DYNAMIC MODE CONTROLLER DESIGN OF AMMONIA PRODUCTION UNIT

By

Muhammad Hamza Afzal Muhammad Hamza Butt Muhammad Nofal Javed Hassan Conteh

School of Chemical and Materials Engineering National University of Sciences and Technology

2023

DYNAMIC MODE CONTROLLER DESIGN OF AMMONIA PRODUCTION UNIT

By

Leader – (298356) – Muhammad Hamza Afzal

Member 1 - (312091) - Muhammad Hamza Butt

Member 2 - (296767) - Muhammad Nofal Javed

Member 3 – (322319) – Hassan Conteh

THESIS

Submitted to

National University of Sciences and Technology

in partial fulfilment of the requirements

for the degree of

B.E. CHEMICAL ENGINEERING

School of Chemical and Materials Engineering (SCME)

National University of Sciences and Technology (NUST)

June 2023

CERTIFICATE

This is to certify that work in this thesis has been completed by Mr. Mahammad Harnza Afzal, Mr. Muhammad Harnza Butt, Mr. Hassan Conteh, and Mr. Nofal Juved under the supervision of Dr. Muhammad Ahsan at the School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology, H-12, Islamabad, Pakistan.

Advisor:

Dr. Muhammad Ahsau

Department of Chemical Engineering School of Chemical and Materials Engineering National University of Sciences and Technology

Submitted Through:

116 23 HOD: -

Dr. Erum Pervaiz Department of Chemical Engineering School of Chemical and Materiala Engineering National University of Sciences and Technology

At6-6-2023

Dr. Azam Ali Khan

Principal/Dean:

School of Chemical and Materials Engineering National University of Sciences and Technology

DEDICATION

This FYP Thesis is dedicated to, foremost, our parents, who supported us and had our back throughout our life and our friends and teachers here at SCME, who have been so helpful.

ACKNOWLEDGEMENTS

All thanks to Allah, the Generous and Almighty for His countless blessings and rewards, who granted us the strength and ability to complete this thesis.

We would like to thank our supervisor **Dr. Muhammad Ahsan** and his continuous support and guidance during our project. They have been very generous and supportive and helped us to complete this thesis. We are thankful to other faculty of SCME as well for their assistance.

We would also like to thank our industrial supervisor for his guidance and help throughout the project and **Fatima Fertilizer Pakistan Ltd.** for giving us such a useful project and providing us all the data and details needed for completion of project.

We are also thankful to our parents and special thanks to our friends and seniors; without their support and encouragement, it would not have been possible to complete the project successfully.

Sincerely, Group 22

ABSTRACT

This thesis designs dynamic mode controllers for ammonia unit to increase production, reduce troubleshooting time and automate the plant. The study begins by reviewing literature and selecting the best approach for dynamic calculation. A comprehensive literature review covers process basics, methods for dynamic simulation, comparison of different approaches and choosing the best approach. This literature evaluation lays the groundwork for the planned study and future research. Thesis then presents a process flow diagram and details about process and dynamic procedures. The specifications and design criteria for different equipment such feed tanks, centrifugal pumps, pre-heaters, packed bed reactors, and columns are carefully studied. Equipment undergoes material and energy balances. Thesis also covers critical equipment component design and specifications. The design, function, and design considerations of shell-and-tube heat exchangers are examined. Discussions include packed-bed reactor design and reactions. Aspen Hysys was used for process simulation and for process dynamics and behaviour, providing a complete picture. Component lists, fluid packages, parameters, and reactor and reactor requirements are simulated. Simulations reveal process performance and enable optimization. Operation and process monitoring require instrumentation and control. Ratio and cascade control solutions are described for process stability and production optimization. This thesis assesses primary equipment costs, total investment, direct production expenses, income generation, and payback period for any industrial operation. These financial studies reveal the parallel ammonia plant's economic viability. Hazard and Operability (HAZOP) research identifies process hazards and recommends risk assessment and reduction. Explaining HAZOP and identifying process hazards ensures safety and regulatory compliance. This final-year thesis suggests designing dynamic mode controllers at various points of ammonia plant gives boost production capacity and eliminate bottlenecks. Process overview, material and energy balance calculations, equipment design, simulation, instrumentation and control strategies, cost estimation, and HAZOP studies are examined in detail to inform future research.

TABLE OF CONTENTS

CHAPTER 1	1
INTRODUCTION	1
1.1 BACKGROUND	1
1.2 PROBLEM STATEMENT	1
Research Objective	2
1.3 SCOPE OF PROJECT	3
1.4 RELEVANCE OF THE PROJECT	4
CHAPTER 2	7
Process Design	7
2.1 Ammonia Production	7
2.1.1 Kellogg's Process	
Front End	9
Backend	9
2.1.2 Hydrogenator	
2.1.3 Desulphurizer	
2.1.4 Primary Reformer	
2.1.5 Secondary Reformer	
2.1.6 High Temperature Shift Reactor	
2.1.7 Low Temperature Shift Reactor	
2.1.8 CO ₂ Absorber	
2.1.9 Stripper	
2.1.10 Methanator	
2.1.11 Syngas Compressor	
2.1.12 Ammonia Synthesis Reactor	
2.1.13 Ammonia Refrigeration	
2.2 Alternate Ammonia Process	13
2.2.1 Electrolysis of water	
2.2.2 Non-Thermal Plasma Synthesis	
2.2.3 Functional catalyst with nitrogenase motivated peptide	
2.4 Discussion of the selected technology	15
CHAPTER 3	18
Mass and Energy Balance	18

3.1 Material Balance	
3.1.1 Hydrogenator	
3.1.2 Desulphurizer	
3.1.3 Primary Reformer	
3.1.4 Secondary Reformer	
3.1.5 High Temperature Shift Reactor	
3.1.6 Low Temperature Shift Reactor	
3.1.7 Absorber	
3.1.8 Stripper	
3.1.9 Methanator	
3.1.10 Ammonia Synthesis Reactor	
3.2 Energy Balance	
3.2.1 Hydrogenator	
3.2.2 Primary Reformer	
3.2.3 Secondary Reformer	
3.2.4 Hight Temp shift Reactor	
3.2.5 Low Temp Shift Reactor	
3.2.6 Methanator	
3.2.7 Ammonia Reactor	
3.2.8 Heater for primary reformer feed	
3.2.9 Compressor	
CHAPTER 4	
Equipment Design:	Error! Bookmark not defined.
4.1 Shell-and-Tube Heat Exchanger	
4.1.1 Design Criteria and Specifications	
4.1.2 Heat Exchanger	
4.1.3 Heat Exchanger Design:	
4.1.4 Calculated Parameters	
4.2 Reactor Design (Packed Bed Reactor)	50
4.2.1 Secondary Reformer	
4.2.2 Volume of reactor	
4.2.3 Pressure Drop	
4.3 Reactor Design (Packed Bed Reactor)	
4.3.1 Low-Temperature Shift Converter	
-	v

4.3.2 Theoretical Background	56
4.3.3 Equipment Selection	56
4.3.4 Reaction Kinetics	58
Estimating the Weight of Catalyst	58
4.3.5 Volume of Reactor	61
4.3.6 Pressure Drop	62
CHAPTER 5	63
Economic Analysis	63
5.1 Background	63
5.1.1 Costing of Heat Exchanger	64
5.1.2 Costing of High Temperature Shift Reactor	66
CHAPTER 6	70
Process Simulation	70
6.1.1 Units Used	70
6.1.2 Component Lists	70
6.1.3 Property Package	72
6.1.5 Reaction Sets	73
6.2.1 PFD developed on HYSYS	
6.2.2 Feed and Product Specifications	
6.2.3 Hydrogenator Specification:	
6.2.4 Dynamic Data and Specification	
Desulphurizer Specifications	84
Dynamic Tab Data for HT Shift Reactor	89
6.3 Simulation Results and need for simulation	93
CHAPTER 7	94
Instrumentation	94
7.1 Dynamic Mode Controller	95
7.1.1 Our Methodology	
7.1.2 Method for tuning the controller	
7.2 Flow, Pressure, Level and Temperature Controllers	
7.3 Dynamic Mode Controllers Database	
CHAPTER 8	119
HAZOP Analysis	

8.1 Background	
8.2 Methodology	
8.3 Low Temperature Shift Reactor	
8.4 Ammonia Reactor	
8.5 Compressor	
Conclusions	
References	

LIST OF TABLES

Table 1: Ammonia production comparison	. 15
Table 2: Production technologies ranking	. 15
Table 3 Hydrogenator Mass Balance	. 18
Table 4 Desulphurizer Mass Balance	. 19
Table 5 Primary Reformer Mass Balance	. 20
Table 6 Secondary Reformer Mass Balance	.21
Table 7 HTS Mass Balance	. 22
Table 8 LTS Mass Balance	. 23
Table 9 Absorber Mass Balance	. 23
Table 10 Absorber Mass Balance 2	.24
Table 11 Stripper Mass Balance	. 25
Table 12 Mehanator Mass Balance	. 25
Table 13 Ammonia Reactor Material Balance	. 26
Table 14 Hydrogenator Energy Balance	. 28
Table 15 Primary Reformer Energy Balance	. 30
Table 16 Secondary Reformer Energy Balance	. 32
Table 17 HTS Energy Balance	. 34
Table 18 LTS Energy Balance	. 36
Table 19 Methanator Energy Balance	. 38
Table 20 Ammonia Reactor Energy Balance	. 40
Table 21 Heater for Reformer Feed Energy Balance	.41
Table 22 Compressor Energy Balance	. 42
Table 23 Heat Exchanger Formulae	. 46
Table 24 HE Data	. 47
	viii

Table 25: HE Data	47
Table 26 Calculated Parameters	48
Table 27 HE Geometry Tube Side	49
Table 28: HE Geometry Shell Side	49
Table 29 Comparison of Fixed Bed and Partially Fluidized Bed Reactors	57
Table 30 Summary of Costing	63
Table 31: FCC	68
Table 32: Variable Costs	
Table 33: Fixed Costs	69
Table 34 Feed and Product Specifications	82
Table 35 Dynamic Mode Controllers Database	
Table 36 HAZOP of LTS	
Table 37 HAZOP of Ammonia Reactor	
Table 38 HAZOP of Compressor	

LIST OF FIGURES

Figure 1: Ammonia Production Routes	8
Figure 2: Front end PFD for Kellogg's Process	9
Figure 3: Back end PFD for Kellogg's Process	9
Figure 4: Ammonia production alternative for Pakistan's future needs	
Figure 5 Polymath Code	52
Figure 6 Polymath results	53
Figure 7 Polymath Results 2	54
Figure 8 Polymath code for second Reactor	60
Figure 9 Polymath result for second Reactor	61
Figure 10 Component list	71
Figure 11 Fluid Package	72
Figure 12 Reactions	75
Figure 13 Reaction Set 1	76
Figure 14 Reaction Set 2	76
Figure 15 Reaction Set 3	77
Figure 16 Reaction Set 4	77
Figure 17 Reaction Set 5	
Figure 18 Reaction Set 6	
Figure 19 Reaction Set 7	79
Figure 20 Keq vs T Graph for ammonia from literature	
Figure 21 Main flowsheet on HYSYS	
Figure 22 Hydrogenator	
Figure 23 Hydrogenator Specification 2	

Figure 24 Desulphurizer Specifications	85
Figure 25 Dynamic Tab for Desulphurizer 2	85
Figure 26 Primary Reformer Specifications	86
Figure 27 Primary Reformer Specifications 2	86
Figure 28 Secondary Reformer Specifications 1	
Figure 29 Secondary Reformer Specifications 2	
Figure 30 High Temperature Shift Reactor 1	
Figure 31 High Temperature Shift Reactor 2	
Figure 32 Low Temperature Shift Reactor Specifications 1	
Figure 33 Low Temperature Shift Reactor Specifications 2	90
Figure 34 Methanator Specifications 1	90
Figure 35 Methanator Specifications 2	91
Figure 36 Ammonia Synthesis Specifications 1	91
Figure 37 Ammonia Synthesis Specifications 2	92
Figure 38 Simulation Results	93
Figure 39: Components involved in a Control Loop	94
Figure 40: Types of control loop approaches	96
Figure 41: Our Approach	97
Figure 42: Controller parameter tab	
Figure 43: Controller Tuning	
Figure 44: Cascade control loop for ammonia refrigeration	
Figure 45: Pressure control loop for recycle compressor	
Figure 46: Cascade loop for HTS	
Figure 47: Flow control loop for Secondary reformer inlet	
Figure 48: Multiple control loops in steam drum section	

Figure 49 Pre-heater temperature control loop	.104
Figure 50: Cascade loop for methanator	.104
Figure 51: Level control loop for ammonia separator	.105
Figure 52: Level control loop for absorber	.106
Figure 53: Dynamic Mode Controller Database QR Code	. 118

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The dynamic mode controller (DMC) has emerged as a powerful control algorithm for optimizing the performance of dynamic systems and processes. In the realm of industrial production, the design and implementation of an effective control strategy play a pivotal role in ensuring operational efficiency, product quality, and resource utilization. Ammonia, a key compound in various industries, serves as a prime example of where the application of a dynamic mode controller can yield significant benefits.

Ammonia, with its wide-ranging applications in agriculture, chemical synthesis, refrigeration, and more, plays a critical role in supporting global food security, sustaining chemical manufacturing, and meeting the demands of a rapidly growing population. As the demand for ammonia continues to rise, the need for efficient and precise control over its production processes becomes increasingly paramount.

1.2 PROBLEM STATEMENT

The ammonia production process plays a critical role in various industries, including agriculture, chemical manufacturing, and refrigeration. However, ensuring efficient and precise control over the production unit presents several challenges. The current control strategies employed in ammonia production units often struggle to optimize key process variables, maintain product quality, and respond effectively to disturbances and variations in feedstock composition.

The problem addressed in this thesis is the design and implementation of a dynamic mode controller (DMC) for an ammonia production unit. The aim is to overcome the limitations of existing control strategies and enhance the efficiency, stability, and overall performance of the production process.

Key Challenges:

• Process Dynamics: The ammonia production unit exhibits complex dynamics due to various factors such as heat transfer, chemical reactions, and interdependent

process variables. Capturing and controlling these dynamics effectively is crucial to achieving optimal operation and maximizing the production unit's performance.

- Disturbance Rejection: Ammonia production processes are susceptible to disturbances, including variations in feedstock composition, changes in operating conditions, and external factors. The existing control strategies often struggle to respond quickly and effectively to these disturbances, leading to suboptimal process performance and reduced product quality.
- Energy Efficiency: Ammonia production units consume a significant amount of energy, making energy efficiency a crucial aspect to optimize. Current control strategies may not adequately consider energy optimization objectives, resulting in excessive energy consumption and increased operational costs.
- Product Quality and Yield: Maintaining consistent product quality and maximizing ammonia yield are essential for meeting industry standards and economic viability. The existing control strategies may not adequately address variations in feedstock properties and other process uncertainties, leading to deviations in product quality and yield.
- Adaptability to Changing Operating Conditions: Ammonia production units often encounter variations in feedstock properties, market demands, and process requirements. The control strategies should be able to adapt to these changes and provide robust and flexible control to ensure stable operation and consistent performance.

Research Objective:

The primary objective of this thesis is to design and implement a dynamic mode controller for an ammonia production unit to address the challenges. The goal is to enhance process control, improve energy efficiency, maintain product quality, and enhance the overall performance of the ammonia production process.

By leveraging the predictive capabilities of the dynamic mode controller, this research aims to optimize key process variables, respond effectively to disturbances, and ensure stable and efficient operation of the ammonia production unit. The study will focus on the design, implementation, and evaluation of the dynamic mode controller, considering factors such as control parameter tuning, controller robustness, and adaptability to changing operating conditions.

Through the development and application of an advanced control strategy, this research seeks to contribute to the advancement of ammonia production processes, promote sustainability, and enable more efficient and optimized industrial practices.

1.3 SCOPE OF PROJECT

The scope of this thesis project encompasses the design, implementation, and evaluation of a dynamic mode controller (DMC) for an ammonia production unit. The project will focus on addressing the control challenges specific to the ammonia production process and aims to enhance the overall performance, efficiency, and stability of the production unit.

- Control Strategy Development: The project will involve the development of a dynamic mode controller for the ammonia production unit. The controller will utilize advanced control algorithms, such as model predictive control (MPC) or generalized predictive control (GPC), to optimize key process variables and improve control performance.
- Process Modelling and Identification: A mathematical model of the ammonia production unit will be developed, capturing the system's dynamics and interactions. If necessary, model identification techniques will be employed to estimate model parameters based on available data or experimental measurements. The model will serve as a foundation for the controller design and subsequent evaluation.
- Controller Implementation: The designed dynamic mode controller will be implemented in a simulation environment or a suitable control system platform. The controller will be integrated into the existing control infrastructure of the ammonia production unit, ensuring compatibility with sensors, actuators, and real-time operation.

- Performance Evaluation and Optimization: The performance of the dynamic mode controller will be evaluated through simulation studies and/or experiments on the actual production unit. The controller's ability to meet performance objectives, such as process stability, disturbance rejection, and set point tracking, will be assessed. Sensitivity analysis and tuning techniques will be applied to optimize the controller's performance.
- Comparative Analysis: The effectiveness of the dynamic mode controller will be compared with existing control strategies or conventional control approaches employed in the ammonia production unit. Key performance indicators, including product quality, energy consumption, and process stability, will be analyzed to determine the improvements achieved by the dynamic mode controller.
- Documentation and Reporting: The findings, methodology, and conclusions of the project will be documented in a detailed report or thesis. The report will provide an overview of the project objectives, the methodology followed, the results obtained, and any recommendations for further improvements or future research.

It is important to note that this thesis project will primarily focus on the control aspects of the ammonia production unit and the application of a dynamic mode controller. While process optimization and energy efficiency are essential considerations, the project's scope may not include extensive optimization algorithms or energy management systems unless directly related to the dynamic mode controller design.

Additionally, the project's scope may be influenced by the availability of data, resources, and access to the actual ammonia production unit for experimentation. The project will aim to provide practical insights and recommendations while considering the limitations and constraints of the research context.

