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Abstract 

 
This study employs Lie point symmetry analysis to investigate the unsteady flow on a stretching 

surface. Such flows are common in various manufacturing processes such as extrusion, melt-

spinning, and coating. Three cases have been discussed i.e. unsteady flow on a stretching surface 

in the presence of a variable magnetic field, its 1-dimensional optimal system, and unsteady flow 

on a stretching surface in the presence of thermocapillarity, an internal source or sink, and a variable 

magnetic field.   

For unsteady flow on a stretching surface in the presence of a variable magnetic field, a general 

linear combination of all admitted translational and scaling Lie point symmetries has been used to 

obtain the system invariants and general forms of the velocity, temperature, and concentration at 

the stretching surface. The deduced invariants provide a new generalized class of similarity 

transformations that convert the governing boundary layer equations into a system of non-linear 

ODEs. Analytic series solutions have been obtained for the resulting system of ODEs using 

Homotopy Analysis Method (HAM) and the effect of different parameters such as unsteadiness, 

magnetic parameter, Prandtl number, Schmidt number, and coefficients of the Lie point symmetries 

has been depicted graphically. It has been found that coefficients of the translational symmetries 

do not play any role in the solution while coefficients of the scaling symmetries can control the 

temperature and concentration fields.  Secondly, a 1-dimensional optimal system of this flow is 

obtained which provides 22 new classes of similarity transformations that reduce the governing 

boundary layer equations into 22 news classes of ODEs, thus providing multiple new solutions of 

heat and mass transfer. 

Similarly, the hydrodynamics and thermal characteristics of the flow induced by the unsteady 

stretching of a sheet in the presence of thermocapillarity, internal heat source or sink, and variable 

magnetic field are investigated using Lie point analysis. The linear combinations of Lie point 

symmetries is again a Lie point symmetry. It is admitted by all boundary conditions while leave 

the stretching sheet velocity and temperature as a function of both distance and time. We utilize 

such a linear combination to develop Lie transformations that reduce the governing momentum and 

energy equations into a system of coupled non-linear ODEs. The resulting five-parameter problem 

namely, unsteadiness term 𝑆, magnetic parameter 𝑀𝑎, Prandtl number 𝑃𝑟, temperature-dependent 
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heat source or sink term 𝐺∗ and the thermocapillarity parameter 𝑀, is solved using Homotopy 

Perturbation Method (HPM). It has been found that thermocapillary forces drag the free surface of 

the fluid in the direction of the stretching sheet, due to which a local velocity minimum forms in 

the fluid. Thermocapillarity thickens the fluid film resulting in the increase of free surface velocity, 

temperature, and heat flux from the sheet while reducing the friction between the sheet and the 

fluid film. The temperature-dependent heat source or sink term and the magnetic parameter greatly 

affect the variation of the temperature across the fluid and can be useful in speeding up the cooling 

or heating of the fluid.   

 

Keywords: Lie point symmetry, Translational symmetries, Scaling symmetries, 

Thermocapillarity, Homotopy Analysis Method (HAM), Homotopy Perturbation Method 

(HPM).
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Chapter 1 

 
 

1. Introduction 
 

In this research flow, heat, and mass transfer in a liquid film over an unsteady stretching surface 

in the presence variable magnetic field has been analyzed using Lie point symmetry analysis. The 

objectives of this research are as follows: 

 To develop general similarity transformations for hydrodynamics, heat, and mass transfer in a 

thin film over an unsteady stretching surface in the presence variable magnetic field using a 

general linear combination of admitted Lie point symmetries. 

 To develop a 1-dimensional optimal system of Lie sub-algebra for heat and mass transfer in a 

thin film over an unsteady stretching surface in the presence of variable magnetic field. 

 To analyze the combined effect of thermocapillarity, internal heat source or sink, and a variable 

magnetic field on the flow and heat transfer in a thin film over an unsteady stretching surface 

using Lie symmetry analysis. 

 

1.1 Background, Scope and Motivation 

 
Flow-induced by a stretching surface is a fascinating and complex phenomenon that has 

captivated the attention of researchers and engineers for decades. It is encountered in many 

industrial applications, including coating, painting, melt-spinning process, polymer processing, 

glass manufacturing, and metal production. In these processes, a thin sheet or film of material is 

continuously stretched into a fluid at rest. Due to the stretching action, the fluid starts flowing. The 

flow behavior in this scenario is complex and depends on the properties of both the material and 

the fluid. Understanding this phenomenon is essential to optimize these processes. 

Polymer processing is one of the most common applications of flow over an unsteady stretching 
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surface. In this process, molten polymer is extruded through a die, which creates a thin sheet that 

is then continuously stretched into a fluid for cooling. Similarly, glass manufacturing is another 

application of flow induced by an unsteady stretching surface. In this process, glass is melted and 

then drawn out into a thin sheet that is continuously stretched. The stretching motion induces 

hydrodynamic and thermal boundary layers. Understanding the behavior of these boundary layers 

is critical for optimizing the manufacturing process and ensuring the quality of the final product. 

In all of these applications, the flow behavior is influenced by a wide range of factors, including 

the material properties, the stretching rate, and the fluid properties. Due to the variable conditions 

at the boundary (stretching sheet), experimental and numerical techniques are difficult to employ 

in this case. The similarity solutions prove to be a very handy tool in this case and are used by 

many researchers to obtain solutions for the hydrodynamic and thermal boundary layers of flow 

induced by the stretching surface.  

Sakaidis [1] was the first to study the boundary layer behavior on a continuous flat surface issuing 

with a constant velocity from a slit in a stationary fluid. The governing equations were solved by 

two methods. One method involved the numerical solution of the governing equations reduced to 

a system of ordinary differential equations, while the other is the integral method based on the 

assumed velocity profile. A good agreement between the methods was reported. It was also 

observed that the drag force experienced by the sheet is much larger than the flat plate of finite 

length. As an extension to this work, Crane [2] made a pioneering contribution by presenting an 

exact steady-state solution for the flow past a stretching surface with a velocity that varies in 

proportion to the distance from the slit. Vleggaar [3] presented a comprehensive study on the 

behavior of laminar boundary-layer on continuous, accelerating surfaces. The conservation 

equations (momentum and energy) were solved in two reference frames i.e. rectangular and 

cylindrical with the help of similarity transformations. The obtained numerical results were also 

applied to two applications i.e. cooling of the sheet and monofilament. Motivated by the situation 

that often arises in the polymer processing industry,  Gupta et al. [4] modified Crane’s problem to 

include the effect of suction or blowing in the stretching sheet and obtain a similarity solution. In 

Crane’s study, it was assumed that the temperature of the sheet is constant along its length which 

is not the case in real applications. So, Carragher et al. [5] reconsidered Crane’s study and provided 

a similarity solution for the heat transfer at moderate and high Prandtl numbers in a stretching 

sheet whose temperature difference with the surroundings is proportional to a power of the distance 
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from the slit. Grubka et al. [6] also studied the effect of power-law surface temperature variation 

on heat transfer by obtaining a series solution to the energy equation in terms of Kummer’s 

functions. Dutta et al. [7] obtained a temperature field for a linearly-stretching sheet with uniform 

heat flux for different values of Prandtl number and found that the temperature at a given point 

decreases with an increase in Prandtl number. Jeng et al. [8] carried out a comprehensive analysis 

of momentum and heat transfer in a stretching sheet with an arbitrary surface velocity and non-

uniform surface temperature. Solutions for both, isothermal and non-isothermal surfaces were 

obtained in this study. In addition to this, numerical examples for a power-law surface velocity 

and a linearly-stretching surface velocity with non-zero slit velocity were presented for the case of 

an isothermal surface. Kumeri et al. [9] expanded the study by exploring the effect of electrical 

conducting fluid on the heat transfer of the stretching sheet with a magnetic field (MHD flow) for 

both non-isothermal surface temperature and constant heat flux conditions. It was observed that 

the magnetic field enhanced the rate of heat transfer for prescribed surface temperature while for 

constant heat flux condition, the surface temperature reduced with increase in magnetic field.  

In 1990, Wang [10] made significant strides in the study of flow on a stretching surface by 

successfully deriving an exact similarity solution for the unsteady Navier-Stokes equation that 

characterizes such flow. To accomplish this, Wang utilized a similarity transformation to convert 

the unsteady Navier-Stokes equation into a system of non-linear ordinary differential equations 

that is governed by a non-dimensional unsteady parameter, 𝑆 ∈ [0,2]. Wang was able to obtain 

Crane’s steady-state solution at 𝑆 = 0 while no similarity solution existed for 𝑆 > 2. The solution 

for thermal part of unsteady stretching was obtained by Andersson et al. [11] for different values 

of the unsteady parameter. It was observed that the heat transfer from the stretching sheet decreases 

with 𝑆 for the lower Prandtl number while it increases with the unsteady parameter for the Prandtl 

number greater than unity. Later on, Liu et al. [12] generalized this study by providing solutions 

for the arbitrary powers of time and distance in the surface temperature expression.  Dandapat et 

al. [13] observed that due to the variation of temperature along the free surface of the fluid, the 

effect of thermocapillarity becomes prominent and causes the motion of the free surface. They 

found that the similarity transformations used before (in the absence of thermocapillarity) could 

be used to explain the influence of the thermocapillarity on the flow and heat transfer. In 2006, 

Wang reconsidered his previous study of unsteady stretching [10] and provided an analytical 

solution using Homotopy Analysis Method (HAM) [14]. Abel et al. [15] considered the MHD flow 
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for the unsteady stretching case and studied the effect of viscous dissipations in the presence of a 

variable magnetic field while Noor et al [16] reported the effect of thermocapillarity in the presence 

of an external magnetic field. Aziz et al. [17] examined the effect of viscous dissipation for a 

general surface temperature. Similarly, Aziz et al. [18] investigated the influence of internal 

heating on the heat transfer in a thin film on an unsteady stretching sheet, whereas  Hashim et al. 

[19] combined the impact of the thermocapillarity and thermal radiation on the hydrodynamics 

and thermal characteristics of the flow induced by an unsteady stretching sheet. Zhang et al. [20] 

extended the work [13] to include the effect of concentration variation on the surface tension along 

with the thermal variation thus, coupling the momentum, energy and concentration equation. 

The literature mentioned so far used Newtonian fluids. A significant number of studies have also 

been conducted on the flow behavior of non-Newtonian fluids on unsteady stretching surfaces. 

Among these studies, the most commonly used models to describe the rheology of non-Newtonian 

fluids include the power-law, Casson, Maxwell, Herschel-Bulkley, and Carreau models. These 

studies can be found in [21-37].  

In all of the above-mentioned studies, a similar class of similarity transformations was used to map 

the conservation equations to a system of non-linear ordinary differential equations. For the steady 

stretching sheet case, the velocity of the stretching was only a function of distance from the slit, 

while the surface temperature was either a constant or a function of the distance with a power 

whereas, for the unsteady stretching case, the velocity of the sheet depended on both, the distance 

from the slit and the time, while the surface temperature depended on the distance from the slit, 

time, and the sheet velocity.    

Lie point symmetry analysis tells us that if a differential equation possesses a Lie point symmetry, 

then we can use it to find new solutions to the equation from known solutions. Safdar et al. [38] 

used this concept to derive six new classes of similarity transformations for the flow and heat 

transfer on an unsteady stretching surface. Using these transformations, the governing partial 

differential equations were reduced to a system of non-linear ordinary differential equations which 

were solved using the Homotopy Analysis Method (HAM). Taj et al. [39] derived two new classes 

of transformations for flow and heat transfer over an unsteady stretching sheet with viscous 

dissipation and external magnetic field while Safdar et al. [40] constructed five new classes of 

transformations for MHD flow leading to three different solutions of the governing equations. 

Similarly, Bilal et al. [41, 42] performed the Lie symmetry analysis of the flow and heat transfer 
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on an unsteady stretching surface in the presence of internal heating and thermal radiations, thus 

providing new solutions for the governing equations. A single or a linear combination of two Lie 

symmetries were used to derive these transformations. 

In the current study, a Lie algebra is developed that is spanned by 8 Lie point symmetries for the 

system describing flow, heat, and mass transfer in a liquid film on an unsteady stretching surface 

in the presence of an external, variable magnetic field. Using a generalized linear combination of 

all admitted translational and scaling Lie point symmetries, the system invariants are derived. 

These invariants reduce the number of independent variables in the system and finally map the 

system of PDEs to the system of ODEs which are solved using the Homotopy Analysis Method 

(HAM).  The deduced invariants also provide a generalized form of similarity transformations 

from which different classes of similarity transformations can be obtained. The linear combination 

of the Lie symmetries also provides a general specific form of stretching velocity, surface 

temperature, and film thickness when operated on the boundary conditions. 

Moreover, in the present study, a one-dimensional optimal system of sub-algebras has been 

developed to analyze the flow on an unsteady stretching sheet in the presence of a variable 

magnetic field. This optimal system of sub-algebras serves as a valuable tool for identifying 

distinct classes of invariant solutions for differential equations. By identifying these non-

equivalent classes, the task of constructing a comprehensive set of invariant solutions for a given 

differential equation can be streamlined. Upon establishment of the optimal system, any associated 

differential equation and its solutions can be effectively mapped into one of the classes offered by 

the optimal system. In essence, all invariant solutions for a given differential equation (or system 

of differential equations) can be obtained by deducing a single solution for each component of the 

optimal system of sub-algebras. Furthermore, when two sub-algebras share the same class during 

a symmetry transformation, the invariant solutions associated with these sub-algebras can be 

mutually converted under the identical transformation.  

The effect of thermocapillarity, variable magnetic field, and an internal heat source or sink on the 

hydrodynamics and heat transfer in a thin liquid film on an unsteady stretching surface has also 

been investigated in this study using Lie symmetry analysis. Dandapat et al. [13], in their study of 

the effect of thermocapillarity on the flow of thin film over an unsteady stretching surface found 

that transformations used in the absence of thermocapillary effect were also applicable. In the 

current study, a Lie algebra spanned by 6 dimensional Lie point symmetries is used to construct 
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new similarity transformations through system invariants that reduces the governing PDEs to a 

system of non-linear ODEs. The resulting system of equations is solved using the Homotopy 

Perturbation Method (HPM).  

The thesis is organized as following. The problem formulation is presented in chapter 2. Chapter 

3 deals with the construction of Lie symmetries and double reductions of the governing PDEs for 

all three cases. Chapter 4 introduces the solution methods used to develop the solutions for the 

reduced system of ODEs. In Chapter 5, the results are presented and discussed to analyze the effect 

of different parameters. Chapter 6 concludes the research. 
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 Chapter 2 

  

 

2. Problem Formulation 
 

 

In this research, two different problems are discussed. The mathematical formulation of each 

problem is given in the following subsections. 

 

2.1 Unsteady Flow over a Stretching Surface in the Presence of 

Variable Magnetic Field 

 

Consider a thin elastic sheet issuing from a narrow slit. The origin of the reference coordinate 

system is fixed at the slit with an x-axis parallel to the continuous sheet. The sheet is stretched with 

the velocity 𝑈𝑠(𝑥, 𝑡) in the y = 0 plane. The sheet temperature 𝑇𝑠(𝑥, 𝑡) and sheet concentration 

𝐶𝑠(𝑥, 𝑡) are assumed to be the function of both distance and time. A variable magnetic field 𝐵 =

 
𝐵0

√1−𝛼𝑡
 is set up normal to the stretching sheet. Here 𝐵0 is initial magnetic field strength and 𝛼 is 

the arbitrary constant of dimension 𝑡𝑖𝑚𝑒−1. The governing mass, momentum, energy, and 

concentration equations are given by 

𝑢𝑥 + 𝑢𝑦 = 0 ,  2.1 
 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = 𝜈𝑢𝑦𝑦 −
σ𝑒𝐵2

𝜌
𝑢 , 2.2 

 

𝑇𝑡 + 𝑢𝑇𝑥 + 𝑣𝑇𝑦 = 𝜅𝑇𝑦𝑦 , 2.3 
 

𝐶𝑡 + 𝑢𝐶𝑥 + 𝑣𝐶𝑦 = 𝐷𝐶𝑦𝑦 , 2.4 
 

where 𝑢 and 𝑣 represent velocity components in the 𝑥 and 𝑦 direction respectively. 𝜈 =
𝜇

𝜌
 is the 

kinematic viscosity, 𝜌 is the fluid density, 𝜇 is the dynamic viscosity, σ𝑒 is the electrical 

conductivity,  𝜅 =
k

𝜌𝐶𝑝
 is the thermal diffusivity, k is the thermal conductivity, 𝐶𝑝 is the specific 
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heat capacity at constant pressure, 𝐷 is the mass diffusivity, 𝑇 is the temperature of the fluid and 

𝐶 is the concentration. The subscripts 𝑡, 𝑥, and 𝑦 denote the derivatives with respect to these 

variables.  

The boundary conditions for the above boundary layer equations are 

𝑢 = 𝑈𝑠(𝑥, 𝑡),     𝑣 = 0,     𝑇 = 𝑇𝑠(𝑥, 𝑡),     𝐶 = 𝐶𝑠(𝑥, 𝑡)     at  𝑦 = 0 , 2.5 
and 

𝑢𝑦 = 0,    𝑇𝑦 = 0,    𝐶𝑦 = 0,     𝑣 =
𝑑ℎ

𝑑𝑡
,     at 𝑦 = ℎ(𝑡) , 2.6 

 

where ℎ(𝑡) is the elevation of film free surface i.e. the film thickness. It is assumed that ℎ(𝑡) is 

uniform and only a function of time. 𝑢𝑦 = 0 points out that the effect of surface tension has been 

neglected and fluid moves purely due to the viscous shear that arises from the stretching of the 

sheet.  𝑇𝑦 = 0 suggests that the free surface of the liquid film is adiabatic while the last boundary 

condition is a kinematic free surface condition.   

From the scaling analysis, it can be found that    𝑢 ~ 𝑈∞ and    𝑣 ~ 𝑈∞
ℎ

𝐿
, where 𝑈∞ is free stream 

velocity, ℎ is boundary thickness and 𝐿 is the characteristic length of the sheet. This implies that  

𝑣

𝑢
 ~ 

ℎ

𝐿
≪ 1. Based upon this reasoning, the boundary-layer equations in the 𝑦 direction are 

neglected. Similarly, diffusion along streamlines 𝑢𝑥𝑥 ~ 
𝑈∞

2

𝐿2  is much smaller than the diffusion 

across lines 𝑢𝑦𝑦 ~ 
𝑈∞

2

ℎ2  and hence, being neglected. The pressure term also does not appear in the 

above equations which is the consequence of the boundary layer theory assumptions.  

