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Abstract

Complex symmetry analysis (CSA) establishes a connection between a class of n and 2n, dimen-

sional complex and real systems of ordinary/partial differential equations (ODEs/PDEs), respec-

tively. Similarly, another class of systems of PDEs is extractable from the base complex systems

of ODEs by CSA. The equivalence of the base complex systems under an invertible transforma-

tion of the dependent and independent variables has been exploited to study the corresponding

real systems. Of particular interest is the extension of Lie groups of transformations developed to

solve scalar and systems of non-linear second order ODEs, to two and four dimensional systems of

the same order, respectively. For scalar equations, they may be used to either reduce them to the

free particle equation (linearize) or integrate them. The former requires an 8-dimensional algebra

while a 2-dimensional solvable algebra is sufficient to apply the latter. In this thesis, those two and

four dimensional systems are characterized that arise from linearizable or integrable scalar and two

dimensional systems of second order ODEs, respectively. Further, invariance of systems of PDEs

under equivalence transformations is studied with CSA by employing the invariance properties of

the base complex PDEs.

Three linearizable classes of two dimensional systems of cubically semi-linear (in the first deriva-

tive) second order ODEs has appeared so far in the literature. A comparison of two of the classes,

obtainable from geometric methods and CSA, is presented. Both these classes are transformable to

the system of free particle equations subject to certain linearization conditions, even though their

general (cubic) semi-linear forms are proved to be inequivalent under point transformations.

There are five equivalence classes of two dimensional linearizable systems of second order ODEs

namely, those with 5, 6, 7, 8 and 15-dimensional Lie algebras. For those systems that arise from a

scalar complex linearizable second order ODE, treated as a pair of real ODEs, a reduced optimal

canonical form is established. Of the five only three equivalence classes with 6, 7 or 15-dimensional

algebras are recovered by this procedure. Both the equations of these systems are found to sat-

isfy Cauchy-Riemann (CR) equations with respect to the dependent variables. Therefore, here as

elsewhere in this thesis, such systems are called CR-structured systems.

A class of non-linearizable two dimensional CR-structured systems of second order ODEs is

presented to show that the linearizability of the scalar complex equations is not sufficient to map
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the emerging systems to linear forms. A general system of n second order ODEs with 2n symmetry

generators may not be amenable to quadratures by real symmetry analysis. However, it is shown

that the CR-structured systems may be solvable by a procedure called complex-linearization even if

they have fewer symmetries than required to linearize or integrate them.

A symmetry generator of the base complex ODE associates a pair of Lie-like operators with the

CR-structured systems. It is proved that all such operators are not necessarily real symmetries of

the emerging system. A criterion has been developed which shows when and how the real symme-

try generators of the CR-structured systems of two second order ODEs are extractable from the

associated complex Lie symmetries of the base ODEs.

The most general complex-linearizable form and the complex-linearization criteria for four di-

mensional systems of second order ODEs are derived by extending the geometric linearization criteria

presented for two dimensional systems of cubically semi-linear second order ODEs. Two canonical

forms of such systems have been derived by employing CSA on a system of dimension two once

and a scalar equation twice. A specific form of the complex linearizing transformations associated

with the base two dimensional systems is shown to furnish the reduction of the corresponding four

dimensional complex-linearizable systems to the free particle Newtonian systems.

Semi-invariants for a class of systems of two linear parabolic type PDEs in two independent

variables under equivalence transformations of the dependent variables have been deduced. This

class of systems of two linear parabolic type PDEs and the real transformations that map such

systems into themselves with different coefficients in general, are shown to correspond to complex

scalar linear parabolic equations and associated complex transformations, respectively. Moreover,

the semi-invariants for such systems of PDEs also correspond to complex Ibragimov invariants of

the complex scalar linear parabolic PDEs. Particular cases of systems of parabolic type equations,

i.e., when they are uncoupled or coupled in a special manner, have been studied with CSA.
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Chapter 1

Introduction

A well-known problem of mathematics is solving equations whether they are algebraic, ODEs or

PDEs. The attempts Abel, Galois, Lagrange and Ruffini made to construct procedures to solve

(algebraic) polynomial equations laid the foundations of modern algebra [12, 100]. The problem

of solving differential equations (DEs) encountered in the second half of the 19th century when

the descriptions of numerous physical phenomena were found to involve the notions of derivatives

and integrals introduced by Leibniz and Newton. The determination of the functional dependence

between the variables involved in a DE took a similar course to that adopted earlier by Abel and

Galois (see for instance [91]) in solving the polynomial equations. In Abel and Galois procedures,

the concept of admitted group played a crucial role.

In the course of development of the theory of DEs several ad hoc integration methods were

adopted to study a few special classes of such equations. Derivation of solution procedures for most

of the DEs was mainly considered due to their appearance in the description of the physical problems.

Indeed, the equivalence of DEs under invertible point transformations had been exploited to solve

those equations which were reducible to integrable ones. The entirety of such equations that are

transformable to each other by point transformations is an equivalence class of DEs. The seminal

works of Brioschi [13], Cockle [20], Halphen [34] and Laguerre [45,46], motivated Forsyth [26] to use

the similarity between the algebraic properties of differential and algebraic equations to calculate

the invariants of linear DEs. Though there may exist a few or infinitely many mappings to relate

the concerned DEs, his attempts did provide practical algorithms to find them. Further, Sophus

Lie explored the invariance and equivalence properties of DEs, under the groups of continuous

transformations to construct possible classes of solvable DEs [59]. His efforts started by introducing

the concepts of infinitesimal transformations and one parameter group of transformations in the

realm of DEs. The most significant realization that led him to create his theory was the non-trivial

transformations which leave an ODE form invariant (called a symmetry of that ODE). The device

he constructed to find exact solutions of ODEs, is known as Lie groups and their associated Lie

algebras due to Hermann Weyl. Lie observed that to work out the canonical forms and solutions
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of ODEs by utilizing their symmetries, the infinitesimal generators of the symmetry group must

explicitly be determined [11, 77, 94]. For about ten years Lie studied the subject of linear PDEs

which helped him to reformulate the integration problems in terms of the associated linear PDEs.

He took suitable manipulations of the determining equations apart from solving them explicitly.

In this way a working algorithm was given for determining the vector fields associated with the

symmetry transformations [51].

After Lie’s death, the theory of continuous groups of transformations and related symmetries [48]-

[59] to solve DEs had been almost forgotten. Most of the work on solving DEs, which relied on the

database-like tools containing collections of solvable equations [44,81,85], remained unchanged and

hardly any concepts of symmetry were considered to solve the DEs. The most common questions

which Lie’s theory of continuous groups encountered were the following: to what extent is Lie’s theory

of continuous groups constructive; and how much effort is needed to go through the huge amount

of analytic calculations in adopting a solution scheme based on symmetries of the DEs? Drach [21]

put together some evidence to argue that Lie partially achieved his goal in generalizing the Galois

theory of groups to DEs. Such arguments were based on a few observations which highlight the

limitations of Lie’s theory of continuous groups, for example, a single symmetry of a scalar ODE can

integrate it by quadrature, i.e., reduces the order of equation by one but the determining equation

for finding symmetries of first order scalar ODEs is under-determined. Also an equation may have

a solution in closed form without having Lie symmetries [29]. However, the applications governed

by DEs very often have a special structure expressed by its symmetries. The recognition of such

structures leads to the development of a better understanding of the underlying problem which often

helps to construct the solution algorithms for DEs.

Another major discovery based on the analogies of differential and algebraic equations was

Loewy’s theory of linear ODEs and its generalizations to systems of linear PDEs. He gave an

algorithm to reduce linear ODEs [47,60] and their representations to irreducible lowest degree equa-

tions. An altogether different attempt was Janet’s theory of linear PDEs [42] and the description

of the canonical forms for systems of such equations which are known as Janet’s bases. Both these

results are closely related to Lie’s theory, for instance, the latter describes the symmetry type of the

DE by identifying the determining equations as a Janet basis. Picard and Vessiot [80] have also gen-

eralized Galois theory to linear ODEs apart from Lie’s efforts in Leipzig. However, their differential

Galois theory have no connection with Lie’s though the points of departure as well as the underlying

group theories were the same. The Picard-Vessiot theory was claimed to be a proper extension of

Galois theory due to a quite satisfactory theoretical base but is of limited use as compared to Lie’e

theory established for the non-linear DEs.

The solution schemes for DEs assembled on the basis of their symmetries essentially involve

the construction of transformations to map them to simple solvable forms. The equivalence of

non-linear and linear second order ODEs under certain classes of point transformations, i.e., the
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linearization [51] of the second order ODEs was a major breakthrough of the group theory applied to

DEs. Lie derived the most general (cubically semi-linear in the first derivative) form of a linearizable

second order ODE by targeting the free particle equation with general point transformations [35].

Invariant linearizability criteria were presented in terms of a set of four linear PDEs involving two

auxiliary functions apart from the coefficients appearing in the linearizable form. All the scalar

second order linear ODEs were also recognized equivalent via point transformations which obviates

the reduction of any linearizable second order ODE to the free particle equation. Consequently,

Lie proved the existence of only one equivalence class which includes all the linear and linearizable

second order ODEs, i.e., all such equations have an 8-dimensional Lie symmetry algebra. Lie also

observed that all scalar second order non-linear ODEs are equivalent under contact transformations

which do not only transform the dependent and/or independent variables but map the first order

derivatives of the former. These transformations do not play any significant role in linearizing the

second order ODEs but appear non-trivial for higher order cases as these are used to transform

non-linear third and fourth order scalar ODEs to simplest linear forms.

Tresse [95,96] made use of the relative invariants of the equivalence group of transformations to

reformulate the existing linearizability criteria for second order ODEs by eliminating the auxiliary

functions. Cartan [14] uniquely associated geometric structures with the second order ODEs to study

their equivalence and linearization [33]. Chern [19] utilized the geometric invariants associated with

more general transformations to linearize third order ODEs [18]. However, the problem was not

completely solved, as the practical criteria to construct such transformations were not described and

the targeted canonical forms of third order ODEs were restricted to constant coefficients. Further,

Grebot [32] considered a subclass of the general point transformations [31] to extend the linearizable

class of higher order ODEs. Later, Neut and Petitot [76] generalized this scheme to target the

linear third order ODEs with arbitrary coefficients. However, the equivalence conditions were not

explicitly determined. Linearization of these ODEs has also been studied by means of non-point

transformations [22].

Meleshko [73] developed an algorithm to linearize third order ODEs, based on Lie linearization

criteria for second order ODEs. Finding the integrating factors [6,17,36,75] or Lie point symmetries

of the underlying equations are the key features of his linearization scheme. This algorithm was

also implemented to solve fourth order ODEs by linearizing the corresponding reduced second order

ODEs. Ibragimov and Meleshko used point [39] as well as contact transformations [40] to study

the linearization problem for the third order ODEs. They derived criteria to find the linearizing

transformations whether they are point or contact, apart from just giving the coefficients of the

resulting canonical forms of the third order ODEs. Separately, Ibragimov et al [41] also addressed

the linearization problem for the fourth order ODEs and described a procedure to find the linearizing

point transformations and the corresponding linear forms. A systematic approach has been developed

for constructing the linearizing transformations for non-linear ODEs in [15,90].
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Work has been done on reducing two dimensional systems of second order non-linear ODEs

to linear, solvable forms (see, e.g., [16, 70, 71, 98]). Several physical problems involve systems of

second order ODEs, for instance, systems of free particle equations and the coupled or uncoupled,

damped or undamped harmonic oscillators. Linearization furnishes the key to recognize such systems

when encountered in some practical application or physical phenomena, where they might appear

in a disguised form. Recently, Merker [74] characterized systems of m free particle equations. In

particular, for two dimensional systems of second order ODEs he established the most general

linearizable form which is cubically semi-linear in the first derivatives of both the dependent variables,

by employing a set of general point transformations. Following Lie’s classical method he derived the

necessary and sufficient conditions to map systems to the Newtonian free particle system.

Wafo Soh and Mahomed presented linearization criteria for systems of second order ODEs [98]

in terms of the associated Lie algebras. The underlying idea that played an essential role in con-

structing this algebraic linearization algorithm was Lie’s criteria for the scalar ODEs, which requires

a connected 2-dimensional algebra to reduce them to the free particle equation. They proved that

a 4-dimensional connected or Abelian Lie algebra is the requirement to map non-linear systems of

two quadratically semi-linear second order ODEs to some linear forms or systems of free particle

equations, respectively. Moreover, the procedure to construct the linearizing point transformations

was given explicitly which was also generalized to higher dimensional systems.

Mahomed and Leach [69] investigated the equivalence problem for equations of order three or

higher. They broke down the class of nth order scalar equations into three equivalence subclasses,

namely the subclasses of equations with n+1, n+2 or n+4-dimensional Lie point symmetry algebras

for n ≥ 3. Recall that for n = 2 there is only the 8-dimensional Lie algebra available. Gorringe

and Leach addressed the problem of group classification of the linear systems of two second order

ODEs with constant coefficients. They proved such systems may have a 7, 8 or 15-dimensional Lie

algebra [30]. A system of n non-homogeneous linear second order ODEs involves 2n2 + n arbitrary

coefficients which was the major difficulty to deal with them for the classification purpose. Wafo Soh

and Mahomed made a remarkable attempt to reduce the number of coefficients [97], by invertible

point transformations which ensure the same symmetry structure of systems mapped into each other.

They obtained an optimal canonical form [97], to resolve the issue of complete group classification

of linear two dimensional systems of second order ODEs. They obtained five equivalence classes

by proving that the allowable dimensions of the symmetry Lie algebras for such linear systems are

5, 6, 7, 8 or 15.

A connection between a two dimensional system of quadratically semi-linear second order ODEs

and scalar cubically semi-linear second order ODEs was used to re-derive Lie’s linearization con-

ditions [38] by geometric method. Further, a relationship between Killing vectors of the manifold

(isometries) and symmetries of systems of the geodesic equations on the manifold [25] has been ex-

ploited to construct the linearizability conditions for maximally symmetric systems of two quadrat-
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ically semi-linear ODEs [71, 83]. Treating the coefficients of systems as Christoffel symbols and

requiring the Riemann curvature tensor zero results in a sl(n + 2, IR ) algebra. Mahomed and Qadir

presented the most general class of linearizable systems which can be transformed to a system of

free particle equations by geometric linearization [70]. For the construction of their linearization cri-

teria, their departure point was a system of n geodesic equations which is transformable to a system

of the free particle equations if the underlying space is flat. They re-derived the Lie linearization

criteria for scalar second order ODEs by projecting the system of two geodesic equations down by

one dimension [5] and using the geometric linearization developed for the quadratically semi-linear

systems [71]. They described a procedure to construct the linearizing point transformations and

extended this scheme to linearize systems of n cubically semi-linear second order ODEs.

CSA deals with those systems of DEs that arise from systems of complex ODEs. The base

ODEs are said to be complex because their dependent variables are considered as complex functions

of the complex or real independent variables. Such complex equations with the complex and real

independent variables yield systems of PDEs and ODEs on splitting into the real and imaginary

parts, respectively. Likewise, systems of PDEs can be studied in terms of the base systems of

complex PDEs with CSA. For definiteness, consider a second order ODE written in semi-linear

form where both the dependent and independent variables are complex. Then the right side of

the equation is an arbitrary function of the complex first derivative of the dependent variable as

well as of the dependent and independent ones (which are also complex). Writing these complex

variables in terms of the real and imaginary parts and breaking the equation into the two parts, as

a consequence a system of two second order PDEs emerges with a set of two CR-equations which

enforces the existence of complex derivatives for the base complex equations. Moreover, both the

equations of such systems satisfy another set of CR-equations, i.e., when both the equations are

differentiated with respect to real dependent variables and their derivatives they constitute CR-type

equations. Likewise, if the dependent variable in the semi-linear form of the complex base scalar

ODE is considered as a complex function of a real independent variable then this procedure yields

a system of two second order ODEs. In contrast with the earlier case, here both the emerging real

ODEs are found to satisfy only the later set of CR-equations, i.e., the CR-type equations which

involve derivatives of both the equations of the system with respect to the dependent variables and

their derivatives. Therefore, these systems are called CR-structured systems.

The CR-structured two dimensional systems can be solved: by extending the linearization or

integration algorithms developed for the base scalar ODEs to these systems; and by employing

complex symmetry generators associated with the base complex ODEs to deal with the variational

problem for such systems [2,3]. The connection between the scalar and systems of two ODEs allows

us to study the equivalence and linearization of systems by means of the equivalence of the base

scalar ODEs [4]. An obvious question would be whether every CR-structured system inherits all the

symmetry properties (integrability, linearizability or solvability) of the base complex equation? In
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other words, whether all the systems in this class form an equivalence class if they are obtained from

one equivalence class of the corresponding complex base equation. If the answer is affirmative, then

this class of systems can be solved trivially, but no conclusion has been arrived at yet. Therefore,

in this thesis, we study two and four dimensional CR-structured systems of second order ODEs

which emerge from the linear or linearizable complex scalar or systems of second order ODEs.

In this work, we address in detail the following issues associated with CR-structured systems of

second order ODEs: (i) equivalence of the most general complex-linearizable systems and the most

general form of the geometric linearizable systems; (ii) the symmetry structure of linearizable CR-

structured systems; (iii) solvability of non-linearizable CR-structured systems with less than four

Lie point symmetries; (iv) the role of complex vector fields of the base complex ODEs in providing

Lie symmetries for CR-structured systems; (v) linearization of four dimensional systems. Semi-

invariants for a class of systems of two parabolic type PDEs are also deduced by exploiting the

invariance of scalar complex parabolic PDEs.

In the second chapter of this thesis, a comparison of the complex-linearizable and linearizable

classes of two dimensional systems of cubically semi-linear (in the first derivative) second order

ODEs is presented. CSA was employed to obtain the complex-linearizable class of systems of two

second order ODEs [4]. It was obtained by treating the dependent variable of the most general form

of a linearizable scalar ODE as a complex function and splitting it into real and imaginary parts.

Separately, by projecting a system of three quadratically semi-linear ODEs, namely the geodesic

equations, down to two dimensional systems of cubically semi-linear second order ODEs led to the

geometric linearizable class [70]. However, there exist another class of such systems which is obtained

by mapping an arbitrary two dimensional system into a system of free particle equations via general

point transformations [74]. This form is the most general linearizable form of systems as compared

to the geometric linearizable form of two dimensional systems of second order ODEs. The difference

was apparent in the former two classes due to the number of coefficients appearing in the associated

systems, which leads to a question: are all these classes distinct or do they have some overlap or

are identical under point transformations? The point transformations are considered to argue their

existence to map one class [4] into the other [70]. This investigation [86] leads to the result that

there are no point transformations to put both of them into a single equivalence class and they are

distinct from each other.

The third chapter deals with the symmetry structure of the linearizable class of two dimensional

CR-structured systems of second order ODEs [87], obtainable from complex linearizable base ODEs.

The first issue raised concerns the conditions which must be satisfied by an arbitrary general system

of two second order ODEs to correspond to a complex second order ODE. It is shown that the

coefficients appearing in the general form of systems must satisfy the CR-equations to correspond to

complex scalar ODEs. These CR-equations are different from those associated with systems of PDEs

as they involve the derivatives of the coefficients of the systems with respect to both the dependent



7

variables and their first derivatives. Further, an optimal canonical form of linear CR-structured

systems has been established by using linear forms of the base second order equations, other than

the free particle case. The linear form obtained by CSA is the reduced optimal canonical form

because it involves one arbitrary coefficient. This form of two dimensional linear CR-structured

systems has been investigated to obtain their symmetry structure, which gave three of the five

equivalence classes [97]. These three equivalence classes of the linearizable CR-structured systems

of two second order ODEs are found to have a 6, 7 or 15-dimensional Lie point symmetry algebra.

Moreover, it is proved that there does not exist a 5 or 8-dimensional Lie point symmetry algebra for

the CR-structured linear systems of two second order ODEs.

The complex linearizing transformations of the base equations play an essential role in providing

the real linearizing transformations for the corresponding CR-structured systems. However, the

complex transformations do not necessarily transform the corresponding systems to linear forms. In

fact, if they are of the form

τ1 : (real, complex) → (real, complex),

i.e., the point transformations which map the real independent and complex dependent variables to

real independent and complex dependent variables, then they can be used to map the corresponding

systems to their simplest forms. A class of two dimensional CR-structured non-linearizable systems

of cubically semi-linear second order ODEs arising from a linearizable scalar ODE [89], is presented

in the fourth chapter. The complex solutions of the complex base ODEs are employed to deduce

solutions of the associated CR-structured two dimensional systems of this class. The CR-structured

two dimensional systems are shown to be solvable regardless of the paucity in the least number of

symmetries [94] required to integrate or linearize them. Moreover, the role of the CR-equations in es-

tablishing a correspondence of solutions of the CR-structured non-linearizable systems with the base

scalar second order ODEs is presented diagrammatically. The complex linearizing transformations

τ1 described above and

τ2 : (real, complex) → (complex, complex),

which map the real independent and complex dependent variables to complex independent and

dependent ones, may reduce a complex scalar ODE to the free particle equation with a real and

complex independent variable, respectively. Therefore, the former equation with real independent

variable, splits into a system of two ODEs while the later yields a system of PDEs along with the

usual CR-equations. This system of PDEs and the associated CR-equations are shown to provide a

solution algorithm which only requires complex linearizability of the complex base equation to solve

the emerging systems with less than four symmetry generators.

The subsequent chapter is on the complex symmetry generators [72] associated with the CR-

structured two dimensional systems of second order ODEs [66]. The components of these complex
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symmetries are found to split into components of the real symmetry generators of the CR-structured

systems earlier. Here it is shown that this statement is not true in general, though the complex

symmetry generators of the associated complex ODEs may yield the complete symmetry algebras

of the emerging systems, they often result in a few extra operators. In fact, the complex generators

either split into two operators called Lie-like operators which are different from Lie symmetries

or provide components of two Lie point symmetries for the CR-structured systems. Moreover,

decomposition of a complex vector field may result in a symmetry generator and a "Lie-like" operator

for the associated systems. The conditions which relates such operators with the systems of ODEs

are known as Lie-like conditions and are presented here. Furthermore, these conditions are refined

to reduce them to Lie symmetry conditions for systems by using the CR-structure of the components

of the Lie-like operators. Exploiting these refinements it is proved that in general such operators and

symmetry generators associated with the CR-structured systems are different from one another. The

refined Lie-like conditions provide criteria which show when and how the Lie point symmetries of

the CR-structured systems are extractable from complex symmetry generators of the base complex

second order ODEs.

In the sixth chapter, linearization of a class of systems of four second order ODEs is addressed [88]

which emerge from complex two dimensional systems of second order. Two canonical forms of such

systems have been derived with fewer arbitrary coefficients than their real analogues. The concept

of nested complexification is introduced, i.e., complexification of a scalar ODE twice. The procedure

of nested complexification yields the simplest possible linear class of four dimensional systems. The

geometric linearization criteria for systems of two cubically semi-linear second order ODEs [70] are

extended to a class of systems of four ODEs by CSA. In fact, this is an extension of complex-

linearization as it only ensure the linearizability of the base complex two dimensional systems, i.e.,

linearization of the corresponding real four dimensional systems is not guaranteed by the criteria

presented. It is shown that a complex-linearizable four dimensional system can be linearized if

complex transformations of the form

τ3 : (real, (complex, complex)) → (real, (complex, complex)),

are associated with the complex base system to transform it into a maximally symmetric two di-

mensional system.

Invariance of a class of systems of two linear parabolic type PDEs under complex equivalence

transformations of the dependent variables has been studied in the seventh chapter. If a linear

parabolic PDE involves a complex dependent function of a complex independent variable then split-

ting it into the real and imaginary parts provides a coupled system of two real linear PDEs. These

systems of parabolic type PDEs are transformable to the same family by utilizing the equivalence

mappings of the corresponding complex PDE if it can be mapped to itself via such transforms [67].

Moreover, these systems have fewer arbitrary coefficients than their classical analogues and all these
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coefficients also satisfy the CR-equations. The algebraic properties of the systems may not neces-

sarily correspond to those of the base complex PDEs, but the equivalence transformations for such

systems can be obtained from the complex split of the equivalence transformations of the correspond-

ing scalar PDEs. It is due to this subclass of linear equivalence transformations of the dependent

variables of systems of linear PDEs, that the reductions of CR-structured systems to their simple

forms are achieved. Semi-invariants under changes of dependent variables obtained for this class

of systems of PDEs are found to correspond to complex Laplace-type invariants [38] of the scalar

complex linear parabolic PDE. Moreover, the real transformations which yield such semi-invariants,

also emerge from the complex transformation of the dependent variable that produced the complex

semi-invariants of the complex parabolic PDEs. It is shown that the real and imaginary parts of the

complex Ibragimov invariants of the complex scalar parabolic PDE are actually the Ibragimov-type

invariants for the emerging class of systems of PDEs.

Further, invariance of special subclasses (uncoupled and coupled) of systems of two parabolic

type PDEs has been investigated. These subclasses turned out to be same as one may have from

the general real class of systems of two parabolic PDEs by restricting their coefficients in a spe-

cial manner. Therefore, these uncoupled and coupled cases are shown to establish a fundamental

connection between real and complex symmetry analysis for such systems of parabolic type PDEs.

Indeed, this work extends the invariance criteria deduced for the scalar linear second order PDEs, to

invariance criteria for systems of second order linear PDEs. This correspondence is not apparent in

the work pursued in this thesis, for systems of two second order ODEs, i.e., Lie linearization theorem

for the scalar second order ODEs is not extendable to linearization criteria for the corresponding

CR-structured systems of ODEs. Therefore, invariance of systems of PDEs is investigated here in

order to characterize CR-structured systems of DEs and their associated invariants. These results

show that invariance of the CR-structured systems of DEs may follow from invariance of the base

complex DEs but under certain subclasses of the invertible equivalence point transformations of the

variables.

1.1 Lie Symmetry Analysis for Scalar Second Order ODEs

The basic definitions and necessary tools to deal with ODEs by symmetry methods are provided in

this section. It is devoted to the development of the theory of continuous groups and its translation

to workable algorithms to solve scalar ODEs. For instance, Lie groups, symmetry transformations,

the corresponding infinitesimal generators and the algorithm to find them is discussed (see, [94]).

Moreover, multi-parameter Lie groups and Lie algebras are also given in detail. In the literature one

often encounters two methods to solve second order ODEs by using their symmetries; the first is the

successive reduction of order and the second is the reduction to Lie’s canonical forms [35, 94], once

such equations posses two symmetry generators. Further, for the second order ODEs a linearization
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theorem [35] based on invertible point transformations, is presented which requires an 8-dimensional

algebra. The classification of second order ODEs with respect to 2-dimensional algebras is provided

to reveal their integrability. The subsequent subsection summarizes the equivalence and linearization

of two dimensional systems of second order ODEs [62]. Symmetry analysis for systems or higher

order ODEs gets complicated, e.g., the extension of Lie’s linearization algorithm to two dimensional

systems of second order or scalar third order ODEs is difficult to manage without computer al-

gorithms. Despite these obstacles, a few linearization algorithms for systems are developed [4, 70]

which are given in the third section. Then, in the last section CSA is proposed as a tool for studying

symmetry properties of systems by means of the invariance properties of the base complex ODEs.

1.1.1 Point Transformations and Infinitesimal Generators

One uses an appropriate change of the dependent and independent variables, known as point trans-

formations

x̃ = x̃(x, u), ũ = ũ(x, u), (1.1)

which maps points (x, u) into points (x̃, ũ), when dealing with a scalar nth order ODE

u(n)(x) = ω(x, u, u′, . . . , u(n−1)), (1.2)

to reduce it into a simplest possible form (see, e.g., [35, 94]). Finding all such invertible transfor-

mations of a given ODE (especially the discrete ones) is very difficult and certainly hopeless task.

Therefore, the context of symmetries requires dependence of the point transformations (1.1) on at

least one arbitrary parameter ε, which then become

x̃ = x̃(x, u; ε), ũ = ũ(x, u; ε). (1.3)

Let these transformations (1.3) lie in a region D ⊂ IR 2 that are defined for each x̃, ũ in D,

depending on the parameter ε ∈ S ⊂ IR , with a law of composition ϕ(ε, δ), then they form a one

parameter group of transformations if: for each ε ∈ S, the transformations (1.3) are one-to-one onto

D, which implies (x̃, ũ) ∈ D; S with the law of composition ϕ forms a group; x̃(x, u; e) = x, and

ũ(x, u; e) = u, at ε = e that are called identity transformations; if x̃ = x̃(x, u, ε), ũ = ũ(x, u, ε) and
˜̃x = ˜̃x(x̃, ũ, δ), ˜̃u = ˜̃u(x̃, ũ, δ), then ˜̃x = ˜̃x(x, u, ϕ(ε, δ)), and ˜̃u = ˜̃u(x, u, ϕ(ε, δ)). Moreover, a group of

transformations is called a one parameter Lie group if it satisfies the following conditions (including

above axioms, given for groups of transformations): ε is a continuous parameter and ε = 0 yields

the identity transformations; the defining functions x̃ and ũ are infinitely differentiable with respect

to x, u and analytic functions of ε in S; ϕ(ε, δ) is an analytic function of ε and δ.

A group of transformations is admitted by an ODE if it leaves the family of its solution curves

invariant, i.e., maps solutions of the underlying equation into solutions of the same equation. In
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other words, it re-parametrizes the solution curves. The one parameter group moves an arbitrary

point (x0, u0) in the (x, u)-plane when the parameter varies. The images of the arbitrary point

move along some line or curve. Repeating this procedure by considering different initial points

yields representative curves in the (x, u)-plane, of those points which are transformable to each

other under the action of the group. The set of curves (called orbits of the group) representing the

one parameter group of transformations (1.3) is completely characterized by the field of its tangent

vectors Z, in the plane. To describe this idea concisely one needs to expand (1.3) by taking (x, u)

an arbitrary point, in the form

x̃(x, u; ε) = x + εξ(x, u) + · · · = x + εZx + · · · ,

ũ(x, u; ε) = u + εη(x, u) + · · · = u + εZu + · · · , (1.4)

where ξ(x, u) and η(x, u) are defined as

ξ(x, u) =
∂x̃

∂ε
, η(x, u) =

∂ũ

∂ε
, at ε = 0, (1.5)

which are components of the operator

Z = ξ
∂

∂x
+ η

∂

∂u
, (1.6)

which can also be written as

Z = ξ∂x + η∂u. (1.7)

The operator Z, is called an infinitesimal generator of (1.1) as its repeated application generates

these finite transformations when

∂x̃

∂ε
= ξ(x̃, ũ),

∂ũ

∂ε
= η(x̃, ũ), (1.8)

are integrated with the initial conditions x̃ = x, ũ = u at ε = 0. It is apparent from the above

relations that the integral curves of Z, are the representatives of the group orbits, which are uniquely

determined by the infinitesimal operators. It is not necessary to use (1.3) in the context of symmetry

analysis for DEs instead of (1.1), which clearly are not the members of the one parameter group

of transformations. The one parameter group of transformations (1.3) is mainly considered to

find and use the corresponding symmetries, though the symmetry generators are linear operators,

the underlying transformations might be complicated to deal with. Furthermore, the symmetry

generator (1.6) is reducible to a simplest (canonical) form Z = ∂x̃, when its components are worked

out in terms of the new variables (x̃, ũ), by solving the system of equations

Zx̃ = 1, Zũ = 0. (1.9)

The canonical representation of (1.6) is guaranteed by the theory of PDEs which always yields a

non-trivial solution of (1.9).
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1.1.2 Extended Transformations and Prolongations of Symmetry Generators

A symmetry generator or transformation of the form (1.1) and (1.3) requires an extension or pro-

longation to include all the derivatives (see, e.g., [94]), i.e., these extensions of (1.6) must be up to

nth derivative to act on (1.2). To this aim, the derivatives can trivially be transformed by defining

ũ′ =
dũ(x, u; ε)
dx̃(x, u; ε)

=
u′(∂ũ/∂u) + (∂ũ/∂x)
u′(∂x̃/∂u) + (∂x̃/∂x)

= ũ′(x, u, u′; ε),

ũ′′ =
dũ′(x, u, u′; ε)

dx̃(x, u; ε)
= ũ′′(x, u, u′, u′′; ε),

...
...

ũ(n) =
dũ(n−1)(x, u, u′, . . . , u(n−2); ε)

dx̃(x, u; ε)
= ũ′(x, u, u′, . . . , u(n−1); ε). (1.10)

These are the derivatives of, and with respect to, the transformed dependent and independent

variables, respectively. Expanding the above relations in the same manner as it was done before in

(1.4) leads to

ũ′ = u′ + εη′(x, u, u′) + · · · ,

ũ′′ = u′′ + εη′′(x, u, u′, u′′) + · · · ,

...
...

ũ(n) = u(n) + εη(n)(x, u, u′, . . . , u(n−1)) + · · · , (1.11)

where η, η′, . . . , η(n) are defined by

η′ =
∂ũ′

∂ε
, . . . , η(n) =

∂ũ(n)

∂ε
, at ε = 0. (1.12)

On the other hand, invoking (1.4) the set of equations (1.10) becomes

ũ′ =
du + εdη + · · ·
dx + εdξ + · · · = u′ + ε

(
dη

dx
− u′

dξ

dx

)
+ · · · ,

...
...

ũ(n) =
du(n−1) + εdη(n−1) + · · ·

dx + εdξ + · · · = u(n) + ε

(
dη(n−1)

dx
− u(n) dξ

dx

)
+ · · · , (1.13)

where d/dx is the total derivative operator given by

d

dx
=

∂

∂x
+ u′

∂

∂u
+ u′′

∂

∂u′
+ · · · . (1.14)

Comparison of equations (1.11) and (1.13) result in the following formula

η(n) =
dη(n−1)

dx
− u(n) dξ

dx
, (1.15)

which determines the components of the extended generator Z to any order n recursively. Notice

that η(n) is not the nth derivative of η as is clear from (1.15). All these observations are summarized

below.
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Definition 1.1.1. The nth order extension or prolongation of the symmetry generator denoted by

Z[n], is represented by

Z[n] = ξ∂x + η∂u + η′∂u′ + · · ·+ η(n)∂u(n) , (1.16)

where η(j)’s for j = 1, . . . , n, are obtainable from (1.13) or (1.15).

Since geometrically a family of curves represents the general solution of an ODE, therefore, such

an ODE admits a one parameter Lie group of point transformations if solution curves are mapped

into solution curves under the action of the Lie group. It leads to the following definition and

theorem stated in [94].

Definition 1.1.2. (Invariance of an ODE:) The one-parameter Lie group of transformations

(1.3) is admitted by the ODE (1.2) or leaves it invariant if and only if its nth extension leaves the

solution curves invariant.

That is to say, under a transformation (1.1) the ODE of the form (1.2) does not change; both of

them imply

ũ(n)(x̃) = ω(x̃, ũ, ũ′, . . . , ũ(n−1)). (1.17)

Theorem 1.1.3. An nth extended infinitesimal symmetry generator (1.16) is admitted by an nth

order ODE (1.2) if and only if

Z[n][u(n)(x)− ω(x, u, u′, . . . , u(n−1))] = 0, (1.18)

i.e.,

η(n)(x, u, u′, . . . , u(n)) = Z[n−1]ω(x, u, u′, . . . , u(n−1)), (1.19)

when u(n)(x)− ω(x, u, u′, . . . , u(n−1)) = 0.

Definition 1.1.4. (An alternate formulation of symmetry:) An nth order ODE (1.2) can be

identified as a PDE in n + 1, variables (see, e.g., [94])

Af = (∂x + u′∂u + u′′∂u′ + · · ·+ ω∂u(n−1))f = 0, (1.20)

which can be given a concise form

Af = aj(xk)
∂

∂xi
f(xk) = 0, j, k = 1, . . . , n + 1. (1.21)

The first integrals, i.e., a function z = z(x, u, u′, . . . , u(n−1)), which is constant along the solutions

of (1.2)

dz

dx
=

∂z

∂x
+ u′

∂z

∂u
+ u′′

∂z

∂u′
+ · · ·+ u(n) ∂z

∂u(n−1)
= 0, (1.22)
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when u(n) − ω = 0, provide such a connection between ODEs and PDEs. Consequently, the com-

parison of (1.20) and (1.22) obviates that every solution ϕα, of the former is a first integral of

the equation (1.2) and conversely. Further, a set of n functionally independent solutions of (1.20)

corresponds to the general solution of (1.2) that is obtainable from

ϕα(x, u, u′, . . . , u(n−1)) = ϕα
0 , α = 1, . . . , n, (1.23)

after eliminating all the derivatives of u from it. In order to describe the conditions which relate a

symmetry generator Z, with the PDE (1.20) consider its solution set ϕα. Since a symmetry maps

solutions into solutions thus

Zϕα = Ωα(ϕβ), (1.24)

which leads to

Aϕα = 0 = AΩα, (1.25)

as ϕα being a solution implies that Ωα(ϕβ) is also a solution. A linear operator like the operators Z

and A is their commutator

[Z,A] = ZA−AZ = −(Aξ)∂x + [(Zu′)− (Aη)]∂u + · · ·+ [(Zω)− (Aη(n−1))]∂u(n−1) . (1.26)

The relations presented in (1.25) yields

[Z,A]ϕα = Z(Aϕα)−A(Zϕα) = 0. (1.27)

Since this is true for all ϕα, therefore, [Z,A]f = 0, has the same solution as (1.20). It implies that

[Z,A] = λ(x, u, . . . , u(n−1))A, (1.28)

must be satisfied for Z, to be a symmetry of (1.20). Now comparing the coefficients of ∂x, ∂u, ∂u′ , . . .

in the above equation after inserting (1.26), yields

−Aξ = −(
∂ξ

∂x
+ u′

∂ξ

∂u
) = λ, (1.29)

which defines λ. Writing A as

A =
d

dx
(mod u(n) = ω), (1.30)

and using (1.29), equation (1.28) expands to

(η′ − dη

dx
)∂u + (η′′ − dη′

dx
)∂u′ + · · ·+ (Zω − dη(n−1)

dx
)∂u(n−1)

= −dξ

dx
(u′∂u + u′′∂u′ + · · ·+ ω∂u(n−1)) (mod u(n) = ω). (1.31)

Notice that the above equation determines the components of an extended generator Z of order n,

which are given in (1.15). Equation (1.31) leads us to

Zω = Aη(n−1) − ω
dξ

dt
, (1.32)

which derives the following conditions.
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1.1.3 Lie Point Symmetry Conditions

The necessary tools are now in place to work out Lie point symmetry conditions [94] for an ODE

of the form (1.2) which yield a practicable algorithm to find the components of the vector field

Z. Likewise, the most general form of an nth order ODE corresponding to an operator (1.16) is

obtainable from this algorithm. The present work mainly concerns those systems which emerge from

a scalar second order ODE, therefore, the explicit derivation of the symmetry conditions for these

equations is presented. To this end, apply the second extension of Z, on both sides of a scalar second

order ODE

Z[2]u′′ = Z[1]ω(x, u, u′), (1.33)

when

u′′ = ω(x, u, u′). (1.34)

It implies

η′′(x, u, u′, u′′) = ξ(x, u)ω,x + η(x, u)ω,u + η′(x, u, u′)ω,u′ , (1.35)

where

η′ = η,x + (η,u − ξ,x)u′ − ξ,uu′2,

η′′ = η,xx + (2η,xu − ξ,xx)u′ + (η,uu − 2ξ,xu)u′2 − ξ,uuu′3 + (η,u − 2ξ,x − 3ξ,uu′)u′′, (1.36)

where , x and , u in the subscripts denote the partial derivatives of the coefficients with respect to

the independent and dependent variables, respectively, are easily obtainable from (1.15). Inserting

(1.36) into (1.35) constitutes the Lie point symmetry conditions for scalar second order ODEs.

