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Abstract

Rootkits are malicious software designed to hide their presence and activities on com-

promised systems. Traditional detection methods often struggle to identify rootkits due

to their ability to mimic normal files and evade detection. However, volatile memory

analysis has emerged as a powerful technique for monitoring system activities. In this

thesis, we propose the use of memory analysis combined with machine learning and deep

learning to develop an effective rootkit detection model. By analyzing the contents of

the system’s volatile memory, our model aims to identify suspicious patterns and be-

haviors that indicate the presence of rootkits. We employ machine learning and deep

learning approach to train the model on a comprehensive dataset of known rootkit sam-

ples, enabling it to learn and recognize the distinct characteristics associated with these

stealthy malwares. Through extensive experiments and evaluations, we assess the per-

formance and accuracy of our model in detecting various types of rootkits. The results

demonstrate the effectiveness of memory analysis combined with machine learning/deep

learning in rootkit detection, offering a promising solution to combat the ever-evolving

threat of these elusive malware. This research contributes to the development of ad-

vanced defense mechanisms and enhances the security posture of systems against rootkit

attacks.

xi



Chapter 1

Introduction

Rootkit is a malicious program that exist with extremely insidious nature. It is designed

in such a way to hide its existence in the system and provide an unauthorized root access

to the attacker. The attacker would have a complete control over the system. The

heinous nature of these programs to evade detection, make it difficult for the detection

tools to know when the rootkits have in filtered the system.

Once it gets installed on the system, alien behaviors can be observed that shows that

some remote attacker has got an access to the system. These types of malwares are

extremely dangerous as the existence of the attack cannot be judged by traditional

detection tools and techniques, as a result can cause significant data loss and damage to

the system. As these malicious programs require the root level or administrative level

privileges, people under red hats typically exploit the vulnerabilities of the targeted

system to gain access.

1.1 What are rootkits?

The term rootkit is derived from two words “root” and kit”. In UNIX and LINUX

environments, “root” refers to administrator who has the highest level of access to the

system. While the “kit” refers to some collection of tools and techniques. Therefore,

a rootkit can be more precisely defined as a set of tools or techniques that allow any

hacker to attain administrator level access and maintain it throughout the attack while

still remained undetected by the authorized users and administrators [3].

As discussed previously the main aim of the rootkits is to provide a full control of the

1



Chapter 1: Introduction

system to a remote attacker over some server or host. The first step is to install a rootkit

on a system to obtain a root level access and in some cases only a user-level access. This

can be achieved by exploiting the vulnerabilities of the system.

The next thing is to stay undetected by the authorized users and administrators by

hiding themselves under the legitimate programs. Rootkits may consist of several utili-

ties including the ability conceal the running processes, hide directories and change the

system calls.

1.1.1 Rootkit Technologies

Various technologies can be used by the rootkits to achieve its goal to remain un-detected

and stealthy. Some of them are discussed below.

• User-mode hooks: Rootkits use user-mode hooks to redirect or modify the

system calls to hide its presence in the system.

• Kernel-level hooks: Rootkits use kernel-mode hooks to conceal processes and

files and monitors keenly the system activity while remain hidden hence can alter

the behavior of the Operating System.

• Firmware Rootkits: These rootkits infect the firmware of the device, For ex-

ample BIOS etc.

• Direct Kernel Object Manipulation (DKOM): This is a method used by

rootkits to directly manipulate with the kernel level objects [5].

• Hypervisor rootkits: These rootkits target the virtual environments running on

a system and hence hide themselves from the host operating system and covertly

perform malicious activities.

• Bootkits: These types of rootkits gain control of a target system by infecting its

master boot record (MBR). In this way these can execute the malicious activities

even before the operating system loads [4].

1.1.2 Rootkit Infection

Hosts or servers can be compromised by the rootkits using various methods like backdoor

mechanism, exploiting vulnerabilities or social engineering tricks. Once the system gets

2



Chapter 1: Introduction

compromised the rootkits can be used by the hackers to conceal their presence.

Following way can be studied as how can Rootkits get injected and perform malicious

activities on targeted server/host.

• Stage 1: Investigating victim’s system for vulnerability: The first stage of

the rootkit attack is to gather information about the targeted host or server. This

aims to identify any existing vulnerabilities on the target system or network that

can be exploited.

• Stage 2: Attack and compromise the server: Once the information has been

gathered about the vulnerabilities, the next step is to gain access and compromise

the targeted system. Once access is obtained, the attacker will escalate privileges.

• Stage 3: Rootkit installation: The next step after gaining access is to install

the rootkit on the targeted system. As the rootkit hides its identity, it covers the

tracks followed by the hacker and creates a backdoor to maintain access to the

compromised system in the future.

• Stage 3: Controlling the victim’s system: After gaining access and installing

the rootkit, the attacker would have full control over the targeted system. In

addition, all their activities will be hidden. The hacker can use the compromised

system to attack other systems connected to the targeted one, creating a DDOS

effect. The DDOS effect is one grave consequence of rootkit attacks. There are

many others too. The attacker can use them to gain access to valuable assets.

1.1.3 Rootkit Detection

The researchers have devised many detection techniques but have associated limitations

with them. Some traditional detection techniques are as under [6]:

• Signature-based rootkit detection: It is the most traditional method in which

the known signatures or patterns are checked to detect the rootkits. As malwares

are becoming more stronger, this technique is not so effective in these days and

hence do not provide sufficient true positives.

3



Chapter 1: Introduction

Figure 1.1: Rootkit Infection Process

• Behavior based rootkit detection: This technique analyses the behavior of

the system to detect any rootkit. The behavior is compared with the clean system

to report the results. Again, the technique is not much useful because rootkits

have a property to hide themselves, and their behavior sometimes look legitimate.

• Integrity checking: This technique involves a comparison of windows registry

or key files of a clean system with the targeted system.

• Difference based detection: This technique involves a comparison of the bina-

ries with their RAM counterparts to identify if they are identical or not. If not,

then it can be a sign of rootkit existence.

• Memory analysis: This process involves the analysis off the captured memory

dumps. As the rootkits reside inside the memory, so this can be most efficient

method.

The ongoing research revolves around the memory analysis technique because every

other technique struggles to detect the rootkit because of its hiding property.

