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ABSTRACT 

Globally, approximately 3700 people die daily in RTAs, resulting in 50 

million injuries or disabilities, and 1.35 million deaths annually, contributing to 

3% of the GDP of most underdeveloped countries in the world. According to the 

NHTSA, factors related to human contribute approximately 94% of all RTAs. 

Accident analysis can be approached by two methods, the Person-Based and 

System-Based approaches. The Person-Based method concentrates on unsafe acts 

such as errors and violations committed by users due to abnormal processes such 

as poor motivation, restlessness, forgetfulness, inattention, and negligence. Whilst, 

the System-Based Approach recognizes that human errors are inevitable, 

regardless of facility quality, where errors are considered as consequences rather 

than causes. A lot of work has been done on person-based approach as compared 

to system-based approach. Our study has focused on System-Based approach by 

utilizing a holistic approach that combines HFACS, FTA and Machine Learning 

models to achieve a good understanding of the intricate interplay among human 

factors that assist in predicting accidents. 

Keywords: Traffic Safety, Fuzzy Logic, Machine Learning, ANN, Fault Tree, 

System Based Approach.  
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CHAPTER 1: INTRODUCTION 

Road crashes have resulted in injuries, loss of lives, and damage to properties [1]. Since 

the first death involving a motor vehicle on August 31, 1869, road traffic accidents (RTAs) 

have been on the rise [2]. Currently, RTAs are a major cause of death globally, with developing 

countries being disproportionately affected due to economic constraints as compared to 

developed nations [2][3]. The estimated cost of a road crash is USD 65 million, and $518 

million for middle- and low-income countries [4][5]. This increase in road users over time 

caused congestion and increment in the occurrence for RTAs. This increment in traffic is 

mostly related to urban sprawl as the economic activities and development are centered around 

urban/city units. 

Advancements in technology and scientific growth have led to prosperity but have also 

caused a significant increase in RTAs [6]. In 2008, the World Health Organization (WHO) 

published a report ranking losses from RTAs as 8th foremost cause of injuries and death [7]. 

The report predicted that RTAs would be developed as the 5th foremost cause of death in 2030 

[8], and traffic injuries would increase to 65% in the following two decades if the current pace 

continued [9]. The aftermath of RTAs is difficult to estimate due to tangible and intangible 

costs, including pain and suffering, loss of job opportunities, and the direct and indirect costs 

of police and court proceedings, insurance, medical rehabilitation, etc. [10]. Globally, 

approximately 3700 people die daily in RTAs, resulting in 50 million injuries or disabilities, 

and 1.35 million deaths annually, contributing to 3% of the GDP of most underdeveloped 

countries in the world [7]. Furthermore, approximately 93% of the fatalities in world are due 

to RTAs occurring in middle- and low- income countries. 

Factor related to human associated with driving include driving style and driving skills 

[11]. DBQ is widely used to measure driver styles, based on the theoretical classification of 
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errors related to human that categorizes aberrant behavior into violations and errors. The 

definition of errors is “failure of planned actions to achieve the intended consequence” and are 

typically due to slips, lapses, or mistakes [12]. Slips refer to memory failures, actions that don’t 

have their intended consequences, and faults are letdowns in a plan of action, even if 

implementation is done correctly [13]. Violations, likewise, are “deliberate deviations from 

those practices believed necessary to maintain the safe operation of a potentially hazardous 

system” [12][13]. Ordinary violations include acts that are performed against standard 

operating procedures (SOPs) and are not recognized as safe driving, while aggressive violations 

contain a violent component while that activity is being performed [14].  

Accident Analysis can be approached over two methods, the Person-Based and System-

Based approaches. The Person-Based Method concentrates on unsafe acts such as errors and 

violations committed by users due to abnormal processes such as poor motivation, restlessness, 

forgetfulness, inattention, and negligence. Countermeasures used aim to reduce unwanted 

variations in human behavior, such as poster campaigns, disciplinary measures, threats of 

litigation, blaming, and shaming. On the other hand, the System-Based Approach recognizes 

that human errors are inevitable, regardless of facility quality. In this method, errors are 

considered as outcomes rather than causes. Thus, human nature is not deemed the main cause, 

but rather the recurrent error traps in the workplace and organizational processes that give rise 

to them. The underlying concept is that the human situation cannot be altered, nevertheless the 

condition under which humans work can. In case of an unwanted event, the critical issue is not 

who committed the error but how and why the system failed.   

An accident causation model is crucial for investigating and analyzing accidents [15]. 

Models aid in guideline development, validation, analysis, causality determination, and 

communication [16]. The systems approach originated in the early 1900s and is a well-

established philosophy that emphasizes that safety, as well as accidents in complex 
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sociotechnical systems, results from emergent properties that arise due to nonlinear interactions 

among the components of such systems [17]. The systems approach is recognized as a suitable 

means of comprehending and preventing accidents in complex and critical areas such as 

mining, transport and storage, and railways [18][19]. Nevertheless, systems theory and its 

application to road protection are often overlooked or neglected in literature reviews. 

Conventional methods used in road safety have limitations, such as the failure to account for 

interactions between the road road-user, the vehicle, and the environment [20]. Researchers 

have acknowledged that systems approaches have the potential to address some of these 

limitations. Some researchers have employed systems dynamics methodology, AcciMap, 

STAMP model, cognitive work analysis (CWA), HFACS, CFIM to analyze road safety 

policies, illustrate the interdependencies involved in road freight accidents, explore beach 

driving, and analyze road traffic accidents [21][22][23]. Despite the burgeoning number of 

studies investigating road traffic accidents, a noticeable gap persists in the literature concerning 

the integration of various analysis methodologies.  

Although some studies have employed either the HFACS, FTA, Fuzzy Analytic 

Hierarchy Process (FAHP), or Machine Learning individually, few have sought to amalgamate 

all four methods into a comprehensive systems approach to examine the multifaceted factors 

contributing to accidents. In this research, we endeavor to bridge this gap by utilizing a holistic 

approach that blends HFACS, FAHP, FT, and ML models to gain a good knowledge of the 

intricate interplay among human factors that precipitate road accidents. By so doing, our study 

aims to offer a more comprehensive depiction of the factors involved and uncover novel 

insights into how to avert accidents and enhance road safety. 

1.1 Problem Statement 

Current accident analysis methods focus on the person-based approach. This approach is 

insufficient to identify the root causes of RTAs. Therefore, a holistic system-based approach is 
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needed to understand the complex interaction between different human factors that contribute to 

accidents. 

1.2 Research Objective  

There are 3 main research objectives: 

1. Identification of key human factors that contribute to the RTAs. 

2. Development of FT model for capturing the interaction between human factors that 

contribute to the RTAs. 

3. Prediction of failure occurrence probability of RTAs using ML models. 

1.3 Aims and Scope of Study 

The focus of the study is to develop a holistic system-based approach to accident analysis 

using HFACS, FT, Fuzzy Logic and ML models that can be used to identify the root causes of 

road traffic accidents (RTAs). This approach will focus on the complex interactions between 

different human factors that contribute to accidents. 

1.4 Importance of Research Work 

Globally, approximately 3700 people die daily in RTAs, resulting in 50 million injuries or 

disabilities, and 1.35 million deaths annually, contributing to 3% of the GDP of most 

underdeveloped countries in the world. According to the NHTSA, factors related to human 

contribute approximately 94% of all RTAs. This research focuses on developing a 

comprehensive methodology that integrates HFACS, FT, Fuzzy Logic and ML models to capture 

complex interactions between different human factors that contribute to accidents. This will help 

in performing preventive measures for RTAs. 
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CHAPTER 2: LITERATURE REVIEW 

Road transportation is a complicated system comprising roadways, vehicles, 

individuals, and environment. To successfully manage risks in this system, it is crucial to 

possess a comprehensive knowledge of the diverse features (e.g., vehicle design, road and 

traffic system infrastructure, driving regulations, and maintenance protocols for both roads and 

vehicles) contributing to traffic accidents. Understanding the elements that contribute to traffic 

accidents is essential for developing effective strategies to minimize their occurrence. Peden et 

al. [24] identified infrastructure, environmental, vehicular, and human factors as the primary 

causes of traffic accidents. Addressing these factors can improve road traffic safety and reduce 

accidents. However, as stated by Stanton and Salmon [44], there is currently a lack of a 

systematic and reliable approach for assessing the impact of human factors on RTAs. Human 

error along with driving behavior issues were found to cause around 3/4th of traffic accidents. 

Di Pasquale et al. [26] discovered that 60-90% of RTAs were solely responsible for human 

error related factors, with technical defects accounting for the remaining incidents. Their study 

suggests that error caused by human is accountable for approximately 85% of RTAs.  

Numerous studies have explored the factors contributing to traffic accidents. Laaraj and 

Jawab [27] divided research methods into two distinguish groups: traditional and systematic. 

The former method concentrates on identifying human factor errors (e.g., fatigue-related issues, 

and aberrations in driving behavior). This has resulted in a disproportionate focus on driver 

behavior and a lack of attention to other factors [28]. Jiang et al. [29] analyzed 45 severe 

accidents and identified critical factors (e.g., "speeding," "improper driver operation," "vehicle 

overload," "fatigue driving," and "poor driving habits.") The conventional approach primarily 

relies on driver error but may be overly simplistic and/or limited in its ability to comprehend 

intricate multi-dimensional nature and complexity of systems. It has focused on adapting 
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strategies covering the enforcement, education, and engineering (3E) domain [30], [31]. It is a 

common belief that traffic-related fatalities and severe injuries were inherited in the 

transportation system [32]. Efforts were focused on requiring individuals to adjust to the road 

network, rather than on creating a network that accommodates individuals [33]. 

Systematic methods (System-Based Approach) consider a broader range of factors, 

including environmental, human, and machine-related aspects, to comprehend the intricate 

nature of transportation systems and identify potential areas for improvement. Scandinavian 

researchers were swayed by the revolutionary work of Gordon and Haddon and began to treat 

the road and its components as a whole, proposing that multiple stakeholders must collaborate 

effectively to ensure the overall safety of the transport system of road [33], [34][35]. In 1990s, 

the concept of a "forgiving" system emerged, where traffic accidents would not necessarily 

result in fatalities [36]. Originally, Safe System had four mainstays that worked together to 

create a safe operating system: vehicle, road, speed and people. Later post-crash care, was 

further added because the event succeeding a crash usually plays a central role in dropping the 

effect of injury or fatality [37]. Common System-Based Approach includes CREAM [38], 

Accident Map [39], STAMP [40], HFACS [60], etc. It is evident from both traditional and 

systematic methods that human behavior, particularly driving habits, is the primary reason for 

RTAs. Therefore, conducting an inclusive human factor analysis that effect on the system is 

critical. 

Assessing human factors in road traffic accidents is challenging due to the inadequate 

data, necessitating an analysis that acknowledges the ambiguity and vagueness. Evaluation 

methodologies can be categorized into expert judgments and experiential techniques. 

Experiential techniques emphasized data collection on factors related to human, with a huge 

human reliability catalogue, as established from personal experiences, literature, and 

interviews [37]. Expert judgment is given increased consideration because of its excellence in 
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handling complexity and vagueness. HFACS is a classification model to investigate human 

factors, originally used in aviation accidents by the US military [41]. The framework for 

examining human-caused accidents is based on identifying "active failures" and "latent 

failures" using Swiss cheese model [42]. This model is categorized into four stages: "unsafe 

behavior," "preconditions for unsafe behavior," "unsafe supervision," and "organizational 

influence."  