1.1.4 Multiple Parameter Lie Groups and Lie Algebras

The transformations (1.3) may depend on more than one parameter such as

x̃ = x̃(x, u; εN ), ũ = ũ(x, u; εN ), where N = 1, . . . , r, (1.37)

to make an r-parameter group by satisfying all the group axioms with distinct εN (see, e.g., [11]).

An infinitesimal generator ZN , can be associated with each parameter εN , by the following relation

ZN = ξN ∂x + ηN ∂u,

ξN (x, u) =
∂x̃

∂εN

, ηN (x, u) =
∂ũ

∂εN

, at εN = 0. (1.38)
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Definition 1.1.5. Consider an r-parameter Lie group of transformations (1.37) with infinitesimal

generator (1.38). The commutator of ZM and ZN is another linear operator

[ZM ,ZN ] = ZMZN − ZNZM = (ZM ξN − ZN ξM ) ∂x + · · · . (1.39)

From which it immediately follows that

[ZM ,ZN ] = −[ZN ,ZM ]. (1.40)

Theorem 1.1.6. The commutator of any two infinitesimal generators of an r-parameter Lie group

of point transformations is also an infinitesimal generator, in particular

[ZM ,ZN ] = C
P

MN
ZP , (1.41)

where the coefficients C
P

MN
, for M,N, P = 1, . . . , r, are called the structure constants.

Definition 1.1.7. Equations (1.41) are called the commutation relations of the r-parameter Lie

group of transformations (1.37) associated with (1.38).

The Jacobi identity

[ZM , [ZN ,ZP ]] + [ZN , [ZP ,ZM ]] + [ZP , [ZM ,ZN ]] = 0, (1.42)

holds for any three generators ZM ,ZN and ZP .

Theorem 1.1.8. The structure constants given by the commutation relations (1.41), satisfy the

following relations

C
P

MN
+ C

P

NM
= 0,

C
P

MN
C

Q

ST
+ C

P

NT
C

Q

SM
+ C

P

TM
C

Q

SN
= 0. (1.43)

Definition 1.1.9. A Lie algebra L, is a vector space over some field with an additional law of

combination of elements in L, satisfying (1.40) and (1.42) with, most importantly, closure with

respect to commutation. In particular, the symmetry generators ZM , for M = 1, . . . , r, of an r-

parameter Lie group of transformations form an r-dimensional Lie algebra Lr, over IR , if for any

ZM ,ZN ,ZP ∈ Lr, and a, b ∈ IR :

1. aZM + bZN ∈ Lr;

2. ZM + ZN = ZN + ZM ;

3. ZM + (ZN + ZP ) = (ZM + ZN ) + ZP ;

4. [ZM ,ZN ] ∈ Lr;

5. [ZM ,ZN ] = −[ZN ,ZM ];
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6. [ZM , [ZN ,ZP ]] + [ZN , [ZP ,ZM ]] + [ZP , [ZM ,ZN ]] = 0;

7. [aZM + bZN ,ZP ] = a[ZM ,ZP ] + b[ZN ,ZP ].

Definition 1.1.10. A subspace S ⊂ L is called a subalgebra of the Lie algebra L, if for any

ZM ,ZN ∈ S, [ZM ,ZN ] ∈ S.

Definition 1.1.11. A subalgebra S ⊂ L, is called an ideal or normal subalgebra of L, if for any

Y ∈ S, Z ∈ L, [Y,Z] ∈ S.

Definition 1.1.12. Lq, is a q-dimensional solvable Lie algebra if there exists a chain of subalgebras

L1 ⊂ L2 ⊂ · · · ⊂ L(q−1) ⊂ Lq = Lq, (1.44)

such that L(k), is a k-dimensional Lie algebra and L(k−1), is an ideal of L(k) for k = 1, 2, . . . , q.

Definition 1.1.13. L, is called an Abelian Lie algebra if for any ZM ,ZN ∈ L, [ZM ,ZN ] = 0.

Theorem 1.1.14. Every Abelian Lie algebra is a solvable Lie algebra.

Theorem 1.1.15. Every 2-dimensional Lie algebra is solvable.

The main focus so far was to demonstrate the procedures which connect infinitesimal trans-

formations with their generators and ODEs. Apart from being devoted to basic manipulations of

symmetry generators and associated Lie point symmetry algebras this review concerns two solution

schemes described for the scalar second order ODEs: the first one is their integration; and the

equivalence and linearization problems comprise the second.

1.1.5 Integration of Second Order ODEs

A Lie point symmetry algebra of dimension one ensures the reduction of order of a second order

equation by one. Therefore, a 2-dimensional algebra is expected to integrate a second order equation

completely. A classification of integrable scalar second order ODEs with 2-dimensional algebras is

illustrated [35, 62, 94] on the basis of the structural properties of the commutators [Z1,Z2] and

δ = ξ1η2 − η1ξ2, where Z1 = ξ1∂x + η1∂u and Z2 = ξ2∂x + η2∂u. The structural properties here

represent the invariance of both the above quantities under the change of bases in L2 and the

variables x, u. The following theorem is stated for the classification of such algebras [35].

Theorem 1.1.16. Any 2-dimensional algebra can be reduced to one of the following four inequivalent

classes

1. [Z1,Z2] = 0, δ 6= 0,

2. [Z1,Z2] = 0, δ = 0,
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3. [Z1,Z2] 6= 0, δ 6= 0,

4. [Z1,Z2] 6= 0, δ = 0.

by a suitable change of basis.

Invariance of the above algebras under the dependent and independent variables reduces them

to those given in Table 1.1. The representative scalar second order ODEs admitting these algebras,

where the basis are given in the canonical variables, are also mentioned. The Lie algebras Ls for

Type symmetry generators Representative equations

I Z1 = ∂x, Z2 = ∂u, u′′ = ω(u′),

II Z1 = ∂u, Z2 = x∂u, u′′ = ω(x),

III Z1 = ∂u, Z2 = x∂x + u∂u, u′′ = 1
xω(u′),

IV Z1 = ∂u, Z2 = u∂u, u′′ = u′ω(x),

Table 1.1: Lie canonical forms of scalar equations.

2 < s ≤ 8 associated with the second order equations led to the problem of complete classification

of such equations. Lie proved that the algebras associated with the second order equations have the

maximum 0, 1, 2, 3 or 8 dimensions. Therefore, an equation with the s-dimensional algebra for s ≥ 4

necessarily admits an 8-dimensional algebra. The equations with such an algebra of vector fields

are said to be maximally symmetric, e.g., the free particle equation. Lie presented a linearization

test to uncover maximally symmetric ODEs which may arise in a disguised (non-linear) form, via

invertible point transformations.

1.1.6 Invariants of Algebraic and Differential Equations

The invariants and differential invariants of groups of equivalence transformations of algebraic and

families of DEs are abbreviated as invariants of algebraic and DEs, respectively. The invariants of

subgroups of the equivalence groups of transformations are termed as semi-invariants. Differential

invariants can be used to reduce the DEs to the equivalent integrable ones. Before going to them

invariants for the algebraic equations are discussed below in detail (see, e.g., [35]).

Definition 1.1.17. Equivalence transformations of an nth degree algebraic equation

Pn(x) ≡ α0x
n + nα1x

n−1 +
n(n− 1)

2 · 1 α2x
n−2 + · · ·+ nαn−1x + αn = 0, (1.45)

are the invertible mappings of the form x̃ = %(x) which convert it to an equation of the same form

and degree but in general with different coefficients, i.e., to an equation

P̃n(x̃) ≡ α̃0x̃
n + nα̃1x̃

n−1 +
n(n− 1)

2 · 1 α̃2x̃
n−2 + · · ·+ nα̃n−1x̃ + α̃n = 0. (1.46)
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Both the equations here are written in the standard form with the Binomial coefficients which

are often used for successive calculation of the related invariants.

Proposition 1.1.18. The linear fractional transformations

x̃ =
αx + β

γx + δ
, (1.47)

comprise the most general group of equivalence transformations of (1.45) with a constraint

αδ − βγ 6= 0. (1.48)

Definition 1.1.19. A function $(α0, α1, . . . , αn) is said to be an invariant of the equation (1.45) if

it is not altered by the transformations (1.47), i.e., under these equivalence mappings

$(α0, α1, . . . , αn) = $(α̃0, α̃1, . . . , α̃n). (1.49)

Rewriting the equation (1.45) by taking x = u
v

Qn(u, v) ≡ α0u
n + nα1u

n−1v +
n(n− 1)

2 · 1 α2u
n−2v2 + · · ·+ nαn−1uvn−1 + αnvn = 0, (1.50)

then the group of linear fractional transformations (1.47) becomes

ũ = αu + βv, ṽ = γu + δv. (1.51)

Further, setting α = exp(a) and δ = exp(b), and considering the infinitesimal transformations

ũ ≈ u + (au + βv), ṽ ≈ v + (γu + bv), (1.52)

for which the inverse can be written in the first order of precision relative to the small parameters

a, b, β, γ as

u ≈ ũ− (aũ + βṽ), v ≈ ṽ − (γũ + bṽ), (1.53)

leads to infinitesimal method to deal with the algebraic invariants.

Definition 1.1.20. An equivalence transformation associated with an nth order general linear

homogeneous ODE with variable coefficients

u(n) + nβ1(x)u(n−1) +
n!β2(x)

(n− 2)!2!
u(n−2) + · · ·+ nβn−1(x)u′ + βn(x)u = 0, (1.54)

is an invertible change of the dependent and independent variables (x, u) that preserves the linearity,

homogeneity and order of the ODE.
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Proposition 1.1.21. An infinite group of linear transformations of the dependent variables

u = ς(x)v, ς(x) 6= 0, (1.55)

and invertible change of the independent variable

x̃ = σ(x), σ′(x) 6= 0, (1.56)

where ς(x) and σ(x) are arbitrary n times continuously differentiable functions, represents the most

general form of the equivalence mappings for equation (1.54).

To illustrate the infinitesimal approach for finding the semi-invariants of an ODE consider the

equation (1.54) when n = 3 which reads as

u′′′ + 3β1(x)u′′ + 3β2(x)u′ + β3(x)u = 0. (1.57)

Implementing a subgroup of the transformations (1.55), i.e., let ς(x) = 1− ες̃(x) where ε is a small

parameter, the above equation becomes

v′′′ + 3β̃1(x)v′′ + 3β̃2(x)v′ + β̃3(x)v = 0, (1.58)

where

β̃1 ≈ β1 − ες̃ ′,

β̃2 ≈ β2 − ε(ς̃ ′′ + 2β1ς̃
′),

β̃3 ≈ β3 − ε(ς̃ ′′′ + 3β1ς̃
′′ + 3β2ς̃

′). (1.59)

The group generator readable from the above formula (1.59) when prolonged to include the deriva-

tives of βj , j = 1, 2, 3 has the form

Zς = ς̃ ′∂β1 + (ς̃ ′′ + 2β1ς̃
′)∂β2 + (ς̃ ′′′ + 3β1ς̃

′′ + 3β2ς̃
′)∂β3 + ς̃ ′′∂β′1

+(ς̃ ′′′ + 2β1ς̃
′′ + 2β′1ς̃

′)∂β′2 + (ς̃(iv) + 3β1ς̃
′′′ + 3β2ς̃

′′ + 3β′1ς̃
′′ + 3β′2ς̃

′)∂β′3 + · · · . (1.60)

Definition 1.1.22. The differential invariants of (1.59) are the semi-invariants associated with the

equation (1.58). These semi-invariants ĥ are functions of the coefficients βj and their derivatives

β′j , β
′′
j , . . . of a finite order that are compatible with Zς(ĥ) = 0.

There are two independent semi-invariants of the third order ODE (1.58) given below

ĥ1 = β2 − β2
1 − β′1, ĥ2 = β3 − 3β1β2 + 2β3

1 + 2β1β
′
1 − β′2. (1.61)
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1.1.7 Equivalence Classes of Scalar ODEs

Two ODEs or in general DEs are said to be equivalent under point transformations if one can be

mapped into the other [62] and both are in agreement from the point of view of their associated

symmetry algebras.

(a) First order ODEs. All the first order ODEs are equivalent to each other, therefore, an equa-

tion of the form u′(x) = ω̃(x, u), is always transformable to u′ = 0 by point transformations.

(b) Linear second order ODEs. The simplest linear form of a second order ODE, namely the

free particle equation has the 8-dimensional algebra sl(3, IR ). All the linear scalar second order

ODEs are transformable to each other under point transformations. Therefore, any linear second

order equation

u′′ + α(x)u′ + β(x)u = 0, (1.62)

where prime denotes the differentiation with respect to x, is reducible to the free particle equation

ũ′′ = 0, (1.63)

here prime represents differentiation with respect to x̃. This implies that there exist only one equiv-

alence class of such ODEs.

(c) Linear ODEs of order n, n ≥ 3. Such linear equations are not necessarily transformable

to their simplest form. The maximal Lie algebra of an nth order ODE where n ≥ 3 is at most

r-dimensional where r ≤ n + 4.

1.1.8 Lie Linearization Theorem

Lie’s linearization theorem (see, e.g., [35]) assumes that the equation (1.34) linearizes to the simplest

equation (1.63), by a change of variables

x̃ = ϕ(x, u), ũ = ψ(x, u). (1.64)

Accordingly, the derivatives ũ′ and ũ′′ transform as

ũ′ =
Dx(ψ)
Dx(ϕ)

, ũ′′ =
Dx(Dx(ψ))

Dx(ϕ)
. (1.65)

The free particle equation (1.63), by inserting the above derivative transformations takes the form

Dx(ϕ) ·D2
x(ψ)−Dx(ψ) ·D2

x(ϕ) = 0, (1.66)
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where

Dx(ϕ) = ϕ,x + u′ϕ,u,

D2
x(ϕ) = ϕ,xx + 2u′ϕ,xu + u′2ϕ,uu + u′′ϕ,u. (1.67)

Similarly, the expressions for Dx(ψ) and D2
x(ψ) when inserted into (1.66) yield

(ϕ,xψ,u − ϕ,uψ,x)u′′ + (ϕ,uψ,uu − ψ,uϕ,uu)u′3 + (ϕ,xψ,uu + 2ϕ,uψ,xu − ψ,xϕ,uu − 2ψ,uϕ,xu)u′2

+(ϕ,uψ,xx + 2ϕ,xψ,xu − ψ,uϕ,xx − 2ψ,xϕ,xu)u′ + ϕ,xψ,xx − ψ,xϕ,xx = 0. (1.68)

Hence, dividing by the non-zero Jacobian of (1.64) ϕ,xψ,u − ϕ,uψ,x, and writing

ϕ,uψ,uu − ψ,uϕ,uu = F3(x, u)(ϕ,xψ,u − ϕ,uψ,x),

ϕ,xψ,uu − ψ,xϕ,uu + 2(ϕ,uψ,xu − ψ,uϕ,xu) = F2(x, u)(ϕ,xψ,u − ϕ,uψ,x),

ϕ,uψ,xx − ψ,uϕ,xx + 2(ϕ,xψ,xu − ψ,xϕ,xu) = F1(x, u)(ϕ,xψ,u − ϕ,uψ,x),

ϕ,xψ,xx − ψ,xϕ,xx = F0(x, u)(ϕ,xψ,u − ϕ,uψ,x), (1.69)

the general equation (1.34) reduces to

u′′ + F3(x, u)u′3 + F2(x, u)u′2 + F1(x, u)u′ + F0 = 0, (1.70)

which is the most general candidate for linearization of a second order ODE.

Theorem 1.1.23. The following statements are equivalent:

(I) A second order ODE (1.34) is transformable to the free particle equation (1.63) by point trans-

formations (1.64).

(II) Equation (1.34) has an 8-dimensional Lie point symmetry algebra.

(III) The coefficients F3, F2, F1 and F0 satisfy the following integrability conditions

∂z

∂x
= z2 − F0w − F1z +

∂F0

∂u
+ F0F2,

∂z

∂u
= −zw + F0F3 − 1

3
∂F2

∂x
+

2
3

∂F1

∂u
,

∂w

∂x
= zw − F0F3 − 1

3
∂F1

∂u
+

2
3

∂F2

∂x
,

∂w

∂u
= −w2 + wF2 + zF3 +

∂F3

∂x
− F1F3, (1.71)

with two auxiliary functions w and z.

(IV) The coefficients of the equation (1.70) satisfy the following set of constraints

3F3,xx − 2F2,xu + F1,uu − 3(F1F3),x + 3(F0F3),u + (F 2
2 ),x + 3F3F0,u − F2F1,u = 0,

3F0,uu − 2F1,xu + F2,xx − 3(F0F3),x + 3(F0F2),u − (F 2
1 ),u − 3F0F3,x + F1F2,x = 0. (1.72)
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(V) Equation (1.34) admits a 2-dimensional algebra spanned by connected operators of the form

Z1 = ξ1∂x + η1∂u, Z2 = ξ2∂x + η2∂u, such that

ξ1η2 − η1ξ2 = 0. (1.73)

To summarize Lie Linearization test for scalar second order ODEs: equation (1.70) can be

linearized if and only if the coefficients appearing in it result in the compatibility of over-determined

system (1.69). Integration of (1.69) furnishes the linearizing point transformations (1.64) to map

(1.70) to the free particle equation (1.63).

1.1.9 Noether Symmetries and First Integrals

The procedures to determine the Lie point symmetries and use them to solve DEs have been demon-

strated in the preceding subsections. Another important application of these infinitesimal transfor-

mations to physical problems is the construction of conservation laws (see, e.g., [11]). An equation

in the divergence free form

div υ = Djυ
j , (1.74)

reveals a conservation law associated with a physical system, where the vector function υ may

depend on the independent variables, dependent variables (state functions) of the system and their

derivatives to some order κ and Dj are the total derivative operators. The conservation law Dtυ
1 = 0

arises for systems in classical mechanics where time t is the only independent variable, implies that

υ1 is a constant of motion. These constants of motion can reduce the number of degrees of freedom

of the system by restricting its motion. Moreover, finding conservation laws for a system is often the

first step towards its solution, i.e., finding more conservation laws for the system means one getting

closer to the complete solution.

Emmy Noether proved that for every Lie point symmetry admitted by the action integral of

the Lagrangian system one can constructively find a conservation law. Hamilton’s principle of least

action states that a Lagrangian L = L(t,q,v) where t is time, q = q1, q2, . . . , qm are coordinates

and v = dq/dt are velocities of particles of the system, characterizes a mechanical system. The

trajectories q = q(t) of the particles that provide an extremum of the action S =
∫ t1
t0

L(t,q,v)dt

determine the motion of the system. Considering an increment δq = δq(t) with the assumption that

it is small everywhere in t0 ≤ t ≤ t1 and δq(t0) = δq(t1) = 0 causes the variation of the action

integral. By employing these assumptions and necessary conditions for S to have an extremum lead

to the Euler-Lagrange equations

d

dt

∂L

∂vα
− ∂L

∂qα
= 0, α = 1, . . . , m. (1.75)

Noether presented a fundamental formula to construct conservation laws for Euler-Lagrange

equations once their symmetries are determined. For example, in the view of Noether’s description
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of conservation laws the conservation of angular momentum and energy are related to rotational

and translational invariance in time, respectively. The determination of the invariance properties of

Euler-Lagrange equations which come from a variational problem of the action integral leads us to

conserved quantities.

Definition 1.1.24. The scalar second order ODE (1.34) has a Lagrangian L(x, u, u′), if it is equiv-

alent to the Euler-Lagrange equation

d

dx
(
∂L

∂u′
)− ∂L

∂u
= 0. (1.76)

Definition 1.1.25. The operator (1.16) is called a Noether point symmetry generator corresponding

to a Lagrangian L(x, u, u′) of the equation (1.34) if there exists a gauge function B(x, u) such that

Z[1](L) + D(ξ)L = D(B), (1.77)

where D is the total derivative operator of the form (1.14).

The utility of an available Noether point symmetry generator lies in the following three theorems.

Theorem 1.1.26. If Z is a Noether point symmetry generator corresponding to a lagrangian L(x, u, u′)

of (1.34), then

I = ξL + (η − u′ξ)
∂L

∂u′
−B, (1.78)

is a first integral of (1.34) or a conserved quantity associated with (1.76), with respect to the operator

Z.

Theorem 1.1.27. The first integral I, associated with the Noether point symmetry Z, satisfies

Z[1]I = 0, (1.79)

i.e., Z is a point symmetry generator of the first integral I of the scalar ODE (1.34).

Theorem 1.1.28. If there exists a Noether point symmetry generator for a given Lagrangian

L(x, u, u′) of (1.34) then the scalar ODE has solution in terms of quadrature.

1.1.10 Lie Point Symmetry Group Classification in the Plane

For scalar second order ODEs Lie presented a complete classification. He proved that the number

of symmetries Zϑ for such equations is bounded by 0 ≤ ϑ ≤ 8. Further, he recognized that the

algebra of vector fields acting in the plane associated with these ODEs have dimensions 0, 1, 2, 3 or

8. All the other equations that have an r-dimensional algebras where 4 ≤ r ≤ 7 are transformable

to ODEs with an 8-dimensional algebra. Apart from Lie’s contributions in this classification there

also appeared a few extensions [29,68,78], all these algebra realizations are presented here. All these
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Algebra Realizations in the (x,u) plane

C1 Z1 = ∂x

CI
2;1 Z1 = ∂x, Z2 = ∂u

CII
2;1 Z1 = ∂u, Z2 = x∂u

CI
2;2 Z1 = ∂u, Z2 = x∂x + u∂u

CII
2;2 Z1 = ∂u, Z2 = u∂u

C3;2 Z1 = ∂x, Z2 = ∂u, Z3 = x∂u

CI
3;3 Z1 = ∂x, Z2 = ∂u, Z3 = x∂x + (x + u)∂u

CII
3;3 Z1 = ∂u, Z2 = x∂u, Z3 = ∂x + u∂u

CI
3;4 Z1 = ∂x, Z2 = ∂u, Z3 = x∂x

CII
3;4 Z1 = ∂u, Z2 = x∂u, Z3 = x∂x + u∂u

CI
3;5 Z1 = ∂x, Z2 = ∂u, Z3 = x∂x + u∂u

CII
3;5 Z1 = ∂u, Z2 = x∂u, Z3 = u∂u

CI
3;6 Z1 = ∂x, Z2 = ∂u, Z3 = x∂x + au∂u, a 6= 0, 1

CII
3;6 Z1 = ∂u, Z2 = x∂u, Z3 = (1− a)x∂x + u∂u, a 6= 0, 1

CI
3;7 Z1 = ∂x, Z2 = ∂u, Z3 = (bx + u)∂x + (bu− x)∂u

CII
3;7 Z1 = x∂u, Z2 = ∂u, Z3 = (1 + x2)∂x + (x + b)u∂u

CI
3;8 Z1 = ∂u, Z2 = x∂x + u∂u, Z3 = 2xu∂x + u2∂u

CII
3;8 Z1 = ∂u, Z2 = x∂x + u∂u, Z3 = 2xu∂x + (u2 − x2)∂u

CIII
3;8 Z1 = ∂u, Z2 = x∂x + u∂u, Z3 = 2xu∂x + (u2 + x2)∂u

CIV
3;8 Z1 = ∂u, Z2 = u∂u, Z3 = u2∂u

C3;9 Z1 = (1 + x2)∂x + xu∂u, Z2 = xu∂x + (1 + u2)∂u,

Z3 = u∂x − x∂u

Table 1.2: Realizations of 1-, 2-, and 3-dimensional algebras in the real plane.

algebra realizations do not necessarily yield the corresponding second order ODEs. Indeed, there

exist a few realizations in the Table 1.2 which do not represent a maximal Lie point algebra, in

fact, some of the 3-dimensional algebras lead to those equations which have 8-dimensional algebras.

Therefore, leaving these two cases Table 1.2 can be refined to include only those algebras which yield

the corresponding ODEs and the non-linear ones, given in Table 1.3.

1.2 Lie Symmetry Analysis for Systems of Second Order ODEs

In this section Lie point symmetry conditions for the scalar second order ODEs have been extended

to systems of dimension n, [94]. Two linearizable classes of such systems are also given with the

linearizability criteria developed for both the classes. A complex-linearizable class of two dimensional
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Algebra Realizations Representative equations

1-dimensional Z1 = ∂x u′′ = ω(u, u′)

2-dimensional Z1 = ∂x, Z2 = ∂u u′′ = ω(u′)

2-dimensional Z1 = ∂u

Z2 = x∂x + u∂u xu′′ = ω(u′)

3-dimensional Z1 = ∂x, Z2 = ∂u

Z3 = x∂x + (x + u)∂u u′′ = A exp(−u′)

3-dimensional Z1 = ∂x, Z2 = ∂u

Z3 = x∂x + au∂u u′′ = Au′
a−2
a−1 ,a 6= 0, 1

2 , 2

3-dimensional Z1 = ∂x, Z2 = ∂u

Z3 = (bx + u)∂x + (bu− x)∂u u′′ = A(1 + u′2)
3
2 exp(b arctanu′)

3-dimensional Z1 = ∂u, Z2 = x∂x + u∂u

Z3 = 2xu∂x + u2∂u xu′′ = Au′3 − 1
2u′

3-dimensional Z1 = ∂u, Z2 = x∂x + u∂u

Z3 = 2xu∂x + (u2 − x2)∂u xu′′ = u′ + u′3 + A(1 + u′2)3/2

3-dimensional Z1 = ∂u, Z2 = x∂x + u∂u

Z3 = 2xu∂x + (u2 + x2)∂u xu′′ = u′ − u′3 + A(1− u′2)3/2

3-dimensional Z1 = (1 + x2)∂x + xu∂u,

Z2 = xu∂x + (1 + u2)∂u

Z3 = u∂x − x∂u u′′ = A[1+u′2+(u−xu′)2
1+x2+u2 ]3/2

8-dimensional Z1 = ∂x, Z2 = ∂u, Z3 = x∂x

Z4 = x∂u, Z5 = u∂x, Z6 = u∂u

Z7 = x2∂x + xu∂u, Z8 = xu∂x + u2∂u u′′ = 0

Table 1.3: Lie group classification of the scalar second order ODEs.

CR-structured systems concludes this chapter.

1.2.1 Lie Point Symmetry Conditions for Systems

The derivation of the Lie point symmetry conditions for systems of n second order ODEs takes the

same route (see, e.g., [94]) as has already been illustrated for a scalar second order ODE. Hence,

extending that algorithm to the case of n, dependent variables Sa, where a = 1, 2, . . . , n and one

independent variable t, one arrives at the Lie symmetry conditions for systems. Consider a system

of n second order equations

S̈a = ωa(t, Sj , Ṡj), a, j = 1, . . . , n, (1.80)
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where dot represents differentiation with respect to t. The first integrals of the system (1.80) are

the 2n functionally independent solutions φa = φa(t, Sa, Ṡa), of the PDE

Af = (∂t + Ṡa∂Sa + ωa(t, Sj , Ṡj)∂Ṡa)f = 0, (1.81)

where summation is over repeated index a. The equivalence of (1.80) and (1.81) is proved by following

the same reasoning presented earlier for the scalar second order equations. The only difference is the

number of variables and the structure of A. Every solution Sa = Sa(t, φa) of (1.80) depends on 2n

constants of integration φa. It follows from φa
,t and the equation (1.80) that Aφa = 0. Conversely,

if the solution of (1.81) is available to compute Sa = Sa(t, φa), then

Aφa = (∂t + Ṡa∂Sa + ωa∂Ṡa)φa = 0,

φa
,t = (∂t + Ṡa∂Sa + S̈a∂Ṡa)φa = 0. (1.82)

These equations yield (S̈a−ωa)φa
Ṡa = 0, which is possible for the functionally independent solutions

only if S̈a = ωa. The point transformations in this case are extended to n dependent variables Sa,

and one independent variable t, which yield the following generator of group transformations

X[1] = ξ(t, Sj)∂t + ηa(t, Sj)∂Sa + η̇a(t, Sj , Ṡj)∂Ṡa . (1.83)

It is related with (1.80) if

[X[1],A] = λA. (1.84)

The extensions of the finite group of transformations can easily be read from the components of

(1.84) which exactly are

−Aξ = −dξ

dt
= λ, η̇a =

dηa

dt
− Ṡa dξ

dt
. (1.85)

The symmetry conditions for systems of n ODEs are

Xωa = Aη̇a − ωa dξ

dt
, (1.86)

which are extendable to the following expression

ξωa
,t + ηbωa

,b + (ηb
,t + Ṡcηb

,c − Ṡbξ,t − ṠbṠcξ,c)ωa
,Ṡb

+2ωa(ξ,t + Ṡbξ,b) + ωb(Ṡaξ,b − ηa
,b) + ṠaṠbṠcξ,bc

+2ṠaṠcξ,tc − ṠbṠcηa
,bc + Ṡaξ,tt − 2Ṡbηa

,tb − ηa
,tt = 0. (1.87)

after using the prolongations of the components of the vector field X. For a concrete comparison of

the symmetry conditions for a general two dimensional system of second order ODEs

y
′′

= ω1(x, y, z, y
′
, z
′
),

z
′′

= ω2(x, y, z, y
′
, z
′
), (1.88)
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where prime denotes differentiation with respect to the independent variable x, in the later part of

this work, their derivation is given below. They are also readable from (1.87) when there are two

dependent y, z, and one independent variable x, the symmetry conditions consist of the following

set of equations

ξω1,x + η1ω1,y + η2ω1,z + [η1,x + (η1,y − ξ,x)y
′
+ (η1,z − ξ,zy

′
)z
′ − ξ,yy

′2]ω1,y′

+[η2,x + (η2,z − ξ,x)z
′
+ (η2,y − ξ,yz

′
)y
′ − ξ,zz

′2]ω1,z′ − η1,xx − (2η1,xy − ξ,xx)y
′

−2η1,xzz
′ − (η1,y − 2ξ,x − 3ξ,yy

′ − 2ξ,zz
′
)y
′′ − (η1,z − ξ,zy

′
)z
′′

−(η1,yy − 2ξ,xy − 2ξ,yzz
′
)y
′2 − (η1,zz − ξ,zzy

′
)z
′2 − 2(η1,yz − ξ,xz)y

′
z
′
+ ξ,yyy

′3 = 0,

(1.89)

and

ξω2,x + η1ω2,y + η2ω2,z + [η1,x + (η1,y − ξ,x)y
′
+ (η1,z − ξ,zy

′
)z
′ − ξ,yy

′2]ω2,y
′

+[η2,x + (η2,z − ξ,x)z
′
+ (η2,y − ξ,yz

′
)y
′ − ξ,zz

′2]ω2,z′ − η2,xx − 2η2,xyy
′

−(2η2,xz − ξ,xx)z
′ − (η2,y − ξ,yz

′
)y
′′ − (η2,z − 2ξ,x − 2ξ,yy

′ − 3ξ,zz
′
)z
′′

−(η2,yy − ξ,yyz
′
)y
′2 − (η2,zz − 2ξ,xz − 2ξ,yzy

′
)z
′2 − 2(η2,yz − ξ,xy)y

′
z
′
+ ξ,zzz

′3 = 0.

(1.90)

Alternatively, these can be derived if the system (1.88) admits the following symmetry

X[2] = ξ(x, y, z)∂x + η1(x, y, z)∂y + η2(x, y, z)∂z + η′1(x, y, z, y′, z′)∂y′ + η′2(x, y, z, y′, z′)∂z′

+η′′1(x, y, z, y′, z′, y′′, z′′)∂y′′ + η′′2(x, y, z, y′, z′, y′′, z′′)∂z′′ , (1.91)

then the symmetry conditions are

η′′1 = ξω1,x + η1ω1,y + η2ω1,z + η′1ω1,y′ + η′2ω1,z′ , (1.92)

η′′2 = ξω2,x + η1ω2,y + η2ω2,z + η′1ω2,y′ + η′2ω2,z′ , (1.93)

where

η
′
1 = η1,x + (η1,y − ξ,x)y

′
+ (η1,z − ξ,zy

′
)z
′ − ξ,yy

′2, (1.94)

η
′
2 = η2,x + (η2,z − ξ,x)z

′
+ (η2,y − ξ,yz

′
)y
′ − ξ,zz

′2, (1.95)

and
η
′′
1 = η1,xx + (2η1,xy − ξ,xx)y

′
+ 2η1,xzz

′
+ (η1,y − 2ξ,x − 3ξ,yy

′ − 2ξ,zz
′
)y
′′

+(η1,z − ξ,zy
′
)z
′′

+ (η1,yy − 2ξ,xy − 2ξ,yzz
′
)y
′2 + 2(η1,yz − ξ,xz)y

′
z
′

+(η1,zz − ξ,zzy
′
)z
′2 − ξ,yyy

′3,

(1.96)

η
′′
2 = η2,xx + (2η2,xz − ξ,xx)z

′
+ 2η2,xyy

′
+ (η2,z − 2ξ,x − 2ξ,yy

′ − 3ξ,zz
′
)z
′′

+(η2,y − ξ,yz
′
)y
′′

+ (η2,zz − 2ξ,xz − 2ξ,yzy
′
)z
′2 + 2(η2,yz − ξ,xy)y

′
z
′

+(η2,yy − ξ,yyz
′
)y
′2 − ξ,zzz

′3.

(1.97)



29

1.2.2 Symmetry Structure of Linearizable Two Dimensional Systems of Second
Order ODEs

The general system of n linear homogeneous second order ODEs involve 2n2+n, arbitrary coefficients.

These coefficients make it difficult to address the equivalence problem for such systems. In other

words, one needs to map this general linear form to an appropriate linear form with fewer arbitrary

coefficients. A remarkable reduction in the number of coefficients was presented in [97], which is

stated in the following theorem.

Theorem 1.2.1. Any system of n second order non-homogeneous linear ODEs

ü = Au̇+Bu+ c, (1.98)

can be mapped invertibly to one of the following forms

v̈ = Cv̇, (1.99)

ẅ = Dw, (1.100)

where A, B, C, D are n × n matrix functions, u, v, w, c, are vector functions and dot represents

differentiation relative to the independent variable t.

In particular, for a system of two second order ODEs (n = 2) there are total 10 coefficients

for the system (1.98). It is reducible to the first and second canonical forms, (1.99) and (1.100),

respectively. Thus a system with 4 arbitrary coefficients

ẅ1 = d11(t)w1 + d12(t)w2,

ẅ2 = d21(t)w1 + d22(t)w2, (1.101)

can be obtained by using the equivalence of (1.98) and the counterpart of the Laguerre-Forsyth

second canonical form (1.100) under point transformations. The number of arbitrary coefficients

can be further reduced to three [97] by the change of variables

ỹ = w1/ρ(t), z̃ = w2/ρ(t), x =
∫ t

ρ−2(s)ds, (1.102)

where ρ satisfies

ρ′′ − d11 + d22

2
ρ = 0, (1.103)

to the linear system

ỹ′′ = d̃11(x)ỹ + d̃12(x)z̃,

z̃′′ = d̃21(x)ỹ − d̃11(x)z̃, (1.104)
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with

d̃11 =
ρ3(d11 − d22)

2
, d̃12 = ρ3d12, d̃21 = ρ3d21. (1.105)

This procedure of reduction of arbitrary coefficients for linearizable systems simplifies the classifi-

cation problem enormously. System (1.104) is called the optimal canonical form for linear systems

of two second order ODEs, as it has the fewest arbitrary coefficients, namely three. This optimal

canonical form yields five equivalence classes of linearizable systems of two second order ODEs,

namely with 5, 6, 7, 8 or 15-dimensional Lie point symmetry algebras. The following theorem was

stated for the maximally symmetric two dimensional system of second order ODEs.

Theorem 1.2.2. Any linear or linearizable system is transformable to a two dimensional system of

the free particle equations

y′′ = 0, z′′ = 0, (1.106)

if and only if it has a 15-dimensional algebra of the Lie point symmetries.

Moreover, it is proved that a linear system with a 5 or 6-dimensional algebra is only reducible,

by point transformations to those linear systems which have arbitrary coefficients. Furthermore,

linear systems with constant as well as variable coefficients can have a 7 or 8-dimensional algebras.

1.2.3 Noether Symmetries and First Integrals for Systems

Consider the symmetry generator

X = ξ(x, y, z)∂x + η1(x, y, z)∂y + η2(x, y, z)∂z, (1.107)

which has first extension

X[1] = X+ (
d

dx
η1 − y′

d

dx
ξ)∂y′ + (

d

dx
η2 − z′

d

dx
ξ)∂z′ , (1.108)

where

d

dx
= ∂x + y′∂y + z′∂z, (1.109)

is the total derivative. A system of two second order ODEs of the form (1.88) admits a Lagrangian

L(x, y, z, y′, z′), if the system is equivalent to the Euler-Lagrange equations

d

dx
(
∂L

∂y′
)− ∂L

∂y
= 0,

d

dx
(
∂L

∂z′
)− ∂L

∂z
= 0, (1.110)
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Definition 1.2.3. The vector field X is called a Noether point symmetry generator corresponding

to a Lagrangian L(x, y, z, y′, z′) of the system (1.88) if there exist a gauge function B(x, y, z) such

that

X[1](L) + D(ξ)L = D(B), (1.111)

here D is the total differentiation operator given by (1.109).

Theorem 1.2.4. If X is a Noether point symmetry generator corresponding to a Lagrangian of the

system (1.88), then

I = ξL + (η1 − ξy′)
∂L

∂y′
+ (η2 − ξz′)

∂L

∂z′
−B (1.112)

is a Noether first integral of (1.88) associated with X.