4



Chapter 1: Introduction

1.2 Problem Statement

As discussed above, rootkits hide themselves to be detected by the administrator and

users. They operate covertly on a compromised system and evade detection as a result

they can cause serious security threats. Traditional detection methods sometimes are

insufficient to detect these deadly malwares. Therefore, there is a need to device a

standard mechanism that can detect these malwares efficiently. This thesis aims to

explore the efficiency of memory analysis technique to detect the rootkits. Also, we are

intended to develop an automated tool by using machine learning algorithms and deep

learning to easily and accurately identify the presence of rootkits in a system.

1.3 Research Objectives

In order to address the limitations of the existing work, the research aims to meet

following objectives.

• To propose an efficient technique based on the memory analysis to detect the

hidden rootkits.

• To develop algorithms and tools to automate the process of analyzing the memory

dumps and detect the rootkits

• To study the new set of features extracted from memory images, such as DLLs,

handles, privileges, network connections, modules, injections and services

• To propose a method that also address the limitations involve during the feature

extraction for rootkits detection.

1.4 Thesis Motivation

Since late 1980s, rootkits have become a great concern for the security engineers. At

that time these were used to conceal log files and application binaries. The first genera-

tion of these malicious softwares only targeted the user-level programs. These infections

were relatively easy to detect as simplest checksum method could be used to achieve

the purpose. However, now a day, threats posed by recent rootkits are even greater as

5



Chapter 1: Introduction

operating system is being used by many devices like smartphones, IoT nodes, comput-

ers and other embedded devices [1] [2]. As a result, many researchers are working to

design efficient method to detect the modern rootkits that can overcome the traditional

detection methods.

The rootkit attacks are also increasing day by day. According to reports by Avast

(a leading cybersecurity company), in 2020, the number of users that got affected by

rootkits was about 10,000 which has been increased to 100,000 in 2021. Hence, the

purpose of this research is to device a reliable and efficient detection technique for the

rootkits that are difficult to detect by addressing the major limitations in the existing

literature.

1.5 Thesis Organization

The thesis is organized in the following way.

Chapter 2 of the thesis will present the literature review on the techniques utilized for the

detection of rootkits, the algorithms and limitations that hinders the efficient detection

of rootkits.

In chapter 3, the research methodology will be discussed. This includes the discussion

on tools and techniques, installation, process such as data preprocessing, feature selec-

tion/extraction and model training. The detail about the data acquisition, preprocessing

and feature extraction phases are discussed in chapter 4.

Chapter 5, whereas, discuss the model evaluation. This chapter will also provide the

validation process. Results will be presented and discussed in the same chapter.

Lastly, Chapter 6 provides the complete summary of the research and suggests some

future work that can be carried out. In a nutshell, this thesis aims to provide a mech-

anism to detect the rootkits based on the memory analysis, that can also address the

issues in existing work.

6



Chapter 2

Literature Review

This chapter illustrates the existing research on the detection of Rootkits, thoroughly

review them and will indicate the potential research gaps. For the purpose, we have

gathered a wide range of conference proceedings, books, peer-reviewed articles and jour-

nal papers. The result summary of this chapter will help to serve as a foundation for

the ongoing thesis, and proposed research method.

2.1 Rootkit and its Detection Techniques

The privacy and security features of any network experience a significant threat of

Rootkits [7]. They provide a backdoor route to the hacker to penetrate in the operating

system, hence allow an unauthorized access. The malware writers putting their contin-

uous efforts to evolve the rootkits technology, making it even more difficult to detect or

remove them from the infected system. Therefore, it is difficult for the users to protect

their systems from such attacks.

Despite the growing threats as posed by the rootkits, the literature shows a little effective

detection methods and tools. The reason probably due to the hiding technology of

rootkits and complexity of developing the effective detection procedures.

2.1.1 Rootkit Distribution Methods:

The primary objective of the people who spread rootkits is to acquire data from the

targeted system and cyberespionage. About 77 of rootkit attacks involve only data

acquisition [8]. Sometimes the motive of the attackers are others, for example, to achieve
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Chapter 2: Literature Review

financial gains and exploit the asset of victims.

Distribution of rootkits is mostly done by social engineering methods, like phishing,

Apps that looks similar to legitimate sites, fake websites etc [9],[10],[11]. Whereas the

motivation remained the financial gains and data acquisition, precisely cookies and cre-

dentials.

Figure 2.1: Rootkit Distribution Methods

2.1.2 Comparison of Rootkit Detection Techniques

Since the creation of the first rootkit (NT Rootkit) researchers are trying to device

better detection techniques for them. Virtualization bases detection techniques have

been proposed by many researchers but they show many limitations at end user level,

like detecting emulation environment too as a rootkit, special hardware requirements etc

[13], [14]. Signature based are the most common ones. Other approaches are behavior

based, memory analysis and learning based detection. Table 2.1 gives us a comparison

of rootkit detection approaches.
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Chapter 2: Literature Review

Table 2.1: Comparison of Rootkit Detection Approaches

Detection Approach Strengths Weaknesses

Signature-Based Easiest way to detect;

Cost-effective solution;

Doesn’t require to load the

dump file to analyze

Easy to remain hidden by

these softwares;

Difficult to detect DKOM

attacks;

Performance overhead

Behavior-Based Doesn’t require any prior

knowledge about the

rootkits;

Reduced performance

overhead;

Behavior of malicious

body can be emulated

It will not work effectively

when the rootkit has com-

promised many devices in

a row;

Difficult to detect DKOM

attacks;

Requires the source code

of OS kernel to identify the

attack;

Doesn’t work well with the

hidden behavior of rootk-

its

Memory Analysis Can detect any anomaly or

unauthorized access to the

targeted system;

Can overcome the hidden

behavior of the rootkits

Time inefficient;

Lacks automation;

Less accuracy

Learning-Based Rootkits leave fingerprints

on program memory ac-

cesses;

Detection is performed

separately

Significant performance

overhead;

There can be a delay

9



Chapter 2: Literature Review

2.2 Machine Learning

Machine learning is evolved within two fields of knowledge, computer science and artifi-

cial intelligence (AI), according to IBM it revolves around the utilization of algorithms

and data to simulate the learning process of humans without their intervention to im-

prove the accuracy over time [15].

Machine learning basically helps to solve two main problems, regression and classifica-

tion. Regression usually involves continuous real value problems, such as integers or

floating numbers that represent quantities such as sizes or amounts, whereas classifi-

cation deals with the problems where the predicted variable consists of only discrete

categories or labels. Its model is assigned to test given input with specific category or

label.

As the rootkits detection uses a binary classification method, where it needs to classify

the data into either malicious/rootkit or benign. Whereas if we classify rootkits into

sub categories, then we need to tackle this problem using a multi-class classification by

assigning rootkit families to distinct categories.

