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Abstract

Cognitive radio network based on Device to Device and the heterogeneous network has

attracted wide attention as they can resolve spectrum shortage problems and efficiently uti-

lizes spectrum resources. However, resource allocation considering stochastic behavior has

not been considered in any work. In this thesis, the proposed work aimed for maximizing

the throughput of the overall network considering multiple users under the umbrella of the

Cognitive radio network assisted by amplify and forward relay. The constraints are treated

as chance constraints with a probability of satisfaction in them, which leads to a nonconvex

Mixed integer nonlinear problem which is an NP-Hard problem. To solve this problem

an exhaustive search solution for optimal results is required. However, the computational

burden always increases with the user equipment. Therefore, to obtain an optimal solution

with having low computational burden, Outer Approximation Algorithm is utilized in this

research. To evaluate the desired results, extensive simulations have been carried out. The

effectiveness of the proposed algorithm is verified by results in terms of throughput maxi-

mization under the impact of chance constraint formulation in the cognitive radio networks.
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Chapter 1

Introduction

This chapter presents a brief introduction to the work accomplished in this thesis. The

section 1.1 gives a brief overview of the evolution of communication networks in the past,

present, and future. Section 1.2 explains the basic motivation of this thesis. The overview of

CRN is presented in section 1.3. The research gaps that lag in previous work are represented

in section 1.4. The primary contribution of this thesis is detailed in section 1.5. Finally,

section 1.6 discusses the organization of the thesis.

1.1 Evolution of Communication Networks

Over the last few decades, wireless communication has experienced tremendous innovation

due to rapid growth in mobile devices, and multimedia applications (MMS) [1]. This be-

comes a cause of establishing the latest technologies to overcome such demand and provide

a reliable and convenient way of communication [2, 3, 4, 5, 6].

Technology has gone through a major change in terms of "Generation", simply evolving

from 1G to 5G [7, 8, 9]. That rapid development directly links to the consumption of ex-

isting radio resources and increasing data-hungry applications [10, 11, 12]. The first gen-

2



eration (1G) was an analog form of communication that works fine in its era and provides

voice service [13]. The second generation (2G) was a digital form and promised to provide

further capabilities as compared to previous analog communication. Such as voice and

sms. Due to the rapid involvement of multimedia applications in our lives third generation

(3G), a next step towards wireless technology was introduced to provide high speed, high

capacity, and bandwidth with the latest Code Division Multiplexing technology (CDMA).

The fourth generation (4G) can handle speeds up to 100 Mbps through Orthogonal Fre-

quency Division Multiplexing (OFDM) which provides each user with an orthogonal link

together to provide efficient allocation of bandwidth and a high data rate [14]. Thus, MMS

and entertainment applications can easily be served by this technique [15]. It has coupled

existing and latest technology together in order to provide roaming service for customers so

that they can easily switch from existing to new technology without interruption. 4G can-

not handle such stringent latency and reliability requirements that are expected to increase

among different applications such as healthcare, security, logistics, automotive industry. To

support network flexibility and reliability, fifth generation (5G) is a promising technology

that has arrived which not only solves the current increasing data rate requirement but can

handle up to 50 billion devices in near future [16] [17]. Wireless communication from 1G to

4G can provide service to only "people". 5G technology handles communication between

"people and things". As a result, the communication between people and objects gradually

increased when such a system is implemented. 5G system is based on Non-orthogonal

multiple access (NOMA) which multiplex data both on time and frequency which provide

an edge on spectrum allocation. It will drive the overall demand of high traffic for data-

hungry applications such as augmented reality and virtual reality. It will increase the data

rate about 1000 times to fulfill the current demand up to (10 Gbps peak data rates) [18]. It

is based on Low-Density Parity Coding (LDPC) and a higher modulation scheme of 256

QAM to full fill stringent latency, and reliability requirements that have been raised at this
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current time. In ultra-reliable low latency communication (uRLLC) applications, however,

latency becomes a significant performance criterion that is impossible to achieve with tra-

ditional communication protocols. As a result, 5G combines computing capacity at cell

edges, i.e., Mobile Edge Computing (MEC), to avoid cloud computing and enable local

processing with minimal latency. Even 5G, however, cannot ensure that it will fulfill all

the needs of new applications in the future. With the rise of the Internet of Things, there

is a need for communication between "things”. Fig. 1.1 depicts the evolution of cellular

communication technologies.

Figure 1.1: Technology Evolution from 1G to 5G

1.2 Motivation

The demand for wireless devices increases rapidly as compared to the last decade. Mobile

traffic has experienced 70 percent growth since 2014 [19]. According to the latest survey,

there are about 13.4 billion devices that are connected in 2023 [20]. Emerging technology

gadgets such as the Internet of Things (IoT) and small handheld devices have increased the

data rate up to 5016 Exabytes/month by 2040 [21]. 4G cannot handle such stringent latency
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and reliability requirements that are expected to increase among different applications such

as healthcare, security, logistics, automotive industry.

To support network flexibility and reliability, 5G is a promising technology that has arrived.

5G magnifies the system bandwidth, and data rate, reduces round-trip latency, and shows

massive connectivity for wireless devices. The 5G era has introduced HetNet, where vari-

ous small devices of different network types combine and access technology. Various femto

base stations cover multiple small base stations (BS). 5G also comprises millimeter wave

(mm-Wave) and massive multiple input and multiple outputs (M-MIMO) technologies that

increased data rate up to 20Gb/s of 1Ghz bandwidth. Such a system can reduce interference

by using beam-forming techniques and provide low latency. But it cannot handle the large

capacity requirement of the network. Massive MIMO is employed with advanced antenna

arrays whose width and tilt can be controlled vertically and horizontally [22]. It employs a

lot of active components that increase interference and complexity. So, researchers are now

moving forward to bring new advancements in 5G technology bringing it up to beyond 5G

with increased throughput capabilities. Spectrum sharing is the major issue that is faced

during the evolution of wireless technologies. Spectrum sharing means efficiently utilizing

the existing system so that any user can easily get accommodated in existing bandwidth.

Cognitive radio network (CRN) for 5G is a promising technique to efficiently utilize the

availability of spectrum and underline radio resources [23].

The sixth generation (6G) is the expansion of the existing 5G technology, the main aim of

this generation is to enhance the existing 5G infrastructure to raise throughput, spectrum

efficiency, low latency in the network, and wider coverage [24]. Intelligent network devices

such as IoT, and small sensor-based devices are in demand for today’s communication

and need extremely fast computation and low latency requirements so these things can be

achieved by 6G easily. An endogenous security arrangement or a coordinated practical
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security configuration will be utilized in the 6G organization. Fig. 1.2 depicts the overall

data rate and device handling capability of different generations.

