DESIGN A TERTIARY WATER TREATMENT PLANT IN A TANNERY

By

Zoha Ahmad

Zoha Arif

Areej Mahmood

Zaineb Ijaz

School of Chemical and Materials Engineering

National University of Sciences and Technology

2023

DESIGN A TERTIARY WATER TREATMENT PLANT IN A TANNERY

By

Leader - REG NO. 296983 – Zoha Ahmad

Member 1 - REG NO: 296720 - Zoha Arif

Member 1 - REG NO: 282620 - Areej Mahmood

Member 1 – REG NO: 285884 – Zaineb Ijaz

This thesis is submitted as a partial fulfillment of the requirements

for the degree of

"BE CHEMICAL ENGINEERING"

School of Chemical and Materials Engineering (SCME)

National University of Sciences and Technology (NUST)

June 2023

CERTIFICATE

This is to certify that work "**Tertiary water treatment plant in a Tannery**" in this thesis completed by Ms. Zoha Ahmad, Ms. Zoha Arif, Ms. Areej Mahmood, and Ms. Zaineb Ijaz from the tenure of fall to spring semester 2022-23 under the supervision of Dr Asad Ullah Khan at the school of Chemical and Materials Engineering (Scme), National University of Sciences and Technology, H-12, Islamabad, Pakistan.

Advisor-

Dr. Asad Ullah Khan Department of Chemical Engineering School of Chemical and Materials Engineering National University of Sciences and Technology

Submitted Through:

1100 -2B 15/6/22

Dr. Erum Parvez Department of Materials Engineering School of Chemical and Materials Engineering National University of Sciences and Technology

15-6.2007 Principal/Dean -----Dr. Amir Azam Khan

School of Chemical and Materials Engineering National University of Sciences and Technology

DEDICATION

This FYP thesis is dedicated to individuals who believed in the potential of this group, especially, our beloved families, friends and teachers who played a significant role in bringing us this far.

ABSTRACT

Advance Oxidation processes (AOPs) are advanced water treatment techniques that utilize highly reactive oxidizing agents to remove or degrade organic and inorganic pollutants in water. Electro-Fenton is one of them. These processes involve the generation of hydroxyl radicals (·OH), which are powerful oxidants capable of breaking down a wide range of contaminants. Hydrogen peroxide (H2O2) is used as a standalone oxidant or in combination with other processes to produce ·OH radicals. The reaction between H2O2 and a catalyst (such as iron, titanium dioxide, or ultraviolet light) generates ·OH radicals that can degrade contaminants. Siddique Leather works have daily water capacity of 1500 m3/d. The industry installed a secondary treatment process for chrome recovery and biological treatment for sludge. The objective of our project is to reduce COD or BOD to desired amount (i.e., COD to 150 mg/L or BOD to 100mg/L) and to meet specification of fresh water extracted from bore holes.

The implemented technique gives 88% recovery of water and almost all the persistent organics are removed while following NEQ's standards.

TABLE OF CONTENTS

CHAPTER 1	1
INTRODUCTION	1
1.1 About the company	
1.2 Why is treatment important?	
1.2.1 Tanning process:	
1.2.2 Wastewater treatment:	
1.2.3 Types of treatment:	
Primary treatment:	2
Secondary treatment:	2
Tertiary treatment:	2
1.2.4 Total dissolved solids (TDS):	3
1.2.5 Total suspended solids (TSS):	
1.2.6 COD:	
1.2.7 BOD:	
1.2.8 Our goals:	
CHAPTER 2	6
LITERATURE REVIEW	6
2.1 Introduction:	6
2.2 Tanning Processes:	6
2.2.1 Vegetable tanning:	6
2.2.2 Chromium Tanning:	6
2.3 Wastewater Treatments:	
2.3.1 Process of Activated Sludge:	7
2.4 Advance Oxidation Process:	
2.4.1 Types of Fenton Process:	
2.4.2 Why Electron Fenton Process:	
2.5 Reverse Osmosis:	
2.5.1 Why Reverse Osmosis:	
2.6 Conclusion:	
CHAPTER 3	
PROCESS DESCRIPTION	

3.1 Electro Fenton process:	14
3.1.1 Mechanism	
3.1.3 Reactions:	
3.1.4 Process conditions:	
3.1.5 Process Flow Diagram:	
3.1.6 Heater:	
3.1.7 pH Regulator:	
3.1.8 Reactor:	
3.1.9 Sedimentation tank:	
3.1.10 Neutralizer:	
3.1.11 Reverse Osmosis:	
CHAPTER 4	
MATERIAL BALANCE	
4.1 Introduction and Importance:	
4.1.1 HEATER:	
4.1.2 pH REGULATOR:	
BUFFER PREPERATION	
4.1.3 ELECTROLYTIC REACTOR:	22
Assumptions:	
CONSUMPTION OF WATER:	
GENERATION OF WATER:	
ELECTROLYTE CALCULATIONS:	
CALCULATION of STREAM 7:	
4.1.4 SEDIMENTATION TANK:	
4.1.5 NEUTRALIZER:	
GENERATION OF WATER:	
4.1.6 SAND FILTERS # 01:	
REMOVAL SPECIFICATION:	
4.1.7SAND FILTERS # 02	
REMOVAL SPECIFICATION:	
4.1.8 REVERSE OSMOSIS:	
CHAPTER 5	

ENERGY BALANCE	
HEATER	
PUMP	40
pH REGULATOR	41
NEUTRALIZER	43
CHAPTER 7	
ECONOMIC ANALYSIS	56
PH REGULATOR	
NEUTRALIZER	
ELECTROLYTIC REACTOR	
SEDIMENTATION TANK	
STORAGE TANK	
PHYSICAL PLANT COST	62
FIXED CAPITAL	
WORKING CAPITAL	
VARIABLE COST	63
FIXED COST	64
ANNUAL OPERATING COST	64
COST IN 2023	
BENEFIT TO COST ANALYSIS	65
CHAPTER 8	
HAZOP ANALYSIS	
pH Regulator:	68
Electrolytic Reactor	69
Sedimentation Tank:	71
Reverse Osmosis:	73
Conclusion	
References	

LIST OF FIGURES

Figure 1 Secondary wastewater Treatment in SLW	5
Figure 2.2 Activated Sludge Process	8
Figure 3.1 Process Flow Diagram for Tertiary Water Treatment	16
Figure 4 Coulson's and Richardson's Chemical Engineering Vol 6 Economic Analysis	62
Figure 5 Cost Index from Year 1996- Year 2004	64

LIST OF TABLES

Table 1 Impurities present in wastewater from Tannery.	4
Table 2 pH Regulator	
Table 3 pH Regulator Parameters	
Table 4 Persistent Organic Components from Tannery Wastewater	
Table 5 Reactor Balance	
Table 6 Reactor Parameters	
Table 7 Sedimentation Tank Balance	
Table 8 sedimentation Tank Parameters	
Table 9 Neutralizer Balance	
Table 10 Neutralizer Parameters	
Table 11 Sand Filter #01 Balance	
Table 12 Sand Filter #01 Parameters	
Table 13 Sand Filter #02 Balance	
Table 14 Sand Filter #02 Parameters	
Table 15 Reverse Osmosis balance	
Table 16 Scale of Agitation	
Table 17 Scale of Agitation	
Table 18 Neutralizer Energy Balance	
Table 19 Electrode Specifications	
Table 20 Reverse Osmosis Membrane Design Specifications	53
Table 21 Tank Type	
Table 22 pH Regulator Specs	
Table 23 Tank Type	
Table 24 pH Regulator Specs	
Table 25 Tank Type	
Table 26 Neutralizer Specs	
Table 27 Tank Type	
Table 28 Neutralizer Specs	

Table 29 Electrolytic Reactor Type	59
Table 30 Electrolytic Reactor Specs	59
Table 31 Sedimentation Tank Type	59
Table 32 Sedimentation Tank Specs	60
Table 33 Storage Tank Type	60
Table 34 Storage Tank Specs	60
Table 35 Purchase Cost Of all Equipment	61
Table 36 Variable Cost	63
Table 37 Hazop Analysis for pH Regulator	68
Table 38 Hazop Analysis for Electrolytic Reactor	69
Table 39 Hazop Analysis for Sedimentation Tank	71
Table 40 Hazop Analysis for Reverse Osmosis	73

CHAPTER 1

INTRODUCTION

1.1 About the company

Siddique leather works is one of the most modern tanning industries in Pakistan. Their mission is to make the finest leather with available recourse and uphold the highest customer satisfaction while maintaining the financial and moral well-being of all stake holders via an Islamic value system. Industry follows many steps to ensure environmental sustainability. SLW has installed a water treatment plant, lime recycling plant and soak water recycling system to stop the discharge of chemicals and harmful substances in water. The company has also taken steps toward efficient utilization of energy. SLW has shifted to renewable energy resources as an environmentally friendly source of energy.

1.2 Why is treatment important?

Our industry has already been doing primary and secondary treatment for removal of activated sludge. The purpose of tertiary treatment is to provide a final polishing treatment stage prior to discharge or reuse of the wastewater. The tertiary treatment process is used to improve the quality of the effluent which has resulted from primary and secondary treatment processes. Electro Fenton process degrade many impurities using hydroxyl radical ions. This technique is efficient, economical and easy to use.

1.2.1 Tanning process:

By removing impurities and other components the tanning industry enables the conversion of biodegradable animal leather into nonbiodegradable leather. Since the wastewater produced in this process contains both biodegradable substances like lipids, proteins, and carbohydrates as well as polluting substances like solvents, additives, and toxic heavy metals typical of the process, this greatly influences the quality of the water.

1.2.2 Wastewater treatment:

Wastewater treatment is a process that cleans up and gets rid of impurities in wastewater so that it can be transformed into effluent and sent back into the water cycle. Industrial wastewater treatment refers to the procedures used to treat wastewater produced as an unwanted byproduct by industries. After treatment, the industrial wastewater (or effluent) may be released into the environment, a sanitary sewer, or surface water.

1.2.3 Types of treatment:

Primary treatment:

Material that will either float or easily settle out by gravity is removed during primary treatment. It involves the mechanical procedures of commination, grit removal, screening, and sedimentation. Primary wastewater treatment is a crucial part of the water treatment process. It removes large debris, suspended solids and floating solids from wastewater so the water can enter secondary treatment.