1.4 RELEVANCE OF THE PROJECT

The project on the design and implementation of a dynamic mode controller (DMC) for an ammonia production unit holds significant relevance due to several key factors:

• Enhanced Process Control: The ammonia production process is complex and involves various interdependent variables. The application of a dynamic mode

controller can significantly improve process control by optimizing key variables such as temperature, pressure, and reactant flow rates. Enhanced control leads to improved process efficiency, stability, and product quality.

- Operational Efficiency and Cost Reduction: By implementing an effective dynamic mode controller, the ammonia production unit can achieve greater operational efficiency. The controller optimizes control inputs, minimizing energy consumption, and reducing waste. This leads to cost savings through improved resource utilization, decreased downtime, and increased production capacity.
- Product Quality Assurance: Ammonia is a critical component in various industries, including agriculture and chemical manufacturing. Consistency in product quality is crucial for meeting industry standards and ensuring customer satisfaction. The dynamic mode controller aids in maintaining stable process conditions, resulting in consistent product quality and reducing the risk of product variations.
- Disturbance Rejection and Robustness: Ammonia production processes are susceptible to disturbances such as variations in feedstock properties, changes in operating conditions, and external factors. The dynamic mode controller's ability to predict and adapt to disturbances enhances the system's robustness, allowing for more effective disturbance rejection and improved process stability.
- Sustainability and Environmental Impact: The implementation of a dynamic mode controller can contribute to sustainable practices in the ammonia production unit. By optimizing energy consumption and reducing waste, the controller helps minimize the environmental impact associated with the production process. This aligns with the growing global focus on sustainability and reducing carbon footprints.
- Advancement of Control Strategies: The project contributes to the advancement of control strategies in the field of ammonia production. By exploring the application of a dynamic mode controller and evaluating its performance, the project provides valuable insights and recommendations for optimizing control systems in similar industrial processes.
- Industrial Relevance and Practical Application: The project's relevance extends beyond academic research, as it directly addresses the control challenges faced in

ammonia production units. The outcomes of the project can be implemented in real-world industrial settings, offering practical benefits to ammonia production facilities, optimizing their operations, and improving their competitiveness.

CHAPTER 2

PROCESS DESCRIPTION

By focusing on the design and implementation of a dynamic mode controller for ammonia production units, this thesis project addresses the industry's need for improved control strategies, enhanced operational efficiency, and consistent product quality. It contributes to the broader goal of optimizing industrial processes, promoting sustainability, and achieving cost-effective production in the ammonia production sector.

2.1 Ammonia Production

Different procedures are followed to produce ammonia worldwide. The main procedure to produce ammonia has been Haber process since its development. Earlier processes like Frank-Caro process, Dry distillation and Birkeland-Eyde process, etc. were used for making ammonia but they have become obsolete due to their inefficiency. Due to significant environmental impacts of the Haber-Bosch process, some novel sustainable processes have been developed and are the main focus of research in ammonia production industry. Major process designs for ammonia production includes ThyssenKrupp, Kellogg's Process, Haldor Topsøe process and Linde Ammonia Technology. All of these processes have their advantages and disadvantages and all of them use Haber-Bosch process in the Ammonia synthesis reactors. We are also utilising the Kellogg's process for ammonia production using Natural Gas as feedstock for this study. As hydrogen obtained from natural gas reforming still has the lowest cost. But we have also discussed an alternative process for ammonia production which utilizes electro catalysis of water.

Figure 1: Ammonia Production Routes

2.1.1 Kellogg's Process

This process first desulphurizes natural gas from any sulphur content. Then this natural gas is converted into syngas by Kellogg's steam reforming process in reformers. Steam and natural gas are combined in reformer to produce hydrogen. The carbon dioxide and carbon monoxide produced because of reforming reactions are then removed in water gas shift reactions, carbon dioxide adsorption columns and methanator. Finally, the cleaned syngas is pressurised by a centrifugal compressor and then fed into ammonia synthesis converter. Here nitrogen and hydrogen are combined to form ammonia in the presence of iron catalyst through Haber-Bosch process. Ammonia produced through synthesis reactor is sent to a refrigeration loop where it is liquefied and separated from unreacted reactants. This process utilizes centrifugal compressors as much as possible to consume less energy. Waste heat recovery technology is also used especially after secondary reformer and high temperature shift reactor.

Front End:

Figure 2: Front end PFD for Kellogg's Process

Backend:

Figure 3: Back end PFD for Kellogg's Process

Following major operations are performed in this process:

2.1.2 Hydrogenator

Feed gas enters at high pressure and contains about 94% methane, 4% nitrogen and 10 ppm of organic sulphur. This sulphur is converted into H₂S by a hydrogen rich stream coming from syngas compressor. Cobalt molybdate or Nickel molybdate are used as catalysts for this reaction. It converts all of the organic sulphur into hydrogen sulphide.

2.1.3 Desulphurizer

It consists of a vessel containing ZnO beds. The hydrogen sulphide present in the natural gas is absorbed on these beds and the gas leaves the desulphurizer at 0.25 ppm of sulphur.

2.1.4 Primary Reformer

In primary reformer most of the hydrocarbons present in the natural gas are converted into hydrogen, carbon dioxide and carbon monoxide by steam methane reformation reaction.

$$CH_4 + H_2O \rightleftharpoons CO + 3H_2$$

Steam and heated natural gas are passed through metallic nickel catalyst and are converted to water and oxides of carbon. Temperature of primary reformer is about 820 °C. 9-10% methane content remains at the outlet of the primary reformer. Reforming is an endothermic reaction.

2.1.5 Secondary Reformer

It is a refractory lined vessel. Feed coming from primary reformer enters secondary reformer and combines with process air coming from compressor.

$$CH_4 + H_2O \rightleftharpoons CO + 3H_2$$

The compressed air burns at a burner gun at the inlet of the secondary reformer. This burning increases the temperature as well as separates nitrogen from oxygen. Again, steam methane reforming takes place in the presence of metallic nickel catalyst. Leaving gas is at 1000 °C and contains 0.3-0.4% of methane.

2.1.6 High Temperature Shift Reactor

The outlet gas of secondary reformer contains about 7.5% carbon dioxide and 12.5% carbon monoxide.

$$CO + H_2O \rightarrow CO_2 + H_2$$

In high temperature shift reactor, this carbon monoxide reacts with steam already mixed with the gas to form carbon dioxide through water gas shift reaction. It is an exothermic reaction, and the gas leaves the reactor at 430 °C and contains 3.1% carbon monoxide. Reduced iron is used as a catalyst in the high temperature shift reactor.

2.1.7 Low Temperature Shift Reactor

The syngas is passed through heat exchangers to reduce its temperature and recover the waste heat.

$$CO + H_2O \rightarrow CO_2 + H_2$$

The gas enters the low temperature shift reactor at 242°C and leaves at 255 °C because of exothermic reaction. Here the same water gas shift reaction takes place but with different copper catalyst and at a lower temperature. The carbon monoxide content is reduced to 0.5%.

2.1.8 CO₂ Absorber

The carbon dioxide content of the syngas has increased to 17.5% after shift reactors and is reduced to 0.1% in an absorption column utilising catacarb solution. The catacarb solution consists of 25% potassium carbonate with additives to inhibit corrosion and foaming. The syngas enters from the bottom of absorber, comes into intimate contact with lean catacarb solution flowing downwards through the packed beds of absorption column. CO_2 is absorbed by the catacarb solution during this counter current contact and the rich catacarb solution leaves through the bottom of the absorber.

2.1.9 Stripper

In the stripping section, the CO_2 absorbed in the rich catacarb solution is stripped by flashing under low pressure and by heating the solution. The lean catacarb solution is regenerated and cooled before being sent to absorber. While the CO_2 maybe vented or sent to another process of the plant.

2.1.10 Methanator

In methanator, the leftover carbon dioxide and carbon monoxide in the syngas are converted to methane and water by methanation reaction. It is the opposite of reforming reaction. Nickel is used to catalyse this reaction. The outlet gas of methanator contains less than 10 ppm of the oxides of carbon. These reactions are highly exothermic.

$$CO + 3H_2 \rightarrow CH_4 + H_2O$$
$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$$

2.1.11 Syngas Compressor

Two case barrel type compressor is used to compress the syngas to bring it to its reaction pressure. Ammonia synthesis reaction being reversible requires high pressure of about 200-300 atms. It is driven by two turbines in tandem. Centrifugal compressor is used here to minimise the energy consumption and make the process more efficient.

2.1.12 Ammonia Synthesis Reactor

It is the main part of ammonia plant. Here Haber-Bosch process is used to form ammonia. Compressed syngas is fed into the ammonia reactor and forms ammonia under high pressure and temperature.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

It is a reversible reaction which gives only 12-15% conversion. A recycle stream is therefore used to increase the overall conversion of ammonia to reactor to 98%. A purge stream is introduced to purge the recycle of inert components and prevent the build-up of inert components in the recycle loop. Reduced iron catalyst modified with aluminium, magnesium and potassium oxides is used to catalyse this reaction. It is a highly exothermic reaction and requires an internal heat exchanger or some sort of quenching.

2.1.13 Ammonia Refrigeration

Ammonia produced above is liquefied and separated from reactants in a refrigeration loop. The refrigeration loop utilises cold ammonia as a refrigerant. The liquid ammonia is then stored in insulated storage tanks.

2.2 Alternate Ammonia Process

As the world is moving to more sustainable processes, it is essential that ammonia production industry keeps pace with the rising tide of sustainability and efficiency. Reforming of natural gas generates significant amounts of carbon dioxide which is the top contributor to global warming. To produce cleaner hydrogen and thus cleaner and environment friendly ammonia, we propose the combination of Kellogg's process with electrolysis of water.

2.2.1 Electrolysis of water

In this process alkaline water can be electrolysed into hydrogen and oxygen in an electrochemical cell with the help of electric current.

$$2H_2O(l) \rightarrow 2H_2(g) + O_2(g)$$

The electricity coverts water into hydrogen and oxygen while coagulating any impurities. These impurities are then removed though gravity separators and clean hydrogen is produced without any harmful by-products. This hydrogen is then sent to ammonia synthesis reactor which combines hydrogen with nitrogen to form ammonia through Haber-Bosch process. This process becomes further clean if renewable sources of electricity production are used.

2.2.2 Non-Thermal Plasma Synthesis

This alternative has the advantage of operating at temperatures around 50°C and atmospheric pressure conditions. This solves some of the problems posed by HB since the reduction of these conditions has a direct impact on the cost of energy and fossil fuels. However, it comprises two challenges yet to be developed (A review on the non-thermal plasma-assisted ammonia synthesis, 2018).

- Nitrogen gas fixation
- Reverse reactions

In addition, the state of conversion and efficiency still needs to be advanced, so it is in the small and medium scale development phase.

2.2.3 Functional catalyst with nitrogenase motivated peptide

Ammonia is produced in nature by nitrogenase enzymes with an efficiency of about 75%. Since this percentage is very high, it is intended to use these enzymes for the industrial production of NH3. This type of ammonia synthesis is very promising but its low temperatures and working pressures present an efficiency of less than 1%, which requires catalysts to improve this efficiency (Renner, et al., 2020). On the other hand, peptide functional catalyst has been developed and tested in anion exchange-based systems. The materials used for such a catalyst show promising results compared to conventional catalysts.

2.4 Discussion of the selected technology

In accordance with the previous description, different alternatives exist to carry out a complete and reliable process of ammonia synthesis being necessary to select the best one in order to suit the proposed project.

The process to be carried out is then selected under qualitative and subjective comparing different factors that influence production. Based on different articles, research and reports, using the same weighting technique as in Table 1 and Table 2: (green=good (2 points), yellow=acceptable (1 point), red=bad (0 points)) results are obtained in Table 1 and 2:

	Efficiency	Cost	P & T conditions	TRL
Haber-Bosch				
Electrochemical				
processes				
Non-thermal				
plasma				
synthesis				
Functional				
catalyst with				
nitrogenase				
motivated				
peptide				

Table 1: Ammonia production comparison

Table 2: Production technologies ranking

	Points		
Haber-Bosch	6		
Electrochemical processes	5		
Non-thermal plasma synthesis	4		
Functional catalyst with nitrogenase	4		
motivated peptide			

Despite using Haber-Bosch process due to more practicality to implement the dynamic mode controller in Pakistan's current ammonia industry landscape, a sustainable alternative for future means can be suggested.

Figure 4: Ammonia production alternative for Pakistan's future needs

CHAPTER 3

MATERIAL AND ENERGY BALANCE

3.1 Material Balance:

Basis

1 hour of steady state operation in an open system.

Formulas

Mass Out = Mass In + Generation - Consumption - Accumulation

$$X_A = \frac{(N_{A_0} - N_A)}{N_{A_0}} \quad \xi = \frac{(n_i - n_{io})}{\gamma}$$

3.1.1 Hydrogenator

Reactions

$$CH_3 - SH + H_2 \rightarrow CH_4 + H_2S$$

Table 3 Hydrogenator Mass Balance

Streams	NG		H2	OUT	FLET
Species	Molar Flow	Mass Flow	Molar Flow	Molar Flow	Mass Flow
Nitrogen	17.4	487.6	7.7	25.1	702.3
Hydrogen	0.0	0.0	322.0	321.9	643.7
Argon	1.4	55.3	0.0	1.4	55.3
СО	0.0	0.0	0.0	0.0	0.0
C02	146.4	6439.6	0.0	146.4	6439.6
H2S	0.0	0.0	0.0	0.1	4.7
Methane	1191.4	19062.8	0.0	1191.6	19065.0

Ethane	19.8	592.9	0.0	19.8	592.9
Propane	2.8	121.9	0.0	2.8	121.9
n-Butane	1.4	80.3	0.0	1.4	80.3
n-Pentane	1.4	99.7	0.0	1.4	99.7
M-Mercaptan	0.1	6.6	0.0	0.0	0.0
TOTAL	1382.0	26946.6	329.7	1711.7	27805.4

3.1.2 Desulphurizer

Reactions

$$ZnO + H_2S \rightarrow ZnS + H_2O$$

Table 4 Desulphurizer Mass Balance

Streams	Inlet		Outlet		
Species	Molar Flow	Mass Flow	Molar Flow	Mass Flow	
Nitrogen	25.1	702.3	25.1	702.3	
Hydrogen	321.9	643.7	321.9	643.7	
Argon	1.4	55.3	1.4	55.3	
СО	0.0	0.0	0.0	0.0	
CO2	146.4	6439.6	146.4	6439.6	
H2S	0.1	4.7	0.0	0.1	
Methane	1191.6	19065.0	1191.6	19065.0	

Ethane	19.8	592.9	19.8	592.9
Propane	2.8	121.9	2.8	121.9
n-Butane	1.4	80.3	1.4	80.3
n-Pentane	1.4	99.7	1.4	99.7
H20	0.0	0.0	0.1	2.4
TOTAL	1711.7	27805.4	1711.7	27803.2

3.1.3 Primary Reformer

Reactions

$$CH_4 + H_2O \rightarrow CO + 3H_2$$

$$C_2H_6 + 2H_2O \rightarrow 2CO + 5H_2$$

$$C_3H_8 + 3H_2O \rightarrow 3CO + 7H_2$$

$$C_4H_{10} + 4H_2O \rightarrow 4CO + 9H_2$$

$$C_5H_{12} + 5H_2O \rightarrow 5CO + 11H_2$$

$$CO + H_2O \rightarrow CO_2 + H_2$$

Table 5 Primary Reformer Mass Balance

Streams	Inlet		Steam		Outlet	
Species	Molar Flow	Mass Flow	Molar Flow	Mass Flow	Molar Flow	Mass Flow
Nitrogen	25.1	702.3	0	0	25.1	702.3
Hydrogen	321.9	643.7	0	0	3038.8	6077.6

Argon	1.4	55.3	0	0	1.38	55.3
СО	0.0	0.0	0	0	348.8	9767.41
C02	146.4	6439.6	0	0	572.7	25199
H2S	0.1	0.1	0	0	0.1	0.1
Methane	1191.6	19065.0	0	0	476.6	7626
Ethane	19.8	592.9	0	0	0	0
Propane	2.8	121.9	0	0	0	0
n-Butane	1.4	80.3	0	0	0	0
n-Pentane	1.4	99.7	0	0	0	0
H2O	0.1	2.4	1887.9	33982.1	686.5	12356.7
TOTAL	1711.7	27805.4	1887.9	33982.1	5149.9	61784.7

3.1.4 Secondary Reformer

Reactions

$$CH_4 + H_2O \rightarrow CO + 3H_2$$
$$CH_4 + O_2 \rightarrow CO_2 + 2H_2$$
$$2H_2 + O_2 \rightarrow 2H_2O$$

Table 6 Secondary Reformer Mass Balance

STREAMS	Feed Inlet		Air		Outlet	
Species	Molar Flow	Mass Flow	Molar	Mass Flow	Molar	Mass Flow
			Flow		Flow	
Nitrogen	25.1	702.3	1171.2	32793.6	1196.3	33495.9
Hydrogen	3038.8	6077.7	0.0	0.0	3900.8	7801.6
Argon	1.4	55.3	14.1	564.0	15.5	619.3
СО	348.8	9767.4	0.0	0.0	754.0	21111.1
---------	--------	---------	--------	---------	--------	----------
CO2	572.7	25199.2	0.0	0.0	641.7	28235.2
H2S	0.0	0.1	0.0	0.0	0.0	0.1
Methane	476.6	7626.0	0.0	0.0	2.5	39.9
H20	686.5	12356.7	0.0	0.0	772.8	13909.6
02	0.0	0.0	314.7	10070.4	0.0	0.0
TOTAL	5149.9	61784.7	1500.0	43428.0	7283.5	105212.7

3.1.5 High Temperature Shift Reactor

Reactions

$$CO + H_2O \rightarrow CO_2 + H_2$$

Table 7 HTS Mass Balance

STREAMS	FEED	INLET	OUTLET	
Species	Molar Flow	Mass Flow	Molar Flow	Mass Flow
Nitrogen	1196.3	33495.9	1196.3	33495.9
Hydrogen	3900.8	7801.6	4466.3	8932.6
Argon	15.5	619.3	15.5	619.3
СО	754.0	21111.1	188.5	5277.8
C02	641.7	28235.2	1207.2	53116.1
H2S	0.0	0.1	0.0	0.1
Methane	2.5	39.9	2.5	39.9
H20	772.8	13909.6	207.3	3731.0
TOTAL	7283.5	105212.7	7283.5	105212.7

