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Abstract

Extractive summarization involves selecting and condensing key information from a text

document, while preserving the overall meaning and coherence of the original content.

There are several extractive summarization methods that have their own benefits and

drawbacks. Despite the variety of approaches currently available, none of them are flaw-

less and there is still potential for advancement in the field of automated summarization.

One promising approach to extractive summarization is the use of deep learning models,

such as BERT. BERT is a multilayer transformer network that has been pretrained on

a large dataset for a variety of self-supervised applications, including language transla-

tion, question answering, and natural language understanding. However, BERT has a

limitation in terms of input length, which makes it less suitable for summarizing long

documents. In this study, we suggest an innovative approach that enables the use of

BERT for long document summarization. Our method involves dividing the document

into smaller chunks, each containing a single sentence. We then use BERT to generate

sentence embeddings, and apply an encoder-decoder model on top of these embeddings

to generate a summary. The encoder-decoder model is a type of neural network that is

commonly used for machine translation and text generation tasks. We carried out exper-

iments with two scholarly datasets, arXiv and PubMed, to evaluate the effectiveness of

our approach. The results showed that our technique consistently outperformed several

state-of-the-art models for extractive summarization. This demonstrates the potential

of our method for improving the efficiency and accuracy of summarization tasks.

xii

 xiii



Chapter 1

Introduction

The exponential increase in digital text on the internet has rendered manual text sum-

marization impractical due to the high costs associated with it in terms of time, effort,

and financial resources [1]. However, current technology allows for the utilization of

ATS approaches to succinctly capture the entirety of a text’s context in a matter of

seconds. This technique is particularly beneficial in the field of scientific research, where

the sheer volume of text contained within articles can be overwhelming. The imple-

mentation of automatic text summarization allows for the efficient extraction of the key

points contained within these articles, enabling individuals to stay informed of the latest

developments in a timelier manner.

Text summarization is a method of condensing a large block of text into a smaller, more

coherent version while still retaining the key points and overall meaning of the original

document. The goal of text summarization is to provide a summary of the text that is

both concise and representative of the entire context of the data. This can be extremely

useful for reducing the time and effort required to read long documents, as well as for

conserving storage space for the text data.

The two main approaches for text summarization are: abstractive and extractive [2].

Abstractive summaries are those that are written in the summarizer’s own words and

attempt to capture the essence of the original text [3]. Machines may find this challenging

to do accurately, as it requires a deep understanding of the user’s language and can

potentially result in biased or misleading summaries. Extractive summarization, on

the other hand, involves selecting the most important sentences from the input text

and concatenating them to create a summary. This approach is considered to be more

1



Chapter 1: Introduction

reliable and is therefore becoming more popular in industry.

Conventional methods for extractive text summarization include statistical and graph-

based techniques such as TextRank [4] and TF-IDF [5, 6]. However, recent advances in

NLP have led to the development of neural network-based approaches, such as BERT

[7]. These models are trained on labeled data to perform specific tasks and have shown

promising results in a variety of applications.

1.1 Motivation

While BERT is a promising method for text summarization, it has significant shortcom-

ings when it comes to tasks that require reasoning with lengthy documents [8]. The

self-attention memory of the transformer quadratically rises with the number of input

tokens [9], making computation on document scale sequences potentially impossible.

Furthermore, at the pre-training stage, BERT usually needs to define a predetermined

maximum input length, which is typically 512 tokens [8]. Pre-training the full model

on longer sequences is one option, but this requires a significant amount of computing

power [9]. Other approaches to extending multi-layer transformer designs to larger se-

quences without changing the maximum length constraint have been presented. The

first approach is to reduce the input sequence to the first 512 tokens by eliminating any

text that exceeds the length limit. Obviously, handling huge articles that are frequently

longer than this limit is not a viable choice. Another approach is to use the concept

of sliding window [10], in which a window slides all over the document. [11] utilized

this approach to handle SQUAD documents that were longer than the 512-token limit,

while [12] used it for a lengthy document co-reference resolution task. This technique is

applicable when the tokens need to be contextualized in their local surroundings because

there is no connection between the windows [8]. But for the task of summarization global

level understanding of document is necessary, it might be challenging to employ BERT

in a way that allows for the acquisition of global context from the whole document. The

aim of this work is to develop a BERT-based architecture that can extract important

sentences from dense scientific texts, enabling researchers to quickly ascertain the key

ideas in research papers. This will be accomplished by examining the suggested technique

2



Chapter 1: Introduction

using the two main datasets for lengthy scientific articles, arXiv1 and PubMed2.

1.2 Problem Statement

BERT is a highly advanced language model that can generate context aware text em-

beddings, but its 512-token input length limitation presents a challenge for summarizing

lengthy scientific articles. While BERT has achieved success in a variety of tasks, the

input length restriction may hinder its effectiveness for summarization of long documents.

In our research, we propose a solution to this problem by developing a method that allows

the use of BERT for summarization of long scientific articles despite this limitation. By

utilizing this approach, we hope to overcome the input length constraint and enable the

effective application of BERT to long document summarization tasks.

1.3 Contributions

This dissertation addresses the outlined research questions and challenges and presents

two key contributions, as follows:

Contribution 1: BERT-based Extractive Text Summarization of Scholarly Articles: A

Novel Architecture-Accepted in ICAIoT2022(IEEE-Turkey): Second International Con-

ference on Artificial Intelligence of Things.

This part of the thesis presents an innovative Architecture for generating summaries

of lengthy scholarly articles. The proposed Framework is based on BERT, which is

employed to effectively process extended documents. Specifically, BERT is incorporated

into an attention-based encoder-decoder model to capture the global context of the entire

document, enabling the generation of concise and informative summaries.

Contribution 2: Summarization of Scholarly Articles Using BERT and BiGRU: Deep

Learning-Based Extractive Approach-Under review in Journal of King Saud University -

Computer and Information Sciences.

This part expands on Contribution 1 by utilizing algorithms and systematic flow dia-

grams to provide a detailed analysis of the proposed approach. This facilitates a struc-
1https://www.kaggle.com/Cornell-University/arxiv
2https://pubmed.ncbi.nlm.nih.gov/

3
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tured presentation and a comprehensive understanding of the methodology’s potential

for application.

1.4 Thesis Organization

Remaining thesis organization is as follow;

1.4.1 Chapter 2: Theoretical Basis for the Study

This chapter provides a detailed overview of the essential concepts that are necessary for

understanding the proposed approach.

1.4.2 Chapter 3: Literature Review

This chapter outlines previous work in the field of extractive text summarization as

well as how to apply BERT on large text. This chapter discusses the research gaps of

prior work in order to have a clear understanding of the significance of the proposed

architecture.

1.4.3 Chapter 4: Design and Methodology

This chapter delineates the implementation of the proposed architecture, including the

configuration of the baseline model, which serves as a point of comparison. Additionally,

this chapter provides relevant information regarding the utilized framework, as well as

the training hyperparameters employed in the experiment.

1.4.4 Chapter 5: Results and Discussion

This chapters show the results of proposed model and its comparison with state-of-the-art

model with detailed discussion.

1.4.5 Chapter 6: Conclusion and Future Work Directions

This is the last chapter and it concludes all the work done in this thesis. Furthermore,

this chapter discusses the future directions for this research work.

4



Chapter 1: Introduction

At the start of thesis a list of abbreviations is added to help readers understand the

terminology used throughout the document. Towards the end of the thesis, Appendix A

is included, which contains detailed information about the formulas used, and evaluation

metrics applied in the research experiments conducted for this study.

5



Chapter 2

Theoretical Basis for the Study

2.1 Natural Language Processing (NLP)

The field of natural language processing (NLP), combining computer science, artificial

intelligence, and linguistics, has enabled computers to comprehend and engage in human

language. Massive amounts of natural language data must be processed, analyzed, and

used to extract useful information via NLP systems.

In order to execute tasks that often require human-level language understanding, such

as sentiment analysis, text summarization, machine translation, and speech recognition,

NLP aims to give computers the ability to comprehend the meaning underlying human

language. Tokenization, part-of-speech tagging, parsing, semantic analysis, and other

computational techniques are used by NLP systems to analyze and comprehend language

input.

The complexity, ambiguity, and context-dependence of human language make it one of

the major obstacles for NLP. It can be challenging for computers to understand irony,

sarcasm, and other figurative language, and because every language has its own gram-

matical rules, lexicon, and idioms, it is challenging to create an all-encompassing NLP

system.

Despite of these difficulties, NLP has made notable advances recently, and its applica-

tions have expanded quickly. NLP is utilized, as an illustration, in chatbots for customer

service, virtual assistants, and machine translation systems that let users translate text

and speech from one language to another in real-time. Search engines that can compre-

hend natural language queries and deliver more pertinent results are being developed

6
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using NLP in the field of information retrieval.

2.1.1 Text Preprocessing

Preparing unprocessed text input for subsequent analysis and modelling is a critical step

in NLP. Text preprocessing aims to clean up and standardize text data so that NLP

algorithms can process it properly.

Here are a few steps involved in text preprocessing:

Lowercasing: Lower casing is the process of changing all capitalization in the text

to lowercase. This step is crucial because many NLP algorithms interpret words with

distinct case types as discrete entities.

Removal of Punctuation: Taking out the punctuation from the text. Punctuation

is typically eliminated from text data to lower its dimensionality and make it easier to

analyze.

Tokenization: Tokenization involves the process of breaking up the text into smaller

pieces, like words or phrases. For the purpose of breaking the text down into manageable

chunks for examination, tokenization is crucial.

Eliminating Stop Words: Stop words are often used words like "a," "an," "the," etc.

that don’t add much significance to the text. To shrink the amount of data and to make

the NLP algorithms’ processing efficient, these terms can be eliminated.

Lemmatization and Stemming: These are approaches that attempt to reduce words

to their most basic form in order to decrease the dimensionality of the data. Lemmati-

zation utilizes advanced techniques for reducing words to their base form, surpassing the

capabilities of stemming, which removes suffixes to get words back to their root form.