1.3 Geometric Linearization

A connection between a linearizable cubically semi-linear ODE (1.70) and systems of two geodesic

equations has been established [38,83]. This connection extends Lie’s linearization criteria for scalar

ODEs to systems of two quadratically semi-linear ODEs. To understand the correspondence, con-

sider x = x(t), y = y(t) and set y(t) = u(x(t)). If dot denotes differentiation with respect to t

then

ẋ =
dx

dt
, ẏ =

dy

dt
, (1.113)

and prime with respect to x then u′ = du/dx. Applying the chain rule yields

ẏ = u′ẋ, ÿ = u′′ẋ2 + u′ẍ, ẋ3u′′ = ẋÿ − ẏẍ. (1.114)

Using these relations in equation (1.70) leads to

ẋ3(u′′ + F3u
′3 + F2u

′2 + F1u
′ + F0)

= ẋ(ÿ + α1ẏ
2 + α2ẋẏ + F0ẋ

2)− ẏ(ẍ− F3ẏ
2 − α3ẋẏ − α4ẋ

2), (1.115)

where

α1 + α3 = F2, α2 + α4 = F1. (1.116)

In this way equation (1.70) can be projected onto the (x, y) plane to obtain the geodesic equations

S̈i + Γi
jkṠ

jṠk = 0, i, j, k = 1, 2, (1.117)

where S1 = x, S2 = y and Γi
jk are Christoffel symbols, which depend on Si and in terms of the

metric tensor read as

Γi
jk =

1
2
gim(gjm,k + gkm,j − gjk,m). (1.118)
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These are symmetric in the lower pair of indices and have n2(n + 1)/2 components. Comparing

(1.115) and (1.117) these symbols in the present case are

Γ1
11 = −α4, Γ1

12 = Γ1
21 = −1

2
α3, Γ1

22 = −F3,

Γ2
11 = F0, Γ2

12 = Γ2
21 =

1
2
α2, Γ2

22 = α1. (1.119)

A necessary and sufficient condition for the system of two quadratically semi-linear ODEs (1.117)

to be reducible to the fee particle equations is that the Riemann curvature tensor constructed from

(1.119) vanishes, i.e.,

Ri
jkl =

∂Γi
jl

∂xk
− ∂Γi

jk

∂xl
+ Γm

jl Γ
i
mk − Γm

jkΓ
i
ml = 0. (1.120)

Ri
jkl is skew symmetric in the lower last two indices and satisfies

Ri
jkl + Ri

klj + Ri
ljk = 0. (1.121)

Computing the components of Riemann curvature tensor leads to

R1
112 = −1

2
α3,x + α4,y + F0F3 − 1

4
α2α3,

R1
212 =

1
2
α3,y − F3,x − 1

4
α2

3 + α4F3 +
1
2
α2F3 − 1

2
α1α3,

R2
112 =

1
2
α2,x − F0,y +

1
4
α2

2 − α1F0 +
1
2
α2α4 − 1

2
α3F0,

R2
212 = −1

2
α2,y + α1,x − F0F3 +

1
4
α2α3. (1.122)

Thus equations (1.120) provide the above system of four first order PDEs in αj , Fj for j = 1, 2, 3, 4.

There are two conditions (1.116) which relate these quantities, substituting α1 = F2 − α3 and

α4 = F1 − α2 in (1.122) and solving them with respect to the derivatives of α2, α3 leads to (1.71)

when α2 and α3 are denoted by 2z and 2w, respectively.

The re-derivation of the Lie’s compatibility conditions (1.71) for the scalar second order ODEs

by geometric methods lead to linearizability criteria for a system of quadratically semi-linear second

order ODEs [83]. Such systems are assumed to contain only the quadratic (in first derivatives of

the dependent variables) terms, i.e., a system of the form (1.117) for i, j, k = 1, 2, . . . , n. In this

general case there is no need to treat Γi
jk as Christoffel symbols, indeed, these can be thought of

as coefficients of the relevant terms appearing in the concerned system. This consideration helps to

write the Linearization criteria in an explicit form. To this end, a system of three geodesic equations

was considered and again the corresponding space was assumed to be flat which in terms of Riemann

curvature tensor is given by the following set of equations

(Γi
j2)x − (Γi

j1)y + Γi
m1Γ

m
j2 − Γi

m2Γ
m
j1 = 0,

(Γi
j3)x − (Γi

j1)z + Γi
m1Γ

m
j3 − Γi

m3Γ
m
j1 = 0,

(Γi
j3)y − (Γi

j2)z + Γi
m2Γ

m
j3 − Γi

m3Γ
m
j2 = 0. (1.123)
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This set of equations end up with 27 conditions as a whole but not all of them are linearly indepen-

dent, therefore, in this case 9 equations comprising linearization criteria in terms of the coefficients

of the system of three geodesic equations. In general, for a system of n such equations

S̈i + Γi
jkṠ

jṠk = 0, i, j, k = 1, ....., n, (1.124)

there are total n2 independent equations which represent the linearization criteria for an n dimen-

sional system. For a system of the form (1.124) with constant coefficients the linearizability criteria

reduce to

Γi
mkΓ

m
jl = Γi

mlΓ
m
jk, (1.125)

which are trivially satisfied for k = l but are non-trivial otherwise.

Theorem 1.3.1. The necessary and sufficient condition for a system of n second order quadrat-

ically semi-linear ODEs for n dependent variables of the form (1.124) to be linearizable via point

transformations and admit sl(n + 2, IR ) symmetry algebra is that the Riemann tensor vanishes.

After recognizing the correspondence between linearizability criteria for systems of two geodesic

equations and scalar second order ODEs, geometric procedure is then extended to derive lineariz-

ability conditions for a general system of second order cubically semi-linear ODEs [71]. The most

general form of a linearizable system of cubically semi-linear second order ODEs

S
′′
a + AbcS

′
aS

′
bS

′
c + Ba

bcS
′
bS

′
c + Ca

b S
′
b + Da = 0, a = 1, . . . , n− 1, (1.126)

was established by projecting the system (1.124) down [5] by one dimension. This is achieved by

inserting

Ṡa =
dSa

dx1
ẋ1, S̈a =

d2Sa

dx12 +
dxa

dx1
ẍ1, a = 2, . . . , n, (1.127)

into (1.124) and canceling ẋ12 throughout. The coefficients of (1.126) in terms of the Γa
bc’s are

Abc = −Γ1
bc, Ba

bc = Γa
bc − 2δa

(cΓ
1
b)1, Ca

b = 2Γa
1b − δa

b Γ1
11, Da = Γa

11. (1.128)

The simplest non-trivial case of (1.126), namely a system of two second order cubically semi-linear

ODEs

y
′′

+ α1y
′3 + 2α2y

′2z
′
+ α3y

′
z
′2 + β1y

′2 + 2β2y
′
z
′
+ β3z

′2 + γ1y
′
+ γ2z

′
+ δ1 = 0,

z
′′

+ α1y
′2z

′
+ 2α2y

′
z
′2 + α3z

′3 + β4y
′2 + 2β5y

′
z
′
+ β6z

′2 + γ3y
′
+ γ4z

′
+ δ2 = 0, (1.129)

emerges from a system of three ODEs of the form (1.124) by projection. Here the coefficients are in

general functions of x, y, z. Notice that there are fifteen coefficients in the above system while the

base system have eighteen. Therefore, three of the Christoffel symbols are lost, selecting Γ1
12, Γ2

12
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and Γ3
33 as arbitrary, and solving fifteen Γa

bc’s of (1.128) in terms of Abc, B
a
bc, C

a
b and Da as well as

Γ1
12, Γ2

12 and Γ3
33 leads to the required constraint equations. For example, Γa

bc’s in which arbitrary

elements appear can be read from (1.128) as

Γ1
11 = 2Γ2

12 − C2
2 , Γ1

13 =
1
2
(Γ3

33 −B3
33),

Γ2
22 = 2Γ1

12 + B2
22, Γ2

23 =
1
2
(Γ3

33 + 2B2
23 −B3

33),

Γ3
13 = Γ2

12 +
1
2
C3

3 −
1
2
C2

2 , Γ3
23 = Γ1

12 + B3
23, (1.130)

and similarly all the others. There are total 27 conditions which come from the flat space requirement

imposed by equations (1.123), out of these 24 are linearly independent due to (1.121). Further, these

can be reduced to fifteen conditions on the coefficients which represent the linearizability criteria for

the corresponding system. All these observations can be stated in the following theorem.

Theorem 1.3.2. A system of the form (1.129) is linearizable if the coefficients satisfy the following

fifteen conditions

1
2
γ3,x − δ2,y +

1
4
γ4γ3 +

1
4
γ1γ3 − δ1β4 − δ2β5 = 0,

1
2
γ2,x − δ1,z +

1
4
γ2γ4 +

1
4
γ2γ1 − δ1β2 − δ2β3 = 0,

β4,x − 1
2
γ3,y − α1δ2 +

1
2
γ3β1 +

1
2
γ4β4 − 1

2
γ1β4 − 1

2
γ3β5 = 0,

β3,x − 1
2
γ2,z − α3δ1 +

1
2
γ2β6 − 1

2
γ2β2 − 1

2
γ4β3 +

1
2
γ1β3 = 0,

β5,x − 1
3
β1, x +

1
6
γ1,y − 4

3
δ2α2 − 2

3
γ2β4 +

2
3
γ3β2 − 1

2
γ4,y = 0,

−α2,y + α1,z − α1β2 − α2β5 + α2β1 + α3β4 = 0,

−α3,y + α2,z − α1β3 − α2β6 + α2β2 + α3β5 = 0,

−α2,x +
5
6
α2γ1 +

1
3
α3γ3 − 1

3
β5,z + β3β4 +

1
6
α2γ4 − β2β2 − 2

3
β2,y +

1
3
β6 +

2
3
β1,z − 1

3
α1γ2 = 0,

−α2,x +
1
6
α2γ1 +

2
3
β6,y +

5
6
α2γ4 +

1
3
α1γ2 − 2

3
β5,z − 1

3
α3γ3 − 1

3
β2,y +

1
3
β1,z + β3β4 − β2β5 = 0,

−α3,x +
1
2
α3γ1 +

1
2
α3γ4 − β3,y + β2,z − β1β3 + β2β2 − β2β6 + β3β5 = 0,

−α1,x +
1
2
α1γ1 +

1
2
α1γ4 + β5,y − β4,z − β4β6 + β2β4 + β5β5 + β1β5 = 0,

−2
3
β1,x +

1
3
γ1,y − 1

2
β6γ3 + α1δ1 − 2

3
α2δ2 − 1

3
β4γ2 +

5
6
β2γ3 + β5,x − 1

2
γ3,z +

1
2
β5γ4 − 1

2
β5γ1 = 0,

δ1,y + δ1β1 + δ2β2 − δ2β6 +
1
2
γ4,z − 1

2
γ1,x − δ2,z +

1
4
γ4γ4 − 1

4
γ1γ1 − δ1β5 = 0,
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β2,x +
1
2
γ2,y − 2α2δ1 +

1
2
β5γ2 +

1
2
β1γ2 +

1
2
β2γ4 − 1

2
β2γ1 − β3γ3 − γ1,z − α3δ2 = 0,

−β2,x + β6,x + γ2,y − β5γ2 + β1γ2 + β2γ4 − β2γ1 − 1
2
γ4,z − 1

2
γ1,z − 2α3δ2 = 0. (1.131)

The geometric approach of projection gives a linearizable class of systems which can be mapped

only to a system of the free particle equations. Symmetry classification of linearizable two dimen-

sional systems of second order ODEs made it clear that there are five equivalence classes for such

systems. Thus geometric approach covers only one of them.

1.4 Systems Obtainable from Complex ODEs and PDEs

CSA extends Lie’s theory of continuous groups developed for the scalar second order ODEs to

systems of two PDEs and ODEs of the same order [1]. The invariance and algebraic properties of

the base complex equations have been employed to solve the corresponding systems of PDEs and

ODEs. But so far no conclusions have been drawn which can solely determine the relationship

between algebraic symmetry properties of the base equations and emerging systems. In this thesis

these issues are studied to investigate this relationship. To demonstrate the solution procedures

developed earlier with the help of CSA consider a second order ODE in general semi-linear form

u
′′
(z) = ω(z, u, u

′
), (1.132)

where prime denoted differentiation with respect to z. Treating u(z) as a complex dependent function

of a complex independent variable z. With these assumptions equation (1.132) becomes a complex

equation. Just as z splits into real and imaginary parts, i.e., z = x + iy, the real and imaginary

parts of u′′(z) are each real valued functions of z, or equivalently of x and y. A similar argument

can be given for ω on the right side of (1.132), therefore, if f1, f2 and ω1, ω2 denote the real and

imaginary parts of u and ω then (1.132) decomposes to a system of two PDEs

f1,xx − f1,yy + 2f2,xy = 4ω1(x, y, f1, f2, f3, f4),

f2,xx − f2,yy − 2f1,xy = 4ω2(x, y, f1, f2, f3, f4), (1.133)

where

f3 =
1
2
(f1,x + f2,y), f4 =

1
2
(f2,x − f1,y). (1.134)

The existence of complex derivatives is assumed for the equation (1.132) which becomes a PDE

instead of an ODE due to complex function u(z), to extract the system (1.133), hence the functions

f1 and f2 satisfy CR-equations

f1,x = f2,y, f1,y = −f2,x. (1.135)
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Likewise, considering u(x) in the equation (1.34) as a complex function of a real variable x, then it

can be broken into real and imaginary parts

u(x) = f1(x) + if2(x), (1.136)

to obtain a system of two second order ODEs for the two parts

f ′′1 = ω1(x, f1, f2, f
′
1, f

′
2),

f ′′2 = ω2(x, f1, f2, f
′
1, f

′
2), (1.137)

here prime denotes differentiation with respect to x. The semi-linearity of (1.132) leads to a non-

trivial system of elegantly coupled equations (1.137), in particular, when the base equation is in

a linearizable form (1.70). One may also extract a system of two PDEs if the same procedure is

repeated when the departure point is a complex PDE with 1 dependent and m independent variables

H(xm, u, um, unm, . . .) = 0, (1.138)

instead of the base ODE of the form

ω(x, u, u
′
, u

′′
, . . .) = 0, (1.139)

considered earlier. Decomposing PDE (1.138) yields the following system of two PDEs

H1(xm, f1, f2, f1,m, f2,m, f1,nm, f2,nm, . . .) = 0,

H2(xm, f1, f2, f1,m, f2,m, f1,nm, f2,nm, . . .) = 0. (1.140)

Notice that not every system of two PDEs (1.133) and (1.140) or ODEs (1.137) can be obtained from

a scalar ODE or PDE by projecting the dependent variables of these systems to complex functions

of the complex or real (independent) variables. The analyticity of the complex functions of the

complex or real independent variables leads to constraints, i.e., the CR-equations which must be

satisfied by both the equations of systems of PDEs or ODEs to be extractable from a base complex

DE. The characterization for the correspondence is given in the subsequent chapters.

1.5 Complex-Linearization

The linearizing transformations of the base ODEs (1.132) have been employed [2] to map the corre-

sponding systems of PDEs and ODEs to linear forms. Indeed, the most general linearizable forms of

systems (1.133) and (1.137) have been derived. As a linearizable scalar second order ODE is cubi-

cally semi-linear in the first derivative of the dependent variable, therefore, the emerging linearizable

systems are also at most cubic in the first order derivatives of the dependent variables, i.e., systems



37

of the form

f1,xx − f1,yy + 2f2,xy − 4A1f
3
3 + 12A1f3f

2
4 + 12A2f

2
3 f4 − 4A2f

3
4 − 4B1f

2
3

+8B2f3f4 + 4B1f
2
4 − 4C1f3 + 4C2f4 − 4D1 = 0,

f2,xx − f2,yy − 2f1,xy − 12A1f
2
3 f4 + 4A1f

3
4 − 4A2f

3
3 f4 + 12A2f3f

2
4 − 8B1f3f4

−4B2f
2
3 + 4B2f

2
4 − 4C2f3 − 4C1f4 − 4D2 = 0, (1.141)

where f3, f4 are the same as given in (1.134), and

f ′′1 + A1f
′3
1 − 3A2f

′2
1 f ′2 − 3A1f

′
1f
′2
2 + A2f

′3
2 + B1f

′2
1 − 2B2f

′
1f
′
2 −B1f

′2
2 + C1f

′
1 − C2f

′
2 + D1 = 0,

f ′′2 + A2f
′3
1 + 3A1f

′2
1 f ′2 − 3A2f

′
1f
′2
2 −A1f

′3
2 + B2f

′2
1 + 2B1f

′
1f
′
2 −B2f

′2
2 + C2f

′
1 + C1f

′
2 + D2 = 0.

(1.142)

Here the coefficients in (1.141) and (1.142) Aj , Bj , Cj , and Dj are functions of x, y, f1, f2 and x, f1, f2,

respectively. These are the most general forms of systems of two PDEs and ODEs that can be

linearized by complex methods. The next issue is the construction of the invariant linearizability

criteria for these systems emerging from a complex base equation. To this end, obviously the

first choice is to break the complex functions of the complex and real independent variables in the

associated Lie’s linearization conditions (1.72) for the scalars. For a system of ODEs of the form

(1.142) these linearizability conditions (1.72) can be decomposed with the help of (1.136) to the

following set of four equations

12A1,xx + 12C1A1,x − 12C2A2,x − 6D1A1,f1 − 6D1A2,f2 + 6D2A2,f1−
6D2A1,f2 + 12A1C1,x − 12A2C2,x + C1,f1f1 − C1,f2f2 + 2C2,f1f2−

12A1D1,f1 − 12A1D2,f2 + 12A2D2,f1 − 12A2D1,f2 + 2B1C1,f1 + 2B1C2,f2−
2B2C2,f1 + 2B2C1,f2 − 8B1B1,x + 8B2B2,x − 4B1,xf1 − 4B2,xf2 = 0,

12A2,xx + 12C2A1,x + 12C1A2,x − 6D2A1,f1 − 6D2A2,f2 − 6D1A2,f1+

6D1A1,f2 + 12A2C1,x + 12A1C2,x + C2,f1f1 − C2,f2f2 − 2C1,f1f2−
12A2D1,f1 − 12A2D2,f2 − 12A1D2,f1 + 12A1D1,f2 + 2B2C1,f1 + 2B2C2,f2+

2B1C2,f1 − 2B1C1,f2 − 8B2B1,x − 8B1B2,x − 4B2,xf1 + 4B1,xf2 = 0,

24D1A1,x − 24D2A2,x − 6D1B1,f1 − 6D1B2,f2 + 6D2B2,f1 − 6D2B1,f2+

12A1D1,x − 12A2D2,x + 4B1,xx − 4C1,xf1 − 4C2,xf2 − 6B1D1,f1−
6B1D2,f2 + 6B2D2,f2 − 6B2D1,f2 + 3D1,f1f1 − 3D1,f2f2 + 6D2,f1f2 + 4C1C1,f1

+4C1C2,f2 − 4C2C2,f1 + 4C2C1,f2 − 4C1B1,x + 4C2B2,x = 0,
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24D2A1,x + 24D1A2,x − 6D2B1,f1 − 6D2B2,f2 − 6D1B2,f1 + 6D1B1,f2+

12A2D1,x + 12A1D2,x + 4B2,xx − 4C2,xf1 + 4C1,xf2 − 6B2D1,f1−
6B2D2,f2 − 6B1D2,f1 + 6B1D1,f2 + 3D2,f1f1 − 3D2,f2f2 − 6D1,f1f2 + 4C2C1,f1−

4C2C2,f2 + 4C1C2,f1 − 4C1C1,f2 − 4C2B1,x − 4C1B2,x = 0. (1.143)

In the same way, one can obtain similar conditions for systems of PDEs of the form (1.133) by

decomposing u(z) into real and imaginary parts in (1.72). Notice that the decomposed conditions

corresponding to (1.72), both for the systems of PDEs and ODEs do not ensure the linearizability

of the emerging systems. The only claim which came from CSA is solvability of those systems which

emerge from complex equations if their coefficients are compatible with the conditions (1.72). These

systems may not be linearizable even if they are derived from a linearizable base ODE. Therefore,

such systems are said to be complex-linearizable. The following result [4] was stated for such two

dimensional systems (1.141) and (1.142).

Theorem 1.5.1. Systems of two PDEs (1.133) and ODEs (1.137) are complex-linearizable if they

are of the form (1.141) and (1.142), i.e., they are at most cubically semi-linear in the first order

derivatives of the dependent variables and their coefficients (being real and imaginary parts of the

coefficients of (1.70)) satisfy (1.72).



Chapter 2

Inequivalent Geometric and

Complex-Linearizable Two Dimensional

Systems of Second Order ODEs

Equivalence of the scalar as well as of two dimensional systems of second order ODEs under point

transformations is well documented in literature. Here a similar problem has been addressed for the

most general linearizable class (1.129) and the complex-linearizable class (1.142) of two dimensional

systems of second order ODEs. These linearizable forms of systems have been derived by adopting

different methods. The first one appeared by extending the geometric linearization for systems of

2n quadratically semi-linear ODEs to systems of 2n − 1 cubically semi-linear second order ODEs.

Invariant linearizability criteria have been presented explicitly to map such cubic semi-linear systems

of two second order ODEs to the maximally symmetric systems. Therefore, the targeted linear form

can only be a two dimensional system of free particle equations, which reveals the existence of

one equivalence class of these systems (1.129) if they are linearizable. On the other hand, (1.142)

was obtained by extending the Lie’s linearization scheme for scalar second order ODEs to systems.

The symmetry structure of this linearizable class has not been investigated, however, given in the

subsequent chapter. The linearization criteria and the most general linearizable form of the CR-

structured two dimensional systems of second order ODEs have not been derived. However, in the

later part of the thesis both these issues are also addressed.

The system (1.129) has fifteen arbitrary coefficients whereas (1.142) has only eight. The obvious

question would be whether both these classes are distinct or one is transformable into the other

by point transformations. The reason to investigate the equivalence of (1.129) and (1.142) under

point transformations is simply the absence of knowledge about the equivalence classes of the CR-

structured linearizable systems. In case, if there exist invertible point transformations to map

(1.129) and (1.142) into each other then being members of the same equivalence class, i.e., of

39
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maximally symmetric two dimensional systems of second order ODEs, they must have 15-dimensional

symmetry algebras. In the first section this issue is addressed by considering point transformations of

specific form, i.e., linear transformations of the dependent and independent variables with constant

coefficients. It is found that both these classes of linearizable systems are disjoint. In the next two

sections linear point transformations with variable coefficients and arbitrary point transformations

are considered to study the equivalence problem of the classes (1.129) and (1.142). This quest arrived

at the same result, i.e., there do not exist point transformations to put both these classes into one

equivalence class.

2.1 Inequivalence of Two Classes of Linearizable Systems under

Constant Linear Transformations

In the following theorem constant linear point transformations are considered to study the equiva-

lence of the two most general linearizable classes of two dimensional systems of second order ODEs

(1.129) and (1.142).

Theorem 2.1.1. The linearizable and complex-linearizable classes of two dimensional systems of

second order ODEs (1.129) and (1.142) are not related by constant linear transformations of the

form

f1 = a1y + a2z, f2 = a3y + a4z, (2.1)

where aj , j = 1, 2, 3, 4 are constants.

Proof. It is clear that the transformations (2.1) must be invertible and hence a1a4 − a2a3 6= 0.

Inserting these transformations and their derivatives

f ′1 = a1y
′ + a2z

′, f ′2 = a3y
′ + a4z

′, (2.2)

and

f ′′1 = a1y
′′ + a2z

′′, f ′′2 = a3y
′′ + a4z

′′, (2.3)

in the system (1.142) yields a system which involves y, z and x as the dependent and independent

variables, respectively. To compare the resulting system of ODEs with the system (1.129) it can be
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simplified to the following form

y′′ + 1
a1a4−a2a3

[{(A1a4 −A2a2)(a3
1 − 3a1a

2
3) + (A2a4 + A1a2)(a3

3 − 3a2
1a3)}y′3 + 3{(A1a4

−A2a2)(a2
1a2 − a2a

2
3 + 2a1a3a4) + (A2a4 + A1a2)(a2

3a4 − a2
1a4 − 2a1a2a3)}y′2z′ + 3{(A1a4

−A2a2)(a1a
2
2 − a1a

2
4 − 2a2a3a4) + (A2a4 + A1a2)(a3a

2
4 − a2

2a3 − 2a1a2a4)}y′z′2 + {(A1a4

−A2a2)(a3
2 − 3a2a

2
4) + (A2a4 + A1a2)(a3

4 − 3a2
2a4)}z′3 + {(B1a4 −B2a2)(a2

1 − a2
3)− 2(B2a4

+B1a2)a1a3}y′2 + 2{(B1a4 −B2a2)(a1a2 − a3a4)− (B2a4 + B1a2)(a1a4 − a2a3)}y′z′
+{(B1a4 −B2a2)(a2

2 − a2
4)− 2(B2a4 + B1a2)a2a4}z′2 + {(C1a4 − C2a2)a1 − (C2a4

+C1a2)a3}y′ + {(C1a4 − C2a2)a2 − (C2a4 + C1a2)a4}z′ + D1a4 −D2a2] = 0,

z′′ − 1
a1a4−a2a3

[{(A1a3 −A2a1)(a3
1 − 3a1a

2
3) + (A2a3 + A1a1)(a3

3 − 3a2
1a3)}y′3 + 3{(A1a3

−A2a1)(a2
1a2 − a2a

2
3 + 2a1a3a4) + (A2a3 + A1a1)(a2

3a4 − a2
1a4 − 2a1a2a3)}y′2z′ + 3{(A1a3

−A2a1)(a1a
2
2 − a1a

2
4 − 2a2a3a4) + (A2a3 + A1a1)(a3a

2
4 − a2

2a3 − 2a1a2a4)}y′z′2 + {(A1a3

−A2a1)(a3
2 − 3a2a

2
4) + (A2a3 + A1a1)(a3

4 − 3a2
2a4)}z′3 + {(B1a3 −B2a1)(a2

1 − a2
3)− 2(B2a3

+B1a1)a1a3}y′2 + 2{(B1a3 −B2a1)(a1a2 − a3a4)− (B2a3 + B1a1)(a1a4 − a2a3)}y′z′
+{(B1a3 −B2a1)(a2

2 − a2
4)− 2(B2a3 + B1a1)a2a4}z′2 + {(C1a3 − C2a1)a1 − (C2a3

+C1a1)a3}y′ + {(C1a3 − C2a1)a2 − (C2a3 + C1a1)a4}z′ + D1a3 −D2a1] = 0.
(2.4)

Equating coefficients of the cubic (in the first derivative) terms in systems (2.4) and (1.129) leads to

A1(a3
1a4 + a2a

3
3 − 3a1a3(a3a4 + a1a2)) + A2(a3

3a4 − a2a
3
1 − 3a1a3(a1a4 − a2a3)) = δα1,

A1(−6a1a3(a2
2 + a2

4)) + A2(−3a2
1 + 3a2

3)(a
2
2 + a2

4) = 2δα2,

A1(−3a1a4 − 3a2a3)(a2
2 + a2

4) + A1(3a3a4 − 3a1a2)(a2
2 + a2

4) = δα3,

A1(−2a2a4(a2
2 + a2

4)) + A2(a2
4 − a2

2)(a
2
2 + a2

4) = 0,

A1(a4
1 + 6a2

1a
2
3 − a4

3) + A2(a4
1 + 3a3

1a3 − 3a2
1a

2
3 − a1a

3
3) = 0,

A1(−3a3
1a2 + 9a2

1a3a4 + 3a1a2(2a2
3 + a2

4)− 3a3
3a4) + A2(3a3

1a4 + 9a2
1a2a3 − 9a1a

2
3a4 − 3a2a

3
3) = δα1,

A1(3a2
1(a

2
4 − a2

1) + 6a2a3a4(a1 + a2) + 3a2
3(a

2
2 − a2

4)) + 6A2(a2
1a2a4 + a1a3(a2

2 − a2
4)− a2a

2
3a4) = 2δα2,

A1(a1a
3
4 − 3a1a

2
2a4 + a3

2a3 − 3a2a3a
2
4) + A2(−a1a

3
2 + 3a1a2a

2
4 − 3a2

2a3a4 + a3a
3
4) = δα3,

(2.5)

where δ = a1a4− a2a3 6= 0 and A1, A2 are linearly independent coefficients. The solution of the set

of equations (2.5) is a1 = a2 = a3 = a4 = 0, which is clearly incompatible with invertibility condition.

Thus there do not exist constant linear point transformations (2.1) that map the cubically semi-

linear terms of the linearizable system of two ODEs obtained by a scalar second order complex ODE

to cubically semi-linear terms of the system of two ODEs provided by the geometric approach of

projections.
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2.2 Inequivalence of Two Classes of Linearizable Systems under Lin-

ear Point Transformations with Variable Coefficients

Here the previous analysis is generalized to those point transformations which have variable coef-

ficients, i.e., coefficients are functions of the independent variable. The following theorem shows

inequivalence of the two linearizable classes (1.129) and (1.142) under linear point transformations

with variable coefficients.

Theorem 2.2.1. The complex-linearizable and linearizable classes of systems of ODEs provided by

CSA and geometric methods are not transformable to each other by linear point transformations with

variable coefficients

f1 = a1(x)y + a2(x)z, f2 = a3(x)y + a4(x)z. (2.6)

Proof. To establish this result, one needs to proceed on the same lines adopted in Theorem 1,

which at the first step require the following derivatives

f ′1 = a′1y + a′2z + a1y
′ + a2z

′,

f ′2 = a′3y + a′4z + a3y
′ + a4z

′, (2.7)

f ′′1 = a′′1y + a′′2z + 2(a′1y
′ + a′2z

′) + a1y
′′ + a2z

′′,

f ′′2 = a′′3y + a′′4z + 2(a′3y
′ + a′4z

′) + a3y
′′ + a4z

′′, (2.8)

where prime denotes differentiation with respect to x. Notice that the equations (2.7) and (2.8)

contain a few extra terms as compared to (2.2) and (2.3). However, these do not appear with the

cubic (in first derivatives) terms in the resulting system which reads as

y′′ + 1
a1(x)a4(x)−a2(x)a3(x) [{(A1a4(x)−A2a2(x))(a3

1(x)− 3a1(x)a2
3(x)) + (A2a4(x) + A1a2(x))

(a3
3(x)− 3a2

1(x)a3(x))}y′3 + 3{(A1a4(x)−A2a2(x))(a2
1(x)a2(x)− a2(x)a2

3(x) + 2a1(x)a3(x)a4(x))

+(A2a4(x) + A1a2(x))(a2
3(x)a4(x)− a2

1(x)a4(x)− 2a1(x)a2(x)a3(x))}y′2z′ + 3{(A1a4(x)−A2a2(x))

(a1(x)a2
2(x)− a1(x)a2

4(x)− 2a2(x)a3(x)a4(x)) + (A2a4(x) + A1a2(x))(a3(x)a2
4(x)− a2

2(x)a3(x)

−2a1(x)a2(x)a4(x))}y′z′2 + {(A1a4(x)−A2a2(x))(a3
2(x)− 3a2(x)a2

4(x)) + (A2a4(x) + A1a2(x))

(a3
4(x)− 3a2

2(x)a4(x))}z′3] = 0,

z′′ − 1
a1(x)a4(x)−a2(x)a3(x) [{(A1a3(x)−A2a1(x))(a3

1(x)− 3a1(x)a2
3(x)) + (A2a3(x) + A1a1(x))

(a3
3(x)− 3a2

1(x)a3(x))}y′3 + 3{(A1a3(x)−A2a1(x))(a2
1(x)a2(x)− a2(x)a2

3(x) + 2a1(x)a3(x)a4(x))

+(A2a3(x) + A1a1(x))(a2
3(x)a4(x)− a2

1(x)a4(x)− 2a1(x)a2(x)a3(x))}y′2z′ + 3{(A1a3(x)−A2a1(x))

(a1(x)a2
2(x)− a1(x)a2

4(x)− 2a2(x)a3(x)a4(x)) + (A2a3(x) + A1a1(x))(a3(x)a2
4(x)− a2

2(x)a3(x)

−2a1(x)a2(x)a4(x))}y′z′2 + {(A1a3(x)−A2a1(x))(a3
2(x)− 3a2(x)a2

4(x)) + (A2a3(x) + A1a1(x))

(a3
4(x)− 3a2

2(x)a4(x))}z′3] = 0.

(2.9)
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Comparing the coefficients of y′3, y′2z′, y′z′2, z′3 in the above system and (1.129) leads to a system

of equations of the form (2.5). The solution of this system for the present case with variable coeffi-

cients is again aj(x) = 0, j = 1, 2, 3, 4.

Thus, once again, it is proved that the most general forms of the complex-linearizable systems

obtained by CSA and geometric linearizable systems can not be mapped into each other by linear

point transformations with variable coefficients.

2.3 Inequivalence of Two Classes of Linearizable Systems under Ar-

bitrary Point Transformations

For completeness arbitrary point transformations are considered in this section to relate the most

general complex-linearizable and linearizable forms of the two dimensional systems of second order

ODEs. The following theorem establishes the general inequivalence of systems (1.129) and (1.142)

under arbitrary point transformations.

Theorem 2.3.1. The most general complex-linearizable and linearizable forms (1.129) and (1.142)

are not transformable to each other by arbitrary point transformations

f1 = α(x, y, z), f2 = β(x, y, z). (2.10)

Proof. The transformations (2.10) are invertible, therefore, these satisfy the condition

α,yβ,z − α,zβ,y 6= 0. (2.11)

First and second derivatives of these transformations are

f ′1 = α,x + α,yy
′ + α,zz

′,

f ′2 = β,x + β,yy
′ + β,zz

′, (2.12)

and

f ′′1 = α,xx + 2α,xyy
′ + 2α,xzz

′ + α,yyy
′2 + 2α,yzy

′z′ + α,zzz
′2 + α,yy

′′ + α,zz
′′,

f ′′2 = β,xx + 2β,xyy
′ + 2β,xzz

′ + β,yyy
′2 + 2β,yzy

′z′ + β,zzz
′2 + β,yy

′′ + β,zz
′′. (2.13)

Inserting them in system (1.142) and simplifying results in following system

y′′ + 1
α,yβ,z−α,zβ,y

[{(A1β,z −A2α,z)(α3
,y − 3α,yβ

2
,y) + (A2β,z + A1α,z)(β3

,y − 3α2
,yβ,y)}y′3

+3{(A1β,z −A2α,z)(α2
,yα,z − β2

,yα,z − 2α,yβ,yβ,z) + 3(A2β,z + A1α,z)(β2
,yβ,z − α2

,yβ,z

−2α,yα,zβ,y)}y′2z′ + 3{(A1β,z −A2α,z)(α,yα
2
,z − α,yβ

2
,z − 2α,zβ,yβ,z) + 3(A2β,z + A1α,z)

(β,yβ
2
,z − α2

,zβ,y − 2α,yα,zβ,z)}y′z′2 + {(A1β,z −A2α,z)(α3
,z − 3α,zβ

2
,z) + (A2β,z + A1α,z)

(β3
,z − 3α2

,zβ,z)}z′3] = 0,
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z′′ − 1
α,yβ,z−α,zβ,y

[{(A1β,y −A2α,y)(α3
,y − 3α,yβ

2
,y) + (A2β,y + A1α,y)(β3

,y − 3α2
,yβ,y)}y′3

+3{(A1β,y −A2α,y)(α2
,yα,z − β2

,yα,z − 2α,yβ,yβ,z) + 3(A2β,y + A1α,y)(β2
,yβ,z − α2

,yβ,z

−2α,yα,zβ,y)}y′2z′ + 3{(A1β,y −A2α,y)(α,yα
2
,z − α,yβ

2
,z − 2α,zβ,yβ,z) + 3(A2β,y + A1α,y)

(β,yβ
2
,z − α2

,zβ,y − 2α,yα,zβ,z)}y′z′2 + {(A1β,y −A2α,y)(α3
,z − 3α,zβ

2
,z) + (A2β,y + A1α,y)

(β3
,z − 3α2

,zβ,z)}z′3] = 0.

(2.14)

Now comparing the coefficients of like powers of the first order derivatives of the dependent variables

appearing in the above system and (1.129), the following system of PDEs is obtained

(A1β,z −A2α,z)(α3
,y − 3α,yβ

2
,y) + (A2β,z + A1α,z)(β3

,y − 3α2
,yβ,y) + 3(A1β,y −A2α,y)

(α2
,yα,z − β2

,yα,z − 2α,yβ,yβ,z) + 3(A2β,y + A1α,y)(β2
,yβ,z − α2

,yβ,z − 2α,yα,zβ,y) = 0,

(A1β,z −A2α,z)(α2
,yα,z − β2

,yα,z − 2α,yβ,yβ,z) + (A2β,z + A1α,z)(β2
,yβ,z − α2

,yβ,z

−2α,yα,zβ,y) + (A1β,y −A2α,y)(α,yα
2
,z − α,yβ

2
,z − 2α,zβ,yβ,z) + (A2β,y + A1α,y)(β,yβ

2
,z

−α2
,zβ,y − 2α,yα,zβ,z) = 0,

3(A1β,z −A2α,z)(α,yα
2
,z − α,yβ

2
,z − 2α,zβ,yβ,z) + 3(A2β,z + A1α,z)(β,yβ

2
,z − α2

,zβ,y

−2α,yα,zβ,z) + (A1β,y −A2α,y)(α3
,z − 3α,zβ

2
,z) + (A2β,y + A1α,y)(β3

,z − 3α2
,zβ,z) = 0,

(A1β,z −A2α,z)(α3
,z − 3α,zβ

2
,z) + (A2β,z + A1α,z)(β3

,z − 3α2
,zβ,z) = 0,

(A1β,y −A2α,y)(α3
,y − 3α,yβ

2
,y) + (A2β,y + A1α,y)(β3

,y − 3α2
,yβ,y) = 0. (2.15)

This system of PDEs has no solution, i.e., solving the above system of PDEs with the condition

(2.11) and incorporating the CR-structure of the coefficients Aj , j = 1, 2, one arrives at an inconsis-

tency. Thus there exist no point transformations to relate the cubically semi-linear terms of system

(1.129) and (1.142).

The inequivalence results proved in this chapter for the complex-linearizable and linearizable

classes (1.129) and (1.142) imply that both the systems do not form an equivalence class. This fact

indicates that either the linearizable two dimensional CR-structured systems of second order ODEs

may not be reduced to a system of free particle equations or the most general linearizable form of

the complex-linearizable systems is not cubically semi-linear in the first derivatives of the dependent

variables.



Chapter 3

Linearizable Two Dimensional

CR-Structured Systems of ODEs

A scalar second order ODE requires at least an 8-dimensional algebra to be linearizable, thereby

possessing only one equivalence class. Whereas linearizable systems of two second order ODEs have

five equivalence classes [97], i.e., the allowable number of symmetries for such systems is 5, 6, 7, 8

or 15. The procedure of constructing a pair of real functions of two variables from a single complex

function of a complex variable, leading to a system of PDEs, entails the use of the CR-equations

in a transparent way. However, the role of these equations for a system of ODEs is far from clear

as the CR-equations require two independent variables. Here it is shown that the CR-equations

with respect to both the dependent variables comprise the conditions for the correspondence of a

scalar and system of two second order ODEs. Separately, the criteria to identify these CR-structured

systems with a complex linearizable base equation have been shown earlier [1, 4] to solely rest on

the set of equations (1.143) apart from just satisfying CR-equations. Such identification leads to the

complex-linearizable CR-structured systems.

