime
(ω < −1) [10]. Furthermore, the extrapolation of WMAP
data is best fitted with the notion of phantom energy [11].

The energy density and the pressure of the phantom en-
ergy can be represented by the minimally coupled spatially
homogeneous and time dependent scalar field φ having a
negative kinetic energy term given by

ρ = − φ̇2

2
+ V (φ), p = − φ̇2

2
− V (φ). (1)

Here V (φ) is the scalar potential and the dot over φ rep-
resents the derivative with respect to the time parameter t .
Note that if the kinetic term in (1) is positive, then it gives
the usual dark energy with satisfies all the energy conditions.
The above parameters ρ and p are related to the Hubble pa-
rameter H by

H 2 = 4π

3

(−φ̇2 + 2V
)
, (2)

where H(t) = ȧ/a and a(t) is the scale factor which arises
in the Friedmann–Robertson–Walker spacetime. From (2),
we require the potential V (φ) to be positive. It is argued
by using scalar field models of the phantom energy, that
it can behave as a long-range repulsive force [12]. The
phantom energy possesses some peculiar properties unlike
normal matter; e.g. (1) its energy density ρ(t) increases
with the expansion of the universe; (2) it ensures the exis-
tence and stability of traversable worm holes in the universe
[13–17]; (3) also self-gravitating, static and spherically sym-
metric phantom scalar fields with arbitrary potentials can
generate a stable configuration of a regular black hole or
apparently non-singular black hole, which inherently pos-
sesses an exactly Schwarzschild-like causal structure, but
the singularity is replaced by a de Sitter infinity, thereby
generating an asymptotically de Sitter expansion beyond the
black hole horizon [18, 19]; (4) due to a strong negative
pressure the phantom energy can disrupt all gravitationally
bound structures, i.e. from galactic clusters to gravitationally
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collapsed objects including black holes [20–25]; (5) it can
produce an infinite expansion of the universe in a finite time,
thus causing the ‘big rip’ (i.e. a state when a(t), ρ(t) → ∞
for t < ∞) [6, 11].

The big rip is characterized by a future singularity imply-
ing a finite age of the universe. It has been proposed that
this future singularity can be avoided if the phantom en-
ergy is interacting with dark matter [26, 27]. The interac-
tion of phantom energy and dark matter leads to stable at-
tractor solutions at late times and the big rip is avoided in
the parameter space [29]. Also, it was argued that there are
certain classes of unified dark energy models stable against
perturbations, in which Cosmic Doomsday can be avoided
[30]. Moreover, in scalar–tensor theories, quantum gravity
effects may prevent (or, at least, delay or soften) the cosmic
doomsday catastrophe associated with the phantom energy
[31, 32]. In Gauss–Bonnet gravity theory and loop quantum
cosmology, the big-rip occurrence is avoided [33, 34]. In
order to avoid the big rip with phantom matter, it is suffi-
cient to have a phantom scalar field with a potential bounded
above by some positive constant [35]. It is also suggested
that phantom dark energy with ω < −1 can effectively ame-
liorate the coincidence problem (i.e. why does the observ-
able universe begin the accelerated expansion so recently
and why are we living in an epoch in which the dark en-
ergy and the matter energy density are comparable?) [36,
37]. In another model, using vector-like dark energy with
a background of a perfect fluid, it is demonstrated that the
cosmic-coincidence problem is fairly solved [38].

The fate of a stationary uncharged black hole in a
phantom-energy dominated universe was investigated by
Babichev et al. [20]. The phantom energy was assumed to
be a perfect fluid. The phantom energy was allowed to fall
onto the black hole horizon only in the radial direction. It
was concluded that the black hole will lose mass steadily
due to phantom energy accretion and disappear near the big
rip. We here adopt their procedure for a static, stationary
and charged black hole. Gravitational units are chosen for
this work.

The paper is organized as follows. In the second section,
we explain the relativistic model of accretion onto a charged
black hole and obtain the black hole mass loss rate. In the
third section, we have determined the critical points of the
accretion model and have analyzed the dynamics about these
points. Finally, we conclude our paper in Sect. 4.

2 Accretion onto a charged black hole

We consider a static and spherically symmetric black hole
of mass M having electric charge e, the so-called Reissner–
Nordström (RN) case, specified by the line element

ds2 = f (r)dt2 − f (r)−1 dr2 − r2(dθ2 + sin2 θ dϕ2), (3)

where

f (r) = 1 − 2M

r
+ e2

r2
. (4)

If e2 > M2 then the metric is non-singular everywhere ex-
cept at the curvature or the irremovable singularity at r = 0.

Also if e2 ≤ M2, then the function f (r) has two real roots
given by

rh± = M ±
√

M2 − e2. (5)

These roots physically represent the apparent horizons of the
RN black hole. The two horizons are termed the inner rh−
and the outer rh+. The outer horizon is effectively called
the event horizon, while the inner one is called the Cauchy
horizon of the black hole. The metric (3) is then regular
in the regions specified by the inequalities ∞ > r > rh+,
rh+ > r > rh− and rh− > r > 0. Note that if e2 = M2, then
it represents an extreme RN black hole, while, if e2 > M2, it
yields a naked singularity at r = 0 [39, 40].

The phantom energy is assumed to be a perfect fluid spec-
ified by the stress energy tensor

Tμν = (ρ + p)uμuν − pgμν. (6)

Here p is the pressure and ρ is the energy density of the
phantom energy. Also uμ = (ut (r), ur (r),0,0) is the four-
velocity of the phantom fluid which satisfies the normaliza-
tion condition uμuμ = −1. We assume that the in-falling
phantom fluid does not disturb the global spherical symme-
try of the black hole. Further the energy–momentum conser-
vation T

μν

;ν = 0 = T tr
;r gives

ur2M−2(ρ + p)

√

1 − 2M

r
+ e2

r2
+ u2 = C1, (7)

where ur = u = dr/ds is the radial component of the ve-
locity four-vector and C1 is a constant of integration. For
inward flow, we shall take u < 0. Moreover, the second con-
stant of motion is obtained by projecting the energy conser-
vation equation onto the velocity four-vector as uμT

μν

;ν = 0,
which yields

ur2M−2 exp

[∫ ρh

ρ∞

dρ′

ρ′ + p(ρ′)

]
= −A. (8)

Here A is a constant of integration. ρh and ρ∞ are the energy
densities of the phantom energy at the horizon and at infinity,
respectively. From (7) and (8) we have

(ρ + p)

√

1 − 2M

r
+ e2

r2
+ u2

× exp

[
−

∫ ρh

ρ∞

dρ′

ρ′ + p(ρ′)

]
= C2, (9)
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where C2 = −C1/A = ρ∞ + p(ρ∞). In order to calculate
the rate of change of the mass of the black hole we integrate
the flux of the fluid over the entire cross-section of the event
horizon as follows:

Ṁ =
∮

T r
t dS, (10)

where T r
t determines the momentum density in the radial

direction and dS = √−g dθ dϕ is the surface element of the
horizon, where g is the determinant of the metric. From (7)–
(10), we get

dM

dt
= 4πAM2(ρ∞(t) + p∞(t)

)
, (11)

which clearly demonstrates that the mass of the black hole
decreases if ρ∞ + p∞ < 0. Note that (11) can be solved for
any equation of state of the form p = p(ρ) or in particular
p = ωρ. In general, (11) holds for all ρ and p violating the
dominant energy condition; thus, we can write [43, 44]

dM

dt
= 4πAM2(ρ(t) + p(t)

)
. (12)

In the context of astrophysics, the mass of a black hole is
a dynamic quantity. The mass increases by the accretion of
matter and can decrease by the accretion of phantom energy.
Since we are not incorporating matter in our model, the mass
of the black hole will decrease correspondingly.

3 Critical accretion

We are interested only in the solutions that pass through the
critical point, as these correspond to the material falling into
the black hole with monotonically increasing speed. The
falling fluid can exhibit a variety of behaviors near the crit-
ical point of accretion, close to the compact object. For in-
stance, for a given critical point r = rc, we have the fol-
lowing possibilities [41]. (a) u2 = c2

s at r = rc, u2 → 0 as
r → ∞, u2 < c2

s for r > rc and u2 > c2
s for r < rc. Thus for

large distance, the speed of flow becomes negligible (sub-
sonic), at the critical point it is sonic, while the flow be-
comes supersonic for very small r . Other solutions for the
flow near rc are not of much interest due to their impracti-
cality, like the following cases. (b) u2 < c2

s for all values of
r and (c) u2 > c2

s for all values of r . Solutions (b) and (c)
are not realistic, since they describe both subsonic and su-
personic flows for all r . Similarly, we have (d) u2 = c2

s for
all values of r > rc and (e) u2 = c2

s for all values of r < rc.
The latter two solutions are also useless, since they give the
same value of the speed at a given r . Hence, from this dis-
cussion, we see that solution (a) is the only one physically
motivated, near the critical point. To determine the critical

points of accretion we shall adopt the procedure as specified
by Michel [42]. The equation of the mass flux J

μ

;μ = 0 gives

ρur2 = k1, (13)

where k1 is a constant of integration. Dividing and then
squaring (7) and (13) gives

(
ρ + p

ρ

)2(
1 − 2M

r
+ e2

r2
+ u2

)
=

(
C1

k1

)2

= C3. (14)

Here C3 is a positive constant. Differentiation of (13) and
(14) and then elimination of dρ gives

du

u

[
2V 2 −

M
r

− e2

r2

1 − 2M
r

+ e2

r2 + u2

]

+ dr

r

[
V 2 − u2

1 − 2M
r

+ e2

r2 + u2

]
= 0, (15)

or

du

dr
= −u

r

[
V 2 − u2

1− 2M
r

+ e2

r2 +u2

]

[
2V 2 −

M
r

− e2

r2

1− 2M
r

+ e2

r2 +u2

]
= N

D
, (16)

where

V 2 ≡ d ln(ρ + p)

d lnρ
− 1. (17)

We have assumed that the flow is smooth at all points of
spacetime; however, if at any point the denominator D van-
ishes, then the numerator N must also vanish at that point.
Mathematically this point is called the critical point of the
flow [45]. Equating the denominator D and numerator N to
zero, we can get the so-called critical point conditions:

u2
c = Mrc − e2

2r2
c

(18)

and

V 2
c = Mrc − e2

2r2
c − 3Mrc + e2

. (19)

Note that by choosing e = 0 in the above equations, we
can retrieve the results for the accretion of the fluid onto a
Schwarzschild black hole [42]. All the quantities with sub-
script c are defined at the critical point respectively. Physi-
cally, the critical points represent the sonic point of the flow,
i.e. the point where the speed of flow becomes equal to the
speed of sound, u2

c = c2
s , or the corresponding Mach num-

ber becomes Mc = 1. This transition may occur from the
initial subsonic to the supersonic or transsonic speeds. For
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any spherically symmetric spacetime, a surface where every
point is a sonic point is called a sound horizon which itself
will be spherical. Any perturbation or disturbance generated
in the flow inside the sound horizon (r < rc) is eventually
pulled towards the black hole singularity and hence cannot
escape to infinity.

It can be seen that the speed of sound (squared) c2
s =

∂p/∂ρ has no physical meaning if the EoS parameter ω < 0
(in p = ωρ). Thus, it will apparently make the exotic cos-
mic fluids like the cosmological constant, quintessence and
the phantom energy unstable so that these cannot be accreted
onto the black hole. In order to avoid this problem, Babichev
et al. [46] introduced a non-homogeneous linear equation of
state (nEoS) given by p = α(ρ − ρo), where the constants α

and ρo are free parameters. The nEoS can describe both hy-
drodynamically stable (α > 0) and unstable (α < 0) fluids.
The parameter ω is related to the nEoS by ω = α(ρ −ρo)/ρ.
Notice that ω < 0 corresponds to α > 0 and ρo > ρ, thus
making the phantom energy a hydrodynamically stable fluid.
Therefore the speed of sound cs is now well defined with the
nEoS for the phantom energy. Hence, the phantom energy
can fall onto the RN black hole and can reduce the black-
hole mass. Since phantom energy reduces only mass and
not charge, a stage is reached when the cosmic-censorship
conjecture becomes violated, i.e. e > m, the emergence of a
so-called naked singularity.