Secondary treatment:

Secondary treatment eliminates soluble organic materials that was not removed by the primary treatment. It also eliminates a greater proportion of the suspended particles. Biological methods are typically used to remove contaminants, in which bacteria eat organic impurities as food, transforming them into carbon dioxide, water, and energy for their own growth and reproduction. Secondary treatment removes 85-90 percent of BOD, TSS, and a minor amount of nitrogen, phosphorus, and heavy metals from wastewater.

Tertiary treatment:

The final stage of the multi-stage wastewater cleaning process is tertiary water treatment. Inorganic chemicals, bacteria, viruses, and parasites are all removed during the third stage of treatment. After these dangerous compounds have been removed, the treated water is safe to reuse, recycle, or release into the environment. Tertiary treatment eliminates matter from wastewater that could be harmful to the environment. The process removes materials such as heavy metals, toxic chemicals, and other pollutants.

1.2.4 Total dissolved solids (TDS):

Total dissolved solids (TDS) are the quantity of minerals, metals, organic material, and salts dissolved in a given volume of water, represented in milligrams per liter. It is directly related to water quality and purity, notably in water purification systems. Total dissolved solids can be suspended in a variety of ways, including Molecular Ionized Micro-granular (colloidal sol).

Total dissolved solids levels have an impact on everything that lives in, drinks, or uses water.

1.2.5 Total suspended solids (TSS):

Total suspended solids (TSS) are the dry weight of non-dissolved suspended particles in a sample of water that can be trapped by a filter and analyzed using a sintered glass crucible filtration device. TSS is a water quality metric that is used to assess the quality of any sort of water or water body, such as ocean water or wastewater following treatment in a wastewater treatment plant.

1.2.6 COD:

The **chemical oxygen demand**, or COD, of water is a measure of its ability to consume oxygen during the decomposition of organic substances in the water. In other words, it is the amount of oxygen required to oxidize the organic matter present in a given volume of water.

1.2.7 BOD:

The amount of oxygen consumed by bacteria and other microorganisms while decomposing organic materials under aerobic circumstances is referred to as **biological oxygen demand**. Small amounts of oxygen in the form of dissolved oxygen (DO) can be found in every lake or stream. Dissolved oxygen is an essential component of natural water bodies, sustaining aquatic life and the aesthetic qualities of streams and lakes.

WASTEWATER FLOW RATE		
m3/hr	62.5	
l/hr	62500	
Types of Impurity	Concentration	Desired
	(mg/l)	(mg/l)
COD	250	150
BOD	200	80
РН	7-8.7	6.5-7.5
Sulphides	0.5	1
TSS	100	200
Total kjeldahl nitrogen	0.45	NGVS
(TKN)		
Chrome VI	0.24	1

Table 1 Impurities present in wastewater from Tannery.

The table above shows the specs of water effluent from secondary wastewater treatment followed by SLW. This data is provided by the industry and forms the basis for our project.

1.2.8 Our goals:

To reduce COD or BOD concentration to desired amount

To meet the specification of fresh water extracted from bore hole.

Figure 1 Secondary wastewater Treatment in SLW

The figure above shows the process previously used by our industry for secondary wastewater treatment that includes gravity settling and biological sludge treatment as the main part of our process. The effluent from this treatment will be our main concern for employing the tertiary treatment.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction:

The advanced oxidation process (AOP) and reverse osmosis (RO) technologies, on which the proposed tertiary treatment plant for the tannery is based, are the main subjects of this chapter's literature study. A review of the advanced oxidation process leads the chapter, which is then followed by an investigation of various Fenton process varieties. The decision to use the electron Fenton procedure for this project is then explained. The chapter concludes with a discussion of reverse osmosis and the rationale behind include it in the plan.

2.2 Tanning Processes:

The process of producing leather must include tanning. It entails treating untreated animal hides and skins with certain chemicals, referred to as tanning agents, to make the untreated hides into a material that is robust, flexible, and less prone to breakdown.

There are only two ways to tan:

2.2.1 Vegetable tanning: Tannins from plant sources, like tree bark extracts, are used in the process of "vegetable tanning." Although the procedure takes time, the high-quality leather it produces has distinctive qualities. Vegetable tanning often produces effluent that is rich in organic contaminants and color.

2.2.2 Chromium Tanning: This process uses chromium (III) salts, especially chromium (III) sulphate, which may quickly create soft, flexible leather. Because of this method's effectiveness and adaptability, it is increasingly commonly employed. However, chromium tanning generates highly toxic

effluent including chromium salts, which, if not properly handled, may be hazardous to the environment and people's health.

Raw Animal Hide

↓
Cleaning/Soaking

↓
Tanning Agent Application

↓
-> Vegetable Tanning

↓
Leather

Figure 2.1 Tanning process

2.3 Wastewater Treatm

Disposing of untreated tannery effluents into the environment can have detrimental effects on both the ecosystem and human health. Consequently, a successful treatment program is crucial. Some popular forms of therapy include the ones listed below:

2.3.1 Process of Activated Sludge: This technique relies on aerobic microorganisms to break down organic contaminants in wastewater. Although the activated sludge system is reliable and cost-effective, the production of waste biomass (sludge) calls for careful control.

Utilizing bacteria, algae, or fungus to break down organic contaminants and create less toxic compounds is known as a biological treatment. Biomedical interventions are sustainable and kind to the environment. However, the efficacy of these processes may be constrained by environmental variables including temperature, pH, and the kind of pollutant.

Tannery Wastewater ↓ Aeration Tank ↓ Clarifier ↓ Activated Sludge

Figure 2.2 Activated Sludge Process

2.4 Advance Oxidation Process:

Wide-ranging organic and inorganic contaminants can be effectively removed from wastewater using the advanced oxidation process (AOP). With the help of ozone (O3), hydrogen peroxide (H2O2), and ultraviolet (UV) radiation, extremely reactive hydroxyl radicals (•OH) are produced throughout this process. These hydroxyl radicals have a high capacity for oxidation and can break down resistant organic contaminants into less dangerous substances. Through the use of extremely reactive hydroxyl, hydroperoxyl, superoxide, and sulphate radicals, AOPs have become one of the most promising methods for the partial or total mineralization of developing contaminants1. AOPs provide a potent method for cleaning wastewater and addressing the problems brought on by the presence of dangerous chemicals by harnessing the strength of these radicals.

2.4.1 Types of Fenton Process:

There are several AOP versions, each with its own oxidizing chemicals and procedures:

Photochemical AOPs: These produce hydroxyl radicals by using UV or visible light.

AOPs of the electrochemical variety: These generate hydroxyl radicals using an electrical current.

Sonochemical AOPs: Ultrasound is used in sonochemical AOPs to produce hydroxyl radicals.

Regarding price, efficiency, scalability, and the types of pollutants that may be treated, each kind has certain benefits and drawbacks.

A well-known advanced oxidation process (AOP) is the Fenton process, which involves reacting hydrogen peroxide with a ferrous catalyst to produce hydroxyl radicals. Homogeneous and heterogeneous Fenton processes are the two primary varieties. Both the hydrogen peroxide and the ferrous iron catalyst are present in the homogeneous Fenton reaction, often in an aqueous solution. The heterogeneous Fenton procedure, on the other hand, includes immobilizing the catalyst on a solid substrate, enabling improved separation and recyclability.

Additionally, there are other iterations of the Fenton process, each with their own advantages and disadvantages. Conventional Fenton, photo-Fenton, and electron Fenton are some of these varieties. Under typical circumstances, conventional Fenton makes use of the hydrogen peroxide and ferrous iron reaction. The process of photo-Fenton uses UV or visible light irradiation to boost the production of hydroxyl radicals. Using an electrochemical setup, Electron Fenton generates hydroxyl radicals by transferring electrons to the catalyst.

Regarding reactant doses, reaction speeds, and energy needs, each Fenton process variant has certain benefits and drawbacks. The precise pollutants being targeted, the required treatment efficiency, and financial factors all play a role in the decision of which Fenton process variation to adopt.

Fenton Process and its Subsequences:

AOP, known as the Fenton process, generates hydroxyl radicals using hydrogen peroxide and a ferrous catalyst. The Fenton process has several variations, including:

Homogeneous Fenton: In this method, the solution contains both a ferrous iron catalyst and hydrogen peroxide.

Heterogeneous Fenton: In this method, the catalyst is immobilized on a solid support, making it simple to separate and recycle.

Photo-Fenton: This method boosts the production of hydroxyl radicals by combining the Fenton reaction with UV or visible light irradiation.

Electron Fenton: In this method, electrons are transferred to the catalyst using an electrochemical cell to produce hydroxyl radicals.

2.4.2 Why Electron Fenton Process:

The electron Fenton process has been chosen as the preferred advanced oxidation process (AOP) for the tertiary treatment facility in this study. Using electricity, the electron Fenton process produces ferrous ions on-site, which are subsequently mixed with hydrogen peroxide to create hydroxyl radicals. This AOP option has several benefits that make it ideal for the treatment of tannery effluent.

The electron Fenton procedure has the benefit of using less chemicals. The requirement for introducing external ferrous iron is eliminated or much diminished by electrochemically producing ferrous ions. This lowers costs and lessens the need for chemical additions.

The decreased sludge production is another benefit. The electron Fenton method produces less sludge throughout the treatment phase than other AOPs. This might make dealing with and getting rid of garbage produced during wastewater treatment simpler.

The electron Fenton method also offers improved process control. The production of hydroxyl radicals can be precisely controlled when an electrochemical cell is used. As a result, the treatment procedure can be properly regulated, resulting in the effective breakdown of organic pollutants in the tannery wastewater.

The electron Fenton method emerges as a viable option for the tertiary treatment of tannery wastewater in light of these concerns. It provides benefits like fewer chemical consumption, less sludge production, and improved process control, all of which help to effectively and efficiently.

2.4.3 Benefits of the advanced oxidation electron Fenton process:

The electron Fenton method is a good option for the tertiary treatment of tannery effluent because it offers several particular characteristics. It permits the electrical production of ferrous ions locally, which combine with hydrogen peroxide to form hydroxyl radicals. This method saves money and makes waste disposal simpler since it uses fewer chemicals and creates less sludge. Additionally, it permits fine-grained control over the therapeutic procedure, which may increase therapeutic effectiveness.

2.4.4 Future Prospects:

With continued research into novel catalysts, optimization of process variables, and integration with other treatment technologies, AOPs have a bright future. Future developments that might make AOPs more efficient and sustainable include the utilization of solar energy for photocatalytic AOPs, the creation of nanomaterial-based catalysts, and improved process control techniques.