 

 

Figure 1: Physical representation of the problem 
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To reduce the governing equations (4.26-2.6) to a system of non-linear ODEs, Zhang et al. [20] 

used 

𝜂 = √
𝑏

𝜈(1−𝛼𝑡)
 

𝑦

𝛽
  ,   

2.7 

 

𝑢 =
𝑏𝑥

1−𝛼𝑡
𝑓′(𝜂) , 2.8 

 

𝑣 = −𝛽√
ν𝑏

1−𝛼𝑡
𝑓(𝜂) , 

2.9 

 

𝑇 = 𝑇0 − 𝑇𝑟𝑒𝑓
𝑏𝑥2

2𝜈(1−𝛼𝑡)
3
2

𝜃(𝜂) , 2.10 

 

𝐶 = 𝐶0 − 𝐶𝑟𝑒𝑓
𝑏𝑥2

2𝜈(1−𝛼𝑡)
3
2

𝜙(𝜂) , 2.11 

 

with the stretching surface velocity, temperature, and concentration 

𝑈𝑠 =
𝑏𝑥

1−𝛼𝑡
 ,  2.12 

𝑇𝑠 = 𝑇0 − 𝑇𝑟𝑒𝑓
𝑏𝑥2

2𝜈(1−𝛼𝑡)
3
2

 ,  2.13 

𝐶𝑠 = 𝐶0 − 𝐶𝑟𝑒𝑓
𝑏𝑥2

2𝜈(1−𝛼𝑡)
3
2

 , 2.14 

 

respectively.  Here, 𝑇0 is the temperature at the slit and 𝑇𝑟𝑒𝑓 is the reference temperature for all 

𝑡 <
1

𝛼
 . Similarly, 𝐶0 is the concentration at the slit and 𝐶𝑟𝑒𝑓 is the reference concentration. Like 

𝛼, 𝑏 is the constant with the dimension 𝑡𝑖𝑚𝑒−1.  The specific forms of stretching velocity, 

temperature, and concentration are chosen so that transformations (2.7 - 2.11) map the governing 

equations (2.1 - 2.6) to  

𝑓′′′ +  𝛾 (𝑓𝑓′′ − 𝑓′ 2 − (𝑀𝑎 + 𝑆)𝑓′ −  
𝜂𝑆

2
𝑓′′ ) = 0 ,  2.15 

 

𝜃′′ + 𝛾𝑃𝑟 (𝑓𝜃′ −
𝜂𝑆

2
𝜃′ − 2𝑓′𝜃 −

3

2
𝑆𝜃 ) = 0 , 2.16 
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𝜙′′ + 𝛾𝑆𝑐 (𝑓𝜙′ −
𝜂𝑆

2
𝜙′ − 2𝑓′𝜙 −

3

2
𝑆𝜙 ) = 0 , 2.17 

 

and boundary conditions (2.5 - 2.6) to 

𝑓(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1  𝑎𝑡  𝜂 = 0 , 2.18 
  

and  

𝑓(1) =
𝑆

2
,   𝑓′′(1) = 0, 𝜃′(1) = 0, 𝜙′(1) = 0  𝑎𝑡  𝜂 = 1 ,  2.19 

 

where ′ represents differentiation w.r.t 𝜂. 𝛾 = 𝛽2 is the dimensionless film thickness, 𝑀𝑎 =
σ𝑒𝐵0

𝑏𝜌
 

is the magnetic parameter,  𝑆 =
𝛼

𝑏
 is the measure of unsteadiness, 𝑃𝑟 =  

𝜈

𝜅
 is the Prandtl number 

and 𝑆𝑐 =
𝝂

𝐷
 is the Schmidt number. The transformations (2.7 - 2.11) satisfy the continuity equation 

(2.1) and setting 𝜂 = 1 in eq (2.7) reveals the specific form of dimensionless film thickness ℎ(𝑡) 

 

ℎ(𝑡) =  𝛽√
𝜈(1−𝛼𝑡)

𝑏
 . 

2.20 

 

In the next chapter, Lie symmetry analysis is performed to find new similarity solutions of the type 

(2.7 - 2.11) different from them. 

 

2.2 Unsteady Flow over a Stretching Surface in the Presence of 

Thermocapillarity, Internal Heat Source/Sink Variable 

Magnetic Field 

 

Consider an incompressible, conducting Newtonian fluid over a thin elastic sheet that is being 

pulled out of a narrow slit. The coordinate system has its origin at the slit, with the x-axis running 

parallel to the sheet. The sheet is being pulled in the horizontal direction in the plane 𝑦 =  0 as 

shown in the figure.  

The sheet velocity 𝑈𝑠(𝑥, 𝑡) and temperature 𝑇𝑠(𝑥, 𝑡) are assumed to be the arbitrary functions of 

distance and time. Additionally, a variable magnetic field 𝐵 =  
𝐵0

√1−𝛼𝑡
 is being set up normal to the 
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stretching sheet. Here, 𝐵0 is initial magnetic field strength and 𝛼 is the arbitrary constant of 

dimension 𝑡𝑖𝑚𝑒−1. The governing time-dependent boundary layer equations for mass, 

momentum, and energy equations in the presence of a uniform heat source or sink are given by 

𝑢𝑥 + 𝑢𝑦 = 0 , 2.21 
 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = ν𝑢𝑦𝑦 −
σ𝑒𝐵2

𝜌
𝑢 , 2.22 

 

𝑇𝑡 + 𝑢𝑇𝑥 + 𝑣𝑇𝑦 = 𝜅(𝑇𝑦𝑦 + 𝑄) , 2.23 

where, 𝑢 and 𝑣 represent the velocity components in 𝑥 and 𝑦 direction respectively, whereas 𝑇 is 

the temperature of the fluid. ν =
𝜇

𝜌
  is the kinematic viscosity, 𝜌 is the fluid density, 𝜇 is the 

dynamic viscosity, σ𝑒 is the electrical conductivity,  𝜅 =
𝑘

𝜌𝐶𝑝
 is the thermal diffusivity, 𝑘 is the 

thermal conductivity, 𝐶𝑝 is the specific heat capacity at a constant pressure. The subscripts 

𝑡, 𝑥, and 𝑦 denote the derivatives with respect to these variables. 𝑄 represents the internal heat 

source or sink and is defined as 

𝑄 = (
𝑈𝑠 ∆𝑇

𝜈𝑥
) 𝐺∗ , 2.24 

where ∆𝑇 represents the temperature of  fluid with respect to some fixed point usually the slit, with 

the temperature 𝑇𝑜 and 𝐺∗ is the temperature-dependent absorption or generation.  𝐺∗ is positive 

when heat is generated by the elastic sheet and is negative when heat is being sucked by the 

stretching sheet from the fluid. 

 

Figure 2: Physical representation of the problem 

 

The scaling analysis of eqs (2.21 - 2.23) which can be found in [43] suggests the magnitude of 
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velocity in the primary flow direction is 
𝛿

𝐿
 times larger than magnitude of velocity normal to the 

flow where, δ is the boundary layer thickness and 𝐿 is the characteristic length of the sheet. 

Likewise, the magnitude of cross-diffusion is 
𝐿2

ℎ2 times greater than the diffusion along the 

streamlines. Due to this reasoning, the diffusion term in the momentum and energy has been 

disregarded. The absence of the pressure term in the aforementioned equation is a direct outcome 

of the assumptions made in the boundary layer theory [43]. 

The effect of buoyancy has been neglected in the governing equations since the liquid layer is thin. 

Also, the volatility of the Newtonian liquid is negligible, so the evaporation from the stretching 

can be disregarded. All fluid properties in this research are treated as constant except the surface 

tension 𝜎 which varies linearly with the temperature.  

 

𝜎 = 𝜎𝑜[1 − 𝛤(𝑇 − 𝑇0)] , 2.25 

 

where 𝜎 denotes  the surface tension and 𝜎𝑜 is the surface tension at the origin, whereas 𝛤 is a 

positive fluid property. It is worth-mentioning that surface tension does not induce any type of 

interfacial motion, but the variation of surface tension along the interface (liquid and ambient gas 

interface) may induce the interfacial motion due to the temperature variation. 

The associated boundary conditions are: 

At 𝑦 =  0, 

𝑢 = 𝑈𝑠(𝑥, 𝑡), 𝑣 = 0, 𝑇 = 𝑇𝑠(𝑥, 𝑡) . 2.26 

 

At 𝑦 = ℎ(𝑡), 

 

𝜇
∂u

∂y
=

∂σ

∂x
 , 2.27 

 

𝑇𝑦 = 0 , 2.28 
 

𝑣 =
𝑑ℎ

𝑑𝑡
 . 2.29 

 

Here, ℎ(𝑡) denotes the uniform film thickness. This suggests that the free surface of the film is 

smooth and free of any waves.  

The boundary condition (2.27) states that the variation of the surface tension along the interface 

produces a net force that is balanced by the shear stress at the interface. The boundary condition 
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(2.27) indicates that heat transfer at the free surface is zero whereas, the boundary condition (2.28) 

imposes a kinematic constraint on the fluid motion. 

The transformations (2.7 - 2.10) map the governing equations (2.21 - 2.23) to  

𝑓′′′ +  𝛾 (𝑓𝑓′′ − 𝑓′ 2 − (𝑀𝑎 + 𝑆)𝑓′ −  
𝜂𝑆

2
𝑓′′ ) = 0 , 2.30 

 

𝜃′′ + 𝛾𝑃𝑟 (𝑓𝜃′ −
𝜂𝑆

2
𝜃′ − 2𝑓′𝜃 −

3

2
𝑆𝜃 +

𝐺∗

𝑃𝑟
𝜃 ) = 0 , 2.31 

 

and boundary conditions (2.26 - 2.29) to  

 

𝑓(0) = 0,   𝑓′(0) = 1, 𝜃(0) = 1  𝑎𝑡  𝜂 = 0 , 2.32 
 

and 

 

𝑓(1) =
𝑆

2
,  𝑓′′(1) = M 𝜃(1), 𝜃′(1) = 0,    𝑎𝑡  𝜂 = 1 . 2.33 

 

Here, M =  
𝜎𝑜𝛾𝑇𝑟𝑒𝑓𝛽

𝜇√𝑏𝝂
 is the thermocapillarity parameter which appears in the thermocapillarity 

driven flows. 

In the next section, Lie point analysis is used to derive the new similarity solutions for the 

governing equation (2.21 - 2.23) into a form that can be easily solved using numerical or analytical 

techniques. 
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Chapter 3 

 

 

3. Lie Symmetry Invariants, Similarity 

Transformations and Double Reduction 

 

In this chapter Lie point analysis is used to derive new similarity transformations for the two cases 

given in Chapter 2. These transformations reduce the governing equations to a system of ODEs 

which are then solved using numerical or analytical techniques.  

 

3.1 Lie Symmetry Analysis of Unsteady Flow over a Stretching 

Surface in the Presence of Variable Magnetic Field 

 

The Lie point symmetry generator for eqs (2.1 - 2.4) is a vector field defined by 

 

𝑿 = 𝜉𝑡(𝑡, 𝑥, 𝑦, 𝑢, 𝑣, 𝑇, 𝐶)
𝜕

𝜕𝑡
+ 𝜉𝑥(𝑡, 𝑥, 𝑦, 𝑢, 𝑣, 𝑇, 𝐶)

𝜕

𝜕𝑥
+ 𝜉𝑦(𝑡, 𝑥, 𝑦, 𝑢, 𝑣, 𝑇, 𝐶)

𝜕

𝜕𝑦
+

𝜂𝑢(𝑡, 𝑥, 𝑦, 𝑢, 𝑣, 𝑇, 𝐶)
𝜕

𝜕𝑢
+ 𝜂𝑣(𝑡, 𝑥, 𝑦, 𝑢, 𝑣, 𝑇, 𝐶)

𝜕

𝜕𝑣
+ 𝜂𝑇(𝑡, 𝑥, 𝑦, 𝑢, 𝑣, 𝑇, 𝐶)

𝜕

𝜕𝑇
+

𝜂𝐶(𝑡, 𝑥, 𝑦, 𝑢, 𝑣, 𝑇, 𝐶)
𝜕

𝜕𝐶
 , 

3.1 

 

where 𝜉 and 𝜂 are called infinitesimal coordinates and are the function of both independent and 

dependent variables. These coordinates are determined using the algorithm outlined in [38]. The 

following Lie point symmetries which span 8-dimensional Lie algebra, are obtained. 

 

𝑿1 =  
𝜕

𝜕𝑥
 , 3.2 

𝑿2 =  
𝜕

𝜕𝑇
 , 3.3 

𝑿3 =  
𝜕

𝜕𝐶
 , 3.4 

𝑿4 =  𝑇
𝜕

𝜕𝑇
 , 3.5 
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𝑿5 =  𝐶
𝜕

𝜕𝐶
 , 3.6 

𝑿6 =  𝑥
𝜕

𝜕𝑥
+  𝑢

𝜕

𝜕𝑢
 , 3.7 

𝑿7 =  𝑡
𝜕

𝜕𝑡
+

𝑦

2

𝜕

𝜕𝑦
− 𝑢

𝜕

𝜕𝑢
−

𝑣

2

𝜕

𝜕𝑣
 ,   3.8 

𝑿8 =  𝑡
1−

σ𝑒𝐵𝑜
2

𝛼𝜌
𝜕

𝜕𝑥
+ (

𝛼𝜌−σ𝑒𝐵𝑜
2

𝛼𝑡𝜌
) 𝑡

1−
σ𝑒𝐵𝑜

2

𝛼𝜌
𝜕

𝜕𝑢
 . 

3.9 

 

Let 
 

𝒁 =  𝑘1𝑿1 + 𝑘2𝑿2 + 𝑘3𝑿3 + 𝑘4𝑿4 + 𝑘5𝑿5 + 𝑘6𝑿6 + 𝑘7𝑿7  3.10 
 

Here, a linear combination of all translational and scaling symmetries is considered. 𝑿8 is neither 

translational nor scaling symmetry. That’s why it is omitted. 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6 and 𝑘7 are the 

constants that belong to the set of real numbers. 

To check the invariance of the boundary conditions, Z is applied to boundary conditions (2.25 - 

2.26). It leaves all the boundary conditions invariant while for 𝑢 = 𝑈𝑠(𝑥, 𝑡), 𝑇 = 𝑇𝑠(𝑥, 𝑡), 𝐶 =

𝐶𝑠(𝑥, 𝑡) and  𝑦 = ℎ(𝑡), it yields 

 

𝑘7𝑡
𝜕𝑈𝑠

𝜕𝑡
+ (𝑘6𝑥 + 𝑘1)

𝜕𝑈𝑠

𝜕𝑥
− 𝑢(𝑘6 − 𝑘7) = 0 , 3.11 

 

𝑘7𝑡
𝜕𝑇𝑠

𝜕𝑡
+ (𝑘6𝑥 + 𝑘1)

𝜕𝑇𝑠

𝜕𝑥
− 𝑘4𝑇 − 𝑘2 = 0 , 3.12 

 

𝑘7𝑡
𝜕𝑇𝑠

𝜕𝑡
+ (𝑘6𝑥 + 𝑘1)

𝜕𝐶𝑠

𝜕𝑥
− 𝑘5𝐶 − 𝑘3 = 0 , 3.13 

 

𝑘7𝑡
𝜕ℎ

𝜕𝑡
−

𝑘7𝑦

2
= 0 . 3.14 

 

Solving these linear partial differential equations reveals the specific forms of 𝑈𝑠(𝑥, 𝑡), 𝑇𝑠(𝑥, 𝑡), 

𝐶𝑠(𝑥, 𝑡) and ℎ(𝑡) as follow 

𝑈𝑠(𝑥, 𝑡) =  𝑡
𝑘6
𝑘7

−1
𝐹1 ( 

(𝑘6𝑥+𝑘1)𝑡
−

𝑘6
𝑘7

𝑘6
 )  , 

3.15 

 

𝑇𝑠(𝑥, 𝑡) =  𝑡
𝑘4
𝑘7𝐹2 ( 

(𝑘6𝑥+𝑘1)𝑡
−

𝑘6
𝑘7

𝑘6
 ) −

𝑘2

𝑘4
  , 

3.16 

 

𝐶𝑠(𝑥, 𝑡) =  𝑡
𝑘5
𝑘7𝐹3 ( 

(𝑘6𝑥+𝑘1)𝑡
−

𝑘6
𝑘7

𝑘6
 ) −

𝑘3

𝑘5
  , 

3.17 
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ℎ(𝑡) =  𝐶1√𝑡 , 3.18 

 

where 𝐶1 is a constant of integration.  

For the construction of the similarity transformations, system invariants are required. Zeroth-order 

invariants associated with the Lie algebra spanned by 𝑿𝒊, 𝑖 = 1 … 8 is a function of independent 

and dependent variables of the system (2.1 - 2.4). The invariants associated with Z are obtained 

through the criterion 

𝒁𝐽(𝑡, 𝑥, 𝑦, 𝑇, 𝐶, 𝑢, 𝑣) = 0 . 3.19 

 

This leads to a linear partial equation given by  

 

𝑘7𝑡
𝜕𝐽

𝜕𝑡
+ (𝑘6𝑥 + 𝑘1)

𝜕𝐽

𝜕𝑥
+ (𝑘5𝐶 + 𝑘3)

𝜕𝐽

𝜕𝐶
+ (𝑘4𝑇 + 𝑘2)

𝜕𝐽

𝜕𝑇
+ (𝑘6 − 𝑘7)𝑢

𝜕𝐽

𝜕𝐶
−

𝑘7𝑣

2

𝜕𝐽

𝜕𝑣
= 0.  3.20 

 

Solving (3.20) generates the system invariants  {
(𝑘6𝑥+𝑘1)𝑡

−
𝑘6
𝑘7

𝑘6
,

𝑦

√𝑡
,

(𝑘5𝐶+𝑘3)𝑡
−

𝑘5
𝑘7

𝑘5
,

(𝑘4𝑇+𝑘2)𝑡
−

𝑘4
𝑘7

𝑘4
, 𝑢𝑡

𝑘6
𝑘7

−1
, 𝑣√𝑡  }.  

Let 

 

𝑧1 =
(𝑘6𝑥+𝑘1)𝑡

−
𝑘6
𝑘7

𝑘6
  , 

3.21 

𝑧2 =  
𝑦

√𝑡
  , 3.22 

𝑃 =
(𝑘5𝐶+𝑘3)𝑡

−
𝑘5
𝑘7

𝑘5
  , 

3.23 

𝑄 =  
(𝑘4𝑇+𝑘2)𝑡

−
𝑘4
𝑘7

𝑘4
  , 

3.24 

𝑅 =  𝑢𝑡
𝑘6
𝑘7

−1
 , 

3.25 

𝑊 =   𝑣√𝑡  . 3.26 

 

𝑧1 and 𝑧2 are the new independent variables while 𝑃, 𝑄, 𝑅, and 𝑊 are the new dependent variables. 

These transformations (3.21 - 3.26) map eqs (2.1 - 2.4) to  

𝑅𝑧1
+ 𝑊𝑧2

= 0 , 3.27 
 

−
𝑘6

𝑘7
𝑧1𝑅𝑧1

−
1

2
𝑧2𝑅𝑧2

+
𝑘6−𝑘7

𝑘7
𝑅 + 𝑅𝑅𝑧1

+ 𝑊𝑅𝑧2
− 𝝂𝑅𝑧2𝑧2

+
σ𝑒𝐵𝑜

2

𝛼𝜌
𝑅 = 0 , 3.28 

 

−
𝑘6

𝑘7
𝑧1𝑄𝑧1

−
1

2
𝑧2𝑄𝑧2

+
𝑘4

𝑘7
𝑄 + 𝑅𝑄𝑧1

+ 𝑊𝑄𝑧2
− 𝜅𝑄𝑧2𝑧2

= 0 , 3.29 
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−
𝑘6

𝑘7
𝑧1𝑃𝑧1

−
1

2
𝑧2𝑃𝑧2

+
𝑘5

𝑘7
𝑃 + 𝑅𝑃𝑧1

+ 𝑊𝑃𝑧2
− 𝐷𝑃𝑧2𝑧2

= 0 . 3.30 

 

while boundary conditions (2.5 - 2.6) map to 

𝑅 =  𝐹1(𝑧1), 𝑊 = 0, 𝑄 =  𝐹2(𝑧1), 𝑃 =  𝐹3(𝑧1)    𝑎𝑡  𝑧2 = 0   3.31 
 

𝑅𝑧2
= 𝑄𝑧2

= 𝑃𝑧2
= 0, 𝑊 =

𝐶1

2
   𝑎𝑡  𝑧2 = 𝐶1  ,  3.32 

 

where 𝐶1 is a constant of integration. Eqs (3.27 - 3.30) have two independent and four dependent 

variables. Thus, with the help of transformations (3.21 - 3.26) we are able to reduce one 

independent variable in eqs (2.1 - 2.4). To obtain a system of ODEs, one more such reduction is 

required. This is obtainable from the Lie algebra associated with (3.27 - 3.32).  