Now, a physically acceptable solution of (16) is obtained
if u2

c > 0 and V 2
c > 0; hence we get

2r2
c − 3Mrc + e2 ≥ 0, (20)

and

Mrc − e2 ≥ 0. (21)

Equation (20) can be factorized thus:

2r2
c − 3Mrc + e2 = (rc − rc+)(rc − rc−) ≥ 0, (22)

where

rc± = 1

4

(
3M ±

√
9M2 − 8e2

)
, (23)

which are positive, satisfying rc+ > rc− > 0. In general, for
e ≤ m, the inner critical point will lie between rh− ≤ rc− ≤
rh+, while the outer one will satisfy rc+ ≥ rh+. It is obvious
that these roots will be real valued if 9M2 − 8e2 ≥ 0 or

M2

e2
≥ 8

9
. (24)

These roots physically represent the locations of the critical
or sonic points of the flow near the black hole. Notice that
both mass and charge have the same dimension of length,

therefore all the inequalities here and below represent di-
mensionless ratios. From (22), we can see that these criti-
cal points specify two regions for the flow: (1) rc > rc+ or
(2) 0 < rc < rc−. We shall now solve (19) using (21) and
then deduce a condition for the black-hole mass and charge.

To get solutions about the critical points, we substitute
rc± in (21). For rc+, (21) gives

M
√

9M2 − 8e2 ≥ 4e2 − 3M2, (25)

which is satisfied if

M2

e2
≤ 1, (26)

and

M2

e2
<

4

3
. (27)

A comparison of inequalities (24), (26) and (27) implies

8

9
≤ M2

e2
<

4

3
. (28)

It is interesting to note that these limits on the mass to
charge ratio appear in the discussion of pseudo-Newtonian
forces [28]. Thus, accretion through rc+ is possible if the
above inequality (28) is satisfied. It encompasses the two
types of black holes in itself: the regular and the extreme
RN black hole. Interestingly, the naked singularity also falls
within the prescribed limits. Thus, for all these spacetimes,
the accretion is allowed through the critical point rc+. We
stress here that using e = 0 in the inequality (28) to retrieve
the same condition for the Schwarzschild black hole may be
misleading. The inequality is deduced using the outer ap-
parent horizon and a critical point. Since the Schwarzschild
black hole (e → 0) possesses a unique horizon and a criti-
cal point, the above inequality cannot be reduced for an un-
charged black hole.

Now we consider case (2), 0 < rc < rc−. Substitution of
rc− in (21) gives

M
√

9M2 − 8e2 ≤ 3M2 − 4e2. (29)

If 3M2 − 4e2 < 0, then (29) does not yield any solution. So
we need 3M2 − 4e2 > 0, which yields

M2

e2
>

4

3
. (30)

Furthermore inequality (29) is satisfied if

M2

e2
< 1. (31)

Since (30) and (31) are mutually inconsistent, there is no
solution for rc in case (2). Thus, accretion is not possible
through rc−.
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Since the mass of the black hole is decreasing by the ac-
cretion of the phantom energy (see (12)), it implies that at
least one critical point must exist for the fluid flow, which
is specified by rc+. This critical point yields the mass-to-
charge ratio of the black hole in the range specified by (28),
which allows accretion onto all charged spherically symmet-
ric black holes.

4 Conclusion

We have analyzed the effects of accretion of phantom en-
ergy onto a charged black hole. The analysis is performed
using two critical points rc±. It turns out that accretion is
possible only through rc+, which yields a constraint on the
mass-to-charge ratio given by (28). This expression incorpo-
rates both extremal and non-extremal black holes. Thus all
charged black holes will diminish near the big rip. Appar-
ently this condition predicts the existence of large charges
onto black holes, although astrophysically no evidence for
such a case has been successfully deduced from the observa-
tions. In theory, the existence of large charges on black holes
is consistently deduced by the general theory of relativity.
It needs to be stressed that there is no analogous condition
for the Schwarzschild black hole (e = 0). This analysis can
be extended for a rotating charged black hole (a so-called
Kerr–Neumann black hole) to get deeper insight in the ac-
cretion process. This work also serves as the generalization
of the case studied by Michel [42] in terms of the accretion
of phantom dark energy onto a charged black hole.
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Abstract In the classical relativistic regime, the accretion
of phantom energy onto a black hole reduces the mass of the
black hole. In this context, we have investigated the evolu-
tion of a Schwarzschild black hole in the standard model of
cosmology using the phantom-like modified variable Chap-
lygin gas and the viscous generalized Chaplygin gas. The
corresponding expressions for accretion time scale and evo-
lution of mass have been derived. Our results indicate that
the mass of the black hole will decrease if the accreting
phantom Chaplygin gas violates the dominant energy condi-
tion and will increase in the opposite case. Thus, our results
are in agreement with the results of Babichev et al. who first
proposed this scenario.

1 Introduction

The evidence of accelerated expansion in the observable uni-
verse is quite compelling and has been confirmed by various
astrophysical investigations including observations of super-
novae of type Ia [1, 2], anisotropies of the cosmic microwave
background radiation [3, 4], large scale structure and galaxy
distribution surveys [5]. This expansion of the universe is
supposedly driven by an exotic energy commonly called
‘dark energy’, possessing negative pressure p < 0 and posi-
tive energy density ρ > 0, related by the equation of state
(EoS) p = ωρ. It should be noted that p = ωρ is not a
true EoS for dark energy, but rather a phenomenological de-
scription valid for a certain configuration [6]. Astrophysi-
cal data suggest that about two third of the critical energy
density is stored in the dark energy component. The cor-
responding parameter ω is then constrained in the range
−1.38 < ω < −0.82 [7]. It shows that the EoS of cosmic
fluids is not exactly determined. The genesis of this exotic

a e-mail: mjamil@camp.edu.pk

energy is still unknown. The simplest and the earliest expla-
nation of this phenomenon was provided by the general the-
ory of relativity through the cosmological constant Λ. The
observational value of its energy density is 56 to 120 orders
of magnitude smaller than that derived from the standard
theory [8]. The satisfactory explanation of this phenomenon
requires extreme fine tuning of the cosmological parame-
ters. Another problem associated with Λ is the coincidence
problem (i.e. why the cosmic accelerated expansion started
in the presence of intelligent beings, or alternatively, why
the energy densities of matter and dark energy are of the
same order at current time) which is as yet explained either
through the anthropic principle [9], a variable cosmological
constant scenario [10] or by invoking a dark matter–dark en-
ergy interaction [11–13]. In this context, several other mod-
els have been proposed; among them are models based on
homogeneous and time dependent scalar fields termed as
quintessence [14], quintom [15, 16] and k-essence [17], to
name a few.

The interest in phantom energy arose when Caldwell
et al. [18] explored the cosmological consequences of the
EoS, ω < −1. The dark energy can achieve this EoS if it
is assumed to be a variable quantity i.e. ω(z), where z is
the redshift parameter. Thus ω evolves as follows: for mat-
ter dominated universe ω = 0, in quintessence phase −1 <

ω ≤ −1/3, for the cosmological constant dominated arena
ω = −1, while in the phantom regime ω < −1. This sce-
nario appears to be consistent with the observations [19]. In
phantom cosmology, the energy density of the phantom en-
ergy will become infinite in a finite time leading to the ‘big
rip’, a kind of future singularity. Moreover, due to strong
negative pressure of the phantom energy, all stable gravita-
tionally bound objects will be dissociated near the big rip.
These findings were later confirmed in [20] by doing nu-
merical analysis for the solar system and the Milky Way
galaxy. In this context, the accretion of phantom dark en-
ergy onto a black hole was first modeled by Babichev et

mailto:mjamil@camp.edu.pk
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al. [21] who proved that the black hole mass will gradually
decrease due to a strong negative pressure of the phantom
energy and will tend to zero near the big rip where it will
finally disappear. Note that ω > −1 leads to the opposite
scenario where the black hole mass increases by accreting
dark energy until its event horizon swells up to swallow the
whole universe [22]. Later studies [23] showed that quan-
tum effects dominate near the big rip singularity and conse-
quently the mass of the black hole although decreases but
stops decreasing at a finite value. In another investigation
[24], it was demonstrated that the physical black hole mass
will increase due to accretion of phantom energy; conse-
quently the black hole horizon and the cosmological hori-
zon will coincide leading to the black hole singularity be-
coming naked, all in a finite time. This analysis has been
extended for the Riessner–Nördstrom, Kerr–Neumann and
Schwarzschild–de Sitter black holes as well [25–30]. This
result apparently refutes the cosmic censorship conjecture
(or hypothesis) which forbids the occurrence of any naked
singularity. However, the formation of naked singularities is
not completely ruled out. Numerical simulations of the grav-
itational collapse of spheroids show that if the collapsing
spheroid is sufficiently compact, the singularities are hidden
inside the black hole while they become naked (devoid of an
apparent horizon) if the spheroid is sufficiently large [31].
The future singularity of the big rip is alternatively avoided
by the ‘big trip’, where the accretion of phantom energy onto
a wormhole will increase the size of its throat so much as to
engulf the whole universe [32, 33]. Another interesting sce-
nario appears in cyclic cosmology where the masses of black
holes first decrease and then increase through the phantom
energy accretion and never vanish [34]. The implications of
the generalized second law of thermodynamics to the phan-
tom energy accretion onto a black hole imply that accretion
will be significant only near the big rip. If this law is vio-
lated, then the black hole mass will decrease [35]. The ther-
modynamical investigations of the phantom energy imply
its positive definite entropy, which tends to become constant
if the phantom energy largely dominates the universe [36].
This results in the late universe to be hotter compared to the
present.

We here discuss the accretion of a phantom-like modified
variable Chaplygin gas and the viscous Chaplygin gas sepa-
rately onto a black hole. This accretion of the phantom fluid
reduces the mass of the black hole. This work serves as the
generalization of the earlier work by Babichev et al. [21, 37]
who initiated the concept of accretion of exotic matter on
the black hole. We have built our model on the same pattern
by choosing a more general EoS for the dark energy.

The outline of the paper is as follows: in the next sec-
tion, we discuss the relativistic model of accretion onto a
black hole. In the third section, we investigate the evolution
of the mass of the black hole by the accretion of a modified

variable Chaplygin gas (MVG), while in the fourth section,
we discuss the similar scenario with the viscous generalized
Chaplygin gas (VCG). Finally, we present the conclusion of
our paper. The formalism adopted here is from [21].

