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Abstract 
 

With the increase in the affordability of robots and development in the robotics field, humans have 

to work in collaboration with robots in many domestic and industrial tasks. With these 

advancements in the robotics field, it is required to address the challenge of creating a trustworthy 

environment. However, while working with robots, it is necessary to maintain some distance from 

the robot to ensure the safety and comfort of a human.  To address this problem, we proposed a 

virtual reality (VR) based human-robot interaction (HRI) task where we can practice interaction 

between humans and humanoid robots to analyze the trust of humans in robots in terms of social 

interaction parameters such as the distance of the robot from the human while moving towards the 

human. In our research, we show a novel idea to measure the trust of human in a robot through 

EEG signals and then compare it with the real-world HRI task. The comfortable distance while 

interacting with the robot is determined through Brain Computer Interface (BCI). Along with the 

use of survey-based assessment of the subject, a standard, and more efficient BCI system is also 

used to record the users' brain activity in different HRI zones for the study of human emotional 

state in these zones. Real-time data is required to analyze the effect of social parameters such as 

the speed of the robot and the comfortable distance on human mental state and this is done by 

collecting the electroencephalography (EEG) signals of the participants while they are performing 

the HRI tasks in both VR and real world. The questionnaire is used to compare the results of the 

BCI for each subject. Experimental results showed that the level of closeness between the robot 

and the human can affect the way that the human perceives and interacts with the robot.  According 

to the BCI results most of the participants felt comfortable when the robot enters their personal 

zone with 28% relaxation and 26% stress level as compared to when the robot entered their 

intimate zone and the stress level increased to 32% and relaxation decreased to 25%. Participants 

trust virtual robots more than real robots as they are more comfortable in VR interaction as 

compared to interacting with real robots. BCI results proved that training in the VR framework 

improves the real-world HRI experience. This study provides valuable insights into the human's 

cognitive and emotional response to different HRI zones and highlights the importance of 

considering social parameters, such as proximity, in the design and development of robots for 

humans. 

Keywords: Brain-Computer Interface; Human-Robot Interaction; Virtual Reality; HRI zones; proxemics 
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CHAPTER 1: INTRODUCTION 

Advancements in the robotics field and increases in the use of robots in both industrial and 

domestic areas allow humans to collaborate and work with robots (Sheridan, 2016). Human-Robot 

Interaction (HRI) refers to the study of the interactions between humans and robots. It is a 

multidisciplinary field that combines aspects of robotics, psychology, engineering, and human-

computer interaction. HRI research aims to design and develop robots that can interact with 

humans in natural, intuitive, and effective ways (Villani et al., 2018).  The increase in the use of 

robots has resulted from advancements in manufacturing systems, computing powers, 

communication systems, and information systems, which are reflected in the idea of Industry 4.0 

(Lasi et al., 2014).  

 When humans and robots cooperate to perform a certain task, this is referred to as human-

robot work collaboration (HRWC) (You et al., 2018). Through this partnership, people can 

delegate tiresome and repetitive work to their robots (Sauppé & Mutlu, 2014). Additionally, the 

usage of robots frees people to concentrate on other jobs that are difficult for robots to complete 

(Tan et al., 2009)Humans often feel unsafe while working with robots, which poses a significant 

obstacle to using human-robot interaction (Bartneck et al., 2009). Regardless of the level of safety, 

humans are less eager to work with or alongside robots when they feel it is risky to do so (Atkinson 

& Clark, 2014)The degree to which someone perceives that it is safe to engage in a behavior known 

as perceived safety. 

As the demand for robots increases in all areas, research and development in the field of 

robotics also increased in the last decades. The purpose and the target have been always to provide 

a simple, trustworthy, reliable, and easy-to-use interface between humans and robots (De et al., 

2019). To assure the above-mentioned objectives there are more challenges during the 

collaborative tasks, Hancock et al. (Hancock et al., 2011) give us a study of creating trustworthy 

interaction between humans and robots. (Sanders et al., 2011)The study presented that humans 

could gain or lose trust by having certain abilities such as pre-training with the robots, social factors 

like distance from the robot and the speed of the robot is the dominant factor of human trust in 

robots. Our research finds out how the distance from the robot affects the trust of humans in robots 

in terms of safety and how pre-training in a virtual reality (VR) platform improves the trust in 

robots. 
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Previous research has shown that the robot's proxemics behavior significantly affects the level 

of acceptability and is greatly influenced by subjective and demographic variables. The study of 

spatial distances employed in contact is known as proxemics. For instance, (Vithanawasam & 

Madhusanka, 2018) revealed that participants stood too close to the robot in 40% of the scenarios 

that were studied, indicating that they did not consider the robot as a social actor. 

Also(Huettenrauch et al., 2006), individuals communicate with robots at a distance that is similar 

to the personal zone that people use when speaking to friends, indicating that they did not treat the 

robot as a person. This research provides a detailed study of HRI zones and relates these zones 

with human comfort with robots. 

Our main goal is to measure human trust in robots through EEG signals by analyzing human 

mental states (level of stress and level of relaxation) during HRI. We analyzed the human mental 

state using BCI in different HRI zones, by changing the distances between the human and the robot 

during the HRI task. Real-time data is acquired to analyze the impact of social parameters, 

specifically the comfortable distance, on the human mental state during human-robot interaction 

(HRI). The method used to collect this data is by measuring the electroencephalography (EEG) 

signals of the participants while they perform HRI tasks.  