The system (3.27 - 3.32) admits three-dimensional symmetry algebra spanned by the symmetry 

generators 

𝒀1 =  𝑄
𝜕

𝜕𝑄
 , 3.33 

 

𝒀2 =  𝑃
𝜕

𝜕𝑃 
 , 3.34 

 

𝒀3 =  𝑧1
𝜕

𝜕𝑧1
+ 𝑅

𝜕

𝜕𝑅
 . 3.35 

 

Let 𝒀 =  𝒀1 + 𝒀2 + 𝒀3 . The boundary condition (3.31 - 3.32) remains invariant with respect to 

Y if  

𝐹1(𝑧1) = 𝐶2𝑧1  , 3.36 

 
𝐹2(𝑧1) = 𝐶3𝑧1  , 3.37 

 
𝐹3(𝑧1) = 𝐶4𝑧1 . 3.38 

 

Like 𝐶1, 𝐶2, 𝐶3 and 𝐶4 are also constant of integration. To obtain the invariants of the reduced 

system, Y is applied on a function 𝐺(𝑧1, 𝑧2, 𝑃, 𝑄, 𝑅, 𝑊) which yields the invariants  {𝑧2,  
𝑃

𝑧1,
,

𝑄

𝑧1,
,

𝑅

𝑧1,
, 𝑊}. Now let 

𝜒 = 𝑧2 , 𝑔1 =  
𝑃

𝑧1,
 , 𝑔2 =  

𝑄

𝑧1,
 , 𝑔3 =  

𝑅

𝑧1,
 , 𝑔3 = 𝑊 . 

3.39 

 

These transformations reduce (3.27 - 3.32) to 
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𝑔3 + 𝑔4
′ = 0 ,  3.40 

 

−
𝑘6

𝑘7
𝑔3 −

1

2
𝑧2𝑔3

′ +
𝑘6−𝑘7

𝑘7
𝑔3  + 𝑔3

2 + 𝑔4𝑔3
′ − 𝝂𝑔3

′′ +
σ𝑒𝐵𝑜

2

𝛼𝜌
𝑔3 = 0 , 3.41 

 

−
𝑘6

𝑘7
𝑔2 −

1

2
𝑧2𝑔2

′ +
𝑘4

𝑘7
𝑔2  + 𝑔3𝑔2 + 𝑔4𝑔2

′ − 𝜅𝑔2
′′ = 0 , 3.42 

 

−
𝑘6

𝑘7
𝑔1 −

1

2
𝑧2𝑔1

′ +
𝑘5

𝑘7
𝑔1  + 𝑔3𝑔1 + 𝑔4𝑔1

′ − 𝐷𝑔1
′′ = 0 , 3.43 

 

subject to 

 

𝑔3 =  𝐶2, 𝑔4 = 0, 𝑔2 =  𝐶3, 𝑔1 =  𝐶4    𝑎𝑡  𝜒 = 0 ,  3.44 
 

and 

 

𝑔3
′ = 𝑔2

′ = 𝑔1
′ = 0, 𝑔4 =

𝐶1

2
   𝑎𝑡  𝜒 = 𝐶1  , 3.45 

 

where  ′  represents differentiation w.r.t 𝜒.  

Eqs (3.40 - 3.45) is the system of ODEs with 𝜒 as the independent variable. This is achieved with 

the help of transformations (3.21 - 3.26) and (3.39) in two steps. To obtain the similarity 

transformations that directly reduce (2.1 - 2.6) to a system of ODEs, let 

 

𝛽√
𝛼𝜈

𝑏
𝜂 = 𝜒 , −

𝑏

𝛼
𝑓′ = 𝑔3 , 𝛽√

𝜈𝑏

𝛼
𝑓 = 𝑔4 , 𝜃 = 𝑔2 , 𝜙 = 𝑔1  

3.46 

 

This leads to 

 

𝑦 = 𝛽√
𝛼𝜈𝑡

𝑏
𝜂 , 𝑢 =

−𝑏(𝑥+
𝑘1
𝑘6

)

𝛼𝑡
𝑓′(𝜂) , 𝑣 = 𝛽√

𝜈𝑏

𝛼𝑡
𝑓(𝜂) , 𝑇 =

𝑥+
𝑘1
𝑘6

𝑡
𝑘6−𝑘4

𝑘7

𝜃(𝜂) −
𝑘2

𝑘4
 , 𝐶 =

𝑥+
𝑘1
𝑘6

𝑡

𝑘6−𝑘5
𝑘7

𝜙(𝜂) −
𝑘3

𝑘5
 . 

3.47 

 

where 𝑓(𝜂), 𝜃(𝜂), and 𝜙(𝜂) are new dimensionless variables while 𝜂 is the similarity variable. 𝑇 

and 𝐶 represent the temperature and concentration difference respectively i.e. 𝑇0 − 𝑇(𝑥, 𝑡) and 

𝐶0 − 𝐶(𝑥, 𝑡), where 𝑇0 and 𝐶0 is the temperature and concentration of the sheet at the slit. These 

similarity transformations automatically satisfy the continuity equation and transform the 

momentum, energy, and concentration equation to  
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𝑓′′′ +  𝛾 (−𝑓𝑓′′ + 𝑓′ 2 − (𝑀𝑎 − 𝑆)𝑓′ +  
𝜂𝑆

2
𝑓′′ ) = 0 , 3.48 

 

𝑃𝑟−1𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ + (𝑓′ −

𝑘4−𝑘6

𝑘7
𝑆) 𝜃) = 0 , 3.49 

 

𝑆𝑐−1𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ + (𝑓′ −

𝑘5−𝑘6

𝑘7
𝑆) 𝜙) = 0 , 3.50 

 

where ′ now represents differentiation w.r.t 𝜂. 𝛾 = 𝛽2 is the dimensionless film thickness, 𝑀𝑎 =

σ𝑒𝐵𝑜
2

𝑏𝜌
 is the magnetic parameter,  𝑆 =

𝛼

𝑏
 is the measure of unsteadiness, 𝑃𝑟 =  

𝝂

𝜅
 is the Prandtl 

number and 𝑆𝑐 =
𝝂

𝐷
 is the Schmidt number.  

The boundary conditions (2.5 - 2.6) transform to 

 

𝑓(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1  𝑎𝑡  𝜂 = 0 , 3.51 
 

and  

 

𝑓(1) =
𝑆

2
,  𝑓′′(1) = 0, 𝜃′(1) = 0, 𝜙′(1) = 0  𝑎𝑡  𝜂 = 1 . 3.52 

 

under the transformations (3.47) by assuming the following values of the arbitrary constants  𝐶1, 

𝐶2, 𝐶3, and 𝐶4.  

 

𝐶1 = 𝛽√
𝛼𝜈

𝑏
 ,   𝐶2 =  −

𝑏

𝛼
,   𝐶3 = 1,  𝐶4 = 1  

3.53 

 

It should be noted that 𝜂 = 1 represents the free surface. If we put 𝜂 = 1 in (3.47), we get  

 

ℎ(𝑡) =  𝛽√
𝛼𝜈𝑡

𝑏
  

3.54 

 

It should be noted that film thickness is only a function of time, not space which is one of our 

assumptions while writing boundary layer equations.  

(3.15 - 3.17) and (3.36 - 3.38) tell us about the specific forms of 𝑈𝑠(𝑥, 𝑡), 𝑇𝑠(𝑥, 𝑡), and 𝐶𝑠(𝑥, 𝑡). 

By combining these equations, we have 

 

𝑈𝑠(𝑥, 𝑡) =  −
( 𝑥+

𝑘1
𝑘6

 )𝑏

𝛼𝑡
 ,  

3.55 
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𝑇𝑠(𝑥, 𝑡) =  𝑡
𝑘4−𝑘6

𝑘7 ( 𝑥 +
𝑘1

𝑘6
 ) −

𝑘2

𝑘4
 , 

3.56 

 

𝐶𝑠(𝑥, 𝑡) =  𝑡
𝑘5−𝑘6

𝑘7 ( 𝑥 +
𝑘1

𝑘6
 ) −

𝑘3

𝑘5
 . 

3.57 

 

The negative sign in 𝑈𝑠(𝑥, 𝑡) is telling about the velocity direction and can be ignored. It should 

be noted that 𝑘1, 𝑘2, and 𝑘3 does not appear in eqs (3.48 - 3.50). So, they can be taken as zero. This 

leads to 

𝑈𝑠(𝑥, 𝑡) =  
𝑥𝑏

𝛼𝑡
  , 3.58 

 

𝑇𝑠(𝑥, 𝑡) =  𝑡
𝑘4−𝑘6

𝑘7 𝑥 , 
3.59 

 

𝐶𝑠(𝑥, 𝑡) =  𝑡
𝑘5−𝑘6

𝑘7  𝑥 . 
3.60 

 

Here, 𝑇𝑠(𝑥, 𝑡) and 𝐶𝑠(𝑥, 𝑡) represents temperature and concentration difference respectively i.e. 

𝑇0 − 𝑇𝑠(𝑥, 𝑡) and 𝐶0 − 𝐶𝑠(𝑥, 𝑡). As we move from the slit the temperature and concentration of the 

sheet decrease. This behavior is also similar for time if the ratio  
𝑘5−𝑘6

𝑘7
 is positive. 

For practical purposes, we need drag force, heat transfer, and mass transfer which can be computed 

from the skin friction coefficient, Nusselt number, and Sherwood number.   

𝐶𝑓 =  
µ(

𝜕𝑢

𝜕𝑦
)

𝑦=0

𝜌𝑈𝑠
2

2

 , 
3.61 

 

𝑁𝑢𝑥 =  
𝑘(

𝜕𝑇

𝜕𝑦
)

𝑦=0
𝑘𝑇0

𝑥

 , 
3.62 

 

𝑆ℎ𝑥 =  
𝐷(

𝜕𝐶

𝜕𝑦
)

𝑦=0
𝐷𝐶0

𝑥

 , 
3.63 

 

where 𝑘 is the thermal conductivity of the fluid. The knowledge of 𝑓(𝜂) and 𝜃(𝜂) allows us to 

calculate these parameters. 

𝐶𝑓 =  
2

𝛽 𝑅𝑒𝑥

1
2

𝑓′′(0) , 3.64 
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𝑁𝑢𝑥 =  
 𝑅𝑒𝑥

3
2

2𝛽𝛼𝑡
 𝜃′(0) , 

3.65 

 

𝑆ℎ𝑥 =  
 𝑅𝑒𝑥

3
2

2𝛽𝛼𝑡
 𝜙′(0) ,  

3.66 

where 𝑅𝑒𝑥 =
𝑈𝑠𝑥

𝜈
  is the local Reynold’s number. 

 

 

3.2 1-Dimensional Optimal System for Unsteady Flow over a 

Stretching Surface in the presence of Variable Magnetic 

Field 
 

In this section,  a 1–dimensional optimal system of the momentum, heat, and mass transfer in a 

liquid film over an unsteady stretching in the presence of a variable magnetic field is developed.  

The motive of using a general linear combination of all translational and scaling symmetries was 

to develop generalized similarity transformations from which we can derive all invariants 

solutions, as infinite sub-algebra always exists, but it did not work as the arbitrary coefficients of 

the linear combination appear only in the power of variable time 𝑡. So, our next resort is to develop 

a 1-dimensional optimal system of the governing equations (2.1 - 2.6).  

This optimal system of sub-algebras serves as a valuable tool for identifying distinct classes of 

invariant solutions for differential equations. By identifying these non-equivalent classes, the task 

of constructing a comprehensive set of invariant solutions for a given differential equation can be 

streamlined. 

The established optimal system allows for the transformation of any relevant differential equation 

and its corresponding solutions into one of the classes provided by the system. Consequently, by 

deriving a singlw solution for every element within the optimal system of sub-algebras, one can 

effectively obtain all invariant solutions for a given differential equation (or system of differential 

equations). Notably, when two sub-algebras share the same class during a symmetry 

transformation, the invariant solutions associated with these sub-algebras can be mutually 

converted under the identical transformation.  

In the previous section, an 8-dimensional Lie algebra for the PDEs (2.1 - 2.6) is considered, where 

a linear combination of all translational and scaling symmetries is employed to derive a general 
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similarity transformation. Here, we develop a 1-dimensional optimal system of the Lie sub-

algebras. Any linear combination of Lie point symmetries is again a Lie point symmetry,  

Consequently, every sub-algebra included in the obtained optimal system can be identified as a 

Lie symmetry for the associated system of differential equations. For every individual component 

within the derived optimal system, there exists a similarity transformation comprising the system 

invariants that transform the governing equations with three independent variables into a system 

with two independent variables. To obtain a system of ODEs (one independent variable) one more 

such reduction is performed through the symmetries and invariants of the once-reduced system. 

Here, all classes of ODEs are obtained through similarity transformations facilitated by each 

component of the optimal system through the two invariants extracted from the governing PDEs 

and the once-reduced PDEs. 

The 1-dimensional optimal system of the governing PDEs (2.1 - 2.6)  derived through the Maple 

algorithm developed by Zhang et al. [44], reveals 22 linear combinations of Lie symmetry 

generator. These generators generate 22 unique classes of a system of ODEs upon double 

reduction describing the dynamics of flow, heat, and mass transfer.  A system of ODEs generated 

by any other linear combination of Lie symmetry generators will belong to one of the 22 classes. 

Thus the optimal system provides us with all the existent invariants solutions. The linear 

combinations of Lie symmetry generators developed by the optimal theory are given in Table 1.  

The corresponding invariants and similarity transformations are given in Table 2. The reduced 

systems corresponding to each class of symmetries are given in Table 3.  The nomenclature used 

for the reduction of the optimal system is the same as used in the previous section. 

 

Table 1: Lie symmetry generators of optimal system 

 

S. No Lie Symmetry Generators S. No Lie Symmetry Generators 

1 𝑿4 + 𝒌5𝑿5 + 𝒌6𝑿6 + 𝒌7𝑿7 12 𝑿5 + 𝒌1𝑿1 + 𝒌2𝑿2 + 𝒌8𝑿8 

2 𝑿4 + 𝒌5𝑿5 + 𝒌6𝑿6 13 𝑿7 + 𝒌6𝑿6 + 𝒌2𝑿2 + 𝒌3𝑿3 

3 𝑿4 + 𝒌1𝑿1 + 𝒌5𝑿5 + 𝒌7𝑿7 14 𝑿6 + 𝒌2𝑿2 + 𝒌3𝑿3 

4 𝑿4 + 𝒌1𝑿1 + 𝒌5𝑿5 + 𝒌8𝑿8 15 𝑿7 + 𝒌1𝑿1 + 𝒌2𝑿2 + 𝒌3𝑿3 

5 𝑿4 + 𝒌3𝑿3 + 𝒌6𝑿6 + 𝒌7𝑿7 16 𝑿3 + 𝒌1𝑿1 + 𝒌2𝑿2 + 𝒌8𝑿8 
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6 𝑿4 + 𝒌3𝑿3 + 𝒌6𝑿6 17 𝑿4 + 𝒌6𝑿6 + 𝒌7𝑿7 

7 𝑿4 + 𝒌1𝑿1 + 𝒌3𝑿3 + 𝒌7𝑿7 18 𝑿3 + 𝒌4𝑿4 + 𝒌6𝑿6 

8 𝑿4 + 𝒌1𝑿1 + 𝒌3𝑿3 + 𝒌8𝑿8 19 𝑿2 + 𝒌5𝑿5 + 𝒌6𝑿6 + 𝒌7𝑿7 

9 𝑿5 + 𝒌2𝑿2 + 𝒌6𝑿6 + 𝒌7𝑿7 20 𝑿2 + 𝒌5𝑿5 + 𝒌6𝑿6 

10 𝑿5 + 𝒌2𝑿2 + 𝒌6𝑿6 21 𝑿2 + 𝒌3𝑿3 + 𝒌6𝑿6 + 𝒌7𝑿7 

11 𝑿5 + 𝒌1𝑿1 + 𝒌2𝑿2 + 𝒌7𝑿7 22 𝑿2 + 𝒌3𝑿3 + 𝒌6𝑿6 

 

 

Table 2: Invariants of governing and reduced PDEs and corresponding similarity transformations 

 

Symmetries Invariants Transformations 

 
 

𝑿4 + 𝒌5𝑿5 + 𝒌6𝑿6 + 𝒌7𝑿7 

{𝑥𝑡
−

𝑘6
𝑘7 ,

𝑦

√𝑡 
, 𝐶𝑡

−
𝑘5
𝑘7 , 𝑇𝑡

−
1

𝑘7 , 𝑢𝑡
−

𝑘6− 𝑘7
𝑘7 , 𝑣√𝑡}       

{𝑧2,
𝑃

𝑧1
,

𝑄

𝑧1
,

𝑅

𝑧1
, 𝑊}  

𝑦 = 𝛽√
𝛼𝜈𝑡

𝑏
 𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝜈𝑏

𝛼𝑡
 𝑓, 

𝑇 = 𝑥𝑡
1−𝑘6

𝑘7 𝜃 , 𝐶 = 𝑥𝑡
𝑘5−𝑘6

𝑘7 𝜙  

 
 
𝑿4 + 𝒌5𝑿5 + 𝒌6𝑿6  

{𝑡, 𝑦, 𝐶𝑥
−

𝑘5
𝑘6 , 𝑇𝑥

−
1

𝑘6 ,
𝑢

𝑥
, 𝑣}  

{
𝑧2

√𝑧1  
,

𝑃

𝑧1
,

𝑄

𝑧1
, 𝑅𝑧1, 𝑊√𝑧1}  

𝑦 = 𝛽√
𝛼𝜈𝑡

𝑏
 𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝜈𝑏

𝛼𝑡
 𝑓, 

𝑇 = 𝑥
1

𝑘6 𝑡 𝜃 , 𝐶 = 𝑥
𝑘5
𝑘6 𝑡 𝜙  

 
𝑿4 + 𝒌1𝑿1 + 𝒌5𝑿5 + 𝒌7𝑿7 
 

 

Does not satisfy continuity equation 
 

 
𝑿4 + 𝒌1𝑿1 + 𝒌5𝑿5 + 𝒌8𝑿8 
 

 

Does not satisfy continuity equation 
 

 
 
𝑿4 + 𝒌3𝑿3 + 𝒌6𝑿6 + 𝒌7𝑿7 

{𝑥𝑡
−

𝑘6
𝑘7 ,

𝑦

√𝑡
, 𝑙𝑛 (𝑡

−
𝑘3
𝑘7) + 𝐶, 𝑇𝑡

−
1

𝑘7 ,

𝑢𝑡
−

𝑘6− 𝑘7
𝑘7 , 𝑣√𝑡}   

{𝑧2, − ln(𝑧1) +  𝑃,
𝑄

𝑧1
,

𝑅

𝑧1
, 𝑊}  

𝑦 = 𝛽√
𝛼𝜈𝑡

𝑏
 𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝜈𝑏

𝛼𝑡
 𝑓, 

𝑇 = 𝑥𝑡
1−𝑘6

𝑘7 𝜃 , 𝐶 = ln (𝑥𝑡
𝑘3−𝑘6

𝑘7 ) + 𝜙 

 
𝑿4 + 𝒌3𝑿3 + 𝒌6𝑿6 

{𝑡, 𝑦, 𝐶 + ln (𝑥
−

𝑘3
𝑘6 ), 𝑇𝑥

−
1

𝑘6 ,
𝑢

𝑥
, 𝑣}  

{
𝑧2

√𝑧1  
, 𝑃 − ln (𝑧1),

𝑄

𝑧1
, 𝑅𝑧1, 𝑊√𝑧1}  

𝑦 = 𝛽√
𝛼𝜈𝑡

𝑏
 𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝜈𝑏

𝛼𝑡
 𝑓, 

𝑇 = 𝑥
1

𝑘6 𝑡 𝜃 , 𝐶 = ln (𝑥
𝑘3
𝑘6 𝑡) +  𝜙 

 
𝑿4 + 𝒌1𝑿1 + 𝒌3𝑿3 + 𝒌7𝑿7 
 

 