Those systems which correspond to a complex linearizable ODE were shown to be linearizable

earlier [4], where complex invertible point transformations of the base equations were used to extract

the real transformations to linearize emerging systems. However, it was not proved that linearizabil-

ity of the complex scalar second order ODEs is sufficient to linearize such systems of second order

ODEs of dimension two. In this chapter, full symmetry structure of linearizable CR-structured

systems of second order ODEs is presented. For this purpose a reduced optimal canonical form for

the targeted linear CR-structured systems obtainable from a complex linear equation is derived.

Of the five equivalence classes appeared due to real symmetry analysis [97], only three depart as

a result of this analysis. This difference arises due to the fact that in CSA equivalence of scalar

second order ODEs is invoked to obtain the reduced optimal form, while in real symmetry analysis

equivalence of linear systems of two ODEs was used to derive their optimal form. Indeed, former

45
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have fewer arbitrary coefficients than the latter. It is proved that complex-linearizable systems are

transformable to one of the three equivalence classes if a 6, 7 or 15-dimensional algebra is associated

with them. Interesting fact is that only one equivalence class of the linearizable base ODE gives rise

to three classes for the corresponding CR-structured linearizable systems.

3.1 Conditions for the Correspondence of Systems and Base Scalar

ODEs

Following the classical Lie procedure [74], one uses invertible point transformations

X = X(x, y, z), Y = Y (x, y, z), Z = Z(x, y, z), (3.1)

to map the general system of two second order ODEs in semi-linear form to the simplest form

Y ′′ = 0, Z ′′ = 0, (3.2)

where the prime denotes differentiation with respect to X. Under (3.1) the derivatives transform as

Y ′ =
Dx(Y )
Dx(X)

= F1(x, y, z, y
′
, z
′
),

Z ′ =
Dx(Z)
Dx(X)

= F2(x, y, z, y
′
, z
′
), (3.3)

and

Y ′′ =
Dx(F1)
Dx(X)

, Z ′′ =
Dx(F2)
Dx(X)

, (3.4)

where Dx is the total derivative operator. This yields

y
′′

+ α11y
′3 + α12y

′2z
′
+ α13y

′
z
′2 + α14z

′3 + β11y
′2 + β12y

′
z
′
+ β13z

′2

+γ11y
′
+ γ12z

′
+ δ1 = 0,

z
′′

+ α21y
′3 + α22y

′2z
′
+ α23y

′
z
′2 + α24z

′3 + β21y
′2 + β22y

′
z
′
+ β23z

′2

+γ21y
′
+ γ22z

′
+ δ2 = 0,

(3.5)

the coefficients being functions of the dependent and independent variables which are given in the

Appendix A-1. Notice that system (3.5) represents the most general form of a system of two second

order ODEs that can be a candidate for linearization. Because it has 20 arbitrary coefficients while

the linearizable and complex-linearizable forms of systems (1.129) and (1.142) derived earlier have

15 and 8, respectively. The following theorem establishes the correspondence of systems of second

order ODEs and the complex base ODEs, when both are given in a general semi-linear form.
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Theorem 3.1.1. A general two dimensional system of second order ODEs (1.137) corresponds to

a complex equation (1.132) if and only if ω1 and ω2 satisfy the CR-equations, i.e.,

ω1,f1 = ω2,f2 , ω1,f2 = −ω2,f1 ,

ω1,f ′1 = ω2,f ′2 , ω1,f ′2 = −ω2,f ′1 , (3.6)

where ω(x, u, u′) = ω1(x, f1, f2, f
′
1, f

′
2) + iω2(x, f1, f2, f

′
1, f

′
2).

Two dimensional complex-linearizable system (1.142) obtainable from the most general form of

a complex linearizable equation is also cubically semi-linear. Clearly, the coefficients Aj , Bj , Cj

and Dj , for j = 1, 2, satisfy the CR-equations, i.e., A1,f1 = A2,f2 , A1,f2 = −A2,f1 and vice versa.

It is obvious that (1.70) generates a system by decomposing the complex coefficients into real and

imaginary parts as

F3(x, u) = A1(x, f1, f2) + iA2(x, f1, f2), F2(x, u) = B1(x, f1, f2) + iB2(x, f1, f2),

F1(x, u) = C1(x, f1, f2) + iC2(x, f1, f2), F0(x, u) = D1(x, f1, f2) + iD2(x, f1, f2), (3.7)

where all the coefficients are analytic. The system of the form (1.142) is called complex-linearizable

as it comes from a complex linearizable ODE (1.70). In order to establish correspondence between

cubically semi-linear forms (1.142) and (3.5), the following theorem is stated.

Theorem 3.1.2. A system of the form (1.142) corresponds to (3.5) if and only if the coefficients

of both the systems satisfy the following set of equations:

α11 = −1
3α13 = 1

3α22 = −α24 = A1, β11 = 1
2β22 = −β13 = B1,

α14 = −1
3α12 = −1

3α23 = α21 = A2, β21 = −1
2β12 = −β23 = B2,

γ11 = γ22 = C1, γ21 = −γ12 = C2, δ1 = D1, δ2 = D2.

(3.8)

The above theorem identifies those two dimensional systems which can be candidates for complex-

linearization. It may be pointed out that the coefficients of (3.5) also satisfy the CR-equations as a

result of (3.8) to be complex-linearizable.

3.2 Reduced Optimal Canonical Form of Linear CR-Structured Sys-

tems

The simplest forms for linear systems of two second order ODEs corresponding to complex scalar

ODEs can be established by invoking the equivalence of scalar second order linear ODEs under point

transformations. Consider a general linear scalar complex second order ODE

u′′ = ζ1(x)u′ + ζ2(x)u + ζ3(x), (3.9)
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where prime denotes differentiation relative to x and u(x) = f1(x) + if2(x) is a complex function

of the real independent variable x. As all the linear scalar second order ODEs are equivalent under

point transformations, so equation (3.9) is equivalent to the following scalar second order complex

ODEs

u′′ = ζ4(x)u′, (3.10)

u′′ = ζ5(x)u, (3.11)

whereas (3.10) and (3.11) are also transformable to each other. Indeed these three forms are reducible

to the free particle equation. These three complex scalar linear ODEs belong to the same equivalence

class, that is, all have 8-dimensional Lie symmetry algebras. The subsequent sections are devoted to

prove that the systems obtainable by these forms using CSA have more than one equivalence class.

To extract systems of two linear ODEs from (3.10) and (3.11) consider ζ4(x) = α1(x) + iα2(x) and

ζ5(x) = α3(x) + iα4(x) to obtain two linear forms of systems of two linear ODEs

f ′′1 = α1(x)f ′1 − α2(x)f ′2,

f ′′2 = α2(x)f ′1 + α1(x)f ′2, (3.12)

and

f ′′1 = α3(x)f1 − α4(x)f2,

f ′′2 = α4(x)f1 + α3(x)f2. (3.13)

This discussion leads to the following theorem.

Theorem 3.2.1. If a system of two second order ODEs is linearizable via invertible complex point

transformations then it can be mapped to one of the two forms (3.12) or (3.13).

Notice that here only two arbitrary coefficients arise in both the linear forms whereas the mini-

mum number obtained before was three, that is, a system of the form (1.104). Such a reduction in

the number of coefficients is possible only in the case of linear forms of systems that are extractable

by CSA. In fact (3.13) can be reduced further by the change of variables

F1 = f1/ρ(x), F2 = f2/ρ(x), X =
∫ x

ρ−2(s)ds, (3.14)

where ρ satisfies

ρ′′ − α3ρ = 0, (3.15)

to

F ′′
1 = −β(X)F2,

F ′′
2 = β(X)F1, (3.16)

where β = ρ4α4, and prime denotes differentiation with respect to X. This result can be stated in

the form of a theorem.
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Theorem 3.2.2. Any linear system of two second order ODEs of the form (3.13) with two arbitrary

coefficients is transformable to a simplest system of two linear ODEs (3.16) with one arbitrary

coefficient via real point transformations (3.14) where (3.15) holds.

The system (3.16) provides the reduced optimal canonical form associated with linearizable CR-

structured systems that contains a single coefficient β(X), which is an arbitrary function of X. The

equivalence of systems (3.12) and (3.13) can be established via invertible point transformations,

which leads to the following theorem.

Theorem 3.2.3. Two linear forms of the systems of two second order ODEs (3.12) and (3.13) are

equivalent via invertible point transformations

f1 = M1(x)f̃1 −M2(x)f̃2 + f∗1 ,

f2 = M1(x)f̃2 + M2(x)f̃1 + f∗2 , (3.17)

of the dependent variables only, where M1(x), M2(x) are two linearly independent solutions of

α1M1 − α2M2 = 2M ′
1,

α2M1 + α1M2 = 2M ′
2, (3.18)

and f∗1 , f∗2 are the particular solutions of (3.12).

Proof. Differentiating the set of equations (3.17) and inserting the result in the linear form

(3.12), routine calculations show that under the conditions (3.18) system (3.12) can be mapped to

(3.13) where

α3(x) =
1

M2
1 + M2

2

(
M1(α1M

′
1 − α2M

′
2 −M ′′

1 ) + M2(α1M
′
2 + α2M

′
1 −M ′′

2 )
)
,

α4(x) =
1

M2
1 + M2

2

(
M1(α1M

′
2 + α2M

′
1 −M ′′

2 )−M2(α1M
′
1 − α2M

′
2 −M ′′

1 )
)
.

(3.19)

Thus the linear form (3.12) is reducible to (3.16).

Remark 3.2.4. Any non-linear system of two second order ODEs that is linearizable by complex

methods can be mapped invertibly to a system of the form (3.16) with one coefficient which is an

arbitrary function of the independent variable.

3.3 Symmetry Structure of Linearizable Two Dimensional Systems

of Second Order ODEs

In this section the symmetry structure of linearizable CR-structured two dimensional systems asso-

ciated with the complex scalar linearizable second order ODEs is obtained by subjecting the reduced
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optimal canonical form into symmetry conditions. A system of PDEs arises as a result whose solution

provides the symmetry generators for the corresponding linearizable systems of two second order

ODEs. The following theorem states the main result about equivalence classes of CR-structured

systems which can be linearized.

Theorem 3.3.1. Linearizable systems of two second order ODEs reducible to the linear form (3.16)

via invertible complex point transformations, have 6, 7 or 15-dimensional Lie point symmetry alge-

bras.

Proof. The symmetry conditions provide the following set of PDEs for the system (3.16)

ξ,xx = ξ,xf1 = ξ,f1f1 = η1,f2f2 = η2,f1f1 = 0, (3.20)

η1,f1f1 − 2ξ,xf1 = η1,f1f2 − ξ,xf2 = η2,f1f2 − ξ,xf1 = η2,f2f2 − 2ξ,xf2 = 0, (3.21)

ξ,xx − 2η1,xf1 − 3β(x)ξ,f1f2 + β(x)ξ,f2f1 = η1,xf2 + β(x)ξ,f2f2 = 0, (3.22)

ξ,xx − 2η2,xf2 + 3β(x)ξ,f2f1 − β(x)ξ,f1f2 = η2,xf1 − β(x)ξ,f1f1 = 0, (3.23)

η1,xx + β(x)(η1,f2f1 + 2ξ,xf2 − η1,f1f2 + η2) + β′(x)f2ξ = 0, (3.24)

η2,xx + β(x)(η2,f2f1 − 2ξ,xf1 − η2,f1f2 − η1)− β′(x)f1ξ = 0. (3.25)

Equations (3.22)-(3.25) involve an arbitrary function of the independent variable and its first deriva-

tives. Equations (3.20) and (3.21) yield the following solution set

ξ = γ1(x)f1 + γ2(x)f2 + γ3(x),

η1 = γ′1(x)f2
1 + γ′2(x)f1f2 + γ4(x)f1 + γ5(x)f2 + γ6(x),

η2 = γ′1(x)f1f2 + γ′2(x)f2
2 + γ7(x)f1 + γ8(x)f2 + γ9(x).

(3.26)

Equations (3.22) and (3.23), imply

β(x)γ1(x) = 0 = β(x)γ2(x). (3.27)

Now assuming β(x) to be zero, non-zero constant and arbitrary function of x, generates the following

cases.

Case 1.1. β(x) = 0.

The set of determining equations (3.20)-(3.25) will reduce to a trivial system of PDEs

η1,xx = η1,xf2 = η1,f2f2 = 0,

η2,xx = η2,xf1 = η2,f1f1 = 0,

2ξ,xf1 − η1,f1f1 = 2ξ,xf2 − η2,f2f2 = 0,

ξ,xf2 − η1,f1f2 = ξ,xf1 − η2,f1f2 = 0,

ξ,xx − 2η1,xf1 = ξ,xx − 2η2,xf2 = 0,

(3.28)
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which can be extracted classically for the system of free particle equations. Solving it a 15-

dimensional Lie point symmetry algebra is derived.

Case 1.2. β(x) 6= 0.

Then (3.27) implies γ1(x) = γ2(x) = 0 and (3.26) reduces to

ξ = γ3(x),

η1 = (γ′3(x)
2 + c3)f1 + c1f2 + γ6(x),

η2 = c2f1 + (γ′3(x)
2 + c4)f2 + γ9(x).

(3.29)

Here two subcases arise, i.e., either β(x) is a non-zero constant or an arbitrary function of x.

Case 1.2.1. β(x) is a non-zero constant.

As equations (3.24) and (3.25) involve the derivatives of β(x), which will now be zero, equations

(3.22)-(3.25) and (3.29) yield a 7-dimensional Lie algebra. The explicit expressions of the symmetry

generators involve trigonometric functions. For a simple demonstration of the algorithm consider

β(x) = 1, then the solution of the set of the determining equations is

ξ = c1,

and
η1 = c2f1 − [c4e

x/
√

2 + c3e
−x/

√
2] sin(x/

√
2) + c6e

x/
√

2 cos(x/
√

2)

+c5e
−x/

√
2 cos(x/

√
2) + c7f2,

η2 = [−c6e
x/
√

2 + c5e
−x/

√
2] sin(x/

√
2)− c4e

x/
√

2 cos(x/
√

2)− c2f2

+c3e
−x/

√
2 cos(x/

√
2) + c7f1.

(3.30)

This yields a 7-dimensional symmetry algebra.

Case 1.2.2.1. β(x) = x−2, x−4 or (x + 1)−4.

Equations (3.22)-(3.25) and (3.29) yield a 7-dimensional Lie algebra. Thus the 7-dimensional alge-

bras can be related with systems which have variable coefficients in their linear forms, apart from

the linear forms with constant coefficients.

Case 1.2.2.2. β(x) = x−1, x2, x2 ± c0 or ex.

Here equations (3.22)-(3.25) and (3.29), result in a 6-dimensional Lie point symmetry algebra. The

explicit expressions involve special functions, e.g., for β(x) = x−1, x2, x2 ± c0 one extracts Bessel

functions. Likewise, for β(x) = ex there are six symmetries, including the generators f1∂f1−exf2∂f2 ,

f2∂f2 + exf1∂f1 . The remaining four generators come from the solution of an ODE of order four.

Thus there is only a 6, 7 or 15-dimensional algebra for those linearizable systems of two second

order ODEs that are transformable to (3.16) via invertible complex point transformations. There
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is no need to investigate the remaining two linear forms (3.12) and (3.13), because these are trans-

formable to system (3.16), that is, all these forms have the same symmetry structures. The linear

forms providing 6 or 7-dimensional algebras here are obtainable by linear forms extractable from

(1.104), with a 6 or 7-dimensional algebra, respectively. Consider (1.104) with all the coefficients to

be non-zero constants, i.e., d̃11(x) = a0, d̃12(x) = b0 and d̃21(x) = c0, where

a2
0 + b0c0 6= 0. (3.31)

This system provides seven symmetry generators. The linear form (3.16) also provides a 7-dimensional

algebra with constant coefficients satisfying (3.31), while the 8-dimensional symmetry algebra was

extracted [97] by assuming

a2
0 + b0c0 = 0. (3.32)

Such linear forms cannot be obtained from (3.16). These two examples explain why a 7-dimensional

algebra can be obtained from (3.16), but a linear form with an 8-dimensional algebra is not obtain-

able from it.

To prove these observations consider arbitrary point transformations of the form

f̃1 = a(x)f1 + b(x)f2, f̃2 = c(x)f1 + d(x)f2. (3.33)

Case a. If a(x) = a0, b(x) = b0, c(x) = c0 and d(x) = d0 are constants then (3.33) implies

f̃ ′′1 = a0f
′′
1 + b0f

′′
2 ,

f̃ ′′2 = c0f
′′
1 + d0f

′′
2 . (3.34)

Using (1.104) and (3.33) in the above equation gives

(a0d0 − b0c0)f ′′1 = ((a0d0 + b0c0)d̃11(x) + c0d0d̃12(x)− a0b0d̃21(x))f1

+(2b0d0d̃11(x) + d2
0d̃12(x)− b2

0d̃21(x))f2,

(a0d0 − b0c0)f ′′2 = ((a0d0 + b0c0)d̃11(x) + c0d0d̃12(x)− a0b0d̃21(x))f2

+(2a0c0d̃11(x) + c2
0d̃12(x)− a2

0d̃21(x))f1,

(3.35)

where a0d0 − b0c0 6= 0. Using (3.13), (3.35) and the linear independence of the d̃’s, gives

a0b0 = c0d0 = 0,

a2
0 − b2

0 = c2
0 − d2

0 = 0,

a0d0 + b0c0 = a0c0 − b0d0 = 0,

(3.36)

which has a solution a0 = b0 = c0 = d0 = 0, which is inconsistent with the requirement a0d0−b0c0 6=
0.
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Case b. If a(x), b(x), c(x) and d(x) are arbitrary functions of x then

f̃ ′′1 = a(x)f ′′1 + b(x)f ′′2 + a′′(x)f1 + b′′(x)f2 + 2a′(x)f ′1 + 2b′(x)f ′2,

f̃ ′′2 = c(x)f ′′1 + d(x)f ′′2 + c′′(x)f1 + d′′(x)f2 + 2c′(x)f ′1 + 2d′(x)f ′2. (3.37)

Thus it yields

(ad− bc)f ′′1 = [(ad + bc)d̃11 + cdd̃12 − abd̃21 − a′′d + c′′b]f1 + (2bdd̃11

+d2d̃12 − b2d̃21 − b′′d + d′′b)f2 − 2d(a′f ′1 + b′f ′2) + 2b(c′f ′1 + d′f ′2),
(3.38)

(ad− bc)f ′′2 = (2acd̃11 + c2d̃12 − a2d̃21 − a′′c + c′′a)f1 + [(ad + bc)d̃11

+cdd̃12 − abd̃21 − b′′c + d′′a]f2 − 2c(a′f ′1 + b′f ′2) + 2a(c′f ′1 + d′f ′2).
(3.39)

Comparison of the coefficients and use of the linear independence of d̃’s results in

a′(x) = b′(x) = c′(x) = d′(x) = 0, (3.40)

which implies that it reduces to a system of the form (3.35), it leads again to the same result stated

in the following theorem.

Theorem 3.3.2. The linear forms for systems of two second order ODEs obtainable by real sym-

metry analysis with 5 or 8-dimensional algebras are not transformable to (3.13) by invertible point

transformations.

Before presenting some illustrative applications of the theory developed a refinement of Theorem

(3.3.1) due to Theorem (3.3.2) is given in the following remark.

Remark 3.3.3. There are only 6, 7 or 15-dimensional algebras for the CR-structured linearizable

two dimensional systems of second order ODEs, i.e., there are no 5 or 8-dimensional Lie point

symmetry algebras for such systems.

3.4 Applications

Consider a system of non-homogeneous geodesic-type ODEs

f ′′1 + f ′21 − f ′22 = Ω1(x, f1, f2, f
′
1, f

′
2),

f ′′2 + 2f ′1f
′
2 = Ω2(x, f1, f2, f

′
1, f

′
2). (3.41)

where Ω1 and Ω1 are linear functions of the dependent variables and their derivatives. This system

corresponds to a complex scalar equation

u′′ + u′2 = Ω(x, u, u′), (3.42)
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which is either transformable to the free particle equation or one of the linear forms (3.9)-(3.11), by

means of the complex transformations

χ = χ(x), U(χ) = eu. (3.43)

Which are further transformable to the free particle equation by utilizing another set of invertible

complex point transformations. Generally, the system (3.41) is transformable to a system of the free

particle equations or a linear system of the form

F ′′
1 = Ω̃1(χ, F1, F2, F

′
1, F

′
2)− Ω̃2(χ, F1, F2, F

′
1, F

′
2),

F ′′
2 = Ω̃2(χ, F1, F2, F

′
1, F

′
2) + Ω̃1(χ, F1, F2, F

′
1, F

′
2), (3.44)

where Ω̃1 and Ω̃2 can only be linear functions of the dependent variables and their derivatives, via

an invertible change of variables obtainable from (3.43). The linear form (3.44) can be mapped to

a maximally symmetric system if and only if there exist some invertible complex transformations

of the form τ1, otherwise these forms can not be reduced further. This is the reason why only

three equivalence classes namely with 6, 7 and 15-dimensional algebras for systems corresponding

to linearizable complex equations with only one equivalence class, are obtained. An example of a

non-linear system that admits a 15-dimensional algebra which can be mapped to the free particle

system using (3.43) is presented below. Furthermore, four systems of quadratically semi-linear ODEs

transformable to (3.44) via (3.43) that are not further reducible to the free particle system are also

considered.

1. Consider (3.41) with

Ω1 = −2
x

f ′1,

Ω2 = −2
x

f ′2, (3.45)

it admits a 15-dimensional algebra. The real linearizing transformations

χ(x) =
1
x

, F1 = ef1 cos(f2), F2 = ef1 sin(f2), (3.46)

obtainable from the complex transformations (3.43) with U(χ) = F1(χ) + iF2(χ), map the above

non-linear system to F ′′
1 = 0, F ′′

2 = 0. Moreover, the solution of (3.45) corresponds to the solution

of the corresponding complex equation

u′′ + u′2 +
2
x

u′ = 0. (3.47)

2. Now consider Ω1 and Ω2 to be linear functions of the first derivatives f ′1, f ′2, i.e., system (3.41)
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with

Ω1 = c1f
′
1 − c2f

′
2,

Ω2 = c2f
′
1 + c1f

′
2, (3.48)

which admits a 7-dimensional algebra, provided both c1 and c2, are not simultaneously zero. It is

associated with the complex equation

u′′ + u′2 − cu′ = 0. (3.49)

Using the transformations (3.43) to generate the real transformations

χ(x) = x, F1 = ef1 cos(f2), F2 = ef1 sin(f2), (3.50)

which map the non-linear system to a linear system of the form (3.12), i.e.,

F ′′
1 = c1F

′
1 − c2F

′
2,

F ′′
2 = c2F

′
1 + c1F

′
2, (3.51)

which also has a 7-dimensional symmetry algebra and corresponds to

U ′′ − cU ′ = 0. (3.52)

All the linear second order ODEs are transformable to the free particle equation thus the above

equation can be transformed to Ũ ′′ = 0, using

(χ(x), U) → (χ̃ = α + βecχ(x), Ũ = U), (3.53)

where c must be complex in order to yield a linear coupled system (3.51). But these complex trans-

formations can not generate real transformations to reduce the corresponding system (3.51) to a

maximally symmetric system.

3. A system with a 6-dimensional Lie algebra is obtainable from (3.41) by introducing a linear

function of x in the above coefficients, i.e.,

Ω1 = (1 + x)(c1f
′
1 − c2f

′
2),

Ω2 = (1 + x)(c2f
′
1 + c1f

′
2), (3.54)

in (3.41), then the same transformations (3.50) convert the above system into a linear system

F ′′
1 = (1 + χ)

(
c1F

′
1 − c2F

′
2

)
,

F ′′
2 = (1 + χ)

(
c2F

′
1 + c1F

′
2

)
, (3.55)
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where both systems (3.54) and (3.55) are in agreement on the dimensions (i.e., six) of their symmetry

algebras. Again, the above system is a special case of the linear system (3.12).

4. Considering Ω1 = c1, Ω2 = c2, where cj (j = 1, 2) are non-zero constants, then under the

same real transformations (3.50), the non-linear system considered here takes the form

F ′′
1 = c1F1 − c2F2,

F ′′
2 = c2F1 + c1F2. (3.56)

Notice that the transformations used to carry out linearization of systems emerge from the

complex point transformations

τ1 : (x, u(x)) → (χ(x), U(x, u)), (3.57)

where u(x), is an analytic complex function. In fact, these transformations reveal the linearizability

of the complex-linearizable two dimensional CR-structured systems of second order ODEs. As it is

observed that a complex base equation can be linearized by transformations other than the above,

i.e., the transformations of the form

τ2 : (x, u(x)) → (χ(x, u), U(x, u)). (3.58)

These can not be decomposed into real linearizing transformations in order to map the corresponding

systems to linear forms. These observations make it obvious to expect that a complex-linearizable two

dimensional CR-structured system of second order ODEs may not be linearized. The transformations

τj , j = 1, 2, sufficiently characterize the associated CR-structured complex-linearizable systems. For

completeness a class of non-linearizable systems of two second order ODEs has been investigated in

the subsequent chapter which also emerge from the complex scalar linearizable ODEs.



Chapter 4

Symmetry Solutions of Two Dimensional

Systems Not Solvable by Symmetry

Analysis

A scalar second order ODE can be integrated through quadratures if it has a specific (solvable) 2-

dimensional algebra [35], while integration of two dimensional systems of second order ODEs may not

be accomplished with four symmetry generators [94]. This chapter is a continuation of the previous

one as it also deals with those two dimensional non-linearizable CR-structured systems which arise

from a linearizable complex scalar second order ODE. Though the complex transformations of the

form (3.57) and (3.58) may reduce the base complex equation to the free particle equations, the

latter can not be employed to transform the emerging systems to systems of free particle equations.

The reason for this has been discussed in the first section where the association of CR-equations

with complex-linearizable systems is presented. The CR-equations do not only relate systems with

the base equations, indeed, provide an algorithm to solve such CR-structured systems even if they

are not linearizable. The core of this chapter is to solve those CR-structured systems which can not

be solved by linearization as was done in the previous chapter by making use of the transformations

of the form (3.57).

The complex transformations τ2 are different from τ1 because they can not be used to obtain

the real linearizing transformations to map the associated systems to linear forms. The systems

generated by a base linearizable complex ODE where the associated transformations are of type τ2

are proved to be non-linearizable here by showing that such systems have at most four Lie point

symmetries [97]. However, in the case of four symmetry generators the integration of associated

systems is not guaranteed by symmetry methods. Hence for less than four generators they are not

solvable. Nevertheless, they may correspond to a scalar linearizable complex ODE which solves

corresponding systems by employing the CR-equations.

57
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4.1 Classification

A classification of two-dimensional systems of second order ODEs has been presented here which cor-

respond to those base ODEs that are solvable by standard symmetry methods. The CR-structured

systems which emerge from a linearizable or integrable complex second order ODE are called

complex-solvable systems. Let Υ1 be a class of systems that includes both the complex-linearizable

and complex-solvable systems. Further, dividing the complex-linearizable systems into two dis-

joint classes Υ2 and Υ3 with respect to their real symmetry algebras of dimension d(Υ2) > 4 and

d(Υ3) ≤ 4, respectively. Since the dimensions of the algebras associated with the systems in the

classes Υ2 and Υ3 are not the same, therefore there do not exist complex transformations that map

systems in Υ2 to systems in Υ3 and vice versa. These three classes are related by the following

relations

Υ1 ∩Υ2 = Υ2, Υ1 ∩Υ3 = Υ3, Υ2 ∩Υ3 = ∅. (4.1)

Since there exists five linearizable classes of two-dimensional systems with symmetry algebra d ≥ 5,

therefore each candidate of Υ3 is non-linearizable in standard Lie theory. The class Υ3 is the main

subject of discussion in this chapter.

Linearization problem for the class Υ2 is addressed in the previous chapter [87]. In the subsequent

sections an algorithm is constructed to achieve solvability of complex-linearizable two dimensional

systems of second order ODEs belonging to Υ3. Though this algorithm is not based on integration

of such systems, yet efficiently solves them by exploiting complex solutions of the base ODEs.

4.2 Role of the CR-Equations for Systems of Two Second Order

ODEs

An important implication of the CR-equations has been observed to split the systems obtainable

from complex linearizable equations, into two classes namely linearizable and non-linearizable. The

complex transformations τj , j = 1, 2, reduce a non-linear complex equation to the free particle

equation. However, the former reduce systems to a linear form while the latter can not be invoked to

linearize systems. The reason for this is difference in the complex free particle equations one obtains

when transforming a complex ODE by point transformations (3.57) and (3.58). The transformations

τ1, yield a complex free particle equation U ′′ = 0, where prime denotes the differentiation with

respect to the real independent variable. Therefore, it decomposes into a two dimensional system of

the free particle equations. The complex transformations of the independent variable in τ2, involve

two real functions

χ(x, u) = χ1(x, f1, f2) + iχ2(x, f1, f2). (4.2)
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The dependent function U(χ) is also complex which gives two real functions F1 and F2. Both of

them are not only functions of χ1 but also of χ2. The linearized scalar equation U ′′ = 0, fails to

produce the free particle system because the prime denotes differentiation with respect to χ, which

upon using the chain rule yields

∂

∂χ
=

1
2

(
∂

∂χ1

− i
∂

∂χ2

)
. (4.3)

Hence the complex free particle equation provides a system of two PDEs

F1χ1χ1
− F1χ2χ2

+ 2F2χ1χ2
= 0,

F2χ1χ1
− F2χ2χ2

− 2F1χ1χ2
= 0. (4.4)

Now, by definition, a complex Lie point transformation is analytic. Thus τ2 is analytic. Since the

derivative u′ transforms into a complex derivative U ′, which exists if and only if U(χ) is complex

analytic and is preserved under τ2. Therefore

F1χ1
= F2χ2

, F1χ2
= −F2χ1

, (4.5)

which are the CR-equations. It is the solution of system (4.4) subject to condition (4.5), which upon

invoking invertible transformations τ2, provide solutions of the original system. Hence the following

result is stated to encompass these observations.

Theorem 4.2.1. All the complex-linearizable two dimensional systems can be transformed into sys-

tem (4.4), (4.5) under the transformations of the form τ2.

The role of the CR-equations can diagrammatically be explained by employing the original idea

of Riemann that a complex function may be regarded as the dependence of one plane on another

plane unlike the dependence of a real function on a line. It requires the solution of system (4.4) and

(4.5) that is

F1(χ1, χ2) = c1χ1 + c2χ2 + c3,

F2(χ1, χ2) = c1χ2 − c2χ1 + c4, (4.6)

where cj (j = 1, 2, 3, 4) are constants. These are two complex planes determined by χ1 and χ2 with

normals

n1 = [c1, c2],

n2 = [c2,−c1]. (4.7)

Thus they intersect at right angles, i.e.,

n1 · n2 = 0, (4.8)
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giving a straight line in intersection. The linear or liearizable scalar second order ODEs lie on the

straight line, which can be regarded as an intersection of two planes at right angles in the complex-

linearization of two dimensional systems of second order ODEs. The role of χ2 is to slice the three

dimensional space IR 3 = {(x, f1, f2)} into two coordinate planes. The solution f1 and f2 of the

system under consideration can be found by solving (4.6) with the use of F1 and F2 obtainable

from U(χ), which can be determined by τ2. Figure 1 gives the digrammatic explanation of complex-

linearization and the role of the CR-equations for systems of two second order ODEs. It proves the

following result.

Figure 4.1: Diagrammatic explanation of complex-linearization: The straight line embedded in a

three dimensional space IR 3 as the intersection of two mutually perpendicular planes.

Theorem 4.2.2. The necessary and sufficient condition for a two dimensional system (1.142) to be

complex-linearizable is that the two planes determined by (4.6) intersect at right angle resulting in a

straight line which corresponds to scalar linear equations.

The subsequent sections are presented to illustrate the complex-solvability of two dimensional

systems with the aid of examples on Υ1, Υ2 and Υ3. The complex-integrability is demonstrated first

and then the complex-linearizability of systems with algebras of dimensions 4, 3, 2, 1.

4.3 Υ1−class: Complex-Integrable Systems

This class contains both the complex-linearizable and complex-solvable systems. An example of

the latter is given here, i.e., a system with two symmetries which emerges from an integrable base

complex ODE is solved. Consider a non-linear coupled system

f ′′1 =
(f2

1 − f2
2 )f ′1 + 2f1f2f

′
2

(f2
1 + f2

2 )2
,

f ′′2 =
(f2

1 − f2
2 )f ′2 − 2f1f2f

′
1

(f2
1 + f2

2 )2
, (4.9)
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it has a 2-dimensional algebra [X1,X2] = 2X1, where

X1 = ∂x, X2 = 2x∂x + f1∂f1 + f2∂f2 . (4.10)

Using standard Lie analysis it is not straight-forward to carry out integration of this system. The

solution procedure adopted here highlights the crucial steps involved in using the complex transfor-

mations in the form of invariants and differential invariants of symmetries. As both the equations of

the above system of ODEs satisfy CR-equations therefore such a system can be mapped to a scalar

complex ODE

u′′ =
u′

u2
. (4.11)

The symmetry generators X1 = ∂x and X2 = 2x∂x + u∂u comprise a 2-dimensional solvable Lie

algebra G2 admitted by (4.11). Hence, the above equation can be integrated to find a symmetry

solution by using both approaches; canonical coordinates and differential invariants. Since scaling is

inherited under X1 therefore canonical coordinates relative to this symmetry have been employed.

The canonical transformations

χ = u, ψ = x, U(χ) =
dψ

dχ
=

1
u′

, (4.12)

convert (4.11) into a first order equation

U ′ = −U2

χ2
. (4.13)

Integrating above equation leads to the following solution

U(χ) = − χ

1 + cχ
, (4.14)

which upon using invertible complex transformations leads to an implicit solution

cu(x)− ln(1 + cu(x))− c2(b− x) = 0, (4.15)

of the equation (4.11). To workout the solution of the system (4.9) realification of (4.13) is the first

step that provides a system of PDEs

F1,χ1 + F2,χ2 =
−2(χ2

1 − χ2
2)(F

2
1 − F 2

2 )− 8χ1χ2F1F2

(χ2
1 + χ2

2)2
,

F2,χ1 − F1,χ2 = 4
χ1χ2(F 2

1 − F 2
2 )− (χ2

1 − χ2
2)F1F2

(χ2
1 + χ2

2)2
, (4.16)

as χ is a complex independent variable. That is why the system (4.9) is reducible to a pair of first-

order PDEs rather ODEs. This is a similar situation that arises in complex-linearization except the
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difference that here the target equation is a reduced solvable ODE not a linear one. The solution of

the above system of PDEs is

F1 = − χ1 + c1(χ2
1 + χ2

2)
1 + (c2

1 + c2
2)(χ

2
1 + χ2

2) + 2(c1χ1 − c2χ2)
,

F2 = − χ2 − c2(χ2
1 + χ2

2)
1 + (c2

1 + c2
2)(χ

2
1 + χ2

2) + 2(c1χ1 − c2χ2)
, (4.17)

which can easily be read from (4.14) when c = c1 + ic2, hence F1 and F2 satisfy the CR-equations

with respect to χ1 and χ2. The above solution can be inverted by invoking the real transformations

χ1 = f1, χ2 = f2, F1 =
f ′1

f ′21 + f ′22
, F2 =

−f ′2
f ′21 + f ′22

, (4.18)

to obtain solution of system (4.9). Therefore, (4.15) decomposes into a solution of the system (4.9)

due to its correspondence with the complex base ODE (4.11).

4.4 Υ2−class: Linearizable Systems (Revisited)

For completeness a linearizable system with a 7−dimensional Lie algebra from the previous chapter

f ′′1 + f ′21 − f ′22 = c1f
′
1 − c2f

′
2,

f ′′2 + 2f ′1f
′
2 = c2f

′
1 + c1f

′
2, (4.19)

is given here to highlight the use of complex transformations at the two steps involved in the complex-

linearization of the above system of ODEs. It admits a 7-dimensional algebra, provided both c1 and

c2 are not simultaneously zero. Using the transformations

χ(x) = x, F1 = ef1 cos(f2), F2 = ef1 sin(f2), (4.20)

relative to τ1, it can be mapped to a linear system

F ′′
1 = c1F

′
1 − c2F

′
2,

F ′′
2 = c2F

′
1 + c1F

′
2, (4.21)

which also has a 7-dimensional symmetry algebra. Since the number of symmetries are the same for

both systems it ensures that there exist invertible point transformations to map them into each other.

To find them put on complex glasses and observe that the base non-linear equation u′′ + u′2 = cu′,

can be mapped invertibly to U ′′ = cU ′, using transformations

χ(x) = x, U = eu(x). (4.22)

As all the linear scalar equations are equivalent therefore the transformed complex ODE can be

further mapped to a complexified free particle equation Ũ ′′ = 0, via

χ̃ = σ + ςecχ(x), Ũ = U, (4.23)
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where σ and ς are complex constants. It is vital to identify the distinction between the two crucial

steps here. In the first step, the process of realification of (4.22) to find the real transformations that

linearized system (4.19) to (4.21). In the second step, though complex transformations (χ, U) →
(χ̃, Ũ) map the base ODEs to the free particle equation, these can not be employed to transform

system (4.21) to maximally symmetric system. Because, the independent variable χ̃ is complex so

long as c is a complex number, i.e., c = c1 + ic2, it jumps off the real line by adding an extra

dimension superficially and results in a set of linear PDEs. Elegantly, this larger 4−dimensional

space (χ1, χ2, F1(χ1, χ2), F2(χ1, χ2)), where χ2 adds the superficial dimension, is also equipped with

an analytic structure contains the general solution curve of the system (4.21). It is noteworthy an

independent dimension due to complex c, is

ecχ(x) = ec1χ cos(c2χ) + iec1χ sin(c2χ). (4.24)

Hence, χ2(x) = ec1χ sin(c2χ(x)). Thus, the solution of system (4.21) can be found from the complex

solution of the linearized equation by applying the inverse transformations. Clearly, this hidden

connection can only be uncovered by investigating the underlying complex structure.