Additionally, a questionnaire is used to compare the Brain-Computer Interface (BCI) results 

for each subject. The experimental results reveal that the level of closeness between the robot and 

the human can have an impact on how the human perceives and interacts with the robot. This 

research highlights the importance of considering social parameters in the design and development 

of robots that interact with humans, as they can significantly affect the user experience and 

effectiveness of the interaction. These results indicate that the proximity of the robot to the human 

has a significant impact on the participant's mental state during HRI. The use of BCI in this study 

also demonstrates the potential of advanced technologies for in-depth studies of human mental 

states during HRI. Overall, the study provides valuable insights into the factors that influence 

people's trust in robots during HRI, such as proximity and familiarity, and suggests that VR 

training can effectively improve trust in robots. These findings could have practical implications 

for the design and implementation of robots in various settings, such as healthcare, education, and 

entertainment.  
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CHAPTER 2: LITERATURE REVIEW 

2.1.  Human trust in robots 

Human trust in robots refers to the belief and confidence that individuals have in the 

reliability, competence, and intentions of robots (Billings et al., n.d.). It is a multidimensional 

concept that encompasses various aspects of trust, including cognitive, affective, and behavioral 

components(Herse et al., 2023). In the era of industrialization and automation, the development of 

new systems which is meant to collaborate closely with humans posed a significant challenge in 

ensuring safety(Tsarouchi et al., 2016) . Several factors contribute to the development of trust in 

robots. These factors include the robot's reliability, predictability, transparency, consistency, and 

perceived intentionality(Sheridan, 2016). These systems include personal and professional service 

robots (Lambert et al., 2020), designed to operate in diverse environments while interacting and 

cooperating with humans (Ali et al., 2023). The broader field of human-robot interaction 

recognized the critical role of human safety in fostering a harmonious coexistence between humans 

and robots (Villani et al., 2018). 

In the realm of HRI, the captivating and pivotal area of research revolved around human 

trust in robots (Kok & Soh, 2020). It became apparent that robots risked being underutilized or 

misused if they lacked the trust of their human counterparts (Herse et al., 2023). Thus, trust 

emerged as a crucial factor that enabled robots to transcend their industrial applications and enter 

the domain of human social environments. Previous studies have employed questionnaires and 

behavioral measures to measure trust in robots (Yu et al., 2014). 

   2.2.  Relating quantitative proxemics with trust in robots 

In the context of proxemics, personality traits play a role in how public spaces are utilized 

and the perception of socially acceptable movements. Consequently, robots should be capable of 

adapting their behavior based on the individual they are interacting with (Walters et al., 2018). 

People respond and behave differently depending on their spatial needs, emphasizing the 

importance of robots (mobile, social, humanoids, and mechanoid etc.) effectively utilizing the 

space(Petrak et al., 2019), (Camara & Fox, 2022). Moreover, a person's current position and 

activity can impact their comfort level in interacting with a robot (Walters et al., 2018). As per a 

research study, modifying robot behavior significantly influences user acceptance and perceptions 

of safety (Rossi et al., 2017). This study conducted a pilot investigation to assess the comfortable 
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distance between humans and robots, considering the participants' attitudes and personalities (Yu 

et al., 2014). (Camara & Fox, 2021). The ultimate goal of this research is to unify the fields of 

proxemics and trust in HRI and provide quantifiable models that can be applied in real-world 

operational HRI . The comfortable distance was determined using EEG signals to measure human 

comfort levels and compared with questionnaire responses.  

2.3.  Human-robot interaction and Virtual Reality (VR) 

 

The growing popularity of Virtual Reality (VR) in Human-Robot Interaction (HRI) 

research can be attributed to its immersive experiences, interactive nature, and embodiment 

capabilities. VR provides researchers with the ability to quickly iterate on robot designs and 

behaviors at a lower cost and effort compared to real-world experiments (Sagnier et al., 2020). 

Unlike other methods such as simulations or video-based experiments, VR offers a unique sense 

of presence (L. Liu et al., 2023). A study presented by Liu et al. (L. Liu et al., 2023) demonstrated 

that collaborative task performance with a virtual robot was significantly better in VR simulations 

compared to 2D robotic simulations. Another study found that using VR for teleoperation tasks 

led to higher usability and lower workloads compared to traditional joystick or keyboard control 

with a computer monitor (Whitney et al., n.d.). Previous research conducted by (Pérez et al., 2019), 

(Matsas & Vosniakos, 2017), (Magnenat &Thalmann et al., 2020) has suggested that VR platforms 

can be utilized for training in human-robot interaction.  These findings highlight the potential of 

VR platforms to address HRI-related issues. In our research, we utilized a VR platform effectively 

for studying proxemics and pre-training to observe its impact on enhancing trust in robots. 