2.5 Reverse Osmosis:

A semipermeable membrane is used in the reverse osmosis (RO) method of water purification to successfully remove ions, molecules, and bigger particles from drinking water. Dissolved solids and pollutants are separated from water using a membrane-based procedure. By applying pressure to the water, the membrane allows the solvent molecules to pass through while retaining dissolved solutes and contaminants, producing cleaned water on the permeate side. Due to its capacity to produce high-quality filtered water by removing a variety of impurities, RO has achieved broad use in a variety of applications, including the treatment of industrial effluents and brackish water.

2.5.1 Why Reverse Osmosis:

Reverse osmosis (RO) is incorporated into the proposed tertiary treatment plant since it has many benefits. First and foremost, RO effectively removes dissolved organic and inorganic pollutants, including salts, heavy metals, and trace pollutants, resulting in the creation of high-quality treated water. Furthermore, because of its high rejection rate and stable and continuous barrier against pollutants, RO ensures a powerful purification procedure. Finally, RO systems are appropriate for installation in small spaces due to their compact and modular design, making them an efficient choice for the wastewater treatment plant at the tannery.

In conclusion, this chapter gave an overview of reverse osmosis technology as well as the electron Fenton process, an advanced oxidation process (AOP). The advantages of the electron Fenton process, such as its lower chemical consumption and improved process control, favor its selection as the AOP. Reverse osmosis is being integrated because it is efficient at eliminating dissolved impurities, has a high rejection rate, and can be installed in small places. These technologies serve as the cornerstone for building the tannery's proposed tertiary treatment plant.

2.6 Conclusion:

The chapter has covered the intricacies of tanning, its effects on the environment, and the requirement for an efficient wastewater treatment procedure that goes along with it in detail. Due to their numerous benefits, the electron Fenton process, an AOP, and RO have been highlighted as prospective contenders for the proposed tertiary treatment facility. These technologies have a bright future ahead of them since ongoing developments are anticipated to increase their efficiency and efficacy.

CHAPTER 3

PROCESS DESCRIPTION

The process opted for tertiary water treatment was electro Fenton process. It was 88% efficient in removing the persistent organics present within our effluent. Among AOPs, Fenton technology is very attractive due to its simplicity, low cost, high performance, and the lack of toxicity of Fenton's reagents (ferrous ion and hydrogen peroxide).

3.1 Electro Fenton process:

The Electro-Fenton process is treatment technology for wastewater. Electro-Fenton utilizes hydroxyl radicals to oxidize hazardous contaminants and is especially useful to treat recalcitrant compounds that are not easily degraded in conventional water and wastewater treatment plants. The EAOPs process is a new technology that has clean, efficient and economical processing in removing pollutants in water.

3.1.1 Mechanism

During the Fenton process, ferrous ion (Fe2+) catalyzes hydrogen peroxide (H2O2) into OH•, which is a highly reactive and strong oxidizing agent that can react with most organic compounds containing C-H and C-C bonds at near diffusion-controlled rates. Compared with the conventional Fenton process, electro-Fenton process avoids the transport and storage of external H2O2 with in situ generated H2O2 on the cathode and therefore is an environmentally friendly technology as chemical usage has been reduced and sacrificial production of Fe2+ on the anode. OH• generation was also observed at the anode by the oxidation of water.

3.1.2 Why OH radical?

OH• is the second strongest oxidizing agent preceded by F2 (Table 1). OH• has a standard potential as high as 2.80 V (vs. SHE), indicating its extraordinary ability to obtain electrons from other materials and to oxidize other substances.

Hydroxyl radicals react rapidly with RH and start a radical oxidation chain mainly by abstracting a hydrogen atom from C-H, N-H, or O-H bonds.

Adding to an unsaturated bond such as C=C bonds or aromatic rings (ArH)

Examples:

1- C7F15COOH (perfluorooctanoate) is an organic compound. OH• attacked C7F15• that was generated from C7F15COO– and formed C7F15OH. The formation of C6F13COO– was resulted from C7F15OH after intramolecular rearrangement and the produced shorter PFOA chain followed the same reactions as those of C7F15COO– until complete mineralization.

2- Acid red 97 (AR97, C32H20N4S2O8Na2). OH• was observed to attack the azo bonds (-N=N-) initially, and then degraded the products (I–IV) to hydroxylated or poly hydroxylated derivatives via hydroxylation. These derivatives were further oxidized to quinoid structures (V–XI) and formed carboxylic acids via ring opening. Finally, carboxylic acids were converted to CO2 and H2O.

3.1.3 Reactions:

OH + organics -----> products + CO_2 + H_2O

•OH + organics -----> $0_2 + H_2 0$

3.1.4 Process conditions:

pH= 3 Acidic

Temperature= 45 C

Electrolyte= Sodium Sulphate

3.1.5 Process Flow Diagram:

Figure 3.1 Process Flow Diagram for Tertiary Water Treatment

3.1.6 Heater:

The process starts with heating the 62500 L/hr of water in a heater. And then regulation of pH to meet electro Fenton process requirement.

3.1.7 pH Regulator:

A buffer solution is preferred to maintain a pH of 3. For this purpose, 125L of sodium citrate dihydrate and citric acid is introduced to 62500L of water per hour.

3.1.8 Reactor:

Reactor is the main part of our process. Electro Fenton reaction takes place in reactor. A compressor provides air which fulfills the demand of oxygen in the reactor. There are two electrodes: iron anode and Graphite sheet carbon cathode. The oxygen helps in the generation of H2O2 which further oxidizes to OH radical. The OH radical has the most reduction potential after Fluorine. So, it reacts with organics to decompose them into simpler Hydrocarbons CO2 and H2O.

3.1.9 Sedimentation tank:

It is used to remove the TSS present in our water, noted to be 100mg/l. The coagulating agent used is PACl (poly aluminum chloride) has been added. The amount of coagulant is 600mg/l. The coagulant comes out with TSS. The removal efficiency is 55%.

3.1.10 Neutralizer:

In neutralizer tank, pH changes from 3 to 7 (neutral), ferrous ions (Fe2+) can indeed undergo oxidation reactions in the presence of oxygen and certain pH conditions, resulting in the formation of iron hydroxide, commonly known as "iron sludge". This iron sludge is removed in sand filters present on the downstream of neutralizer.

3.1.11 Reverse Osmosis:

The presence of sodium citrate dihydrate for maintaining pH and use of sodium sulphate as electrolyte introduces TDS in water. Reverse osmosis is the best technique used for the removal of these dissolved solids.

CHAPTER 4

MATERIAL BALANCE

4.1 Introduction and Importance:

A mass balance, also known as a material balance, is a method of applying mass conservation to the analysis of physical systems. Mass flows that would have been unknown or difficult to assess without this technique can be identified by accounting for material entering and leaving a system. For example, mass balance theory is used to build chemical reactors, examine alternative chemical production processes, and predict pollution dispersion and other physical system activities. The mass balance for a system without a chemical reaction is

Input=Output + Accumulation

The phrase "mass balance" refers to an accounting technique that compares inputs (such as plastic trash) to outputs from a recycling or manufacturing process to calculate the recycled content. Mass balance is a chain of custody approach that tracks the net amount of sustainable materials as they move through a system or supply chain and guarantees that these materials are appropriately allocated to finished goods based on auditable bookkeeping. As the mass balance technique focuses on net material flow, material characteristics can be assigned to products in the form of "credits," even if this is not related to the actual sourcing composition of the product.

The mass balance chain of custody approach enables many sectors to gradually transition to more sustainable practices and material utilization.

The general rule for the mass balance in a system box is:

Input + Generation – Output – Consumption = Accumulation

In + Generation = Out + consumption + Accumulation

Since

Thus,

In = out

$$Stream 1 = Stream 2 = 62500L/hr$$

4.1.2 pH REGULATOR:

In + Generation = Out + consumption + Accumulation

Since

$$Generation = Consumption = Accumulation = 0$$

Thus,

$$In = out$$

Stream 2 + Stream 3 = Stream 4

Stream 2 = 62500L/hr

Stream 3 = ?

CALCULATION of STREAM 4:

Stream 3 = Volume of buffer

 $pH = -log[H^+]$ pH = 3 $[H^+] = .0001$ moles of buffer = $V * [H^+]$

Where V' = 62500

 $Volume \ of \ buffer = \frac{moles \ of \ buffer}{molarity}$

 $Volume \ of \ buffer = \frac{62500 * .0001}{0.05}$

Volume of buffer = 125L/hr

Thus, the overall mass balance becomes as follow;

62500 + 125 = 62625

Out = Stream 4 = 62625L/hr

BUFFER PREPERATION

For 125L preparation using molarity of 0.05M

Mass of citric acid: 1088.12 g

Mass of Sodium citrate dihydrate: 172.416g (0.58 moles)

- * Prepare 100 L of distilled water in a suitable container.
- * Add 172.416 g of Sodium Citrate dihydrate to the solution.
- * Add 1088.12 g of Citric Acid to the solution.
- * Adjust solution to final desired pH using HCl or NaOH
- * Add distilled water until the volume is 125 L.

Table 2 pH Regulator

COMPONENTS	PARAMETER	UNITS	IN	OUT
Water	Volumetric	L/hr.	62500	62500
Buffer Solution	Flow	L/hr	125	125
	Rate			
Total		L/hr	62625	62625

Table 3 pH Regulator Parameters

PARAMETERS	UNITS	IN	OUT
рН	mg/L	7	3
COD	mg/L	25	250
BOD	mg/L	0	200
TSS	mg/L	20	100
Na ⁺	mg/L	0	0.64
Citrate Ion	mg/L	10	19.2
Temperature	°C	45	45

SODIUM ION

1 mole of Sodium citrate dihydrate gives 3 moles of Sodium ion

.58 mole of Sodium citrate dihydrate gives 1.74 moles of Sodium ion

In

$$Na^+ = moles * molarmass * \frac{1}{V'} = 1.74 * 23 * \frac{1}{62625} = 0.647 mg/L$$

CITRATE ION

1 mole of Citratic acid dihydrate gives 1 moles of Citrate ion

In

Citrate ion = mass
$$*\frac{1}{V'} = 1088.12 * \frac{1}{62625} = 19.2mg/L$$

4.1.3 ELECTROLYTIC REACTOR:

In + Generation = Out + consumption + Accumulation

Since

Generation = *Consumption*
$$\neq$$
 0

$$Accumulation = 0$$

Assumptions:

The following compounds constitutes to the COD ad BOD level. It is assumed that 1 mole of each constituent contribute to COD of level 200mg/l and that of BOD to 150mg/l

Components:

Table 4 Persistent Organic Components from Tannery Wastewater

PPM,

PPM,

NAME	FORMULA
2, 2, 4-Trimethyloxepane	С9Н180
2-2-hydroxypropyl)	С9Н16О2
cyclohexanone	
Dibutyl phthalate	C16H22O4
Octacosane	C28H58
Tetratetracontane	C44H90
Bis(2-methoxyethyl)	C14H1806
phthalate)	
Eicosane	C20H42
Docosane	C22H46
1,2-	C24H38O4
Benzenedicarboxylicacid	
diisoctyl ester	
2,6,10-Dodecatrien-1-ol-	C17H28O2
3,7,11-Trimethylacetate	
Hexatriacontane	С36Н74
2,6,10,15-	C21H44
Tettramethylheptadecane	
Tricosane	C23H48
9-Methylnonadecane	C20H42

From the reactions

C9H18O+52OH----> 9CO2+35H2O

C9H16O2+48OH----> 9CO2+32H2O

C16H22O4+78OH----> 16CO2+50H2O

C28H58+1700H---->28CO2+114H20

C44H90+2660H---->44C02+178H20

C14H18O6+ 62OH----> 14CO2+40H20

C6H12O3+ 30OH----> 6CO2+21H2O

C20H42+122OH---->20CO2+82H20

C22H46+ 134OH----> 22CO2+90H20

C24H38O4+ 126OH----> 24CO2+82H20

C17H28O2+ 92OH----> 17CO2+60H20

C36H74+ 2180H----> 36C02+146H20

C21H44+1280H---->21 CO2+86H20

C22H46+134 OH----> 22CO2+90H20

C23H48+140 OH----> 23CO2+94H20

For 100% Conversion:

• *OH Required* = 2772 *moles*

In real-time data, 10% of \bullet *OH* are obtained from H2O itself

• OH (from water) =• OH * 0.1

• *OH*(*from water*) = 277.2 *moles/hr*

• OH(required) = 2494.8 moles/hr

For 88% Conversion

• OH(real) = • OH(req) * 0.88

• *OH* = 2494.8 * 0.88 = 2195.6 = 2196 moles/hr

CONSUMPTION OF WATER:

Thus for required hydroxyl radical amount, water consumed will be given as follow

$$H_2O$$
 (Consumed) = 249.48 moles/hr

IN VOLUME

$$H_20 \ (Consumed) = (moles/hr) * (molarmass) * \frac{1}{density}$$

 $H_20 \ (Consumed) = (249.48) * (18) * \frac{1}{1000}$

 $H_2O(Consumed) = 4.49 L/hr$

For 88% conversion, Production of water is given as

GENERATION OF WATER:

 $H_2O = 1588 \text{ moles/hr}$

 $H_2O(88\%) = 1588 * 0.88$

 $H_2O(88\%) = 1397 moles / hr$

IN VOLUME

$$H_20 \ (Generated) = (moles/hr) * (molarmass) * \frac{1}{density}$$

 $H_20 \ (Generated) = (13397) * (18) * \frac{1}{1000}$

$$H_2O$$
 (*Generated*) = 25.146 *L/hr*

Thus,

Inlet Streams

Stream 6 = 2400L/hr (from reference)
ELECTROLYTE CALCULATIONS:

Type of electrolyte: Na₂SO₄

Amount of $Na_2SO_4 = (Volume of water) * (Concentration)$

Amount of $Na_2SO_4 = 62625 * 0.02$

Amount of $Na_2SO_4 = 1252 \text{ moles}/hr$

Volume of $Na_2SO_4 = (moles/hr) * (molarmass) * \frac{1}{density}$

Molar mass of Na_2SO_4 =142.04 g/mol

Density of $Na_2SO_4 = 2.66 \text{g/cm}^3$

Volume of $Na_2SO_4 = 66.74 L/hr$

Stream 5 = 66.74L/hr

Outlet Streams

Stream 7 = ?

CALCULATION of STREAM 7:

In + Generation = Out + consumption

62625 + 66.8 + 25.14 = Out + 4.49

Stream 7 = 62712.45

Table 5 Reactor Balance

COMPONENTS	PARAMERTER	UNITS	[N	OUT
Water	Volumetrie	L/hr	62625	62625
Na ₂ SO ₄	Flow	L/hr	66.8	66.8
Air	Rate	L/hr	2400	2400
Water consumption	_	L/hr	4.9	·
Water Generation		L/hr	25.14	
Total	Volumetric flow rate	L/hr	62712.45	62712.45

Table 6 Reactor Parameters

Parameters	Units	In	Out
рН		3	3
COD	mg/L	250	30
BOD	mg/L	200	20
TSS	mg/L	100	100
Temperature	°C	45	45
Na ⁺	mg/L	0.6472	918.9
SO_{4}^{-2}	mg/L	0	1914.7
Citrate	mg/L	19.2	19.2
Fe+2	mg/L	0	1953.94

4.1.4 SEDIMENTATION TANK:

In + Generation = Out + consumption + Accumulation

Since

Generation = Consumption = 0

Accumulation ≠ **0** Represented as Stream 9

Thus,

In = out

Stream 7 + *Stream* 8 = *Stream* 9 + *Stream* 10

Stream 7 = 62712.45L/hr

Stream 8 = 600 mg/L

Stream 8 represents coagulant which is POLYALUMINIUM CHLORIDE

From the references, it is observed that for sedimentation of tannery wastewater, PACI is very effective and gives good results.

The amount used at the given pH i.e., 3 is 600mg/L.

SPECIFICATIONS:

- * All of coagulant is removed with TSS.
- * Removal of TSS= 55%

$$TSS(7) = \frac{100mg}{L} * \frac{62712.04L}{hr} = 6271204\frac{mg}{hr} = 6271.245g/hr$$
$$TSS(9) = TSS(in) * 0.55 = 6271.245 * 0.55 = 3449.2g/hr$$
$$TSS(10) = TSS(in) * 0.45 = 6271.204 * 0.45 = 2822.06g/hr$$

CALCULATION OF STREAM 9:

 $Stream 9 = TSS(9) + H_2O(9)$

Assumption: 10% moisture content

 $H_2O(9) = 0.1 * 62.7 x 10^6 = 62.7 x 10^5$

Stream $9 = 62.7 x 10^5 + 3449.2 = 6.31 x 10^6 g/hr$

 $Mass of sludge = \dot{V}\{Cin(Tss) + C coagulant - Cout(Tss)\} + mass(H2O)$

Mass of sludge = $6.31X10^6 g/hr$

CALCULATION OF STREAM 10:

Stream 10 = Stream 7 - Stream 7 * 0.1

Stream **10** = 62712.45 - 6271.245 = 56441.2 = **56441**.2*l/hr*

Table 7 Sedimentation Tank Balance

COMPONENTS	PARAMETER	UNITS	IN	OUT	Sludge
					(TSS)
Water	V '	L/hr	62712.45	56441.2	6271.2
TSS	ppm 3	mg/L	100	45	55
Coagulant	ppm	mg/L	600	0	600

Table 8 sedimentation Tank Parameters

PARAMETERS	UNITS	IN	OUT
рН	mg/L	3	3
COD	mg/L	30	30
BOD	mg/L	20	20
TSS	mg/L	100	45
Temperature	°C	45	45

4.1.5 NEUTRALIZER:

Since

$$Consumption = Accumulation = 0$$

Thus,

$$In = out$$

Stream 10 = Stream 12

All of Stream 11 Will be present in water stream in dissolved form. At the given process conditions, the solubility of NaOH is enough to dissolve the amount calculated.

Stream 10 = 56441.2L/hr

Stream 12 = 56441.2

CALCULATION OF STREAM 11:

 $1C_6H_8O_7 + 3NaOH --- \rightarrow 3H_2O + Na_3C_6H_5O_7$

Using Stoichiometric equations

1 mole (citrate) = 3 mole (NaOH)

For 5.66 moles of citric acid

$$5.66 \text{ mole } (citrate) = 3 * 5.66 \text{ mole } (NaOH)$$

5.66 mole (citrate) = 16.99 mole (NaOH)

GENERATION OF WATER:

For complete neutralization of citrate buffer, 3 moles of water will be produced given that 1 mole of citric acid is being neutralized.

$$H_20$$
 (Generated) = (moles/hr) * (molarmass) * $\frac{1}{density}$

$$H_2O$$
 (Generated) = (16.99) * (18) * $\frac{1}{1000} = 0.305l/hr$

 $Fe^{+2} + 2NaOH - \rightarrow Fe(OH)_2 + 2Na^{+1}$

For 5.66 moles of citric acid

$$1 mole (Iron) = 2 mole (NaOH)$$

Given 2196 moles of Iron are produced

Shift in pH from 3 to 7 can cause 80% of iron to precipitate out.

1756.8 mole (citrate) = 2 * 1756.8 mole (NaOH

$$1867 mole (citrate) = 3513.6 mole (NaOH)$$

Total NaOH required = 3513.6 + 16.99 = 3530.59 moles

Molar mass of NaOH = 40g/mol

Amount of NaOH required = 3530.59 * 40 = 141.2kg/hr

Table 9 Neutralizer Balance

COMPONENTS	PARAMETER	UNITS	IN	OUT
Water	V'	L/hr	56441.2	56441.405
NaOH		Kg/hr	141.2	0

Table 10 Neutralizer Parameters

PARAMETERS	UNITS	N	OUT
pH	mg/L	3	7
COD	mg/L	30	30
BOD	mg/L	20	20
TSS	mg/L	100	45
Fe(OH)2	mg/L	0	2796.9
Na^+	mg/L	918.9	2358.9
<i>SO</i> ₄ ⁻²	mg/L	1914.7	1914.7

Citrate	mg/L	19.2	38.16
Fe^{+2}	mg/L	1953.94	434.2
Temperature	°C	45	44.25

4.1.6 SAND FILTERS # 01:

In + Generation = Out + consumption + Accumulation

Since

Thus,

In = out

$$Stream 12 = Stream 13 + Stream 14$$

Stream 13= negligible as very minute amount of water will be lost in this process i.e. 0.1% loss thus, Stream 13 can be given as 0

Stream 13 = 0

REMOVAL SPECIFICATION:

TSS: 70% removal

Fe (OH)₂: 97%

Table 11 Sand Filter #01 Balance

COMPONENTS	PARAMETER	UNITS	IN	OUT (14)	РРТ. (13)
Water	V'	L/hr	56441.405	56441.405	Negligible
Fe (OH)2	ppm	mg//L	2796.9	56.9	2740
TSS	ppm	mg/L	45	13.5	31.5