3.1.6 Low Temperature Shift Reactor

Reactions

$$CO + H_2O \rightarrow CO_2 + H_2$$

Table 8 LTS Mass Balance

STREAMS	FEED	INLET	С	DUTLET
Species	Molar Flow	Mass Flow	Molar Flow	Mass Flow
Nitrogen	1196.2	33495.9	1196.3	33495.9
Hydrogen	4466.2	8932.6	4635.9	9271.9
Argon	15.5	619.3	15.4	619.2
СО	188.5	5277.8	18.8	527.7
CO2	1207.2	53116.1	1376.8	60580.3
H2S	0	0.1	0.	0.1
Methane	2.5	39.9	2.5	39.9
H20	207.3	3731.0	37.6	677.5
TOTAL	7283.5	105212.7	7283.5	105212.7

3.1.7 Absorber

Reactions

$K_2CO_3 + CO_2 + H_2O \rightarrow 2KHCO_3$

Table 9 Absorber Mass Balance

STREAMS	FEED	INLET		OUTLET
Species	Molar Flow	Mass Flow	Molar Flow	Mass Flow
Nitrogen	1196.3	33495.9	1196.3	33495.9
Hydrogen	4635.9	9271.9	4635.9	9271.9
Argon	15.5	619.3	15.5	619.3
CO	18.8	527.8	18.8	527.8

CO2	1376.8	60580.4	27.5	1211.6
H2S	0.0	0.1	0.0	0.1
Methane	2.5	39.9	2.5	39.9
H20	37.6	677.5	37.6	677.5
K2CO3	0.0	0.0	0.0	0.0
КНСОЗ	0.0	0.0	0.0	0.0
TOTAL	7283.5	105212.7	5934.2	45843.9

Table 10 Absorber Mass Balance 2

STREAMS	LEAN Catacarb S	olution INLET	RICH Catacarb Solution OUT		
Species	Molar Flow	Mass Flow	Molar Flow	Mass Flow	
Nitrogen	0.0	0.0	0.0	0.0	
Hydrogen	0.0	0.0	0.0	0.0	
Argon	0.0	0.0	0.0	0.0	
СО	0.0	0.0	0.0	0.0	
CO2	0.0	0.0	0.0	0.0	
H2S	0.0	0.0	0.0	0.0	
Methane	0.0	0.0	0.0	0.0	
H20	1349.3	24287.2	0.0	0.0	
K2CO3	1349.3	186478.6	0.0	0.0	
КНСОЗ	0.0	0.0	2698.6	270168.4	
TOTAL	2698.6	210765.9	2698.6	270168.4	

3.1.8 Stripper

Reactions

$$2KHCO_3 \rightarrow K_2CO_3 + CO_2 + H_2O$$

Table 11 Stripper Mass Balance

STREAMS	RICH C Solut	atacarb ion IN	LEAN (Soluti	LEAN Catacarb Solution OUT		OUT
Species	Molar	Mass Flow	Molar	Mass	Molar Flow	Mass
	Flow		Flow	Flow		Flow
КНСОЗ	2698.5	270168.3	0	0	0	0
K2CO3	0	0	1349.3	186478.6	0	0
H20	0	0	1349.3	24287.2	0	0
CO2	0	0	0	0	1349.3	59368.8
TOTAL	2698.5	270168.3	2698.6	210765.8	1349.3	59368.8

3.1.9 Methanator

Reactions

$$CO + 3H_2 \rightarrow CH_4 + H_2O$$
$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$$

Table 12 Mehanator Mass Balance

STREAMS	FEED INLET		OUTLET	
Species	Molar Flow	Mass Flow	Molar Flow	Mass Flow
Nitrogen	1196.3	33495.9	1196.2	33495.9
Hydrogen	4635.93	9271.8	4469.2	8938.5
Argon	15.5	619.2	15.5	619.2
CO	18.8	527.7	0	0
CO2	27.5	1211.6	0	0
H2S	0.0	0.1	0.0	0.1

Methane	2.5	39.9	48.9	782.1
H2O	37.6	677.4	111.6	2008.1
TOTAL	5934.2	45843.9	5841.4	45843.9

3.1.10 Ammonia Synthesis Reactor

Reactions

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Table 13 Ammonia Reactor Material Balance

	FEED	INLET	М	IX	REC	RECYCLE		REACTOR	
STREAMS							OUT	TLET	
Species	Molar	Mass	Molar	Mass	Molar	Mass	Molar	Mass	
	Flow	Flow	Flow	Flow	Flow	Flow	Flow	Flow	
Nitrogen	1196.3	33496	3279.9	91838.5	2214.0	61991.0	2460.0	68879	
Hydrogen	4469.2	8939	11511.8	23023.5	8146.6	16293.2	9051.8	18104	
Argon	15.5	619.3	50.1	2002.2	45.1	1802.0	50.1	2002.2	
Methane	48.9	782.1	104.8	256.0	94.3	230.4	104.8	256.0	
NH3	0.0	0.0	0.0	0.0	0.0	0.0	1640.0	27880	
H2S	0.0	0.1	0.0	0.3	0.0	0.1	0.0	0.1	
TOTAL	5729.9	43836	14946.6	117121	10500	80316.8	13307	117120	

STREAMS	PU	RGE	TO SPLITTER		TO STO	ORAGE
Species	Molar	Mass	Molar Flow	Mass Flow	Molar Flow	Mass
	Flow	Flow				Flow
Nitrogen	246.0	6887.9	2460.0	68878.9	0.0	0.0

Hydrogen	905.2	1810.4	9051.8	18103.6	0.0	0.0
Argon	5.0	200.2	50.1	2002.2	0.0	0.0
Methane	10.5	25.6	104.8	256.0	0.0	0.0
NH3	0.0	0.0	0.0	0.0	1640.0	27879.5
H2S	0.0	0.0	0.0	0.1	0.0	0.0
TOTAL	1166.7	8924.1	11666.6	89240.9	1640.0	27879.5

3.2 Energy Balance:

Energy balance is applied on each equipment using the standard formulae for calculation of work and heat duty. Energy balance is applied on reactor by using standard heat of reactions.

First law of thermodynamics was used:

 $\Delta \mathrel{\rm E} = \Delta \mathrel{\rm K} \mathrel{\rm E} + \Delta \mathrel{\rm P} \mathrel{\rm E} + \Delta \mathrel{\rm U} = \mathrel{\rm Q} - \mathrel{\rm W}$

Overall energy balance equation was used to calculate heat duty:

 $\Delta H^{\cdot} = \xi \Delta H^{\cdot} \circ r + \sum n^{\cdot} out \cdot H out - \sum n^{\cdot} in \cdot H in$

3.2.1 Hydrogenator:

Table 14 Hydrogenator Energy Balance

		Inlet T 399 °c	Ref T 25 °c	Out T 401 °c
Hydrogenator	INLET		OUTLET	-
Components	Mole Percent	Molar FLOW kgmol	Mole Percent	Molar FLOW kgmol
Nitrogen	1.02	17.41	1.46	25.08
Hydrogen	18.89	322	18.80	321.86
Argon	0.08	1.38	0.08	1.38
СО	0	0	0	0
CO2	8.58	146.35	8.55	146.35
H2S	0	0	0.008	0.13
Methane	69.91	1191.42	69.61	1191.5
Ethane	1.15	19.76	1.15	19.76

Propane	0.16	2.76	0.16	2.76
n-Butane	0.08	1.38	0.08	1.38
n-Pentane	0.08	1.38	0.08	1.38
M-Mercaptan	0.008	0.13	0	0
TOTAL	100	1704	100	1711.6
Cp of NG	51.62	kj/kgmol	Cp out	51.62 KJ/Kgmol
Hin	32897220	Kj/hr	Hout	33054131 KJ/hr

$\text{CH3-SH+H2} \rightarrow \text{CH4+H2S}$

Heat of	-	kj/kgmol				
reaction	72000					
ΔH298	-	KJ/hr	Heat	ΔH [.]	57407.74	kj/hr
	99504		Duty			

3.2.2 Primary Reformer:

PRIMARY REFORMER		In T	716 °c		Out T	1044 °c		Ref 25 °c
Compone nt	Mol Frac	Kg mol/h r	Cp kj/kgmol °c	Hi (KJ/hr)	Mol Frac	Kg mol/hr	Cp (kJ/kgmol °c	Hout (kj/hr)
Nitrogen	0.006	25.08	33.35	34967 0	0.004	25.08	34.33	642440. 7
Hydrogen	0.08	321.8	30.58	4E+06	0.59	3038.8	32.50	7368446 2
Argon	0.0003	1.38	20.93	12091	0.000 3	1.38	20.93	21578.2 4
СО	0	0	33.71	0	0.06	348.83	37.10	9656663
CO2	0.04	146.3	51.62	3E+06	0.11	572.70	48.83	2086477 0
H2S	7.6E- 07	0.002	46.13	53.29 7	5E-07	0.002	52.94	109.166 7
Methane	0.33	1191. 6	80.34	4E+07	0.09	476.62	100.4	3569718 4
Ethane	0.005	19.76	119.2	98485 8	0	0	0	0
Propane	0.0007	2.76	188.3	21760 5	0	0	0	0
n-Butane	0.0003 8	1.38	212.6	12282 1	0	0	0	0
n-Pentane	0.0003 8	1.38	196.6	11355 2	0	0	0	0

Table 15 Primary Reformer Energy Balance

H20	0.52	1887. 1	47.7	4E+07	0.13	686.48	55.71	2856050 7
TOTAL	1	3598. 7	1098	9E+07	1	5149.9 4		1.69E+0 8
				8673 6 MJ/hr				169127. 7

1	CH4+H2O→CO+ 3H2	Conv 60 %	Reac 1	210	MJ/kg	Reac 4	650	MJ/kg
2	C2H6+2H2O→2C O +5H2	100 %	ΔH298	15013 7	MJ/hr	Δ <i>H</i> 29 8	3593.2	MJ/hr
3	C3H8+3H2O→ 3CO +7H2	100 %	Reac 2	350	MJ/kg	Reac 5	800	MJ/K g
4	C4H10+4H2O→ 4CO +9H2	100 %	∆ <i>H</i> 298	13834	MJ/hr	Δ <i>H</i> 29 8	5528	MJ/hr
5	C5H12+5H2O→ 5CO +11H2	100 %	Reac 3	500	MJ/K g	Reac 6	-41	MJ/kg
6	CO+H2O→ CO2 +H2	55%	ΔΗ298	4146	MJ/hr	Δ <i>H</i> 29 8	- 17480. 6	Mj/hr
		ΔΗ =ξΔ	M.or+∑n`o	out·H^out	–∑n in∙H	[^in		

Heat Duty	ΔН [.]	24214	MJ/hr		
		9			

3.2.3 Secondary Reformer:

Table 16 Secondary Reformer Energy Balance

	SECONDARY REFORMER			Ref T	25 °c				
	STREAMS	FEED INLET	In T	1096 °c		Out T	918.4 °c		
Sr.N o.	Components	Mole Percent	Kgmol/ hr	Cp kJ/kgmol °c	Hi Kj/hr	Mol e Perc	Kgmol/hr	Ср	Hout (kJ/h r)
1	Nitrogen	17.98	1196.28	34.68	444334 50.5	16.4 2	1196.28	34. 56	3694 4222. 36
2	Hydrogen	45.69	3038.82	35.10	114258 565.4	53.5 5	3900.81	33. 59	1170 7854 7
3	Argon	0.23	15.48	20.93	347044. 97	0.21	15.48	20. 93	2894 95.78
4	СО	5.24	348.83	41.22	154022 20.79	10.3 5	753.96	38. 87	2618 7833. 34
5	CO2	8.61	572.70	39.95	245058 70.75	8.81	641.70	45. 57	2612 7410. 4

6	H2S		4.15E-05	0.002	60.33	178.60	3.7E -05	0.002	56. 20	138.7 9
7	Metha	ine	7.16	476.62	476.62 121.04 617875 0.03 96.83			2.49	10 9.6 3	2442 53.83
8	H2O		10.32	686.48	57.12	82915.5 5	10.6 0	772.75	52. 44	3620 3588. 4
9	02		4.73	314.7	32.56	109772 82.02	0	0	33. 51	0
10	ΤΟΤΑ	L	100	6649.94		271795 125.5		7283.50		2430 7548 9.9
						271795. 12	MJ/ hr			2430 75.48
	Reac 1	210 MJ	/kgmol		CH4+H2O- conv	→ CO+3H2	85%			MJ/h r
	ΔH2 98	8507 7.4	MJ/hr		CH4+02→C	CO2+2H2				
	Reac 2	-320	MJ/kgm ol		2H2+O2→2	2H2O				
	Δ <i>H</i> 2 98	- 2208 0	MJ/hr	ΔΗ'=ξΔΗ'	∘r+∑n`out·H	^out–∑n`i	n∙H^in			
	Reac 3	-480	MJ/kgm ol							
	Δ <i>H</i> 2 98	4146	MJ/hr		Heat Duty	ΔΗ.	384 23	MJ/hr		

3.2.4 Hight Temp shift Reactor:

Table 17 HTS Energy Balance

High Temp Shift Reactor		IN T	339 °с			Out T	397°c	
Compone nts	Mol e %	Kgmol/ hr	Cp (kJ/kgmo l°c)	Hi (kJ/hr)	Mole %	Kgmol/ hr	Cp kJ/kgmo l°c	Hout (kJ/hr)
Nitrogen	16.4 2	1196.2 8	31.43	118086 65	16.42	1196.2 8	31.78	141451 83
Hydrogen	53.5 5	3900.8 1	29.243	358194 65	61.32	4466.2 9	29.38	488279 98
Argon	0.21	15.48	20.93	101748	0.21	15.48	20.93	120542
СО	10.3 5	753.96	30.75	728016 9	2.58	188.49	31.14	218356 3
CO2	8.81	641.70	47.14	949897 5	16.57	1207.1 8	48.36	217193 18
H2S	3.7 E- 05	0.002	39.10	33	3.7E-05	0.002	40.12	41
Methane	0.03	2.49	58.27	4562	0.03	2.49	61.59	57140

H20	10.6 0	772.75	4E+01	9.83E+0 6	2.84	207.27	41.48	319866 4
TOTAL	100	7283.5 1		743863 0	100	7283.5 1		902524 52
				74386	MJ/hr			90252
								MJ/hr
			Reac	CO+H2O- +H2	→ CO2	Conv	65%	
					-410	MJ/kg mol		
				ΔΗ298	- 200932. 12	MJ/hr		
			ΔΗ =ξΔΗ	l`∘r+∑n`ou	t∙H^out–∑	n in∙H^in		
		Heat Duty	ΔΗ.	- 185065. 97	MJ/hr			

3.2.5 Low Temp Shift Reactor:

Table 18 LTS Energy Balance

			In T	227 °c		OUT T	236 °c	
Compon ents	Mole perc ent	Kgmol /hr	Cp (kJ/kgm ol°c)	Hi kJ/hr	Mole Perce nt	Kgmol /hr	Cp (kJ/kgm ol°c)	Hout (kJ/hr)
Nitrog en	16.4 2	1196. 28	30.70	742024	16.42	1196.2 8	3.08E+0 1	7.77E+ 06
Hydro gen	61.3 2	4466. 29	29.02	261877 19	63.64	4635.9 3	2.90E+0 1	2.84E+ 07
Argon	0.21	15.48	20.93	65455.7 2	0.21	15.48	20.93	68372. 0
СО	2.58	188.4 9	30.06	114476 4.69	0.25	18.84	3.01E+0 1	1.20E+ 05
CO2	16.5 7	1207. 18	44.23	107858 47	18.90	1376.8 2	4.45E+0 1	1.29E+ 07
H2S	3.7E- 05	0.002	37.17	20.75	3.7E- 05	0.002	3.73E+0 1	2.18E+ 01
Metha ne	0.03	2.49	51.9	26149.3 4	0.03	2.49	5.24E+0 1	2.76E+ 04
H2O	2.84	207.2 7	39.16	163997 1.77	0.51	37.63	38.93	30917 0.25

TOTAL		100	7283. 51		472701 70.1	100	7283.5 1		4.96E+ 07
		Ref T c	25		47270.1 701	MJ/hr			4.96E+ 04
									MJ/hr
			Reac	CO+H2O- +H2	→ CO2		65	% conv	
					-410	MJ/kg mol			
				ΔH298	- 200932. 12	MJ/hr			
			ΔH [·] =ξΔH [·] ∑n [·] in·H^i	•r+∑n`out∙ n	H^out–				
Heat Duty			ΔН.	- 1.99E+ 05	MJ/hr				

3.2.6 Methanator:

INLET				In T	325 °c		Out T	342 °c	
Sr N o.	Compo nents	Mole %	Kgmol /hr	Cp (kJ/kgm ol°c)	Hin (kJ/hr)	Mole %	Kgmol /hr	Cp (kJ/kg mol	Hout (kJ/hr)
1	Nitroge n	20.1 5	1196. 28	31.34	11250 866	20.4 7	1196. 28	31.45	1192851 6.55
2	Hydrog en	78.1 2	4635. 93	29.21	40627 707	76.5 0	4469. 24	29.25	4144098 1.27
3	Argon	0.26	15.48	20.93	97211	0.26	15.48	20.93	102720.1 2
4	СО	0.31	18.84	30.66	17337 7	0	0	30.77	0
5	CO2	0.46	27.53	46.81	38676 0.4	0	0	47.21	0
6	H2S	4.6E -05	0.002	38.85	32.21	4.73 E-05	0.002	39.15	34.30
7	Methan e	0.04	2.49	57.47	42993 .28	0.83	48.87	58.44	905546.7 8
8	H20	0.63	37.63	40.29	45495 1	1.90	111.5 5	40.56	1434623. 61

TOTAL	100	5934. 21		53033 899	100	5841. 44	5581242 2.66
				53033 .9	MJ/h r		55812.42 MJ/hr
	REAC	ΓIONS	CONVERS	ION	ζ		
Reac 1	CO+3I 4+H2(H2→CH)	100		18.8		
	-210	MJ/kg ml					
	Δ <i>H</i> 2 98	- 3958. 32					
Reac 2	CO2+4	4H2→CH4	1+2H2O	100	27.5		
	-160	MJ/Kg ml					
			Heat Duty	ΔΗ [.]	- 1.7E +04		