2.4.  A Comparative Exploration of HRI in Virtual Reality vs. the Real World 

 

The main objective of research on human-robot interaction in real-world settings is to 

understand the mechanisms of social and physical interaction and use that understanding to design 

robots that can interact more effectively with humans (Kok & Soh, 2020). Researchers have 

proposed various methods to achieve this goal such as analyzing human interaction behavior with 

humanoid, mobile, and pet robots under different social and physical conditions (L. Liu et al., 

2023), (Sagnier et al., 2020). However, conducting HRI experiments in real-world settings presents 

several challenges, including limited opportunities to set up interaction fields and the high cost of 

large-scale experiments, particularly when the aim is to teach robots through demonstration or 



5 
 

instruction (Lambert et al., 2020). (Arents et al., 2021)This research hypothesizes that VR 

environments can provide unique advantages for studying HRI, including increased control over 

experimental conditions, the ability to simulate diverse scenarios, and the potential for immersive 

and realistic interactions. This paper focuses on investigating these disparities, particularly in terms 

of proxemic preferences, while also exploring the impact of visual familiarity and spatial sound in 

the VR experience (Rui Li et al., 2019), (Brannon Barhorst et al., 2021), (Feng et al., 2020). The 

findings will contribute to a deeper understanding of the benefits and limitations of VR as a tool 

for studying and improving HRI. 

2.5.  Quantifying Human Cognitive States 

 

Emotion recognition techniques such as facial recognition (El Ayadi et al., 2011), speech 

analysis (Fernández-Caballero et al., 2016), and body language (Vithanawasam & Madhusanka, 

2018) have limitations due to cultural differences and potential alterations. In contrast, 

electrocardiography (ECG) and electroencephalography (EEG) are considered more reliable 

methods for measuring the emotional states of any human. Electroencephalography (EEG) is a 

non-invasive technique that measures the bioelectrical activity of the brain using electrodes placed 

on the scalp (Edla et al., 2018). EEG signals are becoming more important as a psychophysical 

marker for measuring stressful mental states, particularly in the context of brain-computer interface 

and online assessments of mental stress, mental workload, and mental fatigue (Reuderink et al., 

2013), (Yurci & Ramirez, n.d.). One of the main reasons to prioritize EEG signals for emotion 

recognition is that it gives results that are more realistic as the brain activity is the internal signal 

and it is harder to influence it voluntarily (Shu et al., 2018). EEG captures electrical impulses as 

brainwaves, characterized by their frequency and amplitude (Zhang et al., 2010). Low-frequency 

waves, such as delta and theta, are associated with relaxation and sleep, while higher-frequency 

waves, such as alpha, beta, and gamma, are produced when a person is awake, attentive, or 

responding to their environment (Blinowska & Durka, n.d.), (Zainuddin et al., 2014). The alpha 

waves relate to the relaxed state of the individual while the beta rhythm is related to an alert or 

stressed condition (Y. Liu & Sourina, 2012). BCI systems interpret these brain signals into 

commands or actions, enabling a wide range of applications in measuring human mental states 

during tasks like Human-Robot Interaction (HRI) (Shu et al., 2018).  
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Brain-Computer Interface (BCI) systems in HRI have potential advantages, including 

validating the effectiveness of adaptive multi-robot therapy for children with ASD (Ali et al., 

2019). Cognitive states are analyzed using EEG neuroheadsets before and after the intervention. 

The research aims to raise awareness in the HRI community(Alimardani & Hiraki, 

2020)Additionally, social engagement components from the human partner's brain, such as the 

intention to initiate eye contact and distinguishing between initiator and responder in gaze contact, 

are recorded with EEG (Stefan Ehrlichet al., 2014), (Jang et al., n.d.). 

2.6.  Contribution  

We propose a Virtual Reality (VR) framework to investigate the impact of quantitative 

proxemics on trust in robots during human-robot interaction. Our research aims to analyze the 

influence of proximity on human trust in robots, particularly in terms of safety and explores how 

pre-training in a VR platform can enhance trust. Using an EEG-based Brain-Computer Interface 

(BCI) neuroheadset, we measured participants' real-time EEG data during HRI tasks to examine 

their mental states. The experimental results revealed that the proximity of the robot significantly 

affected how participants perceived and interacted based on their stress and relaxation levels. 

These findings highlight the importance of considering social parameters, such as proximity and 

familiarity, in robot design to improve user experience and interaction effectiveness. Moreover, 

the study demonstrates the potential of VR training in enhancing trust in robots.  

 

 

 

 

 

 

 

 

 



7 
 

CHAPTER 3: ARCHITECTURE 

 

To create a trustworthy environment in human-robot interactions, it is important to consider 

the effects of proxemics on human related to trust in robots. When it comes to replacing robots 

platforms with virtual platforms, it is crucial to determine whether training in VR is equivalent to 

real-world training and whether it enhances trust in real robots. Based on literature presented in 

this paper, this study presents two hypothesis:  

H1: Proximity and familiarity are the factors that influence trust in robots during human-

robot interaction. 

H2: It is hypothesized that training in VR can enhance real-world HRI interactions and 

subsequently improve trust in real robots. 