2 Accretion onto black hole

We consider a Schwarzschild black hole of mass M which is
gravitationally isolated and is specified by the line element
(in geometrical units c = 1 = G):

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2

− r2(dθ2 + sin2 θ dϕ2). (1)

The black hole is accreting a Chaplygin gas, which is as-
sumed to be a perfect fluid specified by the stress energy
tensor

T μν = (ρ + p)uμuν − pgμν. (2)

Here p and ρ are the pressure and energy density of the
Chaplygin gas respectively. Due to the static and spherically
symmetric nature of the black hole we assume the velocity
four vector uμ = (ut (r), ur (r),0,0), which satisfies the nor-
malization condition uμuμ = −1. Thus we are considering
only radial in-fall of the Chaplygin gas on the event horizon.
Using the energy-momentum conservation for T μν , we get

ux2(ρ + p)

√

1 − 2

x
+ u2 = C1, (3)

where x = r/M and u = ur = dr/ds is the radial compo-
nent of the velocity four vector uμ and C1 is a constant of
integration. The second constant of motion is obtained from
uμT

μν

;ν = 0, which gives

ux2 exp

[∫ ρh

ρ∞

dρ′

ρ′ + p′(ρ′)

]
= −A, (4)

where A is a constant of integration, which is determined
below for two models of the Chaplygin gas. The quantities
ρ∞ and ρh are the densities of the Chaplygin gas at infinity
and at the black hole horizon respectively. Further, using (3)
and (4), we obtain

(ρ + p)

√

1 − 2

x
+ u2 exp

[
−

∫ ρh

ρ∞

dρ′

ρ′ + p′(ρ′)

]
= C2, (5)

where C2 = −C1/A = ρ∞ + p(ρ∞). In order to calculate
Ṁ , the rate of change of the mass of the black hole, we
integrate the Chaplygin gas flux over the entire horizon as
Ṁ = ∮

T r
t dS where T r

t denotes the momentum density of
Chaplygin gas in the radial direction and dS = √−gdθ dϕ
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is the surface element of black hole horizon. Using (2)–(5),
we get this rate of change as

dM

dt
= 4πAM2(ρ + p). (6)

Integration of (6) yields

M = Mi

(
1 − t

τ

)−1

, (7)

which determines the evolution of mass of black hole of ini-
tial mass Mi and τ is the characteristic accretion time scale
given by

τ−1 = 4πAMi(ρ + p). (8)

The number density and energy density of the Chaplygin gas
are related as

n(ρh)

n(ρ∞)
= exp

[∫ ρh

ρ∞

dρ′

ρ′ + p′(ρ′)

]
, (9)

where n(ρh) and n(ρ∞) are the number densities of the
Chaplygin gas at the horizon and at infinity, respectively.
Furthermore, the constant A appearing in (8) is determined
as

n(ρh)

n(ρ∞)
ux2 = −A, (10)

which is an alternative form of energy-momentum conserva-
tion, (4). Moreover, the critical points of accretion (i.e. the
points where the speed of flow reaches the speed of sound
V 2 = c2

s = ∂p/∂ρ) are determined as follows:

u2∗ = 1

2x∗
, V 2∗ = u2∗

1 − 3u2∗
, (11)

where V 2 ≡ n
ρ+p

d(ρ+p)
dn

− 1. Finally, the above (9)–(11) are
combined in a single expression as

ρ∗ + p∗(ρ∗)
n(ρ∗)

= [
1 + 3c2

s (ρ∗)
]1/2 ρ∞ + p(ρ∞)

n(ρ∞)
. (12)

3 Accretion of modified variable Chaplygin gas

The Chaplygin gas had been proposed to explain the accel-
erated expansion of the universe [38]. It is represented by a
simple EoS, p = −A′/ρ, where A′ is positive constant. The
corresponding expression for the evolution of energy den-
sity is

ρ =
√

A′ + B

a6
, (13)

where B is a constant of integration. From (13) we find the
following asymptotic behavior for the density [39]:

ρ ∼ √
Ba−3, a 	 (B/A′)1/6, (14)

ρ ∼ p ∼ √
A′, a 
 (B/A′)1/6. (15)

Thus for small a, it gives a matter dominated era at earlier
times, while for large a we get a dark energy dominated
era at late times. Thus, the Chaplygin gas has the property
of giving a unified picture of the evolution of the universe.
The observational evidence in favor of cosmological models
based on the Chaplygin gas is quite encouraging [40–43].
The Chaplygin gas model favors a spatially flat universe,
which agrees with the observational data of the Sloan Digital
Sky Survey (SDSS) and Supernova Legacy Survey (SNLS)
with 95.4% confidence level [44]. Consequently, various
generalizations of Chaplygin gas have been proposed in the
literature to incorporate any other dark component in the
universe (see e.g. [45–48] and references therein).

We here consider an equation of state which combines
various EoS of the Chaplygin gas given by [49]

p = A′ρ − B(a)

ρα
, B(a) = Boa

−m. (16)

Here A′, Bo and m are constant parameters with 0 ≤ α ≤ 1.
For A′ = 0, (16) gives generalized Chaplygin gas. Further,
if B = Bo and α = 1, it yields the usual Chaplygin gas. Also
(16) reduces to the modified Chaplygin gas if only B = Bo.
Moreover, if only A′ = 0, the same equation represents a
variable Chaplygin gas.

We consider the background spacetime to be spatially
flat (k = 0), homogeneous and isotropic, represented by the
Friedmann–Robertson–Walker (FRW) metric. The space-
time is assumed to contain only one component fluid i.e. the
phantom energy represented by the Chaplygin gas EoS. The
corresponding field equations are

H 2 ≡
(

ȧ

a

)2

= κ2ρ, (17)

Ḣ + H 2 = ä

a
= −κ2

2
(ρ + 3p), (18)

where κ2 = 8π/3. The conservation of energy is

ρ̇ + 3H(ρ + p) = 0. (19)

Using (16) and (19), the density evolution is given by

ρ =
[

3Bo(1 + α)

{3(1 + α)(1 + A′) − m}
1

am
+ Ψ

a3(1+α)(1+A′)

] 1
1+α

.

(20)
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Here Ψ is a constant of integration. Note that to obtain the
increasing energy density of the phantom energy with re-
spect to the scale factor a(t), we require the coefficients of
a(t) in (20) to be positive i.e. Ψ ≥ 0, Bo(1 + α) > 0 and
3(1 + α)(1 + A′) − m > 0. Moreover, the exponents of a(t)

must be negative, i.e. m < 0 and 3(1 + α)(1 + A′) < 0 to
obtain an increasing ρ. These constraints together imply that
m > 3(1+α)(1+A′). Another way of getting a positive ρ is
by setting m > 0, 1+A′ > 0 and m < 3(1+α)(1+A′). Fur-
ther, using (9) the ratio of the number density of the Chap-
lygin gas near the horizon and at infinity is calculated to be

n(ρh)

n(ρ∞)
=

[
ρ1+α

h (1 + A′) − B(a)

ρ1+α∞ (1 + A′) − B(a)

] 1
(1+α)(1+A′) ≡ Δ1. (21)

Notice that the function B(a) can be expressed in terms of ρ

implicitly and is determined from (20). Making use of (11),
the critical points of accretion are given by

u2∗ = Δ2

1 + 3Δ2
, x∗ = 1 + 3Δ2

2Δ2
, (22)

where

V 2∗ = A′ + αB(a)

ρα+1∗
≡ Δ2. (23)

Thus for the critical points to be finite and positive, we re-
quire either Δ2 > 0 or Δ2 < 0 and Δ2 < −1/3. For the ac-
cretion to be critical, the fluid velocity V 2 must become su-
personic from the initial subsonic somewhere near the black
hole horizon. For the MVG, we have ω = A′ −B/ρ1+α < 0,
since A′ < −1. One can observe that fluids having EoS
ω < 0 are hydrodynamically unstable i.e. the speed of sound
in that medium cannot be defined since c2

s < 0. In order to
overcome this problem Babichev et al. [50] proposed a re-
definition of ω with the help of a generalized linear EoS
given by p = β(ρ − ρo), where β and ρo are constant pa-
rameters. Here β > 0 refers to a hydrodynamically stable
fluid, while β < 0 corresponds to a hydrodynamically un-
stable fluid. We will not be interested in the latter case
here. Note that now the two parameters ω and β are related
by ω = β(ρ − ρo)/ρ. Further, ω < 0 now corresponds to
β > 0 and ρo > ρ, thereby making the previously unsta-
ble fluid, now stable. We also have c2

s ≡ ∂p/∂ρ = β . Since
for stability, we require β > 0 and 0 < c2

s < 1; it leads to
0 < 1

ρ−ρo
(A′ρ − B/ρα) < 1 and 0 < β < 1. Hence the EoS

parameter is now well defined with A′ < −1 and ρo > ρ.
Thus the stability of the phantom-like MVG is guaranteed
with the use of a generalized linear EoS.

The constant A is determined from (10) to give

−A = Δ1

4

(
1 + 3Δ2

Δ2

)3/2

. (24)

Using (8) the characteristic evolution time scale becomes

τ−1 = πMi(ρ + p)
Δ1

4

(
1 + 3Δ2

Δ2

)3/2

. (25)

Using (25) in (7), the black hole mass is given by

M(t) = Mi

[
1 − πMit (ρ + p)

Δ1

4

(
1 + 3Δ2

Δ2

)3/2]−1

, (26)

which determines the evolution of mass of the black hole
accreting phantom MVG. It can be seen that if the phantom
MVG violates the dominant energy condition ρ + p > 0,

then the mass M of the black hole will decrease. Contrary
to this condition being satisfied M will increase. Thus in
the classical relativistic regime, this result is in conformity
with the result of Babichev et al. [21]. We also stress here
that although our metric (1) is static, we get a dynamical
mass M(t) in (26). Astrophysically the mass of a black hole
is a dynamical quantity: the mass will increase if the black
hole accretes classical matter (which satisfies ρ + p > 0);
however, it will decrease for the exotic phantom energy ac-
cretion. The mass can also decrease if the Hawking evapora-
tion process is invoked. Hence the static black holes may not
necessarily correspond to the astrophysical black holes. We
also stress that ω > 0 (ω < 0) corresponds to a non-phantom
(phantom) MVG fluid; although the accretion through the
critical point is possible in both the cases, only phantom
MVG violating the dominant energy condition will reduce
the mass of the black hole.

4 Accretion of viscous generalized Chaplygin gas

In viscous cosmology, the presence of viscosity corresponds
to space isotropy and hence it is important in the background
of FRW spacetime [51–53]. The presence of a viscous fluid
can explain the observed high entropy per baryon ratio in the
universe [54]. It can cause an exponential expansion of the
universe and can rule out the initial singularity which mars
the standard big bang picture. The matter power spectrum
in bulk viscous cosmology is also well behaved, as there are
no instabilities or oscillations on a small perturbation scale
[55]. Any cosmic fluid having non-zero bulk viscosities has
the EoS peff = p + Π , where p is the usual isotropic pres-
sure and Π is the bulk viscous stress given by Π ≡ ξ(ρ)u

μ

;μ
[56]. The scaling of the viscosity coefficient is ξ = ξoρ

n

where n is a constant parameter and ξ(to) = ξo. Note that for
0 ≤ n ≤ 1/2, we have a de Sitter solution and for n > 1/2 we
get deflationary solutions. The viscosity coefficient is gen-
erally taken to be positive for a positive entropy production
in conformity with the second law of thermodynamics [57].
Moreover, the entropy corresponding to viscous cosmology
is always positive and increasing, which is consistent with
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the thermodynamic arrow of time. In fact the cosmological
model with viscosity is consistent with the observational SN
Ia data at lower redshifts, while it mimics the ΛCDM model
in the later cosmic evolution [58]. It is proved in [59, 60]
that a FRW spacetime filled with a perfect fluid and the bulk
viscous stresses will violate the dominant energy condition.