The application of HFACS has been widespread and extensively employed in various 

fields, such as investigation errors in mining, railways, healthcare, fright in the sea, the 

construction industry, etc. Due to certain limitations of conventional methods related to human 

error, HFACS has been often submerged with other hazard examination techniques. For 

example, Wei et al. [43] employed a blend of HFACS, expert assessment, and Grey System 

Theory to examine errors related to humans in aviation incidents. [44] employed a “fuzzy 

TOPSIS” approach in conjunction by HFACS to evaluate various routine preservation tasks in 

air transportation. Hsieh et al. [45] synergistically integrated TOPSIS, AHP, and HFACS to 

assess the error related to human in Taiwanese ICUs. In another study, Akyuz [46] effectively 

employed a combination of the ANP and HFACS to comprehensively investigate and 

understand the factors contributing to severe incidents of gas leakage caused by liquefied 

petroleum carriers. Akyuz and Celik [47] successfully combined the CM approach with 

HFACS, enabling a comprehensive evaluation of marine accidents. Chen et al. [48] conducted 

a comprehensive study where they successfully integrated Prospect Theory, HFACS and 

interval type-2 fuzzy numbers to investigate and analyze vessel accidents, enabling a greater 

knowledge of the underlying issues contributing to such incidents. Furthermore, numerous 

research investigations have been conducted to validate the dependability of the HFACS, 

demonstrating its efficacy in scrutinizing factors within an organization or system [49], [50]. 

Zhang et al. [51][52] utilized the HFACS as a tool to examine the numerous features that impact 
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main RTAs in China. The model is categorized to five stages: "unsafe behavior", 

"preconditions for unsafe behavior", "unsafe supervision", "organizational influence" and 

"external factors." However, the inherent vagueness and uncertainty that come with analyzing 

human factors for road traffic accidents necessitate the integration of Fuzzy Logic, F-AHP, and 

FT Analysis with HFACS.  
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CHAPTER 3: THEORETICAL FRAMEWORK 

3.1 Fuzzy Logic 

 There are three methods to address failure probabilities: statistical methods, 

extrapolation, and expert judgment [53]. The scientific consensus technique of expert judgment 

is used in this research to assign weights to human factors conducive to RTAs and to evaluate 

the proficiency of participating experts. Experts provide opinions based on their knowledge, 

motivations, and cognitive attributes, leading to different analytical models [54]. Various 

techniques, (e.g., SAM, game theory, max-min Delphi, and fuzzy priority relations), have been 

developed for aggregating expert opinions [55]. However, experts often provide ambiguous or 

imprecise expressions in their opinions. To address this issue, AHP and fuzzy set theory are 

commonly combined to effectively combine ambiguous expert opinions. 

 According to fuzzy set theory, a fuzzy number [56] M ∈ F(R) can be defined and called 

a fuzzy number, if: 

 

 µ!(x") = 1 x" 	 ∈ 	R
A# = [x, µ$!(x) ≥ α] α	 ∈ 	 [0	, 1]3 

(1) 

 

where: 

F(R)  represents all fuzzy sets,  

R  is the set of real numbers, 

µ  is the membership function.  

Trapezoidal and triangular and fuzzy numbers can be used instead, and the suitability 

be contingent on the thorough situation. It is created on the meaning explained earlier that the 

fuzzy number M on R can be defined as a triangular fuzzy number if its membership function 

µ!(x) ∶ Rà	[0,1] is equal to the following: 



   
 

   
 

10 

 

µ!(x) = 	

⎩
⎪
⎨

⎪
⎧

x
a% − a&

−
a&

a% − a&
, x	 ∈ [a&, a%]	

a'
a' − a%

−
x

a' − a%
,

0

x	 ∈ [a%, a']
otherwise ⎭

⎪
⎬

⎪
⎫

 

(2) 
 

where: 

 a&  represents lower value, 

 a'  represents the upper value, and 

 a%  represents the modal value of M and (a& < a% < a').  

So, the triangular fuzzy number can be defined as M(a&, a%, a'). Likewise, for other 

fuzzy number N(a&, a%, a', a(), we can define as follows: 

 

µ)(x) = 	

⎩
⎪
⎨

⎪
⎧

x
a% − a&

−
a&

a% − a&
, x	 ∈ [a&, a%]

1
a(

a( − a'
−

x
a( − a'

,

0

x	 ∈ [a%, a']
x	 ∈ [a', a(]
otherwise ⎭

⎪
⎬

⎪
⎫

 

(3) 
 

 

 

For instance, if N(b&, b%, b') and  M(a&, a%, a') are two different fuzzy numbers, the 

following operations can be performed: 

 M⨁N = (a&, a%, a')⨁(	b&, b%, b') = (a& + b&, a% + b%, a' + b') (4) 

 
 M⨂N = (a&, a%, a')⨂(	b&, b%, b') = (a&b&, a%b%, a'b') 

 

(5) 

 
 γ⨀N = γ⨀(	b&, b%, b') = (γb&, γb%, γb')					γ > 0, γ ∈ R (6) 

 
 M*& = (a&, a%, a')*& = (

1
a'
	 ,
1
a%
	 ,
1
a&
) 

 

(7) 

 

AHP and fuzzy set theory has been integrated to address the imprecise language used 

by experts when providing judgments. This integration allows for a more nuanced and flexible 

interpretation of opinions, resulting in more accurate aggregations. The linguistic expressions 

of experts are of utmost importance when dealing with complex situations and arriving at 
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meaningful conclusions. The relationship between ambiguous expressions and corresponding 

fuzzy numbers is essential in complex situations. Numerous tries have been done to transform 

vague linguistic expressions of experts into their appropriate fuzzy numbers [57][58]. To 

transform vague expressions into fuzzy numbers, Chen and Hwang's approach, which uses 

eight scales to represent verbal expressions associated with target events, is widely recognized. 

These scales range from two to thirteen linguistic terms, and the optimal range for identifying 

human factors through expert judgment methodology is between five and nine verbal terms 

[57]. This range is suitable because human memory capacity typically consists of seven terms 

with a margin of plus or minus two. Therefore, utilizing a range of five to nine verbal terms is 

believed to be most suitable for accurately and effectively identifying human factors via expert 

judgment [57][58]. 

 

 

Figure 3-1: Fuzzy scale representation of conversion scale 6 
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Table 3-1: Verbal Expressions with Corresponding Fuzzy Number [57] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linguistic 

expressions 
Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7 Scale 8 

None        (0,0,0.1) 

Very Low   (0,0,0.2)  (0,0,0.1,0.2) (0,0,0.1,0.2) (0,0,0.2) (0,0.1,0.2) 

Low-very       (0,0,0.1,0.3) (0.1,0.2,0.3) 

Low  (0,0,0.2,0.4) (0.1,0.2,0.3) (0,0,0.3) (0,0.2,0.4) (0.1,0.25,0.4) (0,0.2,0.4) (0.1,0.3,0.5) 

Fairly Low    (0,0.25,0.5) (0.2,0.4,0.6)  (0.2,0.35,0.5) (0.3,0.4,0.5) 

More or 

Less Low 
       (0.4,0.45,0.5) 

Medium (0.4,0.6,0.8) (0.2,0.5,0.8) (0.3,0.5,0.7) (0.3,0.5,0.7)  (0.3,0.5,0.7) (0.3,0.5,0.7) (0.3,0.5,0.7) 

More or 

Less High 
       (0.5,0.55,0.6) 

Fairly High    (0.5,0.75,1) (0.4,0.6,0.8)  (0.5,0.65,0.8) (0.5,0.6,0.7) 

High (0.6,0.8,1) (0.6,0.8,1,1) (0.6,0.8,1) (0.7,1,1) (0.6,0.75,0.9) (0.6,0.75,0.9) (0.6,0.8,1) (0.5,0.7,0.9) 

High-very 

High 
      (0.7,0.9,1,1) (0.7,0.8,0.9) 

Very High   (0.8,1,1)  (0.8,0.9,1,1) (0.8,0.9,1,1) (0.8,1,1) (0.8,0.9,1) 

Excellent        (0.9,1,1) 
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3.2 HFACS framework 

 The HFACS is a method of classification that examines human error among accidents 

through evaluating the human’s behavior. The HFACS model [41] is based on the “Swiss 

cheese model”, which highlights the administrative aspect of accident causality [42]. The 

model consists of four stages: "unsafe behavior", "preconditions for unsafe behavior", "unsafe 

supervision" and "organizational influence". Each layer of the HFACS model serves as a 

barrier, with each layer affecting the layer above it. The aim of the model is to lessen the 

occurrence of accidents and errors at all levels of the system. To enhance the model's 

effectiveness, a fifth layer of "external factors" was proposed to account for factors such as the 

economy, law, and policy. The efficiency of the model was analyzed in the setting of accidents 

in marine by Chauvin C [59]. A five-level framework of HFACS has also been used in HFACS-

Grounding [60], HFACS-Coll [80], and HFACS-MAM [62].  

HFACS is widely used in various industries (e.g., mining, railways, healthcare, sea 

freight, construction industry, etc.) to identify human errors, but it has been found to have some 

limitations when used alone. To overcome these limitations, other methods have been 

combined with HFACS. For example, a combination of the F-AHP and the HFACS was used 

to identify acute factors contributing to human-error in the nuclear control room, and a 

combination of fuzzy TOPSIS, AHP, and HFACS was used to detect and prioritize failure 

approaches in medical events [63][64]. It is imperative to note that the factors related to human 

identified within each layer of HFACS are subject to interpretation within the specific situation 

being investigated. This suggests that the factors identified within each layer may vary as the 

investigation progresses. 
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3.3 Analytic Hierarchy Process (AHP) 

 Saaty proposed AHP [65] as a decision-making tool that has been extensively used by 

various researchers to evaluate complex multi-criteria alternatives [85][86]. It helps to break 

down a complicated problem into straightforward criteria which is grounded on three values 

(i.e., Problem Disintegration, Proportional Assessment, and Relative Importance 

Amalgamation). The issue is disintegrated into a ordered construction of criteria and sub-

criteria, and then pairwise comparisons are made to determine their relative importance. The 

resulting rankings are calculated using the Eigen vector method, and the reliability of the 

explanation is verified using the ratio. [68]–[70]  

 

Table 3-2: Scale of Analytic Hierarchy Process (AHP)[66], [67] 

Degree of 

Preference 
Definition Explanation 

1 Equally Important Both criteria are equally important 

3 Moderately Important 
Experience strongly favors one criterion over 

another 

5 Highly Important 
Experience and judgment strongly favor one 

activity over another 

7 
Very Highly 

Important 
A criterion is highly dominated over other 

9 Extremely Important 

The evidence favoring one criterion over 

another is of the highest possible order of 

assertion 

2,4,6,8 Intermediate Values 
If a compromise between two criteria is 

required, intermediate values can be used 
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The equation below can be used to assess the reliability of the influences for 

comparative importance applied throughout the pairwise judgement. 

 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦	𝑅𝑎𝑡𝑖𝑜	(CR) = 	
𝐶𝐼	
𝑅𝐼  (8) 

 

where: 

𝐶𝐼  is consistency index, 

𝑅𝐼  is randomness index. 

The Consistency Index (𝐶𝐼) is calculated as follows: 
 

 
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦	𝐼𝑛𝑑𝑒𝑥	(𝐶𝐼) 	= 	

(𝜆+,-– 	𝑛)	
𝑛	– 	1  (9) 

 

where: 

𝝀𝒎𝒂𝒙 represents major Eigen value,  

𝑛 is order of matrix. 

 

Randomness index values depend on the value of 𝑛. Table 3-3 shows the randomness 

index (RI) for different values of n.  

 

Table 3-3: Randomness Index (R.I.) [68] 

Number of Criteria 1 2 3 4 5 6 7 8 

RI 0.0 0.0 0.58 0.9 1.12 1.24 1.32 1.41 

Number of Criteria 9 10 11 12 13 14 15  

RI 
1.45 1.49 1.51 1.48 1.56 1.57 1.58 

 

 

CR is a metric used to verify the constancy of the solution obtained through pairwise 

comparisons in AHP. For CR is greater than 10%, indicates that the solution is unreliable, and 
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the weights need to be reallocated. However, pairwise comparison is consistent when CR is 

below 10%. 