Figure 1.2: Data Rate Representations for Different Generations

6G can operate at a high frequency such as a millimeter wave, or tetra hertz. It promised

flexible and reliable communication to achieve an approximate data rate of Tb/s as com-

pared to 5G. It is now adopted to have in building artificial algorithm implementation to

modify the existing classical networks to data-centric [25]. 6G has self-discernment capac-

ities, constant powerful investigation abilities, risk transformation abilities, and certainty

evaluation abilities. It will assist this with accomplishing internet security by presenting

trust and security systems. 6G includes computing, detection, navigation, and radar de-

tection algorithm in wireless networks [26]. 6G technology is integrated with cloud com-

puting, artificial intelligence, and blockchain capabilities [27]. Implementing a Cognitive

network scenario with 5G/6G is another approach toward generating a spectral efficient

network model which not only deals with bandwidth utilization problems but also counters

the interference that occurs due to an increasing no of users. The cognitive scenario always

considers in the latest technological model because in the telecommunication spectrum uti-
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lization is the primary goal of any operator because its revenue depends on its utilization.

Any telecommunication industry tries its best to adopt efficient ways that utilize existing

spectrum availability to accommodate multiple users. Fig. 1.3 depicts the evolution of

communication towards 6G.

Figure 1.3: Communication Evolving Towards 6G

1.3 Cognitive Radio Network

The rapid development in the field of wireless networks causes a burden on allocating radio

resources in an efficient manner. Fixed spectrum assignment strategy causes bottlenecks

for efficient utilization of spectrum. The efficient usage of the spectrum has diverted the

attention of service providers to reduce such bottlenecks in order to reduce revenue losses.

The concept of Cognitive radio network (CRN) has received great attention in recent years

to address spectrum scarcity issues for wireless networks. [28].

A CRN is a promising technology that enables users to efficiently utilize the underline

spectrum, known as dynamic spectrum access (DSA) [29]. A cognitive network has the

ability to sense the environment and gathers information such as power, frequency, and
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interference level. With this sensing ability, secondary users (SU) can identify the vacant

spectrum and utilize it. With this ability, SUs can adjust their operational parameters ac-

cording to sensed information to establish the quality of service (QoS). Primary users (PU)

have a priority to carry on their transmission and co-exist with SUs. When PUs are in

the transmission phase then desired parameters such as interference temperature, and QoS

needs to be undermined by SUs [30]. SU needs to detect the presence of PU first and then

start its transmission in accordance with it.

The following approaches are used to differentiate the working model of CRN. In the un-

derlay and overlay model, transmission between PU and SU continues until performance

degradation does not occur between them. The underlay model consists of some predefined

noise threshold that always tunes its parameter to restrict SU transmission flow so that no

interference can occur between them. Interweave is based on an opportunistic spectrum

sensing mechanism to dynamically utilized spectrum in absence of PU transmission. This

method continuously observes spectrum occupancy and allows SU transmission [31].

Underutilized frequencies are the target for cognitive network scenarios, where frequencies

from that pool are used to satisfy SU. CR sense the environment for the availability of

gaps in unused spectrum pool from which they can be assigned to SU. Following are the

ways mentioned below to provide spectrum sensing capabilities for detecting PU in the

environment

1. Cooperative spectrum sharing technique: In this method cognitive radio work to-

gether to detect PU presence. In a centralized manner, each radio gathers infor-

mation regarding spectrum occupancy and shares this information with the Central

controller. This controller processes the information and uses it to map the spectrum

for each cognitive radio. This is helpful to mitigate multi-path fading problems and

solve the issue of dreaded hidden points. These points occur when cognitive radio
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has a good line of sight but fails to detect another PU. Cooperation among different

radio networks can solve this problem in a good manner.

2. Matched filter detection technique: It is sometimes called coherent detection, which

is a spectrum observation detection method that requires prior knowledge about PU

such as its modulation type, pulse shape, and packet format. This information is

correlated with the unknown PU signal since it maximizes SINR. A desired result

can be achieved in less time and with low complexity.

3. Cyclostationary-based detection: In cyclostationary signals have mean or autocorre-

lation a periodic function over time. In the modulation phase, the signal is multiplex

with the sine wave and it is repeated with a spreading sequence of codes thus such a

technique renders its periodicity and any noise that might occur during environmental

impact will have nonperiodic nature. This cyclostationary technique can differenti-

ate the original signal from noise. Using the spectrum correlation method one can

detect cyclostationary signals from noise easily such a method can play a vital role

in detecting PU signals. It has several advantages such as it can detect noise from

low-power signals with less SNR.

4. Interference-based spectrum sharing technique: In this method, the receiver actually

measures the level of received signal interference strength. When an RF signal is

received at the receiver end, the receiver determines whether its interference temper-

ature is up to the prescribed level or not. If a signal interference strength is within

the threshold then cognitive users can utilize sharing bands for communication.

Cooperative relay technology has emerged in recent years to modernize the existing RF net-

work. Cooperative relay aided with the cognitive network can provide better performance

gain by utilizing white space in the spectrum [32]. It generally enhanced the performance
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of the resource constraint network. The idea of relaying is generally attractive to provide

a better quality of service. Some are decoded and forward relays that decode the respec-

tive signal and forward it to the desired destination when the source is not transmitting. If

amplify and forward relay is used for the cognitive network then it simply amplifies the

received signal amplitude and forwards it to the desired destination [33].

A wireless sensor node (WSN) is another promising solution that can be integrated with

cognitive network scenarios to gather the existing environmental data and transmit it to a

base station or transmitter which can easily understand the current situation through these

data and model its parameter to achieve efficient reliable communication. CR-WSN ac-

companies CR network infrastructural which are battery powered but utilizes the available

spectrum [34].

Some of the potential applications for cognitive radio networks:

1. CR can be employed in any WSN which covers the area for facility management,

surveillance management, preventive maintenance, roadside security, and monitoring

of the indoor and outdoor environments.

2. CR scenario can be implemented in a military perspective such as a battlefield sce-

nario where communication between troops within the required bandwidth is our

main objective. Some military require maximum bandwidth, channel access, and

delay requirement so CR-WSN can be used.

3. Wearable body sensors are widely used in healthcare systems like telemedicine. On

patients, several wireless sensor nodes are positioned to collect crucial data for re-

mote monitoring by healthcare professionals. By reducing these issues with band-

width, jamming, and worldwide operability, "CR wearable body wireless sensors"

can increase reliability.
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4. CR can be joined with a Mobile edge computing (MEC) platform to successfully

offload the resources to nearby systems in order to provide efficiency in the overall

network. Device-to-device (D2D) networks can be used in conjunction with CR.

As multiple devices can communicate with the help of nearby devices Cognitive

scenarios can provide spectrum efficiency and interference efficient network.

5. Due to their hefty bandwidth demands, multimedia applications including on-demand

or live video streaming, audio, and still images over resource-constrained WSNs are

incredibly difficult. Some WSN applications, including those used in hospitals, ve-

hicles, tracking, surveillance, etc., have significant temporal and spatial fluctuations

in the data density, which are connected with node density. These applications are

bursty, bandwidth-hungry, and have unbearable delays. CR-WSN is ideally suited

for these kinds of bandwidth-hungry applications because SUs can access multiple

channels whenever accessible and required.

1.4 Research Gaps

Following are the main open areas that previous work didn’t mention such as chance

constraint-based formulation.

• Usually few works undertake this aspect but skip to consider uncertainty or some sort

of perturbation factor present in constraint which always vary its optimal solution

from the desired point.

