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Abstract

Power electronics systems are extensively used in many engineering systems,

such as hand-held devices, medical equipment, electric vehicles, aerospace

artifacts, power grids, nuclear power plants and military equipment. Power

electronics are characterized by the highly-nonlinear behavior due to the in-

volvement of semiconductor switches for power conversion. Mathematical

concepts of basic circuit theory, operational calculus, differential theory, in-

tegration theory and control theory are involved in modeling their behavior.

Traditionally, paper-and-pencil proof methods and computer-based simula-

tions are used to perform the analysis and design of power electronics sys-

tems. However, these traditional analysis techniques suffer from several lim-

itations, such as human-error, discretization and truncation errors, and thus

cannot guarantee an accurate analysis and verification of power electronics

circuits. Whereas, accurate analysis and design of power electronic circuits is

mandatory for the safety and mission-critical engineering applications, such

as medical equipment, transportation and smart grids. To overcome the

shortcomings of the traditional analysis techniques, we propose a higher-

order-logic theorem proving based framework to formally analyze and verify

power electronic systems accurately and exhaustively. Higher-order logic is

highly expressive and allows modeling complex system behaviors, whereas,

the soundness of theorem provers ensure accurate analysis and verification

of the systems.

The proposed framework, mainly, enables time and complex-domain anal-
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ysis and design of power electronics systems within the HOL Light theorem

prover. The formalization in the time-domain paradigm allows to perform

formal periodic steady-state analysis and design of the ideal and non-ideal

equivalent circuits of power electronics circuits. In this regard, we propose:

(i) formal modeling of ideal and non-ideal behavior of the circuit elements

(ii) formal modeling of basic circuit theory notions, such as switching func-

tion technique (iii) formally verified results for the integration and differen-

tiation of piecewise functions (iv) formal modeling of differential equations

(v) formally verified results for the solutions of the differential equations

(vi) formal modeling of steady-state characteristics and design parameters.

To illustrate the usefulness of the proposed formalizations, they are used

to formally analyze the time-domain based periodic steady-state analysis of

ideal and non-ideal DC-DC Buck converters.

Formalization in the complex-domain is aimed at formally analyzing sta-

bility of the control systems in power electronics systems to control the flow

of energy from input to output. Our main contributions in complex-domain

analysis are: (i) formal modeling of stability criterion (ii) formally verified

results of factorization of characteristic polynomials upto the fourth-order

(iii) formally verified results for the stability of the characteristic polyno-

mials. The proposed formalization allows to formally specify and verify the

stability analysis of control systems based on the characteristic polynomials

which are obtained from the transfer function of the system in complex-

domain. To illustrate the practical effectiveness, we formally verify the sta-

bility of controllers in smart grids for efficient energy processing from wind

turbines.
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1

Introduction

1.1 Motivation

Power electronics systems are an integral part of, almost, every realizable

electrical/electronics system. Power electronics allows to process raw en-

ergy from various and different types of energy sources to fulfill complex and

stringent energy demands of domestic, commercial [7], industrial [74] [46],

utility [89], transportation [15] and aerospace engineering [22] applications.

Advances in the semiconductors technology are one of the main conduits

for the current state-of-the-art power electronics applications [13]. Semicon-

ductor devices, mostly in switch mode, enable power electronics systems to

channel raw input energy to output energy in the desired form of energy with

high efficiency and performance. Thus, switching operation of semiconductor

devices plays a central role in power processing of power. However, switch-

ing action introduces highly non-linear behavior in power electronics circuits

and therefore poses serious challenges in the modeling, analysis, design and

verification of these systems [48].