Does not satisfy continuity equation 
 

 
𝑿4 + 𝒌1𝑿1 + 𝒌3𝑿3 + 𝒌8𝑿8 
 

 

Does not satisfy continuity equation 
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𝑿5 + 𝒌2𝑿2 + 𝒌6𝑿6 + 𝒌7𝑿7 

{𝑥𝑡
−

𝑘6
𝑘7 ,

𝑦

√𝑡
, 𝐶𝑡

−
1

𝑘7 , ln (𝑡
−

𝑘2
𝑘7) +  𝑇,

𝑢𝑡
−

𝑘6− 𝑘7
𝑘7 , 𝑣√𝑡}   

{𝑧2,
𝑃

𝑧1
, − ln(𝑧1) +  𝑄,

𝑅

𝑧1
, 𝑊}  

𝑦 = 𝛽√
𝛼𝜈𝑡

𝑏
 𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝜈𝑏

𝛼𝑡
 𝑓, 

𝐶 = 𝑥𝑡
1−𝑘6

𝑘7 𝜙 , 𝑇 = ln (𝑥𝑡
𝑘2−𝑘6

𝑘7 ) + 𝜃 

 
𝑿5 + 𝒌2𝑿2 + 𝒌6𝑿6 

{𝑡, 𝑦, 𝐶𝑥
−

1

𝑘6 ,
𝑇𝑘6− 𝑘2 ln(𝑥)

𝑘6
,

𝑢

𝑥
, 𝑣}  

{
𝑧2

√𝑧1  
,

𝑃

𝑧1
, − ln(𝑧1) +  𝑄,

𝑅

𝑧1
, 𝑊}  

𝑦 = 𝛽√
𝛼𝜈𝑡

𝑏
 𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝜈𝑏

𝛼𝑡
 𝑓, 

𝐶 = 𝑥
1

𝑘6 𝑡 𝜙 , 𝑇 = ln (𝑥
𝑘2
𝑘6 𝑡) + 𝜃 

 
𝑿5 + 𝒌1𝑿1 + 𝒌2𝑿2 + 𝒌7𝑿7 
 

 

Does not satisfy continuity equation 
 

 
𝑿5 + 𝒌1𝑿1 + 𝒌2𝑿2 + 𝒌8𝑿8 
 

 

Does not satisfy continuity equation 
 

 
 
𝑿7 + 𝒌6𝑿6 + 𝒌2𝑿2 + 𝒌3𝑿3 

{𝑥𝑡−𝑘6 ,
𝑦

√𝑡
, −𝑘3 ln(𝑡) + 𝐶, −𝑘2 ln(𝑡) +

 𝑇, 𝑢𝑡−𝑘6+ 1, 𝑣√𝑡 }  

{𝑧2, − ln(𝑧1) +  𝑃, − ln(𝑧1) +

 𝑄,
𝑅

𝑧1
, 𝑊}    

𝑦 = 𝛽√
𝛼𝜈𝑡

𝑏
 𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝜈𝑏

𝛼𝑡
 𝑓, 

𝑇 = ln(𝑥𝑡𝑘2− 𝑘6) + 𝜃,  𝐶 = ln(𝑥𝑡𝑘3− 𝑘6) +

𝜙 

 
 
𝑿6 + 𝒌2𝑿2 + 𝒌3𝑿3  

{𝑡, 𝑦, − 𝑘3 𝑙𝑛(𝑥) +  𝐶, − 𝑘2 𝑙𝑛(𝑥) +

 𝑇,
𝑢

𝑥
, 𝑣}    

{
𝑧2

√𝑧1
, − ln(𝑧1) +  𝑃, − ln(𝑧1) +

 𝑄, 𝑅𝑧1, 𝑊√𝑧1}    

𝑦 = 𝛽√
𝛼𝜈𝑡

𝑏
 𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝜈𝑏

𝛼𝑡
 𝑓, 

𝑇 = ln(𝑥𝑘2𝑡) + 𝜃,  𝐶 = ln(𝑥𝑘3𝑡) + 𝜙 

 
𝑿7 + 𝒌1𝑿1 + 𝒌2𝑿2 + 𝒌3𝑿3 
 

 

Does not satisfy continuity equation 

 

 

 
𝑿3 + 𝒌1𝑿1 + 𝒌2𝑿2 + 𝒌8𝑿8 
 

 
Does not satisfy continuity equation 

 

 
𝑿4 + 𝒌6𝑿6 + 𝒌7𝑿7  

{𝑥𝑡
−

𝑘6
𝑘7 ,

𝑦

√𝑡 
, 𝐶, 𝑇𝑡

−
1

𝑘7 , 𝑢𝑡
− 

𝑘6− 𝑘7
𝑘7 , 𝑣√𝑡}   

{𝑧2,
𝑃

𝑧1
,

𝑄

𝑧1
,

𝑅

𝑧1
, 𝑊}  

𝑦 = 𝛽√
𝛼𝜈𝑡

𝑏
 𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝜈𝑏

𝛼𝑡
 𝑓, 

𝑇 = 𝑥𝑡
1−𝑘6

𝑘7 𝜃 , 𝐶 = 𝑥𝑡
−𝑘6
𝑘7 𝜙 

 
𝑿3 + 𝒌4𝑿4 + 𝒌6𝑿6  

{𝑡, 𝑦, 𝐶 −
1

𝑘6
ln (𝑥), 𝑇𝑥

− 
𝑘4
𝑘6 ,

𝑢

𝑥
, 𝑣}  

{
𝑧2

√𝑧1  
, 𝑃 − ln (𝑧1),

𝑄

𝑧1
, 𝑅𝑧1, 𝑊√𝑧1}  

𝑦 = 𝛽√
𝛼𝜈𝑡

𝑏
 𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝜈𝑏

𝛼𝑡
 𝑓, 

𝐶 = 𝑥
1

𝑘6 𝑡 + 𝜙 , 𝑇 = 𝑥
𝑘4
𝑘6 𝑡 𝜃   

 
𝑿2 + 𝒌5𝑿5 + 𝒌6𝑿6 + 𝒌7𝑿7  
 

{𝑥𝑡
−

𝑘6
𝑘7 ,

𝑦

√𝑡
, 𝐶𝑡

−
𝑘5
𝑘7 ,

𝑇𝑘7−ln(𝑡)

𝑘7
, 𝑢𝑡

−
𝑘6– 𝑘7

𝑘7 ,

𝑣√𝑡}  

{𝑧2,
𝑃

𝑧1
, 𝑄 − ln(𝑧1) ,

𝑅

𝑧1
, 𝑊}   

𝑦 = 𝛽√
𝛼𝜈𝑡

𝑏
 𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝜈𝑏

𝛼𝑡
 𝑓, 

𝑇 = ln (𝑥𝑡
1−𝑘6

𝑘7 ) + 𝜃 , 𝐶 = 𝑥𝑡
𝑘5−𝑘6

𝑘7 𝜙  

 
{𝑡, 𝑦, 𝐶𝑥

−
𝑘5
𝑘6 ,

𝑇𝑘6−ln(𝑥)

𝑘6
,

𝑢

𝑥
, 𝑣}   𝑦 = 𝛽√

𝛼𝜈𝑡

𝑏
 𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝜈𝑏

𝛼𝑡
 𝑓, 
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𝑿2 + 𝒌5𝑿5 + 𝒌6𝑿6  
 

{
𝑧2

√𝑧1  
,

𝑃

𝑧1
, 𝑄 − ln (𝑧1), 𝑅𝑧1, 𝑊√𝑧1}  𝑇 = ln ( 𝑥

1

𝑘6𝑡) + 𝜃 , 𝐶 = 𝑥
𝑘5
𝑘6𝑡𝜙  

 
 
𝑿2 + 𝒌3𝑿3 + 𝒌6𝑿6 + 𝒌7𝑿7  
 

{𝑥𝑡
−

𝑘6
𝑘7 ,

𝑦

√𝑡
, −

𝑘3

𝑘7
ln(𝑡) + 𝐶, −

1

𝑘7
ln(𝑡) +

 𝑇, 𝑢𝑡
− 

𝑘6− 𝑘7
𝑘7 , 𝑣√𝑡 }   

{𝑧2, − ln(𝑧1) +  𝑃, − ln(𝑧1) +

 𝑄,
𝑅

𝑧1
, 𝑊}   

𝑦 = 𝛽√
𝛼𝜈𝑡

𝑏
 𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝜈𝑏

𝛼𝑡
 𝑓, 

𝑇 = ln (𝑥𝑡
1−𝑘6

𝑘7 ) + 𝜃,  𝐶 = ln (𝑥𝑡
𝑘3−𝑘6

𝑘7 ) + 𝜙 

 
 
𝑿2 + 𝒌3𝑿3 + 𝒌6𝑿6  
 

{𝑡, 𝑦, −
𝑘3

𝑘6
ln(𝑥) + 𝐶, −

1

𝑘6
ln(𝑥) +

 𝑇,
𝑢

𝑥
, 𝑣}   

{
𝑧2

√𝑧1  
, − ln(𝑧1) +  𝑃, − ln(𝑧1) +

 𝑄, 𝑅𝑧1, 𝑊√𝑧1}    

𝑦 = 𝛽√
𝛼𝜈𝑡

𝑏
 𝜂,  𝑢 = −

𝑏𝑥

𝛼𝑡
𝑓′,  𝑣 = 𝛽√

𝜈𝑏

𝛼𝑡
 𝑓, 

𝑇 = ln (𝑥
1

𝑘6 𝑡) + 𝜃,  𝐶 = ln (𝑥
𝑘3
𝑘6 𝑡) + 𝜙 

 

Table 3: Reduced systems 

 

Symmetries Reduced System 

 
 
 
 

𝑿4 + 𝒌5𝑿5 + 𝒌6𝑿6 + 𝒌7𝑿7 

𝑓′′′ + 𝛽2 [−𝑓𝑓′′ + 𝑓′2 − (𝑀𝑎 − 𝑆)𝑓′ +
1

2
𝑆𝑓′′] = 0 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ + 𝑓′𝜃 +  

𝑘6 − 1

𝑘7
𝑆𝜃 ) = 0 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ + 𝑓′𝜙 −  

𝑘5 − 𝑘6

𝑘7
𝑆𝜙 ) = 0 

B.C:  𝑓(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1  𝑎𝑡  𝜂 = 0 

𝑓(1) =
𝑆

2
,  𝑓′′(1) = 0, 𝜃′(1) = 0, 𝜙′(1) = 0  𝑎𝑡  𝜂 = 1  

 
 
 
 
𝑿4 + 𝒌5𝑿5 + 𝒌6𝑿6  

𝑓′′′ + 𝛽2 [−𝑓𝑓′′ + 𝑓′2 − (𝑀𝑎 − 𝑆)𝑓′ +
1

2
𝑆𝑓′′] = 0 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ +

1

𝑘6
𝑓′𝜃 − 𝑆𝜃 ) = 0 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ +

𝑘5

𝑘6
𝑓′𝜙 −  𝑆𝜙 ) = 0 

B.C:  𝑓(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1  𝑎𝑡  𝜂 = 0  

𝑓(1) =
𝑆

2
,  𝑓′′(1) = 0, 𝜃′(1) = 0, 𝜙′(1) = 0  𝑎𝑡  𝜂 = 1  

 
𝑿4 + 𝒌1𝑿1 + 𝒌5𝑿5 + 𝒌7𝑿7 
 

 
Does not satisfy continuity equation 

 
𝑿4 + 𝒌1𝑿1 + 𝒌5𝑿5 + 𝒌8𝑿8 
 

 
Does not satisfy continuity equation 

 
 
𝑿4 + 𝒌3𝑿3 + 𝒌6𝑿6 + 𝒌7𝑿7 

𝑓′′′ + 𝛽2 [−𝑓𝑓′′ + 𝑓′2 − (𝑀𝑎 − 𝑆)𝑓′ +
1

2
𝑆𝑓′′] = 0 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ + 𝑓′𝜃 +  

𝑘6 − 1

𝑘7
𝑆𝜃 ) = 0 
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𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ + 𝑓′ +  

𝑘6 − 𝑘3

𝑘7
𝑆 ) = 0 

B.C:  𝑓(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1  𝑎𝑡  𝜂 = 0  

𝑓(1) =
𝑆

2
,  𝑓′′(1) = 0, 𝜃′(1) = 0, 𝜙′(1) = 0  𝑎𝑡  𝜂 = 1  

 
 
 
 

𝑿4 + 𝒌3𝑿3 + 𝒌6𝑿6 

𝑓′′′ + 𝛽2 [−𝑓𝑓′′ + 𝑓′2 − (𝑀𝑎 − 𝑆)𝑓′ +
1

2
𝑆𝑓′′] = 0 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ +  

1

𝑘6
𝑓′𝜃 − 𝑆𝜃 ) = 0 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ +

𝑘3

𝑘6
𝑓′ − 𝑆) = 0 

B.C:  𝑓(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1  𝑎𝑡  𝜂 = 0  

𝑓(1) =
𝑆

2
,  𝑓′′(1) = 0, 𝜃′(1) = 0, 𝜙′(1) = 0  𝑎𝑡  𝜂 = 1  

 
𝑿4 + 𝒌1𝑿1 + 𝒌3𝑿3 + 𝒌7𝑿7 
 

 

Does not satisfy continuity equation 

 
𝑿4 + 𝒌1𝑿1 + 𝒌3𝑿3 + 𝒌8𝑿8 
 

 

Does not satisfy continuity equation 

 
 
 
 
𝑿5 + 𝒌2𝑿2 + 𝒌6𝑿6 + 𝒌7𝑿7 

𝑓′′′ + 𝛽2 [−𝑓𝑓′′ + 𝑓′2 − (𝑀𝑎 − 𝑆)𝑓′ +
1

2
𝑆𝑓′′] = 0 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ + 𝑓′ −  

𝑘2 − 𝑘6

𝑘7
𝑆 ) = 0 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ + 𝑓′𝜙 +  

𝑘6 − 1

𝑘7
𝑆𝜙 ) = 0 

B.C:  𝑓(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1  𝑎𝑡  𝜂 = 0  

𝑓(1) =
𝑆

2
,  𝑓′′(1) = 0, 𝜃′(1) = 0, 𝜙′(1) = 0  𝑎𝑡  𝜂 = 1  

 
 
 
 

𝑿5 + 𝒌2𝑿2 + 𝒌6𝑿6 

𝑓′′′ + 𝛽2 [−𝑓𝑓′′ + 𝑓′2 − (𝑀𝑎 − 𝑆)𝑓′ +
1

2
𝑆𝑓′′] = 0 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ + 

𝑘2

𝑘6
𝑓′ − 𝑆 ) = 0 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ +

1

𝑘6
 𝑓′𝜙 −  𝑆𝜙 ) = 0 

B.C:  𝑓(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1  𝑎𝑡  𝜂 = 0  

𝑓(1) =
𝑆

2
,  𝑓′′(1) = 0, 𝜃′(1) = 0, 𝜙′(1) = 0  𝑎𝑡  𝜂 = 1  

 
𝑿5 + 𝒌1𝑿1 + 𝒌2𝑿2 + 𝒌7𝑿7 
 

 

Does not satisfy continuity equation 

 
𝑿5 + 𝒌1𝑿1 + 𝒌2𝑿2 + 𝒌8𝑿8 
 

 

Does not satisfy continuity equation 

 
 
 
 
𝑿7 + 𝒌6𝑿6 + 𝒌2𝑿2 + 𝒌3𝑿3 

𝑓′′′ + 𝛽2 [−𝑓𝑓′′ + 𝑓′2 − (𝑀𝑎 − 𝑆)𝑓′ +
1

2
𝑆𝑓′′] = 0 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ +  𝑓′ + (𝑘6 − 𝑘2)𝑆 ) = 0 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ +  𝑓′ + (𝑘6 − 𝑘3)𝑆 ) = 0 

B.C:  𝑓(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1  𝑎𝑡  𝜂 = 0   
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𝑓(1) =
𝑆

2
,  𝑓′′(1) = 0, 𝜃′(1) = 0, 𝜙′(1) = 0  𝑎𝑡  𝜂 = 1  

 
 
 
 
𝑿6 + 𝒌2𝑿2 + 𝒌3𝑿3  

𝑓′′′ + 𝛽2 [−𝑓𝑓′′ + 𝑓′2 − (𝑀𝑎 − 𝑆)𝑓′ +
1

2
𝑆𝑓′′] = 0 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ +  𝑘2𝑓′ − 𝑆 ) = 0 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ +  𝑘3𝑓′ − 𝑆 ) = 0 

B.C:  𝑓(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1  𝑎𝑡  𝜂 = 0   

𝑓(1) =
𝑆

2
,  𝑓′′(1) = 0, 𝜃′(1) = 0, 𝜙′(1) = 0  𝑎𝑡  𝜂 = 1  

 
𝑿7 + 𝒌1𝑿1 + 𝒌2𝑿2 + 𝒌3𝑿3 
 

 

Does not satisfy the continuity equation 

 
𝑿3 + 𝒌1𝑿1 + 𝒌2𝑿2 + 𝒌8𝑿8 
 

 

Does not satisfy the continuity equation 

 
 
 
 
𝑿4 + 𝒌6𝑿6 + 𝒌7𝑿7  

𝑓′′′ + 𝛽2 [−𝑓𝑓′′ + 𝑓′2 − (𝑀𝑎 − 𝑆)𝑓′ +
1

2
𝑆𝑓′′] = 0 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ + 𝑓′𝜃 +  

𝑘6 − 1

𝑘7
𝑆𝜃 ) = 0 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ + 𝑓′𝜙 +  

𝑘6

𝑘7
𝑆𝜙 ) = 0 

B.C:  𝑓(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1  𝑎𝑡  𝜂 = 0 

𝑓(1) =
𝑆

2
,  𝑓′′(1) = 0, 𝜃′(1) = 0, 𝜙′(1) = 0  𝑎𝑡  𝜂 = 1  

 
 
 
 
𝑿3 + 𝒌4𝑿4 + 𝒌6𝑿6  

𝑓′′′ + 𝛽2 [−𝑓𝑓′′ + 𝑓′2 − (𝑀𝑎 − 𝑆)𝑓′ +
1

2
𝑆𝑓′′] = 0 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ +

𝑘4

𝑘6
𝑓′𝜃 −  𝑆𝜃 ) = 0 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ +

1

𝑘6
𝑓′ − 𝑆 ) = 0 

B.C:  𝑓(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1  𝑎𝑡  𝜂 = 0 

𝑓(1) =
𝑆

2
,  𝑓′′(1) = 0, 𝜃′(1) = 0, 𝜙′(1) = 0  𝑎𝑡  𝜂 = 1  

 
 
 
 
𝑿2 + 𝒌5𝑿5 + 𝒌6𝑿6 + 𝒌7𝑿7  
 

𝑓′′′ + 𝛽2 [−𝑓𝑓′′ + 𝑓′2 − (𝑀𝑎 − 𝑆)𝑓′ +
1

2
𝑆𝑓′′] = 0 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ + 𝑓′ +  

𝑘6 − 1

𝑘7
𝑆 ) = 0 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ + 𝑓′𝜙 +  

𝑘6 − 𝑘5

𝑘7
𝑆𝜙 ) = 0 

B.C:  𝑓(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1  𝑎𝑡  𝜂 = 0 

𝑓(1) =
𝑆

2
,  𝑓′′(1) = 0, 𝜃′(1) = 0, 𝜙′(1) = 0  𝑎𝑡  𝜂 = 1  

 
 
 
𝑿2 + 𝒌5𝑿5 + 𝒌6𝑿6  
 

𝑓′′′ + 𝛽2 [−𝑓𝑓′′ + 𝑓′2 − (𝑀𝑎 − 𝑆)𝑓′ +
1

2
𝑆𝑓′′] = 0 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ +

1

𝑘6
𝑓′ −  𝑆 ) = 0 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ +

𝑘5

𝑘6
𝑓′𝜙 −  𝑆𝜙 ) = 0 

  B.C:  𝑓(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1  𝑎𝑡  𝜂 = 0 
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𝑓(1) =
𝑆

2
,  𝑓′′(1) = 0, 𝜃′(1) = 0, 𝜙′(1) = 0  𝑎𝑡  𝜂 = 1  

 
 
 
 
𝑿2 + 𝒌3𝑿3 + 𝒌6𝑿6 + 𝒌7𝑿7  
 

𝑓′′′ + 𝛽2 [−𝑓𝑓′′ + 𝑓′2 − (𝑀𝑎 − 𝑆)𝑓′ +
1

2
𝑆𝑓′′] = 0 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ + 𝑓′ +  

𝑘6 − 1

𝑘7
𝑆 ) = 0 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ + 𝑓′ +  

𝑘6 − 𝑘3

𝑘7
𝑆 ) = 0 

 B.C:  𝑓(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1  𝑎𝑡  𝜂 = 0 

𝑓(1) =
𝑆

2
,  𝑓′′(1) = 0, 𝜃′(1) = 0, 𝜙′(1) = 0  𝑎𝑡  𝜂 = 1  

 
 
 
 
𝑿2 + 𝒌3𝑿3 + 𝒌6𝑿6  
 

𝑓′′′ + 𝛽2 [−𝑓𝑓′′ + 𝑓′2 − (𝑀𝑎 − 𝑆)𝑓′ +
1

2
𝑆𝑓′′] = 0 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ +

1

𝑘6
𝑓′ −  𝑆 ) = 0 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ +

𝑘3

𝑘6
𝑓′ −  𝑆 ) = 0 

B.C:  𝑓(0) = 0,  𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1  𝑎𝑡  𝜂 = 0 

𝑓(1) =
𝑆

2
,  𝑓′′(1) = 0, 𝜃′(1) = 0, 𝜙′(1) = 0  𝑎𝑡  𝜂 = 1  

 

 

Observations about the optimal system: 

 The momentum equation is the same for all linear combinations of the Lie symmetries, and 

hence the transformation of 𝑢. 