Therefore, the machine learning plays a vital role in the detection of rootkits. Now

a days many researchers are proposing various solutions to detect rootkits and other

malwares using the properties of machine learning. The field machine learning is mainly

categorized into three sub-categories: supervised learning, unsupervised learning and

reinforced learning [16].

The supervised learning deals with the training of the data that are labeled. This

means that the result is the probability between the known categories. Whereas, the

unsupervised learning deals with training of the data that is not labeled. In comparison

to supervised learning, the unsupervised requires relatively larger dataset to suggest

efficient results. The process of machine learning involves many steps which include

data acquisition, data preprocessing/ feature engineering, feature selection, training

model and evaluation. The detailed process will be discussed in the upcoming chapters

for detecting the rootkits.

In the proposed solution, we have utilized the supervised learning and deep learning for

the detection of rootkits with following listed algorithms.

10
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2.2.1 Random Forest

The first algorithm that had been used is random forest (RF). It is widely been used as a

supervised learning algorithm. It helps in various classification and regression problems

by building ensemble of decision trees thru selecting the training data. For classification

problems, the result is generated by the majority decision while for regression, the result

is generated by using average mechanism.

We selected Random Forest because of many advantages it poses. The foremost one is

that it addresses the over fitting issue by combining values from different trees. Hence

reduce the impact of biases created by individual tree. As we increase the number

of trees, the accuracy of the algorithm also gets better [17]. Also, Random Forest can

easily handle both the continuous data and categorical data, hence making the algorithm

adaptable for different types of data sets [18].

Random Forest is also a powerful tool for rootkit detection. It can efficiently detect

the potential rootkit activities by analyzing various features and characteristics of the

system dump. As said above, Random Forest is a useful tool that can handle both types

of datasets, categorical and continuous, making the algorithm very feasible to detect as

well as classify the rootkits.

There are many articles in the existing literature that used the random forest for the

malware detection (rootkits are type of a malware). Li et al. used Random Forest for

the rootkit detection by extracting different features from its kernel [19]. Similarly, C.

Felan et al. for detecting unknown malwares based on the system calls and they achieved

high detection rate [20].

Therefore, Random Forest is a very reliable machine learning algorithm that we can

use for the rootkit detection. Its property to deal with different types of datasets, and

solving problems by creating multiple trees make it well suited for the job.

2.2.2 Support Vector Machine

Support vector machine (SVM) is another algorithm based on the supervised machine

learning category. It can be used for classification purposes and also for the rootkit

detection. However, rootkits pose significant challenges for SVM to perform classification

with greater accuracy [21].

11
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Many researchers demonstrated how to improve the performance of the algorithm in

existing literature. Many studies also presented various techniques and methods to

increase its accuracy to efficiently detect rootkits [22]. Even the algorithm has been

used for the rootkit detection, the primary objective remains same, which is to identify

the optimal decision boundary, it facilitates the classification process on the given data

[23]. In this way the rootkit positive entries can easily be separated from the benign

files.

Specialized SVM techniques are another option that can help to address the challenges

that SVM face in case of the rootkit detection. For example, two specialized SVM

techniques are introduced in the literature [24], multiple instance learning and ensemble

based SVM model to improve the detection rate and robustness. Also, by integrating

the deep learning algorithms with SVM, more better results can be obtained.

In a nut shell, the Support vector machine is a good choice to detect the rootkits because

of its classification properties. The existing literature focus on the ways to increase the

performance of the SVM, hence the methods can be used in the ongoing research to

facilitate rootkit detection.

2.2.3 Decision Tree

Another supervised machine learning technique that is quite popular among the re-

searchers to detect the malwares is Decision tree. The algorithm can perform both the

classification and regression. It forms tree to predict the results and is suitable for many

applications. It can also help us to detect the rootkits.

Decision tree is a considerate option to tackle rootkit detection by leveraging the rules

represented as the branches of the decision tree and corresponding results as the leaf

nodes. Many researchers have used this algorithm for malware detection and also for

the rootkits. For example, in [22], the authors have also used decision tree to detect the

kernel rootkits.

In a structural form, it is a flow chart type structure in which internal nodes are test

values, branches are the results of the tests and leaf node would be a final result. The

root node contains the entire dataset. At each internal node, a rule for specific feature

is been evaluated, using which branches are created leading to child nodes in different

paths. The child nodes after many recursive steps gives a final decision typically when
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certain depth is reached.

The algorithm has many advantages, for example these can be easily visualized and

interpreted. Also, the algorithm can be performed on both types of datasets categorical

as well as numerical. However, the analyst usually faces overfitting issues while using

the decision tree algorithm.

2.2.4 K-Nearest Neighbor

K-Nearest Neighbors also knows as K-NN is a supervised machine learning algorithm

used for both the classification problems and regression. In the testing procedure, it gets

votes from its k nearest neighbors to classify the values/instances. K-NN compares the

new instance during the testing phase with the data stored and based on the similarities

and differences with the existing data, it classifies the new instance [26]. The algorithm

is also known as a lazy learner because of its property that it does not immediately learn

the pattern but compare the new instances with the stored data based on similarities.

For Rootkit detection, K-NN can also be explored. K-NN can be trained on the dataset

that has both the rootkit instances and benign instances. Relevant features as modules,

handles, APIs, system calls, network behaviors etc are extracted from the given dataset

during the training phase and get labeled as benign or malign. Whereas during the test-

ing phase, the K-NN calculates the similarity of the new instance with the already tested

instances. K-NN poses many benefits to the Rootkit detection from hyper parameter

tuning to feature selection and feature engineering, thereby improve the accuracy rate.

2.3 Deep Learning

Deep learning is known as a sub field of machine learning that focuses on the Artificial

intelligence, which enables models to learn hierarchical data representations. Instead

of depending on manually created features, it seeks to automatically learn hierarchical

features or representations from raw input data. Deep learning has received a lot of at-

tention and has had great success across several industries, including speech recognition,

natural language processing, and computer vision.
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2.3.1 Long and Short Term Memory

Long Short-Term Memory (LSTM) is a significant deep learning technique. It is a type of

a Recurrent Neural Network (RNN) that is used to capture the sequential nature of the

system data make it useful for the rootkit detection. LSTM can learn the anomalies and

patterns by leveraging the sequential information that may help to detect the rootkits.

Just like classification algorithms, dataset for LSTM also requires to train a part of the

dataset. The training data can consist of many features that are been considered or

recorded. Each instance in the training data is labeled as either normal or infected.