• Power sources are considered in previous work but how to control its parameter to

reduce the amount of interference among cognitive users is not discussed more in

previous work.
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• Relay-assisted network interference is not discussed more in previous work. As

this parameter is important because it causes interference in the network when re-

lay power is increased to a high level.

• The traditional wireless network utilizes a single channel for transmission, this cause

burden on existing infrastructure and loss of packet during transmission. CR network

utilizes multiple channels to transmit the data in order to avoid a collision.

• During a natural disaster the existing wireless network get damaged by earthquake,

tsunami, and storms so the CR network can utilize its spectrum to provide access to

voice and another mode of communication.

• As in the CR scenario, the PU can benefit from SU when SU demands its utilization

from the PU band PU can adjust some agreements for leasing its resource to SU to

enhance its revenue. In this way, the PU can benefit from such a scheme.

1.5 Contributions

Based on the summary of the literature review and a close look at Table 2.1 it is evident that

a huge work has been done in the field of RA considering HetNet, D2D, V2X, or Cognitive

scenarios. But there is no proper work being done on Chance constraint formulation based

upon stochastic behavior assisted by any networks". The main contribution of the proposed

work is summarized as follows:

• A mathematical formulation is proposed for efficient resource allocation (RA) as-

sisted by the cognitive network under probabilistic interference models subject to

power, amplify, and forward relay (AF) interference, and combined source inter-

ference constraint. The uncertain parameter is generalized with known distribution
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which caused perturbation under constraint transformation.

• It is shown that the proposed intractable problem involves probabilistic constraint

and MINLP. This probabilistic constraint is converted into a deterministic one by

employing an outer approximation algorithm (OAA), which has not been investi-

gated by any previous work, OAA is used to produce an optimal solution with less

complexity and a fast convergence rate for the proposed MINLP.

• Performance of proposed work is analyzed by extensive simulations. The proposed

solution for the chance constraint works efficiently to maximize the throughput of

CRN assisted by relay.

• Proposed solution can be considered as a benchmark technique that gives maximum

throughput while dealing with the cognitive scenario. Achieved results also show

that the proposed solution efficiently counters the perturbation factor and satisfies

the requirement of our network under desired probability level.

• Comparison of OAA results with Mesh Adaptive Direct Search (MADs) reveals that

the proposed algorithm always perform better in complexity scenario.

• To the best of the author’s knowledge there exists no work that caters to complexity

and perturbation factor in RA. This work would cover all those existing gaps and

provide an efficient way for RA to consider probabilistic constraints.

1.6 Thesis Outline

The layout of the rest of the thesis is as follows:

• Chapter 2 presents a concise background on the main subjects relevant to this work

such as previous work done on Throughput maximization based on AF relay-assisted
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CRN are thoroughly discussed and its existing literature’s shortcomings and existing

literature’s problems.

• Chapter 3 presents the system model, problem formulation, and proposed algorithm

along with the convergence and complexity analysis of the algorithm.

• Chapter 4 presents the numerical simulation and discussion to illustrate the applica-

bility of the proposed solutions.

• Chapter 5 presents the conclusions and direction for future work.
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Chapter 2

Literature Review

This chapter illustrates the essential background information on which the presented work

is formed: in particular, sections 2.1 recalls the needs of the KPI to be optimized in this

thesis. Section 2.2 discusses the literature related to capacity maximization and section 2.3

recalls the literature related to transmitting power minimization. Section 2.4 contains the

literature related to EE optimization of CRN. Section 2.5 contains some of the constraints

common in all the literature. The summary of the literature is concluded in table 2.1. Sec-

tion 2.6 discusses a summary of problem formulation. Finally, at the end of this chapter in

section 2.7, the requirement of the proposed work is justified.

2.1 Background

5G/6G era will deal with massive amounts of traffic having different network topologies

as outlined in the preceding chapter. As the result, the overall demand for throughput will

gradually rise with time. Throughput is a significant requirement to have a satisfactory

level of communication. Throughput optimization aims to efficiently utilize the available
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resources to optimize overall network performance and QoS parameters. A few articles

have surfaced to highlight the importance of cognitive network that considers throughput,

energy efficiency (EE), and spectrum efficiency (SE) and minimizes system power to limit

interference between users. RA is the main topic of the proposed research to efficiently

utilizes the given resources and provide QoS network performances. Constraints that im-

pact the proposed objective function have to deal with uncertainty and probability threshold

levels to satisfy the overall optimization efficiency. The following are the main challenges

Figure 2.1: Cognitive Radio Scenario

that CRN experiences:

• Acquiring CSI: Knowledge about CSI is very much important for any communicat-

ing device. In the existing works, perfect channel conditions are assumed between

transmitter and receiver which are too idealistic to have in any wireless setup. So

proposed work goal is to consider such channel uncertainties present in the environ-

ment.

• Interference temperature constraint: To have QoS communication between PU and

SU then there should be a threshold adjustment for interference level in a wireless

network. The objective should be set to overcome total interference between com-
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municating devices [35].

• Mobility of the CR users: Normally CR may change their location with time so it is

obvious that their channel also be remain changed along with time. The main chal-

lenge that always underlies is to consider uncertain channel parameters with respect

to different location points. The goal is to consider such mobility and maintained

SINR within the target.

A CRN assisted by an AF relay source is considered in this thesis, and we provide a solution

for the throughput maximization of cellular wireless systems.

2.2 Throughput Maximization

In [36], the Cognitive network model based on a power control mechanism was examined.

The objective is to maximize network utility under the presence of probabilistic interfer-

ence constraints. The channel between SU and PU was modeled by log-normal shadowing

and small-scale fading, which was approximated by the Fento-Wilkinson method. Non-

convexity was treated with Kush kuhn tucker (KKT) algorithm to obtain the optimal solu-

tion. Numerical results showed that overall network utility maximized under the prescribed

SINR threshold. It lags behind discussions on convergence and complexity analysis.

In [37], the Cognitive network model based on interference was examined. The objec-

tive of achieving throughput under the controlled interference level and power of the net-

work source. This work considered channel gains of interference for SUs to be uncertain.

Chance constraint-based formulation was considered, and nonconvexity was tackled by

utilizing robust optimization (RO). Numerical results showed maximized throughput under

the presence of a controlled interference level. This works lags in considering uncertainty

in constraint formulation.
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In [38], the Robust power allocation algorithms were examined in this paper. The objective

was to maximize sum capacity under the presence of power and probabilistic interference

considering a massive cognitive network. The given problem was solved through Newton’s

method of searching reasonable power levels and using the second derivative for better

results. Numerical results showed capacity maximization considering uncertain PU and

SU locations. This work lags in considering different channel models.

In [39], the NOMA-based multi-subcarrier and multi-relay assisted communication model

was examined in this paper. An advanced multiplexing technique was used compared to

OFDMA, whose objective was to maximize the sum rate in the presence of power control,

and subcarrier pairing for multi NOMA network. This work used the Hungarian algorithm

for efficient subcarrier pairing and successive convex optimization (SCA) for the optimal

solution. This work lags in analyzing the impact of interference when massive users share

the same spectrum.