For this purpose, trust in robots is measured using brain-computer interfaces system, which 

provide a set of mental state values from which stress and relaxation levels can be extracted during 

an interaction 

3.1.    Mathematical modelling 

H1 states that proximity and familiarity are influential factors in determining trust during Human-

Robot Interaction (HRI). This study specifically focuses on the personal and intimate zones as 

defined by (Hall et al. 1986). By analyzing the influence of distance on participants' perceptions 

and trust in robots, we can gain insights into the role of proxemics in trust formation. According 

to eq. 1, trust in real (Treal) and virtual (Tvirtual) robots is a function of human-robot proxemics 

(Prox) and familiarity (Fim). Where, proximity refers to the HRI zones that are personal zone 

(0.15-0.45m) and intimate zone (0.45-1.2m) illustrate in eq. 2. Familiarity, on the other hand, 

represented by binary values, where 0 indicates non-familiar participants and 1 represents familiar 

participants. 

Trust in robots (Trobot) can be quantitatively evaluated using Brain-Computer Interfaces 

(BCIresults) indicate in eq. 3. BCI allow for the measurement and extraction of mental state values, 

such as stress and relaxation levels, which are represented as real numbers. Eq. 4 illustrate the 

relationship between trust in robots and these mental state metrics. Trust is directly proportional 

to relaxation and inversely proportional to stress. These equations provide a mathematical 

framework for understanding the connection between mental states and trust in robot. 
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          𝑓(𝑇𝑟𝑢𝑠𝑡) = {
𝑇𝑟𝑒𝑎𝑙 , ∈ (𝐹𝑖𝑚, 𝑃𝑟𝑜𝑥)

𝑇𝑣𝑖𝑟𝑡𝑢𝑎𝑙 , ∈ (𝑃𝑟𝑜𝑥, 𝑃𝑟𝑜𝑥)
                                                                                        (1) 

         𝑓(𝐹𝑖𝑚, 𝑃𝑟𝑜𝑥 ) = {
𝐹𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, ∈ (0, 1)

𝑃𝑟𝑜𝑥𝑒𝑚𝑖𝑐𝑠, ∈ (0.15𝑚 < 𝑥𝑝 < 0.45𝑚), (0.45𝑚 < 𝑥𝑖 < 1.2𝑚)
          (2) 

         𝑇𝑟𝑜𝑏𝑜𝑡 ∈  𝐵𝐶𝐼𝑟𝑒𝑠𝑢𝑙𝑡𝑠                                                                                                                         (3) 

        𝐵𝐶𝐼𝑟𝑒𝑠𝑢𝑙𝑡𝑠 = {
𝑆𝑡𝑟𝑒𝑠𝑠 (𝑆) 

𝑅𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 (𝑅)
∈ ℝ,    where {Trobot α R ∩ Trobot α 1\S}                           (4) 

Previous research conducted by (Pérez et al., 2019), (Matsas & Vosniakos, 2017) have 

suggested that VR platforms can be effectively employed for training in human-robot interaction. 

Building upon this premise, hypothesis H2 posits that training in VR can enhance real-world 

human-robot interaction and foster greater trust in actual robots. According to eq. 5 trust in robots 

within the virtual environment (Tvirtual) exceeds the initial trust in the real world prior to VR 

interaction (Treal)b. Furthermore, as trust in real robots improves following VR interaction (Treal)a, 

it surpasses both the trust in the virtual environment and the trust in the real world prior to VR 

interaction. 

            (𝑇
𝑟𝑒𝑎𝑙

)𝑏 < 𝑇𝑣𝑖𝑟𝑡𝑢𝑎𝑙  < (𝑇
𝑟𝑒𝑎𝑙

)𝑎                                                                                           (5) 

         (𝑇
𝑟𝑒𝑎𝑙

)𝑏,𝑎 ∩ 𝑇𝑣𝑖𝑟𝑡𝑢𝑎𝑙  ∈ 𝐵𝐶𝐼𝑟𝑒𝑠𝑢𝑙𝑡𝑠                                                                                    (6) 

 

 

3.2.   Human-Robot Interaction in Real World 

    PyCharm is a popular integrated development environment (IDE) for Python programming. 

PyCharm provides a range of features such as code completion, debugging, code analysis, version 

control integration, and more, which can help developers be more productive and efficient in their 

Python development work. The Emotiv API is a software development kit (SDK) that allows 

developers to create applications that interact with Emotiv's brain-computer interface (BCI) 

devices. The Emotiv API provides a set of tools and libraries that enable developers to build 

applications that can read, process, and interpret brain signals captured by Emotiv's headsets. Two 

tasks are developed in PyCharm according to the user’s choice the task is selected. Emotive API 
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provides the human mental state matrices into the software in real-time. These matrices provide 

the values of stress and relaxation. 

Figure 3.1 shows the architecture of this study. Humans wearing the headset interact with the 

Nao robot. The first component in the architecture is the real-time EEG data-stream adapter that 

captures the bioelectric activity of the brain during the task and converts them into signals of 

different frequencies. These signals are then converted into human emotions such as stress, 

relaxation, focus, engagement, interest, and excitement. For the Emotive Insight 2.0 headset, the 

software used as an adapter is Emotive Pro, which provides the needed set of emotions. When it 

comes to human trust in robots, the level of comfort and relaxation experienced by humans during 

interactions plays a crucial role. If a human feels at ease and experiences minimal stress while 

interacting with a robot, it generally indicates a higher level of comfort and, subsequently, a greater 

level of trust. The stress and relaxation levels of humans are measured by collecting EEG signals 

and processing them and through human mental state matrices provided by the Emotiv software. 