Thus the effective pressure is given by

peff ≡ p + Π, (27)

where Π = −3Hξ and p = χ/ρα with χ is a constant. Thus
in the VCG case, the standard FRW equation becomes [61]

ä

a
= −κ2

2
(ρ + 3peff). (28)

Further the energy conservation principle gives

ρ̇ + 3H(ρ + peff) = 0, (29)

which shows that the viscosity term serves as the source
term. Using (17) and (27) in (29), we get

a

3

dρ

da
+ ρ + χ

ρα
− 3κξ(ρ)

√
ρ = 0. (30)

Thus solving (30) we get

a(t) = ao exp

[
−

∫ ρ

ρo

ρ′αdρ′

ρ′α+1 − 3κξ(ρ′)ρ′α+ 1
2 + χ

] 1
3

. (31)

For our further analysis we shall assume ξ to be constant.
The ratio of the number density of VCG near the black

hole horizon and at infinity is given by

n(ρh)

n(ρ∞)
= exp

[∫ ρh

ρ∞

ρ′αdρ′

ρ′α+1 − 3κξρ′α+ 1
2 + χ

]
≡ Δ3. (32)

The corresponding critical points of accretion are

u2∗ = Δ4

3Δ4 − 1
, x∗ = 3Δ4 − 1

2Δ4
, (33)

where

V 2∗ = −
(

αχ

ρα+1∗
+ 3

2
√

ρ∗
κξ

)
≡ Δ4. (34)

Notice that for the critical points to be finite and positive
valued we require either Δ4 < 0 or Δ4 > 1/3. Using (11)
we see that the speed of flow at the critical point is V 2 =
−Δ4. Further, the EoS parameter is ω = χ/ρ1+α − 3ξH/ρ

(= χ/ρ1+α − √
3κξ/

√
ρ). Note that if χ < 0 then ω < 0

and stability of the VCG is lost. However, if we here in-
voke the argument presented in the last section, we can con-
sider accretion with ω < 0. Using the generalized linear EoS
p = β(ρ − ρo) for the phantom energy, we obtain β > 0

and ρo > ρ for ω < 0. Using the definition c2
s ≡ ∂p/∂ρ = β

and the stability requirements β > 0 and 0 < c2
s < 1 lead

to 0 < 1
ρ−ρo

(χ/ρα − √
3ρκξ) < 1 and 0 < β < 1. The EoS

parameter β is now well defined with χ < 0 and ρo > ρ.
Therefore the stability of the phantom-like VCG is ensured
with the use of a generalized linear EoS.

Using (10) the constant A is now determined to be

−A = Δ3

(
3Δ4 − 1

2Δ4

)3/2

. (35)

The characteristic evolution time scale is

τ−1 = 4πMi(ρ + p)Δ3

(
3Δ4 − 1

2Δ4

)3/2

. (36)

Using (35) and (36) in (7), we get black hole mass evolu-
tion as

M(t) = Mi

[
1−4πMit (ρ +p)Δ3

(
3Δ4 − 1

2Δ4

)3/2]−1

. (37)

It can be seen that the black hole mass will decrease when
ρ +p < 0 and increase in the opposite case. It is emphasized
that this result is valid till the contribution of viscous stress is
negligible compared to isotropic stress. For the sake of clar-
ity, we emphasize that the fluid violating the standard energy
conditions is termed ‘exotic’ and hydrodynamically unsta-
ble, i.e. its existence is not fully guaranteed. But this conclu-
sion is drawn due to the ‘bad’ choice of the EoS (p = ωρ) in
the analysis. The result is reversed and remedied when we
introduce the generalized linear EoS in our model, which
makes the accretion of exotic fluid much more practical.

5 Conclusion

We have investigated the accretion of two different forms
of phantom-like Chaplygin gas onto a Schwarzschild black
hole. The time scale of the accretion and the evolution of
the mass of the black hole are derived in the context of two
widely studied Chaplygin gas models, namely the modified
variable Chaplygin gas and the viscous generalized Chaply-
gin gas. Although the phantom energy is an unstable fluid
as it corresponds to a medium with indeterminate speed
of sound and super-luminal speeds. These pathologies arise
due to bad choices of the equations of state for the phan-
tom energy and hence can be removed by choosing some
suitable transformation from one EoS to another or a totally
new EoS for this purpose. This work serves as the general-
ization of the earlier work by Babichev et al. [21]. It should
be noted that we have ignored the matter component in the
accretion model. Thus it will be more insightful to incorpo-
rate the contributions of matter along with the Chaplygin gas
during accretion onto the black hole. Moreover our analysis
can be extended to the case of rotating black holes as well.
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Abstract In this paper, we have studied the accretion of phantom energy on a
(2 + 1)-dimensional stationary Banados–Teitelboim–Zanelli (BTZ) black hole. It has
already been shown by Babichev et al. that for the accretion of phantom energy onto
a Schwarzschild black hole, the mass of black hole would decrease and the rate of
change of mass would be dependent on the mass of the black hole. However, in the case
of (2 + 1)-dimensional BTZ black hole, the mass evolution due to phantom accretion
is independent of the mass of the black hole and is dependent only on the pressure and
density of the phantom energy. We also study the generalized second law of thermo-
dynamics at the event horizon and construct a condition that puts an lower bound on
the pressure of the phantom energy.

Keywords BTZ black hole · Accretion · Dark energy · Generalized second law
of thermodynamics

1 Introduction

It has been found by various astronomical and cosmological observations [1–5] that
our universe is currently in the phase of accelerated expansion. In the framework of
Einstein’s gravity, this accelerated expansion has been explained by the presence of
a ‘cosmological constant’ bearing negative pressure which results in the stretching
of the spacetime [6–9]. Many other theoretical models have been presented to explain
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the present accelerated expansion of the universe including based on homogeneous
and time dependent scalar field like the quintessence [10–14], Chaplygin gas [15–26]
and phantom energy [27–33], to name a few. The phantom energy is characterized
by the equation of state p = ωρ, with ω < −1. It possesses some weird properties:
the cosmological parameters like energy density and scale factor become infinite in a
finite time; all gravitationally bound objects lose mass with the accretion of phantom
energy; the fabric of spacetime is torn apart at the big rip; and that it violates the stan-
dard relativistic energy conditions. The astrophysical data coming from the microwave
background radiation categorically favors the phantom energy [34]. Motivated from
the dark energy models, we model phantom energy by an ideal fluid with negative
pressure.

The accretion of dark energy onto a black hole has been studied by many authors
[35–40] after the seminal work of Babichev et al. [41,42] who have shown that the
mass of the black hole will decrease with time when we consider the accretion of
phantom energy. In the Einstein theory of gravity, the accretion of the phantom energy
onto Schwarzschild black hole and evaporation of primordial black hole has been dis-
cussed [41–43]. It will be interesting to investigate the accretion dynamics in low and
higher dimensional gravities. It is also important to investigate accretion dynamics in
the extended theories of gravity.

In this paper we investigate the accretion of exotic phantom energy onto a static
uncharged 3-dimensional BTZ black hole. We will show that the expression of the
evolution of BTZ black hole mass is independent of its mass and dependents only
on the energy density and pressure of the phantom energy. It is well-known that the
horizon area of the black hole decreases with the accretion of phantom energy, hence
it is essential to study the generalized second law of thermodynamics (GSL) in this
case [44–46]. We show that the validity of GSL in the present model yields an lower
bound on the phantom energy pressure. We also demonstrate that the first law of
thermodynamics holds in the present construction.

The plan of the paper is as follows: In second section we model the accretion of
phantom energy onto three dimensional BTZ black hole. In third section, we study
the GSL for BTZ black hole. Finally we conclude our results.

2 Model of accretion

Consider the field equations for a (2 + 1)-dimensional spacetime with a negative cos-
mological constant �

Gab + �gab = πTab, (a, b = 0, 1, 2) (1)

where Gab is the Einstein tensor in (2 + 1)-dimension while Tab is the stress energy
tensor of the matter field. The units are chosen such that c = 1 and G3 = 1/8. Consid-
ering the stress-energy tensor to be vacuum, one can obtain the following spherically
symmetric metric, a (2+1)-dimensional BTZ black hole [47,48]
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Generalized second law of thermodynamics for a phantom energy

ds2 = − f (r) dt2 + dr2

f (r)
+ r2 dφ2, (2)

where f (r) = −M + r2/ l2, M is the dimensionless mass of the black hole and
l2 = −1/�, is a positive constant. The coefficient g00 is termed as the lapse function.
The event horizon of the BTZ black hole is obtained by setting f (r) = 0, which turns
out, re = l

√
M . Also we have

√|g| = r , where g is the determinant of the metric. To
analyze the accretion of phantom energy onto the BTZ black hole, we here employ
the formalism from the work by Babichev et al. [41,42]. The stress energy momentum
tensor representing the phantom energy is the perfect fluid

T ab = (ρ + p)uaub + pgab, (3)

Here ρ and p are the energy density and pressure of the phantom energy while ua =
(u0, u1, 0) is the velocity three vector of the fluid flow. Also u1 = u is the radial
velocity of the flow while the third component u2 is zero due to spherical symmetry
of the BTZ black hole. There are two important equations of motion in our model:
one which controls the conservation of mass flux is J a

;a = 0, where J a is the current
density and the other that controls the energy flux T a

0;a = 0, across the horizon. Since
the black hole is stationary, the only component of stress energy tensor of interest is
T 01. Thus the equation of energy conservation T 0a

;a = 0 is

ur(ρ + p)

√
f (r) + u2 = C1, (4)

where C1 is an integration constant. Since the flow is inwards the black hole therefore
u < 0. Also the projection of the energy momentum conservation along the velocity
three vector uaT ab

;b = 0 (the energy flux equation) is

ur exp

⎡
⎣

ρh∫

ρ∞

dρ

ρ + p

⎤
⎦ = −A1. (5)

Here A1 is a constant and the associated minus sign is taken for convenience. Also ρh

and ρ∞ are the energy densities of phantom energy at the BTZ horizon and at infinity
respectively. From Eqs. (4) and (5), we obtain

(ρ + p)

√
f (r) + u2 exp

⎡
⎣−

ρh∫

ρ∞

dρ

ρ + p

⎤
⎦ = C2, (6)

where C2 = −C1/A1 = ρ∞ + p(ρ∞). The rate of change in the mass of black hole
Ṁ = −2πrT 1

0 , is given by

d M = 2π A1(ρ∞ + p∞) dt. (7)
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Note that ρ∞ + p∞ < 0 (violation of null energy condition) leads to decrease in the
mass of the black hole. Moreover, the above expression is also independent of mass
contrary to the Schwarzschild black hole and the Reissner–Nordström black hole
[35–40]. Further, the last equation is valid for any general ρ and p violating the null
energy condition, thus we can write

d M = 2π A1(ρ + p) dt. (8)

3 Critical accretion

We are interested only in those solutions that pass through the critical point as these
correspond to the material falling into the black hole with monotonically increasing
speed. The falling fluid can exhibit variety of behaviors near the critical point of accre-
tion, close to the compact object. The equation of mass flux or the continuity equation
J a
;a = 0 is

ρur = k1. (9)

Here k1 is integration constant. From Eqs. (4) and (9), we have

(
ρ + p

ρ

)2 (
f (r) + u2

)
=

(
C1

k1

)2

= C3. (10)

Taking differentials of (9) and (10) and after simplification, we obtain

du

u

[
−V 2 + u2

f (r) + u2

]
+ dr

r

[
−V 2 + r2

l2
(

f (r) + u2
)
]

= 0. (11)

Here

V 2 ≡ dln(ρ + p)

dlnρ
− 1, (12)

From (11) if one or the other bracket factor is zero, one gets a turnaround point corre-
sponding double-valued solution in either r or u. The only solution that passes through
a critical point is feasible. The feasible solution will correspond to material falling into
the object with monotonically increasing velocity. The critical point is obtained by tak-
ing the both bracketed factors in Eq. (11) to be zero. This will give us the critical points
of accretion. We obtain

V 2
c = r2

c

( f (rc) + u2
c)l

2 , (13)

V 2
c = u2

c

f (rc) + u2
c
. (14)
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Above the subscript c refers to the critical quantity. On comparing Eqs. (13) and (14),
we get

u2
c = r2

c

l2 , V 2
c = u2

c

−M + 2u2
c
. (15)

Here uc is the critical speed of flow at the critical points which we determine below.
For physically acceptable solution, we require V 2

c > 0, hence we get the following
restrictions on speeds and the location of the critical points

u2
c >

M

2
, r2

c >
r2+
2

. (16)

4 Generalized second law of thermodynamics and BTZ black hole

In this section we will discuss the thermodynamic of phantom energy accretion that
crosses the event horizon of BTZ black hole. Let us first write the BTZ metric in the
form

ds2 = hmn dxm dxn + r2 dφ2, m, n = 0, 1 (17)

where hmn = diag(− f (r), 1/ f (r)), is a 2-dimensional metric. From the condition of
normalized velocities uaua = −1, one can obtain the relations

u0 = f (r)−1
√

f (r) + u2, u0 = −
√

f (r) + u2. (18)

The components of stress energy tensor are T 00 = f (r)−1[(ρ + p)(
f (r)+u2

f (r)
) − p],

and T 11 = (ρ + p)u2 + f (r)p. These two components help us in calculating the work
density which is defined by W = − 1

2 T mnhmn [49]. In our case it comes out

W = 1

2
(ρ − p). (19)

The energy supply vector is defined by

�n = T m
n ∂mr + W∂nr. (20)

The components of the energy supply vector are �0 = T 1
0 = −u(ρ + p)

√
f (r) + u2,

and �1 = T 1
1 + W = (ρ + p)( 1

2 + u2

f (r)
). The change of energy across the apparent

horizon is determined through −d E ≡ −A�, where � = �0dt + �1dr . The energy
crossing the event horizon of the BTZ black hole is given by

d E = 4πreu2(ρ + p) dt. (21)
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Assuming E = M and comparing Eqs. (8) and (21), we can determine the value of
constant A1 = 2u2l

√
M .