Power electronics systems mainly constitute power electronics and feed-

back control circuits [8], as shown in Figure 1.1. Power electronics circuits
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Figure 1.1: Power Electronics System

mainly consist of the power conversion stage and pre and post-filtration and

rectification stages. Whereas, feedback control systems comprise of a con-

trol unit and switches to interface the power conversion stage and control

system. Power conversion is mainly achieved using semiconductor devices,

capacitors, inductors, transformers and resistive elements [24]. Power con-

versions are classified as choppers, rectifiers, inverters and ac-controller or

cycloconverters [8]. Choppers are used to convert an input DC level to step-

up or step-down output DC level. An AC type of input is converted into a

DC type of output energy using rectifiers. A converse energy conversion op-

eration is accomplished using inverter circuits. Whereas, AC-AC conversions

are achieved using AC-controllers or cycloconverters. These power conver-

sions can be achieved using different arrangements of active (semiconductor

devices) and passive components (inductors and capacitors), referred to as

topologies. Power electronics systems are further categorized as isolated and

non-isolated topologies based on the isolation of input and output sides. The

isolated topologies use transformers to isolate the input and output sides,

whereas the output and input sides share a common DC path in non-isolated

topologies. The feedback control is implemented using state-of-the-art IC

technology, micro-controllers, microprocessors and digital and analogue cir-

cuitry to control the power flow from input to output.

The design process of a power electronics system involves selection of a

suitable conversion topology for the desired conversion and steady-state and

transient analysis to design control systems as per their specifications, as

shown in Figure 1.2. Mathematically, basic circuit theory [20], differentia-
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tion [14], integration [49], one-sided limits [43], piecewise functions [19] and

control theory [64] are used in the design process. Basic circuit theory no-

tions are used to analyze the power electronics circuit topologies using the

individual behavior of the circuit components [55]. Differential equations

and integral theory are used to express and analyze the system behaviors in

steady-state and transient [24]. Whereas, piecewise functions and one-sided

limits naturally arise due to switching functionality in power processing op-

eration. Most of the power electronics design specifications are described as

the steady-state parameters which are then employed to conduct small-signal

analysis [24]. Small-signal analysis is used to determine the performance of

the circuits in the presence of small disturbance. Finally, control theory

is used to design control systems for power electronics systems [45]. Both

time and frequency-domain are employed to analyze and design power elec-

tronics systems [61]. The system representation, circuit component models,

steady-state parameters and design specifications are usually expressed in

time-domain. Time domain based analysis allows to incorporate the effects

of switching operations in power electronics circuits. Whereas, description of

the power electronics system as a transfer function, in the frequency domain,

allows to analyze and design controller stability and dynamic behavior by

applying various techniques from control theory, such as stability theory and

block diagrams. There are two possible operation modes for the working

of power electronics circuits that are known as continuous conduction mode

(CCM) and discontinuous conduction mode (DCM). A power electronics sys-

tem is said to be operating in DCM, when the unidirectional assumption of

semiconductor switch current or voltage is violated due to a switching ripple

in an inductor current or capacitor voltage [24]. The scope of this thesis is on

topology and steady-state analysis of power electronics circuits in the time

domain, and stability analysis of power electronics systems in the frequency

domain.
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Figure 1.2: Power Electronics Analysis and Design

Traditionally, the design of power electronics systems is conducted using

paper-and-pencil proof methods and simulations. However, paper-and-pencil

methods are prone to human error due to manual manipulations and simpli-

fications. Computer based general purpose simulators, such as SPICE [70]

or SABER [53] and MathWorks Simulink [56], are commonly used to ana-

lyze and verify the circuit topologies and choices of circuit components, in

time or frequency domain. However, these computer based packages uti-

lize numerical methods [18] to simulate the systems, and hence, prone to

digitization and truncation errors. Particularly, power electronics systems

exhibit hybrid behavior, i.e., continuous behavior driven by discrete events,

and therefore, cannot be accurately modeled using numerical methods which

are, in essence, discrete in nature. For example, power and control design

flaws in medical equipment have led to serious injuries and loss of lives of

the patients in some cases [25] [26] [27]. Toyota Motor Corporation recalled

about 807,329 Toyota Prius and Toyota Prius V models due to unattended

interaction scenario between Boost converter and controller, and inverter

failure under rarely high-voltage conditions [63]. Power electronics is also a

key enabler of critical features of smart grids, such as integration of electric

vehicles and renewable energy sources. Whereas, power outages and inter-
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ruptions lead to huge financial losses for the economies all around the globe.