In [40], the UAV-based relay-assisted model for the cognitive network is considered where

UAV will assist SU in decoding and forward, assuming infinite battery power from SU for

energy harvesting (EH). The objective was to maximize throughput under the presence of

causality of SU energy usage, and interference temperature for relay and relay transmit

power. Different hovering trajectories under a block fading environment were considered,

and the problem was treated with Lagrange dual method. Simulation results showed that

the proposed solution produces maximization of the data rate of the overall network along

with power control. This work lags considering probabilistic satisfaction for interference

constraint.

In [41], D2D network was proposed along with energy harvesting phenomena assisted with

CR. The goal was to optimize the maximization of throughput by considering power alloca-

tion, user pairing, and channel assignment. D2D users harvest energy from CR users. The
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existing problem was nonconvex, solved by duality theory, and the Hungarian algorithm

was utilized for optimal sub-carrier pairing. Numerical results showed that throughput

maximizes along with increasing users and maximum tolerable outstanding against raising

interference. This work lags in satisfying QoS for different applications.

In [42], Femto-based heterogeneous networks under the presence of channel uncertainties

were examined. The goal was to optimize the overall sum rate while avoiding interference

encounters within the macro base station and maintaining the required data rate for femto

users. A Gaussian distributed model for CSI feedback was analyzed and a robust optimiza-

tion problem was solved by Lagrange dual theory and subgradient algorithm. Numerical

results showed that the proposed algorithm achieved desired data rate requirement. This

work lags the discussion to consider the complexity factor when users increase.

In [43], Backscatter (BackComm) based on a cognitive network consisting single primary

base station with a single PU, and a single SU with multiple secondary base stations were

examined in this work. The goal of this work was to provide an energy harvesting mecha-

nism to multiple secondary base stations from the primary base source. The objective was

to optimize secondary transmitter throughput under the presence of energy, QoS, and trans-

mit power constraints. The present problem was nonconvex which was treated with SCA

and desired result produces maximum throughput under users, SINR, and iteration com-

parison. This work lags considering probabilistic satisfaction terminology in constraint.

In [44], EH based on a cognitive network consisting of multiple secondary users was ex-

amined. The goal of this work was to provide a self-sustainable approach to secondary

devices, considering the Markov approach of PU activity. The objective was to maximize

throughput using point-based value and heuristic point-based iteration methods. Numerical

results show an efficient EH mechanism along with a throughput maximization approach.

This work lags in the probabilistic approach dealing with channel uncertainties.
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In [45], the NOMA-based SU assignment approach assisted by the cognitive network was

examined in this work. The goal of this work was to optimize throughput under the con-

trolled power allocation, interference, and maximum SU sub-channels. This problem was

nonconvex which was solved by SCA, numerical results showed that this solution achieved

maximum throughput under controlled interference temperature. But this work lags in

considering complexity and chance constraint-based approach.

In [46], UAV-assisted cognitive networks were examined. UAV approach was undermined

for safety and disaster scenario. The goal of this work was to consider the probabilistic LOS

of UAVs and optimize throughput under co-channel interference. The proposed solution

was achieved by particle swarm and numerical results showed efficient raise in throughput

while considering co-channel interference in mind. This work lags in the implementation

of chance constraint under interference constraint and also considers the complexity factor.

2.3 Transmit Power Minimization

In [47], Hybrid OFDM and NOMA-based cognitive networks were examined in this work.

The goal of this work was to provide power minimization under the presence of rate de-

mand, probability of success, SIC, and power control constraints. The given problem was

nonconvex, and the Successive convex algorithm (SCA) technique was used to convert the

nonconvexity of its nature. Numerical results showed an improved sum rate under low

power. But this work lags in considering uncertainty in constraints as constraints can never

remain the same under any condition.

In [48], NOMA with OFDM hybrid-based wireless network was examined. The goal of

this work was to provide power minimization under the presence of capacity and positive

power constraints. The given problem was nonconvex, converted into convex by the interior
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point method. Numerical results showed power efficiency along with optimum users. This

work lags the cognitive network scenarios in its scope.

In [49], Multi-objective based cognitive networks were examined in this work. The goal of

this paper was to study power management in the presence of minimum delay, intervention,

and the error rate of packet transmission. This problem was solved by an evolutionary

algorithm whose results showed optimal behavior of power minimization. This work lags

in considering chance constraint-based formulation.

In [50], Multi-objective scenarios based on a cognitive network of IoT were examined.

The goal of this work was to jointly optimize the power, delay, and rate of cognitive users.

Optimization problem includes minimization of power, delay, and maximization of rate

for SU under the presence of BER, interference, and channel limitations. The author has

analyzed how rate, power, and delay variation in accordance with to increasing in BER and

packet size. A branch and cut polyhedral algorithm was proposed whose results showed

optimal power minimization and maximization rate of the CR network. This work lags

in considering advanced algorithms that can cater to complexity factors when multiple

variables are possessed in calculations.

In [51], the Cognitive network with NOMA technology has been examined. The author

has considered wireless information and energy transfer (SWIPT) along with the design

of transmitting beamformers and power splitting. The goal of this work was to optimize

power efficiency in the presence of EH requirements for SUs and maximum interference

constraints for the primary users’ side. The given problem was solved by semi-definite and

SCA. Numerical results showed that EH is achieved with low power consumption. This

algorithm takes a long time to converge and increases computational complexity.
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2.4 Energy Efficiency Maximization

In [52], UAV-based overlay cognitive network models were examined. The goal of using

such a model was to provide UAVs with sensing transmission capabilities which are popular

now’s a day. CR opportunistically utilizes the underlying spectrum and UAV periodically

senses the availability of spectrum and passed this information to BS. The objective was

to maximize energy efficiency in the presence of sensing time and transmission power

constraints. This problem was solved by using the dichotomy method, whose results show

energy efficiency by restricting power. This work lags in investigating energy harvesting

and flight trajectories for UAVs.

In [53], Multi-carrier decodes and forward relay-assisted cognitive networks were exam-

ined. The goal of this work was to optimize the objective function considering uncertain

channel gains. The objective was to maximize EE in the presence of relay transmit power,

subcarrier pairing, and minimum rate requirement constraints. The dinkelbach method was

used to solve the quasi-concave problem and for optimal relay selection dual decompo-

sition method was used. Numerical results showed an energy-efficient system with low

complexity. This work lags chance constraint-based formulation and perturbation factor

which can be a vital scope to undertake uncertainty inside constraint formulation.

In [54], Energy-efficient algorithms for OFDM-based femto devices were examined. The

goal of this work was to study the impact of QoS on densely populated femto users. The

objective was to maximize energy efficiency in the presence of minimum throughput, re-

quired tolerance, and fairness. SCA algorithm was proposed to solve the combinatorial

nonconvex problems. Numerical results showed better convergence analysis for energy

efficiency.

In [55], WSNs based on EH mechanisms were examined. The goal of this work was to

utilize TDMA-based EH protocol where at one-time slot energy is harvested and at an-
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other time slot, energy is transmitted. The objective of this work was to maximize EE by

considering time scheduling parameters and power consumption. To extend WSN life our

objective was to keep energy consumption and energy harvest equal to them. The problem

was solved by SCA and results showed optimal performance in energy decline as compared

to another algorithm. This work lags considering complexity and convergence analysis.