Therefore, arrow 1 in Figure 3.1 shows that the Emotiv Insight 2.0 EEG headset is connected to 

the Emotiv software through Bluetooth. After adjusting the headset onto the participant correctly, 

electrode connectivity was checked, which should be above 90% for obtaining good results. Raw 

EEG data is recorded and exported from the software in the form of .csv files for offline processing 

of the signals and the live stream of mental state metrics is stored during the experiment. In the 

schematic diagram of the architecture arrow 2 indicate the second component, which is a PyCharm 

software used as a robot adapter where there are two tasks programmed for the Nao robot. Task 1 

is to enter the robot into the personal zone of the participant and task 2 is the robot enter the intimate 

zone of the participant. There is a verbal interaction by the robot at the end of both tasks and the 

value of mental state that is stress and relaxation level is noted down during these tasks. Arrow 3 

shows the offline processing of the Raw EEG data recorded during these tasks to support the results 

obtained through mental state metrics. Figure 3.2 shows the pseudocode for the tasks of human-

robot interaction and data acquisition in the real world. 
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Figure 3.1: Architecture for human-robot interaction in Real World 
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Figure 3.2: Pseudocode for the tasks of human-robot interaction and data acquisition in real 

world 

 

3.3.   Human-Robot Interaction in Virtual Reality 

To conduct the study on VR-based human-robot interaction, the VR platform was designed 

in the Webots robot simulator and Oculus Quest 2 VR headset was used to immerse in the VR 

environment. Webots are widely used simulators in the robotics community and have active 

development communities and support forums. Webots support multiple robot models, including 

the Nao robot by Softbank Robotics, and also support Oculus Quest 2 virtual reality headset. 

Webots built-in VR editor is used to create a virtual reality environment and the Nao robot from 

the official website of Softbank Robotics is imported into the VR environment. As Webots 

provides support for Choreographe, which is a graphical programming tool developed by Softbank 

Robotics for programming Nao and other Softbank Robotics robots. Choreographe was used to 

program the Nao robot and then export the Choreographe project as a Python script. This Python 

script was then imported into the Webots to control the Nao robot’s movements and behaviors 

during the simulation. Figure 3.4 and Figure 3.5 shows the VR framework developed for the HRI 

tasks in a virtual environment. 

Figure 3.3 shows the architecture of the HRI study conducted in virtual reality.  To perform 

the human-robot interaction in VR participant has to wear both the VR headset and the EEG 
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headset. Arrow 1 in Figure 3.3 Shows the connectivity and working of the EEG headset and arrow 

2 indicate that the Oculus Quest 2 VR headset is connected to the PC through an Oculus link cable. 

Oculus software is used for setting up the VR headset. Once the setup is complete quest 2 is ready 

for the VR experience. VR framework is designed in the Webots and VR headset is accessed in it 

to conduct the human-robot interaction in Webots virtual environment.  

 

 

Figure 3.3: Architecture for human-robot interaction in Virtual Reality 
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Figure 3.4: Virtual Reality platform for investigating HRI. The virtual robot in the framework is 

similar in appearance and capabilities to the Nao robot by Softbank Robotics 

 

Figure 3.5: Participants view the Nao robot walk towards them from the front 

 . 
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CHAPTER 4: METHODOLOGY 
 

4.1.   Participants 

Nine healthy participants with an average age of 30 ± 6 years took part in this study out of 

which seven are males and two are females. Out of nine participants, four are familiar with the 

robot and the other five are those who interact with the robot for the first time. Since participants 

were chosen as volunteers, they were not compensated and before starting the experiment, they 

were asked to sign the informed consent form. Figure 4.5 shows the scanned copy of the consent 

form signed by the participants. The experiment took place in a closed and silent room to avoid 

atmosphere noise. Labels were placed on the ground for the starting position of the robot, for the 

sitting position of the robot, and for the starting of the personal and intimate zone. The participants 

were asked to wear the EEG headset and sit on the ground comfortably at a predefined position 

from the robot that is 2m facing towards the Nao robot. Figure 4.1 shows the experimental setup 

for the HRI task. 

4.2.   Experimental Setup and Implementation 

Following are the two tasks for the human-robot interaction.  

• The robot approaches the participant from the front and stops at a distance of 0.6m away 

from the subject, which means that the robot enters its personal zone. Speed is kept constant 

for both tasks. 

• Now the robot approaches the participant from the front and stops at a distance of 0.3m 

away from the subject, which is the intimate zone in HRI. 

 

 

Figure 4.: Experimental setup for human-robot interaction 
Figure 4.1: Experimental Setup for Human-Robot Interaction in Real World 
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Figure 4.2 shows all the steps followed by the participants for the whole experiment. At 

the start of the experiment, participants have to sign the informed consent form. To conduct the 

human-robot interaction in the real world the participants were asked to wear the EEG headset and 

sit on the ground comfortably at a predefined position from the robot that is 2m facing towards the 

Nao robot. Figure 4.1 shows the experimental setup for the HRI task in the real world. After 

completing the real-world experiment participant fill the Questionnaire 1, Figure 4.3 shows the 

scanned copy of Questionnaire 1 filled out by the participant. Questionnaire 1 covers almost all 

the questions related to the trust of humans in the robot in different HRI zones in the real world. 