During this phase of the training, the LSTM learns the sequential information and

patterns in the training data while in the testing phase, it processes the sequential

data associated with each instance. Also, it compares the temporal dependencies and

patterns with the trained dataset. Based on the trained dataset, LSTM can tell either

the instance is malign or benign.

The efficiency of the LSTM depends on the quality of the training data when the concern

is detecting the rootkits or other malwares. The techniques like the cross validation and

hyper parameter tuning can be applied to get more optimized and efficient results.

2.4 Related Work

Many researchers have studied to detect the malwares and rootkits utilizing the memory

analysis. Some studies are discussed below.

2.4.1 Studies based on Memory Analysis for Malware Detection

This section will throw a light on the top articles, where the researchers used memory

analysis process to detect the malwares.

The memory forensics to detect and classify the malwares presents a promising approach

to overcome the limitations from the basic static and behavioral analysis. Sihwail et al.

studied the effectiveness of extracting the memory-based images to reveal information

that can help to detect the malwares [27]. The analysis was done using the volatility

v2.6. The accuracy rate they achieved is 98.5. they also created a memory-based

dataset in binary form and made it available to the researchers on GitHub [28]. They
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have also used classification algorithms like SVM, Random Forest, K-NN, Naïve Bayes

and Decision Tree.

Bozkir et al. tried to detect the malware by analyzing the memory dumps as RDB images

[29]. Their study combined the computer vision and machine learning to detect and

classify the malwares. The detection of unknown malwares is improved by the process

they used up till 20.78 % across the multiple machine learning algorithms. They used

Random Forest, SVM and XGBoost algorithms for the purpose. The study highlights

the practicality of the computer vision-based scheme for protection against the malicious

applications.

The research carried out by [30] also studies the importance of memory analysis to

capture the footprints of malware and extract the hidden code from the obfuscated

malwares. The authors have written a python-based plugin for the volatility v2.6 and

named it as VolMemLyzer, that can direct extract 36 features and convert the results

into csv format. The plugin provides high accuracy to classify the malwares too. A

dataset has been created using the too of about 1900 instances.

The detection of obfuscated and hidden malware creates many challenges in the field of

memory analysis. Carrier et al. researched to transform the VolMemLyzer framework

already studied in [30] so that it can extract 26 new memory features making it more

efficient [31]. The plugin can be used to detect the malwares (Ransomware, Trojan

Horse and Spyware). They also utilized the classification algorithms and demonstrates

high efficiency in detecting obfuscated and hidden malware with an accuracy of 99% and

F1-Score as 99.02. An extended dataset has also been created that is a very positive

contribution for the researchers in this field. Joseph et al. studied the importance of

memory analysis to address the issues created by the ransomware [32]. They proposed a

memory analysis-based approach to detect the presence of ransomwares. The approach

integrated the user-defined tools with search tools like YARA to increase the accuracy.

2.4.2 Studies based on Rootkit Detection

This section will throw a light on the top articles where the researchers tried to detect

Rootkits using various methods including the memory analysis.

The first research will detect the kernel rootkits using their defined approach named

as TKRD (trusted kernel rootkit detection) [33]. TKRD combines the memory foren-
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sic analysis with bio-inspired machine learning technology. The training features are

extracted from volatile memory dumps using the Volatility framework. The extracted

features include modules, threads, drivers, IRP and SSDT hooks, callbacks, and timers.

The experimental results show that the process gives a high accuracy in detecting the

windows kernel rootkits.

The researchers in [24] used dynamic analysis to detect the rootkits. A hardware-assisted

virtualization-based kernel-level rootkit detection (VKRD) system that is trained by

machine learning techniques was introduced by them that will isolate the memory region

and hardware registers access for a kernel module hence the operations of the kernel

module are intercepted. The isolation creates a performance overhead.

Nagy et al. in their research addresses the challenge of detecting rootkits in embedded

IoT devices by using dynamic analysis [34]. they discussed the trusted execution en-

vironments (TEE) available in popular IoT platforms. The TEE provides an isolated

environment for our rootkit detection algorithms, preventing interference from rootkits

even with root privileges. They also proposed algorithms for detecting rootkit compo-

nents in persistent storage.

2.4.3 Discussion

All the above existing researches have used various techniques including the dynamic

analysis and memory analysis to detect the rootkits. Whereas the researches that used

memory analysis for malware detection have also been discussed. All listed techniques

have some limitations too. As memory analysis seems to be promising technique that had

been recently used for malware detection can be a good technique for rootkit detection

too. As rootkits hide themselves in memory and have root access so the approach can

provide better solutions. Also, if the dataset with instances recorded over years is used

then it will give more efficient results.

The rootkits have evolved themselves over the time. They are a true example of concept

drift (Machine learning terminology used to define the change in relationship of input

and targeted variable over the period of time). To overcome this issue, the dataset must

be extensive and must be prepared over a long period of time.

In this research we have proposed a rootkit detection technique that uses memory anal-

ysis, machine learning and deep learning to address all the issues that rootkit detection
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faces.

2.5 Summary

In this chapter we have discussed the rootkits detection techniques, its distribution

methods and infection process. More over we have also discusses the machine learning

and deep learning algorithms that can be used for rootkit detection. Other than this

we highlighted the existing research on the use of memory analysis for the detection of

various malwares as well as the existing trend of techniques used to detect the rootkits.

In the upcoming chapter, the research methodology will be discussed that is used during

this project.
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Research Methodology

This chapter will represent the methodology used through this study. All the steps and

phases will be defined later in the chapter, while the details will be discussed in the

subsequent chapters. As the project involves memory analysis and machine learning,

the steps involved include the creation of memory dumps (data acquisition), memory

analysis, data cleaning and labeling, exploratory data analysis, normalization, feature

engineering and model evaluation. Figure 3.1 shows the complete process that had been

followed during the research. Following the description of the process, next section will

highlight the tools and technologies that had been used in the research.

3.1 Research Methodology

3.1.1 Data Acquisition

For any Machine Learning and Deep learning algorithm, there are two ways of data

acquisition, one is to use to the existing datasets and transform them according to the

ongoing research and other way is to collect the samples and generate your own dataset

for the research. In our research we have created our own dataset by collecting the

samples and analyzing them to create the dataset that can be used for the experiment.

Creating memory dumps:

The first step will be capturing the memory image. The process is crucial as we are

intended to use the memory analysis technique so this can help us to do the job. This
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Figure 3.1: Research Methodology (Process model)]
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step captures all the memory information including the RAM. The memory image can

provide memory contents and system states, which can be used to diagnose any problem

(in our case it can help us to detect the presence of rootkits). There are many ways and

tools that can be used to create the dump depending upon the requirement.