In [56], EH-CRN has been examined. This work considered multiple secondary users and

one primary base station. The objective was to minimize overall PBS transmitting energy

provision while satisfying minimum throughput requirements. The nonconvex problem

was solved by golden section search and bisection search algorithm to obtain optimal en-

ergy transfer time for PBS. The numerical results showed that this algorithm achieved en-

ergy efficiency with a minimum rate requirement. This work lags in considering complexity

factors and convergence analysis.

In [57], D2D-based EH based on underlying UAV networks was examined. Usually, in

ideal conditions, perfect knowledge of channel uncertainties was discussed in earlier work.

However, in this work author optimizes energy efficiency along with minimum rate re-

quirement in presence of outage constraints of flight altitude, ground terminal nodes, and

minimum harvest energy constraint. This problem was transformed by a variable relaxation

approach and produced valuable results in terms of energy efficiency and reduces outage

probability. This work lags in analyzing complexity analysis.

In [58], the Robust energy minimization approach considering harvest while scattering for

wireless enable communication was examined. Usually, the active nodes (AN) disperse

energy and the passive node (PN) harvest this energy from them. PN scatter that energy

for transmitting RF signal towards the receiver. The goal of this work was to consider

time delay in which some PN uses the time when others are involved in transmission. The

objective was to minimize energy consumption in presence of QoS constraint. A channel
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training approach was utilized for collecting PN activity. This problem was solved with an

iterative algorithm for less complexity. Numerical results showed us the optimal response

in energy minimization consumption. This work lags behind to mention of uncertainty in

constraint formulations.

In [59], NOMA-based cognitive networks for energy maximization were studied. Earlier

work considered perfect channel conditions which is too ideal to be considered in any case

as the channel cannot remain the same. The goal of this work was to consider the EE

maximization problem with maximum transmission power and interference constraints. A

Gaussian error model for CSI has been used for a closed form of outage probabilities.

SCA and parametric transformation convert this problem to a geometric transformation

approach. Numerical results showed the effectiveness of the proposed algorithm for EE

maximization and outage probability. This work lags in considering perturbation factors in

constraint formulations.

In [60], the author described 5G-HCRAN which is into the system to reduce overall energy

consumption. EH technique is employed to harvest energy from ambient resources such as

solar and wind. A joint optimization problem consisting of user association, power control,

and admission control is integrated to solve the EE problem in a grid-based system. Mesh

adaptive direct search algorithm was used to solve this optimization problem. Numerical

results showed optimal performance of the proposed algorithm for EE maximization with

less complexity. This work lags in considering chance constraint-based formulation.

In [61], Heterogeneous wireless networks with multihomed user equipment were exam-

ined. A two-phase optimization problem consisting of the maximization of EE and maxi-

mization of data rate was considered in the presence of QoS, and power constraints. The

mixed integer nonlinear problem was solved by Lagrange dual method and continuous

relaxation approach. Two-phase optimization provides sub-optimal EE results with less
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complexity. Numerical results showed efficient energy reduction with increasing power

and less complexity. However, this work lags to include a probabilistic approach to treat

constraints along with another efficient algorithm for even less complexity and better con-

vergence.

2.5 Common Objectives Functions and Constraints

After carefully analyzing the literature in the previous section, some common objectives

and constraints can be extracted. A few of the common objective functions are listed below:

• Throughput Maximization: To fully utilize the ability of the wireless network, de-

vices must operate under the maximum achievable data rate. It is considered the pro-

posed objective function to provide reliability requirements for the proposed wireless

network.

• Transmit power minimization: This limitation ensures that the overall transmit power

of the BS must be less than or equal to the transmit power of all BS connections.

Similarly, the user’s transmit power must be lower than or equal to its total transmit

power.

• Interference Minimization: This factor is very much common for any communication

scenario because network reliability is directly affected by it. The user must transmit

its power to some limit that does not cause interference between communicating

devices.

• Relay-assisted network: Relay used to provide cooperation for achieving reliable

communication within less latency.
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2.6 Summary of Problem Formulation

According to the described literature, most of the existing work discussed general constraint

formulation without considering the probability factor while satisfying the given constraint.

Constraints can never remain the same when communication happens so there is no proper

work has been done to consider the uncertainty factors which cause perturbation or any

technique has not been used to deal with this uncertain behavior. However, the impact of

power allocation on interference is not further provided. Thus, it is necessary to provide

an efficient resource allocation model that maximizes throughput while considering chance

constraint-based formulation under uncertain behavior.

2.7 Novelty of Proposed Work

After carefully examining the literature review and Table 2.1 it is observed that the existing

work mostly lacks efficient resource allocation for 5G/6G CRNs using probabilistic inter-

ference models which is the key reason for motivation for the proposed work. Moreover,

it is concluded that all the existing techniques could not either completely cater to con-

vergence analysis, complexity analysis, lagged effective interference models or the time

of execution was long. This thesis satisfies all these gaps. Most of the system models

considered in the literature have considered deterministic constraint formulation with no

probability of satisfaction. Whereas the proposed experimental setup considers the known

distribution for perturbation factor along with probabilistic satisfaction of constraints which

adds flexibility in getting an optimal result.

A summary of the literature review is given in Table 2.1
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Table 2.1: Study Table
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Chapter 3

System Model and Proposed Techniques

In this chapter the system model and proposed technique are discussed. Section 3.1 gives

the details of the system model along with the resource allocation and power models. The

problem formulation is explored in section 3.2. The proposed technique for the optimiza-

tion problem is given in section 3.3. The convergence and complexity analysis of the

algorithm is given in section 3.4

3.1 System Model

Following a model used in [62] with possible refinements, a cognitive network assisted

by relay communication is studied in this thesis. A wireless network consisting of one

Secondary base station (SBS) and one Primary base station (PBS) with their respective K

secondary users (SUs) and M primary users (PUs). The cognitive network model oppor-

tunistically utilizes the availability of the existing spectrum and accommodates SU when

there is a vacant spectrum hole present in the primary band. L relay assisted model in-

side the cognitive network to provide reliability in transferring RF signal when no source
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Figure 3.1: System Model Illustration

is transmitting. The wireless channel between CR users can be a line of sight (LOS) or

nonline of sight (NLOS). Efficient allocation of power in the network can be the purpose of

our thesis to carry out reliable communication between CR devices. Figure 3.1 illustrates

the system model used.

3.1.1 Resource Allocation Model

CRN is considered with one primary base station (PBS) and one-second base station (SBS).

PBS provides service to M PUs where as SBS provides service to K SUs. L is the relay

that assists the communication between them as shown in fig.2. Where m = {1,2,3...M},

k = {1,2,3...K}, and l = {1,2,3...L}. The user equipment that is served by the relay is

represented by Ul such that U ⊆ {k∪M}. AF relay model is considered which transmits

signals in two-time slots. In the first time slot, a signal is received from PBS by l relay

is
√

ρ
pu
m hpu

l + Zl , similarly for SBS signal received would be
√

ρsu
k hsu

l + Zl . ρ
pu
m , ρsu

k
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represents the received power of PU and SU to the relay, and Zl is the noise in the channel.