Eliminating Special Characters and Numerals: Eliminating special characters and

numbers from the text can make the data simpler and stop these aspects from confusing

NLP algorithms.

Removing HTML and XML tags: These tags must be removed from text data that

has been downloaded from the web in order to produce clean text data.

7
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2.1.2 Statistical Based Methods

Natural Language Processing (NLP) relies heavily on statistical approaches since they

give us a way to evaluate, comprehend, and predict text input. Following are a few of

the typical statistical techniques employed in NLP:

TF-IDF: This approach is used to determine a word’s significance within a corpus or

text (a large collection of documents). Important words in the document are highlighted

by the TF-IDF score since it considers both the frequency of the term in the document

and its inverse frequency throughout the full corpus.

Naive Bayes: For classification tasks like sentiment analysis or spam filtering, the

probabilistic method known as naive Bayes is applied. The technique uses probabilities

to categorize text data into different groups and is based on the Bayes theorem.

Hidden Markov Models (HMMs): These are used to simulate sequences of events,

like the words in a phrase or the letters in a word. These models employ probabilities

to estimate the most likely series of occurrences given the observed data, .

Latent Dirichlet Allocation (LDA): It is a topic modelling technique that uses a

generative probabilistic model. The technique identifies the themes present in a text or

corpus and assigns probability to each pair of a document and a subject.

Word Embeddings: In a low-dimensional space, word embeddings serve as dense

vectors that represent words. These vectors capture the syntactic and semantic links

between words, making it easier for NLP models to process these interactions.

2.1.3 Artificial Neural Networks

Neural networks are now frequently used to produce cutting-edge outcomes in NLP

tasks in recent years. An AI system called a neural network uses synthetic neurons to

mimic the operation of a biological brain. As a result, the models can learn from their

mistakes and advance via repetition. The vast amount of data accessible for training

has also influenced the performance of these models. It is important to have a basic

understanding of neural network concepts in order to properly appreciate how these

models work.

The two type of Artificial Neural Networks are:
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1. Single-Layer Neural Network (Perceptron)

2. Multi-Layer Neural Network

Single-Layer Neural Network (Perceptron): To categorize input that can be sep-

arated into linear groups, a single-layer perceptron is a basic type of neural network.

Based on the design of a biological neuron, it functions by processing inputs as a vector

and generating an output in the form of a binary signal. The fundamental parts of a

perceptron are an input vector, an output signal, and a model made up of a weight vector

and a bias term.

The input vector, x, is denoted by x = (x1, x2,..., xd), where d is the total number of

features in the input. The classification of the input data is represented by the output

signal, y. A bias term, b, plus a weight vector, w, make up the perceptron model. The

strength of each input node is represented by the weight vector, which has the form w =

(w1, w2,..., wd). The perceptron’s baseline prediction is represented by the bias term.

The prediction function, which is depicted in 2.1.1, serves as the foundation for the

perceptron’s predictions.

y = f(wTx+ b) (2.1.1)

Where wT is the transpose of the weight vector, b is the bias term, and f is an activation

function. Based on the inputs, weights, and bias, the activation function is a mathemat-

ical function that establishes the output signal. Different neurons can perform different

types of activation-related tasks.

Figure 2.1: Working of Perceptron model: Illustrating how input features are combined to

generate a binary prediction.
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Fig. 2.1, which illustrates the perceptron-based prediction process, provides an illustra-

tion of how the perceptron model works. The final output signal, which represents the

categorization of the input data, is created by combining the inputs, weights, and bias

through the activation function.

Multi-Layer Neural Network: A perceptron has the restriction that it can only

do linear classification and cannot learn features. This restriction can be solved by

combining numerous single-layer perceptrons to create a multi-layer neural network with

hidden layers. With a single-layer network, it is impossible to learn features or solve

non-linear functions, but with Multi-Layer neural network, it is possible.

Figure 2.2: Multi-layer neural network with an input layer, two hidden layers, and an output

layer. The input data is processed by the hidden layers through weighted compu-

tations and activation functions before producing the final output.

Fig. 2.2 depicts an example of a multi-layer neural network. It has an input layer,

two hidden layers, and an output layer. The input layer accepts input data while the

hidden layers carry out feature learning, enabling the network to understand intricate

correlations between inputs and outputs. Based on the data gathered by the hidden

layers, the output layer makes the final prediction.

A multi-layer neural network has the advantage of being able to solve non-linear func-

tions, as opposed to a single-layer network, which can only do so. In many applications

where the relationship between the inputs and outputs is nonlinear, this feature is es-

sential. A multi-layer neural network created from several perceptrons has the capacity

to learn intricate patterns and carry out more challenging tasks.
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2.2 Sequential Models

Sequential data refers to data that must keep the order of its elements, while sequential

models refer to the models used to handle this kind of data. Sequential models need to be

able to recall crucial elements of the sequence in addition to maintaining the sequence’s

order. For instance, if the data consists of a collection of sentences, it is essential that

the model retain certain words, such as the title of the primary subject, in order to

comprehend the context of the sentences.

For example, consider this sentence "Y was going to School. He forgot to bring his

English notebook" as an example. To recognise that the person is going to school and

not somewhere else, the model must be able to recall the keywords "Y" and "School".

Sequential models differ from other models in that they can remember crucial sequence

elements, which makes them ideal for using with textual data in NLP.

2.2.1 Recurrent Neural Networks (RNNs)

For processing sequential data, a neural network called RNN is utilized. As a result, the

network is able to handle sequences of various lengths and can take context and sequence

order into account. Loops, which enable the network to transfer information from one

stage in the sequence to the next, are incorporated into the network architecture to

achieve this.

Figure 2.3: Basic RNN structure: an input sequence is processed to generate an output for

each step.
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A basic RNN structure is depicted in Fig. 2.3, in which the input sequence is processed

by the network and an output is generated for each step in the sequence. The same RNN

model is unpacked in Fig. 2.4, with the loops shown as links between the various phases.

Figure 2.4: Unpacked RNN model: Loops illustrate that how the same weights and biases

are applied iteratively to each element of the input sequence, while updating the

hidden state.

Various types of RNN models are:

1. Simple RNN

2. Long-Short Term Memory (LSTM)

3. Gated Recurrent Unit (GRU)

Simple RNN Model: The Simple Recurrent Neural Network (S-RNN) was initially

proposed by [13] and later investigated by [14] for application in Natural Language

Processing (NLP). Sequence tagging and language modelling can be accomplished with

the help of S-RNNs. But they also bring up an issue with gradients conveying data

necessary for parameter adjustments. The "exploding or vanishing gradients problem"

is a phenomenon that develops over time as a result of these gradients’ potential to grow

or shrink quickly. As a result, the gradients may grow or shrink to the point where

the model is unable to train. Later, [15] suggested the LSTM architecture to solve this

problem, which was successful in resolving the exploding and vanishing gradient issue.

Long-Short Term Memory (LSTM): These networks are a subclass of Recurrent

Neural Networks (RNNs) created for the purpose of learning long-term dependencies

[16]. LSTMs consist of memory cells, input and output gates, as well as a forget gate,

in contrast to conventional RNNs [17]. The gates decide how much information from
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earlier states should be maintained, and the memory cell keeps track of dependencies

that are present in the input sequence.

Gated Recurrent Unit (GRU): A RNN version called Gated Recurrent Units (GRUs)

was created to address the vanishing gradient issue that standard RNNs have [18]. The

reset and update gates, which govern the information flow into and out of the memory

cell, make up a GRU [19]. The update gate defines how much of the current input

should be added to the memory cell, while the reset gate determines how much of the

prior state should be forgotten. GRUs have been found to be computationally effective

and to be effective in a number of NLP tasks, including text categorization and machine

translation [20].

2.2.2 Encoder-Decoder Model

A popular method for completing sequence-to-sequence (seq2seq) Natural Language Pro-

cessing (NLP) tasks, like translation, is the Encoder-Decoder architecture [21]. Encoder

and decoder are the two parts of the architecture. A sequence is fed into the encoder,

which creates an encoding vector that the decoder uses as input. In the decoder stage,

auto-regression is utilized to predict an output at each step until a predefined end-token

is generated. The architecture shown in Figure 2.5 illustrates an RNN encoder-decoder

setup for sequence-to-sequence tasks.

Figure 2.5: Encoder-Decoder model: Where "x" stands for the input sequence,"h" stands for

the hidden state and "y" stands for the output sequence.
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2.2.3 Attention Mechanism

The input sequence of traditional encoder-decoder models for natural language processing

must have a fixed length vector as a restriction. This indicates that the model may

struggle to comprehend later portions of a series or perhaps forget earlier portions of

lengthy sequences. In [22], authors suggested using attention in encoder-decoder models

as a solution for this problem.

Encoder-decoder models with attention enable the model to concentrate on important

segments of the input sequence. To do this, the decoder receives all hidden states from

the encoders and scores each one based on how closely it matches a word in the input

sequence. Instead of depending solely on one context vector, the scores enable the model

to choose which portions of the sequence to focus on.

In a translation task, the attention scores demonstrate which elements of the input se-

quence are most important to the intended result. The attention scores can either be

monotonic, which denotes that they take a straight line, or they can be nonmonotonic,

denoting a more nuanced relationship between the input and output words. Thus, the

inclusion of Attention in encoder-decoder models solves the drawbacks of traditional

encoder-decoder models and permits the model to comprehend and remember informa-

tion from the input sequence more effectively.

2.2.4 Transformers

The encoder and the decoder are two essential parts of the transformer model, which

is based on the attention process. [23] proposed this architecture in 2017 as a solution

to the issues with recurrent models that prevented parallelization, led to longer train-

ing periods. High levels of parallelization, a continuous sequence and an attention-based,

non-sequential nature of transformers are all made possible. The encoder and decoder op-

erate together to translate sentences from one language to another in machine translation

jobs, which frequently require them. Fig. 2.6 illustrates the architecture of transformer

model proposed by [23].
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Figure 2.6: Transformer model: A neural network architecture used in natural language pro-

cessing that includes both an encoder and a decoder composed of multiple layers

of self-attention and feedforward neural networks.