Memory Analysis:

The second step of data acquisition is memory analysis. In this step, the memory dumps

are fed to any tool that can perform memory forensics or memory analysis. Analysis is

done based on different features under consideration. The result from memory analysis

is in raw form and need to be further statistically analyzed which is done in the next

step.

Dataset Creation:

In this step the raw data from the previous step is fed to excel file and perform basic

statistical analysis, like mean, mode etc. After which the statistical results for every

sample are combined in one sheet to create the dataset for the ongoing project.

3.1.2 Data Preprocessing

This step is also known as feature engineering, and can be completed in the following

steps.

Exploratory Data Analysis (EDA):

EDA is considered to be a crucial stage for machine learning as well as deep learning

as in this step the raw dataset is analyzed to summarize the main features [35]. Many

statistical methods and graphical methods are applied to visualize the data. Hence

EDA is used to analyze and understand the dataset in detail to further use it for data

preprocessing/feature engineering.

Data Cleaning Labeling:

Data cleaning is a process where the instances are entries that may lead to inaccurate

results are removed. This involves various techniques and methods, for example remov-
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ing the null, empty or duplicate entries. Whereas Data labeling is a process in which

labels are assigned to the data entries. In our case we labeled the data as B and M.

Data Normalization:

The data normalization is an important part of the data preprocessing/ feature engi-

neering. In this process the entries throughout the dataset are checked and converted to

a defined range to facilitate the data preprocessing and model training. The process is

considered to be important for two basic reasons, one is it increases the cohesiveness of

the data, second is that it changes the data consistently throughout the dataset. This

also increases the accuracy and detection rates.

Feature Selection:

Feature selection is an important step where the most important features are selected

that have greater impact on the results. This step is typically performed in combination

with the EDA and Data normalization as they create a loop to yield a dataset that can

provide best results for the given algorithm. The process is beneficial as it can help to

improve the accuracy also it helps to reduce the computational time hence reducing the

cost.

By following the above-mentioned steps of feature engineering, raw dataset can be

cleaned, labeled and normalized that can further help to train the machine learning

and deep learning model to get better results.

3.1.3 Model Training

After data preprocessing, now we can use the dataset for model training. During this

phase, a concerned machine learning or deep learning algorithm/model is trained using

the part of dataset. The process is done by examining the data for its features, patterns

to generate the predictions. This must be kept in mind that the appropriate algorithm

must be used as different algorithms shows different performance with same feature set.

The nature of the problem, the dataset, complexity, computational efficiency should be

taken into account. Therefore, by use of well processed dataset with right algorithm,

the accuracy of results can be improved.
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3.1.4 Model Evaluation

This would be the last step for our research. This step involves comparing of the

predictions with the expected outcomes. It is important to ensure that the testing

data must be different from the training data otherwise false high level of accuracy is

obtained. If the evaluation does not meet the required criteria than the model is fed to

tuning, where the parameters of the algorithm are adjusted to optimize its performance.

Hit and trial rule can be used between parameter configurations for model training to

increase the accuracy and performance of the model. Hence better performance will

help us to detect the rootkits with high accuracy.

3.2 Tools, technologies and environments

During the research process, we have used different tools, technologies, plugins and

environment. We collected the rootkit samples and run on the real devices to capture

the memory image which is then being analyzed using the memory analysis technique.

The table 3.1 lists all the tools and technologies we used during the process of detecting

the rootkits from the memory images.

Table 3.1: Tools/Technologies/Environment used

Tools/Technologies/Environment Description of Usage

VMware Workstation Pro v16.2 [36] The standard desktop hypervisor used

to run the controlled environment for

Rootkit testing and analysis

Microsoft Windows 11x64 for Worksta-

tions [37]

The Windows 11 environment was used

to test the rootkit samples

Kali Linux 2020 [38] The Linux environment is suitable for

penetration testing and security analy-

sis. Memory analysis was performed in

this environment

Dumpit.exe [39] The tool was used for memory acquisi-

tion inside Windows

Continued on next page
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Tools/Technologies/Environment Description of Usage

Volatility v3.2 [40] This tool was installed inside the Linux

environment for memory analysis pur-

poses

Python [41] Python programming language was

used for writing different scripts of data

preprocessing and model training and

evaluation

WEKA v3.9 [51] WEKA is a python-based tool for ma-

chine learning algorithms. Different

models were tested using this tool

VirusTotal [43] VirusTotal is an online repository for

different malwares. It was used to

download the rootkit samples

VirusShare [44] VirusShare is also an online repository

for different malwares. It was used to

download the rootkit samples

Numpy [45] It is a Python library used for perform-

ing all mathematical operations

Pandas [46] It is another Python library used for

data processing

Matplotlib [47] This is a Python library used for graphi-

cal representation like confusion matrix

for the data

Category-encoders [48] It is a Python library used to encode

categorical variables into numeric using

different techniques

Tensor Flow [49] It is a Python library used for high-

performance numerical computation

Scikit-learn [50] This Python library was used for imple-

menting machine learning algorithms

Continued on next page
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Tools/Technologies/Environment Description of Usage

Jupyter Notebook v6.4.12 [51] It is a web-based interactive computing

notebook environment used for machine

learning and deep learning

OverLeaf [52] It is an online typesetting system which

was used for the write-up

Microsoft Excel [53] It is a Microsoft tool used for ba-

sic statistical analysis and creating the

dataset

3.3 Summary

In this chapter we discussed the research methodology to be followed throughout the

ongoing research. We have also highlighted all the tools, technologies and environments

that have been used during the research with the description of why they have been

used.
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Data Acquisition and

Preprocessing

In this chapter we will go through in detail with the data acquisition and data prepro-

cessing phase. The first part of the chapter will define the data acquisition process while

the second half will define the data preprocessing phase.

4.1 Data Acquisition

Data acquisition is an important step of forensics as well as machine learning and deep

learning. In this step the data is collected with care to be processes further. In the

ongoing research we have collected the rootkits sample from the online repositories

of VirusTotal [43] and VirusShare [44]. The rootkits samples are then tested in the

Windows 11 environment. Following are the phases in which data acquisition was done

our research.

4.1.1 Creating Memory Dump

In the first phase of the data acquisition the memory image is taken with the help of

the Dumpit tool. The whole RAM is being captured. As we had used a hypervisor,

windows 11 was installed on a virtual machine. For a malware to be run in a secure

environment, certain steps must be taken.