Table 12 Sand Filter #01 Parameters

PARAMETERS	UNITS	IN	OUT
рН	mg/L	7	3
COD	mg/L	30	30
BOD	mg/L	20	20
TSS	mg/L	45	31.5
Fe (OH)2	mg/L	2796.9	55.9
Temperature	°C	44.25	44.25

4.1.7SAND FILTERS # 02

In + Generation = Out + consumption + Accumulation

Since

$$Generation = Consumption = Accumulation = 0$$

Thus,

In = out

$$Stream 14 = Stream 15 + Stream 16$$

Stream 16= negligible as very minute amount of water will be lost in this process i.e. 0.1% loss thus, Stream 16 can be given as 0

Stream 16 = 0

REMOVAL SPECIFICATION:

TSS: 70% removal

Fe (OH) 2: 97%

Table 13 Sand	Filter #02	Balance
---------------	------------	---------

COMPONENTS	PARAMETER	UNITS	IN	OUT(15)	PPT.(16)
Water	V'	L/hr	56441.405	56441.405	Negligible
Fe(OH)2	ppm	mg//L	56.9	1.12	55.7
TSS	ppm	mg/L	13.5	2.025	11.475

Table 14 Sand Filter #02 Parameters

PARAMETERS	UNITS	IN	OUT
рН	mg/L	7	3
COD	mg/L	30	30
BOD	mg/L	20	20
TSS	mg/L	13.5	2.025
Fe(OH)2	mg/L	55.9	1.11
Temperature	°C	44.2	44.2

4.1.8 REVERSE OSMOSIS:

65% Recovery

Table 15 Reverse Osmosis balance

COMPONENTS PARAMERTER UNITS IN		IN	OUT		
				PERMEATE	CONCENTRATE
				(18)	(17)
water	V'	L/hr	56441.405	36686.91	19754.5
TDS	ppm	mg/L	4751.7	712.755	4038.9

CHAPTER 5

ENERGY BALANCE

HEATER

Overall relation for energy balance is given as

 $\Delta \boldsymbol{H} = \boldsymbol{Q} + \boldsymbol{W}$

In heater, no work done is being produced

Thus, *workdone* = 0

The equation is reduced to

 $\Delta \boldsymbol{H} = \boldsymbol{Q}$

 $Q = mcp \Delta T$

$$\Delta H = Q = mcp\Delta T$$

Where

m=mass of water= 62500kg/hr

cp= specific heat of water= 4.18KJ/K-Kg

 ΔT = difference in temperatures of inlet and outlet streams = (45-25)^oC

$$\Delta H = (62500) * (4.18) * (20)$$
$$\Delta H = 5.37 \ x 10^3 KJ/hr$$
$$\Delta H = 1.49 \ x 10^3 J/s$$
$$DUTY = \Delta H = 1.49 \ x 10^3 \ watts = 1.49 \ KW$$

COMPRESSOR

Overall relation for energy balance is given as

$$\Delta H = Q + W$$

In compressor, work done is done on air to compress it

Thus, above relation is modified as follow:

$$Win + \dot{m}H_1 = Qout + \dot{m}H_2$$

We

 $Q = mcp \Delta T$

Therefore, above equation is modified as follow

know,

$$Win + \dot{m}H_1 = mcp\Delta T + \dot{m}H_2$$

Where

m=mass of air= 0.802×10^{-3} Kg/sec (converting 2400L/hr in SI units)

cp= specific heat of air

 ΔT = difference in temperatures of inlet and outlet streams =

- T_1 (inlet temperature) = 25°C
- T₂ (outlet temperature) =?
- P₁ (inlet pressure) = 1 Bar= 101.3Kpa
- P₂ (outlet pressure) = 8 Bar= 800Kpa

Using relation to find the outlet temperature of the air stream if compressed from1 to 8 bar.

$$\boldsymbol{T}_2 = \boldsymbol{T}_1 (\frac{\boldsymbol{P}_2}{\boldsymbol{P}_1})^{\frac{\gamma-1}{\gamma}}$$

Where $\gamma = \frac{cp}{cv}$

For air, ra $\gamma = 1.410$

Thus,

$$T_2 = \left(\frac{800}{101.3}\right)^{\frac{1.410-1}{1.410}}$$

$T_2 = 543.48 K$

Using property tables for air, we find the enthalapies at both inlet and outlet temperature.

- H_1 (inlet enthalp) = 298.35KJ/kg
- H₂ (outlet enthalp) = 689.22KJ/Kg

cp₁ (at 298K) =1.005KJ/Kg-K

cp₂ (at 677.3K) = 1.069KJ/Kg-K

Now as we have all the parameters, we substitute their values in the equation

 $Win + \dot{m}H_1 = mcp_2 \Delta T + \dot{m}H_2$

 $Win + 0.802 x 10^{-3} (689.22) = (0.802 x 10^{-3}) (1.069) (379.3) + 0.802 x 10^{-3} (298.35)$

Win = 0.325 + 0.55 - 0.239

Win = 0.638KJ

PUMP

Overall relation for energy balance is given as

$$\Delta H = Q + W$$

In compressor, work done is done on air to compress it

Thus, above relation is modified as follow:

$$\eta P = Volumetric flowrate * (P_2 - P_1)$$

Where

V'=volumetric flow rate of water= 56441.405L/hr

Converting it into the SI unit, we get

V'=0.0156m³/s

cp= specific heat of water= 4.18KJ/K-Kg

 ΔP = difference in pressure of inlet and outlet streams = (830-101.3)kpa

 η =efficiency of pump=75% (assumed to be isentropic)

Substituting values in the given relation,

0.75P = 0.0156 * (830 - 101.3) $P = 15.22 \times 10^3 \text{ watts}$ DUTY = P = 15.22 KW

Using relation

Bluk velocity = scale of agitation * 6ft/min

SCALE OF AGITATON

Table 16 Scale of Agitation

1	Quite
	mild
3	Normal
6	Vigorous
10	Violent

Scale of agitation required= **normal =3**

Vc = 3 * 6 ft / min = 0.1 m/s

Pumping rate = Vc * area

Where area = $\frac{\pi D^2}{4}$ and diameter is 3.5m

 $Pumping \ rate = 0.1 * \frac{\pi (3.5^2)}{4}$

Pumping rate $(Q) = 0.96m^3/s$

Now using

$$Nq = \frac{Q}{ND^3}$$

For Turbine type of agitation having 4 blades

$$Nq = 0.79$$
; $Np = 1.27$

Np is power number

Nq is flow number

$$N = \frac{Q}{NqD^3} = \frac{0.96 * 60}{(0.79) * 3.5^3} = 1.7 \, rpm$$

$$Power = Np * p * N^3 * D^5$$

$$Power = (1.27)(1000)(1.7)^3(3.5)^5$$

Power = $0.015 x 10^3$ *watts*

Conversion

NEUTRALIZER

factor

of

 $Power = Np * p * N^{3} * D^{5} * \frac{1}{60 * 60 * 60 * 1000} = KW$

Using relation

SCALE OF AGITATION

Table 17 Scale of Agitation

1	Quite mild
3	Normal
6	Vigorous
10	Violent

Scale of agitation required= normal =3

$$Vc = 3 * 6ft/min = 0.1m/s$$

Pumping rate =
$$Vc * area$$

Where area= $\frac{\pi D^2}{4}$ and diameter is 3.4m

Pumping rate = $0.1 * \frac{\pi(3.4^2)}{4}$ Pumping rate (Q) = $0.9m^3/s$

Now using

$$Nq = \frac{Q}{ND^3}$$

For Turbine type of agitation having 4 blades

$$Nq = 0.79$$
; $Np = 1.27$

Np is power number

Nq is flow number

$$N = \frac{Q}{NqD^3} = \frac{0.96 * 60}{(0.79) * 3.4^3} = 1.08 \, rpm$$

$Power = Np * p * N^3 * D^5$

$$Power = (1.27)(1000)(1.08)^3(3.4)^5$$

Power = $0.003 x 10^3$ *watts*

Conversion

factor

of

$$Power = Np * p * N^{3} * D^{5} * \frac{1}{60 * 60 * 60 * 1000} = KW$$

Table 18 Neutralizer Energy Balance

ENTHALPIES

$1C_6H_8O_7 + 3NaOH \rightarrow 3H_2O + Na_3C_6H_5O_7$	
ΔH (reactants)	-15981.508 KJ
ΔH (products)	7580.16 KJ
ΔH (reaction)	23561.668 KJ
For 5.7 moles of citric acid	
$Fe^{+2} + 2NaOH - \rightarrow Fe(OH)_2 + 2Na^{+1}$	
ΔH (reactants)	-1650864.96 KJ
ΔH (products)	-1850693.392 KJ
ΔH (reaction)	-199818.43 KJ
For 1756.8 moles of Fe^{+2}	
NET Enthalpy	-176256.76 KJ

Overall relation for energy balance is given as

$$\Delta \boldsymbol{H} = \boldsymbol{Q} + \boldsymbol{W}$$

In mixer, no work done is being produced

Thus, workdone = 0

The equation is reduced to

 $\Delta H = Q$ $Q = mcp\Delta T$ $\Delta H = Q = mcp\Delta T$

Where

m=mass of water= 56441.45 kg/hr

cp= specific heat of water= 4.18 KJ/K-Kg

 ΔT = difference in temperatures of inlet and outlet streams=?