Encoder: The encoder is made up of a number of layers, each with two sub-layers. The

target sequence and input sequence are the same in the first sub-layer of the multi-head

self-attention mechanism. The "multi-head" feature refers to the parallel computation

of the attention utilizing scaled dot-product attention. The second sub-layer comprises

a simple, fully connected feed-forward network that takes positional information into

account. Each sub-output layer is added to its corresponding input using a residual

connection and layer normalization. The encoder generates an embedding or vector

representation for each word in the input text, representing the words using numerical

values.

Decoder: The decoder has a similar structure to the encoder but adds a masked multi-

head attention mechanism as a second sub-layer. This mechanism, in contrast to self-

attention, inhibits the decoder from attending to following points in the target sequence,

15



Chapter 2: Theoretical Basis for the Study

preventing predictions from being produced by looking forward. During the translation

process, the decoder predicts one word at a time, continuing until the end of the sentence.

This prediction is achieved by combining the embeddings generated by the encoder with

the previously generated translated sentence.

Limitations of Transformer: Due to their limitation of processing input with a max-

imum length of 512 tokens, Transformers are constrained to handle inputs within this

restriction. This is because as sequence length increases, the amount of memory and

processing power required grows quadratically. Sequences longer than 512 tokens can

typically be cut in half to fit inside the restriction.

2.3 Bidirectional Encoder Representation from Transform-

ers (BERT)

In 2018, [24] introduced BERT, a pre-trained deep learning model used for NLP tasks.

It is built on the Transformer architecture, a neural network that specializes in handling

sequential data like text. BERT is engineered to comprehend the context and meaning of

words in sentences and can be adapted to a specific NLP task by incorporating some extra

layers into the pre-trained model, such as text classification or named entity recognition.

One of BERT’s standout features is its bidirectional approach, enabling it to predict

the meaning of a word by examining the entire input sequence. Prior language models

were unidirectional, only analyzing the words to the left or right of the current word,

but not both. By adopting a bidirectional approach, BERT gains a more comprehensive

understanding of the context and correlation between words, leading to more precise

predictions.

BERT has set the bar high for NLP benchmarks, including the GLUE benchmark and

the Stanford Question Answering Dataset (SQuAD). It has also been applied to various

areas, such as chatbots, sentiment analysis, and language translation, making it a popular

tool for researchers and practitioners in the NLP field.

2.3.1 Embeddings(Input and Output) Generation:

A token embedding layer is used by BERT, like other language models, to transform

each input token into a vector representation. The segment and position embeddings
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are two extra embedding layers that give it a unique edge. Fig. 2.7 shows these three

embedding layers.

Figure 2.7: Illustration of token, segment, and position embedding layers used by BERT to

transform input tokens into vector representations.

Prior to the conversion of input text into a vector representation through embedding

layers, WordPiece is employed to segment the text into tokens. Subsequently, the token,

segment, and position embeddings are concatenated to generate an input embedding for

each token.

Word Piece: BERT employs the WordPiece tokenization approach introduced by [25].

This method uses a fixed vocabulary set to break words into smaller chunks (referred to

as WordPieces) in order to handle unusual words better. BERT’s vocabulary consists of

30,000 WordPieces. A breakdown of two words into subwords is shown in Fig. 2.8.

Figure 2.8: Breaking down word into sub-words using WordPiece tokenization.

More letters can be separated from a word the more uncommon it is. The character

## denotes all subwords except the first subword. The words "bed" and "ding," for

instance, can be separated from the term "bedding". Due to its close relationship to the

word "bed", the subword "bed" effectively conveys the sense of "bedding".

Token Embedding: In the initial stage of the BERT model, the token embedding layer
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is responsible for creating vector representations of the tokenized input. For every token,

this layer produces a 1x768 vector with a hidden size of 768. If there are N input tokens,

the token embedding will yield a matrix of shape Nx768 or a tensor of 1xNx768.

Segment Embedding: In BERT, it is possible to process a pair of input sentences,

as depicted in Figure 2.10. These input sentences undergo tokenization and are subse-

quently concatenated to form a pair of tokenized sentences. To distinguish between the

two sentences and indicate the sequence as binary, BERT utilizes the [SEP] token. This

labeling sequence is then expanded to match the matrix shape of the token embeddings

layer, which is Nx768, where N represents the number of tokens. For instance, in the case

of the paired input depicted in Figure 2.9, the segment embedding results in a matrix

shape of 8x768.

Figure 2.9: Labels in binary format generated from pairs of inputs.

Position Embedding: Due to its transformer-based architecture, BERT does not pro-

cess tokens in a sequential manner. This means that in order to maintain the order of

the tokens, position embeddings must be utilized. In order to ensure that BERT doesn’t

forget the order of tokens, position embeddings are utilized.

Figure 2.10: Position embeddings.

This layer serves as a look-up table, where each row’s index corresponds to a specific

token position. As depicted in Fig. 2.10, two sentences with identical vector repre-
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sentations for the words can be represented by the position embeddings. For instance,

the words "Patient"-"Call", "is"-"the", and "serious"-"doctor" have the same vector

representations for the sentences "Patient is serious" and "Call the doctor", respectively.

2.3.2 Pretraining:

In the pre-training phase, BERT undergoes training on two unsupervised tasks simul-

taneously: the Masked Language Model (MLM) and Next Sentence Prediction (NSP)

[26].

Masked Language Model: In the pre-training phase of BERT, a task called Masked

Language Modeling (MLM) is carried out as an unsupervised approach to enable BERT

to grasp comprehensive bidirectional representations. This task involves randomly mask-

ing 15% of all WordPiece tokens in the input sequence and replacing them with a special

[MASK] token. BERT is then trained to identify and predict the masked tokens, which

helps it learn the relationships between words and the context in which they appear.

Next Sentence Prediction: It is an unsupervised task that is part of BERT’s pre-

training phase. Its goal is to help BERT understand the relationship between two sen-

tences. BERT is trained to predict whether a given sentence B follows a sentence A in a

document. To achieve this, 50% of the input pairs are composed of sentence pairs where

the second sentence is the consecutive sentence in the corpus. The remaining 50% con-

sists of sentence pairs with the same first sentence, but the second sentence is randomly

chosen from the corpus. For instance, if sentence A is "The cat sat on the mat," then

50% of the time, sentence B would be "It was a sunny day" (subsequent sentence from

the corpus), while the other 50% would be a randomly selected sentence from the corpus.

2.3.3 Fine Tuning:

Fine-tuning refers to the process of customizing the pre-trained BERT model for specific

NLP tasks using supervised learning. It entails replacing the fully connected output lay-

ers of the pre-trained BERT model with new output layers designed to provide answers

to the specific NLP problem at hand. The fine-tuned model undergoes supervised learn-

ing on labeled data, updating the weights of the output layers. Since only the output

layer weights are modified during fine-tuning, the learning process is relatively swift [24].
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2.4 ROUGE: Recall-Oriented Understudy for Gisting Eval-

uation

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metrics [1] is used to as-

sess the quality of extracted summaries. ROUGE is a set of metrics that are primarily

designed for assessing automatic text summarization systems. It compares the automat-

ically generated summary with the reference summaries.

The main metrics in ROUGE package are ROUGE-N (Counts the number of overlapping

n-grams between automatically generated summary and reference summaries), ROUGE-

L (checks for the longest common sequence between system generated summary and

reference) and ROUGE-S (searches for consecutive words between system generated and

reference summaries but these are separated by other words).

Recall in ROUGE gives information about how much reference summary is recovered by

system summary

ROUGE Recall (R): R =
Number of overlapping n-grams in generated summary

Total number of n-grams in reference summary

Precision in ROUGE gives information about how much relevant the system generated

summary is.

ROUGE Precision (P ): P =
Number of overlapping n-grams in generated summary

Total number of n-grams in generated summary

Finding the harmonic mean between recall and precision will find the F-Score in ROUGE.

ROUGE F-measure (F ): F =
2× P ×R

P +R

2.5 Summary

This chapter describes the basic concepts that are important for understanding the entire

research study as it covers fundamental concepts necessary to grasp the topic. It explains

Natural Language Processing (NLP), which combines linguistics and artificial intelligence

to help computers understand human language. The chapter also delves into BERT,
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a groundbreaking model in NLP that uses deep neural networks. It provides a step-

by-step breakdown of BERT’s operation, including attention mechanisms, transformer

architecture, and training processes. By exploring these topics comprehensively, readers

gain a solid foundation to navigate the subsequent sections of the study with clarity

and understanding, enabling them to appreciate the methodology and findings more

effectively. The upcoming chapter outlines the research work that is closely linked to the

research carried out in this thesis.
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Literature Review

Extractive Text Summarization has been extensively researched in Natural Language

Processing, with broad applications in various domains, including biomedical research,

digital humanities, news media, and social media analysis. Existing literature has pro-

posed numerous methodologies for generating document summaries. To provide a com-

prehensive background and rationale for our proposed approach, we systematically cat-

egorize related works based on the methodologies that are utilized for extractive text

summarization. Table 3.1 summarizes the literature on extractive summarization ap-

proaches.

Author (s) Paper Description Key Features

Statistical-Based Methods

[27] A process for automatically

summarizing a text that uses

multivariate statistical tech-

niques and is divided into two

stages: training and testing.

The system is trained using

manual summaries in order to

create a summarizer that works

similarly to a human.

Utilization of multivariate sta-

tistical methods to create a

summarizer that functions like a

human.
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[28] A statistical methodology that

is based on extracting numer-

ous aspects and verifying the

accuracy using the BBC Sports

Article dataset and sports arti-

cles from various newspapers is

proposed.