• Windows must be activated
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• Use a different network segment or a different network subnet apart from the main

network

• System resources must be realistic (Memory can be from 1GB to 8/16GB). The

virtual machine that we had created has a RAM of 1 GB

• Windows Defender must be disabled

Rootkit samples were run to see their behaviors. For the purpose two types of memory

images are obtained. One is when no rootkit is present there (benign image) and the

other one is where rootkit is running in the same environment (malign). The memory

images are 1 GB each as shown in the figure 4.1.

Figure 4.1: Memory image creation using dumpit tool

4.1.2 Memory Analysis

The second phase of the data acquisition is memory analysis. Volatility is a strong

tool that has been used for the purpose. It was installed in a kali Linux environment.

The memory images that we had collected were transferred to this virtual machine and

analyzed one by one. Figure 4.2 shows the general info of one of the memory dumps

collected and tested by the volatility.
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Figure 4.2: General info of the Memory Dump by volatility
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The memory features in which we are interested in are: Processes, DLL, handles, mod-

ules, injected codes, networks, services, callbacks and privileges. Different commands

are used to capture the above-mentioned features. Table 4.1 is created to list the fea-

tures, and corresponding volatility commands that were used. Whereas table 4.2 lists

all 53 sub-features on which our analysis will base.

Table 4.1: Memory Features and Volatility commands for Rootkit Analysis

Features Volatility Commands Description

Processes windows.pslist The rootkits directly affect the pro-

cesses by showing themselves as le-

gitimate programs.

DLL windows.dlllist The rootkits use DLLs to insert

malicious code using root access to

a legitimate program.

Handles windows.handles Handles give information about the

rootkit’s behavior, such as reading

or writing a file with root access or

accessing registry keys.

Modules windows.modules Rootkits can modify modules, al-

lowing them to inject their code

into the operating system’s mem-

ory space.

Injected codes windows.malfind This command can determine if

rootkits have injected any mali-

cious code into a legitimate process.

Network windows.netscan This command provides informa-

tion about how the rootkit commu-

nicates with the attacker to send

and receive commands.

Services windows.svcscan Rootkits can affect background

processes known as services.

Continued on next page
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Features Volatility commands Description

Callbacks windows.callbacks Rootkits can tamper with callbacks

that are executed when any event

occurs.

Privileges windows.privileges Privileges can indicate if rootkits

have given any commands to legit-

imate processes to perform specific

tasks, such as changing the time.

Table 4.2: List of Features and Sub-features

Sr No. Features Sub-features

1 Processes pslist.nprocc

2 Processes pslist.nppidd

3 Processes pslist.avgthreadss

4 Processes pslist.nprocs64bitt

5 Processes pslist.avghandlerss

6 DLL dlllist.ndllss

7 DLL dlllist.avgdllsperprocc

8 Handles handles.nhandless

9 Handles handles.avghandlesperprocc

10 Handles handles.nportt

11 Handles handles.nfilee

12 Handles handles.neventt

13 Handles handles.ndesktopp

14 Handles handles.nkeyy

15 Handles handles.nthreadd

16 Handles handles.ndirectoryy

17 Handles handles.nsemaphoree

18 Handles handles.ntimerr

19 Handles handles.nsectionn

20 Handles handles.nmutantt

Continued on next page
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Sr No. Features sub-features

21 Handles handles.nsymboliclinkk

22 Handles handles.nkeyedeventt

23 Handles handles.nprocesss

24 Handles handles.ntokenn

25 Handles handles.nwindowstationn

26 Handles handles.niocompletionn

27 Handles handles.nwmiguidd

28 Handles handles.nwaitableportt

29 Handles handles.njobb

30 Injected Codes malfind.ninjectionss

31 Injected Codes malfind.commitChargee

32 Modules modules.nmoduless

33 Services svcscan.nservicess

34 Services svcscan.kerneldriverss

35 Services svcscan.fsdriverss

36 Services svcscan.processservicess

37 Services svcscan.sharedprocessservicess

38 Services svcscan.interactiveprocessservicess

39 Services svcscan.nactivee

40 Callbacks callbacks.ncallbackss

41 Network Netscan.nudpp

42 Network Netscan.ntcpp

43 Privileges Priv.nprocesss

44 Privileges Priv.avgprivperprocc

45 Privileges priv.SeSystemEnvironmentPrivilegee

46 Privileges priv.SeSystemProfilePrivilegee

47 Privileges priv.SeSystemtimePrivilegee

48 Privileges priv.SeTakeOwnershipPrivilegee

49 Privileges priv.SeTcbPrivilegee

50 Privileges priv.SeTimeZonePrivilegee

Continued on next page
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Sr No. Features sub-features

51 Privileges priv.SeUndockPrivilege

52 Privileges Priv.SeSecurityPrivilege

4.1.3 Creation of dataset

For each sample the information about the features mentioned in table 4.1 are collected

and transferred to the csv file. Some statistical analysis has been performed in the

Microsoft excel to obtain the sub features listed in table 4.2. As a result, we have

obtained features for 400 benign samples and 400 rootkit samples. Figure 4.3 shows

a glimpse of the excel file when the data from the volatility is transferred to excel file

before performing the basic statistical analysis to obtain values for the features listed in

table 4.2.

Figure 4.3: Transferring data from volatility to Microsoft Excel
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4.2 Data Preprocessing

in this section we shall deiscuss the process of feature engineering/ data preprocessing

in detail.

4.2.1 Exploratory Data Analysis

It is an important step of the data preprocessing. Data is analyzed in detail to highlight

the important attributes. We have used the python and some of its libraries like pandas

[45] and matplotlib [46] to perform the exploratory data analysis. In the first step

we checked the data using the python. It helped us to calculate the weight of each

attribute by using the mean, minimum, maximum, standard deviation, quantiles etc.

next we checked for any missing value and outliers according to the calculated quantiles.

Figure 4.4 shows the results of EDA that we have performed on the section of dataset.

Figure 4.4: Exploratory Data Analayis
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4.2.2 Data Cleaning

This step will clean the dataset by removing the missing entries. Missing entries can

create many issues for the next steps to detect the rootkits. Python library Pandas has

been used for the purpose. We used the function fillna() to replace the missing entries

with 0. The figure 4.5 shows the missing entries inside the section dataset. And how

our code handles to remove the missing entries.