In US, power outages and interruptions result in a loss of at least $150 billion

each year [65]. In China, electricity shortage in 2004 caused an estimated

0.64% decrease in the China’s GDP growth [88]. In 2006, 20 countries in

Western and Eastern Europe and North Africa suffered a loss of approxi-

mately $100 million due to just a two hours power outage [83]. Moreover,

smart grids for restoration of critical loads [86], such as hospitals and street

lighting, demand highly reliable grid operations to avoid catastrophic events.

Formal methods [41] have been used to overcome the above-mentioned

inaccuracy limitations for performing the accurate analysis and verification

of power electronics systems. Formal methods are computer based mathe-

matical techniques which are featured as sound and complete. Formal meth-

ods can be mainly categorized into two mainstream techniques, i.e., model

checking [16] and theorem proving techniques [39], based on the logic, system

modeling choice and supporting algebra and calculus [67]. Model checking is

an approach which utilizes finite-state-machine (FSM) to model the systems

and temporal logic [52] to express the system properties. A model checker—a

piece of software—accepts the finite-state-machine representation of a sys-

tem and its properties expressed in suitable temporal language. The model

checker, then, exhaustively searches the state-space of the given FSM to

formally verify the given system property and returns true if the property

is valid, otherwise, returns a counter example. On the other hand, theorem

proving employs logic to model and express the systems and its properties as a

formula. A theorem prover—a piece of software—endowed with well-defined

syntax, semantic and proof theory of specific logic allows to formally verify

the systems. Theorem proving is further classified as automatic (ATP) [36]

and interactive theorem proving (ITP) [54] depending upon the nature of the

underlying logical framework. The use of decidable logics, such as first-order

logic, allows to formally verify the systems in automatic fashion, whereas in

5



case of undecidable logical framework, such as higher-order logic, the for-

mal proofs involve human and machine interaction. Both model checking

and theorem proving has been used to formally verify various safety or mis-

sion critical aspects of the power electronics systems (e.g., [84] [12] [71]).

However, model checking may suffer from the state-explosion problem due

to very large state-space of underlying system [17], such as power electron-

ics systems which exhibit hybrid behavior. Moreover, these techniques are

not efficient in formally verifying functional models. Whereas formal veri-

fication of power electronics systems involve continuous time models, limit

analysis and properties of generalized functions which cannot be accurately

modeled and verified using model checking technique. Similarly, ATP also

has limited expressiveness with respect to the aforementioned analysis frame-

work for power electronics systems and therefore cannot be used to formally

model and verify these systems. On the other hand, ITP uses undecidable

logics, such as higher-order logic, which are highly expressive and therefore

allow formally verifying complex system, such as power electronics systems.

Therefore, in this thesis we propose a higher-order logic theorem proving

framework for modeling, analyzing and verifying power electronics systems

which are commonly used in many safety and mission-critical engineering

applications.

1.2 Basic Circuit Theory

Topology selection is, usually, the first step in the design of a power conver-

sion, such as DC-DC, AC-DC, DC-AC and AC-AC. Topological configura-

tions of active and passive elements in power conversion stage, also called

cell, serves as basis for classifying power electronics circuits into families of

converters sharing specific properties [82]. This helps the designer to choose

appropriate family of the converters to alleviate voltage and current stresses

6



Table 1.1: Ideal models of the power converter circuit components

Circuit
component

Ideal model Mathematical Model

Switch off

on
u(t− tl) =


1 tl < t

1/2 t = tl

0 t < tl

Resistor R V = IR or I = V
R

Capacitor CC iC = C d
dt
vC or

vC = 1
C

∫
iCdt

Inductor L vL = L d
dt
iL or

iL = 1
L

∫
vLdt

for given power electronics application. Basic circuit theory furnishes fun-

damental mathematical models of circuit components and Kirchoff’s laws to

analyze the functionality of the circuits.