4.5 Υ3−class: Complex-Linearizable Systems

The non-linearizable class of systems is associated with those complex non-linear equations that

are transformable to the complex free particle equation via complex transformations of the form

(real, complex) → (complex, complex), namely τ2. Both the classes (linearizable/non-linearizable)

of systems associated with complex scalar linearizable equations are disjoint relative to dimensions

of their symmetry algebras. Hence they are inequivalent under invertible point transformations. In

order to demonstrate the solvability of the non-linearizable class of systems consider the following

two dimensional system

f ′′1 − βf ′31 + 3γf ′21 f ′2 + 3βf ′1f
′2
2 − γf ′32 = 0,

f ′′2 − γf ′31 − 3βf ′21 f ′2 + 3γf ′1f
′2
2 + βf ′32 = 0, (4.25)

where β = β(x, f1, f2) and γ = γ(x, f1, f2). It corresponds to a linearizable scalar second order

ODE, i.e., it is complex-linearizable if and only if

βxx = 0, γxx = 0, (4.26)

to satisfy the set of equations (1.143). Note that the system (4.25) is not linearizable as it has fewer

than five symmetry generators but the base complex equation is transformable to the free particle

equation via complex transformations of the form τ2 if

F3(x, u) = α1(x)α2(u), (4.27)
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where α1(x) must be a linear function. In particular, the invertible complex linearizing transforma-

tions in this case are

x = U, u = χ, (4.28)

which reduce the complex non-linear equation u′′(x)− α1(x)α2(u)u′3 = 0, to

U ′′ + α2(χ)(c1U + c2) = 0. (4.29)

The complex solution obtained by complex linearization provides the solution of the associated

system (4.25) on its split into real and imaginary parts. It is due to the elegance of complex variables

that systems which can not be dealt with standard Lie symmetry approach are nevertheless solvable

by the complex symmetry approach!

4.5.1 Solvable Systems with 4-Dimensional Algebra

Considering β(x, f1, f2) = 1 and γ(x, f1, f2) = 0 in (4.25) yields a coupled system

f ′′1 − f ′31 + 3f ′1f
′2
2 = 0,

f ′′2 − 3f ′21 f ′2 + f ′32 = 0, (4.30)

which is complex-linearizable and has only four symmetries

X1 = ∂x, X2 = ∂f1 , X3 = ∂f2 , X4 = 2x∂x + f1∂f1 + f2∂f2 , (4.31)

with Lie algebra

[X1,X2] = 0, [X1,X3] = 0, [X2,X3] = 0,

[X1,X4] = 2X1, [X2,X4] = X2, [X3,X4] = X3. (4.32)

Therefore, it is not one of the linearizable classes of two dimensional systems. Now in order to solve

system (4.30) consider the corresponding complex equation

u′′ − u′3 = 0. (4.33)

which can be linearized as it has an 8-dimensional Lie algebra. This is transformable to the linear

equation

U ′′ + 1 = 0, (4.34)

by inverting the role of the dependent and independent variables χ = u, U = x. It has the solution

2U = −χ2 + aχ + b, where a and b are complex constants. This complex solution decomposes to

provide

f1(x) = ((2x + a1)2 + a2
2)

1/4 cos
1
2

(
arctan

(
a2

2x + a1

))
+ b1,

f2(x) = ((2x + a1)2 + a2
2)

1/4 sin
1
2

(
arctan

(
a2

2x + a1

))
+ b2, (4.35)
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which is a solution of (4.30). Likewise, if the system of PDEs

F1χ1χ1
− F1χ2χ2

+ 2F2χ1χ2
+ 4 = 0,

F2χ1χ1
− F2χ2χ2

− 2F1χ1χ2
= 0, (4.36)

which corresponds to the transformed linear complex ODE (4.34) is solved along with the CR-

equations (4.5), then it leads to the solution of system (4.30). Such a system could be solved by real

symmetry analysis because it has four symmetry generators. However, in the subsequent subsections

those systems are given that are not solvable by real symmetry methods as they have fewer symmetry

generators than required to integrate them.

4.5.2 Solvable Systems with 3-Dimensional Algebra

It is easy to construct a system from (4.25) which has only three symmetries. For example observe

that in (4.25) the functions β and γ can be at most linear functions of independent variable x. Hence

the following complex-linearizable system

f ′′1 − xf ′31 + 3xf ′1f
′2
2 = 0,

f ′′2 − 3xf ′21 f ′2 + xf ′32 = 0, (4.37)

is obtained by involving x linearly in the coefficients to remove the x-translation. It has the following

3-dimensional Abelian Lie algebra

X1 = x∂x, X2 = ∂f1 , X3 = ∂f2 . (4.38)

Following the same procedure as developed in the previous case, i.e., transforming the base complex

non-linear equation

u′′ − xu′3 = 0, (4.39)

to a linear form U ′′ = −U(χ) which has the solution

U(χ) = c1 cos(χ) + c2 sin(χ). (4.40)

Inverting it the solution

u(x) = arctan
(

x√
c− x2

)
+ b, (4.41)

for the non-linear ODE (4.39) arises. The system of PDEs associated with the transformed linear

equation reads as

F1χ1χ1
− F1χ2χ2

+ 2F2χ1χ2
+ 4F1(χ1, χ2) = 0,

F2χ1χ1
− F2χ2χ2

− 2F1χ1χ2
+ 4F2(χ1, χ2) = 0. (4.42)
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Considering the set of equations (4.5) and (4.42) as a system the following solution is obtained

F1 =
1
2
(−χ2

1 + χ2
2) + a1χ1 + a2χ2 + a3,

F2 = −χ1χ2 + a1χ2 − a2χ1 + a4. (4.43)

Inverting this solution by complex linearizing transformations (4.28) yields the solution of system

(4.37) which is not solvable by real symmetry methods but by complex-linearization.

4.5.3 Solvable Systems with 2-Dimensional Algebra

Consider the system

f ′′1 − f1f
′3
1 + 3f2f

′2
1 f ′2 + 3f1f

′
1f
′2
2 − f2f

′3
2 = 0,

f ′′2 − f2f
′3
1 − 3f1f

′2
1 f ′2 + 3f2f

′
1f
′2
2 + f1f

′3
2 = 0, (4.44)

which has only two Lie symmetries

X1 = ∂x, X2 = x∂x +
1
3
f1∂f1 +

1
3
f2∂f2 . (4.45)

The system (4.44) is solvable due to its correspondence with the complex scalar second order ODE

u′′ − uu′3 = 0, (4.46)

which is linearizable, despite having only a 2-dimensional algebra. Implementing the change of

dependent and independent variables (4.28) the above equation leads to a system of PDEs

F1χ1χ1
− F1χ2χ2

+ 2F2χ1χ2
+ 4χ1 = 0,

F2χ1χ1
− F2χ2χ2

− 2F1χ1χ2
+ 4χ2 = 0, (4.47)

which determines the solution of the system (4.44) by inverting the solution

F1 = exp(χ2)[c1 sin(χ1) + c2 cos(χ1)] + exp(−χ2)[c3 sin(χ1) + c4 cos(χ1)],

F2 = exp(χ2)[c1 cos(χ1)− c2 sin(χ1)]− exp(−χ2)[c3 cos(χ1)− c4 sin(χ1)], (4.48)

of the system of PDEs comprised of (4.5) and (4.47).

Notice that even a scalar second order ODE requires at least two symmetries to be solvable,

while here a system of ODEs has been solved. In the following section a system with only one

symmetry generator is solved by CSA, one symmetry generator is insufficient to solve even a scalar

second order ODE by standard Lie approach. Nevertheless, one can go further !
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4.5.4 Solvable Systems with 1-Dimensional Algebra

Consider β(x, f1, f2) = xf1 and γ(x, f1, f2) = xf2, in (4.25) which gives

f ′′1 − xf1f
′3
1 + 3xf2f

′2
1 f ′2 + 3xf1f

′
1f
′2
2 − xf2f

′3
2 = 0,

f ′′2 − xf2f
′3
1 − 3xf1f

′2
1 f ′2 + 3xf2f

′
1f
′2
2 + xf1f

′3
2 = 0. (4.49)

This system is non-linearizable as it has only a scaling symmetry X1 = x∂x. The corresponding

scalar second order complex ODE is

u′′ − xuu′3 = 0, (4.50)

which has an 8-dimensional algebra and linearizes to

U ′′ + χU = 0, (4.51)

which is the Airy equation whose solutions are Airy functions extended to the complex plane. The

solution of the complex linearized equation for U(χ) is given by

U(χ) = c1Ai(−χ) + c2Bi(−χ), (4.52)

where Ai(−χ) and Bi(−χ) are the two Airy functions. Inverting (4.52) yields a solution of the

associated non-linear equation which implicitly provides a solution

Re(c1Ai(−f1 − if2) + c2Bi(−f1 − if2) = x,

im(c1Ai(−f1 − if2) + c2Bi(−f1 − if2) = 0, (4.53)

for the system (4.49). The system of PDEs which establishes the correspondence between the

solutions of the complex base ODE and emerging system in this case is of the form

F1χ1χ1
− F1χ2χ2

+ 2F2χ1χ2
+ 4(χ1F1 − χ2F2) = 0,

F2χ1χ1
− F2χ2χ2

− 2F1χ1χ2
+ 4(χ2F1 + χ1F2) = 0. (4.54)

4.5.5 Coupled-Modified-Emden System (Revisited)

Now consider an example of a physical system studied in [3]

f ′′1 + 3f1f
′
1 − 3f2f

′
2 + f3

1 − 3f1f
2
2 = 0,

f ′′2 + 3f2f
′
1 + 3f1f

′
2 − f3

2 + 3f2
1 f2 = 0. (4.55)

This system has three symmetries X1, X2, X3, where

X1 = ∂x, X2 = x∂x − f1∂f1 − f2∂f2 , X3 = x2∂x − 2xf1∂f1 − 2xf2∂f2 , (4.56)
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with Lie algebra [X1,X2] = X1, [X1,X3] = 2X2 and [X2,X3] = X3. The system (4.55) is solvable

only by complex-linearization. The complex magic is played by the complex transformations

χ = x− 1
u

, U =
x2

2
− x

u
, (4.57)

which map the non-linear complex equation into the complex free particle equation, whose solution

after using the above transformations directly yield the solution of the system (4.55) [3]. In this case

(4.4) and (4.5) yield

F1 = a1χ1 − a2χ2 + b1,

F2 = a2χ1 + a1χ2 + b2, (4.58)

where

χ1 = x− f1

f2
1 + f2

2

, χ2 =
f1

f2
1 + f2

2

, (4.59)

and

F1 =
x2

2
− f1

f2
1 + f2

2

, F2 =
f2

f2
1 + f2

2

. (4.60)

Now by solving (4.58) for f1 and f2, with the invocation of equations (4.59) and (4.60), provides the

same solution

f1(x) =
2x3 − 6x2a1 + 4(a2

2 + a2
1 − b1)x + 4a1b1 + 4a2b2

x4 − 4x3a1 + 4((a2
2 + a2

1 − b1)x2 + 2(a2b2 + a1b1)x + b2
1 + b2

2)
,

f2(x) =
(2x2 + 4b1)a2 + 4b2(x− a1)

x4 − 4x3a1 + 4((a2
2 + a2

1 − b1)x2 + 2(a2b2 + a1b1)x + b2
1 + b2

2)
, (4.61)

of system (4.55), as obtained earlier by CSA [3] up to a redefinition of constants.

Both the previous chapters dealt with the CR-structured complex-linearizable systems of two

second order ODEs in order to characterize them. The symmetry structure of such linearizable

systems had been investigated to provide their equivalence classes. Moreover, a systematic procedure

was demonstrated to solve these systems if they can not be linearized by complex methods. This

characterization of two dimensional CR-structured systems of second order ODEs is incomplete as

the most general linearizable form and invariant linearization criteria have not been provided so far.

However, in the last chapter a few evidence are presented to address these issues in detail, which

may separate the linearizable systems from the complex-linearizable ones.



Chapter 5

Lie-Like Operators and Lie Point

Symmetries for Two Dimensional

Systems

After exploring the invariance and equivalence properties of the DEs their classifications with respect

to the associated symmetry algebras have been stressed in the literature. Lie presented a complete

classification of scalar second order ODEs (see, e.g., [62]), where each such class represents an entirety

of those ODEs that are transformable into one another by point transformations. He considered

all possible continuous groups acting in the plane to present complete complex classification. Lie

proved that for a second order ODE the dimensions of the Lie algebras of vector fields are 0, 1, 2, 3

or 8, whereas a maximal 4, 5, 6 or 7-dimensional algebra cannot be associated with second order

ODEs. Therefore, if an equation admits such an algebra realization then it is always mappable to

the simplest linear one by an invertible change of the variables.

In this chapter, the role of the complex vector fields associated with the CR-structured two

dimensional systems of second order ODEs due to their correspondence with the complex scalar

second order ODEs has been explored. A discussion on obtaining the most general forms of systems

of two ODEs by making use of the admitted complex symmetry algebras of the base equations is also

given. Lie-like conditions have been derived in the first section which relate the real and imaginary

parts of the complex symmetry generators of the base complex equation called Lie-like operators

with the CR-structured systems. The algebra realizations of the complex maximally symmetric

equations are described in terms of the emerging systems. Then those cases are considered where

the base complex equation has non-maximal algebra realizations. For such realizations it is shown

that the Lie algebras admitted by the CR-structured systems are subsets of the sets of the Lie-like

operators. However, for the former cases it may not be true and this chapter mainly addresses this

issue. The complex symmetry generators are earlier found to split into real symmetry generators of

69
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the corresponding systems of ODEs and PDEs [2], in particular, the complex equations that admit

at most 2-dimensional algebras. Here it shown that the situation is not the same for n-dimensional

algebras (for 2 < n < 8) and their representative scalar and systems of ODEs.

In the third section, it is shown that the complex symmetry generators of the scalar base second

order ODEs do not necessarily split into the symmetry generators of the associated systems of ODEs.

These complex generators may yield a few operators other than the symmetry generators, these are

the Lie-like operators which satisfy the Lie-like conditions but they are not compatible with the Lie

symmetry conditions for systems. It is observed that a complex symmetry may either split into two

Lie-like operators which are different from Lie symmetries [66] or provide components of two Lie point

symmetries for the corresponding system. Moreover, decomposition of the components of a complex

symmetry may result into a symmetry generator and a Lie-like operator of the associated system. A

refinement of the Lie-like conditions by using the underlying CR-structure of the components of the

operators is presented here. This refinement show that these conditions contain the Lie symmetry

conditions and a few extra terms which play a decisive role in obtaining Lie symmetries for systems

from the complex ones of the base ODEs. The criteria presented here show the difference between

Lie-like and Lie point symmetry conditions for the CR-structured two dimensional systems of second

order ODEs. Indeed, it show when and how the Lie point symmetries of the CR-structured systems

are extractable from complex symmetry generators of the base complex ODEs.

In the last section a discussion on the Noether-like operators and associated first integrals is given.

The complex-linearizable class of two dimensional non-linearizable systems of second order ODEs

(4.25) is considered to compare the first integrals provided by Noether symmetries and Noether-

like operators associated with this class of systems. As the base complex ODEs are linearizable

so there exist 5-dimensional complex Noether algebras which yield five first integrals in each case.

Decomposing them provide Noether-like operators and associated first integrals. It is shown that

the Noether symmetries and first integrals admitted by this class of systems due to real symmetry

analysis are less than those obtained by CSA. This comparison shows the usefulness of the Lie and

Noether-like operators for systems.

5.1 Lie-Like Conditions for Systems

A Lie point symmetry generator (1.16) when prolonged to include the first and second derivatives, is

admitted by a scalar second order ODE (1.34) if both the generator and ODE satisfy the symmetry

conditions (1.35). In this case the first and second prolongation coefficients are

η′ = η,x + (η,u − ξ,x)u′ − ξ,uu′2, (5.1)

and

η′′ = η,xx + (2η,xu − ξ,xx)u′ + (η,uu − 2ξ,xu)u′2 − ξ,uuu′3 + (η,u − 2ξ,x − 3ξ,uu′)u′′, (5.2)
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respectively. The system (1.137) emerges from a scalar second order equation if the dependent

variable u(x) of the scalar ODE is considered as a complex function of a real independent variable

x, i.e., if u(x) = f1(x) + if2(x). In other words, such systems are obtainable from scalar equations

if both the equations of the system (1.137) satisfy the CR-equations

ω1,f1 = ω2,f2 , ω2,f1 = −ω1,f2 , ω1,f ′1 = ω2,f ′2 , ω2,f ′1 = −ω1,f ′2 . (5.3)

The symmetry generator (1.16) represents a complex vector field due to the presence of the complex

function u(x). Considering ξ = ξ1 + iξ2, η = η1 + iη2, η′ = ζ ′1 + iζ ′2 and η′′ = ζ ′′1 + iζ ′′2 , in (1.16), for

n = 2, yields a pair of operators of the form

X[2]
1 = ξ1∂x +

1
2
(η1∂f1 + η2∂f2 + ζ ′1∂f ′1 + ζ ′2∂f ′2 + ζ ′′1 ∂f ′′1 + ζ ′′2 ∂f ′′2 ), (5.4)

X[2]
2 = ξ2∂x +

1
2
(η2∂f1 − η1∂f2 + ζ ′2∂f ′1 − ζ ′1∂f ′2 + ζ ′′2 ∂f ′′1 − ζ ′′1 ∂f ′′2 ), (5.5)

when decomposed into the real and imaginary parts. The coefficients ζ ′j and ζ ′′j for j = 1, 2, are

obtained from (5.1) and (5.2), therefore, they are different from the set of equations (1.94)-(1.97).

In order to derive the Lie-like conditions consider the action of a complex symmetry on the complex

scalar ODE (1.34)

Z[2]u
′′

= Z[1]ω(x, u, u
′
), (5.6)

which leads to the complex symmetry conditions (1.35). This equation can be decomposed into real

and imaginary parts to give

X[2]
1 f ′′1 −X[2]

2 f ′′2 = X[1]
1 ω1(x, f1, f2, f

′
1, f

′
2)−X[1]

2 ω2(x, f1, f2, f
′
1, f

′
2),

X[2]
2 f ′′1 +X[2]

1 f ′′2 = X[1]
1 ω2(x, f1, f2, f

′
1, f

′
2) +X[1]

2 ω1(x, f1, f2, f
′
1, f

′
2), (5.7)

because Z[2] = X[2]
1 + iX[2]

2 = ξ∂x + η∂u + η′∂u′ + η′′∂u′′ , where all ξ, η, η′ and η′′ are complex due

to presence of the complex function u of real variable x and its derivatives. Inserting the operators

(5.4) and (5.5) in (5.7) one arrives at the following conditions

ζ ′′1 = ξ1ω1,x − ξ2ω2,x + 1
2(η1ω1,f1 + η2ω1,f2 + ζ ′1ω1,f ′1 + ζ ′2ω1,f ′2

−η2ω2,f1 + η1ω2,f2 − ζ ′2ω2,f ′1 + ζ ′1ω2,f ′2),
(5.8)

ζ ′′2 = ξ1ω2,x + ξ2ω1,x + 1
2(η1ω2,f1 + η2ω2,f2 + ζ ′1ω2,f ′1 + ζ ′2ω2,f ′2

+η2ω1,f1 − η1ω1,f2 + ζ ′2ω1,f ′1 − ζ ′1ω1,f ′2).
(5.9)

The first extension coefficients ζ ′j , can be obtained by splitting (1.15) for n = 1, into the real and

imaginary parts which leads to the following equations

ζ ′1 = D1η1 −D2η2 − f ′1(D1ξ1 −D2ξ2) + f ′2(D2ξ1 + D1ξ2),

ζ ′2 = D2η1 + D1η2 − f ′1(D2ξ1 + D1ξ2)− f ′2(D1ξ1 −D2ξ2). (5.10)
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Here the total derivative operator (1.14) appears in two parts

D1 = ∂
∂x + 1

2(f ′1
∂

∂f1
+ f ′2

∂
∂f2

+ f ′′1
∂

∂f ′1
+ f ′′2

∂
∂f ′2

),

D2 = 1
2(f ′2

∂
∂f1

− f ′1
∂

∂f2
+ f ′′2

∂
∂f ′1

− f ′′1
∂

∂f ′2
).

(5.11)

Inserting these Dj ’s in (5.10) yields

ζ ′1 = η1,x + 1
2 [(η1,f1 + η2,f2 − 2ξ1,x)f ′1 − (η2,f1 − η1,f2 − 2ξ2,x)f ′2

−(ξ1,f1 + ξ2,f2)(f
′2
1 − f ′22 ) + 2(ξ2,f1 − ξ1,f2)f

′
1f
′
2],

(5.12)

ζ ′2 = η2,x + 1
2 [(η2,f1 − η1,f2 − 2ξ2,x)f ′1 + (η1,f1 + η2,f2 − 2ξ1,x)f ′2

−2(ξ1,f1 + ξ2,f2)f
′
1f
′
2 − (ξ2,f1 − ξ1,f2)(f

′2
1 − f ′22 )].

(5.13)

Similarly, for the second prolongation (i.e., n = 2) of these Lie-like operators the following relation

ζ ′′1 + iζ ′′2 = (D1 + iD2)(ζ ′1 + iζ ′2)− (f ′′1 + if ′′2 )[(D1 + iD2)(ξ1 + iξ2)], (5.14)

leads to

ζ ′′1 = (ξ1,f2f2 − 2ξ2,f1f2 − ξ1,f1f1)(f
′3
1 − 3f ′1f

′2
2 ) + (ξ2,f1f1 − 2ξ1,f1f2 − ξ2,f2f2)(3f

′2
1 f ′2 − f ′32 )

−(4ξ1,xf1 + 4ξ2,xf2 − η1,f1f1 − 2η2,f1f2 + η1,f2f2)(f
′2
1 − f ′22 ) + (4η1,f1f2 + 2η2,f2f2 − 2η2,f1f1

−8ξ1,xf2 + 8ξ2,xf1)f
′
1f
′
2 + [4(η1,xf1 + η2,xf2 − ξ1,xx)− 6(ξ1,f1 + ξ2,f2)f

′′
1 − 6(ξ1,f2 − ξ2,f1)f

′′
2 ]f ′1

+[4(η1,xf2 − η2,xf1 + ξ2,xx)− 6(ξ1,f2 − ξ2,f1)f
′′
1 + 6(ξ1,f1 + ξ2,f2)f

′′
2 ]f ′2 + 4η1,xx

+(2η1,f1 + 2η2,f2 − 8ξ1,x)f ′′1 + (2η1,f2 − 2η2,f1 + 8ξ2,x)f ′′2 ,

(5.15)

and

ζ ′′2 = (ξ2,f2f2 + 2ξ1,f1f2 − ξ2,f1f1)(f
′3
1 − 3f ′1f

′2
2 ) + (ξ1,f2f2 − 2ξ2,f1f2 − ξ1,f1f1)(3f

′2
1 f ′2 − f ′32 )

+(4ξ1,xf2 − 4ξ2,xf1 + η2,f1f1 − 2η1,f1f2 − η2,f2f2)(f
′2
1 − f ′22 ) + (4η2,f1f2 − 2η1,f2f2 + 2η1,f1f1

−8ξ2,xf2 − 8ξ1,xf1)f
′
1f
′
2 + [4(η2,xf1 − η1,xf2 − ξ2,xx) + 6(ξ1,f2 − ξ2,f1)f

′′
1 − 6(ξ1,f1 + ξ2,f2)f

′′
2 ]f ′1

+[4(η1,xf1 + η2,xf2 − ξ1,xx)− 6(ξ1,f1 + ξ2,f2)f
′′
1 − 6(ξ1,f2 − ξ2,f1)f

′′
2 ]f ′2 + 4η2,xx

+(2η2,f1 − 2η1,f2 − 8ξ2,x)f ′′1 + (2η1,f1 + 2η2,f2 − 8ξ1,x)f ′′2 .

(5.16)

Apparently, the extensions (5.12)-(5.16) are different from those given in (1.92)-(1.97) because differ-

ent procedures have been adopted to derive them. Notice that the Lie-like conditions are associated

with the system (1.137) where (5.3) holds, while the Lie symmetry conditions are derived for general

form of such system, i.e., both the equations of system (1.88) may not satisfy the CR-equations.

In general, the Lie point symmetry operators associated with systems form an algebra while the

Lie-like ones do not [66].

5.2 Most General Forms of Systems that Admit Lie-Like Operators

Consider the 8-dimensional maximal complex Lie algebra

Z1 = ∂x, Z2 = ∂u, Z3 = x∂x, Z4 = u∂u, Z5 = x∂u,

Z6 = u∂x, Z7 = x2∂x + xu∂u, Z8 = xu∂x + u2∂u,
(5.17)
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where the representative equation is the free particle complex equation

u′′ = 0. (5.18)

The complex symmetry generators Z1 − Z8, yield fourteen Lie-like operators

X1 = ∂x, X2 = ∂f1 , X3 = ∂f2 , X4 = x∂x, X5 = x∂f1 , X6 = x∂f2 , X7 = f1∂x, X8 = f2∂x,

X9 = f1∂f1 + f2∂f2 , X10 = f2∂f1 − f1∂f2 , X11 = x2∂x + x
2 (f1∂f1 + f2∂f2),

X12 = x(f2∂f1 − f1∂f2), X13 = xf1∂x + 1
2(f2

1 − f2
2 )∂f1 + f1f2∂f2 ,

X14 = xf2∂x + f1f2∂f1 + 1
2(f2

2 − f2
1 )∂f2 ,

(5.19)

for the associated system of free particle equations

f ′′1 = 0, f ′′2 = 0. (5.20)

The above system is maximally symmetric, therefore, it admits a 15-dimensional Lie point symmetry

algebra

X1 = ∂x, X2 = ∂f1 , X3 = ∂f2 , X4 = x∂x, X5 = x∂f1 , X6 = x∂f2 , X7 = f1∂x, X8 = f2∂x,

X9 = f1∂f1 , X10 = f2∂f2 , X11 = f2∂f1 , X12 = f1∂f2 , X13 = x2∂x + xf1∂f1 + xf2∂f2 ,

X14 = xf1∂x + f2
1 ∂f1 + f1f2∂f2 , X15 = xf2∂x + f1f2∂f1 + f2

2 ∂f2 .

(5.21)

From (5.19) and (5.21) it is clear that all the Lie-like operators are not the Lie point symmetries

but most of the operators yield symmetries for the system.

Now consider another example where a non-linear system of two second order ODEs

f ′′1 −
1

f2
1 + f2

2

(
A1f1 + A2f2 +

f1

2
(f ′21 − f ′22 ) + f2f

′
1f
′
2

)
= 0,

f ′′2 −
1

f2
1 + f2

2

(
A2f1 −A1f2 + f1f

′
1f
′
2 +

f2

2
(f ′22 − f ′21 )

)
= 0, (5.22)

emerge from a scalar base equation

uu′′ − 1
2
u′2 −A = 0. (5.23)

The complex symmetries associated with the above complex equation form a 3-dimensional algebra

Z1 = ∂x, Z2 = x∂x + u∂u, Z3 = x2∂x + 2xu∂u, (5.24)

whereas the system (5.22) have three symmetry generators

X1 = ∂x, X2 = x∂x + f1∂f1 + f2∂f2 , X3 = x2∂x + 2xf1∂f1 + 2xf2∂f2 , (5.25)

and five Lie-like operators

X1 = ∂x, X2 = 2x∂x + f1∂f1 + f2∂f2 , X3 = f2∂f1 − f1∂f2 ,

X4 = x2∂x + xf1∂f1 + xf2∂f2 , X5 = xf2∂f1 − xf1∂f2 .
(5.26)
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Notice that here also all the Lie-like operators are not the Lie point symmetries and when the

commutators of these Lie-like operators are computed it leads to a new operator, i.e.,

X6 = xX5, (5.27)

repeating this procedure by including the new operators one arrives at the following

X7 = xX6 = x2X5,

X8 = xX7 = x2X6 = x3X5,

X9 = · · · = x4X5.
...

... (5.28)

Hence these observations help in stating the following theorem.

Theorem 5.2.1. The Lie-like operators associated with a two dimensional CR-structured system of

second order ODEs do not form an algebra.

The most general forms of systems of two second order ODEs associated with 1, 2 and 3 Lie-like

operators (which are also Lie point symmetries for systems) are given in Table 5.1. In Table 5.2

Complex Equation Lie-like Operators Associated Systems

u′′ = ω(u, u′) X1 = ∂x f ′′1 = ω1(f1, f2, f
′
1, f

′
2)

f ′′2 = ω2(f1, f2, f
′
1, f

′
2)

u′′ = ω(x, u′) X1 = ∂f1 , X2 = ∂f2 f ′′1 = ω1(x, f ′1, f
′
2)

f ′′2 = ω2(x, f ′1, f
′
2)

u′′ = ω(u′) X1 = ∂x, X2 = ∂f1 f ′′1 = ω1(f ′1, f
′
2)

X3 = ∂f2 f ′′2 = ω2(f ′1, f
′
2)

Table 5.1: All the Lie-like operators are the Lie point symmetries for the associated systems.

those systems are presented which are spanned by 4, 5 and 6 Lie-like operators out of which a few

are the Lie point symmetries.

5.3 Comparison of the Lie-Like Operators and Lie Point Symme-

tries for Systems

This section is devoted to the comparison of the criteria to obtain Lie-like operators with the Lie

point symmetry conditions. The allowable number of the Lie point symmetry generators associated

with the scalar complex and CR-structured systems of ODEs is Zϑ and Xκ, where ϑ = 0− 3 or 8,
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Complex Equation Lie-like Operators Associated Systems

uu′′ = ω(u′) X1 = ∂x f ′′1 = (f2
1 + f2

2 )−1(f1ω1 + f2ω2)

X2 = 2x∂x + f1∂f1 + f2∂f2 f ′′2 = (f2
1 + f2

2 )−1(f1ω2 − f2ω1)

X3 = f2∂f1 − f1∂f2 where ωi = ωi(f ′1, f
′
2)

xu′′ = ω(u′) X1 = ∂f1 ,X2 = ∂f2 xf ′′1 = ω1(f ′1, f
′
2)

X3 = 2x∂x + f1∂f1 + f2∂f2 xf ′′2 = ω2(f ′1, f
′
2)

X4 = f2∂f1 − f1∂f2

u′′ = A(u′)
a−2
a−1 X1 = ∂x, X2 = ∂f1 , X3 = ∂f2 f ′′1 = f ′41 + f ′42 − 6f ′21 f ′22

a 6= 0, 1
2 , 2 X4 = 2x∂x + f1∂f1 + f2∂f2 f ′′2 = 4f ′1f

′
2(f

′2
1 − f ′22 )

X5 = f2∂f1 − f1∂f2

u′′ = Ae−u′ X1 = ∂x, X2 = ∂f1 , X3 = ∂f2 f ′′1 = Ae−f ′1 cos(f ′2)

X4 = 2x∂x + (x + f1)∂f1 + f2∂f2 f ′′2 = −Ae−f ′1 sin(f ′2)

X5 = f2∂f1 − f1∂f2

xu′′ = Au′3 − 1
2u′ X1 = ∂f1 , X2 = ∂f2 xf ′′1 = Af ′31 − 3Af ′1f

′2
2 − 1

2f ′1
X3 = 2x∂x + f1∂f1 + f2∂f2 xf ′′2 = 3Af ′21 f ′2 −Af ′32 − 1

2f ′2
X4 = f2∂f1 − f1∂f2

X5 = 4xf1∂x + (f2
1 − f2

2 )∂f1 + 2f1f2∂f2

X6 = 4xf2∂x + 2f1f2∂f1 − (f2
1 − f2

2 )∂f2

Table 5.2: Systems for which all the associated Lie-like operators are not the Lie point symmetries.

and κ = 0− 8 or 15. Theorem 1 shows that the number of symmetries and associated operators is

not the same. As for the simplest maximally symmetric system that arises due to a complex free

particle equation with ϑ = 8, there exist fourteen Lie-like operators which clearly is not in the limit

set above for κ. Furthermore, this investigation leads us to establish a criterion which replaces the

Lie point symmetry conditions for two dimensional CR-structured systems of second order ODEs.

For comparison the dependent variables f1 and f2 which appeared in the CR-structured systems in

the previous discussion are replaced by y and z in the subsequent sections of this chapter.

Theorem 5.3.1. The real and imaginary parts of the components (ξ(x, u), η(x, u)) of the complex

symmetry generator (1.16), for n = 2, arise in the following combinations

X1 = ξ1∂x + η1∂y + η2∂z, (5.29)

and

X2 = ξ2∂x + η2∂y − η1∂z, (5.30)
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to give the symmetry generators of the emerging CR-structured systems subject to constraints

2ξ1,xzy
′z′ − 2ξ1,xyz

′2 + 2ξ1,zzy
′z′2 + ξ1,yzy

′2z′ − ξ1,yzz
′3 + ξ1,zz

′y′′ + (2ξ1,zy
′ − 3ξ1,yz

′ − 2ξ2,x)z′′

−ξ2,xxz′ + (ξ1,yz
′2 − ξ1,zy

′z′ + ξ2,xz′)w1,y′ + (ξ1,zy
′2 − ξ1,yy

′z′ − ξ2,xy′)w1,z′ − ξ2ω2,x = 0,
(5.31)

2ξ1,xyy
′z′ − 2ξ1,xzy

′2 + 2ξ1,yyy
′2z′ + ξ1,yzy

′z′2 − ξ1,yzy
′3 + ξ1,yy

′z′′ + (2ξ1,yz
′ − 3ξ1,zy

′ + 2ξ2,x)y′′

+ξ2,xxy′ + (ξ1,yz
′2 − ξ1,zy

′z′ + ξ2,xz′)w2,y′ + (ξ1,zy
′2 − ξ1,yy

′z′ − ξ2,xy′)w2,z′ + ξ2ω1,x = 0,
(5.32)

and

ξ1ω1,x − ξ2ω2,x − ξ2ω1,x − (ξ2,xx − ξ1,xx)y′ − ξ2,xxz′ − [2(ξ2,x − ξ1,x) + 3(ξ2,y − ξ1,y)y′ + (2ξ2,z

−3ξ1,z)z′]y′′ − [2ξ2,x + (ξ2,z − 3ξ1,z)y′ + 3ξ1,yz
′]z′′ − [2(ξ2,xy − ξ1,xy) + (2ξ2,yz − 3ξ1,yz)z′]y′2

−2(ξ2,xz − ξ1,xz)y′z′ − [2ξ1,xy + (ξ2,zz − 3ξ1,zz)y′]z′2 − (ξ2,yy − ξ1,yy)y′3 − ξ1,yzz
′3 + [(ξ2,x

−ξ1,x)y′ + ξ2,xz′ + (ξ2,y − ξ1,y)y′2 + (ξ2,z − 2ξ1,z)y′z′ + ξ1,yz
′2]ω1,y′ + [−ξ2,xy′ + (ξ2,x − ξ1,x)z′

+ξ1,zy
′2 + (ξ2,y − 2ξ1,y)y′z′ + (ξ2,z − ξ1,z)z′2]ω1,z′ = 0,

(5.33)
ξ1ω2,x + ξ2ω1,x − ξ2ω2,x − (ξ2,xx − ξ1,xx)z′ + ξ2,xxy′ − [2(ξ2,x − ξ1,x) + (2ξ2,y − 3ξ1,y)y′ + 3(ξ2,z

−ξ1,z)z′]z′′ − [−2ξ2,x + (ξ2,y − 3ξ1,y)z′ + 3ξ1,zy
′]y′′ − [2(ξ2,xz − ξ1,xz) + (2ξ2,yz − 3ξ1,yz)y′]z′2

−2(ξ2,xy − ξ1,xy)y′z′ − [2ξ1,xz + (ξ2,yy − 3ξ1,yy)z′]y′2 − (ξ2,zz − ξ1,zz)z′3 − ξ1,yzy
′3 + [(ξ2,x

−ξ1,x)y′ + ξ2,xz′ + (ξ2,y − ξ1,y)y′2 + (ξ2,z − 2ξ1,z)y′z′ + ξ1,yz
′2]ω2,y′ + [−ξ2,xy′ + (ξ2,x − ξ1,x)z′

+ξ1,zy
′2 + (ξ2,y − 2ξ1,y)y′z′ + (ξ2,z − ξ1,z)z′2]ω2,z′ = 0,

(5.34)

respectively.

Proof. The derivation of the Lie point symmetry conditions (1.92)-(1.97) involves a single

symmetry generator of the form (1.91) whereas Lie-like conditions involve a pair of operators (5.4)

and (5.5). To reduce the former set of equations to compare them with the latter the CR-equations

which both the equations ωj of the associated system satisfy, are used. Indeed, the real and imaginary

parts of the components ξ(x, u) and η(x, u) of the complex vector fields also satisfy the CR-equations

ξ1,y = ξ2,z, ξ1,z = −ξ2,y, η1,y = η2,z, η1,z = −η2,y. (5.35)

Moreover, utilizing the CR-equations for ηj it is found that ζ ′j , satisfy the CR-equations with respect

to both the dependent variables as well as their first derivatives. These results help in reducing the

Lie-like conditions and corresponding extensions given in (5.8)-(5.16) to the following equations

ζ ′′1 = ξ1ω1,x − ξ2ω2,x + η1ω1,y + η2ω1,z + ζ ′1ω1,y′ + ζ ′2ω1,z′ , (5.36)

ζ ′′2 = ξ1ω2,x + ξ2ω1,x + η1ω2,y + η2ω2,z + ζ ′1ω2,y′ + ζ ′2ω2,z′ , (5.37)

ζ ′1 = η1,x + (η1,y − ξ1,x)y′ + (η1,z + ξ2,x)z′ − ξ1,y(y′2 − z′2)− 2ξ1,zy
′z′, (5.38)

ζ ′2 = η2,x + (η2,y − ξ2,x)y′ + (η2,z − ξ1,x)z′ + ξ1,z(y′2 − z′2)− 2ξ1,yy
′z′, (5.39)
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and

ζ ′′1 = η1,xx + (2η1,xy − ξ1,xx)y′ + (2η1,xz + ξ2,xx)z′ + (η1,yy − 2ξ1,xy)y′2 + 2(η1,yz − 2ξ1,xz)y′z′

+(η1,zz + 2ξ1,xy)z′2 − ξ1,yyy
′3 − 3ξ1,yzy

′2z′ − 3ξ1,zzy
′z′2 + ξ1,yzz

′3 + (η1,y − 2ξ1,x − 3ξ1,yy
′

−3ξ1,zz
′)y′′ + (η1,z + 2ξ2,x − 3ξ1,zy

′ + 3ξ1,yz
′)z′′,

(5.40)
ζ ′′2 = η2,xx + (2η2,xy − ξ2,xx)y′ + (2η2,xz − ξ1,xx)z′ + (η2,yy + 2ξ1,xz)y′2 + 2(η2,yz − 2ξ1,xy)y′z′

+(η2,zz − 2ξ1,xz)z′2 + ξ1,yzy
′3 − 3ξ1,yyy

′2z′ − 3ξ1,yzy
′z′2 − ξ1,zzz

′3 + (η2,y − 2ξ2,x + 3ξ1,zy
′

−3ξ1,yz
′)y′′ + (η2,z − 2ξ1,x − 3ξ1,yy

′ − 3ξ1,zz
′)z′′,

(5.41)

respectively. Now comparing the Lie-like conditions and the Lie symmetry conditions, i.e., consid-

ering firstly the equations (1.94), (1.95), (5.38) and (5.39) imply

ζ ′1 = η′1 − ξ1,zy
′z′ + ξ1,yz

′2 + ξ2,xz′,

ζ ′2 = η′2 − ξ1,yy
′z′ + ξ1,zy

′2 − ξ2,xy′. (5.42)

Likewise, equations (1.96), (1.97), (5.40) and (5.41) lead to the following set of equations

ζ ′′1 = η′′1 − 2ξ1,xzy
′z′ + 2ξ1,xyz

′2 − 2ξ1,zzy
′z′2 − ξ1,yzy

′2z′ + ξ1,yzz
′3 − ξ1,zz

′y′′

−(2ξ1,zy
′ − 3ξ1,yz

′ − 2ξ2,x)z′′ + ξ2,xxz′,

ζ ′′2 = η′′2 − 2ξ1,xyy
′z′ + 2ξ1,xzy

′2 − ξ1,yzy
′z′2 − 2ξ1,yyy

′2z′ + ξ1,yzy
′3 − ξ1,yy

′z′′

−(2ξ1,yz
′ − 3ξ1,zy

′ + 2ξ2,x)y′′ − ξ2,xxy′.