 In the energy and concentration equation, only the velocity and unsteadiness terms i.e. 𝑓′𝜃  

and 𝑆𝜃 get affected by the linear combination of the Lie symmetries. 

 In the transformation of 𝑇 and 𝐶,  either time 𝑡 has the coefficient of symmetries in power or 

distance 𝑥, but never the both e.g. 𝑇 = 𝑥𝑡
1

𝑘6  𝜃 or 𝑇 = 𝑥
1

𝑘6  𝑡 𝜃.  

 When the symmetries 𝑋6 and 𝑋7 are used in the linear combination, the coefficients of the 

symmetries appear in the power of 𝑡 and affect the unsteadiness term 𝑆𝜃. 

 When only 𝑋6 is used in the linear combination, the coefficients of the symmetries appear in 

the power of 𝑥 and affect the velocity term 𝑓′𝜃. 

 When only 𝑋7 is used, the transformations do not satisfy the continuity equations. 

 When the scaling symmetries of 𝑇 and 𝐶 are used, the velocity and the unsteadiness term have 
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the dependent variable (𝜃, 𝜙) e.g. 𝑓′𝜃  and 𝑆𝜃. 

 When the translating symmetries of 𝐶 & 𝑇 are used, the velocity and the unsteadiness terms do 

not have the dependent variable (𝜃, 𝜙) e.g. 𝑓′  and 𝑆. 

 Based on these observations, the above optimal system can be divided into the following 

categories. 

o Linearly-space dependent Symmetries (transformations has x with power 1) 

o Linearly-time dependent Symmetries (transformations has t with power 1) 

 

 Linearly-space dependent symmetries:   

 

The general form of this group can be expressed as 

 

𝐴𝑖𝑋𝑖 + 𝐴𝑗𝑋𝑗 + 𝐴6𝑋6 + 𝐴7𝑋7 ,   3.67 

 

where 𝑖 ∈ {2,4} & 𝑗 ∈ {3,5}.  𝐴 represents the coefficients of the symmetry.  

This group leads to the reduction of energy and concentration equations which have the 

following forms 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ + 𝑓′𝜃 +  

𝐴6−𝐴𝑖

𝐴7
𝑆𝜃 ) = 0   𝑖𝑓 𝑖 = 4 , 3.68 

 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ + 𝑓′𝜙 +  

𝐴6−𝐴𝑗

𝐴7
𝑆𝜙 ) = 0,    𝑖𝑓 𝑗 = 5  , 3.69 

 

If 𝑖 = 2 or 𝑗 = 3 (means translational symmetries of 𝑇 and 𝐶),  then velocity and unsteadiness 

terms do not have the dependent variables. i.e. 

 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ + 𝑓′ + 

𝐴6−𝐴𝑖

𝐴7
𝑆 ) = 0,      𝑖𝑓 𝑖 = 2  3.70 

 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ + 𝑓′ +  

𝐴6−𝐴𝑗

𝐴7
𝑆 ) ,    𝑖𝑓 𝑗 = 3  3.71 

 



 

30  

 Linearly-time dependent symmetries:   

 

The general form of this group can be expressed as 

 

𝐴𝑖𝑋𝑖 + 𝐴𝑗𝑋𝑗 + 𝐴6𝑋6 ,   3.72 

 

where 𝑖 ∈ {2,4} & 𝑗 ∈ {3,5}.    

This group leads to the reduction of energy and concentration equations which have the 

following forms 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ +

𝐴𝑖

𝐴6
𝑓′𝜃 −  𝑆𝜃 ) = 0   𝑖𝑓 𝑖 = 4 ,  3.73 

 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ +

𝐴𝑗

𝐴6
𝑓′𝜙 −  𝑆𝜙 ) = 0    𝑖𝑓 𝑗 = 5  . 3.74 

 

If 𝑖 = 2 or 𝑗 = 3 (means translational symmetries of 𝑇 and 𝐶),  then velocity and unsteadiness 

terms do not have the dependent variables. i.e. 

 

𝑃𝑟−1 𝜃′′ + 𝛾 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ +

𝐴𝑖

𝐴6
𝑓′ −  𝑆 ) = 0      𝑖𝑓 𝑖 = 2 ,   3.75 

 

𝑆𝑐−1 𝜙′′ + 𝛾 (−𝑓𝜙′ +
𝜂𝑆

2
𝜙′ +

𝐴𝑗

𝐴6
𝑓′ −  𝑆 ) = 0,   𝑖𝑓 𝑗 = 3 .  3.76 

 

 

3.3 Lie Symmetry Analysis of Unsteady Flow over a Stretching 

Surface in the Presence of Thermocapillarity, Internal Heat 

Source/Sink Variable Magnetic Field 

 

Lie point symmetry generators along with their first extensions for the governing equations (2.21 

- 2.23) while considering the form of 𝑄 given in eq (2.24) and 𝑈𝑠 =
𝑏𝑥

𝛼𝑡
  are, 

 

𝑿1 =  
𝜕

𝜕𝑥
 , 3.77 
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𝑿2 =  𝑥
𝜕

𝜕𝑥
+  𝑢

𝜕

𝜕𝑢
+ 𝑢𝑡

𝜕

𝜕𝑢𝑡
− 𝑇𝑥

𝜕

𝜕𝑇𝑥
− 𝑣𝑥

𝜕

𝜕𝑣𝑥
+ 𝑢𝑦

𝜕

𝜕𝑢𝑦
 , 3.78 

𝑿3 = 𝑇 
𝜕

𝜕𝑇
+ 𝑇𝑡

𝜕

𝜕𝑇𝑡
+ 𝑇𝑥

𝜕

𝜕𝑇𝑥
+ 𝑇𝑦

𝜕

𝜕𝑇𝑦
 , 3.79 

𝑿4 =  𝑡
𝜕

𝜕𝑡
+

𝑦

2

𝜕

𝜕𝑦
− 𝑢

𝜕

𝜕𝑢
−

𝑣

2

𝜕

𝜕𝑣
− 𝑇𝑡

𝜕

𝜕𝑇𝑡
− 2𝑢𝑡

𝜕

𝜕𝑢𝑡
−

3

2
𝑣𝑡

𝜕

𝜕𝑣𝑡
− 𝑢𝑥

𝜕

𝜕𝑢𝑥
−

1

2
𝑣𝑥

𝜕

𝜕𝑣𝑥
−

1

2
𝑇𝑦

𝜕

𝜕𝑇𝑦
 −

3

2
𝑢𝑦

𝜕

𝜕𝑢𝑦
− 𝑣𝑦

𝜕

𝜕𝑣𝑦
 , 

3.80 

𝑿5 =  𝑡
𝐺∗𝑏𝜅

𝛼𝜌
𝜕

𝜕𝑇
+

𝑡
𝐺∗𝑏𝜅

𝛼𝜌

𝛎𝛼𝑡
𝐺∗𝑏𝜅

𝜕

𝜕𝑇𝑡
 , 

3.81 

𝑿6 =  𝑡
1−

σ𝑒𝐵𝑜
2

𝛼𝜌
𝜕

𝜕𝑥
+ (

𝛼𝜌−σ𝑒𝐵𝑜
2

𝛼𝑡𝜌
) 𝑡

1−
σ𝑒𝐵𝑜

2

𝛼𝜌
𝜕

𝜕𝑢
− (

𝛼𝜌−σ𝑒𝐵𝑜
2

𝛼𝑡𝜌
) 𝑡

1−
σ𝑒𝐵𝑜

2

𝛼𝜌 𝑇𝑥
𝜕

𝜕𝑇𝑡
−

(
𝛼𝜌−σ𝑒𝐵𝑜

2

𝛼𝑡𝜌
) (

𝛼𝜌𝑡𝑢𝑥+σ𝑒𝐵𝑜
2

𝛼𝑡𝜌
) 𝑡

1−
σ𝑒𝐵𝑜

2

𝛼𝜌
𝜕

𝜕𝑢𝑡
− (

𝛼𝜌−σ𝑒𝐵𝑜
2

𝛼𝑡𝜌
) 𝑡

1−
σ𝑒𝐵𝑜

2

𝛼𝜌 𝑣𝑥
𝜕

𝜕𝑣𝑡
 . 

3.82 

 

Our criterion for deriving the system invariants is to use only those Lie symmetry generators or a 

linear combination of the generators that leave all the boundary conditions invariant and render 𝑈𝑠 

and 𝑇𝑠 a function of both time and distance. Unlike the previous case, here only the following three 

linear combinations meet this criterion. 

𝒀1 =  𝑿2 + 2 𝑿3 , 3.83 
 

𝒀2 =  𝑿3 −
2

3
 𝑿4 , 3.84 

 

𝒀3 =  𝑿2 +
4

3
 𝑿4 . 3.85 

 

Adapting the same procedure used in section (3.1), the generators (3.83 - 3.85) are used to reduce 

the governing PDEs (2.21 - 2.23) to a system of ODEs. It has been observed that all three 

generators generate the same similarity transformations and hence, reduce the governing PDEs to 

the same system of ODEs. 

The deduced similarity transformations are, 

𝑦 = 𝛽√
𝛼𝛎𝑡

𝑏
𝜂 ,   𝑢 =

−𝑏𝑥

𝛼𝑡
𝑓′(𝜂),   𝑣 = 𝛽√

𝛎𝑏

𝛼𝑡
𝑓(𝜂) ,    𝑇 =

𝑥2

𝑡
3
2

𝜃(𝜂)  , 
3.86 

 

Here, 𝑇 represents the temperature i.e. 𝑇𝑜 − 𝑇. 

The reduced system of ODEs is, 

𝑓′′′ +  𝛾 (−𝑓𝑓′′ + 𝑓′ 2 − (𝑀𝑎 − 𝑆)𝑓′ +  
𝜂𝑆

2
𝑓′′ ) = 0  3.87 

 

𝜃′′ + 𝛾𝑃𝑟 (−𝑓𝜃′ +
𝜂𝑆

2
𝜃′ + 2𝑓′𝜃 +

3

2
𝑆𝜃 +

𝐺∗

𝑃𝑟
𝜃 ) = 0  3.88 
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subject to the boundary conditions 

 

𝑓(0) = 0,   𝑓′(0) = 1, 𝜃(0) = 1  𝑎𝑡  𝜂 = 0 ,  3.89 
 

and 

𝑓(1) =
𝑆

2
,  𝑓′′(1) = 2𝑆3/2M 𝜃(1), 𝜃′(1) = 0   𝑎𝑡  𝜂 = 1,   3.90 

 

where, M =  
𝜎𝑜𝛽√𝜈

𝜇
 is the thermocapillarity parameter which appears in the thermocapillarity 

driven flows. The prime symbol denotes differentiation with respect to the similarity variable 𝜂. 

The equations (3.87 - 3.88) contain several parameters, including the dimensionless film thickness 

𝛾 = 𝛽2, the magnetic parameter 𝑀𝑎 =
σ𝑒𝐵𝑜

2

𝑏𝜌
, the unsteadiness measure 𝑆 =

𝛼

𝑏
, and the Prandtl 

number Pr =  
𝛎

𝜅
 . 

The specific forms of the stretching surface velocity and temperature are determined to be 

𝑈𝑠(𝑥, 𝑡) =
𝑥𝐶1

𝑡
 , 3.91 

 

𝑇𝑠(𝑥, 𝑡) = 𝑇𝑜 −
𝑥2𝐶2

𝑡3/2  , 3.92 

 

whereas the dimensionless film thickness is given by 

 

ℎ(𝑡) = 𝐶3√𝑡 . 3.93 

 

The values of the arbitrary constants are determined to be 

 

𝐶1 =  −
𝑏

𝛼
 , 𝐶2 = 1 , 𝐶3 = 𝛽√

𝛼ν

𝑏
  .   

3.94 

 

The invariants of the governing PDEs are given in Table 4, the reduced PDEs are given in Table 

5, while the invariants of the reduced PDEs and double-reduced system are given in Table 6.  
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Table 4: Invariants of the governing PDEs 

 

Generators Invariants 

𝒀1 =  𝑿2 + 2 𝑿3  {𝑡, 𝑦,
𝑇

𝑥2 ,
𝑢

𝑥
, 𝑣}  

𝒀2 =  𝑿3 −
2

3
 𝑿4  {𝑥,

𝑦

√𝑡
, 𝑇𝑡

3

2, 𝑢𝑡, 𝑣√𝑡}  

𝒀3 =  𝑿2 +
4

3
 𝑿4  {

𝑥

𝑡
3
4

,
𝑦

√𝑡
, 𝑇, 𝑢𝑡

1

4, 𝑣√𝑡}  

 

 

Table 5: First reduction of the governing PDEs 

 

Generators Reduced System 

 

 

 

𝒀1 =  𝑿2 + 2 𝑿3 

𝑅 + 𝑊𝑧2
= 0 , 

𝑅𝑧1
+ 𝑅2 + 𝑊𝑅𝑧2

− 𝛎𝑅𝑧2𝑧2
+

σ𝑒𝐵𝑜
2

𝛼𝜌𝑧1
𝑅 = 0 , 

𝑄𝑧1
+ 2𝑅𝑄 + 𝑊𝑄𝑧2

− 𝜅𝑄𝑧2𝑧2
−

𝜅𝑏𝐺∗

𝛼𝛎𝑧1
𝑄 = 0 , 

B.C: 𝑅 = 𝑈𝑠(𝑧1),    𝑊 = 0,    𝑄 = 𝑇𝑠(𝑧1)  at 𝑧2 = 0, 

𝑅𝑧2
= −

2𝜎𝑜𝛾

𝜇
𝑄,    𝑄𝑧2

= 0,    𝑊 =
𝑑ℎ

𝑑𝑧1
   at 𝑧2 = ℎ(𝑧1). 

 

 

𝒀2 =  𝑿3 −
2

3
 𝑿4  

𝑅𝑧1
+ 𝑊𝑧2

= 0 , 

−
𝑧2

2
𝑅𝑧2

+ 𝑅𝑅𝑧1
− 𝑅 + 𝑊𝑅𝑧2

− 𝛎𝑅𝑧2𝑧2
+

σ𝑒𝐵𝑜
2

𝛼𝜌
𝑅 = 0 , 

−
𝑧2

2
𝑄𝑧2

+ 𝑅𝑄𝑧1
−

3

2
𝑄 + 𝑊𝑄𝑧2

− 𝜅𝑄𝑧2𝑧2
−

𝜅𝑏𝐺∗

𝛼𝛎
𝑄 = 0 , 

B.C:  𝑅 = 𝐹1(𝑧1),    𝑊 = 0,    𝑄 = 𝐹2(𝑧1)   at 𝑧2 = 0,  

𝑅𝑧2
= −

𝜎𝑜𝛾

𝜇
𝑄𝑧1

,    𝑄𝑧2
= 0,    𝑊 =

𝐶3

2
   at 𝑧2 = 𝐶3. 

 

 

𝒀3 =  𝑿2 +
4

3
 𝑿4  

𝑅𝑧1
+ 𝑊𝑧2

= 0 , 

−
𝑧2

2
𝑅𝑧2

−
3𝑧1

4
𝑅𝑧1

+ 𝑅𝑅𝑧1
−

𝑅

4
+ 𝑊𝑅𝑧2

− 𝛎𝑅𝑧2𝑧2
+

σ𝑒𝐵𝑜
2

𝛼𝜌
𝑅 = 0 , 
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−
𝑧2

2
𝑄𝑧2

+ 𝑅𝑄𝑧1
−

3

4
𝑧1𝑄𝑧1

+ 𝑊𝑄𝑧2
− 𝜅𝑄𝑧2𝑧2

−
𝜅𝑏𝐺∗

𝛼𝛎
𝑄 = 0 , 

B.C: 𝑅 = 𝐹1(𝑧1),    𝑊 = 0,    𝑄 = 𝐹2(𝑧1)   at 𝑧2 = 0, 

𝑅𝑧2
= −

𝜎𝑜𝛾

𝜇
𝑄𝑧1

,    𝑄𝑧2
= 0,    𝑊 =

𝐶1

2
   at 𝑧2 = 𝐶3 . 

   

  

Table 6: Invariants of reduced PDEs and double-reduced system 

 

Generators Invariants Double-reduced system 

𝒀1 =  𝑿2 + 2 𝑿3 
{

𝑧2 

√𝑧1 
, 𝑄𝑧1

3
2, 𝑅𝑧1, 𝑊√𝑧1} 

𝑔2 + 𝑔3
′ = 0 , 

−
𝜒

2
𝑔2 − 𝑔2  + 𝑔2

2 + 𝑔3𝑔2
′ − 𝛎𝑔2

′′ +
σ𝑒𝐵𝑜

2

𝛼𝜌
𝑔2 = 0 , 

−
𝜒

2
𝑔1 −

3

2
𝑔1 + 2𝑔2𝑔1 + 𝑔3𝑔1

′ − 𝜅𝑔1
′′ −

𝜅𝑏𝐺∗

𝛼𝛎
𝑔1 = 0 , 

B.C:  𝑔2 =  𝐶1,   𝑔3 = 0,   𝑔1 =  𝐶2   at 𝜒 = 0,  

𝑔2
′ = −2

𝜎𝑜𝛾

𝜇
𝑔1,   𝑔1

′ = 0,  𝑔3 =
𝐶3

2
     at = 𝐶3 .  