This section provides an introduction to conventional mathematical mod-

els of the commonly used power circuit components and Kirchoff’s voltage

and current laws which are utilized to analyze the power electronics circuits.

1.2.1 Circuit Components Models

In practice, equivalent circuit modeling is applied to analyze and design power

electronics circuits as per specifications. Ideal and non-ideal circuit modeling

are two main approaches for the analysis and design of power electronics cir-

cuits [24]. In ideal circuit modeling, components of the circuits are assumed

to behave ideally and hence only core functionality of these components is

mathematically modeled. Table 1.1 shows ideal circuit models of capacitor,

inductor and semi-conductor devices which are used in the power electron-

ics circuits. The ideal circuit modeling approach is essential to understand

the fundamental power conversion phenomenon of specific power electronics

circuits. Although power electronics circuits have simple circuitry, however,
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in many a cases, such as rectifiers, detailed analysis of these circuits is sim-

ply impossible due to resulting intractable mathematical formulations. In

such situations, ideal equivalent circuit modeling is the ultimate choice to

analyze these circuits. On the other hand, non-ideal circuit modeling is

employed (wherever, possible) to meet design specification by incorporating

losses, such as power and switching, in the equivalent circuit models [24].

The storage components and resistor are used widely in electronics circuity

to design analog circuits, however, switch component is particular to power

electronics circuits. Characteristic of efficient power processing of power elec-

tronics is mainly due to switching functionality. Mathematically, switching

functionality is modeled using Heaviside function (as described in Table 1.1).

The function models on and off states for t > tswitch and t < tswitch, whereas,

at switching instance t = tswitch function value is 1
2
. The value at switching

instance is arithmetic mean of left- and right-hand limits.

Table 1.2 shows the equivalent non-ideal circuit models of the power elec-

tronics components. Non-ideal behavior of an inductor and a capacitor are

modeled using an equivalent series resistance (ESR). The ESR models cop-

per or core losses of the inductor and dielectric losses of the capacitor. The

conduction losses in semiconductor devices occur due to the forward voltage

drops of these devices and are thus incorporated as a voltage source and an

on-resistance (Ron). For the metal oxide semiconductor field-effect transistor

(MOSFET) or bipolar junction transistor (BJT), an Ron is used to model the

forward voltage drop of the device, whereas, an Ron in series with the voltage

source (VF) is used to model a diode or an insulated-gate bipolar transistor

(IGBT), or a thyristor. Once equivalent circuit models are obtained, they

are analyzed using circuit theory notions. This allows to find voltages or cur-

rents of given circuit and derive many figure-of-merits which allow to design

power electronics circuits for desired specifications.

8



Table 1.2: Non-Ideal models of the power converter circuit components

Circuit component Non-Ideal model Mathematical Model
Inductor L ESR i = iL + iESR or

v = vL + vESR

Capacitor C ESR i = iL + iESR or
v = vL + vESR

Diode, an IGBT or a
Thyristor

V
RF
on i = iL + iESR or

v = vL + vESR

MOSFET, or BJT Ron iRon =
vRon

Ron
or

vRon = iRonRon

1.2.2 Switching Function Technique

Power electronics circuits are characterized by switching element which in-

troduces modes in the operation of a circuit. One of the main consequence

is the singularity at the switching instance which hinders the use of basic

Kirchoff’s laws of voltage and current to these circuits. Switching function

technique [55] alleviates this issue by introducing modified Kirchoff’s volt-

age and current laws using superposition of voltages or currents at switching

junction. These laws allow to express the behavior of these switching net-

works and derive switching functions for many interesting power electronics

topologies.