(5.43)

Inserting these ζ ′j and ζ ′′j in equations (5.8) and (5.9) one arrives at the reduced Lie-like conditions

η′′1 − ξ1ω1,x − η1ω1,y − η2ω1,z − η′1ω1,y′ − η′2ω1,z′ = 2ξ1,xzy
′z′ − 2ξ1,xyz

′2 + 2ξ1,zzy
′z′2 + ξ1,yzy

′2z′

−ξ1,yzz
′3 + ξ1,zz

′y′′ + (2ξ1,zy
′ − 3ξ1,yz

′ − 2ξ2,x)z′′ − ξ2,xxz′ + (ξ1,yz
′2 − ξ1,zy

′z′ + ξ2,xz′)ω1,y′

+(ξ1,zy
′2 − ξ1,yy

′z′ − ξ2,xy′)ω1,z′ − ξ2ω2,x,

(5.44)
η′′2 − ξ1ω2,x − η1ω2,y − η2ω2,z − η′1ω2,y′ − η′2ω2,z′ = 2ξ1,xyy

′z′ − 2ξ1,xzy
′2 + 2ξ1,yyy

′2z′ + ξ1,yzy
′z′2

−ξ1,yzy
′3 + ξ1,yy

′z′′ + (2ξ1,yz
′ − 3ξ1,zy

′ + 2ξ2,x)y′′ + ξ2,xxy′ + (ξ1,yz
′2 − ξ1,zy

′z′ + ξ2,xz′)ω2,y′

+(ξ1,zy
′2 − ξ1,yy

′z′ − ξ2,xy′)ω2,z′ + ξ2ω1,x.

(5.45)

Notice that these equations include the Lie symmetry conditions. Therefore, it is clear from (5.44)

and (5.45) that the components ξ1, η1 and η2 of the operator (5.4) constitute a real symmetry

generator of the form ξ1∂x+η1∂y+η2∂z for the corresponding system if ξ1 and ξ2 are compatible with

(5.31) and (5.32). Although, this set of equations plays a decisive role in obtaining Lie symmetries

from the associated operators but only for an operator of the form (5.4), a similar effort is needed

to establish the criteria for the second operator (5.5) to be a Lie symmetry generator, with the

components ξ2, η2 and −η1 ,i.e., a lie symmetry of the form ξ2∂x + η2∂y − η1∂z. Merely replacing

ξ1 by ξ2 in the reduced conditions will not serve the purpose as Lie point symmetry conditions
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involve derivatives of ξ with respect to x. Though the terms which contain the derivatives of ξj ’s

with respect to y, z can be replaced using the CR-equations, those with only x derivatives do not

allow the replacements. Therefore, it is needed to get rid of such derivative terms involving ξ1 in

the symmetry conditions by adding similar terms with ξ2. As a result another set of the reduced

Lie-like conditions relative to ξ2 is obtained

η′′1 − ξ2ω1,x − η1ω1,y − η2ω1,z − η′1ω1,y′ − η′2ω1,z′ = ξ1ω1,x − ξ2ω2,x − ξ2ω1,x − (ξ2,xx − ξ1,xx)y′

−ξ2,xxz′ − [2(ξ2,x − ξ1,x) + 3(ξ2,y − ξ1,y)y′ + (2ξ2,z − 3ξ1,z)z′]y′′ − [2ξ2,x + (ξ2,z − 3ξ1,z)y′

+3ξ1,yz
′]z′′ − [2(ξ2,xy − ξ1,xy) + (2ξ2,yz − 3ξ1,yz)z′]y′2 − 2(ξ2,xz − ξ1,xz)y′z′ − [2ξ1,xy + (ξ2,zz

−3ξ1,zz)y′]z′2 − (ξ2,yy − ξ1,yy)y′3 − ξ1,yzz
′3 + [(ξ2,x − ξ1,x)y′ + ξ2,xz′ + (ξ2,y − ξ1,y)y′2 + (ξ2,z

−2ξ1,z)y′z′ + ξ1,yz
′2]ω1,y′ + [−ξ2,xy′ + (ξ2,x − ξ1,x)z′ + ξ1,zy

′2 + (ξ2,y − 2ξ1,y)y′z′ + (ξ2,z

−ξ1,z)z′2]ω1,z′ ,
(5.46)

and

η′′2 − ξ2ω2,x − η1ω2,y − η2ω2,z − η′1ω2,y′ − η′2ω2,z′ = ξ1ω2,x + ξ2ω1,x − ξ2ω2,x − (ξ2,xx − ξ1,xx)z′

+ξ2,xxy′ − [2(ξ2,x − ξ1,x) + (2ξ2,y − 3ξ1,y)y′ + 3(ξ2,z − ξ1,z)z′]z′′ − [−2ξ2,x + (ξ2,y − 3ξ1,y)z′

+3ξ1,zy
′]y′′ − [2(ξ2,xz − ξ1,xz) + (2ξ2,yz − 3ξ1,yz)y′]z′2 − 2(ξ2,xy − ξ1,xy)y′z′ − [2ξ1,xz + (ξ2,yy

−3ξ1,yy)z′]y′2 − (ξ2,zz − ξ1,zz)z′3 − ξ1,yzy
′3 + [(ξ2,x − ξ1,x)y′ + ξ2,xz′ + (ξ2,y − ξ1,y)y′2 + (ξ2,z

−2ξ1,z)y′z′ + ξ1,yz
′2]ω2,y′ + [−ξ2,xy′ + (ξ2,x − ξ1,x)z′ + ξ1,zy

′2 + (ξ2,y − 2ξ1,y)y′z′ + (ξ2,z

−ξ1,z)z′2]ω2,z′ .
(5.47)

Therefore, a Lie point symmetry of a two dimensional system of second order ODEs of the form

X2, i.e., the generator (5.30) emerges from an operator (5.5) if ξ1 and ξ2 satisfy the set of equations

(5.33) and (5.34).

The above theorem is sufficient to distinguish between the Lie and Lie-like operators associated

with the CR-structured two dimensional systems, as well as it provides conditions to obtain the

former from the later, which makes the existence of Lie algebras obvious. It is observed that most

of the Lie point symmetries for such systems come from the components of the complex vector fields

of the base ODEs. Though all the complex symmetries may not split to yield all the Lie symmetries

of the corresponding systems, they contain the information about the Lie point symmetry algebras

associated with the CR-structured systems.

In the subsequent section four applications of the theory developed are presented by considering

those CR-structured systems which correspond to non-linear integrable or linearizable and linear

scalar ODEs of second order.s



79

5.4 Examples

1. The most general form of a two dimensional system of second order ODEs associated with the

following 3-dimensional algebra of vector fields

X1 = ∂y, X2 = ∂z, X3 = x∂x + y∂y + z∂z. (5.48)

is

xy′′ = ω1(y′, z′),

xz′′ = ω2(y′, z′). (5.49)

The symmetry generators given in (5.48) arise from the following complex 2-dimensional algebra

Z1 = ∂u, Z2 = x∂x + u∂u. (5.50)

Four operators are associated with the system (5.49) due to the above complex symmetry algebra

and all of them satisfy (5.44)-(5.47). It can trivially be seen that Z1 satisfies the set of equations

(5.31)-(5.34). Thus it generates two symmetry generators of the system. However, only one of the

operators obtainable from Z2 yields a Lie point symmetry as (5.33) and (5.34) are not satisfied by

the operator z∂y − y∂z. Consider the following three operators

X1 = ∂x, X2 = x∂x +
1
2
(y∂y + z∂z), X3 = z∂y − y∂z, (5.51)

which yield the two dimensional system

y′′ =
1

y2 + z2
(yω1(y′, z′) + zω2(y′, z′)),

z′′ =
1

y2 + z2
(yω2(y′, z′)− zω1(y′, z′)), (5.52)

by using the reduced conditions (5.44)-(5.47). This system has only a 2-dimensional Lie point

symmetry algebra which consists of ∂x and x∂x + y∂y + z∂z whereas X3 is inconsistent with the

Lie point symmetry conditions for systems. The complex base equations in both the above cases

are xu′′ = ω(u′) and uu′′ = ω(u′), respectively. The complex symmetries which give rise to these

complex equations are (5.50) and Z1 = ∂x, Z2 = x∂x + u∂u, respectively.

2. Consider a maximally symmetric system of two second order ODEs

y′′ + αy′ = 0,

z′′ + αz′ = 0, (5.53)

where α is a constant. This is a CR-structured system which has a 15-dimensional algebra

X1 = ∂x, X2 = ∂y, X3 = ∂z, X4 = y∂y, X5 = y∂z, X6 = z∂y, X7 = z∂z, X8 = e−αx∂z,

X9 = e−αx∂y, X10 = eαx∂x, X11 = eαxy∂x, X12 = eαxz∂x, X13 = −z
α ∂x + yz∂y + z2∂z,

X14 = −y
α ∂x + y2∂y + yz∂z, X15 = −e−αx

α ∂x + e−αxy∂y + e−αxz∂z.
(5.54)
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The complex Lie point symmetry algebra associated with the complex base equation is

Z1 = ∂x, Z2 = ∂u, Z3 = u∂u, Z4 = eαx∂x, Z5 = e−αx∂u,

Z6 = ueαx∂x, Z7 = −u
α ∂x + u2∂u, Z8 = − e−αx

α ∂x + ue−αx∂u.
(5.55)

These complex symmetries yield fourteen operators for the system (5.53) that are compatible with

(5.8) and (5.9). It is apparent from the symmetry algebra given for system (5.53) in (5.54) that

the first twelve symmetry generators X1−X12 are composed of the real and imaginary parts of the

first six complex symmetries Z1 − Z6 of the complex equation. However, the split of the complex

symmetry generator Z7 do not come out as Lie point symmetries because the set of equations

(5.31)-(5.34) for ξj ’s in this case are non-zero. One Lie point symmetry namely, X15 of the system

corresponds to Z8, i.e., only the components of <(Z8) is the Lie point symmetry. Notice that X13

and X14 are not obtainable from the procedure developed here. It implies that all the complex

symmetries (or their parts) do not necessarily decompose into all the symmetry generators of the

corresponding systems.

3. There are fifteen Lie-like operators for the following system

y′′ + x(y′3 − 3y′z′2) +
2
x

y′ = 0,

z′′ + x(3y′2z′ − z′3) +
2
x

z′ = 0. (5.56)

The complex analogue of the operators associated with the above system is the following 8-dimensional

complex Lie point symmetry algebra

Z1 = x∂x, Z2 = ∂u, Z3 = x2 sinu∂x, Z4 = −x2 cosu∂x, Z5 = sin u∂x + 1
x cosu∂u,

Z6 = − cosu∂x + 1
x sinu∂u, Z7 = x sin 2u∂x + cos 2u∂u, Z8 = −x cos 2u∂x + sin 2u∂u.

(5.57)

Despite the fact that the system (5.56) has fifteen operators it is non-linearizable by point transfor-

mations. This implies that this system must have a symmetry algebra of dimension less than five

which leads us to the same result that all the operators in this case are not Lie symmetries of the

system (5.56). Therefore, the conditions given in Theorem 1 leave us with the 3-dimensional Lie

algebra

X1 = x∂x, X2 = ∂y, X3 = ∂z, (5.58)

out of fifteen operators for the system (5.56). As both the equations of this system satisfy the

CR-equations with respect to the dependent variables and their first derivatives; it corresponds to

a complex non-linear base equation xu′′ + x2u′3 + u′ = 0, which is linearizable because it has an

8-dimensional complex symmetry algebra (5.57).

4. Consider a quadratically semi-linear CR-structured system of second order ODEs

y′′ + y′2 − z′2 = β1y
′ − β2z

′,

z′′ + 2y′z′ = β2y
′ + β1z

′, (5.59)
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where β1 and β2 are constants. It is linearizable as it has the following 7-dimensional algebra

X1 = ∂x, X2 = ∂y, X3 = ∂z,

X4 = e−y sin z∂y + e−y cos z∂z, X5 = −e−y cos z∂y + e−y sin z∂z,

X6 = −e(β1x−y) sin(β2x− z)∂y + e(β1x−y)(cosβ2x cos z + sinβ2x sin z)∂z,

X7 = −e(β1x−y) cos(β2x− z)∂y + e(β1x−y)(cos β2x sin z − sinβ2x cos z)∂z.

(5.60)

The system (5.59) is associated with a linearizable complex equation of the form

u′′ + u′2 − βu′ = 0, (5.61)

as the CR-equations hold for the equations of the system. The complex base equation is also

linearizable as it has an 8-dimensional complex algebra

Z1 = ∂x, Z2 = ∂u, Z3 = e−u∂u, Z4 = eβx−u∂u, Z5 = −1
β eβx∂x,

Z6 = e−βx+u∂x, Z7 = eu

β ∂x + eu∂u, Z8 = eβx

β ∂x + eβx∂u.
(5.62)

As it is clear from (5.60) that all these generators are obtainable from first four complex symmetry

generators given in (5.62), i.e., the components of these complex vector fields yield all the symmetries

for system (5.59). All the components of the remaining complex vector fields do not satisfy Lie point

symmetry conditions for systems as well as these choices of ξj ’s fail to satisfy (5.31)-(5.34).

5.5 Noether-Like Operators, Noether Symmetries and Associated

First Integrals

The remaining sections of this chapter present a comprehensive comparison of the Lie symmetries

and Lie-like operators. This section considers the applications of the Lie-like operators admitted by

the CR-structured systems of two second order ODEs. This discussion relies on the Noether-like

operators [23, 24] and their role in providing the associated first integrals. Therefore, one needs

complete description of the Noether-like operators of the CR-structured systems to deal with them.

If a CR-structured system of the form (1.137) have Lagrangians Lj(x, f1, f2, f
′
1, f

′
2), where j =

1, 2, then it is equivalent to Euler-Lagrange equations of the form
∂L1

∂f1
+

∂L2

∂f2
− d

dx
(
∂L1

∂f ′1
+

∂L2

∂f ′2
) = 0, (5.63)

∂L1

∂f2
− ∂L2

∂f1
+

d

dx
(
∂L2

∂f ′1
− ∂L1

∂f ′2
) = 0. (5.64)

Definition 5.5.1. The operators of the form (5.4) and (5.5) are said to be Noether-like operators

corresponding to Lagrangians L1(x, f1, f2, f
′
1, f

′
2) and L2(x, f1, f2, f

′
1, f

′
2) of (1.137) if there exist

gauge functions B1(x, f1, f2) and B2(x, f1, f2) such that

X[1]
1 L1 −X[1]

2 L2 + (dxξ1)L1 − (dxξ2)L2 = dxB1,

X[1]
1 L2 +X[1]

2 L1 + (dxξ1)L2 + (dxξ2)L1 = dxB2. (5.65)
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Theorem 5.5.2. If Xj, are the Noether-like operators corresponding to Lj(x, f1, f2, f
′
1, f

′
2), for j =

1, 2, then

I1 = ξ1L1 − ξ2L2 +
1
2
[(η1 − y′ξ1 + z′ξ2)(

∂L1

∂y′
+

∂L2

∂z′
)− (η2 − y′ξ2 − z′ξ1)(

∂L2

∂y′
− ∂L1

∂z′
)]−B1,

I2 = ξ1L2 + ξ2L1 +
1
2
[(η1 − y′ξ1 + z′ξ2)(

∂L2

∂y′
− ∂L1

∂z′
) + (η2 − y′ξ2 − z′ξ1)(

∂L1

∂y′
+

∂L2

∂z′
)]−B2,

(5.66)

are the first integrals of the system (1.137) associated with the Noether-like operators Xj.

Theorem 5.5.3. The first integrals Ij, associated with the Noether-like operators Xj, are compatible

with the following set of equations

X[1]
1 I1 −X[1]

2 I2 = 0,

X[1]
1 I2 +X[1]

2 I1 = 0, (5.67)

and

DI1 = DI2 = 0, (5.68)

where D is the total derivative operator given by (1.109).

5.6 First Integrals Associated with the Complex-Linearizable Sys-

tems

The following four cases deal with the Noether-like operators and the corresponding first integrals

associated with the complex-linearizable class of systems considered in the previous chapter. These

cases describe the difference between real and complex symmetry analysis.

Case 1. The following two Lagrangians

L1 = 2f1 +
f ′1

f ′21 + f ′22
, L2 = 2f2 − f ′2

f ′21 + f ′22
, (5.69)

are associated with the system (4.30) which admits the following 4-dimensional algebra

X1 = ∂x, X2 = ∂f1 , X3 = ∂f2 , X4 = 2x∂x + f1∂f1 + f2∂f2 . (5.70)

It is found that three gauge functions

B1 = c1, B2 = 2x, B3 = c2, (5.71)

exist for Xj where j = 1, 2, 3, respectively, relative to L1. Similarly, L2 generates

B1 = c3, B2 = c4, B3 = 2x, (5.72)
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with the same point symmetries as mentioned above. Thus a 3-dimensional Noether algebra is found

to exist for the system (4.30) and three first integrals are as given below

I1 = 2f1 + 2f ′1
f ′21 +f ′22

− c1,

I2 = 1
f ′21 +f ′22

− 2f ′21
(f ′21 +f ′22 )2

− 2x,

I3 = −2f ′1f ′2
(f ′21 +f ′22 )2

− c2,

(5.73)

associated with Xj , relative to L1. Similarly for the same Noether symmetries relative to L2 the

following first integrals are obtained

I1 = 2f2 − 2f ′2
f ′21 +f ′22

− c3,

I2 = 2f ′1f ′2
(f ′21 +f ′22 )2

− c4,

I3 = −1
f ′21 +f ′22

+ 2f ′22
(f ′21 +f ′22 )2

− 2x.

(5.74)

Notice that the first integrals given in (5.73) and (5.74) are related by the CR-equations due to the

Lagrangians Lj which also satisfy the CR-equations. Now consider the base complex equation (4.33)

where the associated complex Lagrangian is

L = 2u +
1
u′

. (5.75)

The following five Lie point symmetries

Z1 = ∂x, Z2 = ∂u, Z3 = u∂x, Z4 = (u3 − 2xu)∂x − 2u2∂u, Z5 = (3u2 − 2x)∂x − 4u∂u,

(5.76)

yield five gauge functions

B1 = c, B2 = 2x, B3 = 2x + u2, B4 =
3u4

2
− 2xu2 − 2x2, B5 = 4u3, (5.77)

respectively. The corresponding complex first integrals are

I1 = 2u + 2
u′ − c, I2 = −1

u′2 − 2x, I3 = u2 − 2x + 2u
u′ ,

I4 = 1
2u′2 ((u2 − 2x)u′ + 2u)2, I5 = 2u3 − 4xu + (6u2−4x)

u′ + 4u
u′2 ,

(5.78)

which are compatible with

Z[1]
j Ij = 0, j = 1, .., 5. (5.79)

Therefore, 10 Noether-like operators emerge from the complex Noether symmetry generators of the

base equation. These Noether-like operators yield the following ten first integrals

I1 = 2f1 + 2f ′1
f ′21 +f ′22

− c1, I2 = 2f2 − 2f ′2
f ′21 +f ′22

− c2,

I3 = −2x− f ′21 −f ′22
(f ′21 +f ′22 )2

, I4 = 2f ′1f ′2
(f ′21 +f ′22 )2

,
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I5 = f2
1 − f2

2 − 2
(
x− f1f ′1+f2f ′2

f ′21 +f ′22

)
, I6 = 2

(
f1f2 + f ′1f2−f1f ′2

f ′21 +f ′22

)
,

I7 = f4
1 + f4

2 − 6f2
1 f2

2 + 4x2 − 4x(f2
1 − f2

2 ) + 4 (f3
1−3f1f2

2−2xf1)f ′1+(3f2
1 f2−f3

2−2xf2)f ′2
f ′21 +f ′22

+4 (f2
1−f2

2 )(f ′21 −f ′22 )+4f1f2f ′1f ′2
(f ′21 +f ′22 )2

,

I8 = f1f2(f2
1 − f2

2 )− 2xf1f2 + (3f2
1 f2−f3

2−2xf2)f ′1−(f3
1−3f1f2

2−2xf1)f ′2
f ′21 +f ′22

+2f1f2(f ′21 −f ′22 )−2(f2
1−f2

2 )f ′1f ′2
(f ′21 +f ′22 )2

,

I9 = f3
1 − 3f1f

2
2 − 2xf1 + (3f2

1−3f2
2−2x)f ′1+6f1f2f ′2
f ′21 +f ′22

+ 2f1(f ′21 −f ′22 )+2f2f ′1f ′2
(f ′21 +f ′22 )2

,

I10 = 3f2
1 f2 − f3

2 − 2xf2 + 6f1f2f ′1+(3f2
2−3f2

1 +2x)f ′2
f ′21 +f ′22

+ 2f2(f ′21 −f ′22 )−2f1f ′1f ′2
(f ′21 +f ′22 )2

.
(5.80)

Case 2. A system of two second order cubically semi-linear ODEs (4.37) emerges from a

linearizable scalar second order complex ODE (4.39). The Lagrangian associated with this base

equation is L = 2xu + 1
u′ . It yields five gauge functions

B1 = x2, B2 = 2xu sinu + 2x cosu, B3 = 2xu cosu− 2x sinu,

B4 = x2(2u cos 2u− sin 2u), B5 = x2(2u sin 2u + cos 2u),
(5.81)

relative to five Lie point symmetries

Z1 = ∂u, Z2 = sin u∂x, Z3 = cosu∂x,

Z4 = x cos 2u∂x + sin 2u∂u, Z5 = x sin 2u∂x − cos 2u∂u,
(5.82)

that are the Noether symmetries. The first integrals of (4.39) associated with (5.82) are

I1 = −1
u′2 − x2, I2 = sin u

u′ − x cosu, I3 = cos u
u′ + x sinu,

I4 = x2 sin 2u− sin 2u
u′2 + 2x cos 2u

u′ , I5 = −x2 cos 2u + cos 2u
u′2 + 2x sin 2u

u′ .
(5.83)

Breaking the complex Lagrangian into real and imaginary parts yields

L1 = 2xf1 +
f ′1

f ′21 + f ′22
, L2 = 2xf1 − f ′2

f ′21 + f ′22
. (5.84)

Further the gauge functions for the system (4.37) due to the associated Lagrangians are found to

correspond to the complex gauge functions generated by the complex Noether algebra admitted by

the base ODE. Therefore, the corresponding first integrals are

I1 = −x2 − f ′21 − f ′22
(f ′21 + f ′22 )2

, I2 =
2f ′1f

′
2

(f ′21 + f ′22 )2

I3 =
sin(f1) cosh(f2)f ′1 + cos(f1) sinh(f2)f ′2

f ′21 + f ′22
− x cos(f1) cosh(f2),

I4 =
cos(f1) sinh(f2)f ′1 − sin(f1) cosh(f2)f ′2

f ′21 + f ′22
+ x sin(f1) sinh(f2),
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I5 =
cos(f1) cosh(f2)f ′1 − sin(f1) sinh(f2)f ′2

f ′21 + f ′22
+ x sin(f1) cosh(f2),

I6 = −sin(f1) sinh(f2)f ′1 + cos(f1) cosh(f2)f ′2
f ′21 + f ′22

+ x cos(f1) sinh(f2),

I7 = −x2 cos(f1) cosh(2f2) + 2
(

x sin(2f1) cosh(2f2)f ′1 + x cos(2f1) sinh(2f2)f ′2
f ′21 + f ′22

)

+
cos(2f1) cosh(2f2)(f ′21 − f ′22 )− 2 sin(2f1) sinh(2f2)f ′1f

′
2

(f ′21 + f ′22 )2
,

I8 = x2 sin(2f1) sinh(2f2) + 2
(

x cos(2f1) sinh(2f2)f ′1 − x sin(2f1) cosh(2f2)f ′2
f ′21 + f ′22

)

−sin(2f1) sinh(2f2)(f ′21 − f ′22 ) + 2 cos(2f1) cosh(2f2)f ′1f
′
2

(f ′21 + f ′22 )2
,

I9 = x2 sin(2f1) cosh(2f2) + 2
(

x cos(2f1) cosh(2f2)f ′1 − x sin(2f1) sinh(2f2)f ′2
f ′21 + f ′22

)

−sin(2f1) cosh(2f2)(f ′21 − f ′22 ) + 2 cos(2f1) sinh(2f2)f ′1f
′
2

(f ′21 + f ′22 )2
,

I10 = x2 cos(2f1) sinh(2f2)− 2
(

x sin(2f1) sinh(2f2)f ′1 + x cos(2f1) cosh(2f2)f ′2
f ′21 + f ′22

)

−cos(2f1) sinh(2f2)(f ′21 − f ′22 )− 2 sin(2f1) cosh(2f2)f ′1z
′

(f ′21 + f ′22 )2
. (5.85)

Now consider the real symmetry algebra of the system (4.37)

X1 = ∂f1 , X2 = ∂f2 , X3 = x∂x, (5.86)

which provides two gauge functions

B1 = x2, B2 = C1, (5.87)

for X1 and X2, respectively, relative to L1. Similarly with L2

B1 = C2, B2 = x2, (5.88)

and same symmetries. Thus a 2-dimensional Noether algebra is found to exist for the system (4.37)

and the first integrals are as given below

I1 =
1

f ′21 + f ′22
− 2f ′21

(f ′21 + f ′22 )2
− x2, I2 =

−2f ′1f
′
2

(f ′21 + f ′22 )2
− C1, (5.89)

and

I1 =
2f ′1f

′
2

(f ′21 + f ′22 )2
− C2, I2 =

−1
f ′21 + f ′22

+
2z′2

(f ′21 + f ′22 )2
− x2. (5.90)
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relative to L1 and L2. Hence, CSA is far ahead from the real symmetry analysis as it yields 10 first

integrals for the same system with the help of the Noether-like operators.

Case 3. The Lagrangians of a complex-linearizable system of two second order cubically semi-

linear ODEs (4.44) emerge from the complex Lagrangian L = u2+ 1
u′ of the base linearizable equation

(4.46). Following five gauge functions

B1 = C, B2 = 2x +
u3

3
, B3 =

u4

2
, B4 =

2
3
u6 − xu3 − 3x2, B5 = −3u5, (5.91)

are found to be related with following Lie symmetry generators

Z1 = ∂x, Z2 = u∂x, Z3 = u2∂x − 2∂u,

Z4 = (u4 − 3xu)∂x − 3u2∂u, Z5 = (−5u3 + 6x)∂x + 12u∂u.
(5.92)

The complex first integrals are therefore

I1 = u2 + 2/u′ − C, I2 = 1
3

(
(2u3 − 6x) + 6u/u′

)
, I3 = 1

2

(
(2+u2u′)2

u′2

)
,

I4 = 1
3

(
(u3−3x)u′+3u

u′

)2
, I5 = −2u5 + 6xu2 − 2 (5u3−6x)

u′ − 12 u
u′2 .

(5.93)

Lagrangians associated with system (4.44) are

L1 = (f2
1 − f2

2 ) +
f ′1

f ′21 + f ′22
, L2 = 2f1f2 − f ′2

f ′21 + f ′22
, (5.94)

which yields 10 first integrals corresponding to the complex first integrals due to Noether-like oper-

ators emerging from Zj , for j = 1, 2, 3, 4, 5. For the comparison of above results obtained by CSA

with those which real symmetry analysis provide, one needs to consider the Lagrangians (5.94) of

the system (4.44) with the following 2-dimensional algebra

X1 = ∂x, X2 = 3x∂x + f1∂f1 + f2∂f2 . (5.95)

Only one gauge function is found

B = C1, (5.96)

that exist for X1, relative to L1. Similarly L2 generates

B = C2. (5.97)

The first integral that arise due to a 1-dimensional Noether algebra relative to L1 is

I = f2
1 − f2

2 +
2f ′1

f ′21 + f ′22
− C1. (5.98)

Similarly for the same Noether symmetry with L2 the following first integral is found

I = 2f1f2 − 2f ′2
f ′21 + f ′22

− C2. (5.99)
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Case 4. Another system of two second order cubically semi-linear ODEs with variable coeffi-

cients, i.e., the coefficients are functions of both the dependent and independent variables (4.49) is

complex linearizable. The corresponding Lagrangians are

L1 = xf2
1 − xf2

2 + f ′1
f ′21 +f ′22

,

L2 = 2xf1f2 − f ′2
f ′21 +f ′22

.
(5.100)

The system (4.49) admits one Lie point symmetry generator

X1 = x∂x, (5.101)

and there does not exist any gauge function corresponding to it, which implies that there is 0-

dimensional Noether algebra. As far as CSA is concerned there are 10 Noether-like operators as the

two dimensional system is complex-linearizable. Therefore, there are ten first integrals corresponding

to these operators.

All these cases demonstrate that CSA is a powerful tool to deal with the CR-structured two

dimensional systems, indeed, for higher dimensional systems. The only requirement is the lineariz-

ability or integrability of the base systems or scalar equations. For instance, if one move from two to

four dimensions for systems of second order ODEs where the base system is solvable by symmetry

methods then solvability of the emerging four dimensional system is achievable due to CSA.



Chapter 6

Linearization of Systems of Four Second

Order ODEs

In this chapter, complex-linearization has been extended to four dimensional systems of second

order ODEs. The canonical forms established to obtain the symmetry structure of two dimensional

systems are used in providing the corresponding canonical representatives of systems of four ODEs.

These representatives arise by considering the dependent variables of the optimal [97] and reduced

optimal [87] canonical forms, as complex functions of the real independent variables [88]. These are

the ‘special classes’ of linear four dimensional systems as the number of coefficients is six and two,

respectively. These canonical representatives may give rise to a few subclasses from the entirety of

the equivalence classes associated with the linearizable systems of second order ODEs of dimension

four.

The second issue raised here concerns the linearization of systems of four second order ODEs.

As in case of the complex-linearizable two dimensional systems the base complex linearizable maxi-

mally symmetric equations (1.70), were exploited to give the most general complex-linearizable form

and complex-linearization conditions. Likewise, to obtain the complex-linearizable systems of four

second order ODEs the linearizable class of systems of the form (1.129) has been considered which

contains only maximally symmetric systems with a 15-dimensional Lie point symmetry algebra. The

linearizability criteria associated with this class of systems of cubically semi-linear ODEs encompass

fifteen constraint equations written in terms of the coefficients of the systems. Hence the class of

emerging linearizable four dimensional systems is proved to be transformable to a system of the

Newtonian free particle equations with maximally symmetry algebra identical to sl(6, IR ). It is also

shown that the most general form of such complex-linearizable systems of four ODEs is cubically

semi-linear in the first derivatives of the dependent variables and coefficients satisfy a set of thirty

complex-linearization conditions.

The conditions derived here do not solve the linearization problem for four dimensional sys-

88
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tems of second order ODEs solely as these only ensure complex-linearizability of such systems. In

fact, the complex linearizing transformations of the base complex two dimensional systems deter-

mine linearizability of the emerging four dimensional systems. In the last section an analogue of

the transformations τ1, for two dimensional systems has been used to obtain the real linearizing

transformations to map the emerging four dimensional complex-linearizable systems of second order

ODEs to their simplest possible forms.

6.1 Canonical Forms for Systems of Four Second Order ODEs

The general four dimensional system of linear ODEs is given by

f ′′j − κjkf
′
k − λjkfk − cj = 0, (j, k = 1, . . . , 4) (6.1)

where summation over repeated indices is assumed and the functions κjk, λjk and cj are arbitrary

functions of x. The above system has 36 coefficients. The algebraic classification of different symme-

try algebras and number of linearizable classes of such systems is not known except for the maximally

symmetric case sl(6, IR ) of the free particle Newtonian system. Here the interest lies in extracting

the canonical forms of four dimensional systems of second order ODEs by CSA.

There are two possible ways to extract canonical forms for systems of four linear second order

ODEs. Firstly, using the equivalence of the complex linear scalar ODEs. In [87], it was shown that

the optimal canonical form for a special class of systems of two second order ODEs with Lie algebras

of dimensions 6 and 7 contains only one coefficient. This special class of two dimensional system

corresponding to a linear scalar complex equation gives rise to a class of those four dimensional

systems that involve only two arbitrary coefficients. This procedure is known as nested complexifi-

cation, namely, to complexify the two dimensional system obtained from a scalar complex equation,

i.e.,
f ′′1 + α1(x)f3 − α2(x)f4 = 0,

f ′′2 + α1(x)f4 + α2(x)f3 = 0,

f ′′3 − α1(x)f1 + α2(x)f2 = 0,

f ′′4 − α1(x)f2 − α2(x)f1 = 0.

(6.2)

It corresponds to a linear two dimensional complex system (3.16) when F1 = f1 + if2, F2 = f3 + if4

and β = α1 + iα2. Furthermore, (3.16) can be mapped to a scalar complex equation via point

transformations

ν1 = ρu1, ν2 = ρu2, x =
∫ t

ρ−2(s)ds, (6.3)

where ρ′′ = α3ρ and β = ρ4α4. These are stated in the theorem below.

Theorem 6.1.1. There exists an optimal canonical form of four dimensional systems of linear second

order ODEs arising from the nested complexification that contains only two arbitrary coefficients.
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Secondly a canonical form of linearizable systems can also be derived by utilizing the equivalence

of systems of two complex ODEs. For example the following system

f ′′1 − α1(x)f1 + α2(x)f2 − α3(x)f3 + α4(x)f4 = 0,

f ′′2 − α2(x)f1 − α1(x)f2 − α4(x)f3 − α3(x)f4 = 0,

f ′′3 − α5(x)f1 + α6(x)f2 + α1(x)f3 − α2(x)f4 = 0,

f ′′4 − α6(x)f1 − α5(x)f2 + α2(x)f3 + α1(x)f4 = 0, (6.4)

with six arbitrary coefficients can be reduced to (1.104), using ỹ = f1 + if2, z̃ = f3 + if4 and when

all three parameters in (1.104) are considered complex functions of the real independent variable.

The set of equations (6.4) represents another canonical form which contains six arbitrary coefficients.

These are the two linear forms for systems of four second order ODEs with fewer arbitrary coefficients

obtainable in the manner described. Notice that these forms can not be obtained using real symmetry

analysis because the canonical representative of a four dimensional system requires at least n2 = 16,

arbitrary coefficients. These results are stated in the form of the following theorem.

Theorem 6.1.2. Any linearizable system of four second order non-linear ODEs obtainable from a

scalar complex ODE or a system of two second order complex ODEs is transformable to one of the

forms (6.2) or (6.4), respectively.

6.2 Complex-Linearization Criteria for Systems of Four Second Or-

der ODEs

The derivation of the complex-linearization criteria for a class of systems of four second order ODEs

require a base complex linearizable system. To this end, the linearizable class (1.129) determines

the explicit complex-linearization criteria for those four dimensional systems that may be maximally

symmetric, i.e., has sl(6,<) Lie point symmetry algebra. This provides a set of thirty equations

to be satisfied by the coefficients that arise in this class of systems. In this regard the following

theorem is stated without proof but can be proved easily following the same procedure adopted for

two dimensional systems in [87].

Theorem 6.2.1. A system of four second order cubically semi-linear ODEs

f
′′
1 + (α11f

′
1 − 3α12f

′
2 + 2α21f

′
3 − 2α22f

′
4 + β1

11)f
′2
1 − (3α11f

′
1 − α12f

′
2 + 2α21f

′
3

−2α22f
′
4 − β1

11)f
′2
2 + (α31f

′
1 − α32f

′
2 + β1

31)f
′2
3 + (α31f

′
1 + α32f

′
2 − β1

31)f
′2
4

+2(2α22f
′
1f
′
2f
′
3 + 2α21f

′
1f
′
2f
′
4 + α32f

′
1f
′
3f
′
4 − α31f

′
2f
′
3f
′
4)− 2(β1

12f
′
1f

′
2 − β1

21f
′
1f

′
3

+β1
22f

′
1f

′
4 + β1

22f
′
2f

′
3 + β1

21f
′
2f

′
4 + β1

32f
′
3f

′
4) + γ1

11f
′
1 − γ1

12f
′
2 + γ1

21f
′
3 − γ1

22f
′
4 + δ11 = 0,

(6.5)
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f
′′
2 + (α12f

′
1 + 3α11f

′
2 + 2α22f

′
3 + 2α21f

′
4 + β1

12)f
′2
1 − (3α12f

′
1 + α11f

′
2 + 2α22f

′
3

+2α21f
′
4 − β1

12)f
′2
2 + (α32f

′
1 + α31f

′
2 + β1

32)f
′2
3 − (α32f

′
1 + α31f

′
2 − β1

32)f
′2
4

+2(2α21f
′
1f
′
2f
′
3 + 2α22f

′
1f
′
2f
′
4 − α31f

′
1f
′
3f
′
4 − α32f

′
2f
′
3f
′
4) + 2(β1

11f
′
1f

′
2 + β1

22f
′
1f

′
3

+β1
21f

′
1f

′
4 + β1

21f
′
2f

′
3 − β1

22f
′
2f

′
4 + β1

31f
′
3f

′
4) + γ1

12f
′
1 + γ1

11f
′
2 + γ1

22f
′
3 + γ1

21f
′
4 + δ12 = 0,

(6.6)

f
′′
3 + (α11f

′
3 − α12f

′
4 + β2

11)f
′2
1 − (α11f

′
3 − α12f

′
4 − β2

11)f
′2
2 + (2α21f

′
1 − 2α22f

′
2

+α31f
′
3 − 3α32f

′
4 + β2

31)f
′2
3 − (2α21f

′
1 − 2α22f

′
2 + 3α31f

′
3 − α32f

′
4 − β2

31)f
′2
4

−2(α12f
′
1f
′
2f
′
3 + α11f

′
1f
′
2f
′
4 + 2α22f

′
1f
′
3f
′
4 + 2α21f

′
2f
′
3f
′
4)− 2(β2

12f
′
1f

′
2 − β2

21f
′
1f

′
3

+β2
22f

′
1f

′
4 + β2

22f
′
2f

′
3 + β2

21f
′
2f

′
4 + β2

32f
′
3f

′
4) + γ2

11f
′
1 − γ2

12f
′
2 + γ2

21f
′
3 − γ2

22f
′
4 + δ21 = 0,

(6.7)

f
′′
4 + (α12f

′
3 + α11f

′
4 + β2

21)f
′2
1 − (α12f

′
3 + α11f

′
4 − β2

12)f
′2
2 + (2α22f

′
1 + 2α21f

′
2

+α32f
′
3 + 3α31f

′
4 + β2

32)f
′2
3 − (2α22f

′
1 + 2α21f

′
2 + 3α32f

′
3 + α31f

′
4 − β2

32)f
′2
4

+2(α11f
′
1f
′
2f
′
3 − α12f

′
1f
′
2f
′
4 + 2α21f

′
1f
′
3f
′
4 − 2α22f

′
2f
′
3f
′
4) + 2(β2

11f
′
1f

′
2 − β2

22f
′
1f

′
3

+β2
21f

′
1f

′
4 + β2

21f
′
2f

′
3 − β2

22f
′
2f

′
4 + β2

31f
′
3f

′
4) + γ2

12f
′
1 + γ2

11f
′
2 + γ2

22f
′
3 + γ2

21f
′
4 + δ22 = 0,

(6.8)

where

αjk 6= αkj , βl
jk 6= βl

kj , γl
jk 6= γl

kj , δjk 6= δkj , (6.9)

is complex-linearizable if and only if the coefficients satisfy 30 constraint equations given in the

Appendix A-2.