A statistical technique is used

to extract variables such TF-

ISF, sentence length, position,

sentence-to-sentence coherence,

proper nouns, and pronouns.

Graph-Based Methods

[29] A new method that makes use

of the Maximum Independent

Set and the text-processing soft-

ware KUSH for extractive sum-

marization of text documents.

By locating and deleting the

nodes on the graph that make

up the Independent Set, seman-

tic coherence across phrases is

preserved.

[30] An approach to graph-based

summarization that uses topic

modelling and semantic mea-

sures to give edges of the graph

weights based on how similar

the sentences are to one another

and how similar they are to the

rest of the document.

By adding topic modelling

and semantic measures to give

weights to edges of the graph

based on sentence similarity and

similarity to the entire docu-

ment, improved summary qual-

ity has been achieved.

[31] A heterogeneous graph-based

neural network for extractive

summarization (HETERSUM-

GRAPH) that introduces se-

mantic nodes with various gran-

ularities and document nodes to

capture cross-sentence interac-

tions.

The addition of various node

types to graph-based neural net-

works enhances cross-sentence

relationships and expands their

capacity for multi-document

summarization.
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[32] Suggested a method that ranks

sentences according to their sig-

nificance and relevance to the

entire text using graph-based

approaches, enabling the au-

tomatic extraction of the most

informative sentences.

Using a graph-based ranking

algorithm, an unsupervised

method for automatic sentence

extraction is shown.

[33] A method of extractive sum-

marization based on a graph

reduction technique known as

the triangle counting approach,

which consists of three major

phases: graph representation,

triangle construction, and bit

vector representation for the

triangle’s nodes, to create the

summary based on bit vector

values.

Using the graph reduction tech-

nique to improve the extractive

summarization process.

Topic-Based Methods

[34] Shows how employing topic-

based representations might im-

prove the effectiveness of extrac-

tive summarising, demonstrating

the potential benefits of using

probabilistic topic models in

extractive summarization tech-

niques.

Using the Term Frequency In-

verse Document Frequency (TF-

IDF) value to represent a sen-

tence.

[35] A topic modelling approach for

extractive lexical knowledge-

rich text summarization was

proposed.

Applied a smoothing technique

and four separate variations

with various sentence weighting

techniques.
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[36] The use of topic modelling to

identify latent topics in text

documents and clustering the

content to produce extractive

summaries for each cluster is

offered as a novel method for

summarising text documents.

Used clustering technique based

on latent topics.

Clustering-Based Methods

[37] Performed sentence clustering

by ranking each one’s impor-

tance according to three criteria:

keywords, term scores, and av-

erage cosine similarity to the

content.

Implementation of partitioning-

based clustering methods.

[38] Used a fitness function that

takes both redundancy and cov-

erage into account to employ a

genetic clustering strategy that

groups sentences based on the

similarity of text topics.

Application of the genetic clus-

tering algorithm for summariza-

tion task.

[39] In order to enhance the ef-

fectiveness of summarising, a

clustering-based summarization

model was created, and related

difficulties such as sentence clus-

tering, cluster ordering, and rep-

resentative sentence selection

were addressed.

Data mining document cluster-

ing methods were used.

Fuzzy Logic-Based Methods
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[40] Use of fuzzy inference system to

score each sentence by taking

into account a number of char-

acteristics, including the title

feature, sentence length, term

weight, etc. and producing a

ranking based on the weighted

average of all the features.

Used a fuzzy inference algorithm

to assign a score to each sen-

tence.

[41] Shows how fuzzy logic can be

used to extract sentences for

summarization and how this

can increase the efficacy and

accuracy of the process.

For each sentence, features were

extracted that included the sen-

tence’s length, placement, simi-

larity to other sentences, etc.

[42] To provide thorough summaries,

this method combines graph-

based text representation, fuzzy

logic for summary optimization ,

and sentence clustering for com-

prehensive summaries.

using a graph model to extract

features, clustering words to

identify textual subtopics be-

fore generating the summary,

and using fuzzy logic (FL) to

maximise summary creation.

[43] A novel extractive automatic

text summarizer that makes

use of a variety of strategies,

including fuzzy logic, bushy

paths, and wordnet synonyms,

is shown. It bases its argument

on the concept that the sum-

mary should contain all of the

sentences deemed significant by

the three approaches.

Usage of a set of fuzzy IF-

THEN rules, a bushy path,

wordnet synonyms, and fuzzy

logic.
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[44] A method that was tested on 30

news documents and uses fuzzy

logic and feature-based extrac-

tion to find key sentences in-

creased summary quality and

may be expanded to multi-

document summarization.

The application of fuzzy logic

and feature-based extraction,

with the automatic selection of

fuzzy inference rules based on

the input news category.

Neural Network-Based Methods

[45] To increase the quality of the

summary, a text summarization

technique using genetic algo-

rithm and pre-trained neural

networks was proposed.

Combined use of neural network

and genetic algorithm.

[46] In order to enhance phrase rep-

resentation and document sum-

mary, a unique extractive sum-

marization model that makes

use of a graph neural network

and cooperative learning of la-

tent topics is developed.

Relationships between sentences

and the whole document were

captured.

[47] The system uses DLMNN to

classify the sentences as infor-

mative or non-informative after

pre-processing the input docu-

ment, extracting and selecting

key characteristics, computing

support and confidence mea-

sures, and entropy scores.

By examining entropy levels,

Deep Learning Modifier Neural

Network (DLMNN) is used to

extract important information

from documents.
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[48] SummaRuNNer, a recurrent

neural network-based tool for

extracting significant sentences

for summary, was introduced.

By using abstractive summaries

rather than extractive labels, a

novel approach to training an

extractive summarization model

is put forth.

BERT-Based Methods

[49] Described how to develop

BERTSUM, a cutting-edge

extractive summarization sys-

tem, using BERT, a pre-trained

transformer model.

Testing out various summa-

rization layers that can be used

with BERT.

[50] For multi-document summariza-

tion, a unique hybrid framework

termed HEATS was presented.

N-Gram model and RNN-

LSTMCNN deep learning com-

bined to produce effective sum-

maries.

[51] With a focus on sentence em-

bedding and topic modelling

for better semantic representa-

tion and sentence selection tech-

niques for improved summariza-

tion performance, the proposed

automatic text summarization

system uses Sentence-BERT

(SBERT) and density peaks

clustering to improve extractive

text summarization.

Sentence-BERT was used to im-

prove sentence embeddings and

topic modelling to improve the

summarization process.
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[52] The "lecture summarization ser-

vice" is a Python-based service

that uses the BERT model for

embeddings and the K-Means

clustering method to extract key

sentences to generate a sum-

mary.

Utilized K-means clustering fol-

lowed by BERT.

[53] For better performance, an

unsupervised summarization

method based on BERT trans-

fer learning and fine-tuning was

proposed.

Transfer learning from a fine-

tuned BERT is used for multiple

tasks.

Table 3.1: State-of-the-Art Approcahes for Extractive Text Summarization

3.1 Statistical-Based Methods

These techniques involve performing statistical analysis on a set of features in order to

identify important sentences from the original text. According to [54], the most impor-

tant sentence is determined by factors such as favourable positioning or frequency. The

application of the multivariate statistical technique by [27] for the task of summariza-

tion produces a model that imitates how a human would summarize the text, offering

a more human-like interaction between phrases, leading to a more accurate and infor-

mative summary. In order to produce a short and accurate summary, [28] presents a

statistical method for extracting text summarization of sports publications.

3.2 Graph-Based Methods

These approaches generate a graphical representation of the text, where each sentence

is depicted as a node, and the connections between sentences are depicted as edges. The

algorithm then identifies the most important nodes, which correspond to the most in-

formative sentences for inclusion in the summary [4] . The authors of [29] introduced a
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unique approach for extractive summarization based on the Maximum Independent Set

and the KUSH text processing tool. The method entails locating and eliminating phrases

from the summary that correspond to nodes in the independent collection. This strategy

is based on the notion of recognising statements that are not mutually reliant in order to

construct a more logical and informative summary. Another graph-based summarization

method that takes into account how related phrases are to one another and to the entire

document is suggested by [30]. Similarity between phrases and similarity to the topics

of the entire document are the two attributes used by the technique to apply weights to

the edges of the graph. The links between phrases can be captured with this method,

producing a summary that is more accurate and instructive. HETERSUMGRAPH is

a technique for extractive document summarization that is based on a heterogeneous

graph-based neural network and was introduced by [31]. The network consists of many

kinds of semantic nodes to record cross-sentence relationships. The links between phrases

can be captured with this method, producing a summary that is more accurate and in-

structive. The technique is adaptable to include summarising many documents. Unsu-

pervised automatic sentence extraction using graph-based ranking algorithms has been

proposed in [32]. On benchmarks for text summarization, it can perform better. The

triangle counting method makes use of a graph-based representation of the text and is

able to recognize and extract important facts and ideas from the text, producing a more

precise and thorough summary. Triangle counting is the foundation of a reduction strat-

egy proposed in [33] that aims to enhance the effectiveness of extractive summarization.

This strategy is based on the notion of condensing the graph representation of the text

in order to isolate the key phrases and produce a more precise and educational summary.

3.3 Topic-Based Methods

Topic-based approaches for extractive text summarization entail selecting the most per-

tinent sentences based on their semantic closeness to the topic of the document, as

demonstrated in the study by [55] on using latent semantic analysis for summarization.

The study by [34] investigates the effects of probabilistic topic model-based word rep-

resentations on extractive summarization that is sentence-based. The goal of summary

extraction is formulated as a binary classification issue, and several machine learning
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techniques are tested to investigate various scenarios. For Hindi novels and stories, [35]

suggested a extractive lexical knowledge-rich topic modelling text summarization ap-

proach. To overcome the lack of an existing corpus, they built four alternative variations

employing various sentence weighting systems and produced a corpus of Hindi novels and

stories. A technique is proposed in [36], in which topic modelling is used to determine

the major topics in a document to be summarized, the text is then split into clusters

based on those topics, and the summaries of each cluster are merged to generate the

document’s final summary.