3.2.7 Ammonia Reactor:

Table 20 Ammonia Reactor Energy Balance

			INLET	In T 380 °c	OUT T 423 °c	
Sr. No.	Components		Mole %	kgmol	Mole %	kgmol
1	Nitroge	n	21.94	3279.94	18.48	2459.96
2	Hydroge	en	77.01	11511.76	68.02	9051.8
3	Argon		0.33	50.05	0.37	50.05
4	Methane		0.70	104.79	0.78	104.79
5	NH3		0	0	12.32	1639.97
6	H2S		5.5E-05	0.008	6.24E-05	0.008
7	TOTAL		100	14946.57	100	13306.59
			Cp kJ/kgmol°c	33.27	Cp kJ/kgmol°c	34.25
			Hin (kJ/hr)	1.77E+08	Hout (kj/hr)	1.81E+08
				Heat of Reac		
Reac	N2+3H2→2NH3		25% conv	-819.98 Kj/kgmol		
	ΔH298	- 91000	kJ/kgmol			
			Heat Duty	ΔΗ.	4776052	KJ/hr

3.2.8 Heater for primary reformer feed:

Table 21 Heater for Reformer Feed Energy Balance

	INLET	In T 382 °c	OUTLET	Out T 444 °c
Component	Mol Frac	Kg mol	Mol Frac	Kg mol
Nitrogen	0.006	25.08	0.006	25.08
Hydrogen	0.08	321.86	0.08	321.86
Argon	0.0003	1.38	0.0003	1.38
СО	0	0	0	0
C02	0.04	146.35	0.04	146.35
H2S	7.6E-07	0.002	7.6E-07	0.002
Methane	0.33	1191.56	0.33	1191.56
Ethane	0.005	19.76	0.005	19.76
Propane	0.0007	2.76	0.0007	2.76
n-Butane	0.00038	1.38	0.00038	1.38
n-Pentane	0.00038	1.38	0.00038	1.38
H2O	0.52	1887.13	0.52	1887.13
TOTAL	1	3598.67	1	3598.67
	Ср	42.12	Ср	42.77
	Hin	54112625	Hout	64490433.56 kj/hr
	ΔΗ [.]	10377808.56	Kj/hr	

3.2.9 Compressor:

Isentropic Power =
$$ZRT_1 \frac{\gamma}{\gamma - 1} (\underset{MW}{T2 - T1}) \otimes Q_m$$

Isentropic Efficiency = 75%

Actual power required =
$$\frac{\text{Isentropic power}}{\text{Efficency}}$$

Table 22 Compressor Energy Balance

Multistage Compressor Power		IN	OUT
	Compressor 1		
Qm 43513 kg/hr	Pressure [bar]	26.11	44.21
	Power [kW]	3086.02	
	Actual Power	3615.87	KW
	Compressor 2		
Qm 43513 kg/hr	Pressure [bar]	44.21	74.17
	Total Rotor [kW]	3724.34	
	Actual Power	4587.90	kW
	Compressor 3		
Qm 43513 kg/hr	Pressure [bar]	74.17	126.26
	Total Rotor [kW]	4711.95	

	Actual Power	6037.09	kW
--	--------------	---------	----

CHAPTER 4

EQUIPMENT DESIGN

4.1 Shell-and-Tube Heat Exchanger:

- Tube Layout and Size: The tube layout and size must be meticulously chosen to provide sufficient heat transfer area and to accommodate the desired fluid flow rates. Tube diameter, length, and pitch have an effect on heat transfer performance and pressure decrease.
- 2. Baffles and passes: Baffles are used to improve heat transfer by directing fluid flow and generating turbulence. Overall heat transfer coefficient and pressure drop are affected by the number and design of baffles, as well as the configuration of multiple tube passes.
- 3. Shell side: The design should take into account the fluid properties, flow rates, and pressure decrease on the shell side. Heat transfer efficacy is affected by the selection of shell-side baffles, inlet and outlet configurations, and flow arrangements (such as parallel or counter-flow).
- 4. Material Selection: Appropriate material selection is necessary to assure compatibility with the process fluids, temperature, and pressure conditions, and to prevent corrosion, erosion, and fouling.

4.1.1 Design Criteria and Specifications

Design criteria and specifications are crucial for achieving optimal performance and efficient operation in various industrial processes.

4.1.2 Heat Exchanger:

- 1. Heat Transfer Rate: The heat exchanger should be designed to provide the requisite heat transfer rate based on the heat load and temperature requirements of the process.
- 2. Fluid Compatibility: The selection of materials must take into account the heat exchanger's compatibility with the process fluids, including factors such as corrosion resistance and thermal expansion.
- 3. Pressure Drop: The design must guarantee an acceptable pressure drop across the heat exchanger in order to maintain fluid flow efficiency and reduce pumping costs.

4. Proper design should address potential fouling issues, such as scaling or deposition, by implementing features such as adequate cleaning mechanisms or fouling-resistant materials.

4.1.3 Heat Exchanger Design:

Shell and tube heat exchanger design using Kern's method follows a systematic approach to determine the required heat transfer area and size the heat exchanger appropriately. The method involves several steps:

1) Determine the Overall Heat Transfer Coefficient (U):

- Calculate the individual heat transfer coefficients for the hot and cold fluids inside the shell and tubes based on their properties, flow conditions, and heat transfer mechanisms (convection, conduction).
- Consider fouling factors to account for any surface fouling that may reduce the heat transfer coefficients.
- Calculate the overall heat transfer coefficient (U) using the appropriate equation, such as the Kern method equation for shell and tube heat exchangers.
- 2) Determine the Logarithmic Mean Temperature Difference (LMTD):
 - Identify the temperature profiles of the hot and cold fluids at the inlet and outlet of the heat exchanger.
 - Calculate the temperature differences between the fluids at each end and determine the logarithmic mean temperature difference (LMTD) using the appropriate equation based on the flow arrangement (parallel, counter-flow, or crossflow) and the number of shell and tube passes.
- 3) Determine the Required Heat Transfer Area:
 - Calculate the required heat transfer area (A) using the equation: $Q = U \times A \times LMTD$

where Q is the heat duty or the desired heat transfer rate.

• Rearrange the equation to solve for the required heat transfer area (A):

 $A = Q \div (U \times LMTD)$

- 4) Perform Iterative Sizing Calculations:
 - Estimate the initial heat exchanger dimensions and configuration based on the required heat transfer area.
 - Calculate dimensions, taking into account tube diameter, tube length, number of tubes, and overall dimensions.
 - Identifying and calculating the baffle type and spacing.
 - Calculate and verify that the pressure decrease across the heat exchanger meets the design specifications.

If necessary, iterate the sizing calculations to obtain an optimal design.

Specification	Formula		
Heat Balance	$Q = mc_p \Delta T$		
Log Mean Temperature Difference, R and S	$LMTD = \frac{\Delta T_1 - \Delta T_2}{\ln\left(\frac{\Delta T_1}{\Delta T_2}\right)} R = \frac{T_1 - T_2}{t_2 - t_1} S = \frac{t_2 - t_1}{T_1 - t_1}$		
Caloric Temperatures, T _c and t _c	$T_c = T_1 + F_c(T_1 - T_2)$ $t_c = t_1 + F_c(t_2 - t_1)$		
Flow Area	Shell Side $a_s = ID * \frac{C'B}{144P_T}$ Tube Side $a_t = \frac{N_t a_t'}{144n}$		
Mass Velocity	Shell Side $G_s = \frac{W}{a_s}$ Tube Side $G_t = \frac{W}{a_t}$		
Reynold's Number	Shell Side $Re_s = \frac{D_s G_s}{\mu}$ Tube Side $Re_t = \frac{DG_t}{\mu}$		
h_o and h_i	$h_o = \frac{j_H k}{D_s} \left(\frac{c\mu}{k}\right)^{\frac{1}{3}} \varphi_s h_i = \frac{j_H k}{D} \left(\frac{c\mu}{k}\right)^{\frac{1}{3}} \varphi_t$		
Tube-Wall Temperature	ho		
	$t_w = t_c + \frac{\varphi_s}{\frac{h_{io}}{\varphi_t} + \frac{h_o}{\varphi_t}} (T_c - t_c)$		
Clean Overall Co-efficient	$U_c = \frac{h_{io}h_o}{h_{io} + h_o}$		
Design Overall Co-efficient	$U_D = \frac{Q}{A * \Delta t}$		
No. of Crosses	$N+1 = \frac{12L}{B}$		
Shell Side Pressure Drop	$\Delta P_{s} = \frac{fG_{s}^{2}D_{s}(N+1)}{5.22 * 10^{10}D_{e}s\varphi_{s}}$		
Tube Side Pressure Drop	$\Delta P_{t} = \frac{f G_{t}^{2} L n}{5.22 * 10^{10} D s \varphi_{t}} \Delta P_{r} = \frac{4n * V^{2}}{s * 2g'} \Delta P_{T} = \Delta P_{t} + \Delta P_{r}$		

Table 23 Heat Exchanger Formulae

- The tube side fluid is the process stream to be cooled.
- The shell side fluid is the steam to be heated.

Table 24 HE Data

Hot Fluid – Tube Side	
Parameters	Value
Inlet Temperature (°C)	397
Outlet T (°C)	332
Mass flowrate (kg/hr)	180615
Avg. Cp (kJ/kg.K)	2.239
Avg. density (kg/m³)	7.89
Avg. viscosity (Cp)	0.0198
Thermal conductivity	0.1109
(W/mK)	

Table 25: HE Data

Cold Fluid - Shell Side	
Parameters	Value
Inlet T (°C)	310
Outlet T (°C)	312
Mass Flowrate (kg/hr)	253530
Cp (kJ/kg.K) vapor	7.91
Density (kg/m ³) vapor	702
Viscosity (Cp) vapor	0.021
Thermal Conductivity	0.0598
(W/mK)	

4.1.4 Calculated Parameters:

Table 26 Calculated Parameters

Parameters	Tube Side	Shell Side		
Duty (kW)	7158			
LMTD (°C)	34.8			
Reynold number	110490	109000		
Prandtl number	1.345	-		
h (film coefficient)	5217	31364		
U _c (W/m ² K)	3520			
U _d (W/m ² K)	1969			
R _d (m ² K/W)	0.0001			
Area (m²)	34.1			
Pressure Drop (kPa)	2.47	1.88		

- The exchanger geometry was chosen based on Aspen Exchanger Design and Rating (EDR) recommendation.
- The design was modified considering operation warnings provided by EDR.

Tube Side		
Number	374	
Length (m)	1.7	
OD (mm)	19.1	
ID (mm)	14.83	
Pitch	Rotated Sq. Pitch	
Passes	2	
Material	Stainless Steel	

Table 28: HE Geometry Shell Side

Shell Side		
OD (mm)	690	
ID (mm)	620	
Baffle spacing (mm)	150	
Passes	1	
Material	Stainless Steel	

Table 27 HE Geometry Tube Side

4.2 Reactor Design (Packed Bed Reactor)

4.2.1 Secondary Reformer:

Assumptions

- Adiabatic and steady state meaning no accumulation.
- Plug flow with no axial mixing.
- LHHW kinetic model

$$-r_{CH_{4}} = r_{1} + r_{2}$$

For reaction kinetics, Langmuir-Hinshelwood-Hogan-Watson Mechanism is followed:

$$\begin{split} r_{1} = & \left(\frac{k_{1}}{P_{H_{2}}^{2.5}}\right) \left(P_{CH_{4}} P_{H_{2}O} - \frac{P_{H_{2}}^{s} P_{CO}}{K_{1}}\right) \left(\frac{1}{\Omega}\right)^{2} \\ r_{2} = & \left(\frac{k_{2}}{P_{H_{2}}^{s.5}}\right) \left(P_{CH_{4}} P_{H_{2}O}^{2} - \frac{P_{H_{2}}^{4} P_{CO_{2}}}{K_{2}}\right) \left(\frac{1}{\Omega}\right)^{2} \\ \text{where } \Omega = 1 + K_{CO}P_{CO} + K_{H_{2}}P_{H_{2}} + K_{CH_{4}}P_{CH_{4}} + \left(\frac{K_{H_{2}O} P_{H_{2}O}}{P_{H_{2}}}\right) \end{split}$$

$$\begin{aligned} k_{1} &= 4.225 * 10^{16} \exp\left(\frac{240.1}{RT}\right) & \frac{kmol.kPa^{0.5}}{kg.hr} \\ K_{1} &= 4.70 * 10^{16} \exp\left(\frac{224}{RT}\right) & kPa^{2} \\ k_{2} &= 1.02 * 10^{16} \exp\left(\frac{243.9}{RT}\right) & \frac{kmol.kPa^{0.5}}{kg.hr} \\ K_{2} &= 5.37 * 10^{14} \exp\left(\frac{186.7}{RT}\right) & kPa^{2} \\ K_{H_{2}} &= 6.12 * 10^{-11} \exp\left(\frac{-82.9}{RT}\right) & kPa^{-1} \\ K_{C0} &= 8.23 * 10^{-7} \exp\left(\frac{-70.65}{RT}\right) & kPa^{-1} \\ K_{CH_{4}} &= 6.64 * 10^{-6} \exp\left(\frac{-28.28}{RT}\right) & kPa^{-1} \\ K_{H_{2}O} &= 1.77 * 10^{5} \exp\left(\frac{88.68}{RT}\right) \end{aligned}$$

Where T is in Kelvin and E is in kJ/mol.

Finding the Inlet Partial P

H2 435.18

СО	69.91
CO2	1298.83
CH4	190.81
H2o	2049.27

Putting the Partial Pressures in terms of CH4:

PCH4 = PCH4*(1-X)

PH20 = 10.7395*(1-X)

PCO=0.3664*(1-X)

PH2 = 2.281*(1-X)

Ratio is calculated by dividing the partial pressure of component with the partial pressure of CH4.

Now, the temperature relation with the conversion is:

T/*To* = 1 + (*del Hrxn* / *Cp0*) * *X*

From the material and energy balances:

T1 = 1369+690*X

T2 = 1369-132*X

Plugging into the ODE Solver:

Figure 5 Polymath Code

The result from polymath is:

	Variable	Initial value	Minimal value	Maximal value	Final value
1	Fa0	6649.	6649.	6649.	6649.
2	J1	1360.385	206.7162	1360.385	206.7162
3	J2	1360.385	210.082	1360.385	210.082
4	k11	2.241687	1.759663	2.241687	1.759663
5	K11	2.128698	1.69709	2.128698	1.69709
6	k12	2.241687	2.241687	2.409198	2.409198
7	K12	2.128698	2.128698	2.277226	2.277226
8	k21	2.203157	1.738434	2.203157	1.738434
9	K21	1.744295	1.476225	1.744295	1.476225
10	k22	2.203157	2.203157	2.364126	2.364126
11	K22	1.744295	1.744295	1.833118	1.833118
12	KCH41	1.040913	1.028469	1.040913	1.028469
13	KCH42	1.040913	1.040913	1.044646	1.044646
14	KCO1	1.090859	1.062774	1.090859	1.062774
15	KCO2	1.090859	1.090859	1.099361	1.099361

Calculated values of DEQ variables

Figure 6 Polymath results

16	KH21	1.18683	1.127399	1.18683	1.127399
17	KH22	1.18683	1.18683	1.205117	1.205117
18	KH2O1	1.098724	1.068133	1.098724	1.068133
19	KH2O2	1.098724	1.098724	1.107998	1.107998
20	P0	1298.	1298.	1298.	1298.
21	PCH4	1298.	194.7	1298.	194.7
22	PCO	0.3664	0.05496	0.3664	0.05496
23	PH2	2.281	0.34215	2.281	0.34215
24	PH2O	10.7395	1.610925	10.7395	1.610925
25	r1	0.0021485	0.0021485	0.1886161	0.1886161
26	r2	0.0230764	0.0230764	0.4027818	0.4027818
27	ra	0.0252249	0.0252249	0.5913979	0.5913979
28	Т1	1369.	1369.	1955.5	1955.5
29	Т2	1369.	1256.8	1369.	1256.8
30	w	0	0	9.985E+04	9.985E+04
31	x	0	0	0.85	0.85

Figure 7 Polymath Results 2

4.2.2 Volume of reactor:

Volume of catalyst (m³) = Weight of catalyst/ bulk density of catalyst

= 9985 kg;/1028kg/m3 = 97.1 m3

The average bed porosity is 0.45, therefore the overall volume of packed bed reactor is calculated to be:

= 97.1/0.55 = 178 m3

Assuming length to be 15 m, as suggested by literature:

$$V = \pi \times D^2 \times \frac{H}{4}$$
$$178 = 3.142 \times D^2 \times 15/4$$

Diameter = 3.92 m

4.2.3 Pressure Drop:

Using the general form of Ergun Equation:

$-\underline{R} = \frac{150 * \text{Visc} * \text{Visc}}{150 * \text{Visc} * \text{Visc}}$	$V_{0*(1-E)^2} +$	1.75* ρ *Vo^ 2*(1 ε)
L (Dp^	2*E^3)	(Dp* ɛ ^3)
Cross-	11.93	m2
soctional		
sectional		
Area		
TT 1	10.00	2.4
Volumetric	10.22	m3/s
flow rate		
Vo	0.85	m/s
Visc	0.0000244	kg/ms
3	0.45	
Φs	1	
D	0.0010	
Dp	0.0012	m
т	15	m
Ь	15	111

$$\frac{del P/15 = 150 * \frac{0.00002 * 0.85}{0.0012^2} \# (\frac{(1-4.5)^2}{0.45^3}) + 1.75 (\underbrace{\frac{4.12 * 0.85^2}{0.0012}}_{0.0012}) \frac{1-0.45}{0.45^3} \#$$

Del P= 90 kpa

4.3 Reactor Design (Packed Bed Reactor)

4.3.1 Low-Temperature Shift Converter

4.3.2 Theoretical Background

The process gas exiting reforming section contains 10% to 15% of CO (On dry basis). Water gas shift reactions take place in shift converters namely High Temperature Shift Converter and Low Temperature Shift Converter. In water-Gas shift reaction, CO gets converted into CO2 and H2 after reacting with steam in presence of a catalyst (Which is CuO. ZnO. Al2O3 in case of LTSC). Percentage conversion of CO into CO2 in shift converters because of water-Gas shift reaction will dictate overall performance of Hydrogen synthesis plant, otherwise H2 may get converted into CH4 leading towards reduced feedstock efficiency. Usually, Water-Gas shift reaction is conducted in two (2) steps with heat being removed between HTSC and LTSC to shift equilibrium in forward direction. First, the process stream passes through catalytic bed of iron oxide/chromium oxide at around 350oC to 380oC (HTSC) and followed by process stream being passed through catalytic bed of CuO. ZnO. Al2O3 at around 200oC to 230oC (LTSC). Process gas having residual CO content of 0.2% to 0.4% (On dry basis) at outlet of LTSC is obtained. Modern technological advancements are focused on an isothermal shift conversion which goes to completion in only one step. Process gas obtained at outlet is sent to CO2 removal section after cooling it to such an extent that most of steam is condensed and removed.