Researchers have acknowledged that Saaty’s AHP method is valuable, but it has some 

inherent challenges. One significant limitation is the difficulty in accurately assessing the 

importance of different criteria, which can be influenced by a decision-makers subjective 

preferences and judgment. To address such limitations, some researchers have integrated fuzzy 

set theory with Saaty’s AHP. For example, Kordi M [71] and Nabeeh N [72] castoff fuzzy 

theory to address vagueness and ambiguity in human decision-making. A widely used fuzzy 

scale that displays the conversion of Saaty’s scale is as follows: 

 

Table 3-4: Fuzzy Scale [73] 

Definition Saaty Scale Fuzzy Scale 

Equally Important 1 (1,1,1) 

Moderately Important 3 (2,3,4) 

Highly Important 5 (4,5,6) 

Very Highly Important 7 (6,7,8) 

Extremely Important 9 (9,9,9) 

Intermediate Values 

2 (1,2,3) 

4 (3,4,5) 

6 (5,6,7) 

8 (7,8,9) 

 

 

3.4 Fault Tree Analysis (FTA) 

FTA is an established and structured technique commonly used to measure the 

reliability and safety of safety-critical systems by assessing the likelihood of an accident 

follow-on from a sequence of faults and failure events. FTA has been extensively used in 
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numerous research areas [74][75][76]. In FTA, the system's failure probability can be broken 

down into different failure types and causes while reaching the basic failure causes that cannot 

be further disintegrated.  

 A fault tree is a DAG with two types of nodes: gates events. Its components are as 

follows [77]: 

• Gates: Boolean connectors that show how failures in subsystems can conglomerate to 

cause a system failure. Gates have one output and one or beyond inputs, defining their 

logical relationship between events. AND and OR are frequently used logical gates in 

FTA. 

• Top Events (TE): The uppermost element of the fault tree, which undergoes 

decomposition into a series of distinct events. 

• Basic Events (BE): The bottom “leaves of the acyclic graph” that can’t be further 

disintegrated. 

• Intermediate Events (IE): These are “represented by a combination of Basic Events 

(BE) or other Intermediate Events (IE)” through the logical gates. Intermediate Events 

(IE) that decompose into Basic Events (BE) are particularly noteworthy as they provide 

valuable insight into the progression of system failure.  

The probability of the Top Event (TE) failing is calculated by analyzing the probability 

distribution of the Basic events (BE), considering the rational connections between BE and IE. 

The logical associations between events in a FT, represented by OR / AND gates, can 

be mathematically calculated as follows: 

 
𝜙(𝑥) = 	c𝑥1

2

13&

= {𝑥& + 𝑥% + 𝑥' +⋯+ 𝑥2} 
(10) 

 

 
𝜓(𝑥) = 	c𝑥1

2

13&

= {𝑥& × 𝑥% × 𝑥' × …× 𝑥2} 
(11) 
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where: 

𝜙(𝑥) and 𝜓(𝑥)  are the Top Events (TEs), 

𝑥1    denotes the 𝑖45 basic contributing factors (BEs), 

𝜙(𝑥)     is activated when there is at least one input factor, and 

𝜓(𝑥)    that is activated when both input factors are present. 

 

3.4.1 Minimum Cut Set (MCS) 

 Fault Tree Analysis uses Minimum Cut Set (𝑀𝐶𝑆) to determine the minimum set of 

events or faults that may lead to system failure, allowing for any assessment of a system’s 

structural vulnerability. The MCS is comprised of a set of basic events where the occurrence 

of all of them would result in system failure. Conversely, if any of these basic events do not 

occur, system failure is avoided. The following equation represents the 𝑀𝐶𝑆: 

 
𝑇 = 	𝑀𝐶𝑆& +	𝑀𝐶𝑆% +	𝑀𝐶𝑆' +⋯+	𝑀𝐶𝑆6 =	m𝑀𝐶𝑆

2"

13&

 
(12) 

 

The exact occurrence probability of the Top Event (TE) can be obtained as follows: 

 𝑃(𝑇) = 𝑃(𝑀𝐶𝑆& ∪	𝑀𝐶𝑆% ∪	𝑀𝐶𝑆' ∪ …∪	𝑀𝐶𝑆6) (13) 
 

 = 𝑃(𝑀𝐶𝑆& +	𝑀𝐶𝑆% +	𝑀𝐶𝑆' +⋯+	𝑀𝐶𝑆6) − (𝑃(𝑀𝐶𝑆& ∩𝑀𝐶𝑆%)) 
 

 

 +q𝑃(𝑀𝐶𝑆& ∩𝑀𝐶𝑆')r + ⋯ q𝑃q𝑀𝐶𝑆1 ∩𝑀𝐶𝑆7r… r…  
  
  +(−1)6*&𝑃(𝑀𝐶𝑆& ∩𝑀𝐶𝑆% ∩ …∩𝑀𝐶𝑆6) (14)  

 

 

where: 

𝑁   denotes the number of 𝑀𝐶𝑆, and 

 𝑃(𝑀𝐶𝑆1)  is the occurrence probability of 𝑀𝐶𝑆1. 
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For instance, a FT has 𝑀𝐶𝑆 represented as 𝑀𝐶𝑆1, where 𝑖	 = 	1, 2, . . . , 𝑛8. The TE “𝑍” exists if 

at least one 𝑀𝐶𝑆 exists [78]. 

 
𝑍 = 	𝑀𝐶𝑆& +	𝑀𝐶𝑆% +	𝑀𝐶𝑆' +⋯+	𝑀𝐶𝑆6 =	m𝑀𝐶𝑆

2"

13&

 
(15) 

 

 

Figure 3-2: Figurative illustration of ‘‘AND” and ‘‘OR” gates in Fault Tree Analysis 

 

3.4.2 Ranking of Minimum Cut Set (𝑀𝐶𝑆) 

 Fault Tree Analysis allows for the prioritization of each 𝑀𝐶𝑆 during risk assessment, 

enabling a focus on the most critical 𝑀𝐶𝑆. Vesely–Fussell Importance Measure (𝑉–𝐹𝐼𝑀) helps 

rank 𝑀𝐶𝑆 represented by the following equation: 

 
𝐼19:(𝑡) =

𝑄1(𝑡)
𝑄;(𝑡)

 (16) 

 

Where: 

𝐼19:(𝑡)  denotes importance of 𝑀𝐶𝑆1, 

𝑄1(𝑡)   represents the occurrence probability of 𝑀𝐶𝑆1, and 

𝑄;(𝑡)   represents the occurrence probability of the Top Events (TEs) due to all 

𝑀𝐶𝑆. 
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3.5 Artificial Neural Network 

Artificial Neural Networks (ANNs) offer distinct advantages over Bayesian Networks 

(BN) due to their ability to capture correlations among input variables, unlike BN which 

assumes independence of elementary events [79]. ANNs are well-known for their capability to 

detect and model complex, nonlinear relationships even in the absence of detailed information 

or prior knowledge about the underlying physical systems. This makes them particularly useful 

for handling high levels of uncertainty. ANNs consist of interconnected neurons organized in 

layers, with each neuron’s output serving as an input for the next layer [80]. By applying the 

transfer function to inputs, neurons process signals. The assessment of an Artificial Neural 

Network's (ANN) capability relies on two critical factors: meticulous selection of suitable 

training datasets and thoughtful design of the network architecture. A well-developed ANN 

can learn from known instances, discern functional relationships, and unveil concealed 

patterns, even in the presence of unknown underlying associations. This allows for predictions 

and classifications based on new, unseen data, making ANN highly effective in extracting 

meaningful insights from complex datasets [81]. 

3.5.1 Algorithm for Artificial Neural Network (ANN) 

 ANNs consist of interrelated neurons that are distributed across three primary layers: 

the input layer, intermediate hidden layers, and the output layer. The neurons in input layers 

form an input vector (X) comprising of x1, x2, ..., xi, ..., xn. Each neuron in the network is 

associated with weights, Wj, representing connections from the prior layer to the current layer. 

The weight vector, Wj, includes wij, indicating the association weight from the ith node in the 

prior layer to the jth node in the current layer. A bias vector, θ, is incorporated in the ANN, 

represented as θ = (θ0, θ1, ..., θj). Here, θ0 represents the bias from the last hidden layer to the 

output layer, while j denotes the number of hidden layers present in the network. Figure 3-3 

illustrates an illustration of a neuron in a classic ANN configuration. 
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Figure 3-3: Structure of a Neuron in a Classic ANN 

 

 The feedforward ANN efficiently processes the provided input vector along with initial 

weights and bias values to generate accurate prediction values from the output layer. These 

predictions are obtained through the application of the following equations [82]: 

 
𝑌7< =	 ƒ& {𝜃7 +c𝑤17 	𝐼1<

1

~ 
(17) 
 

 

 𝑌< =	𝜃" +c𝑤7 	𝑌7<
7

 

 

(18) 
 

where: 

 𝑘  is number of neurons at the output layer, 

 ƒ&  is transfer function (also known as activation function), 

 𝑌7<  is output value of the jth neuron of the hidden layer, 

 𝑌<  represents kth predicted value, and 

 𝐼1<  is 𝑖th input for the 𝑘th input vector. 
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 The current study utilizes log sigmoid transfer function, which is the logarithm of the 

sigmoid function. The sigmoid function is represented as: 

 Sigmoid function	= &
&=	?#$

 

 

(19) 
 

 

 log sigmoid = log � &
&=	?#$

� 

 

(20) 
 

 The learning process of the network is enhanced by employing the backpropagation 

algorithm for error calculations and revising biases and weight. The study utilizes the 

Levenberg-Marquardt (L-M) and Adaptive Moment Estimation (Adams) algorithms to 

optimize learning performance and minimize errors. Through iterative adjustments of the 

network's weights and biases, these algorithms contribute to improved accuracy and 

convergence during the learning phase.  

 The mathematical expression for Levenberg-Marquardt (L-M) is shown as: 

 𝑥(<=&) = 𝑥(<) − [𝐉B𝐉 + 	𝜇𝐈]*&	𝐉B𝒆 

 

(21) 
 

where: 

 𝐉B  is Jacobian of the performance function for weights and biases, 

 𝒆  represents error vector of the proposed network, 

 𝐈  is identity matrix, and 

 𝜇  represents the scalar value to ensure a decrease continuously of the value of a 

performance function. 

  

The mathematical expression for Adaptive Moment Estimation (Adams) is shown as 

[83]: 
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𝑥(<=&) = 𝑥(<) − 	𝛼 ×

𝑚<́
�𝑉�< + 𝜀

 

 

(22) 
 

where: 

 𝛼  represents a learning rate, 

 𝜀  represents a small number to prevent any division by zero in the 

implementation,  

 𝑚<́ , 𝑉�< represent bias-corrected weight parameters. 

 

During the training phase, the process iteratively improves the network's performance. 

Nevertheless, the training process may terminate under certain conditions, as indicated [84], 

which are outlined to ensure proper execution. These conditions serve as critical for 

determining when to conclude the training process and include factors like reaching the highest 

number of repetitions, exceeding the allotted training time, achieving the target value of the 

performance function, surpassing the specified maximum magnitude of the adaptive value μ, 

and consecutively increases in the performance function values on a validation dataset for a 

specified number of times. 

The procedure is continuously iterated to optimize the network’s performance till the 

error was calculated that meets the predefined patience requirement [85]. Various methods are 

employed to effectively minimize the overall error, including Huber Loss, Mean Squared Error 

(MSE), and Mean Absolute Error (MAE). MSE calculates the average squared difference 

between actual and values, while MAE calculates the average absolute change. Huber Loss 

combines characteristics of MSE and MAE to offer a more robust loss function. These methods 

enable accurate error minimization and enhance the performance of regression models. MSE 

is a commonly preferred and widely used method for minimizing overall error [79]. Its’ 

mathematical expression is as follows: 
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 MSE = !
"
∑ (𝑌# − 𝑌$%&)'"
()!  