Once the linearizability criteria are satisfied by a system the next step involves the construction

of the invertible linearizing transformations which can often be difficult. In the subsequent section

it is illustrated that how a complex linearizing transformation of the form

X = X(x), U = U(x, u, v), V = V (x, u, v). (6.10)

plays the magic of generating invertible transformations to linearize the corresponding non-linear

systems of four ODEs. Notice that the independent variable X depends only on x. The above

transformation is a special case of the general invertible complex point transformations

X = X(x, u, v), U = U(x, u, v), V = V (x, u, v), (6.11)

for two dimensional systems. The dependence of X on the complex variables (x, u, v) makes it a

complex independent variable. This may seem strange as the decomposition of linearized system

would yield a system of PDEs instead of ODEs. This is true. However, the fact of the matter is

that the resultant system is equipped with the CR-equations which makes the system integrable and

the solution is obtained in the original variables upon using invertible transformations. This line of

approach is followed in [87]- [89] for two dimensional non-linear systems corresponding to non-linear

complex scalar equations and it was found that there exists two classes of such systems, linearizable

and non-linearizable systems. It was shown that there exists non-linearizable systems with Lie
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algebras of dimensions 4, 3, 2, 1 which can be complex-linearized. In this chapter, the investigation

is restricted to transformations of the form (6.10) that yield a set of real invertible transformations

for systems of four ODEs. Furthermore the solution of a non-linear system can be obtained from

the linearized system by utilizing such real transformations. The complete characterization of all

four dimensional non-linear systems and their Lie algebras subject to the complex transformations

(6.11) is a separate issue which has not been dealt with here.

6.3 Computer Algorithm

The complex-linearizability conditions include thirty PDEs of the first order in the coefficients of

a non-linear system of four ODEs, relative to the dependent and independent variables. In order

to avoid cumbersome calculations a Computer Algebra System is used, e.g., MAPLE or CRACK

to check the complex-linearizability of a system. For this purpose one needs to translate the thirty

constraint equations in the form of a computer code in MAPLE to test complex-linearizability for

a non-linear system of the form (6.5)−(6.8) whose coefficients are used as an input. The code also

determines the symmetry algebra of a system.

6.4 Applications

A variety of examples is considered to verify the theory developed for the linearization of systems

of four second order ODEs. It is important to identify that non-linearity depends on the coupling

of both derivative and non-derivative terms in such systems for which there could be many choices.

Furthermore there can be 3! = 6 types of coupling, e.g., the first equation can be coupled with the

other three in the system. The first example illustrates how the complex variable approach reveal

the complete integrability of a system that has the maximal algebra sl(6,<). The example 3 is

of great interest for two main reasons. Firstly it is a geodesic type system of ODEs in which the

non-linearity arises due to the quadratic terms in the first order derivatives. Such equations appear

frequently in Relativity in the study of shortest paths on curved manifold. Secondly this system can

be extended to higher dimensions to yield the linearization of a system of 4n ODEs which has the

Lie algebra sl(2(2n + 1),<), n ≥ 1.

1. Consider a quadratically semi-linear system of four second order ODEs

f ′′1 − f ′1 + f ′21 − f ′22 = 0,

f ′′2 − f ′2 + 2f ′1f
′
2 = 0,

f ′′3 − f ′3 + f ′23 − f ′24 = 0,

f ′′4 − f ′4 + 2f ′3f
′
4 = 0,

(6.12)
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where the first and last two equations are coupled in the first derivatives of the dependent functions

f1, f2 and f3, f4, respectively. Substituting all the coefficients β1
11 = β2

31 = 1 and γ1
11 = γ2

21 = −1

in the linearizability conditions then it can be verified that above system is complex-linearizable.

In order to find the linearizing transformations to map system (6.12) into a linear target system

F
′′
j = 0, j = 1, . . . , 4, the following transformations

X = exp(x),

F1 = exp(f1) cos(f2), F2 = exp(f1) sin(f2),

F3 = exp(f3) cos(f4), F4 = exp(f3) sin(f4).

(6.13)

are obtained by complex transformations of the form (6.10). These are the complex transformations

which reveal linearizability of 4-dimensional complex-linearizable systems of second order ODEs.

2. An example of a quadratically semi-linear system with the same coupling type as above but the

coefficients involve the dependent and independent variables is

f ′′1 − f1(f ′21 −f ′22 )+2f2f ′1f ′2
f2
1 +f2

2
− xf1 = 0,

f ′′2 − 2f1f ′1f ′2−f2(f ′21 −f ′22 )

f2
1 +f2

2
− xf2 = 0,

xf
′′
3 + xf

′2
3 − xf

′2
4 + 2f

′
3 = 0,

xf
′′
4 + 2xf

′
3f

′
4 + 2f

′
4 = 0.

(6.14)

Complex-linearizability of this system is ensured by Theorem (6.2.1), i.e., the coefficients

β1
11 = −f1

f2
1 +f2

2
, β1

12 = f2

f2
1 +f2

2
, β2

31 = 1,

γ2
21 = 2

x , δ11 = −xf1, δ12 = −xf2,
(6.15)

satisfy thirty constraint equations given for linearizability. The linear target system in this case is

F ′′
1 = X−4, F ′′

2 = F ′′
3 = F ′′

4 = 0, (6.16)

which upon utilizing the transformations

X = 1
x ,

F1 = 1
2x ln(f2

1 + f2
2 ), F2 = 1

x arctan
(

f2

f1

)
,

F3 = exp(f3) cos(f4), F4 = exp(f3) sin(f4),

(6.17)

arises. Notice that the above linearizing transformations come from invertible complex transforma-

tions

X =
1
x

, U =
1
x

log u, V = exp v. (6.18)

CRACK is used to verify that the number of symmetries of the system (6.14) is 35 whereas in all

other examples MAPLE-code is considered to verify the number of symmetries.



94

3. Now consider a coupled system of four real ODEs of geodesic type given by

f
′′
1 + f

′2
1 − f

′2
2 = 0,

f
′′
2 + 2f

′
1f

′
2 = 0,

f
′′
3 + f

′2
3 − f

′2
4 + 2(f

′
1f

′
3 − f

′
2f

′
4) = 0,

f
′′
4 + 2(f

′
3f

′
4 + f

′
1f

′
4 + f

′
3f

′
2) = 0,

(6.19)

where the first two equations are coupled in the first derivatives of f1 and f2 while the other two

equations contain the coupling relative to the first derivatives of all the dependent functions. This

can be easily checked that the above system is complex-linearizable by subjecting the coefficients

β1
11 = β2

21 = β2
31 = 1 into the corresponding conditions and it can be mapped to F ′′

j = 0, by the real

linearizing transformations

F1 = exp(f1) cos(f2), F2 = exp(f1) sin(f2),

F3 = exp(f1 + f3) cos(f2 + f4), F4 = exp(f1 + f3) sin(f2 + f4).
(6.20)

The generalization of system (6.19) in a (4n + 1)-dimensional space can trivially be done as the

first two equations are coupled with each other while the other two equations contains full coupling.

Take a system of 2n such equations of the form

f
′′
j + f

′2
j − g

′2
j = 0,

g
′′
j + 2f

′
jg
′
j = 0,

(6.21)

where j = 1, ..., n, and another system of 2n ODEs that contains full coupling, i.e.,

h
′′
j + h

′2
j − k

′2
j + 2(f

′
jh

′
j − g

′
jk
′
j) = 0,

k
′′
j + 2(h

′
jk
′
j + f

′
jk
′
j + h

′
jg
′
j) = 0,

(6.22)

where f , g, h, k, are n, dimensional vectors with 4n, dependent functions of x. The above system

(6.21)-(6.22) can also be regarded as a surface in a (12n+1)-dimensional space (x, f ,g,h,k, f ′,g′,h′,

k′, f ′′, g′′, h′′, k′′). Introduce a complex structure on the 12n-dimensional space with the identifi-

cation

uj = uj(x) := fj(x) + igj(x), vj = vj(x) := hj(x) + ikj(x), (6.23)

which map the systems (6.21)-(6.22) to systems of 2n ODEs in a 2n-complex dimensional space

u
′′
j + u

′2
j = 0, (6.24)

and

v
′′
j + v

′2
j + 2u

′
jv
′
j = 0, j = 1, 2, . . . , n, (6.25)

respectively. Both these systems can be linearized to the complexified free particle system

U ′′
j = 0, V ′′

j = 0, (6.26)
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using the complex transformations

Uj = expuj , Vj = exp(uj + vj). (6.27)

Consequently the system (6.21)-(6.22) is linearized to the maximally symmetric system, sl(2(2n +

1),<), i.e.,

F
′′
j = 0, G

′′
j = 0,

H
′′
j = 0, K

′′
j = 0, (6.28)

using the real transformations obtained from (6.27). The next example is also of geodesic type with

all equations coupled together.

4. This example presents a case where the non-linear system is a fully coupled four dimensional

system
f
′′
1 − f

′2
1 + f

′2
2 − f

′2
3 + f

′2
4 = 0,

f
′′
2 − 2(f

′
1f

′
2 + f

′
3f

′
4) = 0,

f
′′
3 − 2(f

′
1f

′
3 − f

′
2f

′
4) = 0,

f
′′
4 − 2(f

′
1f

′
4 + f

′
2f

′
3) = 0.

(6.29)

This can be obtained from a system of two complex ODEs, i.e., from the complexified Newtonian

system

u
′′ − u

′2 − v
′2 = 0, v

′′ − 2u
′
v
′
= 0, (6.30)

which has four dimensional Lie algebra with commutation relations

[Xα,Xβ] = 0, [Xα,X4] = Xα, α, β = 1, 2, 3 (6.31)

identified as L4,2 of symmetries. This is reducible to the free particle system as the coefficients

β1
11 = β1

31 = β2
21 = −1 satisfy the complex-linearizability conditions. The following transformations

of the dependent variables

F1 = c1 exp(f3 − f1) cos(f4 − f2) + c2 exp(−f3 − f1) cos(f4 + f2),

F2 = c1 exp(f3 − f1) sin(f4 − f2) + c2 exp(−f3 − f1) sin(f4 + f2),

F3 = c2 exp(−f3 − f1) cos(f4 + f2)− c1 exp(f3 − f1) cos(f4 − f2),

F4 = −c2 exp(−f3 − f1) sin(f4 + f2)− c1 exp(f3 − f1) sin(f4 − f2), (6.32)

maps the non-linear system to F ′′
j = 0, j = 1, . . . , 4.
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5. Finally, consider a maximally symmetric system with variable coefficients

xf
′′
1 + f

′
1 + xf

′2
1 − xf

′2
2 = 0,

xf
′′
2 + f

′
2 + 2xf

′
1f

′
2 = 0,

xf
′′
3 + f

′
3 + xf

′2
3 − xf

′2
4 + 2xf ′1f

′
3 − 2xf ′2f

′
4 = 0,

xf
′′
4 + f

′
4 + 2xf

′
3f

′
4 + 2xf ′1f

′
4 + 2xf ′2f

′
3 = 0.

(6.33)

This system is linearizable and can be mapped to a system of the free particle equations via the

following change of the dependent and independent variables

X = lnx,

F1 = exp(f1) cos(f2), F2 = exp(f1) sin(f2),

F3 = exp(f1 + f3) cos(f2 + f4), F4 = exp(f1 + f3) sin(f2 + f4).

(6.34)

These are obtainable by the complex linearizing transformations of the corresponding complex-

linearizable system. Linearizability is also ensured by the coefficients β1
11 = β2

21 = β2
31 = 1 and

γ1
11 = γ2

21 = x−1 of the non-linear system, i.e., as they satisfy the complex-linearization conditions

and transformations are of the form (6.10).

Notice that all the systems which can be linearized by complex methods require a subclass of

arbitrary point transformations where the transformed independent variable is only a function of the

old independent real variable. Therefore, the complex-linearization procedure can be extended to

systems of 2n second order ODEs and a subclass of the complex transformations of the base systems

of n ODEs singles out the linearizable systems from the general complex-linearizables.



Chapter 7

Ibragimov-Type Invariants for a System

of Two Linear Parabolic Equations

In this chapter, invariance of systems of two second order linear PDEs is studied by employing CSA

on the scalar linear parabolic PDE

ut = a(t, x)uxx + b(t, x)ux + c(t, x)u, (7.1)

with two independent variables, where a 6= 0, b and c are arbitrary functions of t and x. Equation

(7.1) arises in many important applications, e.g., the Fokker-Planck PDE [84] belongs to this class

which models many phenomena [7,8]. The Black-Sholes [9] as well as the bond-pricing equations [99]

are also in the family of equations (7.1). Lie’s theory of groups is used to analyze the Black-

Scholes [27] and bond pricing equations [28]. Algebraic properties of one and two dimensional Fokker-

Planck equations and their exact solutions have been investigated in [92] and [93], respectively.

Moreover, the reduction of one-factor bond pricing parabolic equations to the classical linear heat

equation is achieved by symmetry method [82]. Furthermore, fundamental solutions have been

derived for two zero-coupon bond-pricing PDEs. Lie [53] provided a complete group classification of

(7.1), he extracted four canonical forms of this equation which admit 1, 2, 4 and 6 dimensional non-

trivial point symmetry algebras (apart from the infinite dimensional algebra of trivial symmetries).

The family of parabolic equations (7.1) with a = 1 and b = 0 reduces to fourth Lie canonical form

which was utilized [79] to study this class further. A transformation procedure is also developed [10]

which relies on symmetries of such parabolic equation.

Equivalence transformations that map equation (7.1) into itself have been employed to deduce

the associated semi-invariants and invariants. Laplace type semi-invariants of this equation are

derived [37] under linear transformation of the dependent variable. These semi-invariants are referred

here as Ibragimov invariants. Separately, transformations of the independent variables are also

utilized [43] to obtain associated semi-invariants. In the reference cited, joint invariant equation for

(7.1) is also found by considering transformations of both the dependent and independent variables.

97
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These joint invariants provided necessary and sufficient conditions to reduce it to the classical heat

equation. The criteria for such a reduction are given in terms of the coefficients of the equation

and their partial derivatives. Furthermore, the work on joint invariant equations for the family of

equations (7.1) and reduction to the heat equation is also addressed [63] along with refinement of

the invariant conditions. The reducibility of (7.1) to second Lie canonical form is achieved and a

complete invariant characterization is provided for all the four Lie canonical forms in [61].

Semi-invariants for a class of systems of two parabolic type PDEs are derived [67] in this chapter.

It is shown that the invariance of the base complex parabolic equation reveals the invariance of the

emerging systems of parabolic type PDEs. The semi-invariants of systems are deduced by making

use of their correspondence with the scalar parabolic PDE and it is shown that these Ibragimov-

type semi-invariants also correspond to those of the base scalar parabolic PDE, i.e., Laplace-type

semi-invariants. In obtaining these semi-invariants a subclass of the equivalence transformations

of the dependent variables for systems is considered. These systems, their associated equivalence

transformations and corresponding Ibragimov-type semi-invariants are found to have CR-structure

with respect to both the dependent variables. Further, such systems of two parabolic type PDEs are

shown to be reducible to their simple solvable forms via complex linear equivalence transformations

of the complex dependent variable associated with the base parabolic PDE.

The invariance correspondence of the complex base and real systems of DEs presented here has

not been reported so far in this thesis. On splitting the invariant quantities associated with the

complex scalar parabolic equation (7.1), into the real and imaginary parts constitute invariants of

the corresponding systems, which ensure reduction of systems of PDEs to simple linear forms if

the base complex equations are also reducible to simplest ones. Therefore, this chapter on invari-

ance of systems of PDEs is included to develop a better understanding of the complex symmetry

method for DEs. The results presented here for systems of two parabolic type PDEs reveal invariant

characterization of the CR-structured systems of DEs.

7.1 Parabolic Type Systems and Associated Equivalence Transfor-

mations

Linear transformation of (only) the dependent variable of the parabolic PDE (7.1) is of the form

u = σ(t, x)ū, σ(t, x) 6= 0, (7.2)

that maps the family (7.1) into itself. That is under (7.2) the parabolic equation (7.1) remains linear

and homogeneous but the transformed PDE

ūt = āūxx + b̄ūx + c̄ū, (7.3)
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has new coefficients ā, b̄ and c̄ which are

ā = a, b̄ = b + 2
σx

σ
a, c̄ =

L(σ)
σ

, (7.4)

in which the operator L is defined as

L = a
∂2

∂x2
+ b

∂

∂x
− ∂

∂t
+ c. (7.5)

Now focus on the linear parabolic type system of two PDEs in two independent variables t and x

vt = α1vxx + α2wxx + β1vx + β2wx + γ1v + γ2w,

wt = α3vxx + α4wxx + β3vx + β4wx + γ3v + γ4w, (7.6)

where the coefficients αj , βj and γj for j = 1, .., 4 are functions of t and x. The equivalence

transformations of the dependent variables, as can be verified, of this family (7.6) of linear parabolic

type equations are as follows

v = τ1(t, x)v̄ + τ2(t, x)w̄,

w = τ3(t, x)v̄ + τ4(t, x)w̄. (7.7)

The coefficients of the transformed system of PDEs under the linear change (7.7) of the dependent

variables of system (7.6), can be written in terms of τi’s and coefficients of (7.6).

Here a special class of systems (7.6) which corresponds to a complex scalar linear parabolic

equation of the form (7.1) is considered. Such complex base equation has complex dependent variable

of the real independent variables, i.e., u(t, x) = v(t, x) + iw(t, x). Moreover, all the coefficients of

complex base PDE (7.1) are also considered complex functions of the independent variables t and

x, to extract a coupled system of two linear parabolic type PDEs

vt = a1vxx − a2wxx + b1vx − b2wx + c1v − c2w,

wt = a1wxx + a2vxx + b1wx + b2vx + c1w + c2v. (7.8)

The subset of equivalence transformations of the dependent variables (7.7) of the form

v = σ1(t, x)v̄ − σ2(t, x)w̄,

w = σ2(t, x)v̄ + σ1(t, x)w̄, (7.9)

are arrived at by the complex transformations (7.2) if σ(t, x) = σ1(t, x) + iσ2(t, x). This subset of

the equivalence transformations (7.9) maps the system of linear PDEs (7.8) to

v̄t = ā1v̄xx − ā2w̄xx + b̄1v̄x − b̄2w̄x + c̄1v̄ − c̄2w̄,

w̄t = ā1w̄xx + ā2v̄xx + b̄1w̄x + b̄2v̄x + c̄1w̄ + c̄2v̄, (7.10)
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where
ā1 = a1, ā2 = a2,

b̄1 = b1 + 2[σ1(a1σ1x−a2σ2x)+σ2(a1σ2x+a2σ1x)]
σ2
1+σ2

2
,

b̄2 = b2 + 2[−σ2(a1σ1x−a2σ2x)+σ1(a1σ2x+a2σ1x)]
σ2
1+σ2

2
,

c̄1 = σ1(L1σ1−L2σ2)+σ2(L1σ2+L2σ1)
σ2
1+σ2

2
,

c̄2 = σ1(L1σ2+L2σ1)−σ2(L1σ1−L2σ2)
σ2
1+σ2

2
,

(7.11)

and the operators L1 and L2 are the real and imaginary parts of the complex operator (7.5), i.e.,

L1 = a1
∂2

∂x2 + b1
∂
∂x − ∂

∂t + c1,

L2 = a2
∂2

∂x2 + b2
∂
∂x − ∂

∂t + c2.
(7.12)

Remark 7.1.1. The linear parabolic type system (7.8) is a special class of the family of the linear

parabolic systems (7.6). Equations (7.8) have six arbitrary coefficients whereas (7.6) has twelve.

Now consider the case for which system (7.8) reduces to an uncoupled

vt = a1vxx + b1vx + c1v,

wt = a1wxx + b1wx + c1w,
(7.13)

and a coupled system of two PDEs

vt = −a2wxx − b2wx − c2w,

wt = a2vxx + b2vx + c2v.
(7.14)

These systems are extractable from (7.8) by considering a2 = b2 = c2 = 0 and a1 = b1 = c1 = 0,

respectively or alternatively assuming the coefficients a, b and c, real or pure imaginary.

These systems (7.13) and (7.14) will be investigated later. The essence of this section is that

the system (7.8) has equivalence transformations, that is, a linear change of the dependent variables

(7.9) which maps it into the same family with (in general) new coefficients (7.11).

7.2 Semi-Invariants under Transformation of the Dependent Vari-

ables

In this section Ibragimov-type invariants of the linear parabolic type system (7.8) under the de-

pendent variables transformations (7.9) are derived by reverting to the base scalar complex linear

parabolic equation (7.1) with complex coefficients.

Consider the following two non-trivial semi-invariants a and K [37]

K =
1
2
b2ax + (at + aaxx − a2

x)b + (aax − ab)bx − abt − a2bxx + 2a2cx, (7.15)
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referred to as a Laplace-type or Ibragimov invariants in [37]. The Ibragimov semi-invariant K can

be written compactly [61] as

k =
∂

∂x

(
c− a

(
b

2a

)

x

− b2

4a

)
+

∂

∂t

(
b

2a

)
, (7.16)

where K = −2a2k.

The following results are based on the semi-invariants a and k. The scalar linear parabolic PDE

(7.1) is equivalent to the parabolic equation (7.3), i.e., L̄ū = 0, via the linear change (7.2) if and

only if

ā = a, k̄ = k, (7.17)

where k̄ is

k̄ =
∂

∂x

(
c̄− ā

(
b̄

2ā

)

x

− b̄2

4ā

)
+

∂

∂t

(
b̄

2ā

)
. (7.18)

The construction of σ in the transformation (7.2) is achieved by solving the system [61]

σx

σ
=

b̄

2ā
− b

2a
,

σt

σ
= c− a

(
b

2a

)

x

− b2

4a
− c̄ + ā

(
b̄

2ā

)

x

+
b̄2

4ā
. (7.19)

As an example to be used later, let (7.1) has constant coefficients, then it can be reduced to the

classical heat equation

ūt = āūxx, ā = constant, (7.20)

under a change of the dependent variable

u = exp
(

ct− b2

4a
t− b

2a
x

)
ū, (7.21)

since ā = a and k̄ = k. This transformation is a consequence of the following relations

σx

σ
= − b

2a
,

σt

σ
= c− b2

4a
, (7.22)

which appear due to (7.19).

Ibragimov-type invariants of the linear parabolic type system (7.8) under linear changes of the

dependent variables (7.9) can be derived by the complex split of a, k, ā and k̄, i.e.,

ā1 = a1, ā2 = a2, k̄1 = k1, k̄2 = k2, (7.23)

where

k1 =
∂

∂x

(
c1 − 1

2

[
a1

(
a1b1 + a2b2

a2
1 + a2

2

)

x

− a2

(
a1b2 − a2b1

a2
1 + a2

2

)

x

]
− 1

4

[
a1b

2
1 − a1b

2
2 + 2a2b1b2

a2
1 + a2

2

])

+
1
2

∂

∂t

(
a1b1 + a2b2

a2
1 + a2

2

)
,

k2 =
∂

∂x

(
c2 − 1

2

[
a1

(
a1b2 − a2b1

a2
1 + a2

2

)

x

+ a2

(
a1b1 + a2b2

a2
1 + a2

2

)

x

]
− 1

4

[
a2b

2
2 − a2b

2
1 + 2a1b1b2

a2
1 + a2

2

])

+
1
2

∂

∂t

(
a1b2 − a2b1

a2
1 + a2

2

)
. (7.24)
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Note that the transformed k’s are with the bars over coefficients aj , bj and cj where j = 1, 2. All

these observations lead to the following result.

Proposition 7.2.1. The linear parabolic system

L1v − L2w ≡ −vt + a1vxx − a2wxx + b1vx − b2wx + c1v − c2w = 0,

L1w + L2v ≡ −wt + a1wxx + a2vxx + b1wx + b2vx + c1w + c2v = 0,
(7.25)

is equivalent to

L̄1v̄ − L̄2w̄ ≡ −v̄t + ā1v̄xx − ā2w̄xx + b̄1v̄x − b̄2w̄x + c̄1v̄ − c̄2w̄ = 0,

L̄1w̄ + L̄2v̄ ≡ −w̄t + ā1w̄xx + ā2v̄xx + b̄1w̄x + b̄2v̄x + cc̄1w̄ + c̄2v̄ = 0,
(7.26)

under linear transformations (7.9) if and only if (7.23) holds, i.e.,

ā1 = a1, ā2 = a2, k̄1 = k1, k̄2 = k2, (7.27)

where

k̄1 =
∂

∂x

(
c̄1 − 1

2

[
ā1

(
ā1b̄1 + ā2b̄2

ā2
1 + ā2

2

)

x

− ā2

(
ā1b̄2 − ā2b̄1

ā2
1 + ā2

2

)

x

]
− 1

4

[
ā1b̄

2
1 − ā1b̄

2
2 + 2ā2b̄1b̄2

ā2
1 + ā2

2

])

+
1
2

∂

∂t

(
ā1b̄1 + ā2b̄2

ā2
1 + ā2

2

)
,

k̄2 =
∂

∂x

(
c̄2 − 1

2

[
ā1

(
ā1b̄2 − ā2b̄1

ā2
1 + ā2

2

)

x

+ ā2

(
ā1b̄1 + ā2b̄2

ā2
1 + ā2

2

)

x

]
− 1

4

[
ā2b̄

2
1 − ā2b̄

2
1 + 2ā1b̄1b̄2

ā2
1 + ā2

2

])

+
1
2

∂

∂t

(
ā1b̄2 − ā2b̄1

ā2
1 + ā2

2

)
, (7.28)

and σ1, σ2 in the linear transformations (7.9) can be deduced from (7.19) via a complex split.

The proof of this proposition follows immediately from the preceding discussion including the

construction of the linear transformation encapsulated in σ.

7.2.1 Uncoupled Parabolic Type Systems

Here an investigation of the Ibragimov-type invariants of the system (7.8) when it maps to the

system of the form (7.13) are pursued. Notice that these systems are special cases of the system of

PDEs (7.8). If the targeted parabolic type system is uncoupled, i.e., of the form

v̄t = ā1v̄xx + b̄1v̄x + c̄1v̄,

w̄t = ā1w̄xx + b̄1w̄x + c̄1w̄.
(7.29)

Then the transformed semi-invariants satisfy ā1 = a1, ā2 = 0, k̄2 = 0 and

k̄1 =
∂

∂x

(
c̄1 − ā1

(
b̄1

2ā1

)

x

− b̄2
1

4ā1

)
+

∂

∂t

(
b̄1

2ā1

)
. (7.30)
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7.2.2 Coupled Parabolic Type Systems

For a coupled system of the form

v̄t = −ā2w̄xx − b̄2w̄x − c̄2w̄,

w̄t = ā2v̄xx + b̄2v̄x + c̄2v̄,
(7.31)

the transformed semi-invariants satisfy ā1 = 0, ā2 = a2, k̄1 = 0 and

k̄2 =
∂

∂x

(
c̄2 − ā2

(
b̄2

2ā2

)

x

− b̄2
2

4ā2

)
+

∂

∂t

(
b̄2

2ā2

)
. (7.32)

These sub-sections can be summarized in the following result.

Proposition 7.2.2. The linear parabolic type system (7.8) is reducible to the uncoupled system

(7.29) and the special coupled system (7.31) via equivalence transformations (7.9) if and only if

ā1 = a1, ā2 = 0, k̄2 = 0 and k̄1 as in (7.30) and ā2 = a2, ā1 = 0, k̄1 = 0 and k̄2 as in (7.32),

respectively.

The proof follows at once from the discussion contained above in sub-sections (7.2.1) and (7.2.2).

Consequently one arrives at the following.

Corollary 7.2.3. The parabolic type system (7.8) is reducible to the simpler uncoupled and coupled

systems
v̄t = ā1v̄xx,

w̄t = ā1w̄xx,
(7.33)

and
v̄t = −ā2w̄xx,

w̄t = ā2v̄xx,
(7.34)

by means of the linear dependent variables change (7.9) if and only if ā1 = a1, ā2 = 0 and ā1 = 0,

ā2 = a2, respectively while k̄1 = k1 = 0 = k2 = k̄2 for both the cases, viz. uncoupled and special

coupled systems of PDEs.

Note that if a1 is constant in the Corollary then the criteria for reduction to simplest system,

that is, the classical heat system of PDEs follows immediately.

The linear parabolic type uncoupled and coupled systems of PDEs (7.13) and (7.14) are not

only the special cases of (7.8) but these also appear as subcases of the general class of systems of

two linear parabolic type PDEs (7.6). Thus the Proposition (7.2.2) implies that the sub-class (7.9)

of the equivalence transformations (7.7) is found to map special subcases (uncoupled and coupled

linear parabolic type systems of two PDEs) of the general class (7.6) into one of its simplest forms

or the same family of equations with different coefficients.

In the next section some applications of the results obtained are pursued.
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7.3 Applications

Here examples of certain parabolic type systems and their reductions are considered.

1. A constant coefficient parabolic type system

vt = a1vxx − a2wxx + b1vx − b2wx + c1v − c2w,

wt = a1wxx + a2vxx + b1wx + b2vx + c1w + c2v, (7.35)

is reducible to the classical heat system

v̄t = ā1v̄xx − ā2w̄xx,

w̄t = ā2v̄xx + ā1w̄xx, (7.36)

since

ā1 = a1, ā2 = a2, k̄1 = k1 = 0, k̄2 = k2 = 0. (7.37)

The transformation is given by the complex split of (7.21), i.e.,

v = eα1(v cos(α2)− w sin(α2)),

w = eα1(w cos(α2) + v sin(α2)), (7.38)

where

α1 =
(

c1 − a1(b2
1 − b2

2) + 2a2b1b2

4(a2
1 + a2

2)

)
t−

(
a1b1 + a2b2

2(a2
1 + a2

2)

)
x,

α2 =
(

c2 − 2a1b1b2 − a2b
2
1 + a2b

2
2

4(a2
1 + a2

2)

)
t−

(
a1b2 − a2b1

2(a2
1 + a2

2)

)
x. (7.39)

Notice that this transformation is much more complicated than the corresponding transformation

(7.21), but elegantly furnishes the equivalence of (7.35) and (7.36).

2. The time-dependent linear parabolic type system

vt = xvxx + c1(t)v − c2(t)w,

wt = xwxx + c1(t)w + c2(t)v,
(7.40)

has a1 = x, k1 = 0 = k2 and by is reducible to

v̄t = xv̄xx,

w̄t = xw̄xx.
(7.41)

The transformation is

v = e
∫

c1(t)dt

(
v̄ cos

(∫
c2(t)dt

)
− w̄ sin

(∫
c2(t)dt

))
,

w = e
∫

c1(t)dt

(
w̄ cos

(∫
c2(t)dt

)
+ v̄ sin

(∫
c2(t)dt

))
. (7.42)
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This is quite a messy transformation compared to the scalar case of the PDE

ut = xuxx + c(t)u, (7.43)

which reduces to ūt = xūxx via u = e
∫

c(t)dtū.

3. Consider the variable coefficient linear diffusive system

vt = −1
2A2x2vxx −Bxvx + Cv,

wt = −1
2A2x2wxx −Bxwx + Cw,

(7.44)

which actually corresponds to the complex Black-Scholes equation (set u = v + iw)

ut = −1
2
A2x2uxx −Bxux + Cu. (7.45)

Here ā1 = a1, ā2 = a2 = 0, k̄1 = k1 = 0 and k̄2 = k2 = 0. Thus the system (7.44) can be reduced to

v̄t = −1
2A2x2v̄xx,

w̄t = −1
2A2x2w̄xx,

(7.46)

via
v =

(
C − 1

2B − 1
2

B2

A2

)
tx−B/A2

v̄,

w =
(
C − 1

2B − 1
2

B2

A2

)
tx−B/A2

w̄.
(7.47)

4. Finally consider some special cases, i.e., uncoupled and coupled parabolic type systems of

PDEs. If a2 = b2 = c2 = 0 or a1 = b1 = c1 = 0 in (7.39) then as a result the following equivalence

transformations
v = eα3v,

w = eα3w,
(7.48)

and
v = eα4(v cos(α5)− w sin(α5)),

w = eα4(w cos(α5) + v sin(α5)),
(7.49)

are found, respectively. Here α3 =
(
c1 − b21

4a1

)
t − b1

2a1
x, α4 = − b2

2a2
x and α5 =

(
c2 − b22

4a2

)
t. These

transformations (7.48) and (7.49) reduce the following systems

vt = a1vxx + b1vx + c1v,

wt = a1wxx + b1wx + c1w,
(7.50)

and
vt = −a2wxx − b2wx − c2w,

wt = a2vxx + b2vx + c2v,
(7.51)

to an uncoupled and a coupled system of PDEs

v̄t = ā1v̄xx,

w̄t = ā1w̄xx,
(7.52)
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and
v̄t = −ā2w̄xx,

w̄t = ā2v̄xx,
(7.53)

respectively, which satisfy the invariant conditions accordingly. Another uncoupled system with

variable coefficients
vt = vxx + xvx + x2

4 v,

wt = wxx + xwx + x2

4 w,
(7.54)

is equivalent to the simpler system of the form

v̄t = v̄xx + v̄,

w̄t = w̄xx + w̄,
(7.55)

via the equivalence transformations
v̄ = ve( 3

2
t+ 1

4
x2),

w̄ = we( 3
2
t+ 1

4
x2).

(7.56)

In this case ā = a = 1 and k1 = k2 = k̄1 = k̄2 = 0.



Chapter 8

Summary and Conclusions

Lie proved that all linear scalar second order ODEs are transformable to each other, which implies

that all these equations belong to one equivalence class. His earliest attempts were to exploit in-

variance of linear DEs under invertible transformations of variables to map linear DEs to equations

with known solutions. The equivalence problem for linear DEs prompts the question of existence of

invertible point transformations to connect them with non-linear ones. With this aim, Lie presented

the linearization theorem for scalar second order ODEs. He proved that a non-linear ODE is trans-

formable to the free particle equation if and only if it is at most cubically semi-linear in the first

derivative of the dependent variable and satisfies a set of constraint equations given in terms of its

coefficients. Though simple in principle, the linearization problem is complicated by the requirement

of eight Lie point symmetry generators which restricts its applicability to just maximally symmetric

second order ODEs. However, an integration technique was developed to find the exact solutions of

such ODEs which requires only a 2-dimensional solvable algebra of symmetry generators.

A two dimensional system of second order ODEs can be linearized if it has a 5, 6, 7, 8 or

15-dimensional Lie point symmetry algebra [97]. Such systems are integrable if they have at least a

4-dimensional algebra. Despite these classifications for linearizable and integrable two dimensional

systems the work was incomplete. One needs practical algorithms to construct the linearization

criteria and transformations to map systems to linear ones. Among a few, geometric [70, 71] and

algebraic linearization [98] schemes were developed to accomplish these tasks. CSA provides us

means to study systems in terms of a base equation, such that, their linearization and solvability

may follow from the base ODEs [1–4]. The only constraints on such systems of second order ODEs

are the CR-equations (with respect to the dependent variables and their first order derivatives), to

correspond to a base scalar equation [87]. Therefore, CSA singles out a special class of systems

from the general one which may be solved by employing the usual symmetry methods but can be

solved solely by CSA [89] if the base equation is solvable. The CR-equations do not only establish

a connection between systems and base equations, they play an essential role in connecting their

solutions and symmetry generators.

107
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Two classes of systems of cubically semi-linear ODEs were provided by geometric and complex-

linearization procedures. The class which the geometric approach provides is transformable to a

system of free particle equations subject to a set of constraints on the coefficients, hence is max-

imally symmetric. The equivalence or inequivalence of these classes was investigated under point

transformations. (The symmetry structure of the class derived with CSA has not been investigated

earlier and was worked out here.) It was shown that they are in general distinct for systems of

genuinely cubically semi-linear second order ODEs. The equivalence of the two classes of systems

of second order ODEs that arise due to CSA and geometric approach has been investigated here

but there exist the most general class of such linearizable systems [74]. It has twenty arbitrary co-

efficients and, in principle, can be linearized to the five equivalence classes [97]. The CR-structured

linearizable systems have three out of these five equivalence classes, it is worth while to investigate

the existence of transformations between this class and the most general one. The equivalence prob-

lem for the linear CR-structured systems with one arbitrary coefficient and the general linear form

with three has been undertaken in chapter 3. The results obtained propose that these two classes

are transformable into each other because it is proved that both the optimal and reduce optimal

linear forms generate 6, 7 and 15-dimensional symmetry algebras. These observations imply the

existence of certain relationship between these linearizable classes via invertible maps, which needs

to be investigated.

Group classification of two dimensional linearizable systems of second order ODEs [97] has un-

covered five equivalence classes with a 5, 6, 7, 8, or 15-dimensional symmetry algebras. It was not

clear that CSA is limited to these five classes or that it provides all the remaining four classes with

the same algebras mentioned above or it may go beyond this number. Therefore, the issue of the

classification of linearizable two dimensional CR-structured systems of second order ODEs provided

by CSA, was being investigated here. The classification of such general linearizable systems was

obtained by using the equivalence of corresponding linear systems under invertible transforms of the

variables. An “optimal canonical form” played a decisive role in unraveling the symmetry structure.

This canonical form was achieved by invertible transformations where the invertibility of these map-

pings insures that the symmetry structure is preserved. That optimal canonical form of the linear

systems of two second order ODEs led to five linearizable classes with respect to Lie point symmetry

algebras with dimensions mentioned above. The existence of a “reduced optimal canonical form” for

CR-structured two dimensional linear systems of ODEs was proved. This reduced canonical form

provided three equivalence classes, namely with 6, 7 or 15−dimensional point symmetry algebras.