Figure 4.5: Missing values before and after Data Cleaning

4.2.3 Data Normalization

Data normalization is also an important step for our dataset as it will make all the values

in the range of 0 and 1. The step is important because it will increase the accuracy of

the model. For the purpose we have used the min max method [54]. We have performed
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the data normalization using the python. The formula for the min max method is as

below.

xnormalized = x − xmin
xmax − xmin

(4.2.1)

The figure 4.6 shows the data normalized for the section of our data before and after

the data normalization.

Figure 4.6: Data section before and after data normalization

4.2.4 Feature Selection

Feature selection is also an important step. For example in figure 4.6 we, have seen that

for the column pslist.nproc64bit we have got NaN values. Such values will hinder the

results by the model. So we need to select the best features for the model. This process
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is called feature selection. There are many ways to perform the feature selection but we

have used the recursive elimination method [55] to remove the least important features

for the dataset. As a result, we removed following features and left only with 47.

• Pslist.nproc64bit

• Handles.nport

• Svcscan.fsdrivers

• Scsscan.interactiveprocessservices

• Priv.SeTcbPrivilege

• Priv.seSecurityPrivelege

4.3 Summary

In this chapter we had went in detail with the data acquisition process and basic data

pre processing steps that we followed during the course of this project.
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Model Training and Evaluation

In this chapter we will see in detail how we trained our models and the results we have

received from them. The results will be evaluation using the measures described in

section 5.2. In the end our results will be compared with the existing literature.

5.1 Model Training

For a machine learning and deep learning mechanism it is a very import step. In this

step we chose machine learning and deep learning algorithms and provide them with

some of the data from the dataset to train the model.

For the rootkit detection we have chosen four machine learning algorithms (Support

vector machine, Random Forest, K-Nearest Neighbor and Decision Tree), and one deep

learning algorithm (Long- and Short-term Memory Model). We divided the dataset into

two parts. 75% of it was used to train the model and 25% of the dataset was used to

test the model.

5.2 Model Evaluation Measures

The evaluation process is the critical step as it will allow us to see that how good are

our solutions. There can be many evaluation measures that can be used to measure

the effectiveness of the proposed method, but we have chosen accuracy, precision, recall,

F1-score and time execution as evaluation parameters. Except time execution, other

chosen parameters are defined by a confusion matrix [56].
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Confusion Matrix:

A confusion matrix is a 2x2 matrix with different actual and predicted values as shown

in figure 5.1. It is used to calculate the accuracy, precision, F1-score, Recall, Specificity

etc. The values in the matrix are knows as

• True Positive (TP)

• False Positive (FP)

• True Negative (TN)

• False Negative (FN)

Figure 5.1: Understanding of Confusion Matrix

In the confusion matrix, Positive and Negative are predicted values and True and False

are actual values. In our case where rootkits are going to be detected using the machine

learning and deep learning techniques, positive (1) is considered as rootkit and negative

(0) is considered as benign.
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True Positive (TP): True positive means that the model predicted the result as posi-

tive and it is right. In our case it means the model predicted the memory dump sample

has rootkit in it and the prediction is true.

True negative (TN): True negative means that the model predicted the result as

negative and it is right. In our case it means the model predicted the memory dump

sample is benign and the prediction is true.

False positive (FP): False positive means that the model predicted the result as

positive and it is wrong. In our case it means the model predicted the memory dump

sample has rootkit in it and the prediction is wrong. This is also known as type I error.

False negative (FN): False negative means that the model predicted the result as

negative and it is wrong. In our case it means the model predicted the memory dump

sample is benign and the prediction is wrong. This is also known as type II error.

5.2.1 Accuracy

It is defined as how much data is true, correct or free from errors and mistakes or we

can say that it is the quality of measurement. Its formula is given below.

Accuracy = TP + TN

TP + TN + FP + FN
(5.2.1)

5.2.2 Precision

It is defined by percentage of the positive predictions that are correct. Its formula is

given below.

Precision = TP

TP + FP
(5.2.2)

5.2.3 F1-score

It is defined as a harmonic mean of recall and precision. It is usually used to compare

two models. formula for it is given below.

F1_score = 2 × (Precision × Recall)
Precision + Recall

(5.2.3)
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5.2.4 Recall

It is defined by percentage of the actual positive predictions that are correctly classified.

Its formula is given below.

Recall = TP

TP + FN
(5.2.4)

5.2.5 Execution time

It is defined as the time a model takes to calculate the result for the given dataset. In

our case we have calculated the execution time using the time library of python.

5.3 Results and Evaluation

In this section we will through light on the results we have obtained and will evaluate

them according to the metrics mentioned in section 5.2.

As mentioned in section 5.1, that we divided the data into 75/25 and trained the dataset

with decision tree, random forest, support vector machine, K-nearest neighbor (KNN)

and long- and short-term Memory (LSTM) method. 25% data was used for the evalua-

tion purpose for the above-mentioned data models. Initially we chose 53 features, after

the feature selection our features were left to be 47.

The confusion matrix is used to calculate different evaluation metrics. The confusion

matrix of different models are shown in figure 5.2.

Final results show that support vector machine shows the best result with accuracy

equal to 96.2%. after that Random Forest gives accuracy of 95.5%. if we compare the

two, the execution time of SVM is less than the RF. Overall K-nearest neighbor takes

lowest time to generate the results. LSTM shows a result 85.8% which is not so good

but as a deep learning model we can consider it a good outcome. The table 5.1 shows

the final results for different models. we testes a deep learning model too.

5.3.1 Validation

Validation is an import phase of this process. The phase helps us to validate our results.

For the purpose we have used k-fold cross validation to check our results.
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Figure 5.2: Confusion matrix for different models

Table 5.1: Final results for Different Algorithms

Algorithms Accuracy Recall Precision F1-Score Execution

Time

Random

Forest

95.5% 93% 98% 95% 0.25s

K-Nearest

Neighbor

92.8% 91.5% 93.8% 92.7% 0.03s

Decision

Tree

95% 93% 97% 95% 0.04s

Support

Vector

Machine

96.2% 94% 99% 96% 0.1s

Long- and

Short-Term

Memory

85.8% 83% 87% 85% 124.02s
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K-fold cross-validation is a method used for machine learning evaluation. It evaluates

the performance of a model on a limited dataset. It helps to assess how well the model

generalizes to new, unseen data. The basic idea behind k-fold cross-validation is to split

the available data into k subsets or folds. The model is trained and evaluated k times,

each time using a different fold as the test set and the remaining folds as the training set.

The performance metrics obtained from each fold are then averaged to get an overall

estimate of the model’s performance.