 

(23) 
 

where: 

 𝑌"  represents observed network error, 

 𝑌CD?  represents predicted output of the network. Top of Form Bottom of Form 

 

 

Figure 3-4: Interplay between FT & HFACS 
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3.5.2 Configuration of ANN Parameters 

 Determining the optimal parameters for an ANN is crucial in addressing the challenges 

of overfitting and underfitting. These parameters encompass many hidden layers and neurons, 

the choice of learning algorithms, and transfer functions for each layer. Overfitting occurs when 

there is failure in generalizing the training data due to an excessive information processing 

capacity, leading to insufficient training for hidden layer neurons. Conversely, underfitting 

arises when the model lacks enough hidden layer neurons to accurately classify the data. 

In practical ANN implementations, a common approach is to use architectures with two 

hidden layers as it strikes a balance between complexity and performance. Models without 

hidden layers can only represent linearly separable functions, while networks with three or 

more hidden layers introduce excessive intricacy and prolong training time exclusive of 

significant enhancements in productivity [86]. Therefore, careful configuration of the ANN is 

critical for achieving desirable performance outcomes. By optimizing these parameters, the 

ANN can effectively process complex datasets while circumventing overfitting and 

underfitting issues. This meticulous consideration enhances the network's ability to address the 

specific problem at hand and improves its overall efficiency. 

To mitigate the challenges of overfitting and underfitting, several rule-of-thumb 

approaches have been devised to estimate the ideal hidden layers’ number of neurons within 

an Artificial Neural Network (ANN). These methods aim to strike a delicate balance that avoids 

both overfitting and underfitting. In current research, a specific rule, proposed in a previous 

study [87], is adopted. These rules have been selected for their relevance and applicability to 

the research objectives. Following these rules, the study ensures that the number of neurons for 

the middle-hidden layers is appropriately determined, enhancing the overall performance of 

the neural network in achieving its objectives [87]: 
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1. The number of hidden neurons is recommended to fall within the range bounded by the 

number of neurons in the output layer and the number of neurons in the input layer. 

2. The total number of hidden neurons corresponds to two-thirds of the neurons in the 

input layer, added to the number of neurons in the output layer. 

3. In cases where the feasibility of the former rule is not attainable, it is suggested to set 

the number of neurons in the first hidden layer to be equal to the count of IEs directly 

linked to BEs in the FT 

4. The number of neurons in the second hidden layer must match the number of IEs 

directly connected to the TE in the FT. If the second rule cannot be met, it is 

recommended that the number of neurons in the first hidden layer be equal to the 

greatest allowable total number of hidden neurons, minus the count of IEs straight 

linked to the TE in the FT. 
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CHAPTER 4: METHODOLOGY 

To examine the effect of factors related to humans on RTAs, this research proposes an 

integrated method that combines the HFACS, F-AHP using the Geometric Mean Technique, 

Fault Tree Analysis (FTA), and Artificial Intelligence (AI). This comprehensive approach aims 

to effectively address the influence of human factors on RTAs by utilizing multiple 

methodologies and techniques. Integrating these methods, the research offers a holistic 

framework for understanding and mitigating the part of human factors in RTAs. 

Part 1 applies the HFACS framework to establish specific human factors structure for 

RTAs, enabling a systematic identification and classification of human-related factors that 

contribute to accidents. This framework facilitates a comprehensive understanding of the 

causes of RTAs associated with human elements. 

Part 2 concentrates on constructing the Fault Tree structure for RTAs, building on the 

human factor’s framework developed in Part 1. Utilizing the identified human variables, the 

Fault Tree is visually represented, illustrating the links between various elements and their 

propensity to cause RTAs. This graphical depiction enhances the examination of the 

multifaceted interdependencies among factors related to human and their influence on the 

entire road traffic system. 

In Part 3, the failure probability of BE within the FT is computed utilizing the F-AHP 

and SAM. The inclusion of linguistic factors and expert opinions in fuzzy AHP provides a 

more accurate assessment of the uncertainty surrounding each event's failure probability. SAM 

further improves the aggregation of these probabilities by considering similarities between 

events and incorporating expert judgments. 

Part 4 conducts a widespread evaluation and contrast of various machine-learning 

models to map fault trees. A wide range of ML algorithms, such as Random Forests, SVM, and 



   
 

   
 

28 

Gradient Boosting, are employed to explore their effectiveness in capturing the underlying 

relationships and patterns in the FT data. Finally, the FT is integrated into an ANN, allowing 

the logical structure of the FTs to be incorporated into a neural network model. This integration 

enhances the assessment of system reliability and contributes to improved risk management 

strategies. 

 

 
Figure 4-1: Schematic diagram of overall process 

 

4.1 Part 1: The human factors structure is derived using the HFACS 

framework 

4.1.1 Data Collection 

To validate the efficacy of the developed methodology, it is essential to establish a 

comprehensive database of RTAs. In current research, a meticulous selection process was 
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undertaken, focusing on 21,082 road traffic accidents that occurred on arterials in Pakistan 

between 2012 and 2018 

 

4.1.2 HFACS Framework 

The levels and categories of the proposed HFACS are illustrated in Table 4-1, which 

aligns with the five-level framework utilized in previous studies [62][61][88][88][60].  

 

Table 4-1: Description of the levels and categories involved in the proposed HFACS 

Level Failure Mode Description 

External 
Factors 

 

Regulatory Omissions 

1. Laws and regulations need improvement 
to address prevailing circumstances. 

2. Regulations require amendment to align 
with evolving industry and social 

demands. 

Administrative 
Omissions 

1. Government department neglecting law 
implementation and supervision 

responsibilities. 
2. Insufficient safety subsidy policies and 

policy advocacy leading to safety failures. 

Organizational 
Influence 

 

Human Resources 
1. The deficiency of drivers in the workforce 

has a detrimental effect on the quality and 
safety of transportation services. 

Financial Resources 
1. Limited allocation of funds for the 

periodic renewal of vehicles and 
maintenance of equipment. 

Safety Atmosphere 

1. Inadequate mutual encouragement for safe 
driving. 

2. Infrequent and passive discussions on 
safety-related issues. 

Organizational Operation 

1. There is no robust system in place for 
monitoring working hours or recording 

violations. 
2. Safety plans and procedures are not 

reviewed on a regular basis. 
Unsafe 

Supervision Insufficient Supervision 
1. Irregular safety inspections for drivers and 

vehicles. 
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 2. Insufficient on-the-job training and 
inadequate emphasis on driving safety 

education. 
Incompletely Planned 
Operating Mechanism 

1. Non-standardized work procedures and 
risk assessment mechanisms. 

Failure To Correct 
Known Errors 

1. Neglecting known system defects and 
avoiding necessary improvements by the 

authorities responsible for road 
supervision. 

Pre-conditions 
for Unsafe Act 

 

Personal Readiness 

1. Inadequate rest periods between shifts for 
drivers. 

2. Inadequate familiarity of drivers with road 
conditions. 

Poor Mental State 

1. Behavioral or personality issues, such as 
carelessness or impatience, leading to 

unsafe driving practices. 
2. Inattention caused by fatigue or 

exhaustion, compromising driving safety. 

Poor Physical State 
1. Impaired driving due to illness, 

medication, physical discomfort, or 
dizziness. 

Environment Factor 

1. Adverse weather conditions and 
environmental factors, such as prolonged 

periods of darkness or light, can contribute 
to unsafe driving behavior. 

Unsafe Act 
 

Driver Decision-Making 
Error 

1. Failure to accurately assess the driving 
status of other vehicles and respond to 

emergencies. 
2. Failure to accurately assess road 

conditions. 

Driver Operating Error 
1. Inappropriate driving conduct, such as 

reckless lane changing, lane deviation, and 
failure to maintain a safe driving distance. 

Driver Violations 
1. Repetitive disregard for rules by drivers 

despite awareness of potential hazards and 
legal repercussions. 

 

4.1.3 Hierarchical Structure of Human Risk Factors Involved 

This segment analyses and classifies risk factors related to humans that contribute to 

RTAs. These risk factors are structured hierarchically based on expert knowledge and 
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integrated into the Fault Tree (FT) model. Expert elicitation is a widely accepted method 

employed in various fields, such as accident examination and risk examination, as it relies on 

the expertise of professionals to derive accurate scientific conclusions [89]. It is beneficial to 

have a diverse group of experts with varied backgrounds and experiences rather than a 

homogeneous group, as it permits a further wide-ranging examination of the subject matter. A 

diverse group can provide a deeper and more multifaceted understanding by bringing together 

experts with different areas of expertise and perspective [89]. In this study, four experts were 

consulted assessing human factors, and their credentials were evaluated based on job 

experience, age, and educational level [90][91][92][93]. Table 4-2 presents the score rankings 

for the various pointers used to evaluate the capabilities of the experts. 

 

Table 4-2: Scoring Ratings for Capability Assessment Indicators 

Indicator Classification Score Indicator Classification Score 

Age 

≥ 50 4 
Experience 

6 – 9 2 

40 – 49 3 ≤ 5 1 

30 – 39 2 

Education 

level 

 

Ph.D. 5 

≤ 30 1 Masters 4 

Experience 

 

 

≥ 30 years 5 B.E or B. S 3 

20 – 29 4 
Junior 

College 
2 

10 – 19 3 School Level 1 

 

 

 Accident descriptions are critical for conducting comprehensive factor analyses as they 

provide detailed information about the incident [62]. However, these reports usually focus 

solely on driver-related factors, necessitating the inclusion of additional sources such as 

literature reviews and interviews to recognize a broader choice of risk factors related to RTAs. 
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Table 4-3 provides a summary of the overall factors highlighted in this research through accident 

reports, literature reviews, and interviews. 

 

 
Figure 4-2: Analytic hierarchical process for the evaluation of expert capability 

 

 

Table 4-3: Description of the risk factors related to RTAs on Arterials 

Item Risk Factors Description 

1 Axle Broken 
Inadequate vehicle maintenance, overloading, and reckless 

driving can cause axle failure and lead to road accidents. 

2 Brake Failure 
Poor brake maintenance practices and overloading of vehicles 

can result in brake failure, increasing the risk of road accidents. 

3 
CNG Cylinder 

Burst 

Insufficient training or guidelines for installation, maintenance, 

and inspection of CNG cylinders, as well as inadequate safety 

regulations and the use of uncertified or improperly filled 

cylinders, can increase the likelihood of cylinder bursts and 

lead to road accidents. 
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4 
Steering 

Failure 

Poor maintenance practices, ignoring warning signs of steering 

problems, and driving on rough or uneven terrain can contribute 

to steering failure and increase the risk of road accidents. 

5 Tyre Burst 

Inadequate maintenance practices, such as failure to check tyre 

pressure or neglecting to replace worn-out tyres, combined with 

excessive speed or overloading of vehicles, can cause tyre 

bursts and pose a serious threat to road safety. 

6 Strong Wind 

Driving in strong wind conditions without adjusting the speed 

or vehicle handling techniques, accordingly, can increase the 

risk of losing vehicle control and pose a significant threat to 

road safety. 

7 Dense Fog 

Driving in dense fog without adjusting speed, using appropriate 

headlights or fog lights, and maintaining a safe distance from 

other vehicles can greatly increase the risk of collision and pose 

a serious threat to road safety. 

8 
Slippery Road 

Due to Rain 

Driving on a slippery road due to rain without reducing speed, 

ensuring adequate tire traction and visibility, and maintaining a 

safe distance from other vehicles can increase the risk of losing 

vehicle control. 