Participants would have to answer all five questions by mark on one option from two (Yes or No). 

Now they were asked to sit in front of the PC and wear both the VR and EEG headsets for the VR 

human-robot interaction. After the VR experience real-world human-robot interaction was 

performed again to measure the improvement in trust in robots after VR experience. At the end of 

the experiment, the participants were asked to fill out the questionnaire 2, form that would tell the 

perception of the human during the HRI in both VR and real world. Figure 4.4 shows the scanned 

copy of questionnaire 2 that is about comparing the interaction between real and virtual robots and 

about pre-training in VR improves trust in robots or not. Both tasks are performed two times on 

each subject. In every trial, the human mental state of the human in the form of a set of emotions 

is stored and analyzed. The experiment that involves all tasks took   ̴ 45 min. 

 

Figure 4.2: Flow chart describe the sequence that is followed during the experiment 
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Figure 4.3: Questionnaire 1 form filled out by the participants 
 

 

 

 

 

 

 

 

Figure 4. 3: Questionnaire 1 form filled out by the participants 
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Figure 4.4: Scanned copy of the Questionnaire 2 form filled by the participants 

 

 

 

 

 

 

 

 

Figure 4. 4: Scanned copy of the Questionnaire 2 form filled by the participants 
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Figure 4.5: Scanned copy of the informed consent form signed by the participants 

 

 

 

 

 

 

Figure 4. 5: Scanned copy of the informed consent form signed by the participants 
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CHAPTER 5: RESULTS 

 

5.1.   Results from BCI 

          Human mental state in the intimate and personal zone is analyzed by capturing the EEG 

signals and then converting them into emotions. Real-time mental state data is recorded and stored 

during the HRI tasks. 

Table 5-1: Participant’s mental state values in their Personal zone before the VR experience 

No. of Participants Familiarity with 

robot 

Stress (%) Relaxation (%) 

1 Familiar 33 26 

  32 23 

2 Familiar 30 24 

  29 25 

3 Familiar 30 24 

  26 23 

4 Familiar 24 23 

  26 32 

5 Familiar 26 27 

  30 34 

6 Non-familiar 27 33 

  26 30 

7 Non-familiar 32 17 

  24 15 

8 Non-familiar 30 28 

  26 22 

9 Non-familiar 34 23 

  28 29 
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Table 5-2: Participant’s mental state values in the intimate zone before the VR experience 

No. of Participants Familiarity with 

robot 

Stress (%) Relaxation (%) 

1 Familiar 27 28 

  28 27 

2 Familiar 36 29 

  30 28 

3 Familiar 32 33 

  30 32 

4 Familiar 38 27 

  26 14 

5 Familiar 24 18 

  32 29 

6 Non-familiar 33 20 

  39 28 

7 Non-familiar 41 25 

  26 25 

8 Non-familiar 26 14 

  41 36 

9 Non-familiar 32 23 

  34 23 

 

Table 5-3: Participant’s mental state values in Personal zone during the VR experience 

No. of Participants Familiarity with 

robot 

Stress (%) Relaxation (%) 

1 Familiar 33 26 

  32 23 

2 Familiar 30 24 
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  22 25 

3 Familiar 30 24 

  26 32 

4 Familiar 24 23 

  26 36 

5 Familiar 22 27 

  30 34 

6 Non-familiar 27 33 

  26 30 

7 Non-familiar 32 25 

  24 27 

8 Non-familiar 30 28 

  26 22 

9 Non-familiar 32 23 

  23 29 

 

Table 5-4: Participant’s mental state values in the intimate zone during the VR experience 

No. of Participants Familiarity with 

robot 

Stress (%) Relaxation (%) 

1 Familiar 27 28 

  28 27 

2 Familiar 31 29 

  30 28 

3 Familiar 32 33 

  30 32 

4 Familiar 25 27 

  26 23 

5 Familiar 24 22 

  32 29 
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6 Non-familiar 33 20 

  34 28 

7 Non-familiar 38 25 

  26 25 

8 Non-familiar 26 21 

  36 32 

9 Non-familiar 32 23 

  34 26 

 

Table 5-5: Participant’s mental state values in Personal zone after VR experience 

No. of Participants Familiarity with 

robot 

Stress (%) Relaxation (%) 

1 Familiar 33 26 

  32 23 

2 Familiar 27 32 

  22 25 

3 Familiar 30 24 

  21 32 

4 Familiar 24 23 

  26 33 

5 Familiar 22 27 

  26 34 

6 Non-familiar 27 33 

  26 30 

7 Non-familiar 32 25 

  22 35 

8 Non-familiar 30 28 

  26 31 

9 Non-familiar 27 23 
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  23 29 

 

Table 5-6: Participant’s mental state values in the intimate zone after the VR experience 

No. of Participants Familiarity with 

robot 

Stress (%) Relaxation (%) 

1 Familiar  28 

  24 27 

2 Familiar 26 29 

  30 28 

3 Familiar 32 38 

  23 32 

4 Familiar 25 27 

  26 34 

5 Familiar 24 22 

  32 29 

6 Non-familiar 33 20 

  34 28 

7 Non-familiar 34 32 

  26 25 

8 Non-familiar 26 26 

  32 32 

9 Non-familiar 32 23 

  34 26 

 