 $-176256.76 \text{ KJ} = (56441.45) * (4.18) * \Delta T$

 $\Delta T = -0.74$

$$\Delta T = (T_2 - T_1) = (T_2 - 318) = -0.75$$

 $T_2 = 318 - 0.75 = 317.25K$

CHAPTER 6

EQUIPMENT DESIGN

PH REGULATOR:

Flow rate: 62.62 m^3 /hr

Retention time: 1 hr

Formula

 $Time = \frac{Volume}{flow rate}$

Volume= (time x flow rate) +overflow allowance

Volume= (1hr x 62.62) +10%

= 62.62+6.262

Volume = 68.88 m^3

DIMENSIONS CALCULATIONS

Volume (cylindrical) = $\pi \frac{D^2 H}{4}$

H=2D $V=\pi/4 D^2 H$

D=3.5m H=7.04m

Tank: Cylindrical

ELECTROLYTIC REACTOR

CALCULATIONS OF CURRENT:

Formula

$$n = \frac{FVd(h202)}{I.dt} \times 100$$
$$I = 96485x \frac{\frac{1}{3600}}{2x3600} \times 0.6 \times 100$$

Moles of $H_2O_2 = 0.6$ moles/s

CALCULATIONS OF POWER:

$$power = IV = 0.528 \, KW \, (for \, 220V)$$

CALCULATIONS OF SURFACE AREA:

Formula

 $Surface Area = \frac{Required Current}{Current Density}$

current density = $50 A/m^2$

required current = 817 *A for* 1 *Hour*

Surface Area of electrode = $16.34 m^2$

CALCULATIONS OF DISTANCE B/W ELECTRODE:

Formula

Distance = $\frac{K x Area}{G}$

(C) Conductance = 3.5×10^6 mho

(K) Specific Conductance = 1.8×10^6 mho/m

Distance = 8. $4m^2$

Table 19 Electrode Specifications

PARAMETERS	DESIGN SPECIFICATION
Area of electrode	$16.34m^2$
Electrode	Anode: Iron Cathode: Graphite
Distance b/w electrode	$8.4m^2$

CALCULATIONS OF VOLUME:

Flow rate: $62.6 m^3 / hr$

Retention time: 1 hr

Formula

 $Time = \frac{Volume}{flow \, rate}$

Volume= (time x flow rate) +overflow allowance

Volume= (1hr x 62.6) +10%

= 62.6+6.26

Volume = 68.86 m^3

DIMENSIONS CALCULATIONS

Type of Tank: Cylindrical

Volume (cylindrical) = $\pi \frac{D^2 H}{4}$ H=2D V= $\pi/4 D^2$ H D=3.526m H=7.0529m

SEDIMENTATION TANK

CALCULATIONS OF SETTLING VELOCITY

Parameters

$$D_p = 22 \ x \ 10^{-6} \ m$$

$$\rho_p = 1670 \, kg/m^3$$

g = 9.8 m/s

$$\rho_F = 1000 \ kg/m^3$$

$$C_{\rm o} = 100 {\rm mg/l}$$

K =
$$D_p \left(\frac{g\rho_F(\rho_p - \rho_F)}{\mu^2}\right)^{\frac{1}{3}}$$

K =
$$22x10^{-6} \left(\frac{(9.8(1000)(1670-1000))}{(1x10^{-3})^2} \right)^{\frac{1}{3}} = 0.4$$

For k<3.3, $\mu_t = \frac{g D_p^2(\rho_p - pf)}{18\mu} = 1.78 \text{x} 10^{-4} \text{m/s}$

CALCULATIONS OF OVER FLOW RATE

 $\psi = C_{\rm o} x \mu_t = 1.78 x 10^{-5} kg/m^2 s$

CALCULATIONS OF SURFACE AREA

Formula

 $Surface area = \frac{volumetric flow ratex C_o}{over flow rate}$

Type of Tank: Cylindrical

$$area = 2\pi rh + 2\pi r^2$$

Cylindrical relation of height to diameter ratio: 1:2 i.e. H = 2D = 4r

$$area = 8\pi r^2 + 2\pi r^2 = 10\pi r^2$$

Volumetric Flow Rate = $0.017 \ m^3$ /sec

Surface area =
$$\frac{volumetric flow rate x C_o}{over flow rate} = 95.1m^2$$

CALCULATIONS OF DIMENSIONS:

$$r = \sqrt{\frac{area}{10\pi}} = \sqrt{\frac{95.1}{10\pi}} = 1.7m$$
$$D = 2r = 2(1.7) = 3.4m$$
$$h = 2D = 2(3.4) = 6.8m$$

Volume of tank =
$$\pi r^2 h = 62.6m^3$$

Retention Time = $\frac{volume \ of \ tank}{Volume tric \ flow \ rate} = \frac{62.6}{0.017} = 3682s = 1.02hr$

NEUTRALIZER:

Flow rate: 56.441 m^3 /hr

Retention time: 1 hr

FORMULA

 $Time = \frac{Volume}{flow \ rate}$

Volume= (time x flowrate) +overflow allowance

Volume= (1hr x 56.441) +10%

 $= 62.08 m^3$

Volume = $62.08 m^3$

DIMENSIONS CALCULATIONS

Type of Tank: Cylindrical

Volume (cylindrical) = $\pi D^2 H/4$

H=2D $V=\pi/4 D^2 H$

D=3.4m H=6.8m

REVERSE OSMOSIS:

Table 20 Reverse O	Smosis Membrane	Design Specifications
--------------------	-----------------	-----------------------

PARAMETERS	DESIGN SPECIFICATIONS
Membrane material	Composite Polyamide
Membrane module	Low Fouling Spiral Wound
Membrane active area	1958.7 ft² (181.97 m²)
Diameter	4 inch
Length	40 inch
% Separation Factor	97.75 %
Permeate recovery	65 %
Permeate flow	36 m3/h
Flux decline	15 %
Osmotic pressure	4.8 bar
Pump pressure	8.3 bar

 $Active Area = \frac{Design Permeate Flow}{Design Flux \times N_E}$

Number of elements = $N_E=8$

Design permeate flow=36687.04 m³/hr

Design flux = $25.2 \text{ L/m}^2\text{hr}$

Active Area =
$$\frac{36687.04}{25.2 \times 8}$$
 = **181**.97 m^2

CALCULATIONS FOR % SEPARATION FACTOR:

% Separation Factor= $\frac{C_f \cdot C_p}{C_f} \times 100$

 C_f = Concentration of TDS in feed stream=4267 mol/l

C_p= Concentration of TDS in permeate stream=95.89 mol/l

% Separation Factor= $\frac{4267 - 95.89}{4267} \times 100$

% Separation Factor=97.75%

Software:

Ims Design

Trains			Pass 1
Feed pH			7.00
Permeate recovery	%		65.00
Permeate flow/train,	m3/h	•	36.00
Average flux	Imh		25.2
Feed flow,	m3/h		55.38
Reject flow	m3/h		19.38

Figure 6 7 IMS Design Specifications for Reverse osmosis

	Pass 1
Chemical	None 👻
Solution concentration, %	100 ÷
Chemical dosing mg/1 -	0.000
Membrane age, <u>years</u>	0.0
Flux decline %, <u>first year</u>	15.0
Fouling factor	1.00
SP increase % per year	7.0

Figure 6 6 IMS Design Membrane Specifications

CHAPTER 7

ECONOMIC ANALYSIS

PH REGULATOR

FORMULA

$Ce = CS^n$

Table 21 Tank Type

ТҮРЕ	MATERIAL
Horizontal	Carbon
Tank	Steel

Table 22 pH Regulator Specs

TYPE	1
FACTOR	
COST	\$2900
INDEX	0.6
CAPACITY	68.88m ³

Ce = \$36724.0

Table 23 Tank Type

ТҮРЕ	MATERIAL
Agitation	Carbon
(Turbine	Steel
Agitator)	

Table 24 pH Regulator Specs

TYPE	0.5
FACTOR	
COST	\$3000
POWER	0.15KW

 $Ce = (3000)(0.015)^{0.5}$

Ce = \$367

Total cost = \$37091.4 = \$0.037M

NEUTRALIZER

FORMULA

 $Ce = CS^n$

Table 25 Tank Type

ТҮРЕ	MATERIAL
Horizontal	Carbon
Tank	Steel

Table 26 Neutralizer Specs

TYPE	1
FACTOR	
COST	\$2900
INDEX	0.6
CAPACITY	$62.08m^3$

Ce = \$34528

Table 27 Tank Type

ТҮРЕ	MATERIAL
Agitation	Carbon
(Turbine	Steel
Agitator)	

Table 28 Neutralizer Specs

TYPE	0.5
FACTOR	
COST	\$3000
POWER	0.003KW
<i>Ce</i> = \$164	

Total cost = \$34692.3 = \$0.034M

ELECTROLYTIC REACTOR

$$Ce = CS^n$$

Table 29 Electrolytic Reactor Type

ТҮРЕ	MATERIAL
Agitator	Carbon
Reactor	Steel

Table 30 Electrolytic Reactor Specs

ТҮРЕ	1
FACTOR	
COST	\$31000
INDEX	0.45
CAPACITY	68.86m ³
$Cost = (31000) * 68.8^{.45} = $0.239M$	

Cost = \$239400 = \$0.239M

SEDIMENTATION TANK

$$Ce = CS^n$$

Table 31 Sedimentation Tank Type

ТҮРЕ	MATERIAL
Horizontal	Carbon
Tank	Steel

Table 32 Sedimentation Tank Specs

TYPE FACTOR	1
COST	\$2900
INDEX	0.6
CAPACITY	62.6m ³
Ce = \$34701.0	

Cost = 0.034M

STORAGE TANK

FORMULA

 $Ce = CS^n$

Table 33 Storage Tank Type

ТҮРЕ	MATERIAL
Cone	Carbon
roof	Steel

Table 34 Storage Tank Specs

ТҮРЕ	02
FACTOR	
COST	\$2900
INDEX	0.55
CAPACITY	$40.3m^3$

Ce = \$44294.07

Cost = \$0.044

OVERALL COST OF ALL EQUIPMENTS:

Table 35 Purchase Cost Of all Equipment

EQUIPMENT	COST IN USD(\$ M)
Heater	\$ 0.011
Compressor	\$ 0.017
Pump	\$ 0.067
pH Regulator	\$ 0.061
Sedimentation Tank	\$ 0.034
Reactor	\$ 0.239
Neutralizer	\$ 0.058
Reverse Osmosis	\$ 0.022
Storage Tank	\$ 0.044
Sand Filter	\$.016
PCE = PURCHASE COST OF EQUIPMENT = \$ 0.55 MILLION	
PHYSICAL PLANT COST

	Process type			
Item	Fluids	Fluids- solids	Solids	
1. Major equipment, total purchase				
cost	PCE	PCE	PCE	
f ₁ Equipment erection	0.4	0.45	0.50	
f ₂ Piping	0.70	0.45	0.20	
f ₃ Instrumentation	0.20	0.15	0.10	
f_4 Electrical	0.10	0.10	0.10	
f 5 Buildings, process	0.15	0.10	0.05	
* f 6 Utilities	0.50	0.45	0.25	
* f7 Storages	0.15	0.20	0.25	
* f 8 Site development	0.05	0.05	0.05	
* f9 Ancillary buildings	0.15	0.20	0.30	
2. Total physical plant cost (PPC) PPC = PCE $(1 + f_1 + \dots + f_9)$				
$= PCE \times$	3.40	3.15	2.80	
f_{10} Design and Engineering	0.30	0.25	0.20	
f 11 Contractor's fee	0.05	0.05	0.05	
f_{12} Contingency Fixed capital = PPC $(1 + f_{10} + f_{11} + f_{12})$	0.10	0.10	0.10	
$= PPC \times$	1.45	1.40	1.35	