𝒀2 =  𝑿3 −
2

3
 𝑿4 {𝑧2,

𝑄

𝑧1
2 ,

𝑅

𝑧1
, 𝑊} 

𝒀3 =  𝑿2 +
4

3
 𝑿4 {𝑧2,

𝑄

𝑧1
2 ,

𝑅

𝑧1
, 𝑊} 
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Chapter 4 

 

 

4. Solution Methods 

 

In this study, two analytical solution methods are used to obtain the solution i.e. Homotopy 

Analysis Method (HAM) and Homotopy Perturbation Method (HPM). The solutions for 

momentum, heat, and mass transfer in the presence of a variable magnetic field are obtained using 

Homotopy Analysis Method  (eqs 3.48 - 3.52 and eqs in Table 3) while the solutions of flow and 

heat transfer in the presence of thermocapillarity, internal heat source/sink and variable magnetic 

field (eqs 3.87 - 3.90) are obtained using Homotopy Perturbation Method (HPM).  

 

4.1 Homotopy Analysis Method 

 

Let 𝑓0(𝜂), 𝛾𝑜, 𝜃0(𝜂) and 𝜙0(𝜂) denote an initial solution of 𝑓(𝜂), γ, 𝜃(𝜂) and 𝜙(𝜂) that satisfy 

the initial conditions and 𝑞 ∈ [0,1] denotes the so called embedding parameter. The main idea of 

HAM is based upon the continuous mapping of   𝑓(𝜂) → 𝐹(𝜂; 𝑞), Ѓ(𝑞) → 𝛾, 𝜃(𝜂) →

𝛩(𝜂; 𝑞) and 𝜙(𝜂) → 𝜑(𝜂; 𝑞)   such that as 𝑞 varies from 0 to 1, 𝐹(𝜂; 𝑞), Ѓ(𝑞), 𝛩(𝜂; 𝑞) and 𝜑(𝜂; 𝑞)  

vary from the initial solution 𝑓0(𝜂),  𝛾0, 𝜃0(𝜂) and 𝜙0(𝜂) to the exact solution 𝑓(𝜂), 𝛾, 𝜃(𝜂) and 

𝜙(𝜂). This is possible by choosing a linear auxiliary operator with the property that  

ℒ 𝑔 = 0     𝑤ℎ𝑒𝑛   𝑔 = 0 ,  4.1 

where 𝑔 is any arbitrary function.  

To find the solution of eqs (3.48 - 3.52), HAM defines a family of equations called zero-order 
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deformation equations, given below 

(1 − 𝑞)ℒ𝑓[𝐹(𝜂; 𝑞) − 𝑓0(𝜂)] = 𝑞ℏ𝑓𝐻𝑓(𝜂)𝑁𝑓[𝐹(𝜂; 𝑞), Ѓ(𝑞)] , 4.2 

 

(1 − 𝑞)ℒ𝛳[𝛩(𝜂; 𝑞) − 𝜃0(𝜂)] = 𝑞ℏ𝜃𝐻𝜃(𝜂)𝑁𝜃[𝐹(𝜂; 𝑞), 𝛩(𝜂; 𝑞), Ѓ(𝑞)] , 4.3 

 

(1 − 𝑞)ℒ𝜙[𝜑(𝜂; 𝑞) − 𝜙0(𝜂)] = 𝑞ℏ𝜙𝐻𝜙(𝜂)𝑁𝜙[𝐹(𝜂; 𝑞), 𝜑(𝜂; 𝑞), Ѓ(𝑞)] ,  4.4 

 

subject to the boundary conditions 

 

𝐹(0; 𝑞) = 0,  𝐹′(0; 𝑞) = 1,  𝛩(0; 𝑞) = 1,  𝜑(0; 𝑞) = 1,   4.5 

 

and 

𝐹(1; 𝑞) =
𝑆

2
,  𝐹′′(1; 𝑞) = 0,  𝛩′(1; 𝑞) = 0,  𝜑′(1; 𝑞) = 0 . 4.6 

 

where ′ represents differentiation w.r.t 𝜂, ℏ is the non-zero auxiliary parameter, 𝐻(𝜂) is the non-

zero auxiliary function while 𝑁 denotes the non-linear operator defined as 

 

𝑁𝑓[𝐹(𝜂; 𝑞), Ѓ(𝑞)] = 𝐹′′′ +  Ѓ (−𝐹𝐹′′ + 𝐹′ 2 − (𝑀𝑎 − 𝑆)𝐹′ + 
𝜂𝑆

2
𝐹′′ )    4.7 

 

𝑁𝜃[𝐹(𝜂; 𝑞), 𝛩(𝜂; 𝑞), Ѓ(𝑞)] = 𝑃𝑟−1𝛩′′ + Ѓ (−𝐹𝛩′ +
𝜂𝑆

2
𝛩′ + (𝐹′ −

𝑘4−𝑘6

𝑘7
𝑆) 𝛩)  4.8 

 

𝑁𝜙[𝐹(𝜂; 𝑞), 𝜑(𝜂; 𝑞), Ѓ(𝑞)] = 𝑃𝑟−1𝜑′′ + Ѓ (−𝐹𝜑′ +
𝜂𝑆

2
𝜑′ + (𝐹′ −

𝑘4−𝑘6

𝑘7
𝑆) 𝜑)  4.9 

 

𝐹(𝜂; 𝑞), 𝛩(𝜂; 𝑞), 𝜑(𝜂; 𝑞) and Ѓ(𝑞) can be expanded into a power series of the embedding 

parameter 𝑞 by using Taylor’s theorem. 

 

𝐹(𝜂; 𝑞) = 𝐹(𝜂; 0) + ∑
1

𝑚!
 
𝜕𝑚𝐹(𝜂;𝑞)

𝜕𝑞𝑚
𝑞=0

𝑞𝑚+∞
𝑚=1   4.10 

 

Ѓ(𝑞) = Ѓ(0) + ∑
1

𝑚!
 
𝜕𝑚Ѓ(𝑞)

𝜕𝑞𝑚
𝑞=0

𝑞𝑚+∞
𝑚=1   4.11 

 

𝛩(𝜂; 𝑞) = 𝛩(𝜂; 0) + ∑
1

𝑚!
 
𝜕𝑚𝛩(𝜂;𝑞)

𝜕𝑞𝑚
𝑞=0

𝑞𝑚+∞
𝑚=1   4.12 

 

𝜑(𝜂; 𝑞) = 𝜑(𝜂; 0) + ∑
1

𝑚!
 
𝜕𝑚𝜑(𝜂;𝑞)

𝜕𝑞𝑚
𝑞=0

𝑞𝑚+∞
𝑚=1   4.13 

 

Let 
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𝑓𝑚(𝜂) =
1

𝑚!
 
𝜕𝑚𝐹(𝜂;𝑞)

𝜕𝑞𝑚
𝑞=0

,   𝛾𝑚 =
1

𝑚!
 
𝜕𝑚Ѓ(𝑞)

𝜕𝑞𝑚
𝑞=0

 ,    4.14 

 

𝜃𝑚(𝜂) =
1

𝑚!
 
𝜕𝑚𝛩(𝜂;𝑞)

𝜕𝑞𝑚
𝑞=0

, 𝜙𝑚(𝜂) =
1

𝑚!
 
𝜕𝑚𝜑(𝜂;𝑞)

𝜕𝑞𝑚
𝑞=0

.  4.15 

 

Thus, eqs (4.10 - 4.13) become 

 

𝐹(𝜂; 𝑞) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂) 𝑞𝑚+∞
𝑚=1  , 4.16 

 

Ѓ(𝑞) = 𝛾𝑜 + ∑ 𝛾𝑚𝑞𝑚+∞
𝑚=1  , 4.17 

 

𝛩(𝜂; 𝑞) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂)𝑞𝑚+∞
𝑚=1  , 4.18 

 

𝜑(𝜂; 𝑞) = 𝜙0(𝜂) + ∑ 𝜙𝑚(𝜂)𝑞𝑚+∞
𝑚=1  , 4.19 

 

where 𝐹(𝜂; 0) = 𝑓0(𝜂), Ѓ(0) = 𝛾𝑜 , 𝛩(𝜂; 0) = 𝜃0(𝜂) and 𝜑(𝜂; 0) = 𝜙0(𝜂). If the auxiliary 

parameter ℏ, the auxiliary function 𝐻(𝜂), the initial approximation, and the linear operator ℒ are 

chosen properly then at 𝑞 = 1, the series (3.26) converges to the exact solutions i.e. 

 

𝐹(𝜂; 1) = 𝑓(𝜂),     Ѓ(1) = 𝛾,    𝛩(𝜂; 1) = 𝜃(𝜂),     𝜑(𝜂; 1) = 𝜙(𝜂). 4.20 

 

Thus, we obtain 

 

𝑓(𝜂) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂)+∞
𝑚=1  ,   𝛾 = 𝛾𝑜 + ∑ 𝛾𝑚

+∞
𝑚=1  , 4.21 

 

𝜃(𝜂) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂)+∞
𝑚=1  ,    𝜙(𝜂) = 𝜙0(𝜂) + ∑ 𝜙𝑚(𝜂)+∞

𝑚=1  4.22 
 

In the current study, the power series of 𝜂 is chosen as a base function to express the solution. 

 

{𝜂𝑚| 𝑚 = 0,1,2 … . } . 4.23 

 

Then, 

 

𝑓0(𝜂) = 𝜂 +
3𝑆−6

4
𝜂2 +

2−𝑆

4
𝜂3,    𝜃0(𝜂) = 1 ,   𝜙0(𝜂) = 1, 4.24 

 

become the obvious choice for the initial solution, obtained by utilizing the boundary conditions 

𝑓0(0) = 0, 𝑓0
′(0) = 1, 𝜃0(0) = 1, 𝜙0(0) = 1,  4.25 

and 
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𝑓0(1) =
𝑆

2
, 𝑓0

′′(1) = 0, 𝜃0
′(1) = 0, 𝜙0

′(1) = 0 .  4.26 

 

 

 

 ℒ𝑓 =
𝜕3

𝜕𝜂3
 ,  ℒ𝛳 =

𝜕2

𝜕𝜂2
 and ℒ𝜙 =

𝜕2

𝜕𝜂2
 are chosen as the linear operators. The value of auxiliary 

function 𝐻(𝜂) = 1 is determined utilizing the rule of solution expression and the rule of coefficient 

ergodicity [45].  

 To derive 𝑓𝑚(𝜂), differentiate zero-order deformation equation m times with respect to 𝑞, then 

divide by 𝑚! and finally set 𝑞 = 0. The generalized higher-order deformation equation can be 

written as 

ℒ𝑓[𝑓𝑚(𝜂) − 𝑥𝑚𝑓𝑚−1(𝜂)] = ℏ𝑓𝐻𝑓(𝜂)𝑅𝑓,𝑚(𝜂) , 4.27 
 

ℒ𝜃[𝜃𝑚(𝜂) − 𝑥𝑚𝜃𝑚−1(𝜂)] = ℏ𝜃𝐻𝜃(𝜂)𝑅𝜃,𝑚(𝜂) , 4.28 
 

ℒ𝜙[𝜙𝑚(𝜂) − 𝑥𝑚𝜙𝑚−1(𝜂)] = ℏ𝜙𝐻𝜙(𝜂)𝑅𝜙,𝑚(𝜂) ,  4.29 

 

subjected to the boundary conditions 

 

𝑓𝑚(0) = 0,  𝑓𝑚
′(0) = 0,  𝜃𝑚(0) = 0,  𝜙𝑚(0) = 0, 4.30 

 

and  

 

𝑓𝑚(1) = 0,  𝑓𝑚
′′(1) = 0,  𝜃𝑚

′(1) = 0,  𝜙𝑚
′(1) = 0 , 4.31 

 

for 𝑚 ≥ 1, where 

 

𝑅𝑓,𝑚(𝜂) =  𝑓𝑚
′′′(𝜂) + ∑ 𝛾𝑚−1−𝑛

𝑚−1
𝑛=0 ∑ (−𝑓𝑖𝑓𝑛−𝑖

′′ + 𝑓𝑖
′𝑓𝑛−𝑖

′ )𝑛
𝑖=0 + ∑ 𝛾𝑛 (−(𝑀𝑎 −𝑚−1

𝑛=0

𝑆)𝑓𝑚−1−𝑛
′ +

𝑆𝜂

2
𝑓𝑚−1−𝑛

′′ ) ,  

4.32 

 

𝑅𝜃,𝑚(𝜂) = 𝑃𝑟−1𝜃𝑚
′′

(𝜂) + ∑ 𝛾𝑚−1−𝑛
𝑚−1
𝑛=0 ∑ (−𝑓𝑖𝜃𝑛−𝑖

′ + 𝑓𝑛−𝑖
′ 𝜃𝑖)𝑛

𝑖=0 +

∑ 𝛾𝑛 (− (
𝑘4−𝑘6

𝑘7
) 𝑆𝜃𝑚−1−𝑛 +

𝑆𝜂

2
𝜃𝑚−1−𝑛

′ )𝑚−1
𝑛=0  ,  

4.33 

 

𝑅𝜙,𝑚(𝜂) = 𝑆𝑐−1𝜙𝑚
′′

(𝜂) + ∑ 𝛾𝑚−1−𝑛
𝑚−1
𝑛=0 ∑ (−𝑓𝑖𝜙𝑛−𝑖

′ + 𝑓𝑛−𝑖
′ 𝜙𝑖)𝑛

𝑖=0 +

∑ 𝛾𝑛 (− (
𝑘5−𝑘6

𝑘7
) 𝑆𝜙𝑚−1−𝑛 +

𝑆𝜂

2
𝜙𝑚−1−𝑛

′ )𝑚−1
𝑛=0  ,  

4.34 

 

and 
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𝑥𝑚 = {
1, 𝑚 > 1
0, 𝑚 = 1

 . 4.35 

 

The solution of eqs (4.27 - 4.31) is given by 

 

𝑓𝑚(𝜂) = 𝑥𝑚𝑓𝑚−1(𝜂) + ∫ ∫ ∫ ℏ𝑓𝐻𝑓(𝜂)𝑅𝑓,𝑚(𝜂) 𝑑𝜂𝑑𝜂𝑑𝜂
𝜂

0

𝜂

0

𝜂

0
+ 𝑎1 + 𝑎2𝜂 + 𝑎3𝜂2,  4.36 

 

𝜃𝑚(𝜂) = 𝑥𝑚𝜃𝑚−1(𝜂) + ∫ ∫ ℏ𝜃𝐻𝜃(𝜂)𝑅𝜃,𝑚(𝜂) 𝑑𝜂𝑑𝜂
𝜂

0

𝜂

0
+ 𝑎4 + 𝑎5𝜂 , 4.37 

 

𝜙𝑚(𝜂) = 𝑥𝑚𝜙𝑚−1(𝜂) + ∫ ∫ ℏ𝜙𝐻𝜙(𝜂)𝑅𝜙,𝑚(𝜂) 𝑑𝜂𝑑𝜂
𝜂

0

𝜂

0
+ 𝑎6 + 𝑎7𝜂 , 4.38 

 

where 𝑎1, 𝑎2 .. 𝑎7 are the integration constants. It should be noted that 𝑅𝑓,𝑚(𝜂) contains the 

unknown 𝛾𝑚−1that must be calculated along with the integration constants using the boundary 

conditions (4.30 - 4.31). 

Simplifying (4.36 - 4.38) for 𝑚 = 1,2 . .  𝑝, we obtain an analytical series solution of pth-order for 

𝑓(𝜂), γ, 𝜃(𝜂) and 𝜙(𝜂) .  

Using a similar procedure, the solutions for the optimal system are obtained. In the current study, 

solutions with the accuracy of 10−9  are obtained. 

 

4.2 Homotopy Perturbation Method 

The Homotopy Perturbation Method (HPM) is a powerful mathematical technique used to solve a 

wide range of linear and nonlinear ordinary/partial differential equations. It combines two 

mathematical concepts i.e. perturbation and homotopy. Perturbation refers to a technique for 

solving mathematical problems by introducing small changes to a known solution and then using 

those changes to derive a new solution while homotopy refers to a continuous transformation 

between two mathematical functions. Solutions developed with perturbation techniques are so 

sensitive w.r.t to the small parameter that a minute change in the small parameter alters the results. 

Moreover, a majority of the nonlinear differential equations do not have small parameters which 

restricts the application of perturbation techniques. 

Homotopy Perturbation Method (HPM) developed by He [46],  couples the homotopy and 

perturbation technique. It eliminates the shortcomings of the perturbation techniques and takes full 

advantage of the traditional perturbation techniques. The basic idea of the Homotopy Perturbation 

Method (HPM) is presented below.  

Consider a general differential equation 
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𝐴(𝜑) − 𝑓(𝑟) = 0,      𝑟 ∈ Ω 4.39 

subject to the boundary condition 

𝐵 (𝜑,
𝑑𝜑

𝑑𝑟
) = 0,     𝑟 ∈ Γ    4.40 

 

where 𝐴 is a general operator, 𝜑 is the dependent variable, 𝑟 is the independent variable, 𝑓(𝑟) is 

the known analytic function, 𝐵 is the boundary operator and Γ is the boundary of domain Ω.  

The general operator can be decomposed into linear and non-linear operators, denoted by ℒ and 𝑁 

respectively. 

 

ℒ(𝜑) + 𝑁(𝜑) − 𝑓(𝑟) = 0  4.41 
  

Using the homotopy technique [45], we construct a homotopy 𝑈(𝑟, 𝑝) ∶ Ω × [0,1] → ℝ, which 

satisfies, 

 

𝐻(𝑈, 𝑝) = (1 − 𝑝)[ℒ(𝑈) − ℒ(Φ𝑜)] + 𝑝[ℒ(𝑈) + 𝑁(𝑈) − 𝑓(𝑟)] = 0,    𝑝 ∈ [0,1]  4.42 
 

where 𝑝 is the embedding parameter (also known as an artificial parameter). Φ𝑜 is the initial 

approximation of the solution which satisfies the given boundary conditions.   

Eq (4.42) can be simplified to the form, 

 

𝐻(𝑈, 𝑝) = ℒ(𝑈) − ℒ(Φ𝑜) + 𝑝ℒ(Φ𝑜) + 𝑝[𝑁(𝑈) − 𝑓(𝑟)] = 0,    𝑝 ∈ [0,1] .   4.43 
 

By substituting 𝑝 = 0 and 𝑝 = 1 in above equation, we get the following equations, respectively. 

 

𝐻(𝑈, 0) = ℒ(𝑈 − Φ𝑜) = 0 , 4.44 

and 

𝐻(𝑈, 1) = 𝐴(𝑈) − 𝑓(𝑟) = 0 . 4.45 

 

As 𝑝 varies from 0 to 1, 𝑈(𝑟, 𝑝) varies from the initial approximation 𝜑𝑜(𝑟) to the final solution 

𝜑(𝑟). This means that  ℒ(𝑈 − Φ𝑜) and 𝐴(𝑈) − 𝑓(𝑟) are homotopic to each other.  

Since 𝑝 a is a small parameter, so it can be expanded into a power series of 𝑝. 

𝑈 = 𝑈𝑜 + 𝑝1𝑈1 + 𝑝2𝑈2 …  4.46 

As 𝑝 → 1, we get an approximate solution for (4.39) i.e. 
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𝜑 = 𝑈𝑜 + 𝑈1 + 𝑈2 …  4.47 

 

In the succeeding text, the above method is employed to find the solution of (3.87 - 3.90). 

To this end, we construct homotopy for (3.87) and (3.88) which satisfy the following equations, 

respectively. 