5.2.   Offline processing of EEG data 

Offline processing of the raw EEG data collected during the experiments is done to additionally 

support the results derived from the software. Two datasets were obtained during the human-robot 

interaction. The first dataset, namely, Dataset A was obtained during task 1 when the robot enters 

the personal zone of the participants. The second dataset namely, Dataset B was obtained during 
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task 2 in which the robot enters the intimate zone of the participants. Both datasets were analyzed 

to compare the results of EEG data in personal and intimate zone. All the processing steps were 

performed in a MATLAB open-source toolbox EEGLAB. Both datasets were imported and then 

the insight 2.0 electrode location was assigned to all the channels. Emotive Insight headset gives 

the filtered data as the most popular choice of filters required to eliminate the noise and artifacts 

were basic FIR filter and the 50-60 Hz notch filters are built-in in the headset [18,39,40] so, there 

is no need to filter the data.  

5.2.1. Power Spectral Density 

To estimate the frequency bands PSD using Welch’s method is used with a window length 

of 256 ms and the length of Fourier transform = 128 (Welch, 1967). EED topographical mapping 

shows the spatial distribution of voltage activity over the brain and in return, Spectro plots show 

the density of each band over the scalp. The color chart represents the power density in db, red 

color represents the high density while blue represents the low density.  In Figure 5.1 Hz frequency 

represents the alpha activity and 25 Hz represents the beta activity. Figure 5.1 (a), (b) shows the 

Spectro-topo plots of Dataset A in which the robot enters the personal zone of the participants. 

From plot (a) it can be seen that 10 Hz frequency is more dominant in it as compared to plot (c) 

on the other hand 25 Hz frequency plot (d) shows that that the beta activity is more dominant in 

Dataset B as compared to the plot (b) in Dataset A. the dominance of beta activity in Dataset B 

concludes that the participants felt uncomfortable or alert when the robot enters the intimate zone 

of the participants while the dominance of alpha activity in Dataset B shows that the participants 

are more relaxed when the robot enters the personal zone as compared to when it enters the intimate 

zone of the participants. 
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Figure 5.1: (a), (b) Spectro-topo plot representation of EEG Dataset A and (c), (d) represents 

topo plots of Dataset B. Mental state is visualized based on PSD value. The figure shows that 

alpha activity is dominant in dataset A as compared to dataset B. 

5.3.   Statistical Analysis 

5.3.1. Descriptive Statistical Analysis 

Table 5-7 shows the mean and std. deviation values of stress and relaxation in both tasks. 

Participants felt more comfortable in the personal zone compared to the intimate zone as the mean 

value of the stress is 32.1% in the intimate zone with the std. Deviation of 4.99 and the value of 

stress in the personal zone is 26.6% with the std. Deviation of 6.16. As the stress value is increased 

in the intimate zone, the relaxation value is decreased as the participants felt uncomfortable. The 

mean value of relaxation in the intimate zone is 25.1% with the std. Deviation of 3.52 and 27.7% 

in the personal zone with the std. Deviation of 5.92. 
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Table 5-7: Stress and Relaxation values for familiar and non-familiar participants in both zones 

  Personal zone Intimate zone 

Stress Relaxation Stress Relaxation 

Familiar 

participants 

Mean 28.6 26.1 30.3 26.5 

Std. Deviation 2.95 4.26 4.37 5.94 

Non-

Familiar 

participants 

Mean 29.4 25.7 33.7 25.5 

Std. Deviation 3.95 7.50 5.62 7.51 

Table 5-8 shows the descriptive analysis of the results of BCI obtained before the VR task, 

during the VR task, and after the VR task. Participants felt more comfortable interacting with 

virtual robots as compared to interacting with real robots as the mean value of stress in the intimate 

zone of the real world is 32% which is greater than the mean value of stress in the intimate zone 

of virtual reality which is 30.2%. VR experience improves the trust in robot and human-robot 

interaction in the real world as the mean value of stress after VR experience is 29% which is less 

than the stress in real-world interaction before the VR experience. 

Table 5-8: Participant’s mental state values in both zones 

  Personal zone Intimate zone 

Stress Relaxation Stress Relaxation 

Before VR 

Experience  

Mean 28.5 26.4 32 25.5 

Std. Deviation 3.05 3.81 5.36 6.04 

During VR 

Experience  

Mean 27.5 28.2 30.2 26.5 

Std. Deviation 3.68 4.25 4.02 3.79 

After VR 

Experience  

Mean 26.4 28.5 29 28 

Std. Deviation 3.74 4.13 3.98 4.40 
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5.3.2. Inferential Statistical Analysis 

The acquired data in the form of human mental state (stress and relaxation) during the 

experiment for both tasks have been validated using the statistical tool two-way ANOVA. The 

First row in Table 5-9 shows the results of the two-way ANOVA for the H1 hypothesis that there 

is a difference in the mental state of the participant in the personal zone and intimate zone. This 

hypothesis is proved by the results as the value of p < 0.05 and the F-value is greater than the F-

critic value. The second and the third row in Table 5-9 shows the results of two-way ANOVA for 

the H2 hypothesis, it also shows that there is a significant difference in the mental state of the 

participants who are familiar with the robot and the non-familiar participants in the intimate and 

personal zone, as the value of p < 0.05 and F-value is greater than the F-critic value. 