Figure 4 Coulson's and Richardson's Chemical Engineering Vol 6 Economic Analysis

Total PPC = $PCE \ge 3.15$

$$Total PPC = 0.55 \ x \ 10^6 \ * \ 3.15$$

$$Total PPC = $1.32 \times 10^6$$

FIXED CAPITAL

Fixed Capital = *PPC* (1 + 0.3 + 0.1)

Fixed Capital = $1.32 \times 10^{6} (1 + 0.3 + 0.1)$

Fixed Capital = $$1.85 \times 10^{6}$

WORKING CAPITAL

Working Capital = Fixed capital x 0.05

Working Capital = $1.85 \times 10^6 \times 0.05$

Working Capital = 0.09×10^6

Total PPC	\$1.32M
Fixed Capital	\$1.85M
Working Capital	\$0.09M

VARIABLE COST

Table 36 Variable Cost

RAW	COST	COST FOR
MATERIALS		CONSUMPTION *
		10 ³ /YEAR
NaOH	\$0.62/Kg	\$729
PACI	\$0.42/Kg	\$2.098
Citric acid	\$4.49/Kg	\$40.307
Sodium	\$1.15/Kg	\$1.640
Citrate		
dihydrate		
Iron	\$0.2/Kg	199.8
Electrode		
Na ₂ SO ₄	\$0.105/Kg	\$157.3
Compressed	\$0.006/m ³	\$0.9*10 ⁻³
Air		
Utilities	\$0.15/MJ	\$0.187
(Power)		

TOTAL VARIABLE COST = \$1.3MILLION

FIXED COST

ANNUAL OPERATING COST

Variable Cost = \$1.35 million

Fixed Cost = \$0.54 million

Total Annual Operating Cost = Variable cost + Fixed cost

TOTAL COST = \$1.89 MILLION

COST IN 2023

Figure 5 Cost Index from Year 1996- Year 2004

Index in 2004 = 111

Index in
$$2023 = 178$$

$$Cost in 2023 = \frac{(cost in 2004)x(index in 2023)}{(index in 2004)}$$

$$Cost in 2023 = \frac{(\$1.89 x 10^{\circ}) x (178)}{(111)}$$

Cost in 2023 = \$30.5M

BENEFIT TO COST ANALYSIS

ASSUMPTIONS:

Cost of human life = \$100000

Cost of aquatic life = \$50000

No of humans affected = 50

BENEFIT = 100000(human life) + 50000(aquatic Life)

 $\frac{B}{c}RATIO = 2.67$

CHAPTER 8

HAZOP ANALYSIS

A Hazard and Operability study of the proposed is fundamental to its technical feasibility from a safety point of view. Conventionally, such analyses usually involve using specific guidewords to assess the cause, effects, and preventative measures for the process. Examples of said guidewords may be "high temperature", "low pressure" or something else of the sorts.

These guidewords vary with the equipment under study within a system. Each component within a system must be considered for a thorough risk assessment. The guidewords are essentially deviations that may potentially be encountered within the equipment and help to imagine several possible scenarios. HAZOP involves,

1. Brainstorming what could possibly go wrong in the system. Listing down guidewords.

2. A qualitative risk assessment.

3. A "bottom-up" approach. Risk assessment relies on the observer's predictive abilities and experience.

KEY WORDS:

1. Nodes: Pipe sections or vessels containing where process chemicals may be present.

2. Super nodes: Several nodes considered together as one node for quicker studies.

3. Hazard: Potential source of harm.

4. Harm: Actual injury or damage to equipment, personnel, or environment.

5. Risk: Probability of harm occurring and its associated level of damage.

METHODOLOGY:

1. Identify all major nodes and super nodes.

2. Identify why the node was chosen for the HAZOP study.

3. Choose a key process parameter for said node.

4. Apply all relevant guidewords for chosen parameter. These would result in unwanted deviations within the process. List down the deviations.

5. Determine the potential causes of the deviations identified and add them to the table.

6. For the deviations brainstormed, identify the outcomes they would lead to List these down as the consequences.

7. Once a node has been thoroughly studied, repeat steps 3 through 6 for the next node. Repeat this step till all chosen nodes have been accounted for.

pH Regulator:

Table 37 Hazop Analysis for pH Regulator

PARAMETER	GUIDE	DEVIATION	POSSIBLE	CONSEQUENCE	ACTION
	WORD		CAUSE		
TEMPERA-	High/Low		Equipment	High temperature	Implement
-TURE		High	malfunction	pH sensor	temperature
		temperature	Insufficient or	malfunction	monitoring and
			excessive heat	Chemical	control systems.
		Low	Supply	degradation	
		temperature	control	System failure.	Install safety measure
			system failure	Low temperature	like temperature
			due excessive	Lead to sluggish	alarms.
			mixing of buffer	response	or shut-off valves.
			solution	Incorrect pH	
				measurements.	
PRESSURE	High/Low	High pressure,	Equipment	High pressure	Install pressure
		Low	malfunction,	Damage the pH	monitoring devices,
		pressure	clogged or	regulator, valves, or	safety relief valves,
			leaking valves,	pipes.	pressure regulators.
			insufficient or	Low pressure	Implement
			excessive	Result in	regular maintenance
			pressure supply.	insufficient flow or	Inspection procedures.
				inaccurate pH control.	
Flow	No flow/	No flow,	Pump or valve	No flow	Install flow sensors,
	Excessive	Excessive flow	failure	Can disrupt pH control	implement flow.
	flow		Blockages	leading to incorrect	alarms, ensure regular
			Leaks	measurements.	maintenance of pumps
				Excessive flow	and valves, and
				May overwhelm the	establish preventive
				system resulting in	maintenance.
				inaccurate pH control.	protocols.
				or equipment damage	

LEVEL	High/Low	High level, Lov	Sensor	High level	Implement level
		level	malfunction	Can cause overflow.	monitoring systems,
			Blockages	Leaks	install level alarms,
			Leaks	Damage to the pH	ensure regular
				regulator.	calibration of sensors,
				Low level	and establish
				May result in	preventive
				insufficient liquid	maintenance
				supply or air	procedures for valves
				entrainment.	and pipes.

Electrolytic Reactor

Table 38 Hazop Analysis for Electrolytic Reactor

PARAMET	GUIDE	DEVIATION	POSSIBLE	CONSEQUENCE	ACTION
ER	WORD		CAUSE		
TEMPERA-	High	High/Low	High	High temperature	Install temperature
-TURE	/Low	temperatur	temperature	Risk of overheating	sensors and alarms
		e	Failure of	decreased reactor	to monitor and
			temperature	efficiency	control temperature.
			control system	Chances of electrical	Implement
			equipment	hazard	automatic shutdown
			malfunction	Low temperature	mechanisms in case
			Excessive	Reduced reaction	of deviation.
			redox reaction.	rate	Regularly maintain
			Low	decreased efficiency	temperature.
			temperature	incomplete	Ensure proper heat
			Insufficient	oxidation	transfer and
			heating	extended treatment	insulation in the
			failure of	time	reactor
			heating system		
PRESSURE	High	High/low	High pressure	High pressure	Install pressure
	/Low	pressure		Equipment failure	sensors and safety

			Failure of	Leakage potential	relief valves to
			pressure	damage to the	monitor and control
			control system	reactor vessel or	pressure.
			Blockages	associated piping.	Implement pressure
			valve	Low pressure	alarms and
			malfunction.	Reduced reaction	automatic shutdown
			Low pressure	rate inadequate	mechanisms in case
			Insufficient	mixing poor	of deviations.
			flow rate	performance of the	Regularly inspect
			loss of pressure	oxidation process.	and maintain
			due to leaks		pressure Ensure
			equipment		proper maintenance
			failure.		of valves and piping
					systems.
FLOW	No Flow/	Insufficient	No flow	No flow	Monitor and
	Excessive	or excessive	Pump failure	Stagnation	Control flow:
	Excessive Flow	or excessive flow	Pump failure Blockages in	Stagnation ineffective	Control flow: Install flow meters
	Excessive Flow	or excessive flow	Pump failure Blockages in the inlet piping	Stagnation ineffective treatment reduced	Control flow: Install flow meters and alarms.
	Excessive Flow	or excessive flow	Pump failure Blockages in the inlet piping Insufficient	Stagnation ineffective treatment reduced reactor	Control flow: Install flow meters and alarms. Flow deviations
	Excessive Flow	or excessive flow	Pump failure Blockages in the inlet piping Insufficient flow control.	Stagnation ineffective treatment reduced reactor performance.	Control flow: Install flow meters and alarms. Flow deviations Implement
	Excessive Flow	or excessive flow	Pump failure Blockages in the inlet piping Insufficient flow control. Excessive	Stagnation ineffective treatment reduced reactor performance. Excessive flow	Control flow: Install flow meters and alarms. Flow deviations Implement interlocks and
	Excessive Flow	or excessive flow	Pump failure Blockages in the inlet piping Insufficient flow control. Excessive flow:	Stagnation ineffective treatment reduced reactor performance. Excessive flow Poor mixing	Control flow: Install flow meters and alarms. Flow deviations Implement interlocks and automatic shutdown
	Excessive Flow	or excessive flow	Pump failure Blockages in the inlet piping Insufficient flow control. Excessive flow: Pump	Stagnation ineffective treatment reduced reactor performance. Excessive flow Poor mixing Inadequate contact	Control flow: Install flow meters and alarms. Flow deviations Implement interlocks and automatic shutdown mechanisms.
	Excessive	or excessive flow	Pump failure Blockages in the inlet piping Insufficient flow control. Excessive flow: Pump malfunction	Stagnation ineffective treatment reduced reactor performance. Excessive flow Poor mixing Inadequate contact time Decreased	Control flow: Install flow meters and alarms. Flow deviations Implement interlocks and automatic shutdown mechanisms. Maintenance
	Excessive	or excessive flow	Pump failure Blockages in the inlet piping Insufficient flow control. Excessive flow: Pump malfunction Valve failure	Stagnation ineffective treatment reduced reactor performance. Excessive flow Poor mixing Inadequate contact time Decreased efficiency	Control flow: Install flow meters and alarms. Flow deviations Implement interlocks and automatic shutdown mechanisms. Maintenance Inspect and maintain
	Excessive Flow	or excessive flow	Pump failure Blockages in the inlet piping Insufficient flow control. Excessive flow: Pump malfunction Valve failure Uncontrolled	Stagnation ineffective treatment reduced reactor performance. Excessive flow Poor mixing Inadequate contact time Decreased efficiency Potential overflow	Control flow: Install flow meters and alarms. Flow deviations Implement interlocks and automatic shutdown mechanisms. Maintenance Inspect and maintain flow control devices
	Excessive Flow	or excessive flow	Pump failure Blockages in the inlet piping Insufficient flow control. Excessive flow: Pump malfunction Valve failure Uncontrolled inlet flow	Stagnation ineffective treatment reduced reactor performance. Excessive flow Poor mixing Inadequate contact time Decreased efficiency Potential overflow Leakage.	Control flow: Install flow meters and alarms. Flow deviations Implement interlocks and automatic shutdown mechanisms. Maintenance Inspect and maintain flow control devices regularly.
	Excessive Flow	or excessive flow	Pump failure Blockages in the inlet piping Insufficient flow control. Excessive flow: Pump malfunction Valve failure Uncontrolled inlet flow	Stagnation ineffective treatment reduced reactor performance. Excessive flow Poor mixing Inadequate contact time Decreased efficiency Potential overflow Leakage.	Control flow: Install flow meters and alarms. Flow deviations Implement interlocks and automatic shutdown mechanisms. Maintenance Inspect and maintain flow control devices regularly. Ensure proper sizing
	Excessive	or excessive flow	Pump failure Blockages in the inlet piping Insufficient flow control. Excessive flow: Pump malfunction Valve failure Uncontrolled inlet flow	Stagnation ineffective treatment reduced reactor performance. Excessive flow Poor mixing Inadequate contact time Decreased efficiency Potential overflow Leakage.	Control flow: Install flow meters and alarms. Flow deviations Implement interlocks and automatic shutdown mechanisms. Maintenance Inspect and maintain flow control devices regularly. Ensure proper sizing and capacity of the
	Excessive	or excessive flow	Pump failure Blockages in the inlet piping Insufficient flow control. Excessive flow: Pump malfunction Valve failure Uncontrolled inlet flow	Stagnation ineffective treatment reduced reactor performance. Excessive flow Poor mixing Inadequate contact time Decreased efficiency Potential overflow Leakage.	Control flow: Install flow meters and alarms. Flow deviations Implement interlocks and automatic shutdown mechanisms. Maintenance Inspect and maintain flow control devices regularly. Ensure proper sizing and capacity of the flow control system
LEVEL	Excessive Flow High/Low	or excessive flow High or Low	Pump failure Blockages in the inlet piping Insufficient flow control. Excessive flow: Pump malfunction Valve failure Uncontrolled inlet flow	Stagnation ineffective treatment reduced reactor performance. Excessive flow Poor mixing Inadequate contact time Decreased efficiency Potential overflow Leakage. High level	Control flow: Install flow meters and alarms. Flow deviations Implement interlocks and automatic shutdown mechanisms. Maintenance Inspect and maintain flow control devices regularly. Ensure proper sizing and capacity of the flow control system