9 
Driver’s 

Fatigue 

Driving while fatigued, without taking proper rest breaks or 

adhering to regulated working hours, can damage the driver's 

response time, decision-making ability, and focus, increasing 

the risk of accidents. 

10 

Driver Under 

Effect of 

Alcohol/Drugs 

Driving under the effect of alcohol or drugs impairs a driver's 

judgment, reaction time, and vehicle control, significantly 

increasing the risk of accidents and posing a serious threat to 

road safety. 

11 

Mental and 

Physiological 

Pressure 

Driving while experiencing mental or physiological pressure, 

such as stress, anxiety, or illness, can impair a driver's cognitive 

function and ability to react to potential hazards on the road. 

12 

Absence of 

Work Zone 

Signage 

The absence of work zone signage can occur due to lapses in 

planning or execution of a road construction project. This can 
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cause confusion among drivers, leading to errors in judgment 

and an increased risk of accidents. 

13 

Absence of 

Wildlife 

Crossing 

Signage 

The absence of wildlife crossing signage can increase the risk 

of accidents between vehicles and animals, which can be 

attributed to inadequate consideration of ecological factors 

during road planning and design. 

14 
Poor Road 

Conditions 

Roads with poor conditions, such as potholes, cracks, or 

insufficient lighting, can increase the risk of accidents for 

drivers. These conditions can result from inadequate 

maintenance, insufficient funding, or limited planning and 

design considerations. 

15 

Monotonous 

road 

conditions 

Monotonous road conditions can cause drivers to become 

fatigued or distracted, leading to an increased risk of accidents 

due to human factors. This can be addressed through measures 

such as rest breaks, stimulating environments, or advanced 

driver assistance technologies. 

16 

Excessive 

Load for 

Trucks 

Excessive load for trucks can lead to accidents caused by 

factors such as poor judgement and inadequate training of 

drivers, as well as pressure to meet delivery deadlines. 

17 
Dangerous 

Overtaking 

Overtaking can be a contributing factor to road traffic accidents 

due to human factors such as misjudgement, lack of attention, 

distraction, fatigue, and noncompliance with traffic laws and 

safety guidelines. 

18 

Driving at 

Night 

Exclusive of 

Proper Lights 

Driving at night without proper lights can be hazardous due to 

factors such as reduced visibility, impaired judgment, increased 

risk of collision, and inadequate reaction time. 

19 

Failure to 

Apply Brakes 

in a Timely 

Manner 

Distraction, impaired judgment, fatigue, inexperience, 

inadequate training, or overconfidence can lead to delayed 

response time and reduced vehicle control, which can expand 

the risk of a RTA. 
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20 
Improper U-

turns 

Misjudgement, inattention, impatience, poor decision-making, 

and lack of knowledge or skills can lead to risky manoeuvres 

that rise the risk of a RTA. 

21 
Reckless 

Driving 

Careless driving can result from factors such as lack of 

attention, impaired judgment, distraction, overconfidence, 

disregard for traffic rules and safety measures, and fatigue. 

22 

Not 

Maintaining a 

Safe Distance 

(Tailgating) 

Tailgating can increase the risk of RTAs by reducing the time 

available for a driver to react to sudden changes in traffic 

conditions, such as sudden braking or obstacles on the road. 

23 Over Speeding 

Over Speeding can be caused by various factors, such as 

impatience, overconfidence, peer pressure, and lack of 

awareness or regard for traffic rules and safety guidelines. 

These factors can lead to risky driving performances that 

increase the risk of collisions and endanger the safety of all 

road users. 

24 Illegal Parking 

Impatience, lack of consideration for others, lack of awareness 

or regard for traffic rules and signage, and the belief that the 

driver won't be caught can contribute to dangerous parking 

behaviors that increase the risk of collisions and traffic 

congestion. 

25 
Pedestrian 

Fault 

Distraction, overconfidence, impairment, and disregard for 

traffic rules can contribute to pedestrian fault in road traffic 

accidents, leading to risky behaviors and increased collision 

risk that endangers pedestrians and other road users. 

26 Age Factor 

Age is a contributing factor to road traffic accidents, with 

younger and older drivers beyond expected to be involved in 

accidents due to factors such as inexperience, overconfidence, 

physical or cognitive decline, and reduced ability to respond to 

hazards on the road. 

27 
One Way 

Violation 

Violating one-way rules is often due to distraction, 

unfamiliarity with the road, impatience, or recklessness, leading 

to collisions and putting other road users at risk. 
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28 

Failure to 

Conduct 

Regular Safety 

Inspections of 

Vehicles 

The absence of regular safety inspections for vehicles can 

prime to an increased risk of RTAs, particularly in countries 

where such inspections are not mandatory. In developed 

countries, periodic inspections are required either annually or 

during the transfer of vehicle ownership. For instance, the 

Ministry of Transport test in the UK is a mandatory annual 

assessment of a vehicle's safety, roadworthiness, and exhaust 

emissions for vehicles over three years old. 

29 

Failure to 

Conduct on-

the-job 

Training for 

Drivers and 

Strengthen 

Driving Safety 

Education and 

Training 

Lack of attention to the potential risks and consequences of 

insufficient training can lead to inadequate preparation and poor 

decision-making, which can ultimately result in accidents on 

the road. 

30 

Absence of 

Road Safety 

Manuals 

The rise in the risk of road traffic accidents due to the lack of 

standardized guidelines and procedures for ensuring safe road 

conditions. 

31 

Failure to 

Conduct Road 

Safety Audits 

The failure to conduct road safety audits can increase the 

likelihood of road traffic accidents by allowing hazardous 

conditions to go undetected. Moreover, it hinders the 

implementation of effective safety measures to mitigate 

identified risks, potentially resulting in more severe and 

frequent accidents. 

32 

Insufficient 

Accident 

Record-

Keeping 

System 

An insufficient accident record-keeping system can contribute 

to road traffic accidents by limiting the ability to identify and 

analyze trends in accident data, leading to delayed or 

inadequate implementation of appropriate safety measures. 

33 
Safety-Related 

Issues are not 

Absence of open discussion and active communication on 

safety-related issues among stakeholders and decision-makers 
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Frequently or 

Actively 

Discussed 

can contribute to a lack of awareness and prioritization of road 

safety, leading to increased risks of traffic accidents. 

34 

Outdated Road 

Safety 

Legislation 

The NHSO of 2000 controls road safety on national highways. 

However, it needs updating to reflect new innovations and best 

practices. The Motor Vehicle Ordinance (MVO) of 1965 and 

Motor Vehicle Regulation (MVR) of 1969 controls road user 

safety on provincial roads but are almost few decades old and 

don't reflect evidence-based best practices. Penalties must be 

reviewed to effectively deter drivers and other road users from 

upsetting. None of the ordinances deal with seat belt wearing. 

For instance, in 2018, the Indian government amended the 

Motor Vehicles Act of 1988 to include stricter penalties for 

traffic violations, such as an increase in fines for not wearing a 

helmet, driving under the influence of alcohol, and not wearing 

a seat belt. The amendment also included provisions for 

improving road safety infrastructure and emergency services. 

As a result of these amendments, India saw a 20% reduction in 

road fatalities in 2019 compared to the previous year. 

35 

Insufficient 

Safety Subsidy 

Policies 

Road crashes in many developing countries result in significant 

economic and social costs, including loss of life, disability, and 

damage to infrastructure and vehicles. However, despite these 

consequences, there is often limited government subsidy 

allocated to road safety issues. For instance, in Pakistan, road 

crashes cost nearly 3% of the GDP, yet there is a lack of 

government funding towards road safety initiatives. 

36 

Outdated / 

Inappropriate 

Licensing 

Mechanism 

Outdated or inappropriate licensing mechanisms can lead to 

unsafe drivers on the road, which can increase the likelihood of 

accidents. According to a study by the WHO, inadequate driver 

training and licensing practices contribute to up to 30% of road 

deaths middle- and low- income countries [94]. 

37 
No Rigorous 

Working Hour 

When drivers are overworked or fatigued, their driving ability 

can become impaired, leading to an increased risk of accidents. 
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Rules or 

Violation 

Record System 

The absence of working hour rules can result in fatal public 

transport accidents. The lack of strict regulations and 

monitoring systems for working hours can result in drivers 

being pushed to work longer hours, leading to increased risk of 

accidents due to fatigue. 

  

 Table 4-4 presents the hierarchical structure of risk factors based on the classification 

within the HFACS framework. 

 

Table 4-4: Hierarchical structure of risk factors 

HFACS 

Classification 
Risk Factor 

Assigned 

Code 

Unsafe Act 

Excessive Load for Trucks L1 – 1 

Brake Failure L1 – 2 

Reckless Driving L1 – 3 

Dangerous Overtaking L1 – 4 

Driving at Night Without Proper Lights L1 – 5 

Failure to Apply Brakes in a Timely Manner L1 – 6 

Improper U-turn L1 – 7 

Not Maintaining a Safe Distance (Tailgating) L1 – 8 

One Way Violation L1 – 9 

Over Speeding L1 – 10 

Illegal Parking L1 – 11 

Pre-conditions 

for Unsafe Act 

Axle Broken L2 – 1 

Strong Wind L2 – 2 

CNG Cylinder Burst L2 – 3 

Dense Fog L2 – 4 

Driver’s Fatigue L2 – 5 

Driver Under Influence of Drugs/Alcohol L2 – 6 

Pedestrian Fault L2 – 7 

Poor Road Conditions L2 – 8 
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Slippery Road Due to Rain L2 – 9 

Steering Failure L2 – 10 

Tyre Burst L2 – 11 

Mental and Physiological Pressure L2 – 12 

Monotonous Road Conditions L2 – 13 

Age Factor L2 – 14 

Unsafe 

Supervision 

Absence of Work Zone Signage L3 – 1 

Absence of Wildlife Crossing Signage L3 – 2 

Failure to Conduct Regular Safety Inspections of 

Vehicles 
L3 – 3 

Failure to Conduct on-the-job Training for Drivers 

and Strengthen Driving Safety Education and Training 
L3 – 4 

Organizational 

Influence 

Absence of Road Safety Manuals L4 – 1 

Failure to Conduct Road Safety Audits 

 
L4 – 2 

No Rigorous Working Hour Rules L4 – 3 

Outdated / Inappropriate Licencing Mechanism L4 – 4 

Insufficient Accident Record-Keeping System L4 – 5 

Safety-Related Issues are not Frequently or Actively 

Discussed 
L4 – 6 

External 

Factors 

Outdated Road Safety Legislation L5 – 1 

Insufficient Safety Subsidy Policies L5 – 2 

 

 

4.2 Part 2: The Fault Tree structure is developed according to the part 1 

4.2.1 Statistical Analysis 

 Performing Occurrence Frequency Analysis is a crucial step in conducting a risk 

analysis, as accidents are inclined by numerous risk factors and the causes of each accident can 

vary [95] 
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4.2.2 Occurrence Frequency Analysis 

 The analysis of each risk factor is conducted individually, and the findings are presented 

in Figure 4-3. 

 

 

 

Figure 4-3: Occurrence frequency of risk factors 

 
 From Figure 4-3, it is evident that several significant risk factors, including over 

speeding (L1 – 10), one-way violation (L1 – 9), poor road conditions (L2 – 8), and reckless 

driving (L1 – 3), collectively contribute for approximately 74% of all traffic accidents. 