The reaction in LTSC is carried out as:

CO + H2O ----- CO2 + H2 (exothermic)

4.3.3 Equipment Selection

To find suitable type of reactor, we must consider:

- Reaction Conditions i.e., Temperature, Pressure, Conversion, and Capacity.
- Whether desired reaction is exothermic or endothermic in nature or is there any need to remove or supply heat for stable operation of reactor.
- Process type i.e., Batch process or Continuous process.

In our case, as we need to design LTSC for a continuous process we only need to consider reactors which are suitable for continuous heterogeneous processes as there will be more than one phase involved in our case. Reactor types available for desired operation:

- Fixed and Fluidized bed reactors
- Trickle bed reactors

Comparison between Fixed Bed and Partially Fluidized Bed Reactors.

Table 29 Comparison of Fixed Bed and Partially Fluidized Bed Reactors

Parameters	Partially Fluidized Bed	Fixed Bed
Pressure Changes	Either Low or Medium	High
Catalyst Activity	High	Low (But thermally
		stable)
Catalyst Consumption	Catalyst Consumption Chance of entrainment	
		entrainment
Catalyst Handling	Technical difficulties No technical	
		difficulties
Maximum Capacity	50 m ³	300 m ³
Process Nature	Can be Batch or	Continuous
	Continuous	
Capital Cost	High	Low
Residence Time	High	Low
Operating Cost	High	Low

Selected: Packed Bed Reactor

- Primarily used for gas phase solid catalyzed reactions.
- Due to their low operating cost.
- Suitable for continuous operation.
- They have high conversion per unit mass of catalyst.
- Economically superior in terms of capital cost and operating cost.
- Suitable for handling large capacities.
4.3.4 Reaction Kinetics

For reaction kinetics, Langmuir-Hinshelwood model is followed.

Following assumptions are made:

- Adiabatic and steady state meaning no accumulation.
- Plug flow with no axial mixing.

Estimating the Weight of Catalyst:

$$\frac{W}{Fao} = \int_{xo}^{xf} \frac{dXa}{-rco}$$

Weight of catalyst is determined by using polymath with making units consistent.

$$r = \frac{kK caK_{H_1o} \left[P caP_{H_1o} - \frac{P_{CO_2}P_{H_2}}{K_{sq}} \right]}{\left(1 + Kco Ro + K_{H_2o} P_{H_2o} + Kco_2 Ro_2 \right)^2} \times \frac{\rho_{cat}}{60}$$

Equilibrium Constant $K_{sq} = \exp\left(\frac{4577.8}{T} - 4.33\right)$
Rate Constant $k = \exp\left(-\frac{29364}{1.987 \times T} + \frac{40.32}{1.987}\right)$ mol/g cat. Min
 $Kco = \exp\left(\frac{3064}{1.987 \times T} - \frac{6.74}{1.987}\right), K_{H_2o} = \exp\left(-\frac{6216}{1.987 \times T} + \frac{12.77}{1.987}\right)$
 $Kco_2 = \exp\left(\frac{12542}{1.987 \times T} - \frac{18.45}{1.987}\right)$

r is rate of reaction (mol/cm³s), Pi is partial pressure of species (Pa), ρ_{cat} is density of catalyst(g cat/cm³), T is temperature(K)

Finding the Inlet Partial Pressures in kPa from simulation

Hydrogen	1136.1
СО	38.94
CO2	341.66
H2O	912.79

Putting the Partial Pressures in terms of CH4:

PCO=PCO*(1-X)

PH2=29.2*(1-X)

PH20=23.4*(1-X)

PCO2=8.77*(1-X)

Now, the temperature relation with the conversion is:

T/*T*o = 1 + (*del Hrxn* / *Cp0*) * *X*

From the material and energy balances:

T=500+60.3*X

Plugging into the ODE Solver:

Figure 8 Polymath code for second Reactor

The results:

Calc	ulat	ted	values	of	DEO	variables
Cure			values	U 1	PLY	variables

	Variable	Initial value	Minimal value	Maximal value	Final value
1	Fa0	2.74	2.74	2.74	2.74
2	k	7.221E-05	7.221E-05	0.0011562	0.0011562
3	КСО	0.7349138	0.5516989	0.7349138	0.5516989
4	KCO2	28.18251	8.714015	28.18251	8.714015
5	Кеq	124.6612	53.21412	124.6612	53.21412
6	KH2O	1.18543	1.18543	2.120905	2.120905
7	P0	3.89E+04	3.89E+04	3.89E+04	3.89E+04
8	PCO	3.89E+04	5835.	3.89E+04	5835.
9	PCO2	8.77	1.3155	8.77	1.3155
10	PH2	29.2	4.38	29.2	4.38
11	PH2O	23.4	3.51	23.4	3.51
12	ra	6.38E-08	6.38E-08	2.616E-06	2.616E-06
13	Т	500.	500.	551.255	551.255
14	w	0	0	9.075E+06	9.075E+06

Figure 9 Polymath result for second Reactor

4.3.5 Volume of Reactor

Volume of catalyst (m³) = Weight of catalyst/ bulk density of catalyst

= 9075 kg;/600kg/m3 = 15.12 m3

The average bed porosity is 0.45, therefore the overall volume of packed bed reactor is calculated to be:

= 15.12/0.55 = 27 m3

Consider L/D=1.5

Diameter = 2.85 m

Length = 4.28 m

4.3.6 Pressure Drop:

Using Ergun Equation:

$$\frac{\Delta P}{L} = \frac{150 * \text{Visc} * \text{Vo} * (1 - \text{E})^2}{(\text{Dp}^2 * \text{E}^3)} + \frac{1.75 * \rho * \text{Vo}^2 * (1 \epsilon)}{(\text{Dp} * \epsilon^3)}$$

Vo = 4.08 m/s

 $\varepsilon = 0.45$

 $\Phi s = 0.874$

Dp = 0.006 m

Lb= 2.89 m

	0.00001419 * 4.085 $(1 - 4.5)$	$4.1 * 0.85^2$	1 - 0.45
<i>del P/</i> 4.28 = 150 *	0.006^2 (0.45^3)	-) + 1.75 ())	JU JU

Del P= 80.3 kpa

CHAPTER 5

ECONOMIC ANALYSIS

5.1 Background

Economic analysis and costing of the whole process was done with the help of Aspen HYSYS Economic Analyzer. We provided the prices of our raw material that is natural gas, and the sale price of our product ammonia. As economic analyzer cannot provide accurate costs for reactors, we calculated the cost of reactors with the help of graphs provided in Coulson's and Richardson Chemical Engineering Design book. All the values were updated to the current year using indexing.

Table 30 Summary of Costing

Summary		
Total Capital Cost [USD]	415005503	
Total Operating Cost [USD/Year]	82139300	
Total Raw Materials Cost [USD/Year]	11834100	
Total Product Sales [USD/Year]	429384000	
Total Utilities Cost [USD/Year]	100695470.1	
Desired Rate of Return [Percent/'Year]	20	
P.O.Period [Year]	4	
Equipment Cost [USD]	98217502.54	
Total Installed Cost [USD]	222558000	

5.1.1 Costing of Heat Exchanger

Heat Exchanger Area = 60.32 m^2

Cost from Graph (2004) = 90000 USD

Type Factor = 1

Pressure Factor = 1

Index Factor = 1.75

Cost in 2023 = 90000*1.75

Cost in 2023 = 157500 USD

Costing of Secondary Reformer

Diameter= 3965 mm

Height = 15490 mm

Pressure Factor= 1.8

Material Factor= 2

Cost (2004) = Ce = 252000 USD

Index Factor = 1.75

Cost (2023) = 442703 USD

5.1.2 Costing of High Temperature Shift Reactor

Diameter= 3966 mm

Height = 4310 mm

Pressure Factor= 1.8

Material Factor= 2

50-60

Cost (2004) =Ce= 39600 USD

Index Factor = 1.75

Cost (2023) = 69568 USD

		Process type	
Item	Fluids	Fluids- solids	Solids
1. Major equipment, total purchase	Sec. 1997	50.500 MPA	a La constante de
cost	PCE	PCE	PCE
f_1 Equipment erection	0.4	0.45	0.50
f ₂ Piping	0.70	0.45	0.20
f 3 Instrumentation	0.20	0.15	0.10
f_4 Electrical	0.10	0.10	0.10
f_5 Buildings, process	0.15	0.10	0.05
*f ₆ Utilities	0.50	0.45	0.25
* f 7 Storages	0.15	0.20	0.25
*f 8 Site development	0.05	0.05	0.05
*f9 Ancillary buildings	0.15	0.20	0.30
2. Total physical plant cost (PPC) $PPC = PCE (1 + f_1 + \dots + f_9)$	257		
$= PCE \times$	3.40	3.15	2.80
f_{10} Design and Engineering	0.30	0.25	0.20
f_{11} Contractor's fee	0.05	0.05	0.05
f_{12} Contingency Fixed capital = PPC $(1 + f_{10} + f_{11} + f_{12})$	0.10	0.10	0.10
$= PPC \times$	1.45	1.40	1.35

Table 6.1. Typical factors for estimation of project fixed capital cost

Table 6.6. Summary of production costs

Variable costs 1. Raw materials 2. Miscellaneous materials 3. Utilities 4. Shipping and packaging	<i>Typical values</i> from flow-sheets 10 per cent of item (5) from flow-sheet usually negligible
Sub-total A	
Fixed costs 5. Maintenance 6. Operating labour 7. Laboratory costs 8. Supervision 9. Plant overheads 10. Capital charges 11. Insurance 12. Local taxes 13. Royalties	5–10 per cent of fixed capital from manning estimates 20–23 per cent of 6 20 per cent of item (6) 50 per cent of item (6) 10 per cent of the fixed capital 1 per cent of the fixed capital 2 per cent of the fixed capital 1 per cent of the fixed capital
Sub-total B	
Direct production costs A + B 13. Sales expense 14. General overheads 15. Research and development	20-30 per cent of the direct production cost
Sub-total C	
Annual production $cost = A + B + C =$	
Production cost $\pounds/kg = \frac{Ann}{Ann}$	nual production cost nual production rate

Table 31: FCC

Project Fixed Capital Cost (USD)				
Purchase Cost of	PCE	98217502.54		
Equipment				
Equipment Erection	f ₁	39287001.02		
Piping	f ₂	68752251.78		
Instrumentation	f ₃	19643500.51		
Electrical	f ₄	9821750.254		
Building, process	f ₅	14732625.38		
Utilities	f ₆	49108751.27		
Storages	f ₇	14732625.38		
Site Development	f ₈	4910875.127		
Ancillary buildings	f9	14732625.38		
Total physical plant cost	РРС	333939508.65		
Design and Engineering	f ₁₀	100181852.6		
Contractors Fee	f ₁₁	16696975.43		
Contingency	f ₁₂	33393950.87		
Fixed Capital	FC	484212287.55		

Table 32: Variable Costs

Variable Costs (USD)			
Raw materials (USD)	11834100		
Miscellaneous materials (USD)	4842122.875		
Utilities (USD)	100695470.1		
Shipping and packaging (USD)	Negligible		
Total	117371693		

Table 33: Fixed Costs

Fixed Costs (USD)			
Maintenance	48421228.75		
Operating labor	41069650		
Laboratory costs	8213930		
Supervision	8213930		
Plant overheads	20534825		
Capital charges	48421228.75		
Total	174874792		

Direct Production Cost = Total Fixed Cost + Total Variable Cost

Direct Production Cost = 174874792 + 117371693

Direct Production Cost = 292246485 USD/year

Annual Production Cost = Direct Production Cost + Sales Expense + General Overheads

Annual Production Cost = 292246485 + 73061621

Annual Production Cost = 365308107 USD/year

Production Rate = 307200000 kg/year

Production Cost= 1.2 USD/kg

CHAPTER 6

PROCESS SIMULATION

This chapter entails everything that is related to modelling and simulation of ammonia production unit (both in steady and dynamic state). Despite studying alternatives production methods for the environmentally cleaner ammonia in the previous literature review, we believed it to be the best to use Kellogg's process to maximize the productivity of this simulation tool for the industry. The flowsheet simulation was integrated on Aspen HYSYS V11 -- a powerful software tool that allowed us to model a digital twin of the ammonia plant with a high level of detail and analysis in our further instrumentation analysis.

6.1.1 Units Used:

When starting the simulation, it is necessary to specify the units you are going to work with. In this case the following units were chosen due to the ease of adapting the information obtained from literature and research

Pressure: kg/cm² Temperature: °C Molar flow: kgmole/hr Mass Flow: kg/hr

6.1.2 Component Lists:

Subsequently, all the components involved in the process are selected from the Aspen HYSYS databank. The following elements were selected for this process, which are the ones that interact in the plant:

Source Databank: HYSYS		
Component	Туре	Group
Hydrogen	Pure Component	
Argon	Pure Component	
CO	Pure Component	
CO2	Pure Component	
Oxygen	Pure Component	
Methane	Pure Component	
Ethane	Pure Component	
Propane	Pure Component	
n-Butane	Pure Component	
i-Butane	Pure Component	=
i-Pentane	Pure Component	
n-Pentane	Pure Component	
n-Hexane	Pure Component	
H2O	Pure Component	
Methanol	Pure Component	
Ammonia	Pure Component	
M-Mercaptan	Pure Component	
nBMercaptan	Pure Component	
E-Mercaptan	Pure Component	
H2S	Pure Component	*
•	III	•
Status:	ОК	

Figure 10 Component list

6.1.3 Property Package:

For the specified model, Peng-Robinson was used to give accurate results.

Fluid Package: Basis-1				- 8 8
Set Up Binary Coeffs StabTest Phase	Order Tabular Notes			
Package Type: HYSYS		Component List Selection	Component List - 1 [HYSYS Databanks]	iew
Property Package Selection	Options		Parameters	
Church Darkman	Enthalpy	Property Packag	je EOS	
Gravson Streed	Density	C	ostald	
IAPWS-IF97	Modify Tc, Pc for H2, He	Modify Tc, Pc for H	H2, He	
Kabadi-Danner	Indexed Viscosity	HYSYS Vis	scosity	
Lee-Kesler-Plocker	Peng-Robinson Options	E E	HYSYS	
NBS Steam	EOS Solution Methods	Cubic EOS Analytical M	lethod	
NRTL	Phase Identification	D	Default	
Peng-Robinson	Surface Tension Method	HYSYS M	lethod	
PR-Twu	Thermal Conductivity	API 12A3.2-1 M	lethod	
PRSV Sour PR				
Sour SRK				
Sour Water				
SRK				
SRK-Twu				
Twu-Sim-Tassone				
	Property F	Pkg OK		
		m		Þ

Figure 11 Fluid Package

Why use Peng-Robinson:

The Peng Robinson (PR) equation of state is widely used in process simulation software like Aspen HYSYS due to its ability to accurately predict the thermodynamic properties of complex mixtures, such as those encountered in ammonia production units.

• Wide Applicability: The PR equation of state is applicable to a wide range of substances, including hydrocarbons, non-hydrocarbons, and mixtures of both. It can handle the complex mixture of gases involved in the ammonia production process, which includes methane (from natural gas), nitrogen (from air), and hydrogen.

- Mixture Behavior: The PR equation of state accounts for the interactions between different components in a mixture, including non-ideal behavior, phase equilibria, and vapor-liquid equilibrium. These interactions are crucial in accurately predicting the behavior of the natural gas and air mixture throughout the different stages of the ammonia production process.
- Phase Equilibria: Ammonia production involves multiple phases, such as gasphase reactions, liquid-phase reactions, and vapor-liquid separation. The PR equation of state can accurately predict phase equilibria, ensuring that the simulation adequately captures the behavior of the gas and liquid phases at various process conditions.
- Reliable Property Calculations: The PR equation of state provides reliable predictions of key thermodynamic properties, such as enthalpy, entropy, density, and heat capacity. These properties are essential for process design, optimization, and equipment sizing in the ammonia production unit.
- Established Model: The PR equation of state has been extensively validated and used in the industry for several decades. Its reliability and accuracy have been demonstrated in various applications, including the simulation of chemical processes, making it a trusted choice for ammonia production simulations.

6.1.5 Reaction Sets

Primarily ammonia production involves the reaction of Nitrogen and Hydrogen. However, on industrial scale this reaction is preceded by a number of separation and purification reactions:

• **Hydrogenator:** *RSH* + *H2 ⇐H2S* + *RH* This section primarily focusses on removing the mercaptans from the feed stream.

• Desulphurizer:

 $H2S + ZnO \rightarrow ZnS + H2O$

This section removes the sulphur from the feed that would have caused catalytic poisoning in the later stages.

• Primary Reforming:

CH4 + H20 ≈C0 + 3H2 C3H8 + H20 ≈3C0 + 4H2 C4H10 + H20 ≈4C0 + 5H2 C5H12 + H20 ≈5C0 + 6H2 C6H14 + H20 ≈6C0 + 7H2

This reaction involves the reforming of methane (CH4) with steam (H2O) to produce carbon monoxide (CO) and hydrogen gas (H2) and reforming of reactions of other hydrocarbons present in the NG feed.

• Secondary Reforming:

 $CH4 + 2O_2 \rightarrow CO2 + H2O$ $2CH4 + 3O2 \rightarrow 2 CO + 4H2O$ $2H_2 + O2 \rightarrow 2H2O$ $CH4 + H2O \rightleftharpoons CO/CO2 + H2$

Secondary reformer reaction converts remaining methane at high temperature meanwhile O2 of air is combusted leaving behind Nitrogen sufficient for ammonia synthesis.