3.4 Clustering-Based Methods

These methods group similar sentences together and then select representative sentences

from each cluster, as demonstrated in the study by [56] on using cluster-based summa-

rization for multi-document summarization. The authors of [57] demonstrated how to

apply k-means clustering, word frequency-inverse document frequency, and tokenization

techniques for summarization tasks.In [37], a clustering method is presented that eval-

uates the importance of each phrase based on three criteria: term score, keywords, and

average cosine similarity. The summary is generated by selecting phrases using both

k-means and fuzzy C-means techniques, employing two similarity calculation methods.

The results are obtained for compression levels ranging from 20 to 60 percent. SEN-

CLUS is a new technique for extractive text summarization that was introduced in [38].

It makes use of the evolutionary clustering method, the SENCLUS sentence grouping

algorithm, and a fitness function that accounts for both redundancy and coverage. The

most important sentences for each topic are then chosen to be included in the extracted

summary using a scoring system. In [39], the application of K-means clustering to sum-

mary generation and the impact of cluster size on summary quality are discussed. To

enhance the performance of summarization, they created a clustering-based technique

and dealt with associated issues.
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3.5 Fuzzy Logic-Based Methods

Fuzzy logic-based approaches for text summarization extraction utilize fuzzy logic, a

reasoning method that resembles human thinking and offers a more intricate way of rep-

resenting sentence relevance [58]. A technique for extractive summarization utilizing a

fuzzy inference system is proposed in [40]. It scores and ranks phrases for inclusion in the

summary depending on several properties such as title, length, etc. The extraction strat-

egy for text summarization is focused in [41]. Specifically, sentence selection by utilising

sentence weighting, identification of significant features, and proposed text summariza-

tion based on fuzzy logic to improve the quality of the summary were covered. In order

to maximize the development of summaries, automatic text summarization method is

presented in [42]. There are five stages in this extractive method: pre-processing, text

representation, feature extraction, sentence grouping, and sentence ranking. It can be

used for single or many documents. The most importatnt sentences from a text are

identified and extracted using a combination of different strategies in the extractive au-

tomatic text summarization method introduced in [43]. To assess the significance of a

statement, the method uses wordnet synonyms, the bushy path algorithm, and fuzzy

logic. The extraction of a set of attributes from each sentence includes the usage of

fuzzy IF-THEN rules as well as features like sentence length, position, centrality, and

numerical information. Utilizing wordnet synonyms also accounts for the semantics of

the text. In order to extract the important sentences from a text, [44] combined feature-

based extraction with fuzzy logic. The findings showed that using fuzzy logic to text

summarization enhances the quality of the summaries as a whole. News stories that were

categorised into categories like sports, politics, and weather made up the input papers.

The system also incorporates an automatic selection of fuzzy inference rules based on

the kind of news being summarised in order to provide the best summaries.

3.6 Neural Network-Based Methods

Deep learning models, such as convolutional and recurrent neural networks, are used

in neural network-based approaches for extractive text summarization to automatically

learn the relevance of phrases from the input text [59].For extractive summarization of
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single documents, an approach that combines neural networks and evolutionary algo-

rithms is proposed in [45]. The genetic algorithm is employed to optimize this fitness

function and extract the most relevant sentences for the summary. The technique uses

a fitness function, defined by a neural network, to evaluate the quality of the summary

based on properties such as theme similarity, cohesion, sentiment, readability, and more.

In [46], authors used a graph neural network (GNN) to record the relationships between

phrases in a document and a joint neural topic model (NTM) to find and incorporate

latent topics in the text in order to increase the efficacy of extractive text summarization.

In order to automatically shrink the size of text documents while maintaining crucial in-

formation, [47] introduces a novel method for text summarizing that makes use of a deep

learning classifier. The classifier goes through several processes, such as pre-processing

the input text, extracting features, choosing the most pertinent features, calculating en-

tropy values, and categorizing the sentences into informative and non-informative groups.

According to their entropy values, the most informative sentences are chosen to create

the final summary. A model that is based on a simple recurrent network and allows for

interpretable visualization of its decisions is proposed in [48]. A novel training strategy

that allows extractive models to be trained using abstractive summaries is also described.

3.7 BERT-Based Methods:

BERT-based approaches for extractive text summarization employ pre-trained trans-

former models to build sentence embeddings and choose the most informative phrases

for the summary [49].The authors of [49] suggested a new model called BERTSUM that

applies extractive summarization using a pre-trained transformer model called BERT. It

was discovered through tests on two sizable datasets that BERTSUM with inter-sentence

transformer layers outperformed the others. A similar technique for text summarization

utilizing a hybrid framework called HEATS was described by [50], which combines the

N-gram model with deep learning models RNN-LSTMCNN for improved performance

in terms of syntactic and semantic coherence. Sentence-BERT (SBERT) for sentence

embedding and topic modelling, together with cluster-based density peaks clustering for

sentence selection, are used in [51] to propose an enhanced automatic text summarization

system. The "lecture summarizing service," a python-based RESTful service, was intro-
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duced in [52] and uses the BERT model and K-Means clustering to determine the most

crucial sentences from a lecture and then displays the summary to the user. Last but

not least, [53] presented a fresh approach to extractive multi-document summarization

that makes use of transfer learning from the BERT sentence embedding model and is

improved on supervised intermediate tasks from GLUE benchmark datasets using both

single-task and multi-task learning techniques.

3.8 Our Proposed Approach in State-of-the-Art

Automated summarization has been a long-standing research topic, and various meth-

ods have been developed to extract essential information from text documents. Although

statistical-based methods have been commonly utilized for extractive summarization, re-

cent advancements in deep learning have demonstrated promising results in capturing

the semantic and contextual meaning of text. In this study, we propose a novel approach

that employs a transformer-based model known as BERT to improve the summarization

of long scholarly documents. Our proposed approach offers several benefits over exist-

ing methods. Firstly, it outperforms traditional statistical-based and other non-deep

learning-based methods in capturing the contextual and semantic meaning of the doc-

ument, owing to its use of BERT as the underlying model. Secondly, by dividing the

document into smaller chunks, we overcome the input length limitation of BERT, which

is a common issue in transformer-based summarization methods. Additionally, our use

of an encoder-decoder model on top of the BERT sentence embeddings generates more

coherent and readable summaries, significantly improving over previous methods. Lastly,

we demonstrate that our approach outperforms several state-of-the-art models for extrac-

tive summarization on two scholarly datasets, arXiv and PubMed, not only surpassing

statistical-based methods but also outperforming several deep learning-based methods.

3.9 Summary

This chapter provides a comprehensive overview of the existing body of work in the do-

main of extractive text summarization. It encompasses an extensive array of methods

employed in this field, including statistical-based approaches, graph-based techniques,
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topic modeling-based methodologies, neural network-based models, and BERT-based

methods, among others. The chapter not only explores these diverse approaches but also

introduces our proposed approach, which represents a significant advancement in the cur-

rent state-of-the-art. Building upon the foundation laid in this chapter, the subsequent

chapter delves into a novel technique that combines BERT and BiGRU architectures for

the purpose of extractive text summarization specifically tailored to scholarly articles.
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Design and Methodology

4.1 Datasets

In this section, we will highlight the characteristics and qualities of the two datasets used

in this research work.

4.1.1 ArXiv Dataset

The arXiv dataset is a collection of scientific articles and pre-print publications that can

be used to do text summarization. In [60], authors identified this dataset as a great re-

source for text summarization research, providing a broad and comprehensive collection

of scientific publications that can be used to train and assess automatic text summariza-

tion models. Pre-prints from different fields like physics, mathematics, computer science,

and other subjects are included in the arXiv dataset. These papers were deposited in

the arXiv repository by their authors in order to share their work with the scientific

community prior to publication. The dataset has been divided into training, validation,

and test sets, allowing text summarization models to be evaluated. Table 4.1 shows

statistics of arXiv dataset.

Table 4.1: Statistics of arXiv dataset.

No. of Documents Average No.of Sentences Average No.of Tokens

Training Validation Test Document Summary Document Summary

203037 6436 6440 204 5.6 5038 165
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Data Fields:

1. Sentences: a string that includes the paper’s body.

2. Gold: a string containing the paper’s abstract.

3. ID: Unique Id for each paper.

4.1.2 PubMed Dataset

The PubMed dataset is a popular resource in text summarization research and it is

also introduced by [60]. It is made up of lenghty scientific papers from the website

PubMed.com, with their abstracts serving as reference summaries. This dataset’s goal

is to provide a broad and complete collection of scientific publications for training and

evaluating text summarization models. The articles in this dataset include a wide range

of topics consists of scientific articles published in various fields of medicine and life sci-

ences, making it a significant resource for researchers for evaluation of summarization

models. The dataset has been divided into training, validation, and test sets, allow-

ing text summarization models to be evaluated. Table 4.2 shows statistics of pubMed

dataset.

Table 4.2: Statistics of pubMed dataset.

No. of Documents Average No.of Sentences Average No.of Tokens

Training Validation Test Document Summary Document Summary

119224 6633 6658 88 6.8 3235 205

Data Fields:

1. Sentences: a string that includes the paper’s body.

2. Gold: a string containing the paper’s abstract.

3. ID: Unique Id for each paper.

In order to make use of the datasets in our experiments, we followed the dataset splits

as proposed by [60]. This ensured that we are using the same data splits as previous

research in the field, allowing for a fair and consistent evaluation of our models.
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4.2 Proposed Metodology

The proposed solution for the task of text summarization builds on previous work that

employs BiGRU on top of BERT for tasks such as entity recognition, text classification,

and question-answering, as demonstrated in [61, 62, 63, 64]. In this work, we present an

architecture that combines BERT with an attention-based Encoder-Decoder framework

to capture global context of whole document, as illustrated in Figure 4.1.