We have used WEKA tool for the purpose to check k-fold cross validations for RF,

K-NN, DT and SVM for k=2,5,10. Table 5.2 shows the k- fold cross validation.

Table 5.2: K-fold cross-validation for Different K values

Algorithms K=2 K=5 K=10

Random Forest 95.8% 95.5% 95.1%

K-Nearest Neighbor 93.5% 93.1% 92.8%

Decision Tree 95.3% 95% 95%

Support Vector Machine 96% 96.2% 96.2%

5.4 Comparison with existing literature

In the field of research, significant advancements have been made in the area of rootkit

detection. Various researchers have proposed different approaches utilizing machine

learning, deep learning, and other techniques for malware detection. In Table 5.3, we

present a compilation of research works closely related to our proposed solution, along

with their respective results.

There are many aspects in which our research differs from the existing rootkit detection

solution. For detection of rootkits, memory analysis got a very little importance so far,

but we found this method to be a promising method for finding the rootkits. In respect

to memory analysis, we had used volatility 3.2 which is a new version that encounters

symbol list instead of profiles, so dealing with this also remained a new thing for us.

Also, before machine learning algorithms were only common, we tried to test a deep

learning algorithm too. Deep learning models are considered to be better than machine

learning algorithms because they exhibit strong generalization capabilities, making them
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suitable for tasks with diverse and complex patterns. However, deep learning requires

substantial computational resources and labeled training data. Another good thing

about our research is that we have also evaluated our results based on the execution

time, but existing literature on rootkit detection have never used that.

Our research work aims to contribute to the field of malware detection, particularly

in the context of rootkits. We strive to fill the gaps identified in existing solutions and

provide an effective and robust approach for identifying and mitigating the threats posed

by rootkit malware.

5.5 Summary

In this chapter we have gone in detail with the model training process and model testing

process. We evaluated the results and compared them with the existing literature.
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Table 5.3: Comparison of Detection Approaches and Classifier Algorithms with Accuracy

Ref Detection Type

and Algorithm

Dataset

Source

Benign RootkitClassifier Al-

gorithm with

Accuracy

[57] Dynamic/Machine

learning

VirusTotal 24000 4500 SVM (99.9)

OC-SVM (75.1)

Naïve Bayes (75.35)

DT (83.71)

[33] Memory Foren-

sics/Machine

Learning

MalShare

VirusShare

2600 10500 J84 (96.5)

BayesNet (89.4)

Naïve Bayes (86.4)

SVM (94.09)

[24] Dynamic/Machine

Learning

Rootkit.com

VirusShare

VX Heaven

473 418 DT (95.11)

RF (96.74)

KNN (91.85)

[58] Dynamic/Deep

Learning

x 1300 700 FNN (67.7)

Our Ap-

proach

Memory Analy-

sis/Both Machine

learning and

Deep Learning

VirusTotal

VirusShare

VX Heaven

400 400 DT (95)

RF (95.5)

KNN (92.8)

SVM (96.2)

LSTM (85.8)
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Conclusion and Future Work

6.1 Conclusion

Rootkit is a malicious program that exist with extremely insidious nature. The heinous

nature of these programs to evade detection, make it difficult for the detection tools

to know when the rootkits have infiltered the system. Once it gets installed on the

system, alien behaviors can be observed that shows that some remote attacker has

got an access to the system. These types of malwares are extremely dangerous as the

existence of the attack cannot be judged by traditional detection tools and techniques,

as a result can cause significant data loss and damage to the system. Although there are

many efforts available to detect the malwares particularly rootkits, but still there always

remained loop holes. Therefore, there is a need to device a standard mechanism that

can detect these rootkits efficiently. Therefore, we explored the efficiency of memory

analysis technique to detect the rootkits. Also, we tried to develop an automated tool

by using machine learning algorithms and deep learning to easily and accurately identify

the presence of rootkits in a system.

We used memory analysis combined with machine learning and deep learning algorithms.

For the purpose, we captured the memory dumps (data acquisition) at different time,

performed memory analysis, created csv file, performed data preprocessing and after

that model training and then model evaluation. We have evaluated based on accuracy,

execution time, precision, recall and f1-Score. Lastly, we have performed K-fold cross

validation to validate the results of our model.

We have provided rootkit detection solution using Random Forest, Support vector ma-
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chine, K- Nearest neighbor, decision tree and long and short-term memory method. Our

final results show that support vector machine gives the best result with accuracy equal

to 96.2%. after that Random Forest that gives accuracy of 95.5%. if we compare the

two, the execution time of SVM is less than the RF. Overall K-nearest neighbor takes

lowest time to generate the results. LSTM shows a result 85.8% which is not so good

but as a deep learning model we can consider it a good outcome. Also, the execution

time of LSTM is far more than classification algorithms. Deep learning execution time

is generally greater than that of traditional machine learning due to computationally

intensive operations like matrix multiplications and convolutions contribute to longer

execution times.

Hence this research work provides a machine learning and deep learning-based rootkit

detection model which can be used in future. The thesis has contributed in following

way.

6.2 Thesis Contribution

This research work makes following novel contribution to the literature.

• Volatility has never been used for rootkits detection before.

• We used volatility 3.2, which has symbol tables instead of profiles. Before this

volatility 2.6 had been used for malware detection that uses profiles for memory

analysis.

• We have created our own dataset by capturing memory images from the windows

11.

• Proposed an efficient technique based on the memory analysis to detect the hidden

rootkits.

• Reduced the computational overhead by choosing best minimal number of features

(features=47).
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6.3 Future Work

There are still room for improvements which could be made in this research work to

detect the rootkits.

6.3.1 Multi-classification of Rootkits sub categories

There are several notable rootkit families that have been identified and studied by

security researchers. The research can be extended in a way to tackle them too. The

process needs to adopt multi class categorization. Here are a few examples of those sub

categories:

• Alureon/TDL

• Zeus/Zbot

• Rustock

• Hacking Team’s RCS

This thing needs to be kept in mind that rootkit families are dynamic and new variants

continue to emerge. So, there would be always a room of improvement at this point to

detect these categories of rootkits.

6.3.2 Reducing time for Memory Analysis

The most time taking step throughout the project is memory analysis. Performing

memory analysis on each and every sample takes a lot of effort. And then collecting

information about the DLLs, Handles, Processes, Privileges, services, networks, modules

and injection codes require execution of separate commands. After which the informa-

tion is converted to the csv file and final values for the sub features are collected.

The process can be minimized by writing a plugin for volatility in python language that

can execute all these commands at a time and outputs in a csv file with final values.
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