• Shift Conversion:

 $CO + H2O \rightleftharpoons CO2 + H2$

This reaction, also known as the water-gas shift reaction, converts additional carbon monoxide (CO) to carbon dioxide (CO2) and hydrogen gas (H2) using steam (H2O).

• Methanation:

CO + *3H2 ≓CH4* + *H2O*

In this reaction, carbon monoxide (CO) and hydrogen gas (H2) are reacted to form methane (CH4) and steam (H2O).

• Ammonia Synthesis:

N2 + *3H2 ⇒2NH3*

This is the final reaction where nitrogen gas (N2) and hydrogen gas (H2) combine to produce ammonia (NH3).

Following reaction sets were associated with the main flowsheet with each having its own sub-set of reactions:

Name	Туре	Associated Fluid Packages
Combustion Zone	Conversion	Basis-
Reforming Zone	Equilibrium	Basis-
Shift Converter	Equilibrium	Basis-
METHANATION	Conversion	Basis-
Ammonia Synthsis	Equilibrium	Basis-
101-D RXN	Conversion	Basis-
A-101-B HC-Conv	Conversion	Basis-

Figure 12 Reactions

Reaction Set: Reforming Zor	ie					- 8 %
Set Info	quilibrium		Re Indep	ady endent	Add to FP Detach from FP Advanced	
Active Reactions		Туре		Configured	Operations Attached	
METHAN	то со		Equilibrium	 Image: A set of the set of the	103-D Ref-Zone	
CO T	O CO2		Equilibrium	~	101-B Primary Reformer	
Add Reaction	- Dele	te Reaction	Cop	py Reaction		

Figure 13 Reaction Set 1

et Type	Conversio	n	Indep	endent	Detach from FP
				Ranking	Advanced
Active R	eactions	Туре		Configured	Operations Attached
1	106-D CO-RXN		Conversion	~	106-D
10	06-D CO2-RXN		Conversion	~	

Figure 14 Reaction Set 2

Set Info Set Type	Conversio	n	Rea	ady endent Ranking	Add to FP Detach from FP Advanced	
Active Reactio	ns	Туре		Configured	Operations Attached	
H	/D-Rxn-1		Conversion	 Image: A second s	107-D	
H	/D-Rxn-2		Conversion	 Image: A set of the set of the		
H	/D-Rxn-3		Conversion	 Image: A second s		
Add Reaction	HYD-Rxn-3 Conversion Add Reaction Delete Reaction Copy Reaction					

Figure 15 Reaction Set 3

et Type	Conversio	n	Indepe	endent		Detach from FP
				Ranking	j	Advanced
Active Reaction	s	Туре		Configured		Operations Attached
C	2-Rxn-1		Conversion	 Image: A set of the set of the	*	A-101-B HC-Conv
C	3-Rxn-1		Conversion	 Image: A set of the set of the		
iC	4-Rxn-1		Conversion	 Image: A set of the set of the	-	
nC	4-Rxn-1		Conversion	 Image: A second s		
nC	5-Rxn-1		Conversion	~	+	

Figure 16 Reaction Set 4

	Mole Weight	Stoich Coeff	Base Component	Охуд
Hydrogen	2.016	-2.000	Rxn Phase	VapourPha
Oxygen	32.000	-1.000	Co	100
H20	18.015	2.000	C1	<empty< td=""></empty<>
Add Comp			C2	<empty< td=""></empty<>
	Delever Freez	0.00000		
	Dalative FUU)	0.00000		
Balance	Reaction Heat (25 C)	-1.2e+05 kcal/kgmole		

Figure 17 Reaction Set 5

oichiometry Keq Approach	Library				
Stoichiometry			Basis		٦.
Component	Mole Weight	Stoich Coeff	Basis	Partial Press	
Nitrogen	28.013	-0.500	Min Tomporatura	vapourPhase	
Hydrogen	2.016	-1.500	Max Temperature	-275.1 C	
Ammonia	17.030	1.000	Max temperature	5000 C	1
Add Comp			D 1113		
					-
Delega	Balance Error	0.00000			
Balance	Balance Error Reaction Heat (25 C)	0.00000 -2.2e+04 kcal/kgmole			
Balance	Balance Error Reaction Heat (25 C)	0.00000 -2.2e+04 kcal/kgmole			
Balance	Balance Error Reaction Heat (25 C)	0.00000 -2.2e+04 kcal/kgmole			
Balance	Balance Error Reaction Heat (25 C)	0.00000 -2.2e+04 kcal/kgmole			
Balance	Balance Error Reaction Heat (25 C)	0.00000 -2.2e+04 kcal/kgmole			
Balance	Balance Error Reaction Heat (25 C)	0.00000 -2.2e+04 kcal/kgmole			

Figure 18 Reaction Set 6

For all equilibrium reaction sets $K_{eq}\,vs$ Temperature data was obtained from literature and industry:

Figure 19 Reaction Set 7

Figure 20 Keq vs T Graph for ammonia from literature

6.2.1 PFD developed on HYSYS:

Figure 21 Main flowsheet on HYSYS

6.2.2 Feed and Product Specifications:

Subsequently, following data was inputted into the simulation and proceeded with the results.

	Natural Gas	Air	Ammonia
Т (°С)	40	40	26.8
Pressure (kg/cm ²)	35	2.039	96
Mass flow (kg/h)	$2.7 \ge 10^4$	$4.3 \ge 10^4$	4.01 x 10 ⁴
Molar composition			
Nitrogen	0.0126	0.78	0.0006
Hydrogen	0.00	0.00	0.0106
Argon	0.0010	0.01	0.0001
СО	0.00	0.00	0.00
CO2	0.1059	0.00	0.00
Oxygen	0.00	0.21	0.00
Methane	0.8621	0.00	0.0033
Ethane	0.0142	0.00	0.00
Propane	0.002	0.00	0.00
n-Butane	0.001	0.00	0.00
i-Butane	0.001	0.00	0.00
i-Pentane	0.001	0.00	0.00
n-Pentane	0.001	0.00	0.00
n-Hexane	0.001	0.00	0.00
H2O	0.00	0.00	0.0047
Methanol	0.00	0.00	0.00

Table 34 Feed and Product Specifications

Ammonia	0.00	0.00	0.9807
M-Mercaptan	0.0001	0.00	0.00
nB-Mercaptan	0.00	0.00	0.00
E-Mercaptan	0.00	0.00	0.00
H2S	0.00	0.00	0.00

The ammonia synthesis process only has one product stream apart from the final product, this stream is SEP5-1, and it is one of the most important steps of the process as it is the purge necessary to ensure that the percentage of inert components entering the reactor is lower than 12%.

6.2.3 Hydrogenator Specification:

Conversion Reactor:	: 107-D - 101-D RXN	- 8
Design Reaction	ns Rating Worksheet Dynamics	
Design	Name 107-D	
Parameters User Variables Notes	Inlets Inlets Vapour Outlet HDS Sect-Out	
	Energy (Optional)	
	Fluid Package Basis-1	
Delete	ок	🔲 lgnored

Figure 22 Hydrogenator

Conversion Reac	tor: 107-D - 101-D RXN			
Design Read	ctions Rating Worksheet Dynamic	:s		
Reactions	Conversion Reaction Details			
Details Results	Reaction Set 101-D RXN	▼ Reaction	HYD-Rxn-1 ▼	
	Stoichiometry Basis	Conversion %	View Reaction	
	Stoichiometry Info			
	Component	Mole Wgt.	Stoich Coeff	
	Hydrogen	2.016	-1.000	
	M-Mercaptan	48.107	-1.000	
	Methane	16.043	1.000	
	H2S	34.076	1.000	
	^^Add Comp^^			
	Balan	ce Error	0.00000	
	React	on Heat (25 C)	-1.7e+04 kcal/kgmole	
Delete		OK		🔲 Ignored

Figure 23 Hydrogenator Specification 2

6.2.4 Dynamic Data and Specification Dynamic Tab Data for Hydrogenator:

Height	Diameter	Volume
6.84 m	1.79 m	17.21 m ³

Desulphurizer Specifications:

Due to constraint of using solid ZnO in the reaction, this section was simulated using Aspen HYSYS component splitter block to remove the H2S achieving same results.

omponent Splitte	er: 101-D (Desulphurizer)				- 0
Design Rating	g Worksheet Dynamics				
Worksheet		101-D In	To Mixing STN	H2S	
Conditions	Pressure Spec Active			V	
Properties	Pressure [kg/cm2]	35.00	35.00	35.00	
Composition	Flow Spec Active				
PF Specs	Flow Spec Type	Molar Flow	Molar Flow	Molar Flow	
	Molar Flow [kgmole/h]	1709	1709	0.1451	
	Mass Flow [kg/h]	2.786e+004	2.785e+004	4.945	
	Std leadl Liq Vol Flow [m3/h]	84.00	83.99	6.273e-003	
Delete		OK			lgnored

Figure 24 Desulphurizer Specifications

Dynamics Tab Data for Desulphurizer:

Component Splitter: 101-I	D (Desulphurizer)				- 8 %
Design Rating Wor	ksheet Dynamics				
Dynamics Dynam	ic Specifications			1	
Specs E	qualize Stream Pressu	ures			
- Press	ure Specification —]		
	Attached Streams	Pressure	Active		
	101-D In	35.00			
	To Mixing STN	35.00	N		
	H2S	35.00	M		
				J	
Volume	e	60.60 m3			
			o		
Use Use	Duty Stream Specific	ation instead Of Bottoms	s Stream Flash Specific	ation	
Delete			OK		Ignored

Figure 25 Dynamic Tab for Desulphurizer 2

Primary Reformer Specifications:

Following Reactions were simulated in the first section of the primary reformer 103-D:

C3H8 + H2O ≈3CO + 4H2 C4H10 + H2O ≈4CO + 5H2 C5H12 + H2O ≈5CO + 6H2 C6H14 + H2O ≈6CO + 7H2

Design Re	actions Rating Worksheet D	Oynamics			
Reactions	Conversion Reaction Details -				
Details Results	Reaction Set A-101-B	HC-Conv 🔹	Reaction C2-Rxn-1	•	
	Stoichiometry O Base	sis 💿 Conversio	on % View I	Reaction	
	Stoichiometry Info				
	Component				
	E	thane 3	-3.0	00	
		H2O 1	8.015 -1.0	00	
	Me	thane 1	6.043 5.0	00	
		CO 2	28.011 1.0	00	
	^^Add Co	mp^^			
		0.			
		Balance Error Reaction Heat (25 C)	8.7e+02 kcal/k	amole	
				<u>,</u>	

Figure 26 Primary Reformer Specifications

It is then proceeded for the main primary reformer reaction:

 $CH4 + H20 \rightleftharpoons CO + 3H2$

Equilibrium Rea	actor: 101-B Primary	Reformer - Reformin	ig Zone				
Design Re	actions Rating W	/orksheet Dynamic	:s				
Reactions	- Equillibrium React	ion Details					
Details Results	Reaction Set:	Reforming Zone	•	Reaction:	METHAN TO CO	•	
	Stoichiometr	y 🔘 Basis	🔘 Keq	O Approach	View Rxn		
	Stoichiometry	Info					
	Co	mponent	Mole Wt		Stoich Coeff		
		Methane		16.043	-1.000		
		H2O		18.015	-1.000		
		CO		28.011	1.000		
		Hydrogen		2.016	3.000		
		Add Comp					
		Bala	nce Error		0.00000		
		Read	tion Heat (25 C)		4.9e+04 kcal/kgmole		
Dele	ete			ОК			🔲 Ignored

Figure 27 Primary Reformer Specifications 2

Dynamic Tab Data for Primary Reformer:

Height	Diameter	Volume		
21.4	3.9	348 m ³		

Secondary Reformer Specifications

In the first zone, combustion reaction takes place.

Conversion	n React	or: 1(03-D Comb-Z	one - Combu	istion Zon	e					- 0	83
Design	Reac	tions	Rating W	Vorksheet D	ynamics							-
Reactio	ns r	Con	version React	tion Details —		-						
Details Results		Rea	action Set	Combust	tion Zone	R	eaction	Combustion R	XN 🔻			
			Stoichiometry	y 🔘 Basi	is	Conversion	%	View Read	tion			
			otoichiometry	Info								
			Cor	mponent		Mole Wgt.		Stoich Coeff				
				Hydro	ogen	2.	016	-2.000				
				Ox	ygen	32.0	000	-1.000				=
					H2O	18.0	015	2.000				
				Add Cor	mp							
					Balance	Error		0.000	000			
					Reaction	Heat (25 C)		-1.2e+05 kcal/kgm	ole			
D	elete					C	ЭK			Ignored		•

Figure 28 Secondary Reformer Specifications 1

Second zone, for reforming reaction:

- 9 8
-
_
🔲 Ignored

Figure 29 Secondary Reformer Specifications 2

Dynamic Tab Data for Secondary Reformer:

Height	Diameter	Volume
15.49 m	3.965 m	194. 8 m ³

High Temperature Shift Reactor:

Equilibrium Rea	pr: HTS - Shift Converter	- 8 %
Design Re	ions Rating Worksheet Dynamics	
Reactions	quillibrium Reaction Details	
Details Results	Reaction Set: Shift Converter Reaction: CO TO CO2	
	© Stoichiometry ◎ Basis ◎ Keq ◎ Approach View Rxn	
	Stoichiometry Info	
	Component Mole Wt. Stoich Coeff	
	CO 28.011 -1.000	
	H2O 18.015 -1.000	
	CO2 44.010 1.000	
	Hydrogen 2.016 1.000	
	Add Comp	
	Balance Error 0.00000	
	Reaction Heat (25 C) -9.9e+03 kcal/kgmole	
Dele	OK 🔄 Ig	nored

Figure 30 High Temperature Shift Reactor 1

The following Keq vs T data was used in the reaction:

ilibrium Reaction: CO TO CO2 itoichiometry Keq Approach Librar	у							
Kea Source	A	-1.2e+01	K Table					
and occure	В	5.3e+03	Т	Ken	KCalc	% Error		
Cln(Keq) Equation	С	1.0e+00	942.2	0.8940	0.9026	0.2	*	
Gibbs Free Energy	D	1.1e-04	871.1	0.8102	0.8177	0.2		
Fixed Keq	E	0.0e-01	808.0	0.7540	0.7528	0.2		
Keg vs T Table	F	0.0e-01	926.7	0.6970	0.6962	0.2	_	
•	G	0.0e-01	954.4	0.6470	0.6466	0.1	-	
	н	0.0e-01		0.0470	0.0400	0.1	•	
🗸 Auto Detect	R2	0.999972	Active			Erase Table		
	T Hi	<empty></empty>						
	T Lo	<empty></empty>		D (5:		Descrition		

Figure 31 High Temperature Shift Reactor 2

Dynamic Tab Data for HT Shift Reactor:

Height	Diameter	Volume		
4.31 m	3.966 m	53.7 m ³		

Low Temperature Shift Reactor Specifications:

Equilibrium Rea	actor: LTS - Shift Conv	erter					
Design Re	actions Rating W	orksheet Dynamic	s				
Reactions	Equillibrium Reaction	on Details					
Details	Reaction Set:	Shift Converter	•	Reaction:	СО ТО СО2	-	
Results	Stoichiometry	e 🔘 Basis	C Keq	Approa	ch View Rxn		
	Stoichiometry	Info					
	Cor	mponent	Mole W	t.	Stoich Coeff		
		CO		28.011	-1.000		
		H2O		18.015	-1.000		
		CO2		44.010	1.000		
		Hydrogen		2.016	1.000		
		~^Add Comp^^					
		Balar	nce Error		0.00000		
		Reac	tion Heat (25 C)		-9.9e+03 kcal/kgmole		
Dele	ete 🛛			OK] Ignored

Figure 32 Low Temperature Shift Reactor Specifications 1

Following Keq vs T data was used in the reaction:

uilibrium Reaction: CO TO CO2	_							_ 0
Stoichiometry Keq Approach Library								
Keq Source	A	-1.2e+01	K Table					
	В	5.3e+03	Т	Kea	KCalc	% Error		
Un(Keq) Equation	С	1.0e+00	260.0	72.75	72.52	0.3		
Gibbs Free Energy	D	1.1e-04	287.8	46.70	46.73	-0.1		
Fixed Keq	E	0.0e-01	315.6	31.44	31.47	-0.1		
Keq vs T Table	F	0.0e-01	343.3	22.00	22.02	-0.1		
	G	0.0e-01	371.1	15.89	15.92	-0.2	-	
	Н	0.0e-01			_			
Auto Detect	R2	0.999972	Active			Erase Table		
	THi	<empty></empty>						
	I Lo	<empty></empty>	Only A. B. C and	d D coefficients	used in Aspen	Properties		
	Ready	/				K T	able	

Figure 33 Low Temperature Shift Reactor Specifications 2

Dynamic Tab Data for LT Shift Reactor:

Height	Diameter	Volume
4.31 m	3.966 m	53.7 m ³

Methanator Specifications:

Conversion Read	06-D - METHANATION	- 8 %
Design Rea	Rating Worksheet Dynamics	*
Reactions	Iversion Reaction Details	
Details Results	action Set METHANATION TReaction 106-D CO-RXN	
	Stoichiometry O Basis O Conversion % View Reaction	
	Stoichiometry Info	
	Component Mole Wgt. Stoich Coeff	
	CO 28.011 -1.000	-
	Hydrogen 2.016 -3.000	-
	Methane 16.043 1.000	
	H2O 18.015 1.000	
	Add Comp	
	Balance Error 0.00000	
	Reaction Heat (25 C) -4.9e+04 kcal/kgmole	
Delete	ок	gnored 📮

Figure 34 Methanator Specifications 1

orksheet	Name	106-D Inlet	Liq-13	106-D Exit	
onditions	Vapour	1.0000	0.0000	1.0000	
operties	Temperature [C]	324.7	342.4	342.4	
omposition	Pressure [kg/cm2]	27.00	26.80	26.80	
Specs	Molar Flow [kgmole/h]	5924	0.0000	5895	
	Mass Flow [kg/h]	4.610e+004	0.0000	4.610e+004	
	Std Ideal Liq Vol Flow [m3/h]	177.2	0.0000	176.5	
	Molar Enthalpy [kcal/kgmole]	595.3	598.2	598.2	
	Molar Entropy [kJ/kgmole-C]	128.2	129.4	129.4	
	Heat Flow [kcal/h]	3.527e+006	0.0000	3.527e+006	