Figure 4.1: Proposed model architecture: Document is chunked into sentences and passed

through BERT to obtain contextual embeddings. Encoder model propagates infor-

mation between chunks, while a Decoder generates sentence labels using attention.

Given an arbitrary-length document D, we first divide it into several chunks, each con-

taining one sentence, and apply BERT to each chunk to obtain context-aware embed-

dings. Next, an Encoder model is used to propagate information between the chunks,

and a Decoder generates a weighted source vector using an attention layer to predict

the label for each sentence. The model performs binary classification, where a label of

1 indicates that a sentence is a viable candidate for summary and 0 indicates that the

sentence is not a suitable candidate. The details of each module are explained in the

following subsections.

4.2.1 Chunk Vector Generation

To tackle the challenge of processing long documents for text summarization, we divide

the input document into smaller, manageable chunks, with each chunk consisting of a
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single sentence. This approach helps us avoid exceeding BERT’s input limit and ensures

that each sentence can be processed effectively.

We assign labels to each chunk, labeling them as chunk1, chunk2, and so on, up to

chunkN . Each sentence in a chunk has n tokens, making it easier for our proposed

model to handle the data. To follow BERT conventions, we append the special tokens

[CLS] and [SEP] to the beginning and end of each chunk. These tokens help BERT

understand the context of the sentence and ensure that the model is processing the data

effectively.

Next, we process all chunks through a pre-trained BERT model, generating contextual

embeddings for each chunk. These embeddings represent each sentence as a vector and

capture the nuances of the sentence’s meaning and context. These chunk vectors are

then used as input for the model’s subsequent layers, enabling the model to learn from

the input data and make accurate predictions.

Our approach to chunk vector generation provides a scalable and effective way to process

long documents for text summarization.

4.2.2 Information Propagation

In the previous subsection, we discussed how BERT-generated chunk vectors are used

to represent contextual information within individual sentence chunks. However, these

vectors lack global information, and therefore, an additional step is required to propagate

information between sentence chunks. In this subsection, we describe the Information

Propagation module, which utilizes a Bidirectional Gated Recurrent Unit (BiGRU) to

propagate information between chunks.

The BiGRU is a type of Recurrent Neural Network (RNN) that was first proposed by [65].

It consists of two GRUs, one processing the sentence chunks in the forward direction,

and the other processing them in the backward direction. The BiGRU hidden states are

computed using Equations 4.2.1 and 4.2.2, which generate two context vectors, one for

the forward pass and one for the backward pass. The final concatenated state is computed

using Equation 4.2.3. This concatenated vector, −→z , contains global information from all

sentence chunks.
−→
h t = EGRU(−→c t,

−→
h t−1) (4.2.1)

←−
h t = EGRU(←−c t,

←−
h t−1) (4.2.2)
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where ct is the BERT-generated input chunk vector and ht is the hidden vector at time

t. These equations will produce two context vectors, one for the forward pass and one

for the backward pass. BiGRU’s final concatenated state is given by

−→z = [
−→
h T ,
←−
h T ] (4.2.3)

The final hidden states from the forward and backward passes are shown here as
−→
h T

and
←−
h T , respectively. The concatenation operation is indicated by the square brackets

[].

We use a Gated Recurrent Unit (GRU) as the decoder in our model. However, since

the GRU is not bidirectional, it can only take one context vector as input. To solve this

problem, we concatenate the two context vectors generated by the forward and backward

passes. The concatenation is achieved by passing the vectors through a linear layer 1 and

using a tanh activation function, as shown in Equation 4.2.4. The resulting vector, d0,

is used as the initial hidden state for the GRU decoder. The Information Propagation

module plays a crucial role in the model’s ability to capture global information and

propagate it throughout the sentence chunks.

z = tanh(l(
−→
h T ,
←−
h T )) = d0 (4.2.4)

4.2.3 Attention Mechanism

The attention layer takes all hidden states of the BiGRU as well as the prior hidden

state of the GRU to produce an attention vector, denoted as at. When predicting the

label for each sentence, this vector represents the sentence in the document that should

be paid the most attention.
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Figure 4.2: Attention Layer: Produces an attention vector (at) using BiGRU and GRU hidden

states. The vector identifies the sentence in the document that requires the most

attention during label prediction.

The following equation is used to determine the attention vector:

ât = uEt (4.2.5)

where E is the energy between the GRU’s previous hidden state, dt−1, and all BiGRU’s

hidden states, H. The hidden states are concatenated and sent through a linear layer

termed as attn, together with the tanh activation function, to determine this energy.

The variable u specifies the weights for the weighted total energy of all hidden states of

the BiGRU, indicating how much attention each sentence in the source text should get.

The following equation shows energy calculation:

Et = tanh(attn(dt−1, H)) (4.2.6)

Finally, the attention vector is sent through a softmax layer to guarantee that all values

are between 0 and 1 and that the total of all vector elements is 1.

at = softmax(ât) (4.2.7)

The attention vector is then utilized to generate a weighted source vector, represented

as vt, with weights equal to the weighted sum of the BiGRU hidden states, H, and the

attention vector, at.

vt = atH (4.2.8)
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4.2.4 Label Prediction and Summary Generation

GRU’s previous hidden state, i-e dt−1, and the embedded chunk vector ct concatenated

with the weighted source vector are then passed to GRU.

dt = DGRU(ct, vt, dt−1) (4.2.9)

To predict the label for each sentence, the concatenation of ct, vt, and dt is processed

through a softmax and argmax.

ŷt = softmax(ct, dt, vt) (4.2.10)

yt = argmax(ŷt) (4.2.11)

where yt is the predicted label for the chunk t in a document.

Finally, the top K sentences labeled as "1" in the document, in order of appearance, are

chosen to be included in the summary. This is accomplished by choosing the sentences

that are most likely to be pertinent to the summary using the labels that are predicted

by GRU.

4.3 Materializing the Proposed Methodology: Flow and Al-

gorithms

The schematic flow of the proposed BERT-based model for extractive text summarization

is depicted in detail in Fig. 4.3. This flow serves as a visual representation of the

various steps involved in the summarization process and provides a useful framework for

implementing the proposed model.
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Figure 4.3: Proposed BERT-based model for extractive text summarization. A schematic flow

diagram illustrating the steps involved in the summarization process and serving

as a framework for implementing the model.

The suggested system’s implementation can be carried out in the following steps:
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Algorithm 1 Chunks Embedding Generation

Input: Document

Output: Vectors for each sentence

1- Divide document into multiple chunks where each chunk contains one sentence

2- For each chunk in Document

Generate Embedding Vector c using BERT.

End

3- Return Concatenation of all vectors generated by BERT

Algorithm 2 Information Propagation

Input: Concatenation of all vectors generated by BERT

Output: Annotations

1- Pass all vectors generated by BERT as input to BiGRU

2- Calculate forward hidden states and backward hidden states at each time step

using
−→
h t ← EGRU(−→c t,

−→
h t−1)

←−
h t ← EGRU(←−c t,

←−
h t−1)

3- Concatenate forward hidden states and backward hidden states at each time

step using

z ← tanh(l(
−→
h t,
←−
h t))

4- Follow the step 3 to concatenate final hidden states of forward and backward

pass to set as initial hidden state for GRU

Algorithm 3 Attention Mechanism

Input: All Hidden States of BiGRU and Last hidden state of GRU

Output: Attention Vector

1- Calculate energy between all hidden states of BiGRU and last hidden state of

GRU

Êt ← attn(dt−1, H)

Et ← tanh(Êt)

2- Generate attention vector

ât← uEt

at ← softmax(ât)
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Algorithm 4 Summary Generation

Input: Attention Vector, Embedded Chunk Vector

Output: Summary

1- Calculate weighted source vector by using Hidden states of BiGRU and con-

sider attention vector as weights

vt ← atH

2- Pass vt, ct and dt−1 to GRU

dt ← DGRU(ct, vt, dt1)

3- Now pass the ct, dt and vt through softmax activation function to generate

labels for each chunk

ŷt ← softmax(ct, dt, vt)

4- Apply argmax

yt ← argmax(ŷt)

5- For summary, select top K sentences that are labeled as ’1’

In step 1 of Algorithm 1, the input document is broken into smaller, more manageable

chunks. This is a vital stage since it helps to break down a potentially enormous and

complex document into smaller, more easily processable chunks. This allows the model

that follow to process the information more efficiently without being overwhelmed by

the sheer volume of data.

In step 2, these chunks are transferred one by one to the BERT model, a state-of-the-

art language representation model. The BERT model use these chunks to construct

embeddings, which are numerical representations of the content of each chunk. These

embeddings capture the semantic and syntactic information available in each chunk,

allowing them to be processed meaningfully. This is crucial because it provides for a

more accurate depiction of the chunk’s meaning and context, making it easier for the

algorithms that follow to interpret and process it.

In step 3, after all of the embeddings have been produced, they are concatenated and

delivered to Algorithm 2. Algorithm 2 is in charge of propagating information between

chunks and locating annotations related to the document’s content. It identifies anno-

tations by using the embeddings as inputs. This phase is important since it contributes

to build a complete understanting of the document’s content and can provide vaueable

context that would be lost otherwise.

These annotations are subsequently submitted to Algorithm 3, which employs them in
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the generation of an attention vector. This vector shows the relative importance of each

chunk in the document and aids in highlighting the most significant content. Algorithm

3 does this by quickly identifying which parts of the document are most relevant, making

it easy to find the key sentences.

Finally, Algorithm 3 sends the attention vector it generated to Algorithm 4, which utilizes

it to generate a summary of the document.

In conclusion, the entire process is consists of breaking down the document into chunks,

generating embeddings, propagating information, generating an attention vector, and

producing a summary in order to give a comprehensive and efficient means of processing

huge and complex documents.