(1 − 𝑝)[𝐹′′′(𝜂) − 𝑓𝑜
′′′(𝜂)] + 𝑝 [𝐹′′′ +  𝛾 (−𝐹𝐹′′ + 𝐹′ 2 − (𝑀𝑎 − 𝑆)𝐹′ +  

𝜂𝑆

2
𝐹′′ )] = 0 

, 

4.48 

 

and 

(1 − 𝑝)[𝜗′′(𝜂) − 𝜃𝑜
′′(𝜂)] + 𝑝 [𝜗′′ + 𝛾𝑃𝑟 (−𝐹𝜗′ +

𝜂𝑆

2
𝜗′ + 2𝐹′𝜗 +

3

2
𝑆𝜗 +

𝐺∗

𝑃𝑟
𝜗 )] = 0. 4.49 

Here, 𝐹(𝜂) and 𝜗(𝜂) denotes the approximate solution of 𝑓(𝜂) and 𝜃(𝜂), respectively.  𝑓𝑜(𝜂) and 

𝜃𝑜(𝜂) are the initial approximations for 𝑓(𝜂) and 𝜃(𝜂), respectively. For this study, 𝑓𝑜(𝜂) = 0 and 

𝜃𝑜(𝜂) = 1. 

Now, perturb 𝐹(𝜂) and 𝜗(𝜂) in the power series of 𝑝.  

 

𝐹(𝜂) = ∑ 𝐹𝑚(𝜂) 𝑝𝑚 𝑀
𝑚=0  ,   𝜗(𝜂) = ∑ 𝜗𝑚(𝜂) 𝑝𝑚𝑀

𝑚=0   4.50 
 

Here 𝑀 represents the order of approximation. Substitute these equations in (4.48 - 4.49) and in 

the associated boundary conditions (3.88 - 3.89). By equating the terms with the same power of 

the parameter 𝑝, we get a system of linear ODEs.  

𝑝0:  

 𝐹𝑜
′′′ = 0,     𝜗𝑜

′′ = 0   

𝐹𝑜(0) = 0,     𝐹𝑜
′(0) = 1,    𝐹𝑜

′′(0) = 𝛼1,   

𝜗𝑜(0) = 1,   𝜗𝑜
′(0) = 𝛼2   

𝑝1:  

𝐹1
′′′ + 𝛾 (−𝐹0𝐹0

′′ + 𝐹0
′ 2 − (𝑀𝑎 − 𝑆)𝐹0

′ +  
𝜂𝑆

2
𝐹𝑜

′′) = 0,    𝜗1
′′ + 𝛾𝑃𝑟 (−𝐹0 𝜗𝑜

′ +
𝜂𝑆

2
 𝜗𝑜

′ +

2𝐹0
′ 𝜗𝑜 +

3

2
𝑆 𝜗𝑜 +

𝐺∗

𝑃𝑟
 𝜗𝑜 ) = 0   

𝐹1(0) = 0,     𝐹1
′(0) = 0,    𝐹1

′′(0) = 0,     

𝜗1(0) = 0,    𝜗1
′(0) = 0    

𝑝2:  

𝐹2
′′′ + 𝛾 (−𝐹0𝐹1

′′ − 𝐹1𝐹0
′′ + 2𝐹0

′𝐹1
′ − (𝑀𝑎 − 𝑆)𝐹1

′ +  
𝜂𝑆

2
𝐹1

′′) = 0,     𝜗2
′′ + 𝛾𝑃𝑟 (−𝐹0 𝜗1

′ −
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𝐹1 𝜗0
′ +

𝜂𝑆

2
 𝜗1

′ + 2𝐹1
′ 𝜗𝑜 + 2𝑓0

′ 𝜗1 +
3

2
𝑆 𝜗1 +

𝐺∗

𝑃𝑟
 𝜗1 ) = 0   

𝐹2(0) = 0,    𝐹2
′(0) = 0,     𝐹2

′′(0) = 0,   

𝜗2(0) = 0,    𝜗2
′(0) = 0  

and, so on. 

By integration these linear differential equations, we get the values of the coefficients in eqs 

(4.50).   

Now, setting 𝑝 = 1 in eqs (4.50) results in the 𝑀𝑡ℎ order approximate solution for system  (3.87 

- 3.90), given by 

 

𝑓(𝜂) = lim
𝑝→1

𝐹(𝜂) = ∑ 𝐹𝑚(𝜂),𝑀
𝑚=0     and       𝜃(𝜂) = lim

𝑝→1
𝜗(𝜂) = ∑ 𝜗𝑚(𝜂) 𝑀

𝑚=0 .   4.51 

 

It should be noted that 𝛼1, 𝛼2 and 𝛾 are unknowns whose values are yet to be determined. These 

values can be determined using the outer boundary conditions (3.89) that have not been utilized 

yet i.e. 

𝑓(1) =
1

2
𝑆,     𝑓′′(1) = 2𝑆3/2M𝜃(1),   𝜃′(1) = 0. 4.52 

 

In this study, we have obtained 15th-order approximations for both 𝑓(𝜂) and 𝜃(𝜂), which exhibit 

an accuracy of up to 10 decimal places.  
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Chapter 5 

 

 

5. Results and Discussion 

 

In this chapter, the results for all three cases i.e.  

1.  Analytic solutions for the system of ODEs comprising to unsteady flow over a stretching surface 

in the presence of a variable magnetic field. They are obtained from the reduction of flow model 

through 

 Generalized similarity transformations eqs (3.48 - 3.52)  

 Similarity transformations associated with 1-dimensional optimal system Table (3), 

and  

2.  Analytic solutions for the system of ODEs comprising to unsteady flow over a stretching surface 

in the presence of thermocapillarity, a variable magnetic field, and a heat source or sink eqs (3.87 

- 3.90), 

are presented and discussed. 

 

5.1 HAM Analytic Solutions for Unsteady Flow over a 

Stretching Surface in the Presence of Variable Magnetic 

Field 

5.1.1 Case 1 (a): System of ODEs obtained through Generalized Similarity 

Transformations 
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The effect of unsteadiness parameter 𝑆 on the dimensionless film-thickness 𝛽, skin friction co-

efficient 𝑓′′(0), Nusselt number 𝜃′(0), Sherwood number 𝜙′(0), dimensionless free-surface 

velocity 𝑓′′(1), temperature 𝜃(1) and concentration 𝜙(1) is presented in Table 7. It shows that as 

the unsteadiness term 𝑆 increases the dimensionless film thickness 𝛽 decreases which is in 

agreement with the result obtained in [10]. At the low stretching rate (higher values of 𝑆), the skin 

friction coefficient increases whereas the local Nusselt number and the Sherwood number both 

decrease. Due to this, the temperature and concentration of the free surface are low at the higher 

values of 𝑆. 

 

Table 7: Variation of 𝛽, 𝑓′(1), 𝜃(1), 𝜙(1), 𝑓′′(0), 𝜃′(0) 𝑎𝑛𝑑 𝜙′(0) with 𝑆 

 
𝑆 𝛽 𝑓′(1) 𝜃(1) 𝜙(1)  −𝑓′′(0) −𝜃′(0) −𝜙′(0) 

0.8 1.93005806 0.15059272 0.829934419 0.829934419 2.204067862 0.252026157 0.262509614 

1 1.59899637 0.272005949 0.864342477 0.864342477 1.666681269 0.219440864 0.228570149 

1.2 1.38487105 0.407844998 0.884523598 0.879716133 1.256078993 0.199529366 0.207844404 

 

The lateral velocity  𝑓′(𝜂) profiles are presented in Figure 3 for the different values of 𝑆. At the 

sheet 𝜂 = 0, the lateral velocity of the fluid is the same as that of the sheet 𝑈𝑠 but it decreases as 

we move away from the sheet due to the viscous shearing. This reduction decreases for the higher 

values of the 𝑆 because the skin friction coefficient decreases with the increase in 𝑆. The 

dimensionless temperature 𝜃(𝜂) profiles for different 𝑆 are depicted in Figure 4 which shows that 

𝜃(𝜂) starts from unity at the sheet (𝜂 = 0) and decreases monotonically with 𝜂. This implies that 

temperature 𝑇 increases as we move away from the sheet. The behavior of 𝜙(𝜂) is similar, shown 

in Figure 5.  

Figure 6 demonstrates the effect of the magnetic parameter 𝑀𝑎 on the lateral velocity 𝑓′(𝜂). 

Increasing the value of the magnetic parameter 𝑀𝑎 increases the hindrance to the lateral velocity 

near the sheet but as we move away from the sheet its effect is overcome by the momentum of the 

fluid in the lateral direction. The effect of 𝑀𝑎 is more pronounced on the temperature 𝜃(𝜂) and 

concentration 𝜙(𝜂) field shown in Figure 7 and Figure 8 respectively. 𝜃(𝜂) and 𝜙(𝜂) approach 

towards unity as the magnetic parameter 𝑀𝑎 increases which means that the temperature 𝑇 and 

the concentration 𝐶 approach 𝑇𝑠 and 𝐶𝑠 at the higher 𝑀𝑎 values. This fact is also evident from the 

decreasing values of the gradients 𝜃′(0) and 𝜙′(0) shown in table 8. The table also shows that the 
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film thickness decreases with increasing the value 𝑀𝑎. 

 

 

 
 

Figure 3: Variation of lateral velocity  𝑓′ (𝜂) with 𝑆 at 𝑀𝑎 = 3 and ℏ𝑓 = −0.1 

 
 

 
Figure 4: Variation of dimensionless 

temperature 𝜃(𝜂) with 𝑆 at 𝑀𝑎 = 3, Pr = 
1, 𝑘4 = 𝑘7 = 1,  𝑘6 = 0 and  ℏ𝜃 = −0.01 

 

  

 
Figure 5: Variation of dimensionless 𝜙(𝜂) 

with 𝑆 at 𝑀𝑎 = 3, 𝑆𝑐 = 4, 𝑘5 = 𝑘7 = 1,  𝑘6 =
0 and  ℏ𝜙 = −0.01 
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Figure 6: Variation of lateral velocity  𝑓′(𝜂) with 𝑀𝑎 at 𝑆 = 1 and ℏ𝑓 = −0.1 

   
 

 

 

 
Figure 7: Variation of dimensionless 

temperature 𝜃(𝜂) with 𝑀𝑎 at 𝑆 = 1, 𝑃𝑟 = 
1, 𝑘4 = 𝑘7 = 1,  𝑘6 = 0 and  ℏ𝜃 = −0.01 

 

  
Figure 8: Variation of dimensionless 

concentration  𝜙(𝜂) with 𝑀𝑎 at 𝑆𝑐 = 1, S = 
1, 𝑘5 = 𝑘7 = 1,  𝑘6 = 0 and  ℏ𝜙 = −0.01 
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Table 8: Variation of 𝛽, 𝑓′(1), 𝜃(1), 𝜙(1), 𝑓′′(0), 𝜃′(0) 𝑎𝑛𝑑 𝜙′(0) with 𝑀𝑎 

 
Ma 𝛽 𝑓′(1) 𝜃(1) 𝜙(1)  −𝑓′′(0) −𝜃′(0) −𝜙′(0) 

3 1.59899637 0.272005949 0.864342477 0.867392281 1.666681269 0.219440864 0.214513338 

4 1.22656552 0.277653682 0.918037288 0.919896934 1.722338532 0.132717235 0.129712335 

5 0.65952873 0.283288639 0.975674594 0.976231306 1.779031686 0.039425895 0.038526279 

 

 

Table 9: Variation of 𝜃(1), 𝜙(1), 𝜃′(0) 𝑎𝑛𝑑 𝜙′(0) with 𝑃𝑟 and 𝑆 

 
𝑃𝑟  𝑆𝑐  𝜃(1) 𝜙(1) −𝜃′(0)  −𝜙′(0) 

0.001 0.001 0.99708223 0.99708223 0.004622006 0.004622006 

0.01 0.01 0.971536493 0.971536493 0.045123974 0.045123974 

0.1 0.1 0.78630659 0.78630659 0.340693651 0.340693651 

1 1 0.585736625 0.585736625 0.662483622 0.662483622 

10 10 0 0 1.774155458 1.774155458 

 

Figure 9 presents the effect of the Prandtl number 𝑃𝑟 on the dimensionless temperature 𝜃(𝜂). At 

the smaller Prandtl number 𝑃𝑟 ≪ 1, 𝜃(𝜂) varies marginally across the film thickness and 

approaches unity in the limiting case of 𝑃𝑟 → 0. This signifies that at the lower 𝑃𝑟 (high thermal 

diffusion), the temperature 𝑇 is fairly uniform (equal to 𝑇𝑠) in the vertical direction and  𝜃′(0) is 

negligible. Heat transfer is dominated by thermal diffusion. At the higher Prandtl number, the 

thermal boundary layer develops which reduces with the 𝑃𝑟 > 1. In this case, the heat transfer is 

dominated by the advection. The values of   𝜃′(0) at different Prandtl numbers are given in table 

9. The role of the Sherwood number (𝑆𝑐) in the concentration equation is similar to the Prandtl 

number in the energy equation. 

The influence of the constants 𝑘4, 𝑘5, 𝑘6 and 𝑘7 on the solutions is shown in Figure 11-Figure 16. 

At smaller 
𝑘4−𝑘6

𝑘7
 and 

𝑘5−𝑘6

𝑘7
 ratios, 𝜃(𝜂) and 𝜙(𝜂) vary marginally with the 𝜂 but as the ratios 

increase the decay of the temperature 𝑇 and the concentration 𝐶 becomes more pronounced and 

eventually reaches 𝑇0 and 𝐶0. So, these constants give us the liberty to control 𝜃(𝜂) and 𝜙(𝜂) 

which is very important for the better quality of the products. It should be noted that not every 

value of the constants (𝑘4, 𝑘5, 𝑘6 and 𝑘7) generates a realistic solution. For  𝑆 = 1, 𝑃𝑟 = 1, 𝑆𝑐 =

1 and 𝑀𝑎 = 2, realistic solutions exist if 0.5 ≤
𝑘4−𝑘6

𝑘7
≤ 2.7 and 0.5 ≤

𝑘5−𝑘6

𝑘7
≤ 2.7. Some non-

realistic solutions are given in Figure 17 and Figure 18. 
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Figure 9: Variation of 𝜃(𝜂) with 𝑃𝑟 at 𝑆 = 1, 𝑀𝑎 

=2, 𝑘4 = 𝑘7 = 1,  𝑘6 = 0 and  ℏ𝜃 = −0.01 
 

 

 
Figure 10: Variation of 𝜙(𝜂) with 𝑆𝑐 at 𝑀𝑎 = 2, 
𝑆 = 1, 𝑘5 = 𝑘7 = 1,  𝑘6 = 0 and  ℏ𝜙 = −0.01 

 

 

 

 
Figure 11: Effect of 𝑘4 on 𝜃(𝜂) with 𝑘6 = 𝑘7 = 1 

 

 
Figure 12: Effect of 𝑘5 on 𝜙(𝜂) with 𝑘6 =

𝑘7 = 1 
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Figure 13: Effect of 𝑘6 on 𝜃(𝜂) with 𝑘4 = 𝑘7 =

1 

 

 
Figure 14: Effect of 𝑘6 on 𝜙(𝜂) with 𝑘5 =

𝑘7 = 1 
 

 

 
 

 
Figure 15: Effect of 𝑘7 on 𝜃(𝜂) with 𝑘4 = 𝑘6 =

1 
 

 

 
Figure 16: Effect of 𝑘7 on 𝜙(𝜂) with 𝑘5 =

𝑘6 = 1 
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Figure 17:Non-realistic solutions for 𝜃(𝜂) 

 

 

 
Figure 18: Non-realistic solutions for 𝜙(𝜂) 

 
 

5.1.2 Case 1 (b): System of ODEs obtained through Similarity 

Transformations associated with 1-Dimensional Optimal System  

 

In Chapter 3, we divided the 1-dimensional optimal system for unsteady flow over a stretching 

surface in the presence of a variable magnetic field into two groups i.e. linearly-space dependent 

symmetries group (3.68 -3.71) and linearly-time dependent symmetries group (3.73 - 3.76). Their 

solutions are given below. 

 Linearly-space Dependent Symmetries 

 

When the scaling symmetries are used in this group, the governing equations (3.68 - 3.69) are the 

same as equations (3.49 - 3.50) which are the governing equations obtained when the linear 

combinations of all scaling and translational symmetries were used. So, the solutions obtained in 

the previous subsection (5.1), are also the solutions of equations (3.68 - 3.69). The dimensionless 

temperature 𝜃(𝜂) and concentration 𝜙(𝜂) profiles for different ratios of the constants  
𝐴6−𝐴4

𝐴7
 and 

𝐴6−𝐴5

𝐴7
  denoted by 𝜆, are given in Figure 19 and Figure 20. It has been observed that the realistic 

solutions of 𝜃(𝜂) only exist for the range 0.5 ≤ 𝜆 ≤ 60 while the realistic solutions of 𝜙(𝜂) exist 
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for the range 0.5 ≤ 𝜆 ≤ 80. It is important to mention that these ranges are calculated for 𝑆 =

1, 𝑃𝑟 = 1, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝑀𝑎 = 10. For different values of these parameters, the ranges of the 

realistic solutions will change. 

 

 

 

Figure 19: Dimensionless temperature 𝜃(𝜂) 

profiles for different ratios of the constants 

 

Figure 20: Dimensionless temperature 𝜙(𝜂) 

profiles for different ratios of the constants 

 

The solutions of the equations (3.70 - 3.71), when the translational symmetries are used in this 

group are given in Figure (21-28). It can be seen that results follow the same trend as discussed 

previously. The only observable change is the sensitivity of the dependent variables 

𝜃(𝜂) and 𝜙(𝜂)  with respect to the parameters 𝑆, 𝑃𝑟, 𝑆𝑐 and 𝑀𝑎. Contrary to the previous case, 

the effect of these parameters is relatively more pronounced on the 𝜃(𝜂) and 𝜙(𝜂). Due to this 

reason, the operating range of these parameters is small for these symmetries. The realistic 

solutions of 𝜃(𝜂) only exist in the range 0.5 ≤ 𝜆 ≤ 2.7 while the realistic solutions of 𝜙(𝜂) exist 

in the range 0.5 ≤ 𝜆 ≤ 2.8, for 𝑆 = 1, 𝑃𝑟 = 1, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝑀𝑎 = 10.  
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Figure 21: Variation of dimensionless 

temperature 𝜃(𝜂) with 𝑆 at 𝑀𝑎 = 10, 𝑃𝑟 = 1, 

𝐴2 = 𝐴7 = 1 , 𝐴6 = 0 and  ℏ𝜃 = −0.01 

 

 

Figure 22: Variation of dimensionless 

concentration 𝜙(𝜂) with 𝑆 at 𝑀𝑎 = 10, 𝑆𝑐 =
4, 𝐴3 = 𝐴7 = 1 ,  𝐴6 = 0 and ℏ𝜙 = −0.01 

 

 

Figure 23: Variation of dimensionless 

temperature 𝜃(𝜂) with 𝑀𝑎 at 𝑆 = 1, 𝑃𝑟 = 1, 

𝐴2 = 𝐴7 = 1 , 𝐴6 = 0 and  ℏ𝜃 = −0.01 

 

 

Figure 24: Variation of dimensionless 

concentration 𝜙(𝜂) with 𝑀𝑎 at 𝑆 = 1, 𝑆𝑐 = 4,
𝐴3 = 𝐴7 = 1,  𝐴6 = 0 𝑎𝑛𝑑 ℏ𝜙 = −0.01 
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Figure 25: Variation of dimensionless 

temperature 𝜃(𝜂) with 𝑃𝑟 at 𝑀𝑎 = 10, 𝑆 = 1, 

𝐴2 = 𝐴7 = 1 , 𝐴6 = 0 and  ℏ𝜃 = −0.01 

 

Figure 26: Variation of dimensionless 

concentration 𝜙(𝜂) with 𝑆𝑐 at 𝑀𝑎 = 10, 𝑆 = 

1, 𝐴3 = 𝐴7 = 1 , 𝐴6 = 0 and  ℏ𝜃 = −0.01 

 

 

Figure 27: Dimensionless temperature 𝜃(𝜂) 

profiles for different ratios of the constants 

 

 

Figure 28: Dimensionless concentration 𝜙(𝜂) 

profiles for different ratios of the constants 

 

 Linearly-time Dependent Symmetries 

 

The solutions of the equations (3.73 and 3.74), obtained when the scaling symmetries are used in 

this group are given in Figure 29 – 36. Figure 29 and Figure 30 show the effect of the unsteadiness 

parameter 𝑆 on the dimensionless temperature 𝜃(𝜂) and concentration 𝜙(𝜂) respectively. It can 

be observed the effect of 𝑆 on  𝜃(𝜂) and 𝜙(𝜂) is relatively smaller as compared to the previous 
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group. This effect further diminishes at the higher values of 𝑆. The behavior of 𝜃(𝜂) and 𝜙(𝜂) at 

different values of magnetic parameter 𝑀𝑎, given in Figure 31 and Figure 32 is same as discussed 

earlier. 𝜃(𝜂) and 𝜙(𝜂) exhibit the strange behavior at different values of Prandtl number and 

Schmidt number, respectively given in Figure 33 and Figure 34. Their variation against  𝜂 increases 

with the increase in 𝑃𝑟 and 𝑆𝑐 upto certain point. After that, 𝜃(𝜂) and 𝜙(𝜂) become almost 

independent of 𝑃𝑟 and 𝑆𝑐, respectively.   