However, certain non-reported risk factors in accident descriptions are still reflected critical 

relying on literature reviews and expert judgments, despite having a frequency of 0. 
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Table 4-5: Intermediate events 

Grouping Description Assigned 

Code 

Description Assigned 

Code 

Primary 

Intermediate 

Events 

Unexpected Conditions J2 Organization Fault J7 

Supervision Failure J3 Error J8 

Road Condition J4 Violation J9 

Mechanical Fault J5 External Fault J10 

Health Condition J6-1 Poor Visibility J1-1 

Wrong Practices J6-2 
  

Secondary 

Intermediate 

Events 

Adverse Circumstances S1 Policy and 

Administrative 

Management 

S5 

Deficiencies in 

Operation 

S2 Unfavourable 

Environmental 

Situations 

J1 

Resource Management S3 Health Factors J6 

Operation Fault S4 
  

 

 

4.2.3 Fault Tree Modelling 

 In the development of the FT model, each risk factor is treated as a BE in the FT, as 

shown in Table 4-3. Intermediate events are identified and incorporated in the fault tree 

through casual consequence analysis, which is shown in Table 4-5. The ultimate event within 

the constructed FT is classified as the “road traffic accident” representing the top-level event. 
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4.3 Part 3: Failure Probabilities of basic events in fault tree are calculated using 

Fuzzy AHP and Similarity Aggregation Method (SAM) 

4.3.1 Expert Rating 

 To address the potential cognitive biases of individual experts, it is essential to 

incorporate the thoughts of numerous experts. This can be achieved by objectively assessing 

the capabilities of each expert through a weighted scoring system. It should be recognized that 

the criteria for evaluating these capabilities may differ depending on features such as 

experience, age, and education. Prior to the evaluation, a rating score is established, and 

pairwise comparison matrices are created to consider the indicators of each expert’s 

capabilities. The weight assigned to each expert is then calculated using the following steps 

[96]: 

 

Þ A pairwise synthetic comparison matrices 𝐵� = [𝑏EF�] using the geometric mean 

technique is used to handle fuzzy as follows: 

 𝑏EF� = (𝑎(&)EF�	⨂	𝑎(%)EF�	⨂	…	⨂	𝑎(<)EF�)
&
( (24) 

 

where: 

𝐴(<)� = [𝑎(<)EF�]		 	 𝑘45 indicator represents expert capability evaluation in 

pairwise comparison matrix  

Þ The fuzzy weights standards for each SME can be estimated using succeeding equation:  

 𝑟E� = (𝑏E&�	⨂	𝑏E%�	⨂	…	⨂	𝑏E2� )
&
2 (25) 

 

where: 

𝑟E�   represent the fuzzy weight of the 𝑖45 expert. 

The fuzzy weights of each criterion are defined as follows: 
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 𝑤E� = 𝑟E�	⨂	(𝑟E�	⨂	𝑟%� 	⨂	…	⨂	𝑟2�)*& (26) 
 

where: 

𝑤E�(𝑙𝑤1 , 𝑚𝑤1 , 𝑢𝑤1)		 implies the fuzzy weights of 𝑖45 criterion.  

𝑙𝑤1 , 𝑚𝑤1 , 𝑢𝑤1 			 indicates lower, middle, and upper values of the fuzzy weights 

of 𝑖45 criterion. 

 

Þ The center of area technique is employed to weight each SME expressed as: 
 𝑃(𝐸1) = �

1
3� [𝑢𝑤1 +𝑚𝑤1 + 𝑙𝑤1] 

(27) 

 

4.3.2 Aggregation of Data 

 The SAM is employed for combining the viewpoints of SMEs and determining the 

failure probabilities associated with each risk factor. Each SME denoted as 𝐸1(𝑖 = 1,2,3, … , 𝑛), 

expresses their perspective on specific risk factors using a set of linguistic variables as 

aforementioned.  The crisp values, obtained by defuzzifying fuzzy numbers after converting 

from triangular or trapezoidal numbers based on the linguistic variables, are calculated using 

the following method [91]: 

 

1) Calculation of Degree of Similarity. 

𝑆GH(𝐸G�	, 𝐸H�) is the degree of agreement for various opinions between each group 

of SMEs. Let's assume two triangular fuzzy numbers are represented by 𝐸G�(𝑎&	, 𝑎%	, 𝑎') 

and 𝐸H�(𝑏&	, 𝑏%	, 𝑏') such that (𝑢	 ≠ 	𝑣). The degree of agreement between 𝐸G�  and 𝐸H� is 

gained by using the succeeding equation: 

 
𝑆GHq𝐸G�	, 𝐸H�r = 1 −	

1
𝑗 c

|𝑎1 − 𝑏1|
7

13&

							𝑖 = 1	, 2	, 3 
(28) 

 



   
 

   
 

44 

where: 

𝑗 number of fuzzy set members, (e.g., 𝑗 = 4 for trapezoidal and 𝑗 = 3 for 

triangular fuzzy number) 

 

2) Calculation for the Average of Agreement (𝑨𝑨) degree for each expert viewpoint. 

 
𝐴𝐴(𝐸G) = 	

1
𝑈 − 1	 c 𝑆GHq𝐸G�	, 𝐸H�r

I

G	J	H	,			H3&

 
(29) 

where: 

U  overall number of SMEs. 

 

3) Calculation for the Relative Agreement (𝑹𝑨) degree between two types of experts. 

The value of 𝑅𝐴(𝐸G) for the 𝑢45expert is obtained by the following: 

 
𝑅𝐴(𝐸G) =

𝐴𝐴(𝐸G)
∑ 𝐴𝐴(𝐸G)I
G3&

 (30) 

 

4) Estimation of the Consensus Coefficient (𝑪𝑪) for each expert. 

The value of 𝐶𝐶(𝐸G) for the 𝑢45	expert is estimated using the following: 

 𝐶𝐶(𝐸G) = [𝛽 × 𝑃(𝐸G)] + [(1 − 𝛽) × 𝑅𝐴(𝐸G)] (31) 
 

where: 

𝛽(0 ≤ 𝛽 ≤ 1)  coefficient initiated to represent prominence of 𝑃(𝐸G) over 

𝑅𝐴(𝐸G)  

The greater the value of 𝛽 is, the greater the importance of  𝑃(𝐸G). 

 

5) Calculation for the aggregated results of the experts’ viewpoints. 

The aggregated results denoted by 𝑅L� is computed by following: 

 𝑅L� = 𝐶𝐶(𝐸&)⨂𝐸&�	⨁	𝐶𝐶(𝐸%)⨂𝐸%	�⨁	…	⨁	𝐶𝐶(𝐸G)⨂𝐸G�	 (32) 
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6) Defuzzification of the aggregated results. 

The Center of Area Method is widely used for the defuzzification of the aggregated 

results, which is expressed as follows:  

 
𝑋 = 	

∫ 𝜇M(𝑥)𝑥𝑑𝑥
∫ 𝜇M(𝑥)𝑑𝑥

 (33) 

 

where: 

𝑋 represents the defuzzification result and 𝜇M(𝑥) indicates the accumulated 

membership functions.  

The fuzzy number of combined results is denoted as 𝑅L�(𝑐&	, 𝑐%	, 𝑐') and 

𝑅L�(𝑐&	, 𝑐%	, 𝑐'	, 𝑐(), for fuzzy triangular and trapezoidal numbers is defuzzified as eq (34) and 

(35) respectively 

 

𝑅L =	
∫ (𝑥 − 𝑐%)

(𝑐% − 𝑐&)
𝑥𝑑𝑥8%

8&
+ ∫ (𝑐' − 𝑥)

(𝑐' − 𝑐%)
𝑥𝑑𝑥8'

8%

∫ (𝑥 − 𝑐%)
(𝑐% − 𝑐&)

𝑑𝑥8%
8&

+ ∫ (𝑐' − 𝑥)
(𝑐' − 𝑐%)

𝑑𝑥8'
8%

=
𝑐& +	𝑐% +	𝑐'

3  
(34) 

 

 

 

𝑅L =	
∫ (𝑥 − 𝑐&)

(𝑐% − 𝑐&)
𝑥𝑑𝑥8%

8&
+ ∫ 𝑥𝑑𝑥8'

8%
+ ∫ (𝑐( − 𝑥)

(𝑐( − 𝑐')
𝑥𝑑𝑥8(

8'

∫ (𝑥 − 𝑐&)
(𝑐% − 𝑐&)

𝑑𝑥8%
8&

+ ∫ 𝑑𝑥8'
8%

+ ∫ (𝑐( − 𝑥)
(𝑐( − 𝑐')

𝑑𝑥8(
8'

 
(35) 

 

 
=
1
3
(𝑐( +	𝑐')% − (𝑐% +	𝑐&)% − 𝑐(𝑐' − 𝑐&𝑐%

𝑐( + 𝑐' − 𝑐% − 𝑐&
 (36) 

 

4.3.3 Transforming Crisp Failure Possibility (CFP) of BEs into failure probability 

 To transform the possibility of risk factors, obtained from expert judgments, into failure 

probability, a function [97] is applied. This function considers the proportion between human 
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impression and the logarithmic worth of a physical quantity. The rate of probability can be 

derived from the possibility rate using the following equation [97][98][99][100]: 

 

 
𝐹𝑃 = 	 ª

1
10<

, 𝐶𝐹𝑃 ≠ 0

0	, 𝐶𝐹𝑃 = 0	
𝑘 = [(

1 − 𝐶𝐹𝑃
𝐶𝐹𝑃 )]

&
' × 2.301 

(37) 
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Figure 4-4: Developed FT model for the RTAs 

 

Road Traffic Accident

S5S4

 

S2 J8 J9 J6 S1 S3

J4 J5

L2 - 8 L2 - 13

L1 - 2 L2 - 3 L2 - 10 L2 - 11 L2 - 1

L1 - 5 L1 - 6 L1 - 8

L1 - 1 L1 - 4 L1 – 10 L1 - 11 L1 - 3 L1 - 7 L1 - 9

J6 - 1 J6 - 2

L2 - 12 L2 - 14 L2 - 5 L2 - 6

J1 J2

J1 - 1 L2 - 9

L2 - 2 L2 - 4

L3 - 1 L3 - 2 L2 - 7

J7 J3J10

L4 - 1 L4 - 2 L4 - 3 L4 - 4 L4 - 5 L4 - 6

L5 - 1 L5 - 2

L3 - 3 L3 - 4
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4.4 Part 4: Mapping of FT using Various Machine Learning Models 

4.4.1 Failure Probability for Basic Events 

 The failure probability of BEs is calculated through expert judgment using the 

Similarity Aggregation Method (SAM). Using the capability criteria based on F-AHP, as 

discussed in above Table 4-2, the outcomes are shown in Table 4-6. 

 

Table 4-6: Evaluation results of subject matter experts 

SME Experience Age 
Education 

Level 
Weight 

Expert 1 10 to 19 40 to 49 PhD 0.27947854 

Expert 2 <= 5 30 to 39 PhD 0.19589687 

Expert 3 10 to 19 40 to 49 PhD 0.27947854 

Expert 4 10 to 19 30 to 39 PhD 0.24514605 

 

  Information about expert opinion for the failure rate of linguistic expression is given 

in Table 4-7.  

 

Table 4-7: Expert views on human factors 

Items Expert 1 Expert 2 Expert 3 Expert 4 

L2 – 1 L VH H M 

L1 – 2 L H VH H 

L2 – 3 M H M H 

L2 – 10 L M L M 

L2 – 11 H VH VH VH 
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L2 – 2 M M VL H 

L2 – 4 L H H M 

L2 – 9 VH H M H 

L2 – 5 L M H L 

L2 – 6 M H L H 

L2 – 12 H H L VH 

L3 – 1 H M H H 

L3 – 2 L H VL H 

L2 – 8 M M M H 

L2 – 13 M M L H 

L1 – 1 M H H M 

L1 – 4 H VH L VH 

L1 – 5 H H L VH 

L1 – 6 L H L H 

L1 – 7 VH H M H 

L1 – 3 H VH H VH 

L1 – 8 L M M H 

L1 – 10 VH VH VH VH 

L1 – 11 L M L M 

L2 – 7 H VH M L 

L2 – 14 M H M H 

L1 – 9 H M M M 

L3 – 3 VH H H H 

L3 – 4 H H L M 
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L4 – 1 M M M H 

L4 – 2 H M H VH 

L4 – 5 VH H VH VH 

L4 – 6 M L VL M 

L5 – 1 H H L H 

L5 – 2 M M VL H 

L4 – 4 H M L M 

L4 – 3 M H L H 

 

Table 4-7, indicating the significance of the SMEs, gives an appropriate value of β 

which indicates their importance [101]. Previous research has shown that variations in the value 

of β do not affect fuzzy multiple attributes assisted in decision-making [102]. Through 

sensitivity analysis, it was determined that choosing β = 0.5 was the best choice for this system 

[102]. We have used 0.5 as a value of β. Applying the equations from (38) to (39), each factor 

related to human can be aggregated as a trapezoidal fuzzy number, which is subsequently 

defuzzified to obtain a crisp failure probability. The crisp failure probability is then converted 

into failure probability using equation (40). The overall outcomes are presented in Table 4-8.  