Figure 35 Methanator Specifications 2

Dynamic Tab Data for Methanator Reactor:

Height	Diameter	Volume
4.31 m	3.96 m	53.7 m ³

Ammonia Synthesis Specifications:

Equilibrium Rea	ctor: ERV-100	- Ammonia Synthsi	is					
Design Rei	actions Ratin	g Worksheet D	ynamics					
Reactions	- Equillibrium I	Reaction Details						
Details Results	Reaction Se	et: Ammonia	Synthsis T	Read	tion:	SYNTHSIS RXN	•	
	Stoichic	ometry 💿 Basi	is 🔘 Kea	a C	Approac	View Rxn	1	
	Stoichior	metry Info						
		Component	N	/lole Wt.		Stoich Coeff		
		Niti	rogen	28	.013	-0.500		=
		Hydi	rogen	2	.016	-1.500		
		Amr	monia	17	.030	1.000	_	
		Add Co	omp					
			Balance Error			0.00000	2	
			Reaction Hea	t (25 C)		-2.2e+04 kcal/kgmole	=	
Dele	te			0	K			🔲 Ignored

Figure 36 Ammonia Synthesis Specifications 1

ilibrium Reacto	r: ERV-100 - Ammonia Synthsis				_ 0
Design Reacti	ions Rating Worksheet Dynamics				
Worksheet	Name	to 106-D	liq15	to cooler	
Conditions	Vapour	1.0000	0.0000	1.0000	
Properties	Temperature [C]	380.0	422.9	422.9	
Composition	Pressure [kg/cm2]	126.0	126.0	126.0	
F Specs	Molar Flow [kgmole/h]	9.085e+004	0.0000	8.841e+004	
	Mass Flow [kg/h]	5.821e+005	0.0000	5.821e+005	
	Std Ideal Liq Vol Flow [m3/h]	2711	0.0000	2631	
	Molar Enthalpy [kcal/kgmole]	495.6	847.2	509.2	
	Molar Entropy [kJ/kgmole-C]	124.2	125.8	128.1	
	Heat Flow [kcal/h]	4.502e+007	0.0000	4.502e+007	
Delete		OK			Ignored

Figure 37 Ammonia Synthesis Specifications 2

Dynamic Tab Data for Ammonia Synthesis Reactor:

Height	Diameter	Volume
8.9 m	4.8 m	248.3 m ³

Other equipment Dynamic Data:

Control Valves:

- Valve Opening: 50%
- Pressure Drop: 0.1 kg/cm2
- Valve Sizing: Auto

Compressor:

- Polytropic Efficiency: 75%
- Head: 125539 (Suction)

- Speed: 10400 rpm
- Full Load power: 14.5 MW bhp

Material Stream: Ammoni	a				- 8 %
Worksheet Attachme	ents Dynamics				
Worksheet	Stream Name	Ammonia	Vapour Phase	Liquid Phase	
Conditions	Vapour / Phase Fraction	0.0000	0.0000	1.0000	
Properties	Temperature [C]	26.85	26.85	26.85	
Composition	Pressure [kg/cm2]	96.00	96.00	96.00	
Oil & Gas Feed	Molar Flow [kgmole/h]	2330	0.0000	2330	
K Value	Mass Flow [kg/h]	3.933e+004	0.0000	3.933e+004	
User Variables	Std Ideal Liq Vol Flow [m3/h]	64.53	0.0000	64.53	
Notes	Molar Enthalpy [kcal/kgmole]	-1.598e+004	-2355	-1.598e+004	
Cost Parameters	Molar Entropy [kJ/kgmole-C]	82.15	101.8	82.15	
Normalized Yields	Heat Flow [kcal/h]	-3.723e+007	0.0000	-3.723e+007	
Emissions	Liq Vol Flow @Std Cond [m3/h]	65.54	0.0000	65.54	
	Fluid Package	Basis-1			
	Utility Type				
		ОК			
Delete	Define from Stream Vi	ew Assay	+	+	

6.3 Simulation Results and need for simulation

Figure 38 Simulation Results

*949 MET/day production with 98.07% purity of ammonia was achieved from the simulation which is in-line with required objective.

The need for Simulation:

HYSYS is a process modelling and simulation model, i.e. whatever it calculates, is based on a mathematical model derived from various branches of chemical engineering such as thermodynamics, heat transfer, mass transfer, fluid mechanics and the list is long. During manual calculations, the very same models, or variants of the model was applied, therefore, our results should be comparable to the HYSYS simulation results, if not comparable, and there should be a logical explanation for it. It also serves as a base model to further study instrumentation and implement Dynamic mode Controller for the ammonia production unit.
CHAPTER 7

INSTRUMENTATION

A control system comprises a network of computer interfaces and controllers that are interconnected to ensure a cohesive and coordinated operation, such as in the industrial production of ammonia. Consequently, choosing an effective control system is crucial for the smooth functioning of a chemical plant.

A control loop encompasses four essential components:

- Sensor
- Transmitter
- Transducer
- Final Control element

The process begins with the sensor detecting the desired value for control. Next, the transmitter converts this value into electrical or voltage signals. These signals are then transformed by the transducer into a readable format, enabling them to control the final control element, typically a Control Valve. This control mechanism is responsible for regulating the controlled variable.

There are three types of variables in instrumentation:

- Control Variable
- Manipulated Variable
- Process Variable

Figure 39: Components involved in a Control Loop

In a control system, various variables play essential roles in ensuring the desired operation and stability of a process. The control variable, also known as the controlled variable or process variable, is the parameter or property that needs to be regulated and maintained within a specific range or setpoint. It represents the output or the measurable quantity that the control system aims to control. Examples of control variables include temperature, pressure, flow rate, level, or composition.

The manipulated variable, also referred to as the control input or actuating variable, is the parameter that the control system actively adjusts or manipulates to influence and regulate the control variable. It is the variable that the controller can modify to achieve the desired control objective. The manipulated variable can be adjusted based on the feedback received from sensors or other control strategies. For instance, a control system may modulate the opening of a valve to regulate the flow rate or adjust the power input to a heater to control the temperature.

Disturbance variables, also known as disturbances or perturbations, are external or internal factors that can affect the control system and cause deviations in the control variable. These variables are typically undesired and can arise from factors such as changes in the input conditions, fluctuations in process parameters, or external disturbances. Examples of disturbance variables include changes in feed composition, variations in ambient temperature, or sudden load changes. Control systems are designed to mitigate the impact of disturbance variables and maintain the stability and performance of the control variable by appropriately adjusting the manipulated variable in response to these disturbances.

7.1 Dynamic Mode Controller:

Dynamic Mode Controller is the design strategy that is incorporated in the plant to retify real-time fluctuations in the process.

Dynamic mode controllers differ from static controllers in that they consider more than just the current state of the system. Instead, they rely on feedback information obtained from sensors or measurements to continuously monitor and adjust the manipulated variable. These controllers analyze the system's response over time, taking into account factors such as the rate of change, stability, and accumulation of errors.

Various control algorithms and techniques, including proportional-integral-derivative (PID) control, model predictive control (MPC), adaptive control, and advanced control strategies, are employed by dynamic mode controllers. These controllers leverage mathematical models, historical data, or real-time information to determine how to adjust the manipulated variable.

The primary objective of a dynamic mode controller is to maintain the controlled variable within predefined limits while minimizing errors or deviations from the setpoint. Additionally, these controllers strive to optimize performance criteria such as stability, response time, robustness, and disturbance rejection. By continuously monitoring and adjusting the control action, dynamic mode controllers aim to achieve precise and efficient control of dynamic systems.

- Computationally Expensive
- Prone to model inaccuracies

Approach

- Requires insight
- Requires process detail

Figure 40: Types of control loop approaches

7.1.1 Our Methodology:

The growing focus on process economics in contemporary chemical plants has resulted in a heightened adoption of material recycling and energy integration practices. These

practices have substantial effects on process dynamics and introduce increased complexity. Consequently, numerous plantwide control (PWC) methodologies have emerged. However, there is a scarcity of comparative studies evaluating the effectiveness of alternative methodologies. In this final year project, we develop a PWC structure for the ammonia synthesis process by employing an integrated framework of simulation and heuristics [Konda et al. Ind. Eng. Chem. Res.2005, 44, 8300–8313].

Integrated Framework of Simulators and Heuristics (IFSH)

< ----- >

SELF-OPTIMZATION CONTROL (SOC)

Figure 41: Our Approach

Based on the above approach following control methodology was proposed:

- Establish Plantwide Control Objectives
- Identify and analyze Disturbances affecting the entire plant and select Control Loops Accordingly
- Define Control Variables
- Determine suitable Manipulated Variables
- Select Manipulators for Less critical Controlled Variables
- Implement control strategies for Unit Operations
- Investigate integration effects
- Improve Control System performance by utilizing the remaining Control Degrees of Freedom (CDOFs)

N.I.S vs I.S controllers:

The distinction between non-intrinsic safe (N.I.S) and intrinsic safe (I.S) controllers lies in their suitability for operating in hazardous environments. Non-intrinsic safe controllers are not designed for use in areas where there may be explosive or flammable atmospheres, as they lack the requisite safety features to prevent the generation of ignition sources. In contrast, intrinsic safe controllers are purpose-built and undergo certification processes to ensure their safe operation in such hazardous areas. They incorporate safety measures that restrict electrical energy and mitigate the risk of sparks or arcs that could potentially ignite the surrounding atmosphere. Rigorous testing and certification procedures specific to hazardous environments validate the ability of intrinsic safe controllers to operate safely without posing a risk of ignition. Consequently, the key differentiation lies in the presence of safety features, certifications, and suitability for hazardous environments, with intrinsic safe controllers offering the necessary protection in such settings.

2/4 wire controllers:

The primary distinction between 2-wire and 4-wire control systems resides in the quantity of wires employed for transmitting control signals. In 2-wire control systems, a mere two wires serve the dual purpose of carrying both the power supply and control signals. These systems find application in straightforward control scenarios that prioritize cost-effectiveness and wiring simplicity. By utilizing the same wires for power supply and control signals, however, the effective transmission distance of the control signals may be limited.

Conversely, 4-wire control systems utilize distinct wires for power supply and control signals. Two wires are specifically allocated to the power supply, ensuring a stable and reliable source of electrical energy. The remaining two wires facilitate the transmission of control signals, enabling greater separation between the controller and the controlled devices. This segregation of power and control signals fosters enhanced signal integrity, reducing interference and facilitating accurate and efficient control.

While 2-wire control systems offer simplicity and cost efficiency, they may encounter limitations in terms of the distance over which control signals can be effectively transmitted. In contrast, 4-wire control systems, characterized by separate power and control lines, yield improved signal quality, and prove more suitable for applications necessitating extended transmission distances and precise control.

7.1.2 Method for tuning the controller:

The method employed for tuning the controller was "Hit and Trial Method" on Aspen HYSYS. In this method educated guesses are made for the Proportional, Integral and Derivative values until the offshoot value is offset.

TIC-100					23
Configuration	Action:	Keverse	Direct		*
Advanced	SP Mode:	Local	Remote		
Autotuner	Mada				
IMC Design	Node		Man		
Scheduling	Execution		Internal		
Alarms	SP		338.7 C		
PV Conditioning	PV		338.7 C		
Signal Processing	OP		50.00 %		
FeedForward					
Model Testing	DV Paper				
Initialization	PV Kange				
	PV Minim	um	0.0000 C		
	PV Maxim	ium	400.0000 C		
	T		Alexa Sthere Torra		-
	Tuning Para	meters	Algorithm Type		
	Kc	1.5	50 HYSYS -		
	Ti	0.80			
	Td	0.50	O CAlgorithm Subtype		
	Tt	<empty< td=""><td>/></td><td></td><td></td></empty<>	/>		
	b	1.0	00 PID Velocity Form	•	
	c	0.00	00		
			OK		
Delete		E	ace Plate		
					-

Figure 42: Controller parameter tab

Figure 43: Controller Tuning

7.2 Flow, Pressure, Level and Temperature Controllers:

Figure 44: Cascade control loop for ammonia refrigeration

Function: To adjust the refrigerator flow rate

Gain	1.93
Ti	0.21
TD	0

Ammonia Reactor

Figure 45: Pressure control loop for recycle compressor.

Function: To maintain the required pressure condition for ammonia reaction

Here the PIC controller (Pressure controller) measures the outlet of the Ammonia recycle compressors through a sensor and sends it to the transmitter. Transducer is further used to convert the signal into required output i.e. adjusting the rpm of the compressor.

Following PID values were calibrated for the for the controller:

Gain	0.8
Ti	0.15
TD	0

Figure 46: Cascade loop for HTS

Function: To tackle the effect of catalytic poisoning in High-Temperature Shift reactor.

Here a cascade controller is used for a quick response action. Following PID values were obtained for the controller.

Gain	1
Ti	0.22
TD	0.1

Secondary Reformer

Figure 47: Flow control loop for Secondary reformer inlet

Figure 48: Multiple control loops in steam drum section

Function: Here three controllers are installed a flow controller for the inlet of Primary reformer, a pressure controller for the inlet of the steam drum and a level controller for the steam drum.

Figure 49 Pre-heater temperature control loop

Function: Incase of a failure in pre-heater tube or any disturbance and may reduce the outlet temperature, this controller will increase the fuel supply to the pre-heater burners.

Figure 50: Cascade loop for methanator

Function: A cascade controller is installed to adjust the flow of heat exchanger shell side to maintain a steady temperature at the inlet of the methanator.

Figure 51: Level control loop for ammonia separator

Function: To achieve the safe liquid level percentage in ammonia separator.

Figure 52: Level control loop for absorber

Function: The level of the absorption column is to be maintained to a definite level. If a required level was not achieved, then the efficiency of absorber is affected. Hence a particular level was to be maintained. For this level controller was installed to maintain the level at the bottom of absorber. Here the level of the column was the controlled variable, the rich solution flow rate was the manipulated variable, and the lean and semi lean solution flow rate was the disturbance variable.

7.3 Dynamic Mode Controllers Database:

Dynamic mode controllers play a crucial role in control systems as they continuously monitor and adjust the control action based on feedback from sensors or measurements. Unlike static controllers that only consider the current state of the system, dynamic mode controllers analyse the system's response over time, considering factors such as rate of change, stability, and error accumulation. By incorporating feedback information, these controllers make real-time adjustments to the manipulated variable, resulting in improved control performance and enhanced system efficiency. Dynamic mode controllers employ various control algorithms and techniques, including proportionalintegral-derivative (PID) control, model predictive control (MPC), adaptive control, and advanced control strategies. They utilize mathematical models, historical data, or realtime information to make informed decisions regarding adjustments to the manipulated variable. The primary objective of dynamic mode controllers is to maintain the controlled variable within desired limits, minimize errors or deviations from the setpoint, and optimize key performance criteria such as stability, response time, robustness, and disturbance rejection. By continuously monitoring and adjusting the control action, dynamic mode controllers strive to achieve precise and efficient control of dynamic systems.

Given its sheer importance, we have prepared a database of **more than 250** tuned controllers.

Table 35 Dynamic Mode Controllers Database

s						Sign	al Type			Ca Ra	ılib nge			Contr	G		
r. N o.	Descript ion	Proc	ess Area	Lev el	I.S / N. I.S	2/ 4 W ir e	Equip ment	Fr o m	T o	Mi n	Ma x	Unit	Unit	oller Actio n	ai n (K)	КІ	K D
1	FUEL GAS Pressure TO Aux boiler Fuel Header	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 00	6.0 00	kg/c m^2	kg/c m2	Direct	1. 8	0. 2	0
2	Flow of HYDROG EN RICH GAS TO 103-B Feed Gas PRE- HEATER	Fr on t En d	Sulphu r Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0	125 0	mm H2O	Nm3 /hr	Rever se	0. 8	0. 2	0
3	Flow of NATURA L GAS FEED TO 103-B Feed Gas PRE- HEATER	Fr on t En d	Sulphu r Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0	250 0	mm H2O	Nm3 /hr	Direct	0. 75	0. 3 5	0
4	PURGE GAS (from 126-C and 139- C) VENT Pressure INDICAT OR	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 0	20. 00	kg/c m^2	kg/c m2	Direct	2	0. 5	0
5	Desulphu rized GAS Pressure INDICAT OR TO 101-B Primary Reformer	Fr on t En d	Sulphu r Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 0	60. 00	kg/c m^2	kg/c m2	Direct	2	0	0

6	101-B AUX. BOILER RADIANT SECTION DRAFT Pressure INDICAT OR	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 0	25. 00	mm H2O	mm H20	Direct	0. 93	0	0
7	Fuel Gas Pressure INDICAT OR to 101-B PRIMARY REFORM ER Arch,Sup erheater and Tunnel Burners (ByPass INDICAT OR of PIC-149)	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 0	14. 00	kg/c m^2	kg/c m^2	Direct	2	0. 2	0
8	Pressure Indicator 101-B Convecti on Section DRAFT Before ID Fan	Fr on t En d	Reform ing	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	- 25 0	250 .00	mm H2O	mm H2O	Direct	0. 97	0. 2 5	0
9	Fuel Gas Pressure INDICAT OR to 101-B PRIMARY REFORM ER Arch,Sup erheater and Tunnel Burners	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 0	10. 00	kg/c m^2	kg/c m2	Direct	1. 74	0.	0