For this group, the dimensionless temperature 𝜃(𝜂) and concentration 𝜙(𝜂) profiles for different 

ratios of the constants  
𝐴4

𝐴6
 and 

𝐴5

𝐴6
  denoted by 𝜔, are given Figure 35 and Figure 36. The realistic 

solutions of 𝜃(𝜂) only exist in the range −140 ≤ 𝜔 ≤ 2 while the realistic solutions of 𝜙(𝜂) exist 

in the range −160 ≤ 𝜔 ≤ 0.5 for 𝑆 = 1, 𝑃𝑟 = 1, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝑀𝑎 = 10.  

 

 

Figure 29: Variation of dimensionless 

temperature 𝜃(𝜂) with 𝑆 at 𝑀𝑎 = 3, 𝑃𝑟 = 

1, 𝐴4 = −2 , 𝐴6 = 1 and  ℏ𝜃 = −0.01 

 

 

Figure 30: Variation of dimensionless 

concentration 𝜙(𝜂) with 𝑆 at 𝑀𝑎 = 3, 𝑆𝑐 = 0.5, 

𝐴5 = −2 , 𝐴6 = 1 and  ℏ𝜙 = −0.01 
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Figure 31: Variation of dimensionless 

temperature 𝜃(𝜂) with 𝑀𝑎 at 𝑆 = 1, 𝑃𝑟 = 1, 

𝐴4 = −2 , 𝐴6 = 1 and  ℏ𝜃 = −0.01 

 

 

Figure 32: Variation of dimensionless 

concentration 𝜙(𝜂) with 𝑀𝑎 at 𝑆 = 1, 𝑆𝑐 = 

0.5, 𝐴5 = −2 , 𝐴6 = 1 and  ℏ𝜙 = −0.01 

 

 

Figure 33: Variation of dimensionless 

temperature 𝜃(𝜂) with 𝑃𝑟 at 𝑆 = 1, 𝑀𝑎 = 3, 

𝐴4 = −2 , 𝐴6 = 1 and  ℏ𝜃 = −0.01 

 

 

Figure 34: Variation of dimensionless 

concentration 𝜙(𝜂) with 𝑆𝑐 at 𝑆 = 1, 𝑀𝑎 = 3, 

𝐴5 = −2 , 𝐴6 = 1 and  ℏ𝜙 = −0.01 
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Figure 35: Dimensionless temperature 𝜃(𝜂) 

profiles for different ratios of the constants 

 

Figure 36: Dimensionless concentration 𝜙(𝜂) 

profiles for different ratios of the constants 

The solutions of the equations (3.75 and 3.76), obtained when the translational symmetries are 

used in this group are given in Figure 37 – 44. Like in the previous group when the scaling 

symmetries are used, here too the operating range of the parameters 𝑆, 𝑀𝑎, Pr and 𝑆𝑐 due to the 

increased sensitivity of 𝜃(𝜂) and 𝜙(𝜂) against these parameters. The operating ranges of the ratios 

of constants 
𝐴2

𝐴6
 and 

𝐴3

𝐴6
  denoted by 𝜔, are −3.4 ≤ 𝜔 ≤ 1 and −3.8 ≤ 𝜔 ≤ 1, respectively at 𝑆 =

1, 𝑃𝑟 = 1, 𝑆𝑐 = 0.5 𝑎𝑛𝑑 𝑀𝑎 = 10.  

 

 

Figure 37: Variation of dimensionless 

temperature 𝜃(𝜂) with 𝑆 at 𝑀𝑎 = 10, 𝑃𝑟 = 1, 

𝐴2 = −2 , 𝐴6 = 1 and  ℏ𝜃 = −0.01 

 

 

Figure 38: Variation of dimensionless 

concentration 𝜙(𝜂) with 𝑆 at 𝑀𝑎 = 10, 𝑃𝑟 = 

1, 𝐴3 = −2 , 𝐴6 = 1 and  ℏ𝜙 = −0.01 
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Figure 39:  Variation of dimensionless 

temperature 𝜃(𝜂) with 𝑀𝑎 at 𝑆 = 1, 𝑃𝑟 = 1, 

𝐴2 = −2 , 𝐴6 = 1 and  ℏ𝜃 = −0.01 

 
Figure 40: Variation of dimensionless 

concentration 𝜙(𝜂) with 𝑀𝑎 at 𝑆 = 1, 𝑆𝑐 = 

0.5, 𝐴3 = −2 , 𝐴6 = 1 and  ℏ𝜙 = −0.01 

 

 
Figure 41: Variation of dimensionless 

temperature 𝜃(𝜂) with 𝑃𝑟 at 𝑆 = 1, 𝑀𝑎 = 10, 

𝐴2 = −2 , 𝐴6 = 1 and  ℏ𝜃 = −0.01 

 

 
Figure 42: Variation of dimensionless 

concentration 𝜙(𝜂) with 𝑆𝑐 at 𝑆 = 1, 𝑀𝑎 = 

10, 𝐴3 = −2 , 𝐴6 = 1 and  ℏ𝜙 = −0.01 
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Figure 43: Dimensionless temperature 𝜃(𝜂) 

profiles for different ratios of the constants 

 
Figure 44: Dimensionless concentration 𝜙(𝜂) 

profiles for different ratios of the constants 

 

 

5.2 HPM Analytic Solutions for Unsteady Flow over a 

Stretching Surface in the Presence of Thermocapillarity, 

Internal Heat Source/Sink and Variable Magnetic Field 

 
The temperature 𝜃(𝜂) and velocity 𝑓′(𝜂) profiles for the different values of thermocapillarity 

parameter M are given in Figure 45 and Figure 46 respectively, which show that M significantly 

affects the behavior of temperature and velocity in the fluid film. Figure 45 shows that the 

dimensionless temperature 𝜃(𝜂) decreases monotonically with 𝜂 which suggests that temperature 

of fluid increases as we move from the stretching sheet towards the free surface. It should also be 

noted from this graph that  𝜃(1) decreases with increasing the value of M, meaning that 

thermocapillarity increases the free surface temperature of the fluid. Since the temperature reduces 

proportional to 𝑥2 (given in Eq (3.92)) as we move away from the slit which implies that the 

surface tension increases with the distance from the slit. Hence, the top layer of the fluid 

experiences a net surface tension force which causes it to flow in the 𝑥-direction. The top layer of 

the fluid in turn dragged the layer below the free surface with itself due to the viscosity and so on. 

The two effects i.e. the motion caused by the stretching sheet and the motion caused by the 

thermocapillarity meet in the interior of the film where a local velocity minimum forms. It can be 

seen in Figure 46. The motion caused by the thermocapillarity increases with M and may outrun 

the motion caused by the stretching of the sheet at the higher M values. 



 

59  

 
Figure 45: Dimensionless temperature profiles at 𝑆 = 1, 𝑀𝑎 = 25, 𝐺∗= -10, and 𝑃𝑟 = 1 for 

different values of thermocapillarity parameter M. 

 

 
Figure 46: Lateral velocity profiles at 𝑆 = 1, 𝑀𝑎 = 25, and 𝑃𝑟 = 1 for different values of 

thermocapillarity parameter M 

 

The effect of thermocapillarity on the dimensionless film thickness 𝛽 is given in Figure 47. It can 

be observed that the film thickness increases with M for a given value of unsteadiness parameter 

𝑆. Wang [10] reported that at 𝑆 = 0, the film becomes infinitely thick while at 𝑆 = 2, it becomes 

infinitely thin, suggesting that solution only exists for 𝑆 ∈ [0, 2]. With the thermocapillarity effect, 

a modest increase in the outer limit of 𝑆 is observed which magnifies with the increase in the value 
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M. This signifies that fluid film becomes infinitely thin at the comparatively smaller stretching rate 

(higher value of S) in the presence of thermocapillarity.  

 

 
Figure 47: Unsteadiness parameter versus film thickness 𝑀𝑎 = 30, 𝑃𝑟 = 1, and 𝐺∗= -10 at 

different values of thermocapillarity parameter M. 

 

Figure 48 depicts the free surface velocity 𝑓′(1) profile against the unsteadiness parameter 𝑆 for 

different values of M. 𝑓′(1) demonstrates linear-like behavior  and does not exceed unity i.e. 𝑈𝑠 

in the absence of thermocapillarity. As the thermocapillarity is taken into account, 𝑓′(1) exceeds 

1. The observed excess in the free surface velocity is certainly due to the thermocapillary forces. 

The effect of thermocapillarity on the friction between the sheet and fluid is given in Figure 49. 

An increase in friction is observed with an increment in M at a given value of 𝑆 due to the fact that 

thermocapillarity thickens the fluid film. The negative sign of 𝑓′′(0) calls attention to the resistive 

nature of the friction. 

The behavior of 𝑓′(𝜂) at different values of unsteadiness parameter 𝑆 is shown in Figure 50. The 

lateral velocity 𝑓′(𝜂) at the given height from the stretching sheet (fixed value of 𝜂) decreases as 

the stretching rate increases because at lower values of 𝑆, the fluid film becomes comparatively 

thick, and thus, the motion caused by the stretching sheet does not arrive at the given height that 

much effectively. Figure 51 shows that the magnetic field minutely influences the lateral 

velocity 𝑓′(𝜂). 𝑓′(𝜂) reduces marginally with the increase in the magnetic parameter 𝑀𝑎, as the 

transverse magnetic field offers resistive drag force to the flow. But its effect is overcome by the 

thermocapillarity as we move towards the free surface. 
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Figure 48: Free surface velocity versus unsteadiness parameter for 𝑀𝑎 = 30, 𝑃𝑟 = 1, and 𝐺∗= -10 

at different values of thermocapillarity parameter M. 

 

 
Figure 49: Shear stress versus unsteadiness parameter for 𝑀𝑎 = 30, 𝑃𝑟 = 1, and 𝐺∗= -10 at 

different values of thermocapillarity parameter M. 
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Figure 50: Velocity profile at M = 0.2, 𝑀𝑎 = 

30, 𝐺∗= -10, and 𝑃𝑟 = 1 for different values 

of unsteadiness parameter 𝑆. 
 

 

 
Figure 51: Velocity profile at M = 0.5, 𝑆 = 

1, 𝐺∗= 0, and 𝑃𝑟 = 1 for different values of 

unsteadiness parameter 𝑆. 
 

 

Figure 52 illustrates how the dimensionless temperature 𝜃(𝜂) is affected by the magnetic 

parameter 𝑀𝑎. The influence of 𝑀𝑎 on 𝜃(𝜂) is pronounced compared to the influence on 𝑓′(𝜂). 

Increasing the magnetic parameter 𝑀𝑎 leads to a substantial decline in the variation of 

dimensionless temperature across the fluid film, indicating that heat transfer from sheet to the fluid 

decreases. At some value of 𝑀𝑎, the variation of 𝜃(𝜂) will cease to exist. From this point onwards, 

an increase in 𝑀𝑎 results in the heat transfer in the opposite direction i.e. from fluid to the sheet. 

In Figure 52, 𝜃(𝜂) is calculated at considerably higher values of 𝑀𝑎, which explains why the fluid 

temperature reduces as we move away from the stretching sheet. 

Figure 53 presents the effect of temperature-dependent heat absorption/generation 𝐺∗ on the 

dimensionless temperature 𝜃(𝜂). It shows that 𝐺∗ greatly affects the variation of 𝜃(𝜂) across the 

fluid film. It can be used to speed up the heating/cooling of the fluid film.  
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Figure 52: Temperature profile at M = 0.1, 𝑆 

= 1, 𝐺∗= 0, and 𝑃𝑟 = 1 for different values of 

magnetic parameter 𝑀𝑎. 

 
Figure 53: Temperature profile at M = 0.1, S 

= 1, 𝑀𝑎 = 25, and Pr = 1 for different values 

of temeperature dependent source/sink 

parameter 𝐺∗. 

 

𝜃(1) at different values of M against the unsteadiness parameter 𝑆 is given in  Figure 54. As 

expected, 𝜃(1) reduces with the increase in 𝑀 which implies that free surface temperature rises 

due to the thermocapillarity. Figure 55 demonstrates that heat flux −𝜃′(0) decreases 

monotonically with the increase in the 𝑆 at the different values of M. The reduction in heat flux 

with 𝑆 is due to the inverse relation of film thickness with the 𝑆. At the given value of 𝑆, heat flux 

increases with the rise in the thermocapillarity obviously, due to the thickening of the fluid film.  

The dimensionless temperature 𝜃(𝜂) at different values of the Prandtl number is given in Figure 

56. At high thermal diffusivity (small 𝑃𝑟), the variation of 𝜃(𝜂) across the fluid is negligible and 

the temperature of the fluid is nearly the same as the stretching surface 𝑇𝑠. At the higher Prandtl 

numbers, 𝜃(𝜂) varies from 1 to 0 with the thermal boundary layer existing in the small region near 

the stretching surface where an isothermal condition with the fluid having the temperature 𝑇𝑜.   
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Figure 54: Free surface temperature versus 

unsteadiness parameter for 𝑀𝑎 = 30, 𝑃𝑟 = 1, 

and 𝐺∗= -10 at different values of 

thermocapillarity parameter M. 

 

 
Figure 55: Dimensionless heat flux versus 

unsteadiness parameter for 𝑀𝑎 = 30, and 𝑃𝑟 

= 1 at different values of thermocapillarity 

parameter M. 

 

 

 
 

Figure 56: Dimensionless temperature profile at 𝑆 = 1.8, 𝑀𝑎 = 1, M = 0.1, and  𝐺∗= 0 for 

different values 𝑃𝑟. 
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In this section, we conducted a meticulous analysis of different parameters, including M, 

𝑀𝑎, 𝐺∗, 𝑆 and 𝑃𝑟 and their impact on the velocity and temperature distribution in a fluid. Our 

findings indicate that these parameters have a profound influence on the profile of velocity and 

temperature in the fluid except for 𝑀𝑎, which has a relatively minor effect on fluid velocity. These 

insights are of paramount importance for manufacturing processes that utilize the mechanism 

discussed in this paper, as a deep understanding of these variations can enable the production of 

sheets of higher quality. 
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Conclusions 
 

 

In this study, flow over an unsteady stretching surface has been analyzed using Lie point symmetry 

analysis. The whole study is divided into three parts. In the first part, flow over an unsteady 

stretching surface in the presence of a variable magnetic field is been analyzed. In the second part, 

a 1-dimensional optimal system for this flow is obtained. The final part of the study analyzes the 

combined effect of thermocapillarity, an internal heat source/sink, and a variable magnetic field 

on the flow and heat transfer in a film on an unsteady stretching surface. The major findings of 

each part are given below. 

 Unsteady Flow over a Stretching Surface in the Presence of a Variable Magnetic Field 

 

a) Generalized Similarity Transformations 

 

In this study, Lie symmetry analysis has been used to obtain a generalized solution for a viscous 

film on an unsteady stretching surface in the presence external magnetic field. A linear 

combination of all translational and scaling Lie point symmetries has been utilized to obtain a more 

general variation of the surface velocity, temperature, and concentration. The admitted Lie point 

symmetries also provide a new class of similarity transformations that converts the governing 

boundary layer equations into a system of non-linear ODEs. The resulting system of non-linear 

ODEs has been solved using Homotopy Analysis Method (HAM). The following observations 

have been made: 

1. The film thickness, free surface temperature, and concentration decrease with the increase in 

the stretching rate whereas the free surface velocity escalates.  

2. The temperature and concentration gradient decrease at larger values of the magnetic 

parameter 𝑀𝑎, whilst the flow obstruction increases. 

3. At much smaller 𝑃𝑟 and 𝑆𝑐, 𝜃′(0) and 𝜙′(0) are negligible and heat and mass transfer are 

dominated by diffusion while at the higher Pr and Sc, advection dominates the heat and mass 

transfer.  

4. With the help of the constants 𝑘4, 𝑘5, 𝑘6 and 𝑘7 we can control 𝜃(𝜂) and 𝜙(𝜂) and hence, can 

obtain the desired results. 
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b) Similarity Transformations associated with 1-Dimensional Optimal system:  

 

In this part, 22 new classes of similarity transformations have been obtained using the optimal 

theory such that if any linear combination of Lie point symmetries is used, the resulting 

transformations belongs to the one of 22 classes. Based upon some common features, these 22 

classes have been divided into two groups i.e. linearly-space dependent symmetries and linearly-

time dependent symmetries. 

It has been observed that both groups follow the same general trends at the different values of the 

parameters except at high values of the unsteadiness parameter and Prandtl number. At these 

values, the dependent variables of the linearly-time dependent symmetries group become almost 

independent of these parameters. Also, an increase in the sensitivity of the dependent variables 

with respect to the parameters has been observed in both groups when translational symmetries 

are used.  

 Unsteady Flow over a Stretching Surface in the Presence of Thermocapillarity, Internal 

Heat Source/Sink, and Variable Magnetic Field:  

 

In this part, Lie point algebra is used to obtain the symmetries of the governing differential 

equations in the presence of different effects viz. thermocapillarity, variable magnetic field, and 

heat generation/absorption. These symmetries allow us to identify the transformations that leave 

the differential equations and associated boundary conditions invariants. These symmetries are 

then utilized to simplify the governing equations and obtain the solutions. The major findings are; 

1. All linear combinations of the admitted Lie symmetries that leave the sheet velocity and 

temperature as a function of both distance and time, lead to the same Lie transformations 

irrespective of the fact that they generate different system invariants. 

2. The reduction of temperature along the free surface results in the net surface tension force in 

the direction of flow due to which a local velocity minimum is formed in the interior of the 

fluid. 

3. Thermocapillarity increases the film thickness. 

4. Free surface velocity exceeds the velocity of the stretching sheet due to the thermocapillarity. 

5. Heat flux and friction between the fluid and sheet increase in the presence of thermocapillarity 

due to the film thickening.  
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6. The temperature-dependent heat absorption/generation can speed up the heating and cooling 

of the fluid. 

7. The effect of the magnetic parameter on the velocity is negligible whereas, it has a dominant 

effect on the variation of dimensionless temperature distribution. 

8. The presence of thermocapillarity does not affect the influence of the Prandtl number on the 

dimensionless temperature.    

The current work can be extended to 3-dimensional flow caused by the stretching of the surface in 

the two lateral directions. The Lie symmetry analysis can be used to reduce the 3 dimensional 

Navier-Stokes equations into a system of non-linear ordinary differential equations that can be 

solved using approximate numerical or analytical techniques. The effects of viscous dissipations, 

internal source or sink, magnetic field, and thermocapillarity will add more complexity to this 

problem.  

In the current study, the solutions are obtained in the laminar regime only. It can be extended to 

the turbulent regime and accuracy of the similarity solutions can be compared with the solutions 

obtained through established turbulent models. 
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