The entropy of BTZ black hole is

Sh = 4πre. (22)

It can be shown easily that the thermal quantities, change of phantom energy d E ,
horizon entropy Sh and horizon temperature Th satisfy the first law d E = Thd Sh , of
thermodynamics. After differentiation of last equation w.r.t. t , and using Eq. (8), we
have

Ṡh = 8π2l2u2(ρ + p). (23)

Since all the parameters are positive in the above Eq. (23) except that ρ + p < 0, it
shows that the second law of thermodynamics is violated i.e. Ṡh < 0, as a result of
accretion of phantom energy on a BTZ black hole.

Now we proceed to the generalized second law of thermodynamics (GSL). It is
defined by

Ṡtot = Ṡh + Ṡph ≥ 0. (24)

In other words, the sum of the rate of change of entropies of black hole horizon and
phantom energy must be positive. We consider event horizon of the BTZ black hole as
a boundary of thermal system and the total matter energy within the event horizon is
the mass of the BTZ black hole. We also assume that the horizon temperature is in equi-
librium with the temperature of the matter-energy enclosed by the event horizon, i.e.
Th = Tph = T , where Tph is the temperature of the phantom energy. Similar assump-
tions for the temperatures Th and Tph has been studied in [50–54]. We know that the
Einstein field equations satisfy first law of thermodynamics Thd Sh = pd A + d E ,
at the event horizon [55,56]. We also assume that the matter-energy enclosed by the
event horizon of BTZ black hole also satisfy the first law of thermodynamics given by

Tph d Sph = p d A + d E . (25)

Here the horizon temperature is given by

Th = f ′(r)

4π

∣∣∣∣
r=re

=
√

M

2πl
. (26)

In this paper, we are assuming that Th = Tph = T . Therefore Eq. (24) gives

T Ṡtot = T (Ṡh + Ṡph) = 4πl2u(ρ + p)(2
√

M + πlp). (27)
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From the above equation, note that u < 0 and ρ + p < 0 the GSL holds provided
2
√

M + πlp > 0 which implies

p ≥ −2
√

M

πl
. (28)

Since the pressure of the phantom energy is negative (p < 0), therefore the GSL gives
us the lower bound on the pressure of the phantom energy.

− 2
√

M

πl
≤ p < 0. (29)

The GSL in the phantom energy accretion holds within the inequality (29). Otherwise
GSL does not hold which forbid evaporation of BTZ black hole by the phantom accre-
tion [57,58]. In addition, it is not clear whether the GSL should be valid in presence
of the phantom fluid not respecting the dominant energy condition [57,58].

5 Conclusion

In this paper, we have investigated the accretion of exotic phantom energy onto a BTZ
black hole. The motivation behind this work is to study the accretion dynamics in
low dimensional gravity. Our analysis has shown that evolution of mass of a BTZ
black hole would be independent of its mass and will be dependent only on the energy
density and pressure of the phantom energy in its vicinity. Due to spherical symmetry,
the accretion process is simple since the phantom energy falls radially on the black
hole. The accretion would be much more interesting when additional parameters like
charge and angular momentum are also incorporated in the BTZ spacetime. Similarly,
it would be of much interest to perform the above analysis in higher (n+1) dimensional
black hole spacetimes.

We also discussed GSL in the BTZ black hole spacetime. We assumed that the event
horizon of BTZ black hole acts as a boundary of the thermal system and the phantom
energy crossing the event horizon will change the mass of the black hole. We assumed
that the horizon temperature is in local equilibrium with the temperature of the matter
energy at the event horizon. Under these constraints it is shown that the GSL holds

provided the pressure of the phantom energy p has an lower bound p ≥ − 2
√

M
πl , on

the black hole parameters (M and l).
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Abstract We investigate the effects of the accretion of phantom energy with non-zero bulk
viscosity onto a Schwarzschild black hole and show that black holes accreting viscous phan-
tom energy will lose mass rapidly compared to the non-viscous case. When matter is incor-
porated along with the phantom energy, the black holes meet with the same fate as bulk
viscous forces dominate matter accretion. If the phantom energy has large bulk viscosity,
then the mass of the black hole will reduce faster than in the small viscosity case.

Keywords Accretion · Black hole · Bulk viscosity · Phantom energy

1 Introduction

Observations of WMAP [1–3] and supernova of type Ia data [4] have revealed that our Uni-
verse is filled with an exotic dark energy apart from dark matter. The nature and composition
of this energy is still an open problem but its dynamics is well understood i.e. it causes an
approximately exponential expansion of the Universe (see [5–12] for recent reviews on dark
energy). Astrophysical data suggest that about two thirds of the critical energy density is
stored in the dark energy component. For the equation of state (EoS) parameter ω < −1, the
fluid is called phantom energy (PE). Observations show that ω is constrained in the range
−1.38 < ω < −0.82 [13], thus providing evidence of phantom energy in the Universe. The
PE violates all the energy conditions in all forms (weak, null, strong or dominant). The
phantom energy can cause some peculiar phenomena e.g. the existence of wormholes [14,
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15], infinite expansion of the Universe in a finite time causing a Big Rip (BR) and the de-
struction of all gravitationally bound structures including black holes [16–19]. In particular,
black holes will continuously lose mass and disappear near the BR (see [20, 21] for the
opposite viewpoint).

Dark energy with bulk viscosity has a peculiar property to cause accelerated expansion
of phantom type in the late evolution of the universe [22–24]. It can also alleviate several
cosmological puzzles like cosmic age problem [25], coincidence problem [26] and phantom
crossing [27]. We will consider phantom energy as an imperfect fluid, implying that the PE
could contain non-zero bulk and shear viscosities [28]. The bulk viscosities are negligible
for non-relativistic and ultra-relativistic fluids but are important for the intermediate cases.
In viscous cosmology, shear viscosities arise in relation to space anisotropy while the bulk
viscosity accounts for the space isotropy [22–24, 29]. Generally, shear viscosities are ig-
nored (as the CMB does not indicate significant anisotropies) and only bulk viscosities are
taken into account for the fluids in the cosmological context. Moreover, bulk viscosity re-
lated to a grand unified theory phase transition may lead to an explanation of the accelerated
cosmic expansion [30].

Babichev et al. [17] studied the effects of the accretion of phantom energy onto a
Schwarzschild black hole taking PE to be a perfect fluid. As a first order approximation,
the bulk viscosity can be ignored, but to get a better picture we need to incorporate it into
the phantom fluid. We have adopted the procedure of [17, 31] for our calculations.

The plan of the paper is as follows: in the next section we review viscous cosmology; in
section three we discuss the relativistic model of accretion onto a black hole; in the subse-
quent section we use results from viscous cosmology for the accretion model; next we give
two examples to illustrate the accretion process with a constant and power law viscosity. In
section six we study black hole evolution in the presence of matter and viscous phantom
energy. Finally we conclude the paper with a brief discussion of our results.

2 Bulk-Viscous Cosmology

We assume the background spacetime to be homogeneous, isotropic and spatially flat (k = 0)
and described by the Friedmann-Robertson-Walker (FRW) metric given by

ds2 = −dt2 + a2(t)[dr2 + r2(dθ2 + sin2 θdϕ2)], (1)

where a(t) is the scale factor. We also assume that the spacetime is filled with only one
component fluid i.e. the viscous phantom energy of energy density ρ (however, in section
six, we shall incorporate matter along with phantom energy). The Einstein field equations
for the FRW-metric (in the units c = 1 = 8πG) are

H 2 ≡
(

ȧ

a

)2

= 1

3
ρ, (2)

and

ä

a
= Ḣ + H 2 = −1

6
(ρ + 3p), (3)

where H ≡ ȧ/a is the Hubble parameter, p is the effective pressure containing the isotropic
pressure ppe and the bulk viscous pressure pvis, given by

p = ppe + pvis. (4)
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Here ρ = ρpe +ρvis and pvis = −ξu
μ

;μ, where uμ is the velocity four vector and ξ = ξ(ρvis, t)

is the bulk viscosity of the fluid [32]. Equation (4) shows that negative pressure due to
viscosity contributes in the effective pressure which causes accelerated expansion. In the
FRW model, the expression u

μ

;μ = 3ȧ/a holds. Also, ξ is generally taken to be positive in
order to avoid the violation of second law of thermodynamics [33].

The energy conservation equation is

ρ̇ + 3H(ρ + p) = 0. (5)

Assume that the viscous fluid equation of state (EoS) is

p = ωρ = (γ − 1)ρ. (6)

Note that if γ = 0 (or ω = −1), (6) represents the EoS for cosmological constant. Further-
more if γ < 0, it represents phantom energy. In general, for normal matter 1 ≤ γ < 2.

Using (2)–(6), we get the equation governing the evolution of H(t) for a given ξ as

2Ḣ + 3γH 2 − 3ξH = 0. (7)

On integration, (7) gives

H(t) = exp { 3
2

∫
ξ(t)dt}

C + 3
2γ exp{ 3

2

∫
ξ(t)dt} , (8)

where C is a constant of integration. Note that (8) can further be solved to get the evolution
of a(t) as

a(t) = D

(
C + 3

2
γ

∫
exp

{
3

2

∫
ξ(t)dt

}
dt

) 2
3γ

, (9)

where D is a constant of integration. Thus for a given value of ξ we can obtain expressions
of a(t), ρ(t) and p(t) from the system of (5)–(9).