4.4 Implementation Details

4.4.1 Binary Label Generation

Annotated data must be used to train machine learning models for extractive summa-

rization. In our case, the annotations must take the form of binary labels at the sentence

level, indicating whether or not each sentence in a text document should be included in

the final summary. These annotations are essential in teaching the model how to rec-

ognize the key phrases in a document and produce a consice summary that accurately

represents its main ideas.

The approach given by [66] is used to compute these annotations. This method entails

categorizing each sentence in the text by comparing the extracted summary’s ROUGE-1

score to the gold-standard summary associated with each article.

It should be noted that these labels are only utilized during the training phase and not

during the evaluation phase. The extracted summaries are evaluated by comparing them

to the gold-standard summaries provided in the datasets. This ensures that the model is

learning to provide high-quality summaries that capture the most significant information

from the original text.
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4.4.2 LEAD Model

The LEAD approach is a straightforward yet effective method for generating a summary

of a given article by picking the starting sentences. This method provides as a baseline

against which the model developed in this research can be compared.

Previous research findings, such as [49], suggested that LEAD can serve as a strong

foundation for extractive text summarization tasks. The authors had a clear starting

point for measuring the performance of their models by utilizing LEAD as a baseline.

This gave the authors significant insights into the strengths and shortcomings of the

various models and allowed them to compare their findings to earlier studies.

Overall, the use of LEAD as a baseline is a critical component of the evaluation process,

providing a strong foundation for the comparison and analysis of the proposed model

developed in this work.

4.4.3 Oracle Model

In extractive text summarization, the Oracle model serves as a standard for evaluating

the performance of other models. It limits their performance since the models cannot

outperform the Oracle summary.

Oracle summaries can be generated using one of two algorithms: the greedy algorithm or

the combination algorithm. The greedy approach calculates and maximizes the ROUGE

score between sentences in the gold summary and the article. This process is utilized to

generate the oracle summary. To construct the oracle summary, the combination method

considers all potential sentence combinations and maximizes the ROUGE score.

However, as [49] points out, the combination technique can result in poor performance,

particularly when picking more than three sentences. As a result, we chose to utilize the

greedy method throughout the experiments. The greedy method was faster and more

efficient, and it produced good results without sacrificing accuracy.

We had a clear range for the ROUGE scores that we intended our model to perform

within by using both LEAD and the Oracle model. The model should outperform the

LEAD score, but not necessarily the Oracle score, because the Oracle score acted as a

performance upper limit.
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4.4.4 Baseline Models

1. BERTSUMEXT:

We considered BERTSUMEXT proposed by [67] which is the state-of-the-art model

for extractive text summarization as our baseline for comparison with our model.

It is an innovation in the field of extractive text summarization that is based on the

popular BERT language model. It has been fine-tuned expressly for the purpose

of summarization, with an emphasis on optimising its performance for this unique

use case. However, one of the difficulties in employing BERT for summarization is

its inability to scale to long content. As suggested in the original paper, we only

took into account the first 800 tokens because this approach cannot scale to long

text.

2. BERTSUMEXT with Sliding Window:

We also implemented BERTSUMEXT with Sliding Window, which is an extension

of the BERTSUMEXT architecture designed to accommodate even longer texts.

This was accomplished by employing the sliding window approach proposed by [68].

The sliding window method breaks a long text into many fixed-size windows; in

our example, we considered 800 tokens in each window and processed each window

independently. BERTSUMEXT with Sliding Window overcomes the constraints

of the previous BERTSUMEXT approach by dividing the document down into

smaller sections, and can now accommodate much longer text, however there is no

connection between multiple windows, and global context cannot be captured.

4.4.5 Hyper-parameters

For Proposed Model

In order to reduce memory usage during the training process of our model, the batch

size was set to 6. To optimize the model’s parameters, a learning rate of 0.00001 was

chosen as an initial value. The model was planned to be trained for 8 epochs, but after

seeing that the loss value did not decrease after the 5th epoch, training was halted and

the model was trained for only 5 epochs. The Adam optimization algorithm [69] was

employed with a drop-out value of 0.5 to further refine the model. This combination of

batch size, learning rate, number of epochs, and optimizer assisted in training the model
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effectively while avoiding overfitting and maintaining a balance between computational

efficiency and model accuracy.

For Baseline Models

In our baseline experiments, we began with an existing version of BERTSUMEXT and

adapted it to operate with sliding windows. The pre-trained "bert-base-uncased" BERT

model and its associated settings were used. The sliding windows were 800 tokens wide,

with a 300-token overlap between them. If a sentence appeared in more than one

window, we choose the one with the greatest context and used the [CLS] representation

from that window. Finally, we used the Adam optimization technique [69] to fine-tune

the model with a learning rate of 0.00001.

4.4.6 Prediction

Following training, the model was used to generate predictions on the arXiv and pubMed

test sets. For each article in the test set, the model generated a label for each sentence.

The top K sentences according to their appearance in the article (where K is the number

of oracle sentences utilized throughout the training procedure), were then chosen as the

article summary. This technique effectively allowed the model to summarize each article

in the test set by picking the most significant and relevant sentences based on the scores

given during prediction.

4.4.7 Hardware

We used Google Colab Pro+ platform for our model training. Google Colab is a free

online platform that lets users build and run Python code directly in their browser.

However, due to the free version’s limited memory of 12GB, we opted for the paid version,

Google Colab Pro+, which provides a broader range of resources and functionality. We

got access to additional RAM of up to 54GB and extended runtimes of 24 hours with

Google Colab Pro+, compared to the typical 12 hours in the free version. Furthermore,

the platform gives access to high-performance GPUs such as Nvidia K80, T4, P4, and

P100 in free version and more powerful GPU’s in premium version which includes A100

Tensor Core or NVIDIA V100 etc. We were assigned the powerful NVIDIA V100 GPU

during our runtime.
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4.5 Evaluation Metric

We employed a set of metrics called as Recall-Oriented Understudy for Gisting Eval-

uation (ROUGE) [1] to assess the performance of our proposed summarization model.

ROUGE is a popular tool for comparing the generated summary to reference summaries

in order to assess the quality of text summarization systems. The ROUGE package

has three major metrics: ROUGE-N, ROUGE-L, and ROUGE-S. ROUGE-N counts the

number of n-grams that overlap between the reference summary and the created sum-

mary. ROUGE-L looks for the sequence that has the most similarities between the two

summaries. ROUGE-S considers consecutive terms shared by both summaries, even if

they are separated by other words. We considered ROUGE-N (ROUGE-1 and ROUGE-

2) and ROUGE-L from the three metrics for evaluation purpose.

4.6 Summary

In this chapter, we provide a detailed explanation of how we implemented the suggested

architecture. We describe the specific steps we followed to make it work effectively. Ad-

ditionally, we discuss the configuration of the baseline model that we used as a reference

for comparing the performance of our architecture. We also give insights into the frame-

work we used for the implementation, explaining its capabilities and how it functions.

Moreover, we explore the training hyperparameters, which are settings and values that

we carefully selected to make the model learn optimally. By presenting this comprehen-

sive overview, readers can understand the technical aspects of how we implemented the

proposed architecture and the important factors we considered to ensure a strong and

dependable experimentation process. The subsequent chapter is dedicated to presenting

the results obtained through the conducted experiments.
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In Table 5.1, we demonstrate our main results on both datasets. In addition to BERT-

based baselines that we re-implemented, we conducted a comparative analysis with other

techniques, as cited from references [67, 69, 57]. For clarity and conciseness, the table

is separated into four sections. The results for the Lead and Oracle methods which

serves as a lower and upper bound for ROUGE score are displayed in the first section.

The second section focuses on traditional summarization approaches. The third section

demonstrates various extractive summarization strategies. Finally, in the fourth section,

the suggested model is compared to the baseline models, showing its performance and

efficiency in comparison to these approaches.

From Table 5.1, it is worth noticing that our approach demonstrates good performance

in the task of summarizing lengthy documents while simultaneously preserving both

informativeness, as evaluated by ROUGE-1, and fluency, as evaluated by ROUGE-L,

in the generated summaries. In addition, our approach outperforms several previously

published state-of-the-art models and BERT-based baselines, including BERTSUMEXT,

which truncates the document to first 800 tokens and proves to be less successful due

to difficulty in handling long documents. Notably, the sliding window adaptation of

BERTSUMEXT, which allows for processing longer documents, demonstrates outcomes

that closely align with our approach. However, our method still outperforms this version,

highlighting its capacity to capture global context of document, which is essential for

producing effective summaries of long documents.
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Models

pubMed arXiv

R1 R2 RL R1 R2 RL

Lead 32.61 13.00 24.29 34.12 8.96 21.23

Oracle 56.02 26.67 40.39 52.98 23.45 36.92

LSA 33.89 9.93 29.70 29.91 7.42 25.67

LexRank 39.19 13.89 34.59 33.85 10.73 28.99

Cheng and Lapata(2016) 43.89 18.53 30.17 42.24 15.97 27.88

Match-Sum 41.21 14.91 36.75 40.59 12.98 32.64

SummaRuNNer 43.89 18.78 30.36 42.81 16.52 28.23

Topic-GraphSum 45.95 20.81 33.97 44.03 18.52 32.41

Seq2seq-local and global 44.85 19.70 31.43 43.62 17.36 29.14

SSN-DM 46.73 21.00 34.10 45.03 19.03 32.58

SSN-DM + discourse 46.52 20.94 35.20 44.90 19.06 32.77

BERTSUMEXT 41.82 14.98 37.02 41.43 14.01 35.22

BERTSUMEXT

with Sliding Window
44.87 20.21 39.38 43.13 15.48 35.99

BERT with

Encoder-Decoder (Ours)
47.01 21.25 39.68 46.73 19.42 35.42

Table 5.1: Comparative analysis of proposed model with previously published Approaches.