	Failure of level	Reduced reactor	Install level sensors
	control system	efficiency.	and alarms.
	excessive flow	Low level	Level deviations
	rate	Inadequate liquid	Implement automatic
	malfunctioning	volume	shutdown
	dischargo	compromised	mechanisms.
	uischarge	compromised	Maintenance
	valves.	treatment	calibrate level control
	Low level:	performance.	equipment regularly.
	Insufficient		Ensure proper sizing
	flow rate		and capacity of the cell
	Leakage		
	Improper level		
	control		

Sedimentation Tank:

Table 39 Hazop Analysis for Sedimentation Tank

PARAMETER	GUIDE	DEVIATION	POSSIBLE	CONSEQUENCE	ACTION
	WORD		CAUSE		
TEMPERA-	High	High	Malfunctioning	Accelerated sludge	Ensure proper
-TURE	/Low	temperature	temperature	decomposition.	cooling and
			control	Potential release of	temperature control
			equipment	harmful gases	mechanisms.
			High ambient	Reduced settling	Regularly monitor
			temperature	efficiency time	and maintain
			Excessive		temperature within
			addition of		the specified range.
			coagulant		Implement alarms or
					automatic shutdown
					systems for high
					temperatures

PRESSURE	High	High	Blockages or	Potential structural	Regularly inspect
	/Low	pressure	restrictions in	damage	and maintain outlet
			outlet pipes	Increased risk of	pipes to prevent
			Malfunctioning	leakage or rupture	blockages.
			pressure relief	Impaired settling	Ensure proper
			valves	performance	functioning of
			Excessive		pressure relief
			sludge		valves.
			accumulation		Implement regular
					sludge removal
					procedures to
					prevent excessive
					accumulation
FLOW	Low	Low flow in	Pump failure or	Inadequate sludge	Implement regular
	/High	the	reduced pump	settling	pump maintenance
		sedimentation	capacity	Increased	and monitoring.
		tank	Clogged or	sedimentation time	Periodically inspect
			obstructed inlet	Poor separation of	and clean inlet and
			or outlet pipes	solids and liquid	outlet pipes
			Insufficient or		Install backup
			malfunctioning		pumps or
			flow control		redundancy systems
			valves		to mitigate pump
					failure risks
LEVEL	High	High sludge	Malfunctioning	Reduced	Ensure proper
	/Low	level in the	level sensors or	sedimentation	functioning and
		sedimentation	instruments	efficiency	calibration of level
		tank	Inadequate	Potential overflow	sensors.
			sludge	or spillage	Implement regular
			mechanisms	Impaired	procedures
			Excessive sludge	wastewater quality	Monitor sludge
			production or		production rates and
			inflow		adjust accordingly

Reverse Osmosis:

Table 40	Hazon	Analys	is for	Reverse	Osmosis
Tuble To	nuzop	marys	13 101 1		031110313

PARAMETER	GUIDE	DEVIATION	POSSIBLE	CONSEQUENCE	ACTION
	WORD		CAUSE		
TEMPERA-	High	High	Equipment	High temperature	Implement
-TURE	/Low	temperature	malfunction	can lead to reduced	temperature
		or low	Inadequate	membrane	monitoring and
		temperature	heat transfer	performance or	control systems,
		in the RO	Improper	membrane damage,	provide insulation,
		system.	insulation,	while low	install safety
			Failure in	temperature can	measures to prevent
			temperature	cause reduced	extreme
			control	efficiency or	temperatures, and
			systems.	freezing.	conduct regular
					maintenance.
PRESSURE	High	High pressure	Pump failure	High pressure	Install pressure
	/Low	or low	Valve	result in membrane	monitoring and
		pressure in	malfunction	fouling or damage.	control systems.
		the RO system	Blockages	Low pressure	ensure proper pump
			Leaks	lead to reduced	and valve
			Inadequate	permeate	maintenance.
			pressure	production system	Implement pressure
			regulation.	inefficiency.	safety measures
					establish regular
					system checks and
					maintenance
					procedures.
FLOW	No flow	No flow	Pump failure	No flow	Install flow
	Low	High flow	Valve	Can lead to system	monitoring devices,
	flow	Reverse flow	malfunction	shutdown Reduce	implement flow
			Blockages	system efficiency	control measures,

	High		Leaks	Reduce product	conduct regular
	flow		Improper	quality.	system checks,
			system design		ensure pump and
			or sizing.		valve reliability, and
				High flow	establish
				Can cause	maintenance
				operational issues	procedures to
				Membrane damage.	prevent and address
				Reverse flow	flow deviations.
				Membrane damage	
LEVEL	High	High level	Sensor	High level	Implement level
	/Low	Low level in	malfunction	Lead to overflow	monitoring and
		the RO system	Improper	Equipment damage	control systems,
			control	Reduced system	ensure sensor
			Inadequate	performance	reliability, install
			level control		level alarms and
			mechanisms	Low level	safety measures, and
			Leaks	Can result in pump	conduct regular
				cavitation.	system inspections
				Membrane	and maintenance.
				exposure	
				Reduced system	
				efficiency.	

CONCLUSION

This thesis research was concerned with the design of a tertiary treatment plant for a tannery that included reverse osmosis and Advanced Oxidation Processes (AOP). The major objectives were to generate an effluent that complied with the requirements for borehole water and lower the levels of Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand (BOD) in the secondary treated tannery wastewater. The results obtained proved that these goals had been successfully attained. Both the COD and BOD levels were significantly lowered, from 250 mg/L to 30 mg/L and 200 mg/L to 20 mg/L, respectively. These values meet the specified BOD (80 mg/L) and COD (150 mg/L) standards. Additionally, the TDS separation factor was a remarkable 97.7%. COD Level: 30mg/l. The relevance of monitoring variables as well as the design, operation, energy balance, and cost analysis of the equipment were all topics covered in the thesis. The importance of AOPs in addressing persistent organic pollutants using cutting-edge treatment techniques like photocatalysis and ozonation was also emphasized. Overall, this thorough thesis offers insightful information on wastewater treatment, making it a useful tool for experts and scholars in the subject.

REFERENCES

References from research papers:

(1)Kinetic Modeling of the Electro-Fenton Process: Quantification of Reactive Oxygen Species Generation – ScienceDirect

(2)https://www.sciencedirect.com/science/article/pii/S1385894711015282

(3)https://www.sciencedirect.com/science/article/pii/S0304389406010077

(4)https://www.sciencedirect.com/science/article/pii/S2213343722001634?casa_token=Bpb IHblSLAAAAAA:XhS9yokLl7LVVp5zk08lUbD644sQKjgasMrW11DcrtLwJWbMlwP8XFmjDe7qJV hccxcNrxKY

(5)https://www.sciencedirect.com/science/article/pii/S2213343722002974?casa_token=is7 HdxAndcIAAAAA:vyZnGaXNfalwKr2N0svBTw9YvXX_fwXLrkbGiBfWW3NSrSV_T3LAhjwDh4wJ PGRnmOXugjEE

(6) https://epe.pwr.edu.pl/2011/3 2011/05naumczyk.pdf

(7)https://www.researchgate.net/publication/359069016_Efficient_treatment_for_tannery_ wastewater_through_sequential_electro-Fenton_and_electrocoagulation_processes

(8) https://www.ijariit.com/manuscripts/v3i1/V3I1-1264.pdf

Books

(9)Bioremediation of Industrial Waste for Environmental Safety by Ram Naresh Bharagava . Gaurav Saxena Editors.

(10)Coulson & Richardson's Chemical Engineering Volume 2 Particulate Technology and Separation processes by J M coulson & J F Richardson with J R Buckhurst & J H Harker

(11) Coulson & Richardson's Volume 6 Chemical Engineering Design by R. K. Sinnott