3 Accretion onto Black Hole

In the background of FRW spacetime, we consider, as an approximation, a gravitationally
isolated Schwarzschild black hole (BH) of mass M whose metric is specified by the line
element:

ds2 = −
(

1 − M

4πr

)
dt2 +

(
1 − M

4πr

)−1

dr2 + r2(dθ2 + sin2 θdϕ2). (10)

The background spacetime is assumed to contain one test fluid, namely the phantom energy
with non-vanishing bulk viscous stress pvis. The fluid is assumed to fall onto the BH horizon
in the radial direction only which is in conformity with the spherical symmetry of the BH.
Thus, the velocity four vector of the phantom fluid is uμ = (ut (r), ur(r),0,0) which satisfies
the normalization condition uμuμ = −1. This phantom fluid is specified by the stress energy
tensor for a viscous fluid [28, 33]:

T μν = (ρ + p)uμuν + pgμν. (11)
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Using the energy momentum conservation for T μν , we get

ur2M−2(ρ + p)

√

1 − M

4πr
+ u2 = C1, (12)

where ur = u = dr/ds is the radial component of the velocity four vector and C1 is a con-
stant of integration. The second constant of motion is obtained by contracting the velocity
four vector of the phantom fluid with the stress energy tensor uμT

μν

;ν = 0, which gives

ur2M−2 exp

[∫ ρh

ρ∞

dρ ′

ρ ′ + p(ρ ′)

]
= −A, (13)

where A is a constant of integration. Also ρh and ρ∞ are the energy densities of the phantom
fluid at the horizon of the BH, and at infinity respectively. From (12) and (13) we have

(ρ + p)

√

1 − M

4πr
+ u2 exp

[
−

∫ ρh

ρ∞

dρ ′

ρ ′ + p(ρ ′)

]
= C2, (14)

with C2 = −C1/A = ρ∞ + p(ρ∞). In order to calculate the rate of change of mass of black
hole Ṁ , we integrate the flux of the bulk viscous phantom fluid over the entire BH horizon
to get

Ṁ =
∮

T r
t dS. (15)

Here T r
t determines the energy momentum flux in the radial direction only and dS =√−gdθdϕ is the infinitesimal surface element of the BH horizon. Using (12)–(15), we

get

dM

dt
= AM2

16π
(ρ + p), (16)

which clearly demonstrates the vanishing mass of the black hole if ρ + p < 0. Integration
of (16) leads to

M = M0

(
1 − t

τ

)−1

, (17)

where M0 is the initial mass of the black hole and modified characteristic accretion time
scale τ−1 = [AM0

16π
{(ρpe + ppe) − 3ξ

t
ln( a

a0
)}], a0 being the value of the scale factor at time

t0. Note that during the integration of (16), we assumed ρpe and ppe to be constants. In the
coming subsections, we shall take these as time dependent entities.

4 Accretion of Viscous Phantom Fluid

We now study the BH mass evolution in two special cases: (a) constant viscosity; and
(b) power law viscosity.

4.1 Constant Bulk Viscosity

For constant viscosity ξ = ξo, the evolution of a(t) is determined by using (9). It gives

a(t) = a0

[
1 + γHoB(t)

ξo

] 2
3γ

, (18)
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where

B(t) ≡ exp

(
3tξo

2

)
− 1. (19)

Using (5), (6) and (8) the density evolution is given by

ρ(t) = ρo exp (3ξot)

[1 + γHoB(t)

ξo
]2

. (20)

Here ρo = 3H 2
o . Further, for γ < 0 the BR singularity occurs in a finite time at

τ = 2

3ξo

ln

(
1 − ξo

Hoγ

)
. (21)

Finally, the BH mass evolution is determined by solving (16) and (20) to get

M = M0

[
1 − AM0

8πγ

(
ξo

�
− 1

)
(ξo − γHo)

]−1

, (22)

where

� ≡ ξo + (−1 + e
3tξo

2 )γHo. (23)

This mass is displayed for different values of viscosity at different times in Table 1.
It is apparent from Table 1 that for a fixed viscosity, the mass ratio decreases with time

implying that mass of black hole is decreasing for an initial mass. Similarly, at any given
time, the mass ratio also decreases with the increase in viscosity. Thus the greater the value
of viscosity parameter, the greater would be its effects on the BH mass.

4.2 Power Law Viscosity

If the viscosity has power law dependence upon density i.e. ξ = αρs
vis, where α and s are

constant parameters, it has been shown [35, 36] that it yields cosmologies with a BR if√
3α > γ and s = 1/2. Thus we take ξ = αρ

1
2 as a special case. Then the scale factor

evolves as

a(t) = a0

(
1 − t

τ

) 2
3(γ−√

3α)

. (24)

Table 1 The mass ratio M/M0 of black hole for different choices of constant viscosity ξo . The initial mass
is, throughout, taken to be 50M� or 1032 kg

t ↓ ξ → ξ1 = 10−17 ξ2 = 10−18 ξ3 = 10−19 ξ4 = 10−20

t1 = 107 3.43427 × 10−4 2.44662 × 10−3 6.31285 × 10−3 7.49184 × 10−3

t2 = 1010 3.43544 × 10−7 2.45261 × 10−6 6.35248 × 10−6 7.55357 × 10−6

t3 = 1013 3.43516 × 10−10 2.45258 × 10−9 6.35247 × 10−9 7.55358 × 10−9

t4 = 1017 1.23994 × 10−14 2.10182 × 10−13 5.86096 × 10−13 7.01997 × 10−13
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Table 2 The mass ratio M/M0 of black hole for different choices of equation of state. The initial mass is
50M� or 1032 kg

t ↓ γ → γ1 = −1 × 10−1 γ2 = −2 × 10−1 γ3 = −3 × 10−1 γ4 = −4 × 10−1

t1 = 1010 4.71915 × 10−5 2.35963 × 10−5 1.5731 × 10−5 1.17983 × 10−5

t2 = 1013 4.79136 × 10−8 2.35968 × 10−8 1.57312 × 10−8 1.17984 × 10−8

t3 = 1017 4.66492 × 10−12 2.30523 × 10−12 1.51867 × 10−12 1.12539 × 10−12

t4 = 1020 4.97349 × 10−14 5.20946 × 10−14 5.28811 × 10−14 5.32744 × 10−14

The density of phantom fluid evolves as

ρ(t) = 4

3τ 2(γ − √
3α)2

(
1 − t

τ

)−2

, (25)

or in terms of critical density ρcr as

ρ(t) = ρcr

(
1 − t

τ

)−2

. (26)

The corresponding BR time τ is given by

τ = 2

3(
√

3α − γ )
H−1

o . (27)

Finally, the mass evolution of BH is determined by using (16) and (25) is

M = M0

[
1 + AM0

4π(
√

3α − γ )

t

τ (τ − t)

]−1

. (28)

Note that when α = 0, this case reduces to that of Babichev et al. [17]. The mass in (28) in
displayed for different values of EoS parameter γ at different times in Table 2 and displayed
graphically in Fig. 1. As shown, the mass decreases gradually with the decrease in the EoS
parameter γ . Note that we have not graphically displayed the mass for different viscosities
given in Table 1 because the variation is not significantly different for most time scales.

5 Examples

We now solve examples to demonstrate the accretion of viscous phantom energy onto a BH.
The formalism is adapted from [17].

5.1 Viscous Linear EoS

We choose the viscous linear EoS, p = ωρpe − 3Hξo with ω < −1. The ratio of the number
densities of phantom fluid particles at the horizon and at infinity is given by

n(ρ
pe
h )

n(ρ
pe
∞)

=
[

ρ
pe
h (1 + ω) − 3ξoH

ρ
pe
∞(1 + ω) − 3ξoH

] 1
(1+ω)

. (29)
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Fig. 1 For an initial mass of black hole M0 = 1032 kg, the evolution of the mass parameter m = (M/M0)−1
is plotted against the logarithmic time with α = 10−5 and tH = 1017 s

The critical points of accretion (the point where the speed of fluid flow becomes equal to the
speed of sound i.e. u2∗ = c2

s ) are given by

u2
∗ = ω

1 + 3ω
; x∗ = 1 + 3ω

2ω
. (30)

The constant A appearing in (16) is determined to be

A = |1 + 3ω|
4|ω|3/2

1+ω
2ω

. (31)

Notice that the constant A is the same as for the non-viscous case [17]. Also, the density of
phantom energy at the horizon is given by

ρ
pe
h = 3ξoH

1 + ω
+

(
4

A

) ω−1
ω+1

(
ρ∞ − 3ξoH

1 + ω

)
. (32)

Moreover, the speed of flow at the horizon is

uh = −
(

A

4

) ω
(ω+1)

. (33)

The speed is negative as it is directed towards the BH. Also, the characteristic evolution time
scale of the BH is given by

τ−1 = 4πM0
(1 + 3ω)

4ω3/2

1+ω
2ω

{
ρpe

∞(1 + ω) − 3ξo

t
ln

(
a

a0

)}
. (34)

Finally, substituting (34) in (17) we get the mass evolution of a BH in bulk viscous cosmol-
ogy

M = M0

[
1 − 4πM0t

(1 + 3ω)

4ω3/2

1+ω
2ω

{
ρpe

∞(1 + ω) − 3ξo

t
ln

(
a

a0

)}]−1

. (35)
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Since ρ
pe
∞ is unknown for our purpose, we have not evaluated M for different times numeri-

cally for tabular and graphical presentation.

5.2 Viscous Non-linear EoS

We here choose the EoS, p = ωρpe − 3Hξ(ρvis) with ω < −1, where ξ(ρpe) = αρs
pe with α

and s are constants. The ratio of number densities is given by

n(ρ
pe
h )

n(ρ
pe
∞)

=
(

ρh

ρ∞

) s
(s−1)(1+ω)

(
ρ∞(1 + ω) − 3Hαρs∞
ρh(1 + ω) − 3Hαρs

h

)
(36)

The constant A appearing in (16) is determined to be

A =
∣∣
∣∣

(
ρh

ρ∞

) 2s
(s−1)(1+ω)

(
ρ∞(1 + ω) − 3Hαρs∞
ρh(1 + ω) − 3Hαρs

h

)3∣∣
∣∣. (37)

The speed of flow at the horizon becomes

uh = −
(

ρh

ρ∞

) 2s
(s−1)(1+ω)

(
ρ∞(1 + ω) − 3Hαρs∞
ρh(1 + ω) − 3Hαρs

h

)2

. (38)

The critical points of accretion are given by

u2
∗ = ω − 3sαρs−1

h

1 + 3(ω − 3sαρs−1
h )

; x∗ = 1 + 3(ω − 3sαρs−1
h )

2(ω − 3sαρs−1
h )

. (39)

The characteristic evolution time scale τ is given by

τ =
[

4πM0

(
ρh

ρ∞

) 2s
(s−1)(1+ω)

(
ρ∞(1 + ω) − 3Hαρs∞
ρh(1 + ω) − 3Hαρs

h

)3{
ρ∞(1 + ω) − 3

αρs∞
t

ln

(
a

a0

)}]−1

.

(40)
Finally, using (40) in (17), the BH mass evolution is given by

M = M0

[
1 − 4πM0t

(
ρh

ρ∞

) 2s
(s−1)(1+ω)

(
ρ∞(1 + ω) − 3Hαρs∞
ρh(1 + ω) − 3Hαρs

h

)3

×
{
ρ∞(1 + ω) − 3

αρs∞
t

ln

(
a

a0

)}]−1

. (41)

As before, ρ∞ is unknown, but further ρh is also unknown. As such, we again do not provide
a tabular or graphical presentation.