The maximum power that is transmitted by the relay is pmax
r , and by source, power is ps

max.

hpu
l is the channel gain from relay to PUs and hsu

l is the channel gain from relay to SUs.

SINR of k SUs is given as

Γ
su
k,l =

ρsu
k,l|hk,l|2

∑
K
i=k+1 ∑

L
j=l+1 ρsu

i, j|hk,l|2 + Ipu
max + Il

max +σ2
ζ

(3.1.1)

where Ipu
max is the maximum interference of PUs faced by SUs. Il

max is the maximum relay

interference. hk,l = Lk,lgk,l , where Lk,l = 1√
dk,l

is the distance between SBS and relay. gk,l is

the channel gain between l relay to k secondary users which is model by Rayleigh fading

coefficients [30]. σ2
ζ

is the noise of the channel.

According to the Shannon formula, the maximum achievable data rate of SUs are

rsu
k =

K

∑
i=k+1

log2(1+Γ
su
k,l) (3.1.2)

The overall power constraint for SUs are

Pr

[
K

∑
k=1

L

∑
l=1

ρ
su
k,l ≤ Ps

max

]
≥ α1 (3.1.3)

PBS and SBS are actually transmitting their signal towards respective PUs and SUs. So,

both transmitters must transmit power in a desirable way in order to avoid disruption in

communication. SBS power should always remain less than PBS.

Ps
max represents the maximum source power of the CR system. Power for SU should remain

under the total CR system power, otherwise having too much power causes interference

with PU devices.

The interference power experienced by PUs from SUs should be less than the overall total
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Ipu
max to have reliable SU transmission.

Pr

[
K

∑
k=1

L

∑
l=1

ρ
su
k,lg

2
k,l ≤ Ipu

max

]
≥ α2 (3.1.4)

Here the relay interference is related to CR when the transmission is carried out through

the relay source from SBS to SUs and PBS to PUs, it should remain under the total relay

interference threshold, and gl
m,k shows the relay channel gain between PUs and SUs. Be-

cause crossing the required threshold means the system will suffer a decrease in overall

throughput.

Pr

[
K

∑
k=1

L

∑
l=1

xk
r pmax

r |gl
m,k|

2 ≤ Il
max

]
≥ α3 (3.1.5)

xk
r = {0,1} represents the relay connection towards SUs transmission. In our network case,

the relay is in active mode and entertains CR users. transmission.

∑
k

xk
r ≤ 1 (3.1.6)

Here, the presence of α1, α2, and α3 means that the constraint must be satisfied under the

probability threshold.

3.2 Problem Formulation

Here, the mathematical model is discussed for cognitive networks considering power, inter-

ference, and data rate in the proposed system. Abbreviations and notations that are used in

the system model are listed in Table II. The aim of this paper is to maximize the throughput
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based on the probabilistic model of interference.

maxm,k

M

∑
m=1

K

∑
k=1

rm,k (3.2.1)

subject to the following constraints:

C1 : Pr

[
K

∑
k=1

L

∑
l=1

ρ
su
k,l ≤ Ps

max +ξ1

]
≥ α1 (3.2.2)

C2 : Pr

[
K

∑
k=1

L

∑
l=1

ρ
su
k,lg

2
k,l ≤ Ipu

max +ξ2

]
≥ α2 (3.2.3)

C3 : Pr

[
K

∑
k=1

L

∑
l=1

xk
r pmax

r |gl
m,k|

2 ≤ Il
max +ξ3

]
≥ α3 (3.2.4)

C4 : ∑
k

xk
r ≤ 1 (3.2.5)

Eq (3.2.1) objective function achieves throughput maximization under the constraint from

Eq (3.2.2) to Eq (3.2.5). Constraint (3.2.2) ensures that the power of each SUs should be

under the total power of CRN, which must full fill the required probability threshold. Eq

(3.2.3) represents the user’s interference threshold on the probability range. Eq (3.2.4) rep-

resents the relay interference that should be below some threshold. Eq (3.2.5) represents

that relay can be assigned to only one secondary user. ξ1, ξ2, ξ3 represents perturbation

inside constraint formulation. Normally constraint doesn’t remain the same as it gets al-

tered when under the influence of channel uncertainty. So dealing with this perturbation

parameter in our formulation causes MINLP and intractability.

3.2.1 Transformation of Chance Constraint Problem

The existing constraints are considered to be Chance Constraints due to their probabilistic

nature. But as the constraint couldn’t be remained the same due to some perturbation
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factor so it is necessary to consider ξ under some known distribution. Considering some

generalized equation of uncertainty parameter

Pr(g(x,ξ )≤ 0)≥ α (3.2.6)

Pr(h(x)≤ ξ )≥ α (3.2.7)

h(x)≤ φ
−1(1−α) (3.2.8)

where φ−1 is equal to inverse CDF, any type of distribution can be considered for this

unknown parameter.

φ

(
z−µ

σ

)
(3.2.9)

z ≥ µ +σφ
−1(1−α) (3.2.10)

Based on Eq (3.2.7) to Eq (3.2.10) our constraint can be transformed from (3.2.2) to (3.2.5),

with perturbation factor ξ considering CDF of known distribution.

maxm,k

M

∑
m=1

K

∑
k=1

rm,k (3.2.11)

Subject to the following constraints:

C5 :
K

∑
k=1

L

∑
l=1

ρ
su
k,l ≤ Ps

max +µ1 +σ1φ
−1
1 (1−α1) (3.2.12)

C6 :
K

∑
k=1

L

∑
l=1

ρ
su
k,lg

2
k,l ≤ Ipu

max +µ2 +σ2φ
−1
2 (1−α2) (3.2.13)

C7 :
K

∑
k=1

L

∑
l=1

xk
r pmax

r |gl
m,k|

2 ≤ Il
max +µ3 +σ3φ

−1
3 (1−α3) (3.2.14)

C8 : ∑
k

xk
r ≤ 1 (3.2.15)
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The problem mentioned in Eq (3.2.2) to Eq (3.2.4) is based on Chance Constraint [63] con-

sisting of uncertain factor ξ . But after the transformation of the given optimization prob-

lem, the uncertain factor is converted into a deterministic with known distribution which

turns its convexity back shown in Eq (3.2.12) to Eq. (3.2.14). But this problem is MINLP

and NP-hard in nature, difficult to solve. Such problems include discrete and continuous

variables. As the number of users increases, the search space also increases gradually, if

there are 2S search spaces then it means that 2S optimization problems are required to solve.

Considering the increase in complexity during several iterations, the proposed work will

consider the OAA algorithm to provide optimal solutions under the required convergence.

3.3 Proposed Technique

The proposed work presents a novel mathematical framework for Throughput maximiza-

tion, which is a nonlinear mixed integer programming (FP) problem. Outer approximation

algorithm [63] (OAA) is applied to achieve the sub-optimal solution. Let us represent an

objective function with U and ΦC5−C8 denote constraints from C5 to C8. Y = {yk} and

A = a∪Y. We can prove that Eq (3.2.11) satisfies the following assumptions:

1. Y is convex, non-empty, and compact. The objective function U and constraints

ΦC5−C8 both are convex in Y.