Table 5-9: Statistical Analysis of the BCI Results 

ANOVA of F P-value F-crit 

All participants in 

both zones 

8.3356 0.00506 3.9668 

Familiar and No-

familiar in the 

intimate zone 

12.9644 0.00094 4.1132 

Familiar and No-

familiar in the 

personal zone 

4.8853 0.03352 4.1132 

 

5.4.   Results from Questionnaire 

Survey-based analysis of participants is carried out for the comparison of BCI results with the 

questionnaire results. There are five questions Q1 is related to the safe interaction with the robot, 

Q2 is about the trust in a robot, Q3 is related to the perception of participant related to the 

movement of the robot, Q4, and Q5 is about the human perception about the comfort zone that in 

which zone human feels comfortable.  
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In Table 5-10 Questionnairen1, results show that 85% of participants felt safe and trusted 

the robot while interacting with it. The perception of the participants related to the movement of 

the robot is that they felt comfortable with the way the robot moves as the Nao robot walks just 

like humans. All the participants felt comfortable in the personal zone but 40% of participants felt 

uncomfortable as the robot enters their intimate zone. However, 75% of familiar participants felt 

comfortable with the robot in their intimate zone as they have prior experience and interaction with 

that robot.  

Table 5-10: Results from Questionnaire 2 filled by the participants 

Participants 

No. 

Familiarity 

with robot 

Q1 Q2 Q3 Q4 Q5 

1 Familiar Yes Yes No No No 

2 Familiar Yes Yes No No No 

3 Familiar Yes Yes No No No 

4 Familiar Yes Yes No No Yes 

5 Non-

familiar 

Yes Yes No No No 

6 Non-

familiar 

No No Yes No Yes 

7 Non-

familiar 

Yes Yes Yes No Yes 

8 Non-

familiar 

Yes Yes No No No 

9 Non-

familiar 

Yes Yes No No Yes 

 

 

 



29 
 

 

 

 

 

 

 

 

 

Figure 5.2: Results of the Questionnaire 1 form filled by the participants 

Questionnaire 2 was used for the survey-based analysis of the participants for the 

comparison of BCI results with questionnaire results. This analysis was carried out to know how 

human-robot proxemics affects the participant’s comfort and trust in the robot. Q1 is related to the 

comparison of safe interaction in VR and the real world, and Q2 and Q3 are about the participant’s 

comfort in HRI zones of VR and the real world. Q5 is about the pre-training in VR improving the 

trust in robots during real-world human-robot interaction.  

In Table 5-11 Questionnaire 2 results show that 85% of participants felt safe while 

interacting with the robot in VR as compared to real robots as they considered real robots less 

controllable. The results indicate that there are significant differences in how humans react to 

robots in virtual environments compared to real-world settings. As 85% of participants felt 

comfortable when the robot enters the personal and intimate HRI zones of the participants in VR 

as compared to when the robot reached the participants in the real world. 75% of participants 

agreed to this that pre-training in human-robot interaction in VR improves trust in robots in the 

real world.  

 

 

Figure 5. 2: Results of the Questionnaire 1 form filled by the participants 
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Table 5-11: Results from Questionnaire 2 filled by the participants 

Participants 

No. 

Familiarity 

with robot 

Q1 Q2 Q3 Q4 

1 Familiar Yes Yes Yes Yes 

2 Familiar Yes Yes Yes Yes 

3 Familiar Yes Yes Yes Yes 

4 Familiar Yes Yes Yes Yes 

5 Non-

familiar 

Yes Yes Yes Yes 

6 Non-

familiar 

No No No No 

7 Non-

familiar 

Yes Yes Yes No 

8 Non-

familiar 

Yes Yes Yes Yes  

9 Non-

familiar 

Yes Yes Yes Yes  
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CHAPTER 6: CONCLUSION 

This study compared the quantitative proxemics to measure the trust in robots during HRI. The 

BCI results from our study indicated that people preferred to interact with the robot in their 

personal zone as compared to in their intimate zone confirming our first hypothesis (H1). 

Familiarity with the robot also influences the proximity as people familiar with the robot felt 

comfortable and trust in the robot more than the people who are not familiar with the robot and 

never interact with it (confirming H2). Results from the statistical analysis also support H1 and 

H2. From the BCI results and the survey-based analysis, we also found that people perceived the 

real robot to be less controllable than the virtual robot confirming the H3 hypothesis that people 

trust virtual robots more than real robots. Additionally, the BCI results show that people are more 

stressed and the level of relaxation is less before conducting the VR interaction, and after VR 

interaction, they are less stressed and more comfortable so we conclude that according to our 

hypothesis (H4), VR training improves the trust in robot and helps to make people comfortable 

with a real robot. Overall, the study provides valuable insights into the factors that influence 

people's trust in robots during HRI, such as proximity and familiarity, and suggests that VR 

training can effectively improve trust in robots. These findings could have practical implications 

for the design and implementation of robots in various settings, such as healthcare, education, and 

entertainment. 
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