6 Black Holes Accreting Both Matter and Viscous Phantom Fluid

We now consider a two component fluid, the viscous dark energy and matter. The matter part
may be composed of both baryonic and non-baryonic matter. It is taken to be a perfect fluid
while the PE is taken as a bulk viscous fluid. The effective pressure is represented by (4).
The corresponding Einstein field equations (EFE) for the two component fluid become:

Rμν − 1

2
gμν = Tμν + T m

μν. (42)
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The stress-energy tensor representing the two component fluid is given by

T μν = (ρ + p + ρm)uμuν + pgμν. (43)

Here ρm is the energy density of the pressureless matter. Energy conservation holds inde-
pendently for both fluids:

ρ̇ + 3H(ρ + p) = 0, (44)

ρ̇m + 3Hρm = 0. (45)

Integrating (45), we have

ρm = ρm0a
−3, (46)

where ρm0 = ρm(t0). Similarly, integrating (44) leads to

ρ = ρm

[(
 + K

3
a3/2

)2

− 1

]
, (47)

where  is a constant and K is given by

K = 3
√

3ξo√
ρm0

, (48)

Thus the total energy density of the two component fluid is given by [34]

ρ ≡ ρ + ρm = ρm0a
−3

(
 + K

3
a3/2

)2

. (49)

Using (45) in (16) the evolution of black hole mass is given by

M = M0

[
1 − 4πAM0

[
γρm0

H(t)

{
K2

9
ln

(
a

a0

)
− 

9a3
(3 + 4a3/2K)

+ 

9a3
0

(3 + 4a
3/2
0 K)

}]]−1

, (50)

where the scale factor a(t) evolves as

a(t) =
[

3

K
(e

K
2

√
ρm0 /3t+D1 − )

]2/3

, (51)

and D1 is the constant of integration determined by choosing t = 0 to get

D1 = 2

K
ln

(
K

3
a

3/2
0 + 

)
. (52)

As pointed out in the next section, we cannot correctly discuss a BR scenario. However we
can take a spacetime approximating it sufficiently earlier than the BR. We can than see its
asymptotic behavior. when the scale factor shoots to infinity, the three terms in (50) will
contribute significantly in the BH mass evolution. The mass will decrease by the accretion
of PE (γ < 0) due to its strong negative pressure and is manifested in (50). Notice that the
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Fig. 2 For an initial mass of black hole M0 = 1032 kg, the evolution of m is plotted against the time para-
meter t with A = 1/3,  = 3, ξo = 10−16 kg m−1 s−1 and γ = −10−1 while H ≈ 2.33 × 10−18 m

Fig. 3 For an initial mass of black hole M0 = 1032 kg, the evolution of m is plotted against the time para-
meter t with A = 1/3,  = 3, ξo = 10−16 kg m−1 s−1 and γ = −2 × 10−1 while H ≈ 2.33 × 10−18 m

final expression for BH mass depends only on the initial matter density ρm0 in addition to
constant bulk viscosity ξo. The corresponding behavior of BH mass evolution is shown in
Figs. 2 and 3 for different values of model parameters. Thus for a shift of parameter γ by 2,
yields in the decrease of mass ratio by a factor of 2. The decrease in the mass of the BH
is observed with time showing that phantom energy accretion will be dominant over matter
accretion.

7 Conclusion and Discussion

We have analyzed the accretion of bulk viscous phantom energy onto a BH. The modeling
is based on the relativistic model of accretion for compact objects. The viscosity effects
in cosmology are used to give an alternative to cosmic accelerated expansion other then
dark energy and quintessence. The evolution of BHs in such a Universe accreting viscous
phantom energy would result in a gradual decrease in mass. This gradual decrease would be
faster than the non-viscous case [17] due to additional terms containing viscosities coupled
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with mass. Lastly, it is shown that BHs accreting both matter and viscous PE will also meet
with the same fate as the viscous forces dominate over the matter component for sufficiently
large scale factor a(t).

From this analysis, we can draw the conclusion that PE containing viscous stresses can
play a significant role in the BH mass evolution if the viscosity is sufficiently high for an
appropriate EoS. Though the viscous stresses are negligibly small O(10−8 N s m−2) at the
local scale of space and time they can play a significant role in time scales of ∼ Gyrs. The
higher the viscosity of the phantom fluid, the sharper the decrease in the BH mass. BHs of
all masses, ranging from the solar mass to the intermediate mass to the supermassive, will
all meet the same fate.

As an extension to this problem, it is interesting to study the accretion of the phantom
fluid onto primordial BHs that had formed due to initial density fluctuations in the primordial
plasma. The mini-primordial BHs evaporating now via Hawking radiation would have a
different initial mass and hence abundance than the standard scenario expects. This work is
reported in a separate paper [37].

Notice that we have used the Friedmann model which is represented by an asymptotically
curved spacetime and at the same time the Schwarzschild black hole, which is asymptoti-
cally flat. This may seem contradictory. Schwarzschild black hole has been dealt with in the
context of closed Friedmann cosmology [38–40]. Any global problem in approximating the
full situation by a Schwarzschild black hole inserted into Friedmann model arise near the
big bang or the big crunch, defined in terms of the York time [41] as shown elsewhere [42],
the effect will be at extremely late times in terms of the usual time parameter. More com-
plete analysis of the asymptotic behavior near a singularity is also available [43], as such if
we stay near to a singularity in spacetime, the approximation will be extremely good. Con-
sequently our analysis will be satisfactory for black holes formed well after the big bang
greater then 10−40 s and of the Big Rip (presumably much more before 10−40 s the rip). It is
clear that we are unable to say whether there would/would not be a Big Rip as our analysis
excludes it.
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Abstract We investigate the effects of accretion of phantom energy onto primor-
dial black holes. Since Hawking radiation and phantom energy accretion contribute
to a decrease of the mass of the black hole, the primordial black hole that would
be expected to decay now due to the Hawking process would decay earlier due to
the inclusion of the phantom energy. Equivalently, to have the primordial black hole
decay now it would have to be more massive initially. We find that the effect of the
phantom energy is substantial and the black holes decaying now would be much more
massive—over ten orders of magnitude! This effect will be relevant for determining
the time of production and hence the number of evaporating black holes expected in
a universe accelerating due to phantom energy.

Keywords Black hole · Dark energy · Phantom energy · Hawking radiation

1 Introduction

Numerous astrophysical observations are consistent with the standard cold dark matter
model with the inclusion of an effective cosmological constant. A classical cosmo-
logical constant is generally avoided as quantum gravity attempts lead to a natural
expectation of a cosmological term of Planck scale, which is totally at odds with the
value required by observation (see for example [1]). As such, it is generally assumed
that there is some physical field that comes into play after the Planck era and there
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is some principle that excludes the induced Planck energy cosmological term (see
for example [2]). This exotic field is often called “dark energy”. According to the
generally accepted modeling, the latter constitutes more than 70% of the total energy
density of the universe while the matter component carries most of the remaining part
[3–7]. It is not clear how seriously to take the “quantum gravity” requirements con-
sidering that there is no viable theory of quantum gravity to date [1,8]. Further, there
is no clear evidence that the onset of quantum gravity will be at Planck scale and not
orders of magnitude away from it [9]. There are alternate (classical) explanations of
the observations available in the literature (for example by Wiltshire [10–13]) but here
we shall follow the generally accepted view of some form of dark energy providing
the observed acceleration of the Universe.

The observable universe locally appears to be spatially flat with an equation of state
(EoS) parameter (the ratio of pressure to the energy density) ω(≡ px/ρx ) � −1. The
dark energy is an exotic vacuum energy with negative pressure and positive energy
density which arises due to quantum vacuum fluctuations in spacetime. Caldwell and
co-workers [14,15] considered the possibility of dark energy with the super-negative
EoS parameter ω < −1, which they called ‘phantom energy’. It also gives negative
pressure. The motivation to consider phantom energy as the candidate for dark energy
arises from the observational data of the cosmic microwave background power spec-
trum and supernovae of type Ia. The phantom energy violates the general relativistic
energy conditions including the null and dominant ones [16]. Its implications in cos-
mology give rise to exotic phenomena like an imaginary value of the sound speed,
negative temperature, the divergence of the scale factor a(t) and the energy density
ρx ∼ a−3(1+ω), at a finite time resulting in a ‘big rip’, an epoch when the spacetime
is torn apart [17–21] (see [22] for a review on the big rip singularity). However there
are some attempts made recently in which the occurrence of a big rip singularity is
avoided by phantom energy decay into matter [23–25]. Another attempt is the ‘big
trip’, in which a wormhole accretes phantom energy and grows so large that it engulfs
the whole universe [26]. A similar scenario is also proposed for black holes whereby
the black hole event horizon inflates to swallow up the cosmological horizon, resulting
in a naked singularity [27]. Moreover, quantum gravitational effects (if they exist) may
avoid the big rip singularity. If the big rip cannot be avoided, the smaller the parameter
ω, the closer the big rip will be to the present time.

Another weird property of phantom energy is that its accretion onto gravitationally
bound structures results in their dissociation and disintegration in a rather slow process.
It was first analyzed in [28] for several gravitational systems like the solar system and
the Milky Way galaxy. Initially, this possibility was investigated for a Schwarzschild
black hole by Babichev et al. [29], who showed that the black hole mass goes to zero
near the big rip. Interestingly, in this scenario larger black holes lose mass more rap-
idly than smaller ones. Later on, their model was extended to the Reissner-Nordstrom
[31], Schwarzschild de Sitter [32] and Kerr-Newmann [33,34] black holes. It should
be mentioned that it has been argued that the mechanism of accretion followed by
Babichev et al. is stationary and does not possess the shift symmetry [30] and hence
that the mechanism of dark energy accretion is not realistic and consistent. Never-
theless, we shall follow the Babichev et al. analysis, leaving the detailed analysis for
subsequent work, as the effect will be technically difficult to apply and we believe
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will not make a substantial difference for phantom energy in the neighbourhood of a
primordial black hole. It has also been argued that when the back-reaction effects of
the accretion process are included in the analysis of Babichev et al. [29], the black
hole mass may increase instead of decreasing [35,36], thus avoiding the big rip. Also
in cyclic cosmological models, black holes do not tear apart near the turnaround but
preserve some nonzero mass [37,38]. We shall ignore the big rip issue here.

2 Hawking evaporation of black holes

We are interested in studying the effects of accretion of phantom energy on a sta-
tic primordial black hole. Carr and Hawking [39] in 1974 considered the formation
of black holes of mass 102 kg and upwards in the early evolution of the universe.
After their attempt, several authors investigated various scenarios of PBH formation
[40–43]. The existence of these small mass black holes was based on the assumption
that the early universe was not entirely spatially smooth but there were density fluc-
tuations or inhomogeneities in the primordial plasma which gravitationally collapsed
to form these black holes. Unlike the conventional black holes that are formed by the
gravitational collapse of stars or mergers of neutron stars, the primordial black holes
(PBH) are formed due to the gravitational collapse of matter without forming any
initial stellar object. The mass of a PBH can be of the order of the particle horizon
mass at the time of its formation [44,45]

MPBH ≈ c3t

G
≈ 1012

(
t

10−23 s

)
kg. (1)

Therefore PBHs that formed in the early history of the universe must be less massive
while those that formed later must be more massive. Black holes formed at Planck
time 10−43 s would have Planck mass 10−8 kg.

Using classical arguments, Penrose and Floyd showed that one can extract rota-
tional energy from a rotating black hole [46]. Penrose went on to argue (see [8] and
references therein) that one could take thermal energy from the environs of a black
hole and throw it into the black hole to get usable energy out. This would apparently
reduce the entropy around the black hole. As such, he had argued that there must be
an entropy of the black hole that increases at least as much as that of its environs
decreases. Hawking had pointed out that in any physical process the area of a black
hole always increases [47] just as entropy always increases. This led Bekenstein [48]
to propose a linear relationship between the area and entropy of a black hole. Thus
Bekenstein [49,50] generalized the second law of thermodynamics to state that the
sum of the entropy of the black hole and its environs never decreases. However, at
this stage it seemed that the connection between black holes and thermodynamics was
purely formal. At this stage Fulling pointed out that quantization of scalar fields in
accelerated frames gives an ambiguous result [51], which seemed to yield radiation
seen in the accelerated with a fractional number of particles. Hawking repeated the
calculation for an observer near a black hole and obtained the same result by various
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methods and found that the radiation had a thermal spectrum [52]. This led him to
propose that mini-PBHs would evaporate away in a finite time [53].