Here R1, R2 and RL reperesents ROUGE-1, ROUGE-2 and ROUGE-L respectively.
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5.1 Analysis

To analyze the impact of sentence positions in the input document, we conducted a study

that aimed to identify the distribution of sentence positions in a summary. To do this,

we created histograms as shown in Figure 5.1, which illustrate the frequency of sentence

positions in both the Oracle summary and the predicted positions generated by various

baseline models. Specifically, we examined the performance of our proposed model, as

well as BERTSUMEXT and BERTSUMEXT with Sliding Window.

Figure 5.1: Distribution of extracted sentences in the pubMed test dataset based on their

position in document. The x-axis represents the linear sentence indices while the

y-axis displays the percentage of extracted sentences

Our findings from Figure 5.1 suggest that the most relevant sentences are typically found

at the beginning of a document. However, we also observed that the Oracle summary

included relevant sentences further down the document, indicating that there is valuable

information throughout the entire text. Notably, our proposed model exhibited behavior

that was closest to the Oracle, suggesting that it is more effective in capturing the

relevant sentences throughout the text.

In contrast, the baseline models tended to prioritize sentences from the document’s
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beginning, while giving less attention to sentences appearing later in the document.

This suggests that these models may not be as effective at capturing the full range of

relevant information available in the text.

In natural language processing, the performance of text summarization models is often

evaluated based on the quality of the summaries they generate, which can be measured

using metrics such as Rouge-1. To assess the performance of our proposed models, we

conducted experiments on the ArXiv test dataset and compared the results to those of

baseline models.

In Figure 5.2, we present the Rouge-1 scores of the different models, with a focus on the

word count of the source documents. As the size of the source texts increases, it becomes

increasingly difficult for summarization models to accurately capture the most important

information and generate high-quality summaries. However, our proposed model demon-

strates superior performance, outperforming both BERTSUMEXT and BERTSUMEXT

with Sliding Window as the word count of the source document increases.

Figure 5.2: The performance evaluation of model on arXiv test set by computing the average

ROUGE-F1 score based on the word count of the input document. The document

length is represented on the x-axis while the ROUGE Score is displayed on the

y-axis.
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The results depicted in Figure 5.2 provide strong evidence that our proposed model is

capable of effectively and efficiently handling larger texts, consistently generating higher

Rouge-1 scores as the word count of the source document increases. This is a significant

finding, as it indicates that our model is capable of handling real-world scenarios where

the source texts are often lengthy and complex. Overall, our proposed model shows a

significant improvement for the extractive summarization of lengthy scholarly documents.

The recall score is an important metric in text summarization evaluation as it measures

the proportion of relevant information that the system is able to extract from the original

text. In order to obtain a comprehensive evaluation of the system’s performance, it

is crucial to consider both recall and precision because ROUGE-F measure, which is

the harmonic mean of precision and recall, is often used as a fundamental statistic for

comparison.

In this context, the proposed model’s performance was analyzed based on recall scores

by selecting a random sample of three documents from the PubMed dataset, as shown

in Table 5.2. The results indicated that the recall scores of the proposed model were

substantially higher than expected. This high recall score demonstrated the efficacy

of the proposed method in capturing and extracting the most relevant and important

information from the original text.

Document
Rouge-1 Rouge-L

Precision Recall F-Measure Precision Recall F-Measure

Doc-1 0.6 0.89 0.73 0.5 0.81 0.63

Doc-2 0.5 0.84 0.61 0.5 0.76 0.54

Doc-3 0.5 0.78 0.59 0.4 0.7 0.47

Table 5.2: Rouge-1 and Rouge-L scores for Proposed Model on 3 randomly selected documents

from pubMed dataset.
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Document
Rouge-1 Rouge-L

Precision Recall F-Measure Precision Recall F-Measure

Doc-1 0.45 0.78 0.57 0.38 0.64 0.46

Doc-2 0.47 0.72 0.49 0.38 0.61 0.37

Doc-3 0.42 0.57 0.43 0.31 0.46 0.31

Table 5.3: Rouge-1 and Rouge-L scores for BERTSUMEXT on 3 randomly selected documents

from pubMed dataset.

Document
Rouge-1 Rouge-L

Precision Recall F-Measure Precision Recall F-Measure

Doc-1 0.51 0.83 0.62 0.42 0.74 0.55

Doc-2 0.47 0.76 0.54 0.41 0.66 0.45

Doc-3 0.43 0.79 0.6 0.34 0.61 0.46

Table 5.4: Rouge-1 and Rouge-L scores for BERTSUMEXT with Sliding Window on 3 ran-

domly selected documents from pubMed dataset.

For comparison, baseline models were also used, as presented in Tables 5.3 and 5.4, which

showed that the recall scores of the baseline models were lower than those of the proposed

model. The proposed model’s higher recall score led to a higher F-measure, indicating

superior performance in all aspects. Overall, the analysis of recall scores provided a

comprehensive evaluation of the system’s ability to extract relevant information from

the original text and demonstrated the proposed model’s effectiveness in this task.

5.2 Summary

In this chapter, we showcase the results of our proposed model and conduct a thor-

ough comparison with the state-of-the-art model. The obtained results are presented in

detail, accompanied by a comprehensive discussion. We analyze the performance met-

ric, such as ROUGE Score, to evaluate the effectiveness and efficiency of our proposed

model. This chapter also highlights any significant findings or trends observed during

the analysis of the results. Through this in-depth exploration and comprehensive discus-

sion, readers gain valuable insights into the performance and capabilities of our proposed
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model and gain a nuanced understanding of how it compares to existing state-of-the-art

approaches. The upcoming chapter concludes the work done in this thesis and provides

future directions for readers to expand upon this research.
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Directions

6.1 Conclusion

The purpose of this thesis was to develop a model capable of identifying the most essential

sentences in long documents. This goal has been met to some extent. In this section, we

will summarize our findings and, eventually, respond to the primary study question.

1. How might ArXiv and PubMed abstracts be used to generate labelled

data for a supervised model?

A Greedy Sentence Selection technique is used to generate labelled data from these

summaries. This technique generates labels by maximizing the similarity between

the summaries and their source documents using ROUGE score. This algorithm

was chosen because of its computational efficiency and shown ability to provide

high-quality labels in similar projects.

2. How should the model’s performance be assessed and evaluated?

It is critical to evaluate and examine the performance of a summarization model

in order to establish its value and dependability. One of the most typical ap-

proaches for evaluating the performance of a summarization model is comparison

with human-written summaries. By comparing the generated summaries of the

model with those created by humans, we can gain insights into how closely the

model’s output approximates an ideal summary. ROUGE is an automatic met-
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ric that can be used for this comparison. ROUGE compares n-grams and word

sequences to determine the similarity between produced and human-written sum-

maries. The ROUGE score gives a quantifiable assessment of the model’s perfor-

mance, which can then be compared to the effectiveness of other summarization

models.

3. How may BERT be utilized for extractive text summarization of long

documents?

BERT, an OpenAI pre-trained transformer model, can be used in a novel method

for extracting text summarization of large texts. The method entails breaking the

document into smaller sections and then applying BERT to each section individ-

ually. This method outperforms truncating the document or utilizing a sliding

window approach. The proposed method of combining BERT with an Encoder-

Decoder architecture has proven to be a successful model for creating relevant

summaries of large documents while taking the global context into account. This

demonstrates that BERT has a lot of potential for use in tasks where global context

is critical, such text summarization.

4. What are the shortcomings of proposed approach?

The analysis conducted indicates that the proposed model is well-suited for pro-

cessing long documents. However, for short documents, it is recommended to use

BERTSUMEXT, a state-of-the-art summarization model. This is due to the fact

that the proposed model is computationally expensive, and BERTSUMEXT out-

performs it on small documents in terms of ROUGE-F1 score.

6.2 Future Work

The approach proposed for leveraging BERT in extractive text summary of large docu-

ments has various benefits, including:

1. The method provides a general way processing long documents using BERT so it

can be used for a variety of NLP tasks such as document-level machine translation

and question answering, making it a useful tool for a wide range of NLP applications

other than text summarization.
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2. Because the approach is easily expanded to other NLP task so one can use it to gen-

erate abstractive text summary as well, it becomes a versatile tool for summarizing

text in a variety of ways.
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Appendix A: Formulas used, and Evaluation Metrics.

This appendix provides a comprehensive overview of the mathematical formulations uti-

lized in the research study. Specifically, we delve into the equations pertaining to BiGRU

hidden states and the attention mechanism. Furthermore, we elaborate on the evalua-

tion metric adopted, namely the ROUGE score. We elucidate the formulas encompassing

ROUGE recall, precision, and F-measure, thereby offering a detailed understanding of

the evaluation process.

1. BiGRU Hidden States

The BiGRU (Bidirectional Gated Recurrent Unit) model is a type of recurrent neural

network architecture that incorporates both forward and backward information flow.

The hidden states in BiGRU are computed using the following formulas:

Forward GRU:
−→
h t = EGRU(−→c t,

−→
h t−1)

Backward GRU:
←−
h t = EGRU(←−c t,

←−
h t−1)

BiGRU Hidden State: z = [
−→
h T ,
←−
h T ]

2. Attention Mechanism

The attention mechanism allows the model to focus on specific parts of the input sequence

when generating predictions. The attention vector is computed using the following for-

mulas:

Energy: Et = tanh(attn(dt−1, H))

Attention Vector: ât = uEt

3. ROUGE Score Formulas

The ROUGE score is a commonly used evaluation metric for text summarization tasks.

It assesses the overlap between the generated summary and the reference summary. The



key formulas for ROUGE recall (R), precision (P ), and F-measure (F ) are as follows:

ROUGE Recall (R): R =
Number of overlapping n-grams in generated summary

Total number of n-grams in reference summary

ROUGE Precision (P ): P =
Number of overlapping n-grams in generated summary

Total number of n-grams in generated summary

ROUGE F-measure (F ): F =
2× P ×R

P +R

These formulas provide a quantitative measure of how well the generated summary aligns

with the reference summary, enabling a comprehensive evaluation of the summarization

model’s performance.