 

Table 4-8: Aggregation result of each of human factors 

Items Expert 1 Expert 2 Expert 3 Expert 4 Probability 

L2 – 1 (0.1,0.25,0.4) (0.8,0.9,1,1) 
(0.6,0.75,0.

9) 

(0.3,0.5,0.

7) 

0.00891113

1 

L1 – 2 (0.1,0.25,0.4) (0.6,0.75,0.9) (0.8,0.9,1,1) 
(0.6,0.75,0

.9) 

0.01276600

2 
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L2 – 3 (0.3,0.5,0.7) (0.6,0.75,0.9) (0.3,0.5,0.7) 
(0.6,0.75,0

.9) 
0.01093684 

L2 – 10 (0.1,0.25,0.4) (0.3,0.5,0.7) 
(0.1,0.25,0.

4) 

(0.3,0.5,0.

7) 

0.00174985

4 

L2 – 11 (0.6,0.75,0.9) (0.8,0.9,1,1) 
(0.6,0.75,0.

9) 

(0.8,0.9,1,

1) 

0.04390601

1 

L2 – 2 (0.3,0.5,0.7) (0.3,0.5,0.7) (0,0,0.1,0.2) 
(0.6,0.75,0

.9) 

0.00321927

7 

L2 – 4 (0.1,0.25,0.4) (0.6,0.75,0.9) 
(0.6,0.75,0.

9) 

(0.3,0.5,0.

7) 

0.00794895

3 

L2 – 9 (0.8,0.9,1,1) (0.6,0.75,0.9) (0.3,0.5,0.7) 
(0.6,0.75,0

.9) 

0.02141199

3 

L2 – 5 (0.1,0.25,0.4) (0.3,0.5,0.7) 
(0.6,0.75,0.

9) 

(0.1,0.25,0

.4) 

0.00286531

6 

L2 – 6 (0.3,0.5,0.7) (0.6,0.75,0.9) 
(0.1,0.25,0.

4) 

(0.6,0.75,0

.9) 

0.00772762

3 

L2 – 12 (0.6,0.75,0.9) (0.6,0.75,0.9) 
(0.1,0.25,0.

4) 

(0.8,0.9,1,

1) 

0.01253358

2 

L3 – 1 (0.6,0.75,0.9) (0.3,0.5,0.7) (0.3,0.5,0.7) 
(0.6,0.75,0

.9) 

0.01168834

1 

L3 – 2 (0.1,0.25,0.4) (0.6,0.75,0.9) (0,0,0.1,0.2) 
(0.6,0.75,0

.9) 

0.00427821

4 

L2 – 8 (0.3,0.5,0.7) (0.3,0.5,0.7) (0.3,0.5,0.7) 
(0.6,0.75,0

.9) 

0.00762369

7 
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L2 – 13 (0.3,0.5,0.7) (0.3,0.5,0.7) 
(0.1,0.25,0.

4) 

(0.6,0.75,0

.9) 
0.0048506 

L1 – 1 (0.3,0.5,0.7) (0.6,0.75,0.9) 
(0.6,0.75,0.

9) 

(0.3,0.5,0.

7) 

0.01123985

5 

L1 – 4 (0.6,0.75,0.9) (0.8,0.9,1,1) 
(0.1,0.25,0.

4) 

(0.8,0.9,1,

1) 

0.01716483

9 

L1 – 5 (0.6,0.75,0.9) (0.6,0.75,0.9) 
(0.1,0.25,0.

4) 

(0.8,0.9,1,

1) 

0.01253358

2 

L1 – 6 (0.1,0.25,0.4) (0.6,0.75,0.9) 
(0.1,0.25,0.

4) 

(0.6,0.75,0

.9) 

0.00450110

6 

L1 – 7 (0.8,0.9,1,1) (0.6,0.75,0.9) (0.3,0.5,0.7) 
(0.6,0.75,0

.9) 

0.02141199

3 

L1 – 3 (0.6,0.75,0.9) (0.8,0.9,1,1) 
(0.6,0.75,0.

9) 

(0.8,0.9,1,

1) 

0.04390601

1 

L1 – 8 (0.1,0.25,0.4) (0.3,0.5,0.7) (0.3,0.5,0.7) 
(0.6,0.75,0

.9) 
0.0048506 

L1 – 10 (0.6,0.75,0.9) (0.8,0.9,1,1) (0.8,0.9,1,1) 
(0.8,0.9,1,

1) 
0.06297101 

L1 – 11 (0.1,0.25,0.4) (0.3,0.5,0.7) 
(0.1,0.25,0.

4) 

(0.3,0.5,0.

7) 

0.00174985

4 

L2 – 7 (0.6,0.75,0.9) (0.8,0.9,1,1) (0.3,0.5,0.7) 
(0.1,0.25,0

.4) 

0.00916215

4 

L2 – 14 (0.3,0.5,0.7) (0.6,0.75,0.9) (0.3,0.5,0.7) 
(0.6,0.75,0

.9) 
0.01093684 
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L1 – 9 (0.6,0.75,0.9) (0.3,0.5,0.7) (0.3,0.5,0.7) 
(0.3,0.5,0.

7) 

0.00784242

7 

L3 – 3 (0.8,0.9,1,1) (0.6,0.75,0.9) 
(0.6,0.75,0.

9) 

(0.6,0.75,0

.9) 

0.03419507

4 

L3 – 4 (0.6,0.75,0.9) (0.6,0.75,0.9) 
(0.1,0.25,0.

4) 

(0.3,0.5,0.

7) 

0.00794895

3 

L4 – 1 (0.3,0.5,0.7) (0.3,0.5,0.7) (0.3,0.5,0.7) 
(0.6,0.75,0

.9) 

0.00762369

7 

L4 – 2 (0.6,0.75,0.9) (0.3,0.5,0.7) 
(0.6,0.75,0.

9) 

(0.8,0.9,1,

1) 

0.02247535

9 

L4 – 5 (0.8,0.9,1,1) (0.6,0.75,0.9) (0.8,0.9,1,1) 
(0.8,0.9,1,

1) 

0.06705158

5 

L4 – 6 (0.3,0.5,0.7) (0.1,0.25,0.4) 
(0.1,0.25,0.

4) 

(0.3,0.5,0.

7) 

0.00192203

1 

L5 – 1 (0.6,0.75,0.9) (0.6,0.75,0.9) 
(0.1,0.25,0.

4) 

(0.6,0.75,0

.9) 
0.01093684 

L5 – 2 (0.3,0.5,0.7) (0.3,0.5,0.7) (0,0,0.1,0.2) 
(0.6,0.75,0

.9) 

0.00321927

7 

L4 – 4 (0.6,0.75,0.9) (0.3,0.5,0.7) 
(0.1,0.25,0.

4) 

(0.3,0.5,0.

7) 

0.00500034

5 

L4 – 3 (0.3,0.5,0.7) (0.6,0.75,0.9) 
(0.1,0.25,0.

4) 

(0.6,0.75,0

.9) 

0.00772762

3 
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4.4.2 Data Generation 

 Due to the limited database of traffic accidents available for this study, which does not 

match the requirements for developing an ideal machine learning (ML) model, a random 

probability generation function is employed [103]. For each basic event (BE), 50,000 random 

probabilities are produced while assuming a normal distribution. The means of these normal 

distributions correspond to the probabilities listed in Table 4-8, with a standard deviation of 

15%. The FT architecture is implemented in Python, and TE for each BE is calculated using 

this architecture. This data generation process provides data for the training, validation, and 

testing of the ML models. In the established ML models, all the generated 50,000 data points 

are divided into three parts: 30,000 (60%) for training, 10,000 (20%) for validation, and 10,000 

(20%) for testing.  
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CHAPTER 5: RESULTS AND DISCUSSIONS 

5.1 Evaluation of Performance of Various Machine Learning Models 

 In the current research, multiple ML models were employed to map the fault tree 

process for system-based road traffic accident analysis. The performance of these modes was 

assessed by comparing their results with those obtained from Fault Tree Analysis (FTA). A set 

of sixty data samples generated using Python was used for testing and evaluation. Firstly, the 

probabilities of a TE in the FT were computed using the FTA technique on these generated 

data samples. Then, each machine learning model was individually fed with the same data 

samples, treating each one as a distinct Basic Event (BE). The computational code was 

executed, and the ML models predicted the associated probability of the TE. The performance 

evaluation of twelve machine learning models is given in Table 5-1, which includes the 

maximum difference between the results and mean of ML models and FTA.   
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Table 5-1: Performance evaluation for ML models 

ML Models Mean 

Difference 

Maximum 

Difference 

Mean Squared Error 

(MSE) 

Linear Regression 0.0001 0.000509 1.68e-08 

Principal Component 

Regression (PCR) 

0.0018 0.006622 5.5594e-06 

Decision Tree 0.0019 0.006603 4.9597e-06 

Random Forest 0.0011 0.003533 1.8674e-06 

XG Boost 0.0004 0.001199 2.556e-07 

Support Vector Machine 

(SVM) 

0.0022 0.007924 7.3433e-06 

K-Nearest Neighbours 

(KNN) 

0.001 0.003758 1.3948e-06 

 

 

The use of Fault Tree (FT) analysis in risk assessment for road traffic accidents is 

accompanied by several flaws, which are illustrated as follows: 

I. FT is static and lacks the ability to simulate the dynamic developments of failures [104]. 

It fails to account for the mutable type of events and their effect on the system. 

II. FT does not consider interactions and interdependencies among system components. It 

treats all basic events as independent events, disregarding the potential cascading 

effects and dependencies [105], [106]. 
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III. The expertise and evaluations of experts in the field may have limitations and biases. 

FT analysis may not encompass all potential modes of system failure [107], leaving 

room for oversight and incomplete risk assessments. 

IV. Handling a complex accident with various scenarios having thousands of events and 

subsequent gates would be challenging in developing FT. Analyzing and interpreting a 

large amount of data becomes cumbersome and may hinder effective decision-making. 

These flaws highlight the need for alternative approaches and methodologies that 

address the limitations of FT analysis and provide a more comprehensive and dynamic 

assessment of risk in RTAs. 

 

5.2 ANN Establishment 

This ANN based on FT structure is illustrated in Figure 5-2. It incorporates the 

algorithm depicted in Figure 3-4, the computation process outlines in Figure 5-1, and the 

mapping rules outlined in 3.4. Combining these components, the ANN model successfully 

integrates the FT structure, enabling a comprehensive and accurate analysis of road traffic 

accidents. 

In the ANN architecture, all 37 BE (from BE1 to BE37) were treated as input neurons, 

representing the input features. The TE was treated as a neuron in the output layer, representing 

the output target of the ANN. The ANN utilized a feedforward backpropagation type, 

consisting of two-hidden layers. In the production of the proposed ANN model, the following 

parameters and configurations were proposed and used: 

I. Eleven neurons were considered in first hidden layer, while the second hidden layer 

consisted of seven neurons.  
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II. The input layer of the ANN included all 37 BEs obtained from the FTA. These BEs 

served as input features, and the corresponding failure probabilities formed the input 

vector for the network. 