According to switching function technique, the voltage and current ex-

pressions of modified Kirchoff’s laws at a switching junction are:

VAB(t) =
n∑

i=1

Vi(t)Fi(t) n ∈ N (1.1a)

Ii(t) = I(t)
n∑

i=1

Fi(t) n ∈ N (1.1b)

Equation 1.1(a), describes voltage at the switch junction, in a mesh, in terms

of switching functions, Fi(t). Figure 1.3a is a pictorial representation of the

concept, where n voltage sources are connected to a point, A, through n

9



A

B

VAB(t)

V1(t) F1(t)

V2(t) F2(t)

Vn(t) Fn(t)

(a) Voltage at switching junction

I1(t) I2(t) In(t)

A
′

I(t)

F1(t) F2(t) Fn(t)

(b) Current at switching junction

Figure 1.3: Switching function technique

switches. The voltage, VAB, is then the superposition of the input voltages,

however, the contribution of each voltage is dependent upon the associated

switching function. Similarly, Equation 1.1(b), describes the current at a

node, A′ , which has n switches. Figure 1.3b describes the situation where

current, I(t), is supplied to n paths of the circuit through n switches. Each

path receives the fraction of total current depending upon its switch status,

Fn(t).

We utilize mathematical models of circuit components, given in Table 1.1

and 1.2, and switching voltages and currents, i.e., Equation 1.1, to formally

model the functionalities of these components in Section 3.1.

1.3 Periodic Steady-state Analysis

In periodic steady-state, the behavior of the power electronics circuits do not

change with the passage of time. Most of the power electronics specifications

are characterized by the steady-state parameters, e.g., converter ratio and

efficiency. Therefore, steady-state analysis is a mandatory step in the design

of the power electronics circuits.

In this section, we present the mathematical formulation of the peri-

odic steady-state behavior of the power electronics circuits using differential
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equations and analysis of the circuits using the solution of the corresponding

system of differential equations.

1.3.1 Differential Equation Representation

A continuous switching operation in power electronics circuits leads to a

sequence of modes, i.e., circuit configurations. Power electronics systems be-

havior can be described using n-th order linear differential equation in each

mode. The order of the differential equations depends upon the number of

storage elements involved in the energy conversion process in each circuit

configuration. Power electronics systems exhibit hybrid behavior, i.e., con-

tinuous behavior driven by the discrete switching action. Therefore, overall

system behavior is represented as a differential equation in each mode. These

differential equations are obtained by applying circuit theory laws, i.e., Kir-

choff’s voltage and current laws, on the ideal or non-ideal equivalent circuit

models of the power electronics circuits.

Mathematically, the behavior of these systems can be described as:

H(t, y1, y
1
1, ..., y

mn
n ) = p(t) t ∈ [tn−1, tn] , n,mn ∈ N

ykn(tn) = ykn−1(tn−1) k ∈ N

y0(t0) = 0

(1.2)

Where, H and p are functions of an independent variable t, a dependent

variable yn and its mn-th order derivative in the corresponding n-th mode,

respectively. In power converters, the time is considered as an independent

variable, whereas, the voltage or current of the energy storage components is

considered as a dependent variable. The order, i.e., mn, of an ordinary differ-

ential equation of the power converter, in the n-th mode, is determined by the

number of energy storage elements constituting the mode. The function p(t)

is referred to as a non-homogeneous term, which can be zero or non-zero in
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the n-th mode, depending upon the presence of source in the n-th mode of a

power converter. Initially, the value of dependent variable is considered zero,

i.e., y0(t0) = 0, however, later on the value of the dependent variable in one

mode becomes an initial value for the next mode, i.e., ykn(tn) = ykn−1(tn−1),

when switching instance occurs. Whereas, k is the order of the derivative of

the dependent variable evaluated at a specific time instance.

For the brevity of the notion, transient and steady-state time-domain

behavior of a power electronics circuit is presented in Figure 1.4, based on

the above-mentioned standard approach. Figure 1.4 illustrates the switch

waveform, Sw, along with the differential equation for each mode in transient

and steady-state of a power electronics system.