1 0	FUEL GAS Pressure TO 101-B ARCH BURNER S Row-1	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 00	6.0 00	kg/c m^2	kg/c m2	Direct	2.	0. 2 4	0
1 1	FUEL GAS Pressure TO 101-B ARCH BURNER S Row-2	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 00	6.0 00	kg/c m^2	kg/c m2	Rever se	1. 93	0, 2 2	0
1 2	FUEL GAS Pressure TO 101-B ARCH BURNER S Row-3	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 00	6.0 00	kg/c m^2	kg/c m2	Direct	1. 37	0. 2	0
1 3	FUEL GAS Pressure TO 101-B ARCH BURNER S Row-4	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 00	6.0 00	kg/c m^2	kg/c m2	Rever se	2	0. 2 5	0
1 4	FUEL GAS Pressure TO 101-B ARCH BURNER S Row-5	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 00	6.0 00	kg/c m^2	kg/c m2	Direct	2	0. 2 4	0
1 5	FUEL GAS Pressure TO 101-B ARCH BURNER S Row-6	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	LS	2 Wi re	Trans mitter	Fie ld	D C S	0.0 00	6.0 00	kg/c m^2	kg/c m2	Direct	2	0. 2 1	0
1 6	FUEL GAS Pressure TO 101-B ARCH BURNER S Row-7	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 00	6.0 00	kg/c m^2	kg/c m2	Rever se	2	0, 2 2	0

1 7	FUEL GAS Pressure TO 101-B ARCH BURNER S Row-8	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 00	6.0 00	kg/c m^2	kg/c m2	Rever se	2	0	0
1 8	FUEL GAS Pressure TO 101-B ARCH BURNER S Row-9	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 00	6.0 00	kg/c m^2	kg/c m2	Rever se	2	0. 2	0
1 9	FUEL GAS Pressure TO 101-B ARCH BURNER S Row-10	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 00	6.0 00	kg/c m^2	kg/c m2	Direct	2	0. 2 5	0
2 0	Pressure Indicator and INDICAT OR of 101-B RADIANT SECTION DRAFT	Fr on t En d	Reform ing	AIC (4- 20 mA)	LS	2 Wi re	Trans mitter	Fie ld	D C S	- 25	25. 00	mm H2O	mm H20	Rever se	1	0. 1	0
2	FUEL GAS Pressure TO 101-B SUPERHE ATER BURNER S	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	LS	2 Wi re	Trans mitter	Fie ld	D C S	0.0 00	6.0 00	kg/c m^2	kg/c m2	Direct	2	0	0
2 2	Level INDICAT OR of 101-C WATER JACKET	Fr on t En d	Reform ing	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	356 .0	mm	%	Direct	1. 01	0, 2 2	0
2 3	NG Pressure INDICAT OR to Main	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie Id	D C S	0.0 0	20. 00	kg/c m^2	kg/c m2	Rever se	2	0. 2	0

	FUEL																
	GAS																
	Header HS Stoom																
2 4	Pressure INDICAT OR at 101-F STEAM DRUM	Fr on t En d	STEAM GENER ATION	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	200 .0	kg/c m^2	kg/c m2	Direct	2	0. 1 9	0
2 5	Pressure Letdown INDICAT OR from HP to M.P. STEAM	Fr on t En d	STEAM GENER ATION	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 0	60. 00	kg/c m^2	kg/c m2	Rever se	2	0. 2 4	0
2 6	Process GAS flow TO 101-B PRIMARY REFORM ER	Fr on t En d	Reform ing	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0	250 0	Nm3 /h	Nm3 /hr	Direct	0. 8	0. 2 1	0
2 7	PROCESS STEAM flow TO 101-B PRIMARY REFORM ER	Fr on t En d	Reform ing	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0	250 0	Nm3 /h	kg/h r	Direct	0. 74	0, 2 2	0
2 8	Level INDICAT OR for 119-F STEAM DRUM BLOW DOWN	Fr on t En d	STEAM GENER ATION	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	356 .0	mm	%	Rever se	0. 98	0. 5	0
2 9	FUEL GAS Pressure TO 101-B TUNNEL BURNER S	Fr on t En d	Fuel Gas	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 00	6.0 00	kg/c m^2	kg/c m2	Rever se	2	0	0
3 0	Level INDICAT OR for SECOND	Fr on t	Reform ing	AIC (4- 20	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	356 .0	mm	%	Rever se	1	0. 5 3	0

	ARY REFORM ER 103-D WATER JACKET	En d		mA)													
3	Level INDICAT OR for STEAM DRUM 101-F	Fr on t En d	STEAM GENER ATION	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	813 .0	mm	%	Direct	1	0. 5 7	0
3 2	H.P. STEAM Flow FROM 101-F STEAM DRUM	Fr on t En d	STEAM GENER ATION	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0	500 0	mm H2O	kg/h r	Rever se	0. 71	0. 6 2	0
3 3	Level INDICAT OR for STEAM DRUM 101-F	Fr on t En d	STEAM GENER ATION	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	813 .0	mm	%	Direct	1	0. 5 2	0
3	SEMI LEAN SOLUTIO N Flow TO 101-E ABSORBE R	Fr on t En d	CO2 Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0	250 0	mm H2O	m3/ hr	Direct	0. 69	0. 1 8	0
3 5	Level INDICAT OR CO2 ABSORBE R 101-E	Fr on t En d	CO2 Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0	522 1.5	mm H2O	%	Rever se	1	0. 2 5	0
3 6	Level INDICAT OR for K.O. DRUM 117-F	Fr on t En d	CO2 Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	356 .0	mm	%	Direct	1	0. 1	0
3 7	Level INDICAT OR of SURFACE CONDEN SER 104- L	Fr on t En d	STEAM GENER ATION	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	356 .0	mm	%	Rever se	1. 02	0. 2 4	0

3 8	Pressure Transmit ter for 101-U DEAERA TOR	Fr on t En d	STEAM GENER ATION	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 00	4.0 00	kg/c m^2	kg/c m2	Direct	1. 94	0, 2 2	0
3 9	Level Transmit ter for DEAERA TOR 101- U	Fr on t En d	STEAM GENER ATION	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0	213 0	mm	%	Rever se	1	0. 2	0
4 0	Flow Transmit ter for BFW PUMP 104-JA Kick Back	Fr on t En d	STEAM GENER ATION	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	950 .0	mm H2O	m3/ hr	Rever se	0. 8	0. 2 5	0
4	Flow Transmit ter forBFW PUMP 104-JB Kick Back	Fr on t En d	STEAM GENER ATION	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0	250 0	mm H2O	m3/ hr	Rever se	0. 82	0. 2 4	0
4 2	Flow Transmit ter for BFW PUMP 104-JS Kick Back	Fr on t En d	STEAM GENER ATION	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie Id	D C S	0.0	950 .0	mm H2O	m3/ hr	Rever se	0. 78	0. 2 1	0
4 3	Pressure Transmit ter for CO2 REFLUX DRUM 113-F	Fr on t En d	CO2 Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 00	0.5 00	kg/c m^2	kg/c m2	Rever se	2	0, 2 2	0
4	Pressure Transmit ter for H.P. FLUSHIN G WATER	Fr on t En d	CO2 Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	100 .0	kg/c m^2	kg/c m2	Rever	2	0	0
4 5	Pressure Transmit ter for	Fr on t	CO2 Remov al	AIC (4- 20	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 0	16. 00	kg/c m^2	kg/c m2	Direct	2	0. 2	0

	L.P. FLUSHIN G WATER	En d		mA)													
4	LEAN SOLUTIO N Flow TO 101-E ABSORBE R	Fr on t En d	CO2 Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0	250 0	mm H2O	m3/ hr	Rever se	0. 78	0. 2 5	0
4 7	Flow Transmit ter for CO2 VENT AT STRIPPE R 102-E	Fr on t En d	CO2 Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	735 .0	mm H2O	Nm3 /hr	Direct	0. 78	0. 1	0
4 8	Flow Transmit ter for 120-J Kick Back	Fr on t En d	CO2 Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	635 .0	mm H2O	Nm3 /hr	Direct	0. 78	0	0
4 9	Level Transmit ter for REFLUX DRUM 103-F	Fr on t En d	CO2 Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	356 .0	mm	%	Direct	1	0, 2 2	0
5 0	Level Transmit ter for CO2 BLOWER KO DRUM 121-F	Fr on t En d	CO2 Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	356 .0	mm	%	Rever se	1	0. 2	0
5	Level Transmit ter for RAW GAS SEPARAT OR 102-F	Fr on t En d	CO2 Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	813 .0	mm	%	Direct	1	0. 1 9	0
5 2	Level Transmit ter for PROCESS CONDEN SATE STRIPPE R 103-E	Fr on t En d	CO2 Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0	121 9	mm	%	Rever se	1	0. 2 4	0

5 3	Level Transmit ter for 111-C REBOILE R POT	Fr on t En d	CO2 Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0	121 9	mm	%	Rever se	1	0. 2 1	0
5	Level Transmit ter for 146-C REBOILE R POT	Fr on t En d	CO2 Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie Id	D C S	0	333 7	mm H2O	%	Rever se	1	0, 2 2	0
5	Pressure Transmit ter for RECYCLE HYDROG EN COMPRE SSOR 121-J DISCHAR GE	Fr on t En d	Sulphu r Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 0	60. 00	kg/c m^2	kg/c m2	Direct	2	0. 5	0
5	Process Gas Vent at Methanat or 106-D INLET	Fr on t En d	CO2 Remov al	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 0	50. 00	kg/c m^2	kg/c m2	Rever se	2	0	0
5 7	Level Transmit ter for SYN GAS COMPRE SSOR SUCTION KOD 104- F	BA CK EN D	SYNTH ESIS	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	356 .0	mm H2O	%	Direct	1	0. 5 3	0
5 8	Pressure Transmit ter for H2 FROM PGRU	BA CK EN D	PGRU	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	100 .0	kg/c m^2	kg/c m^2	Rever se	2	0. 5 7	0
5	SYN GAS COMPRE SSOR 103-J SUCTION VENT	BA CK EN D	SYNTH ESIS	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0 0	50. 00	kg/c m^2	kg/c m2	Rever se	1. 99	0. 6 2	0

6 0	Level Transmit ter for SYN.GAS COMP IST STAGE SEP. 105- F	BA CK EN D	SYNTH ESIS	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	356 .0	mm H2O	%	Rever se	0. 96	0. 5 2	0
6	Level Transmit ter for 103-J S-O L.P STAGE O.H TANK	BA CK EN D	SYNTH ESIS	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S				%	Direct	1	0. 1 8	0
6 2	Level Transmit ter for 103-J S-O H.P STAGE O.H TANK	BA CK EN D	SYNTH ESIS	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S				%	Direct	1	0. 2 5	0
6 3	Level Transmit ter for 103-J S-O HP Trap	BA CK EN D	SYNTH ESIS	AIC (4- 20 mA)	I.S	2 Wi re	Trans mitter	Fie ld	D C S	0.0	356 .0	mm	%	Rever se	1	0. 1	0

Complete Controller database file is available on the following link:

https://drive.google.com/drive/folders/11mCmkNPpM73aaffr_GUQf5Vk1d69lia9?usp= sharing

or:

Figure 53: Dynamic Mode Controller Database QR Code

CHAPTER 8

HAZOP ANALYSIS

8.1 Background

HAZOP or Hazard and Operability Study is a research tool used to find out potential hazards which might lead to a disaster. There is a wide use of HAZOP as a tool in all types of industries such as chemical and otherwise to study the possibility of a problem or hazard occurring on a stream or unit of operation. It is done by a multidisciplinary team which employs a critical and analytical approach on the unit or stream being studied. This team consists of between 6 to 12 members normally and usually requires weeks of work to be concluded [10]. These members normally include the operations engineer, mechanical engineer, process engineer, electrical engineers, chemical engineers, HSE consultant and a project manager as well. For the discussion of all records and parameters that may lead the process of the track, all the members are needed to meet multiple times in a week. Full HAZOP study requires several PFDs and P&IDs which are not easy to understand and require lot of collective effort to be sorted out, and this needs to be done for each unit separately. It is a laborious process and takes more than a month to complete. Although this is a very tough technique to perform but it is considered as the best possible method or study for having a hands-on approach to any sort of problem that might occur in a process. So, performing a HAZOP analysis of a chemical plant is the most important step in making it safe.

The main reason for a HAZOP analysis is to study the core possible reasons of failure and take steps to prevent them. Each unit or process is broken down into the minutest detail and then the guide words are applied on the node in question. Deviations are then checked for in terms of temperature, pressure, flow and composition and they are applied on every guide word that is applicable to them.

8.2 Methodology:

The HAZOP study was performed using the following steps:

- Prepare a point-to-point flow sheet and map out the various units within it.
- Select a unit for study, like an absorber or stripper
- Describe the reasoning for choosing that unit
- Choose a process parameter
- Apply the guide words on the process parameters and find out potential deviations from those words introduced in the below tables.
- Determine the potential causes and any systems required to prevent the disaster
- Evaluate deviation outcomes
- Recommend possible preventive measures.
- Record all associated data and present it

8.3 Low Temperature Shift Reactor

Table 36 HAZOP of LTS

Deviation	Possible Causes	Consequences	Suggested Actions			
No Flow	Valve not functioning properly or failed	- Loss of reaction and buildup of unreacted materials.	- Investigate and repair/replace faulty valves.			
	Feed line having blockages of any sort	- Disruption of the reaction, loss of productivity.	- Clear blockages.			
Reverse Flow	Extreme Backpressure from downstream	- Disruption of the chemical reaction, low product	- Review valve configuration and designing system of pipes.			
	Incorrect valve positions	- Contamination or blockages on the beds of catalyst.	- Make sure there is correct valve positioning.			
High Temperature	Reduction in cooling	- Catalyst deactivation	- Increase in the cooling capacity.			
	Failure of digital control system	- Vulnerable operating conditions, chances of potential accidents.	- Add temperature alarms, sensor and interlocks.			
High Pressure	Reactor overpressure	- Failure of equipment, explosion, concerns related to safety.	- Add pressure relief valves.			
Composition Change	Decrease of feedstock quality	- Change of reaction kinetics, issues related to quality of product.	- keep tabs on the feedstock quality.			

8.4 Ammonia Reactor

Table 37 HAZOP of Ammonia Reactor

Deviation	Possible Causes	Consequences	Suggested Actions
No/Low Flow	Valve not functioning properly or failed	- Reduced ammonia production, decreased efficiency.	- Replace malfunctioned valves with new ones.
	Pump not functioning properly or failed	- Reduction in conversion rates, no complete mixing.	- Replace malfunctioned pumps with new ones.
High Temperature	Insufficient cooling	- Catalyst deactivation, reduction in ammonia production.	- Increase the cooling by increasing flow rated of CFW
High Pressure	Valve not functioning properly or failed	- Equipment damage, safety risks, potential explosion.	- Inspect and repair/replace faulty valves.
	Reactor overpressure	- Reactor failure, safety hazards, release of toxic gases.	- Install pressure relief devices.
Low Pressure	Valve not functioning properly or failed	- Inadequate reactant supply, reduced ammonia output.	- Inspect and repair/replace faulty valves.
	Leakage in the equipment	- Decrease in efficiency loss of valuable feedstock.	- Inspect and repair leaks
Composition Change	Variation in feedstock quality	- Altered reaction kinetics, issues related to product quality.	- Check feedstock quality periodically

8.5 Compressor:

Table 38 HAZOP of Compressor

Deviation	Possible Causes	Consequences	Suggested Actions			
Low Concentration	Leakage in suction line of the compressor	- Insufficient compression, reduction in the purity.	- Identification of leakage area and repair those leaks in suction line.			
	Contamination	- Impurities in output, decreased product quality.	- Implement proper filtration and purification systems.			
Low Flow	Suction pressure lower than average	Insufficient output pressure, compressor efficiency decreased	- Adjust suction pressure in accordance to required levels.			
High Flow	Valve not functioning properly or failed	- Issues related to safety.	- Replace malfunctioned valves with new ones.			
Low Pressure	Valve not functioning properly or failed	- Insufficient output pressure, compressor efficiency decreased	- Replace malfunctioned valves with new ones.			
	Restriction in the flow of inlet stream	- Reduction in flow rate of stream, not enough compression ratio	- Remove blockages, clean the filters of compressor and screens.			
High Pressure	Valve not functioning properly or failed	- Loss in pressure, compressor efficiency decreased.	- Replace malfunctioned valves with new ones.			

CONCLUSION

The dynamic mode simulation serves as **an excellent comprehensive tool** to study any steady and dynamic state case for rectifications both in steady state and real-time, in the plant. A comprehensive instrumentation model provides a roadmap for day-to-day plant safety while considering product profitability and purity and shows an estimation of **7%** saving in annual energy savings.

Implementing a dynamic mode controller on an ammonia production unit yielded positive results and led to significant improvements in control performance. The dynamic mode controller continuously monitored the system's response and made real-time adjustments to the manipulated variables based on feedback information from sensors or measurements. This approach resulted in tighter control over the ammonia production process and enhanced stability.

The implementation of the dynamic mode controller improved the control of critical variables such as ammonia synthesis temperature, pressure, and flow rates. The controller effectively maintained these variables within desired ranges, minimizing deviations from the setpoints and reducing process variability. This led to increased process efficiency, improved product quality, and reduced waste or off-spec production.

Furthermore, the dynamic mode controller demonstrated its ability to respond quickly to changes in operating conditions or disturbances. It efficiently adjusted the manipulated variables to counteract any fluctuations or disturbances, thereby ensuring the stability of the ammonia production process. The controller's responsiveness and adaptability contributed to faster process stabilization and reduced downtime due to process upsets.

In conclusion, the implementation of a dynamic mode controller in the ammonia production unit resulted in significant improvements in control performance, stability, and efficiency. The controller's continuous monitoring, real-time adjustments, and responsiveness to changes in operating conditions contributed to tighter control over critical variables, improved product quality, and reduced process variability. The successful implementation of the dynamic mode controller highlights its effectiveness in optimizing the ammonia production process and showcases its potential for enhancing control systems in similar industrial applications.

REFERENCES

- [1] Bø and Johansen, 2014 T.I. Bø, T.A. Johansen Dynamic safety constraints by scenario based economic model predictive control Proceedings of the IFAC World Congress, Cape Town, South Africa (2014), pp. 9412-9418
- [2] Luyben, 2018 W.L. Luyben Plantwide control of a coupled reformer/ammonia processChem. Eng. Res. Des., 134 (2018), pp. 518-527
- [3] Wu et al., 2018 Z. Wu, H. Durand, P.D. Christofides Safe economic model predictive control of nonlinear systems Syst. Control Lett., 118 (2018), pp. 69-76
- [4] Modern Control Systems" by Richard C. Dorf and Robert H. Bishop
- [5] "Advanced Control Engineering" by Roland Burns
- [6] "Process Dynamics and Control" by Dale E. Seborg, Thomas F. Edgar, and Duncan A. Mellichamp