III. The Xavier initialization method was used to generate commencement values for the 

weights and biases of the ANN. 

IV. The activation functions of the logarithmic sigmoid for both hidden layers were 

employed in the ANN model. Whilst the linear function for the output layer. 

V. Two different training functions were examined in the study: Levenberg-Marquardt 

backpropagation and Adaptive Moment Estimation (Adam). 

VI. The MSE was chosen as the error metric for assessing the functioning of the said ANN 

model. 
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Figure 5-1: Implementation process of the proposed method 
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Figure 5-2: Architecture of the developed ANN 
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5.3 Evaluation of the Proposed ANN's Performance 

For the performance evaluation of the Artificial Neural Networks (ANN), the same set 

of sixty data samples generated in the evaluation of ML models was used for testing. For the 

case of training with the Adaptive Moment Estimation (Adam) algorithm, the outcomes gained 

from the ANN were associated with those from the FTA. The comparison results were 

displayed in Figure 5-3 and Figure 5-4. The mean value of the difference between the ANN 

and FT results was calculated to be 0.0048, including a relatively small average deviation 

between the two models. The extreme value of the difference between the FT and ANN results 

was found to be 0.0126, which represents the highest deviation observed between the models. 

Additionally, the difference’s MSE was computed to be 3.11648e-05, suggesting a relatively 

low overall error between the predictions of the FTA and the ANN, including that the ANN 

model is qualified of accurately forecasting and analyzing road traffic accidents in a manner 

comparable to the FT methods. 

 

Figure 5-3: Comparison between the result of FTA and ANN (Adam) 
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Figure 5-4: Differences between the result of ANN and FTA (Adam) 

 

In In the case of training with the Levenberg-Marquardt backpropagation algorithm, 

the results gained from the ANN model were associated to individuals from the FTA. The 

comparison results were visualized in Figure 5-5 and Figure 5-6. The mean value of the 

difference between the ANN and FT results was found to be 0.0043, indicating a relativity 

small average deviation between the two models. The extreme value of the difference between 

the ANN and FT results was determined to be 0.0101, representing the highest observed 

deviation between the models. Furthermore, the difference’s MSE was calculated to be 

2.4685e-05, which signifies a relatively low overall error between the predictions of the ANN 

and the FT. These figures, inducting the mean value, maximum value, and MSE, further 

demonstrate a good match between both models, reaffirming the capability of the ANN model 

to accurately predict and analyze road traffic accidents in a manner consistent with the FT 

method. 
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Figure 5-5: Comparison between the result of FTA and the ANN (LM)  

 
 

 
Figure 5-6: Differences between the result of the ANN and FTA (LM) 

 

By associating the performances of the two training algorithms, it can be concluded that 

training with the Levenberg-Marquardt backpropagation resulted in a better match between the 

FT and ANN model. 

The mean value of the difference between the ANN and FT results was slightly lower 

when using the Levenberg-Marquardt backpropagation algorithm compared to the Adaptive 
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Moment Estimation (Adam) algorithm (0.0043 vs. 0.0048). Similarly, the maximum value of 

the difference was also lower (0.0101 vs. 0.0126). These values indicate that the Levenberg-

Marquardt backpropagation algorithm achieved a closer alignment between the predictions of 

the ANN and the results obtained from the FT analysis. 

Moreover, the difference’s MSE was smaller for the Levenberg-Marquardt 

backpropagation algorithm (2.4685e-05) compared to the Adam algorithm (3.11648e-05). A 

lower MSE suggests that the predictions of the ANN model using the LM are closer to the FT 

results on average. 

Therefore, based on these performance metrics, it can be concluded that training with 

the LM provided a enhanced match between the ANN model and the FT analysis in terms of 

accurately predicting and analyzing road traffic accidents. 

 

5.4 The Advantage of the ANN with FT as the Base 

 ANN model could learn and capture the underlying mathematical relationships between 

input and output variables by modifying internal parameters, such as synaptic weights and 

biases, during the training process using relevant datasets. Although the use of FTA is not 

mandatory for developing ANN models, incorporating FT as a foundation can offer 

considerable advantages, particularly in the context of complex system risk assessments. 

Integrating FT into the development of the ANN modes, we gain access to a powerful 

framework that aids in identifying causal links within the system. This framework assesses 

choosing appropriate inputs and outputs for the ANN models, ensuring that they accurately 

represent the key variables that influence the system's behavior. The insights derived from the 

FT guide the systematic and informed construction of ANN models, improving their accuracy 

and relevance in the analysis of complex systems. 
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5.5 The Impact of Increased Data Availability on Developed Artificial Neural 

Networks 

 The incorporation of new data offers an opportunity to enhance the effectiveness of 

current Artificial Neural Network (ANN) models for failure analysis. Augmenting the current 

data resources, a carefully selected set of 20,000 new samples was systematically constructed. 

The dataset included failure probabilities for both BE and TE. The newly collected dataset was 

then utilized to train the constructed ANN model, enabling adjustments to the network's 

connection biases and weights. The empirical outcomes of the training process revealed 

significant improvements in the functioning of the ANN model. For the ANN trained with the 

Adaptive Moment Estimation (Adam) algorithm, the mean difference between the ANN 

predictions and the actual values decreased to 0.0011, and the maximum difference was 

reduced to 0.0048. Similarly, for the ANN trained with the LM, the mean difference decreased 

to 0.0028, and the maximum difference was reduced to 0.00183.  

These remarkable results indicate that the addition of new data can have a substantial 

impact on the precision and effectiveness of ANN-based models for failure investigation. The 

incorporation of this supplementary data allows the ANN model to better capture the 

underlying patterns and relationships within the system, resulting in more accurate predictions 

and improved performance. 

 

5.6 Impact of Varying Numbers of Hidden Neurons on Network Performance 

 The projected ANN-based model was trained using the same dataset created for Basic 

Events (BEs) and Top Events (TE), employing various configurations of hidden neurons. The 

findings, shown in Error! Not a valid bookmark self-reference. and Table 5-3, provide insights 
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into the mean and maximum difference between the ANN-based model outputs and the testing 

values of TE failure probabilities for each configuration. 

 

Table 5-2: Results of ANN (Adam) models with varying numbers of hidden neurons 

Training 

Data  

Number of Neurons in hidden 

layer 1 
18 15 12 10 

Number of Neurons in hidden 

layer 2 
12 10 8 6 

60 
Mean difference (%) 23.45 5.94 22.75 4.56 

Maximum difference (%) 25.75 14.1 24.56 8.59 

300 
Mean difference (%) 1.18 1.84 0.93 1.26 

Maximum difference (%) 2.57 6.38 1.96 3.73 

600 
Mean difference (%) 0.47 1.03 0.7 1.29 

Maximum difference (%) 1.98 2.46 2.29 2.81 

12000 
Mean difference (%) 0.73 0.3 0.55 0.53 

Maximum difference (%) 1.87 0.7 1.88 1.59 
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Table 5-3: Results of ANN (LM) models with varying numbers of hidden neurons 

Training 

Data  

Number of Neurons in hidden 

layer 1 
18 15 12 10 

Number of Neurons in hidden 

layer 2 
12 10 8 6 

60 
Mean difference (%) 12.88 41.7 31.68 69.62 

Maximum difference (%) 15.03 44.5 34.71 72.57 

300 
Mean difference (%) 30.16 15.24 4.7 23.59 

Maximum difference (%) 32.78 17.81 6.98 25.33 

600 
Mean difference (%) 1.05 11.07 15.55 5.7 

Maximum difference (%) 2.39 11.9 17.46 7.42 

12000 
Mean difference (%) 0.58 0.67 0.95 0.6 

Maximum difference (%) 2.17 2.66 3.96 2.05 

 

These results reinforce the notion that the volume of the training data and the selection 

of an appropriate ANN design significantly impact the performance of the model. It is 

important to highlight that an expanded and refined training dataset holds the potential to 

facilitate the development of an alternative ANN architecture that surpasses current 

performance benchmarks. By incorporating more diverse and comprehensive data, it becomes 

possible to uncover additional patterns and relationships within the system, leading to improved 

accuracy and predictive capabilities. 

Therefore, the continuous enhancement and augmentation of the training dataset, along 

with careful consideration of the ANN architecture, are vital for achieving superior 
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performance in failure analysis. These factors contribute to the development of an ANN model 

that better captures the complexity of the system and produces more reliable results. 

 

5.7 Impact of Decreasing Input Features based on Correlation 

 The impact of reducing input features based on correlation has also been investigated 

in the study. Having many input features in an ANN can lead to computational complexity, 

increasing overfitting risks, higher data requirements, and challenges in feature redundancy 

and interpretability. To resolve these issues, the study focuses on mitigating feature redundancy 

by removing highly correlated features, specifically BE13 and BE32. As a result, the ANN 

model is trained with 35 input features instead of the original 37. Trained using the Adaptive 

Moment Estimation (Adam) algorithm, the ANN yields a mean difference of 0.0031 and a 

maximum difference of 0.0139 between its outputs and the testing values of TE failure 

probabilities. Alternatively, the LM achieves a mean difference of 0.0061 and a maximum 

difference of 0.0444. 

These findings indicate that reducing input features based on correlation can help 

mitigate computational complexity and improve model performance by addressing feature 

redundancy. However, it is imperative to note that the choice of training procedure also plays 

a role in the model's performance. Both algorithms show reasonable results, but the Adam 

algorithm appears to achieve slightly better accuracy with lower mean and maximum 

differences compared to the Levenberg-Marquardt backpropagation algorithm. 

Overall, the study highlights the importance of feature selection and the impact it can have on 

the performance of ANN models. By carefully considering feature correlations and removing 

redundant features, it is possible to enhance the efficacy, interpretability, and precision of the 

model. 
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CHAPTER 6: CONCLUSION 

 The research presented a comprehensive and systematic methodology for analyzing 

road traffic accidents, with a specific focus on human factors. By integrating fuzzy logic, fault 

tree analysis (FTA), and machine learning (ML) models, the methodology offers an effective 

approach to understanding and predicting failure occurrence probability of risk factors 

associated with RTAs. The research acknowledges the limitations of the fault tree analysis, 

such as its static nature and inability to capture interdependency among basic events. To 

overcome these limitations, the research incorporates machine learning models, particularly 

ANNs, which can understand the intricate non-linear associations among variables.   

A significant dataset comprising 21,082 road traffic accidents is utilized, and the 

HFACS framework is utilized to detect and categorize risk factors associated with the 

accidents. Fuzzy logic is applied to find the failure probability, and the developed fault tree 

structure serves as an informative foundation for the ANN-based model. The research 

investigates the impact of varying numbers of neurons on the functioning of the ANN model. 

It is found that aligning the number of hidden layers and neurons with the intermediate events 

in the fault tree leads to optimal performance. Additionally, the study demonstrates that 

utilizing newly available data and optimizing the ANN architecture based on the study findings 

further enhances the model's performance.  
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RECOMMENDATIONS AND LIMITATIONS 

In future work, the focus will be on integrating additional data to improve the 

methodology’s performance and refine the parameters within the artificial neural networks. 

Further exploration of key human factors in road traffic accidents is also prioritized to enhance 

the accuracy and predictiveness of data-driven models. Moreover, the research aims to 

standardize the evaluation process and develop practical applications that can be effectively 

utilized in real-world settings. Ongoing efforts are dedicated to addressing these concerns and 

advancing the work in this part. Overall, the proposed methodology offers a deeper 

understanding of road traffic accidents and offers enhanced predictive capabilities regarding 

the associated factors.  

The study acknowledges that only 4 experts were considered, which could be 

considered a limitation. The study suggests that more experts should be employed in future 

studies to improve the validity of the findings. 
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