In periodic steady-state, the dependent variables of a power converter

circuit attain an equilibrium and repeat the behavior over a time period, Tp,

constituting l modes. Mathematically, the periodic steady-state behavior of

a power converter over one time period, when t→∞, can be represented as:

H(t, yn, y
1
n, ..., y

mn
n ) = p(t) t ∈ T, T ∈

l⋃
i=1

[
t
′
i−1, t

′
i

]
,mn, n, l ∈ N

yk(t
′
0) = yk(t

′
0 + Tp) Tp = t

′

max(i) − t
′
0, k ∈ N

(1.3)

Equation (1.3) reduces the problem to the identification of the modes in one

Sw

Transient

Sw

Periodic steady-state

Sw

t

mode1 mode2 mode3 n− 2
mode

n− 1
mode

n
mode

n+ 1
mode

H(t, y1, y11 , .., y
m1
1 ) = p(t) H(t, yn, y1n, .., y

mn
n ) = p(t)

Figure 1.4: Dynamic behavior of power electronics circuits under switching
action, Sw, represented by the switching wave form.
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time period, Tp = t
′

max(i) − t
′
0, of the circuit, which is the length of time

over which the modes of a power electronics circuit repeat themselves. The

function y is a piecewise function defined over l modes. Whereas, yk(t
′
0) =

yk(t
′
0 + Tp) refers to the steady-state conditions of the system variable at

reference switching time instances, t′0, and Tp, and k represents the k-th

order derivative of the variable.

Solution of Differential Equations

The general solution to n-th order differential equation is expressed as [14]:

yl(t) = yh(t) + yp(t) =
n∑

i=1

cie
sit + yp(t) (1.4)

Where, yh(t) is the linear combination of the fundamental solutions of Equa-

tion (1.4) when p(t) = 0, and yp is the particular solution corresponding to

Equation (1.4) when p(t) 6= 0.

The solution for the dependent variable is a piecewise function and is

represented using Heaviside function.

y(t) =
l∑

i=0

yl(t)u(t− tl) t ∈ T (1.5)

Where,

u(t− tl) =


1 tl < t

1/2 t = tl

0 t < tl

(1.6)

The solution, i.e., Equation (1.5), represents the behavior of the circuit vari-

able, either current or voltage, over one time period of the circuit.

The linearity property of the derivative operator plays a central role in

the verification of the solution of the linear differential equations. Mathe-
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matically, linear operator property is described as [14]:

L[af1 + bf2] = aL[f1] + bL[f2] (1.7)

In Equation 1.7, L represents linear derivative operator and, a and b are real

numbers. Where, f1 and f2 are functions which represent solution of the

linear differential equation.

We use the framework described by Equations 1.3-1.7 in our proposed

formalization to formally model, specify and verify the periodic steady-state

behavior of power electronics circuits in Chapter 4.

1.3.2 Steady-state Characteristics and Design Specifi-

cations

In power electronics systems, periodic steady-state principle is characterized

as [24]:
1

Tp

∫ t0+Tp

t0

y(t) = 0 (1.8)

When the dependent variable y(t), represents the inductor voltage then Equa-

tion (1.8) is referred to as the inductor volt-second principle, and, if the ca-

pacitor current is considered, then, it is called the capacitor-charge balance

principle [24]. These principles ensure that the average energy stored in the

inductor and capacitor is zero over one time period of the converter circuit.

This way, the converter circuits exhibit a periodically repeating behavior in

the steady-state.