2. Fixing the value of Y, U and ΦC5−C8 are once differentiable.

3. The NLP problem is obtained by fixing A can be exactly solved.

OAA converges within a finite number of iterations.
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3.3.1 Primal Problem

The original problem is split into two parts - nonlinear and mixed-integer. Each part of the

problem is separately evaluated and the results are then combined to conclude the result.

The nonlinear part of the problem is known as the primal problem. A primal problem

is comprehended by solving the main problem for binary variables rendering a feasible

solution. It provides an upper bound to the main problem.

3.3.2 Master Problem

The mixed-integer part is known as a master problem, both primal and master problems are

derived from the main problem which is MINLP. The master problem is then formulated

as MILP for binary variables to get new results. It provides a lower bound to the main

problem. The iterative process then continues until the difference between the bounds is

considerably small, which serves as the terminating condition for the algorithm.

Mathematically the primal problem is given by

min
Y

−U(Ak,Y ) (3.3.1)

subject to:

ΦC5−C8(Ak,Y )≤ 0 (3.3.2)

Solving the problem stated above in eq (3.3.1), gives the values of Yk that are further used

by the master problem. The solution to primal problem Yk, aids in deriving a master prob-

lem. Make U and ΦC5−C8 linear and apply OAA. The solution of master problems yields

Ak+1, which is used in the next iterations. The algorithm is executed iteratively, and the
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difference between upper and lower bounds keeps on reducing until it terminates when the

gap between two bounds is less than ε [63]. Mathematically problem given in Eq (3.3.1) is

given by

min
A

min
Y

−U(Ak,Y ) (3.3.3)

subject to:

ΦC5−C8(Ak,Y )≤ 0 (3.3.4)

The Eq (3.3.3)is rewritten as:

min
A

−ϑ(A) (3.3.5)

such that:

ϑ(A) = min
Y

−U(Ak,Y ) (3.3.6)

subject to:

ΦC5−C8(Ak,Y )≤ 0 (3.3.7)

This problem given is a projection of utility function on A space. For the primal problem,

all the constraints hold, for all Ak, so a projection problem solution can be written as

min
A

min
Y

−U(Ak,Yk)−∇U(Ak,Yk)

Y −Yk

A−Ak

 (3.3.8)
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subject to:

ΦC5−C8(Ak,Yk)−∇ΦC5−C8(Ak,Yk)

Y −Yk

A−Ak

≤ 0 (3.3.9)

The equivalent minimization problem is stated by introducing a new variable η given as

min
A,Y,η

η (3.3.10)

subject to:

η ≥−U(Ak,Yk)−∇U(Ak,Yk)

Y −Yk

A−Ak

 (3.3.11)

ΦC5−C8(Ak,Yk)−∇ΦC5−C8(Ak,Yk)

Y −Yk

A−Ak

≤ 0 (3.3.12)

The problem stated in Eq (3.3.10) is a master problem that gives a lower bound. And is

equivalent to the utility function Eq (3.2.11)if the propositions (1,2, and 3) are satisfied. Eq

(3.3.10) denotes a MILP problem that can be solved via any iterative algorithm. The flow

chart of our proposed algorithm is given in Fig. 3.2.
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Figure 3.2: Flow Chart of The Proposed Algorithm

3.3.3 Transformation of Uncertainty

The existing constraints are considered to be Chance Constraints due to their probabilistic

nature. But as the constraint couldn’t be remained the same due to some perturbation

factor we take ξ under some known distribution. If we have some generalized equation of
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uncertainty parameter

Pr(g(x,ξ )≤ 0)≥ α (3.3.13)

Pr(h(x)≤ ξ )≥ α (3.3.14)

h(x)≤ φ
−1(1−α) (3.3.15)

where φ−1 is equal to inverse CDF, we can consider any type of distribution for this.

φ

(
z−µ

σ

)
(3.3.16)

z ≥ µ +σφ
−1(1−α) (3.3.17)

3.4 Convergence Analysis

The OAA converges linearly. It gives near to optimal solution at ε = 10−6. It poses branch

and bound-type architecture. This proves to be an optimal algorithm when the utility func-

tion, as well as the constraints, are convex, and A has fixed values. The algorithm terminates

within a finite number of steps provided all three propositions are satisfied and A is also

finite. For a point to be feasible, η is greater than U(Ak,Yk), this ensures the optimality

of Y. For the case when η is less than U(Ak,Yk), the solution is not feasible for the mas-

ter problem. If the feasible solution does not exist for any value of Ak then it will not be

considered for the successive master problem. This directs towards the convergence of the

algorithm [50].
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3.4.1 Complexity of Algorithm

The complexity of the proposed algorithm and its comparison with the exhaustive search

algorithm (ESA) and mesh adaptive direct search (MADS) is discussed in this section.

Complexity is a measure of the number of flops. Flop is a real floating-point operation.

One flop is added in case of real addition, multiplication, division, or removal of elements

from any set in the process of program execution. Two flops are added in case of complex

addition and for complex multiplication, four flops are added. The matrix multiplication of

p x q with q x s results in 2pqs flops [51]. In the case of the proposed algorithm, one flop

is consumed for the first five steps of the algorithm. Step six, involving a while loop, con-

sumes 2KM, and steps seven, and eight consume 4KMβ each. Step nine consumes 2KMβ ,

step ten consumes two flops, step eleven consumes two, and step thirteen again consumes

one flop. Fig. 3.2 shows the description of the following steps. The total count of the flops

FOAA is given as

FOAA = 5+2KM+4MZβ +4KMβ +2KMβ +1+2+1 (3.4.1)

FOAA ≈ 2KM+10KMβ (3.4.2)

K in the above expression represents the total number of users; M shows the number of an-

tennas employed on the BS, β represents the number of constraints for a given optimization

problem, β must be between 0 and 1. ε represents the error tolerance. The gap between

the sub-optimal and optimal solution is ε . The computational complexity of OAA COAA is

given as:

COAA =
K2β

ε
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ESA yields a globally optimal solution but at the cost of increased complexity. On in-

creasing the number of users, the complexity of ESA increases exponentially. Let the

computational complexity be CESA for ESA where K represents the number of users.

CESA = 22K

In the case of MADS algorithm, within a finite number of iterations, the optimal solution

is achieved. MADS algorithm converges without the knowledge of the initial point and the

gradient of the objective function. Let the computational complexity be CMADS of MADS

[49]. Mathematically:

CMADS =
K2

ε

There exists a trade-off between complexity and performance. OAA yields better results

as compared to MADS but at the cost of complexity, OAA exhibits higher complexity than

MADS by the number of constraints times.

Figure 3.3 shows the complexity analysis of all three algorithms.

Figure 3.3: Computational Complexity of ESA, MADS, and OAA
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Chapter 4

Numerical Simulations and Discussion

The MINLP in (3.2.11) is solved by using OAA and desired results are formulated using the

proposed solution. The results depict efficient resource allocation to maximize throughput

under stochastic constraint behavior. Basic open-source nonlinear mixed integer program-

ming (BONMIN) software is used for OAA.