The corresponding Hawking evaporation process reduces the mass of the black hole
by [54]

d M

dt

∣∣∣∣
hr

= − h̄c4

G2

α

M2 , (2)

where α is the spin parameter of the emitting particles. Integration of Eq. (2) gives the
evolution of PBH mass as

Mhr = Mi

(
1 − t

thr

)1/3

, (3)

where the Hawking evaporation time scale thr is

thr = G2

h̄c4

M3
i

3α
. (4)

It is obvious from Eq. (3) that as t → thr, the mass Mhr → 0. Plugging in thr = to (the
current age of the universe) in Eq. (4) gives the mass 1012 kg of the PBH that should
have been evaporating now. Hence from Eq. (1), it can be estimated that these PBHs
were formed before about 10−23 s. For Mi � 1014 kg α = 2.011 × 10−4, hence

Eq. (4) implies thr � 2.16 × 10−18
(

M
kg

)3
s. While for 5 × 1011 kg � Mi � 1014 kg,

α = 3.6 × 10−4 then Eq. (4) gives thr � 4.8 × 10−18
(

M
kg

)3
s. Therefore detecting

PBHs would be a good tool to probe the very early universe (closer to the Planck time).
The evaporation of PBHs could still have interesting cosmological implications: they
might generate the microwave background [55] or modify the standard cosmological
nucleosynthesis scenario [56] or contribute to the cosmic baryon asymmetry [57].
Some authors have also considered the possibility of the accretion of matter and dust
onto the seed PBH resulting in the formation of super-massive black holes which
reside in the centers of giant spiral and elliptical galaxies [58].

3 Phantom energy accretion onto black hole

The FRW equations governing the dynamics of our gravitational system are given by

H2 ≡
(

ȧ

a

)2

= 8πG

3
(ρm + ρx ), (5)

ä

a
= −4πG

3
[ρm + ρx (1 + ω)]. (6)

Here ρm and ρx denote the energy densities of matter and the exotic energy densities
respectively. The scale factor a(t) goes like [20]
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a(t) = a(t0)

[−ω + (1 + ω)t/t0]−
2

3(1+ω)

(t > t0), (7)

where t0 is the time when the universe transits from matter to exotic energy domination
(which is roughly equal to the age of the universe). Notice that the scale factor a(t)
diverges when the quantity in the square brackets in Eq. (7) vanishes identically i.e.

t∗ = ω

1 + ω
t0. (8)

Subtracting t0 from Eq. (8), we get

t∗ − t0 = 1

1 + ω
t0. (9)

The evolution of energy density of the exotic energy is given by

ρ−1
x = 6πG(1 + ω)2(t∗ − t)2. (10)

A black hole accreting only the exotic energy has the following rate of change in mass
[29]

d M(t)

dt

∣∣∣∣
x

= 16πG2

c5
M2(ρx + px ). (11)

It is clear that when ρx + px < 0, the mass of the black hole will decrease. We are
particularly interested in the evolution of black holes about and after t = t0 since the
dark energy is presumably negligible before that time and may not have any noticeable
effects on the black hole. Using Eqs. (9) and (10) in (11), we get

d M(t)

dt

∣∣∣∣
x

= 8G

3c3

M2

t2
0

(1 + ω). (12)

Therefore the mass change rate for a black hole accreting pure exotic energy is deter-
mined by Eq. (12). For the phantom energy accretion, the time scale is obtained by
integrating Eq. (12) to get

M(t) = Mi

(
1 − t

tx

)−1

, (13)

where tx is the characteristic accretion time scale given by

t−1
x = 16πG2

c5
Mi (ρx + px ). (14)
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Using Eqs. (9) and (10) in (14), we get

tx = 3c3

8G

t2
0

Mi (1 + ω)
. (15)

4 Evolution of mass due to phantom energy accretion and Hawking evaporation

The expression determining the cumulative evolution of the black hole is obtained by
adding Eqs. (2) and (12) i.e.

d M(t)

dt

∣∣∣∣
Total

= d M

dt

∣∣∣∣
hr

+ d M

dt

∣∣∣∣
x
, (16)

= − h̄c4

G2

α

M2 + 8G

3c3

M2

t2
0

(1 + ω). (17)

We write the above equation as

d M

dt
= −aM2 − b

M2 , (18)

where

a = 8G

3c3

ε

t2
0

, b = h̄c4α

G2 . (19)

Here ε = −ω − 1. Thus (18) can be written in the form

−
∫

dt = 1

b

∫
M2d M

1 + a
b M4

To integrate above equation, we assume

x =
(a

b

)1/4
M, (20)

which yields

−
∫

dt = 1

(a3b)1/4

∫
x2dx

1 + x4 , (21)
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We note that [59]

∫
xm−1dx

1 + x2n
= − 1

2n

n∑

k=1

cos

(
mπ(2k − 1)

2n

)
ln

∣∣∣∣1 − 2xcos

(
2k − 1

2n

)
π + x2

∣∣∣∣

+1

n

n∑

k=1

sin

(
mπ(2k − 1)

2n

)
tan−1

[
x − cos

( 2k−1
2n

)
π

sin
( 2k−1

2n

)
π

]
, m < 2n.

(22)

In our case, m = 3 and n = 2, hence the above equation yields

∫
x2dx

1 + x4 = 1

4
√

2
ln

∣∣∣∣∣
1 − √

2x + x2

1 + √
2x + x2

∣∣∣∣∣ + 1

2
√

2
tan−1

( √
2x

1 + x2

)
. (23)

On substituting the value of x above, we obtain

t = t0 + 1

4
√

2
ln

∣∣∣∣∣
1−√

2
( a

b

)1/4
M+( a

b

)1/2
M2

1+√
2

( a
b

)1/4
M+( a

b

)1/2
M2

∣∣∣∣∣+
1

2
√

2
tan−1

[ √
2

( a
b

)1/4
M

1+( a
b

)1/2
M2

]
.

(24)

We now redefine the values of a and b by assuming M = m Mi , where m is a dimen-
sionless parameter and Mi is the initial mass of the black hole. Thus (18) becomes

dm

dt
= −a′m2 − b′

m2 , (25)

where a′ = aMi and b′ = b/M3
i . For the terms to be equal strength, we require

a′ ≈ b′. Thus

Mi ≈
(

b

a

)1/4

. (26)

Now

b

a
= 3h̄c7t2

0 α

8G3ε
, or ε = 3h̄c7t2

0 α

8G3 M4
i

. (27)

We can normalize

t = t0

⎡
⎢⎢⎢⎢⎢⎣

1 −
1

4
√

2
ln

∣∣∣∣∣
1−√

2
(

a′
b′

)1/4
m+

(
a′
b′

)1/2
m2

1+√
2
(

a′
b′

)1/4
m+

(
a′
b′

)1/2
m2

∣∣∣∣∣ + 1
2
√

2
tan−1

[ √
2
(

a′
b′

)1/4
m

1+
(

a′
b′

)1/2
m2

]

1
4
√

2
ln

∣∣∣∣∣
1−√

2
(

a′
b′

)1/4+
(

a′
b′

)1/2

1+√
2
(

a′
b′

)1/4+
(

a′
b′

)1/2

∣∣∣∣∣ + 1
2
√

2
tan−1

[√
2
(

a′
b′

)1/4

1+
(

a′
b′

)1/2

]

⎤
⎥⎥⎥⎥⎥⎦

. (28)
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Replacing p = a′/b′ = 8εG3

3αh̄c7t2
0

M4
i ∼ M4

i (the ratio of the phantom component to the

Hawking component, in the energy radiated) the above equation becomes

t = t0

⎡
⎢⎣1 −

1
4
√

2
ln

∣∣∣ 1−√
2p1/4m+p1/2m2

1+√
2p1/4m+p1/2m2

∣∣∣ + 1
2
√

2
tan−1

( √
2p1/4m

1+p1/2m2

)

1
4
√

2
ln

∣∣∣ 1−√
2p1/4+p1/2

1+√
2p1/4+p1/2

∣∣∣ + 1
2
√

2
tan−1

(√
2p1/4

1+p1/2

)

⎤
⎥⎦ . (29)

Moveover, the power emission due to Hawking evaporation from the stationary black
hole of mass M � 1017 g [54]

P = 3.458 × 1046(M/g)−2erg s−1, (30)

and for mass 5 × 1014 g � M � 1017 g,

P ≈ 3.6 × 1016(M/1015 g)−2erg s−1. (31)

In our analysis, the mass in the above two expressions is replaced by

M =
(

3h̄c7t2
0 α

8G3ε

)1/4

g. (32)

Now choosing ε = 0.1, we obtain M = 8.74029 × 1022 g which will be evaporating
now due to the combined effects of phantom energy and Hawking radiation. Then
using Eq. (30), the corresponding power emission will be P = 4.52661 erg s−1. We
can compare this result with that of a black hole of mass M � 1.05×1012 g evaporat-
ing just now due to Hawking radiation only. The corresponding power emission will be
P � 3.144 × 1022 erg s−1. Note that the power emission from a black hole decreases
when the effects of phantom energy are incorporated. Similarly, for very large values
of ε ∼ 1025 would give M = 2.763923 × 1016 g. Using this mass in (31), the power
emitted is 4.52661 × 1013 erg s−1. However, such large values would lead to a very
early big rip and hence must be excluded. Thus black holes ∼1022 g are of more interest
for observational purposes since these are the ones that should be evaporating now.

5 Conclusion

In this paper, we have analyzed the Hawking radiation effects combined with the
phantom energy accretion on a stationary black hole. The former process has been
thoroughly investigated in the literature. However there is as yet no observational sup-
port to it. According to standard theory it is assumed that after the formation of PBHs
(of mass ∼1012 kg with a Hawking temperature 1012 K), they would absorb virtually
no radiation or matter whatsoever during their evolution and radiate continuously till
they evaporate in a burst of gamma rays at the present time. This scenario assumes that
the Hawking temperature for such black holes was always larger than the background
temperature of the CMB. Strictly speaking, this cannot be true. Consequently PBHs
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Fig. 1 The normalized time is plotted against the mass parameter for p = 0.1

Fig. 2 The mass parameter is plotted against the normalized time for p = 0.1

could have accreted the background radiation (and even some matter) and grown in
mass. Hence there should be no PBH left to be evaporating right now [60]. However,
the above scenario is modified when phantom energy comes into play. When phantom
energy and the Hawking process are relevant the total life time scale of the PBH is
significantly shortened and the formation of the PBH exploding now is delayed.

From Eq. (29) we obtain the time as a function of mass instead of getting mass as
a function of time. To make sense of the results we need to obtain the evolution with
time. This is done by inverting the explicit function. We have plotted the normalized
time τ = t/t0 against the dimensionless mass parameter m and m against τ for dif-
ferent choices of the parameter p, in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. It is observed
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Fig. 3 The normalized time is plotted against the mass parameter for p = 0.5

Fig. 4 The mass parameter is plotted against the normalized time for p = 0.5

Fig. 5 The normalized time is plotted against the mass parameter for p = 1
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Fig. 6 The mass parameter is plotted against the normalized time for p = 1

Fig. 7 The normalized time is plotted against the mass parameter for p = 5

that increasing p increases the steepness of the curve specifying the mass evolution.
Therefore the black hole loses mass faster for larger p till it vanishes at τ = 1, the
present time. In particular, Figs. 7 and 9 show the same evolution of mass for larger
values of p. It appears that the graphs contain a redundant (or nonphysical) part of
the mass evolution and the only physically interesting section is above the horizontal
curve crossing t = 0. Thus in effect, see Figs. 8 and 10, the initial mass of the black
hole must be taken 0.45Mi of the value given by for p = 5 and about 0.315Mi for
p = 10. It is obvious that the results are very insensitive to changes of the parameter
ε for the phantom energy. As such, they can be regarded as fairly robust.
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Fig. 8 The mass parameter is plotted against the normalized time for p = 5

Fig. 9 The normalized time is plotted against the mass parameter for p = 10

Fig. 10 The mass parameter is plotted against the normalized time for p = 10
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