Two cases were not amenable to the use of complex symmetries: those of 5 and 8−dimensional

algebras. The systems corresponding to a complex linearized scalar ODE involve one parameter

which can only cover three possibilities: (a) it is zero; (b) it is a non-zero constant; and (c) it is a

non-constant function.

The non-existence of 5 and 8-dimensional algebras for the CR-structured linear forms appearing
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due to CSA has been proved by showing that these forms are not equivalent to those provided by the

real symmetry approach for systems [97] with 5 and 8 generators. It remains to recover these two

linearizable classes by complex methods as the most general complex-linearizable form derived here

and the corresponding linear systems are not found to generate them. The CR-structured systems

studied here are complex-linearizable as they emerge from those equations that can be linearized by

means of the transformations of the form τj , j = 1, 2. These transformations were found to play a

comprehensive role in deciding whether the emerging systems could be linearized or not.

The next issue raised in this thesis concerns those two dimensional CR-structured systems that

are non-linearizable but correspond to a scalar base linearizable equation which can be linearized

by invertible complex transformations τ2. The real transformations corresponding to the complex

transformations above cannot be used to linearize the real systems [89]. A straight line representing

the solution of the (complex) free particle equation must be the intersection of two planes that are

the complex-linearizable system of ODEs, at right angles to incorporate the CR-equations. Thus

the complex extensions are very important and they generalize our understanding in a natural way.

It was shown that complex-linearization adopts such a procedure to solve systems with 1, 2, 3,

and 4-dimensional algebras. Clearly, from symmetry algebra the linearizability of such systems is

not achievable by real symmetry analysis, indeed, systems cannot be integrated with less than four

symmetry generators.

Lie presented a complete classification for the scalar second order ODEs with the explicit forms of

these equations and associated algebra realizations (see [62]). He proved that the allowable number

of symmetries for such ODEs is 0, 1, 2, 3, or 8. By considering the dependent variable in these

realizations as a complex function of the real independent variable, one obtains the CR-structured

systems as well as the Lie-like operators which are not the Lie point symmetry generators. Lie-like

conditions are derived here to associate the complex symmetry generators of the base equations with

the emerging systems. It was shown that these Lie-like operators do not form an algebra [66] as

do the Lie symmetries associated with the CR-structured systems. Further, the real and imaginary

parts of the complex symmetry generators are found to satisfy the CR-equations with respect to

the dependent variables as well as their first order derivatives. By making use of these observations

the Lie-like conditions are reduced for a comparison with the Lie point symmetry conditions [72].

It was proved that the Lie point symmetry conditions for two dimensional CR-structured systems

of second order ODEs are a part of the Lie-like conditions. These results have shown the difference

between Lie-like operators and Lie symmetries. Indeed, a set of four equations is presented which

recognizes Lie point symmetries out of Lie-like operators associated with a CR-structured system.

Two canonical forms for linear systems of four second order ODEs to which such a non-linear

system can be mapped by complex methods [88], are presented in this work. The equivalence of

linear scalar complex ODEs as well as the equivalence of systems of two complex ODEs of second

order were used as tools to establish these forms for systems of four ODEs. The next step was to
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construct complex-linearizability criteria for such non-linear systems. The most general forms of

these systems have been established which are transformable to a system of free particle equations,

i.e., it is at most cubically semi-linear in the first derivatives of the dependent variables of the system.

For this purpose the geometric linearization is extended to four dimensional CR-structured systems.

These base systems are, in general, algebraically inequivalent to those obtainable from CSA. This

complex-linearizable class of four dimensional systems can be linearized if the complex linearizing

transformations of the base equations have a specific form, which was a critical observation made

earlier for two dimensional CR-structured systems. These complex linearizing transformations were

shown to single out the linearizable systems from the complex-linearizable four dimensional systems

of second order ODEs.

Complex-linearization criteria for systems of four second order ODEs can also be established by

implementing the complexification procedure on a scalar second order ODE twice. This class of four

dimensional complex-linearizable systems of second order ODEs

f ′′j = ωj(x, f1, f2, f3, f4, f
′
1, f

′
2, f

′
3, f

′
4), j = 1, 2, 3, 4, (8.1)

where prime denotes differentiation with respect to x, would be different from the one given here.

One obvious difference may appear due to number of arbitrary coefficients, as this would have

fewer than the one studied in this thesis. The number of arbitrary coefficients reduces due to the

constraints on such systems to correspond to a complex linearizable ODE. These constraints are

obviously the CR-equations which in this case comprised of the following eight equations

ω1,f1 = ω2,f2 = ω3,f3 = ω4,f4 ,

−ω1,f2 = ω2,f1 = −ω3,f1 = ω4,f3 ,

−ω1,f3 = −ω2,f2 = ω3,f1 = ω4,f2 ,

ω1,f4 = −ω2,f3 = −ω3,f2 = ω4,f1 ,

(8.2)

and
ω1,f ′1 = ω2,f ′2 = ω3,f ′3 = ω4,f ′4 ,

−ω1,f ′2 = ω2,f ′1 = −ω3,f ′1 = ω4,f ′3 ,

−ω1,f ′3 = −ω2,f ′2 = ω3,f ′1 = ω4,f ′2 ,

ω1,f ′4 = −ω2,f ′3 = −ω3,f ′2 = ω4,f ′1 .

(8.3)

It seems that the complex transformations of the form τ1 may yield the real linearizing transfor-

mations for the emerging complex-linearizable systems when complexified twice as τ3 did when two

dimensional systems are complexified once.

Linear parabolic type equations have been extensively studied in the literature and such scalar

equations were mainly focussed. Here complex methods are used to study a special class of systems

of two linear parabolic type equations in order to deduce new semi-invariants called Ibragimov-

type semi-invariants [67]. It is shown that the semi-invariants under equivalence transformations
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of the dependent variables, restricted to a special class, can be achieved for a special class of two

linear parabolic type equations in two independent variables that can be obtained from the analytic

continuation of the scalar complex linear (1+1) parabolic equation. The Ibragimov-type semi-

invariants as well as maps for this class of systems of two linear parabolic type equations are found

to correspond to the complex Laplace type invariants [37] and maps associated with the base complex

scalar (1+1) parabolic PDE, respectively. It is now clear that this special class of systems of

two linear parabolic type equations have different algebraic properties when its symmetries are

deduced from its complex counterpart compared to those of the system itself (see [65]). However,

the consistency of the equivalence criteria had been proved in this thesis, i.e., semi-invariants of the

system of two linear parabolic type PDEs correspond to the complex Laplace-type semi-invariants

of the base complex PDE. Moreover, an answer to the inverse problem, i.e., when a system of two

linear parabolic type PDEs arise from a scalar complex linear (1+1) parabolic equation was also

provided.

This thesis mainly dealt with those CR-structured systems that are complex-linearizable. The

complex base equations generating the complex-linearizable class of two dimensional systems that

consist of both the linearizable and non-linearizable systems, are necessarily maximally symmetric.

A complete classification of the scalar second order ODEs was presented that includes such equations

with only 3 or lower dimensional algebra realizations. These 3-dimensional algebras are of particular

interest as they may yield a linearizable two dimensional system with five or six symmetry generators.

For this purpose one needs to investigate the Lie-like operators associated with systems due to a 3-

dimensional complex algebra of the base equations. For instance, if all the Lie-like operators of such

systems are Lie point symmetries than it must generate a linearizable class of systems. However, the

complex Lie algebras of scalar second order ODEs with dimensions less than three would obviously

yield non-linearizable CR-structured systems.

The most general form of a complex-linearizable system that can be linearized to the reduced

optimal canonical form has not been achieved so far. Targeting the free particle equation with the

transformations of the form τ1 provides a quadratically semi-linear second order ODE, whereas τ2

leads to a cubic (in first derivative) ODE. Therefore, a complex-linearizable system is (at most)

cubically semi-linear but the linearizable CR-structured systems belonging to this class would be at

most quadratic in the first derivatives of the dependent variables. To present this idea concisely,

one needs to look into the procedure Lie adopted in deriving the most general linearizable form of

scalar second order ODEs via invertible transformations. For this purpose consider

x̃ = ϕ(x, u), ũ = ψ(x, u). (8.4)

These invertible maps connect ũ′′ = 0 with

u′′ +
1

(ϕ,xψ,u − ϕ,uψ,x)
[(ϕ,uψ,uu − ψ,uϕ,uu)u′3 + (ϕ,xψ,uu + 2ϕ,uψ,xu − ψ,xϕ,uu − 2ψ,uϕ,xu)u′2

+(ϕ,uψ,xx + 2ϕ,xψ,xu − ψ,uϕ,xx − 2ψ,xϕ,xu)u′ + ϕ,xψ,xx − ψ,xϕ,xx] = 0, (8.5)
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subject to invertibility constraint ϕ,xψ,u − ϕ,uψ,x 6= 0. The arbitrary functions ϕ(x, u) and ψ(x, u)

involved in these transformations can be restricted to generate the corresponding scalar second order

ODEs. The following cases arise, showing that a quadratically semi-linear second order ODE can

be generated with the restricted form of the arbitrary point transformations, i.e., τ1.

Case (i). T1 : x̃ = ϕ(x), ũ = ψ(x, u),

u′′ +
1

(ϕ,xψ,u)
[(ϕ,xψ,uu)u′2 + (2ϕ,xψ,xu − ψ,uϕ,xx)u′ + ϕ,xψ,xx − ψ,xϕ,xx] = 0, (8.6)

Case (ii). T2 : x̃ = ϕ(u), ũ = ψ(x, u),

u′′ − 1
(ϕ,uψ,x)

[(ϕ,uψ,uu − ψ,uϕ,uu)u′3 + (2ϕ,uψ,xu − ψ,xϕ,uu)u′2 + (ϕ,uψ,xx)u′] = 0, (8.7)

Case (iii). T3 : x̃ = ϕ(x, u), ũ = ψ(x),

u′′ − 1
(ϕ,uψ,x)

[(−ψ,xϕ,uu)u′2 + (ϕ,uψ,xx − 2ψ,xϕ,xu)u′ + ϕ,xψ,xx − ψ,xϕ,xx] = 0, (8.8)

Case (iv). T4 : x̃ = ϕ(x, u), ũ = ψ(u),

u′′ +
1

(ϕ,xψ,u)
[(ϕ,uψ,uu − ψ,uϕ,uu)u′3 + (ϕ,xψ,uu − 2ψ,uϕ,xu)u′2 − (ψ,uϕ,xx)u′] = 0, (8.9)

Case (v). T5 : x̃ = ϕ(x), ũ = ψ(u),

u′′ +
1

(ϕ,xψ,u)
[(ϕ,xψ,uu)u′2 − (ψ,uϕ,xx)u′] = 0, (8.10)

Case (vi). T6 : x̃ = ϕ(u), ũ = ψ(x),

u′′ +
1

(ϕ,uψ,x)
[(ψ,xϕ,uu)u′2 − (ϕ,uψ,xx)u′] = 0. (8.11)

There does not exist a linearizable form of the scalar second order ODE corresponding to T7 : x̃ =

ϕ(x), ũ = ψ(x) and T8 : x̃ = ϕ(u), ũ = ψ(u). By looking at the above cases it is apparent

that the most general linearizable form of a CR-structured complex-linearizable two dimensional

system of second order ODEs would be quadratic non-linear in the first derivatives of the dependent

variables. This remains as an open problem to characterize such linearizable systems with respect to

the corresponding complex linearizing transformations. By fixing the problem of the most general

linearizable form of the CR-structured two dimensional systems of second order ODEs one may look

for the invariant linearization criteria for these systems instead of the complex-linearization criteria.

The CR-equations were shown to help in developing solution algorithms to solve those systems

that are complex-linearizable. Indeed, these can be linearized with certain complex transformations.

The question of complex-integrability, which concerns those CR-structured systems that arise from

complex integrable base equations and can be integrated, remains unanswered. The integration of
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two dimensional systems of second order ODEs relies on atleast a 4-dimensional algebra but it is

not necessary that all the Lie-like operators obtained from a 2-dimensional complex algebra are the

symmetries of the corresponding systems. Furthermore, it is clear from the 2-dimensional solvable

algebras associated with the integrable scalar ODEs that all the complex-integrable systems could

not be integrated. For example, consider the symmetries of the equation u′′ − ω(u′) = 0, which

admits Z1 = ∂x and Z2 = ∂u. Though all the Lie-like operators emerging from these complex

symmetries are symmetry generators of the complex-integrable CR-structured system, they are,

in general, insufficient to integrate it completely. The complex-integrable systems may provide a

smaller class as comparative to the class of complex-linearizable ones.

For four dimensional complex-linearizable systems of second order ODEs only the linearizable

systems were presented in this thesis, one needs to discover the symmetry structure of such systems.

It has already been observed that for two dimensional linearizable systems emerging from complex

linearizable ODEs have three equivalence classes, though the base equations have only one equiv-

alence class. It implies that the four dimensional systems obtainable from complex systems that

can be linearized, may have more than five equivalence classes because the base systems have five.

By extending these observations to four dimensional complex-linearizable systems one may extract

more than one equivalence class even if the base systems are only maximally symmetric. Indeed,

there will be four dimensional systems that are complex-linearizable but could not be linearized

via complex linearizing transformations of the base systems. The CR-equations for higher dimen-

sional systems could be incorporated to give solution algorithms as was done for two dimensional

complex-linearizable systems. Then the complex-integrability of these systems needs attention to

integrate or solve them by complex methods. There are no such workable algorithms established

with symmetry analysis for even three dimensional systems. Therefore, CSA might be exploited to

extend and translate Lie’s theory of continuous group into practicable algorithms, for solving the

linearization and integrability problems for higher than four dimensional systems of second order

ODEs.

One might wonder how the procedures developed can be extended to odd dimensional systems

of equations. To obtain a system of 2n ODEs one can take a system of n ODEs, by regarding it as

complex and splitting. This method will not work for odd dimensions. An extension of the procedure

has been developed [64] by splitting iteratively starting with a scalar base equation. Among others,

this gave a three dimensional system of ODEs. The procedure could be used by increasing the

number of iterations or starting with a higher dimensional system and using a second iteration,

to obtain any dimensional system — even or odd. An interesting characterization of the Lie-like

operators has been found contrary to those associated with the two dimensional systems of second

order ODEs. Though for systems of dimension two it is shown that all the Lie symmetry generators

are obtainable from the Lie-like operators, it is not necessarily the case when one moves even one

dimension further by employing CSA.
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The systems of PDEs addressed in chapter 7 emerge from a linear parabolic PDE by consid-

ering the dependent variable as a complex function of the two real independent variables, i.e.,

u(x) = f1(x) + if2(x). Another class of systems of PDEs is obtainable from a scalar ODE u′′(x) =

ω(x, u(x), u′(x)) when the dependent variable is a complex function of a complex independent vari-

able, i.e., u(z) = f1(z) + if2(z) where z = x + iy. As a result one finds a system of two PDEs

f1,xx − f1,yy + 2f2,xy = 4Ω1(x, y, f1, f2,
1
2
(f1,x + f2,y),

1
2
(f2,x − f1,y)),

f2,xx − f2,yy − 2f2,xy = 4Ω2(x, y, f1, f2,
1
2
(f1,x + f2,y),

1
2
(f2,x − f1,y)). (8.12)

The complex-linearization criteria for such systems of two PDEs have been derived [4] and the

complex linearizing transformations associated with the base scalar ODEs have been employed to

linearize the emerging systems of PDEs. Systems of PDEs which emerge from scalar ODEs are

said to be complex-linearizable under certain conditions obtained by splitting the complex variables

in Lie’s linearization conditions for the scalars. The work on complex-linearization presented in

this thesis has shown that the complex linearizing transformations of the associated base ODEs

determine whether the emerging systems of ODEs are linearizable or not. However, linearization

of a system of two PDEs obtainable from a complex scalar ODE may follow from those complex

transformations which can not be used to map two dimensional systems of ODEs to the simplest

linear ones. In order to clarify this point consider the higher-dimensional coupled system of modified

Lane-Emden type presented in [4]

f1,xx − f1,yy + 2f2,xy = −6f1(f1,x + f2,y) + 6f2(f2,x − f1,y)− 4f3
1 + 12f1f

2
2 ,

f2,xx − f2,yy − 2f2,xy = −6f2(f1,x + f2,y)− 6f1(f2,x − f1,y)− 12f2
1 f2 + 4f3

2 , (8.13)

where f1,x = f2,y and f1,y = −f2,x. This system of PDEs is reducible to

F1,xx − F1,yy + 2F2,xy = 0,

F2,xx − F2,yy − 2F2,xy = 0, (8.14)

under the following transformations

X = x− f1

f2
1 + f2

2

, Y = y +
f2

f2
1 + f2

2

,

F1 =
x2 − y2

2
− f2

1 + f2
2

xf1 + yf2
, F2 = xy − f2

1 + f2
2

yf1 − xf2
. (8.15)

Notice that these types of transformations do not generate the real linearizing transformations for a

system of ODEs. Therefore, in the case of PDEs, when dealt with by complex symmetry methods,

one may expect to go beyond the limits observed for the systems of ODEs in this thesis. The essence

of the above discussion is that a system of PDEs, if obtained from a complex base scalar or systems

of ODEs may inherit almost all the symmetry properties of the base. For example a system of two
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PDEs, if obtained from a linearizable base ODE, can always be linearized. If this is true then the

linearization problem for a system consisting of two or more PDEs can be dealt with by complex

transformations of the base system of ODEs. The characterization of such systems of PDEs, or

those obtainable by double splitting of the base ODEs would be interesting.

Another major issue which can be dealt with in CSA is linearization of systems of third order

ODEs. To this end, linearizability criteria and linearizing transformations associated with the scalar

third order ODEs [39,40,73] can be used to obtain the complex-linearizability conditions and corre-

sponding transformations to map the emerging systems of two third order ODEs to simplest possible

linear forms, respectively. Such linearizing point transformations must be of the form τ1 in order to

reduce the associated non-linear systems to their corresponding linear forms. For instance, consider

the following systems of two third order non-linear ODEs

f ′′′1 +
3
x

(1 + xf ′1)f
′′
1 − 3f ′′2 f ′2 + f ′31 − 3f ′1f

′2
2 +

3
x

(f ′21 − f ′22 ) = 0,

f ′′′2 +
3
x

(1 + xf ′1)f
′′
2 + 3f ′′1 f ′2 − f ′32 + 3f ′21 f ′2 +

6
x

(f ′1f
′
2) = 0, (8.16)

and

f ′′′1 −
(

6(f1f
′
1 + f2f

′
2)

f2
1 + f2

2

+
3
x

)
f ′′1 −

(
6(f2f

′
1 − f1f

′
2)

f2
1 + f2

2

)
f ′′2 +

6(f2
1 − f2

2 )(f ′31 − 3f ′1f
′2
2 )

(f2
1 + f2

2 )2

+
12f1f2(3f ′21 − f ′32 )

(f2
1 + f2

2 )2
+

6f1(f ′21 − f ′22 )
x(f2

1 + f2
2 )

+
12f2f

′
1f
′
2

x(f2
1 + f2

2 )
+

6f ′1
x2

+
6f1

x3
= 0,

f ′′′2 +
(

6(f2f
′
1 − f1f

′
2)

f2
1 + f2

2

)
f ′′1 −

(
6(f1f

′
1 + f2f

′
2)

f2
1 + f2

2

+
3
x

)
f ′′2 −

12f1f2(f ′31 − 3f ′1f
′2
2 )

(f2
1 + f2

2 )2

+
6(f2

1 − f2
2 )(3f ′21 f ′2 − f ′32 )

(f2
1 + f2

2 )2
− 6f2(f ′21 − f ′22 )

x(f2
1 + f2

2 )
+

12f1f
′
1f
′
2

x(f2
1 + f2

2 )
+

6f ′2
x2

+
6f2

x3
= 0, (8.17)

where prime denotes differentiation with respect to x. These systems are transformable to the

simplest linear form

F ′′′
1 = 0, F ′′′

2 = 0, (8.18)

here prime denotes differentiation with respect to χ. The complex transformations used to linearize

the above systems are of the form

χ = x, U = x exp(u), (8.19)

and

χ = x, U = 1/xu, (8.20)

respectively. Notice that the above complex transformations are analogues of τ1 and they linearize

the following complex third order ODEs

u′′′ +
3
x

(1 + xu′)u′′ + u′3 +
3
x

u′2 = 0, (8.21)
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and

u′′′ −
(

6u′

u
+

3
x

)
u′′ +

6u′3

u2
+

6u′2

xu
+

6u′

x2
+

6u

x3
= 0, (8.22)

to U ′′′ = 0. The following set of CR-equations

ω1,f1 = ω2,f2 , ω1,f2 = −ω2,f1 , ω1,f ′1 = ω2,f ′2 ,

ω1,f ′2 = −ω2,f ′1 , ω1,f ′′1 = ω2,f ′′2 , ω1,f ′′2 = −ω2,f ′′1 ,
(8.23)

establishes a correspondence between the complex-linearizable two dimensional systems of third or-

der ODEs and the complex base linearizable scalar ODEs. Though complex methods deal with the

special CR-structured classes of systems of DEs, these can be incorporated to solve (linearize/integrate)

higher dimensional systems of higher order ODEs. Invariance of the parabolic, hyperbolic and el-

liptic PDEs under equivalence transformations of the dependent and independent variables can also

be extended to CR-structured systems of PDEs. CSA would be helpful in uncovering the algebraic

symmetry properties of those systems of DEs which are difficult to deal with the usual symmetry

methods by adopting Lie’s theory in full generality.



Chapter 9

Appendix

9.1 Appendix A-1

Inserting F1(x, y, z, y′, z′) and F2(x, y, z, y′, z′) from (3.3) into (3.4) leads to

Dx(X).D2
x(Y )−Dx(Y ).D2

x(X)
(Dx(X))3

= 0,

Dx(X).D2
x(Z)−Dx(Z).D2

x(X)
(Dx(X))3

= 0. (9.1)

Substituting

Dx(X) = Xx + y
′
Xy + z

′
Xz,

D2
x(X) = Xxx + 2y

′
Xxy + 2z

′
Xxz + y

′2Xyy + 2y
′
z
′
Xyz + z

′2Xzz + y
′′
Xy + z

′′
Xz, (9.2)

and similar expressions for Dx(Y ), Dx(Z), D2
x(Y ) and D2

x(Z) in (9.1), yield

ᾱ1y
′′

+ ᾱ2z
′′

+ β̄1y
′3 + β̄2y

′2z
′
+ β̄3y

′
z
′2 + β̄4z

′3 + γ̄1y
′2 + γ̄2y

′
z
′
+ γ̄3z

′2

+δ̄1y
′
+ δ̄2z

′
+ ε̄1 = 0,

ᾱ3y
′′

+ ᾱ4z
′′

+ β̄5y
′3 + β̄6y

′2z
′
+ β̄7y

′
z
′2 + β̄8z

′3 + γ̄4y
′2 + γ̄5y

′
z
′
+ γ̄6z

′2

+δ̄3y
′
+ δ̄4z

′
+ ε̄2 = 0.

(9.3)

The coefficients of the above system of ODEs are

ᾱ1 = XxYy − YxXy + z
′
(XzYy − YzXy), ᾱ2 = XxYz − YxXz + y

′
(XyYz − YyXz),

ᾱ3 = XxZy − ZxXy + z
′
(XzZy − ZzXy), ᾱ4 = XxZz − ZxXz + y

′
(XyZz − ZyXz),

β̄1 = XyYyy − YyXyy, β̄2 = XzYyy − YzXyy + 2(XyYyz − YyXyz),

β̄3 = XyYzz − YyXzz + 2(XzYyz − YzXyz), β̄4 = XzYzz − YzXzz,

β̄5 = XyZyy − ZyXyy, β̄6 = XzZyy − ZzXyy + 2(XyZyz − ZyXyz),

β̄7 = XyZzz − ZyXzz + 2(XzZyz − ZzXyz), β̄8 = XzZzz − ZzXzz,

(9.4)
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γ̄1 = XxYyy − YxXyy + 2(XyYxy − YyXxy),

γ̄2 = 2[XxYyz + XyYxz + XzYxy − (YxXyz + YyXxz + YzXxy)],

γ̄3 = XxYzz − YxXzz + 2(XzYxz − YzXxz),

γ̄4 = XxZyy − ZxXyy + 2(XyZxy − ZyXxy),

γ̄5 = 2[XxZyz + XyZxz + XzZxy − (ZxXyz + ZyXxz + ZzXxy)],

γ̄6 = XxZzz − ZxXzz + 2(XzZxz − ZzXxz),

δ̄1 = XyYxx − YyXxx + 2(XxYxy − YxXxy),

δ̄2 = XzYxx − YzXxx + 2(XxYxz − YxXxz),

δ̄3 = XyZxx − ZyXxx + 2(XxZxy − ZxXxy),

δ̄4 = XzZxx − ZzXxx + 2(XxZxz − ZxXxz),

ε̄1 = XxYxx − YxXxx, ε̄2 = XxZxx − ZxXxx. (9.5)

System (9.3) yields a system of the form (3.5) with the following coefficients

α11 = τ1(ᾱ4β̄1 − ᾱ2β̄5), α12 = τ1(ᾱ4β̄2 − ᾱ2β̄6), α13 = τ1(ᾱ4β̄3 − ᾱ2β̄7),

α14 = τ1(ᾱ4β̄4 − ᾱ2β̄8), α21 = τ2(ᾱ3β̄1 − ᾱ1β̄5), α22 = τ2(ᾱ3β̄2 − ᾱ1β̄6),

α23 = τ2(ᾱ3β̄3 − ᾱ1β̄7), α24 = τ2(ᾱ3β̄4 − ᾱ1β̄8),

β11 = τ1(ᾱ4γ̄1 − ᾱ2γ̄4), β12 = τ1(ᾱ4γ̄2 − ᾱ2γ̄5), β13 = τ1(ᾱ4γ̄3 − ᾱ2γ̄6),

β21 = τ2(ᾱ3γ̄1 − ᾱ1γ̄4), β22 = τ2(ᾱ3γ̄2 − ᾱ1γ̄5), β23 = τ2(ᾱ2γ̄3 − ᾱ1γ̄6),

γ11 = τ1(ᾱ4δ̄1 − ᾱ2δ̄3), γ12 = τ1(ᾱ4δ̄2 − ᾱ2δ̄4), γ21 = τ2(ᾱ3δ̄1 − ᾱ1δ̄3),

γ22 = τ2(ᾱ3δ̄2 − ᾱ1δ̄4), δ1 = τ1(ᾱ4ε̄1 − ᾱ2ε̄2), δ2 = τ2(ᾱ3ε̄1 − ᾱ1ε̄2), (9.6)

where τ1 = −τ2 = ᾱ1ᾱ4 − ᾱ2ᾱ3.

9.2 Appendix A-2

2(γ2
11,x−δ21,f1−δ22,f2)+(γ2

21γ
2
11−γ2

22γ
2
12 +γ1

11γ
2
11−γ1

12γ
2
12)−4(β2

11δ11−β2
12δ12 +β2

21δ21−β2
22δ22) = 0,

2(γ2
12,x +δ21,f2−δ22,f1)+(γ2

21γ
2
12 +γ2

11γ
2
22 +γ1

11γ
2
12 +γ1

12γ
2
11)−4(β2

12δ11 +β2
11δ12 +β2

22δ21 +β2
21δ22) = 0,

4β2
11,x − γ2

11,f1
− γ2

12,f2
− 4(α11δ21 − α12δ22) + 2(β1

11γ
2
11 − β1

12γ
2
12) + 2(β2

11γ
2
21 − β2

12γ
2
22)− 2(β2

11γ
1
11 −

β2
12γ

1
12)− 2(β2

21γ
2
11 − β2

22γ
2
12) = 0,

4β2
12,x + γ2

11,f2
− γ2

12,f1
− 4(α11δ22 + α12δ21) + 2(β1

12γ
2
11 + β1

11γ
2
12) + 2(β2

12γ
2
21 + β2

11γ
2
22)− 2(β2

12γ
1
11 +

β2
11γ

1
12)− 2(β2

21γ
2
12 + β2

22γ
2
11) = 0,

12β2
21,x − 4β1

11,x + γ1
11,f1

+ γ1
12,f2

− 16(α21δ21 − α22δ22) − 8(β2
11γ

1
21 − β2

12γ
1
22) + 8(β1

21γ
2
11 − β1

22γ
2
12) −

3(γ2
21,f1

+ γ2
22,f2

) = 0,
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12β2
22,x − 4β1

12,x + γ1
12,f1

− γ1
11,f2

− 16(α22δ21 + α21δ22) − 8(β2
11γ

1
22 + β2

12γ
1
21) + 8(β1

21γ
2
12 + β1

22γ
2
11) −

3(γ2
22,f1

+ γ2
21,f2

) = 0,

2(γ1
21,x− δ11,f3 − δ12,f4)+γ1

21γ
2
21−γ1

22γ
2
22 +γ1

21γ
1
11−γ1

22γ
1
12−4(β1

21δ11−β1
22δ12 +β1

31δ21−β1
32δ22) = 0,

2(γ1
22,x− δ12,f3 + δ11,f4)+γ1

21γ
2
22 +γ1

22γ
2
21 +γ1

21γ
1
12 +γ1

22γ
1
11−4(β1

21δ12 +β1
22δ11 +β1

31δ22 +β1
32δ21) = 0,

4β1
31,x− γ1

21,f3
− γ1

22,f4
− 4(α31δ11−α32δ12)+2(β2

31γ
1
21−β2

32γ
1
22−β1

21γ
1
21 +β1

22γ
1
22−β1

31γ
2
21 +β1

32γ
2
22 +

β1
31γ

1
11 − β1

32γ
1
12) = 0,

4β1
32,x− γ1

22,f3
+ γ1

21,f4
− 4(α32δ11 +α31δ12)+2(β2

32γ
1
21 +β2

31γ
1
22−β1

21γ
1
22−β1

22γ
1
21−β1

31γ
2
22−β1

32γ
2
21 +

β1
31γ

1
12 + β1

32γ
1
11) = 0,

(α21,f1 +α22,f2 −α11,f3 −α12,f4)+2(α11β
1
21−α12β

1
22 +α21β

2
21−α22β

2
22−α21β

1
11 +α22β

1
12−α31β

2
11 +

α32β
2
12) = 0,

(α22,f1 −α21,f2 −α12,f3 +α11,f4)+2(α11β
1
22 +α12β

1
21 +α21β

2
22 +α22β

2
21−α21β

1
12−α22β

1
11−α31β

2
12−

α32β
2
11) = 0,

(α31,f1 +α32,f2 −α21,f3 −α22,f4)+2(α11β
1
31−α12β

1
32 +α21β

2
31−α22β

2
32−α21β

1
21 +α22β

1
22−α31β

2
21 +

α32β
2
22) = 0,

(α32,f1 −α31,f2 −α22,f3 +α21,f4)+2(α11β
1
32 +α12β

1
31 +α21β

2
32 +α22β

2
31−α21β

1
22−α22β

1
21−α31β

2
22−

α32β
2
21) = 0,

−6α21,x +5(α21γ
1
11−α22γ

1
12)+2(α31γ

2
11−α32γ

2
12)−2(β2

21,f3
+β2

22,f4
)+6(β1

31β
2
11−β1

32β
2
12)+(α21γ

2
21−

α22γ
2
22)− 6(β1

21β
2
21 − β1

22β
2
22)− 4(β1

21,f1
+ β1

22,f2
) + 2(β2

31,f1
+ β2

32,f2
) + 4(β1

11,f3
+ β1

12,f4
)− 2(α11γ

1
21 −

α12γ
1
22) = 0,

−6α22,x +5(α21γ
1
12 +α22γ

1
11)+2(α31γ

2
12 +α32γ

2
11)−2(β2

22,f3
+β2

21,f4
)+6(β1

31β
2
12 +β1

32β
2
11)+(α21γ

2
22 +

α22γ
2
21)− 6(β1

21β
2
22 + β1

22β
2
21)− 4(β1

22,f1
− β1

21,f2
) + 2(β2

32,f1
− β2

31,f2
) + 4(β1

12,f3
− β1

11,f4
)− 2(α12γ

1
21 +

α11γ
1
22) = 0,

−2α11,x + (α11γ
1
11 − α12γ

1
12) − 2(β2

11β
2
31 − β2

12β
2
32) + β2

21,f1
+ β2

22,f2
− β2

11,f3
− β2

12,f4
+ 2(β2

11β
1
21 −

β2
12β

1
22 + β2

21β
2
21 − β2

22β
2
22) + (α11γ

2
21 − α12γ

2
22)− 2(β2

21β
1
11 − β2

22β
1
12) = 0,

−2α12,x + (α11γ
1
12 + α12γ

1
11) − 2(β2

31β
2
12 + β2

11β
2
32) + (β2

22,f1
− β2

21,f2
− β2

12,f3
+ β2

11,f4
) + 2(β2

11β
1
22 +

β1
21β

2
12 + 2β2

21β
2
22) + (α11γ

2
22 + α12γ

2
21)− 2(β2

21β
1
12 + β2

22β
1
11) = 0,

−2α31,x + (α31γ
1
11 − α32γ

1
12) + (α31γ

2
21 − α32γ

2
22) − (β1

31,f1
+ β1

32,f2
− β1

21,f3
− β1

22,f4
) − 2(β1

11β
1
31 −

β1
12β

1
32 − β1

21β
1
21 + β1

22β
1
22 + β1

21β
2
31 − β1

22β
2
32 − β1

31β
2
21 + β1

32β
2
22) = 0,

−2α32,x + (α32γ
1
11 + α31γ

1
12) + (α31γ

2
22 + α32γ

2
21) − (β1

32,f1
− β1

31,f2
− β1

22,f3
+ β1

21,f4
) − 2(β1

11β
1
32 +

β1
12β

1
31 − 2β1

21β
1
22 + β1

21β
2
32 + β1

22β
2
31 − β1

31β
2
22 − β1

32β
2
21) = 0,
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−8β1
11,x+2(γ1

11,f1
+γ1

12,f2
)−6(β2

31γ
2
11−β2

32γ
2
12)+12(α11δ11−α12δ12)−8(α21δ21−α22δ22)−4(β2

11γ
1
21−

β2
12γ

1
22)+10(β1

21γ
2
11−β1

22γ
2
12)+12β2

21,x−3(γ2
11,f3

+γ2
12,f4

)+6(β2
21γ

2
21−β2

22γ
2
22−β2

21γ
1
11 +β2

22γ
1
12) = 0,

−8β1
12,x+2(γ1

12,f1
−γ1

11,f2
)−6(β2

31γ
2
12+β2

32γ
2
11)+12(α12δ11+α11δ12)−8(α21δ22+α22δ21)−4(β2

12γ
1
21+

β2
11γ

1
22)+10(β1

21γ
2
12 +β1

22γ
2
11)+12β2

22,x−3(γ2
12,f3

−γ2
11,f4

)+6(β2
22γ

2
21 +β2

21γ
2
22−β2

22γ
1
11−β2

21γ
1
12) = 0,

−6α21,x + 2(β2
31,f1

+ β2
32,f2

) + (α21γ
1
11 − α22γ

1
12) + 5(α21γ

2
21 − α22γ

2
22) + 2(α11γ

1
21 − α12γ

1
22 − β2

21,f3
−

β2
22,f4

−α31γ
2
11 +α32γ

2
12)+6(β2

11β
1
31−β2

12β
1
32−β2

21β
1
21 +β2

22β
1
22)−(β1

21,f1
+β1

22,f2
−β1

11,f3
−β1

12,f4
) = 0,

−6α22,x +2(β2
32,f1

−β2
31,f2

)+(α21γ
1
12 +α22γ

1
11)+5(α21γ

2
22 +α22γ

2
21)+2(α11γ

1
22 +α12γ

1
21)−2(β2

22,f3
−

β2
21,f4

+α31γ
2
12 +α32γ

2
11)+6(β2

12β
1
31 +β2

11β
1
32−β2

21β
1
22−β2

22β
1
21)−β1

22,f1
+β1

21,f2
+β1

12,f3
−β1

11,f4
= 0,

4β1
21,x + γ1

21,f1
+ γ1

22,f2
− 8(α21δ11−α22δ12)+2(β2

21γ
1
21−β2

22γ
1
22 +β1

11γ
1
21−β1

12γ
1
22 +β1

21γ
2
21−β1

22γ
2
22−

β1
12γ

1
11 + β1

22γ
1
12)− 4(β1

31γ
2
11 − β1

32γ
2
12)− 2(γ1

11,f3
+ γ1

12,f4
)− 4(α31δ21 − α32δ22) = 0,

4β1
22,x + γ1

22,f1
− γ1

21,f2
− 8(α22δ11 +α21δ12)+2(β2

22γ
1
21 +β2

21γ
1
22 +β1

12γ
1
21 +β1

11γ
1
22 +β1

21γ
2
22 +β1

22γ
2
21−

β1
21γ

1
12 − β1

22γ
1
11)− 4(β1

31γ
2
12 + β1

32γ
2
11)− 2(γ1

12,f3
− γ1

11,f4
)− 4(α32δ21 + α31δ22) = 0,

−4β1
21,x +4β2

31,x +2(γ1
21,f1

+γ1
22,f2

)−4(γ1
21β

2
21−γ1

22β
2
22−β1

11γ
1
21 +β1

12γ
1
22−β1

21γ
2
21 +β1

22γ
2
22 +β1

21γ
1
11−

β1
22γ

1
12)− γ2

21,f3
− γ2

22,f4
− γ1

11,f3
− γ1

12,f4
− 8(α31δ21 − α32δ22) = 0,

−4β1
22,x +4β2

32,x +2(γ1
22,f1

−γ1
21,f2

)−4(γ1
22β

2
21 +γ1

21β
2
22−β1

11γ
1
22−β1

12γ
1
21−β1

21γ
2
22−β1

22γ
2
21 +β1

21γ
1
12 +

β1
22γ

1
11)− γ2

22,f3
+ γ2

21,f4
− γ1

12,f3
+ γ1

11,f4
− 8(α32δ21 − α31δ22) = 0,

2(δ11,f1 + δ12,f2) + 4(β1
11δ11 − β1

12δ12 + β1
21δ21 − β1

22δ22 − β2
31δ21 + β2

32δ22) + 2(γ2
21,x − γ1

11,x − δ21,f3 −
δ22,f4) + γ2

21γ
2
21 − γ2

22γ
2
22 − γ1

11γ
1
11 + γ1

12γ
1
12 − 4(β2

21δ11 − β2
22δ12) = 0,

2(δ12,f1 − δ11,f2) + 4(β1
11δ12 + β1

12δ11 + β1
21δ22 + β1

22δ21 − β2
31δ22 − β2

32δ21) + 2(γ2
22,x − γ1

12,x − δ22,f3 +

δ21,f4 + γ2
21γ

2
22 − γ1

11γ
1
12)− 4(β2

21δ12 + β2
22δ11) = 0,
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