4.1 Simulation Setup

Table 4.1 shows the system parameters that are used in simulations. A wireless network

considers of a Primary base station and a secondary base station with a 100m distance

between them. There is a cognitive network scenario among them in order to satisfy the

allocation of the available spectrum. Presently there are a total of 14 SUs present with 4

PUs which are incremented along with simulations. Total Ps is set to 10 Watts and Imax to

10−4 watts for overall wireless network.
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Table 4.1: System Parameters

Parameter Value
M 4
K 4,6,8,10,12,14
L 10
PU increment 1
SU increment 2
Ps 10 Watts
Imax 10−4

α 0.01 to 0.09
dmax 100m
σ 10,20,30

4.2 Results and Discussion

The proposed work examines the effect of different parameters on system performance,

especially one KPI i.e., throughput.

Fig. 4.1 depicts the plot for Iteration versus Throughput, where the total no of SU is 14 and

PU is 4. Iteration is gradually increased from 12 to 25. Normal distribution for the uncertain

parameter has been observed in all constraints and tightened the constraints value of alpha

to 0.01. As it is observed that throughput increases with the iteration factor, comparing

OAA and MADs together. Increasing iterations raises the complexity factor of the current

algorithms. OAA performance in presence of complexity is very much better than MADs,

as MADs results decrease with the passage of increasing iteration because in complexity

its results fluctuate. As OAA performance surpasses MADs.
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Figure 4.1: Iterations vs Throughput

Fig. 4.2 depicts the plot for Throughput versus UE, where SUs increase gradually from

4 to 12 by keeping PU to 4, to analyze the impact of throughput performance. Normal

distribution for the uncertain parameter has been observed in all constraints and tightened

the value of the constraint by alpha to 0.01. At user 4, there is a slight increase in throughput

for the OAA case. As SU is increased to 10 and the same result has been observed where

OAA performance is very much highlighted as compared to MADs. When SU reached

12 in the presence of PU which are 4, then it is observed that the presence of many users

increases interference among them. As a result, the proposed throughput decreases with

increasing SU, this is an obvious case in any cognitive wireless network. But it is observed

that the performance of these two algorithms from the simulation point of view shows that

OAA always produces a peak in throughput demand when users increase up to the limit as

compared to MADs.
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Figure 4.2: Throughput vs SU

Fig. 4.3 depicts the plot for Throughput versus Alpha, where alpha denotes the probabil-

ity of satisfaction for any constraints. Normal distribution for random variables has been

observed. When the constraints have tightened by setting its values from 0.01 to 0.09 and

restricting its probability of violation. In the proposed result, it is analyzed that the alpha

with 0.01 has higher throughput in the OAA case while moving towards 0.09 proposed

throughput gradually reduces because the constraint has been relaxed towards violation.

As alpha values reach 0.09, the proposed constraint violates to a greater extent so that is

the reason for the reduction in overall throughput results. After tightening the constraint,

the complexity factor raises and it has been observed that OAA always shows maximum

throughput as compared to MADs.
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Figure 4.3: Throughput vs ALPHA

Fig. 4.4 depicts the Plot of UE versus Throughput under influence of different alpha values

to tighten the constraints while increasing UE. SUs are varied from 4 to 12 while testing

its throughput results on both 0.01 and 0.03 alpha values by taking a total of 2 iterations.

From the simulation, it has been observed that throughput will decrease when users increase

gradually because interference increases in the network. On tightening the constraints with

alpha 0.01 and then increasing SU from 4 to 12, maximum throughput for the OAA case

is achieved as compared to MADs. And throughput decreases further increasing users. On

the same simulation process for alpha 0.03, constraints are relaxed for small violations,

and the throughput increases for OAA as compared to MADs and then decreases with SU.

But comparing the overall performance of both alpha 0.01 and 0.03, maximum throughput

has been observed for the OAA case for alpha 0.01 as compared to alpha 0.03. Because

OAA performs better than MADs when constraints are tightened rather than violating the

situation.
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Figure 4.4: Throughput vs SU With Different Alpha Value

Fig. 4.5 depicts the plot for Interference Threshold versus Throughput, as when the inter-

ference threshold varies from 1e+2 towards 1e+6, the overall interference in the proposed

network increases. So according to described theory, the proposed throughput must de-

crease with increasing interference value. An alpha of 0.01 is set to always tighten the

constraint towards maximum satisfaction criteria. It is shown in the desired graph that

throughput can reach a peak for small interference values and then gradually decreases

with increasing interference level. And in this case, OAA is, as usual, outperform when

compare to MADs because OAA always gives better results in cases of complexity and

convergence.
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Figure 4.5: Interference Threshold vs Throughput

Fig. 4.1 to 4.5 depicts that the proposed work achieved maximum throughput under the

presence of uncertain probabilistic constraints. As we have observed clearly that by tight-

ening the constraint we restrict them to violate which optimizes our objective function and

thus it maximizes throughput. By relaxing it we actually violate the constraints which in

return decreases our throughput shown in the given graphs. The proposed solution works

efficiently under the presence of complexity as we analyze this by varying SUs and it-

erations. In our network model, we generalized that system throughput decreases when

interference and SUs increase beyond the limit shown in Fig. 4.2 and Fig. 4.5. OAA

always performs better then MADs as shown in the given figures.
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Chapter 5

Conclusion

The thesis investigates the Throughput maximization in CR considering the 5G/6G net-

work. The problem of maximizing throughput is intractable due to chance constraints based

on probabilistic nature. CDF of known distribution for uncertain parameters is considered

which converts its intractability issue. The proposed formulated problem is solved by OAA

which possesses less complexity and provides an optimal solution. Extensive simulations

have been carried out to evaluate the proposed algorithm. Chance constraint based on the

uncertain parameter is vital to be considered while achieving maximizing the throughput of

overall CRN. In the proposed work, the alpha factor restricts our constraint violation in the

presence of uncertain parameters which causes perturbation. Proposed simulated results

show a peak in terms of throughput when SU increases in the presence of PU under tight-

ened constraints. After analyzing the impact of increasing iteration factor proposed work

proves OAA performs better in increasing complexity. While it is shown that throughput

gradually decreases while increasing the probability of violation. The interference thresh-

old is varied to analyze the impact on throughput which shows as interference increases

throughput decreases. Finally, in comparison between OAA and MADs, OAA surpasses

MADs in performance and gives better throughput.
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5.1 Future Work

The proposed work in this thesis deals with a few issues of managing utility resources in

CR-based networks. However, there are still a lot of unresolved problems. Listed below

are a few research directions:

1. CRN and NOMA

2. CRN-aided mmWave communications

3. CRN-aided mobile edge computing

4. CRN-assisted SWIPT

5. UAV and CRN

6. CRN-assisted IoT networks

7. D2D Communication and CRN

8. MIMO and CRN

Moreover, the up-link communication scenario can be studied for the same system. A

system employing multiple CRNs can be studied. Different algorithms can be studied for

different scenarios. Future directions for this study can also include different uncertainty

models incorporating different distributions and stochastic nature. Following technologies

like mm-Wave, Fog Computing, SWIPT, MMIMO, and MEC, etc., AI and ML approaches

can also be integrated into CR-based networks.
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