Although, average current and voltage values in the converter are zero,

however, due to switching and non-ideal behavior of the circuit components,

circuits produce an alternating current (AC), termed as ripple ∆fr, at the

output. Consequently, RMS values, frms, of the circuit parameters are used

to specify currents and voltages, as mentioned in Table 1.3. Whereas, the
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Table 1.3: Steady-state characteristics and design specifications

Specifications Steady-state characterization

Average favg(t) = 1
T

∫ to+T

to
f(t)dt

Valley Value fp = min f(t)

Peak Value fp = max f(t)

Ripple ∆fr = fp − fv
Ripple RMS [72] ∆fr(rms) = fr

2
√
3

Root Mean Square Value frms =
√
f 2
avg + ∆f 2

r(rms)

Power Loss Ploss = I2rmsR

Ripple Factor fRF =
√
f 2
FF − 1

Conversion Ratio M = fout
fin

Converter Efficiency η = Pout

Pout+Ploss

ripple magnitude is determined using the peak, fp, and minimum, fv,values

of the circuit parameters. The magnitude of the ripple determines the power

losses of the circuit components, and hence, plays a vital role in the selection

of the circuit components power ratings to meet the design specifications of

the circuits, such as converter ratio (M) and efficiency (η) (given in Table

1.3).

The steady-state characteristics and design specifications presented in

this section are used to formally verify the design of ideal and nonideal DC

DC power converters in Section 4.4 and Chapter 6, respectively.

1.4 Stability Analysis

Control systems are an integral component of the power electronics systems

[8]. Control systems are combinations of subsystems intended to control the

output of the system [64]. Stability is the most important design requirement
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of a linear time-invariant control system [64]. An unstable control system

deployed in a safety-critical domain, e.g., in nuclear power plants or aircrafts,

can lead to disastrous consequences, including the loss of human lives, and

therefore stability is considered as a safety-critical system specification.

Generally, the design and analysis of linear time-invariant control systems

[64] is done in the frequency domain. The main idea is to convert a differential

equation representation of the system, e.g., Equation 1.3, into its frequency

domain representation using a transform method, like Laplace or Fourier [21].

This transformation simplifies the modeling of interconnected subsystems

and also generates a mathematical model of the system that algebraically

relates the input to the output based on a transfer function,

TF (s) =
O(s)

I(s)
=
ams

m + am−1s
m−1 + ...+ a0

bnsn + bn−1sn−1 + ...+ b0
(1.9)

where, ai and bi are the coefficients representing system parameters, s is a

complex-variable and m and n are natural numbers. Whereas, max{m,n}
represents the order of the transfer function. The order of the transfer func-

tion depends on the order of the corresponding linear differential equations

in the time domain representing a physical system. As most of the vari-

ables of the physical system can be represented using differentials upto the

fourth order, such as capacitor current, inductor voltage, acceleration, veloc-

ity and momentum, therefore, control systems upto fourth order cover a wide

spectrum of applications, including safety and mission-critical applications.

Moreover, there are model reduction techniques [76] to reduce the higher-

order transfer functions into their equivalent lower-order representations to

facilitate the control system design. The denominator and the numerator of

a transfer function, in Equation 1.9, are complex polynomials which are used

to characterize the zeros and the poles of the system. These zeros and poles

are roots of complex polynomials in the denominator and the numerator of
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the transfer function, respectively. In particular, the stability of the system

solely depends on the location of the poles of the system, obtained from:

bns
n + bn−1s

n−1 + ...+ b0 = 0 (1.10)

Equation 1.10 is also referred to as a characteristic equation of the system.

The roots of the characteristic equation are used to express the behavior of

the circuits, described by Equation 1.4.Therefore, a system is categorized

as stable, unstable and marginally stable based on the location of the roots

of Equation 1.10 in the complex-plane. The roots in left-half plane ensure

exponentially decaying response of the system, the right-half roots results in

exponentially growing response and roots on the imaginary axis corresponds

to bounded oscillatory response of the system. Therefore, for a stable system,

the roots of the characteristic equation lie in the left-half of the complex-

plane, for an unstable system, the roots of the characteristic equation lie in

the right-half of the complex-plane, and for a marginally stable system, the

roots of the characteristic equation lie on the imaginary axis of the complex-

plane.

Our proposed formalization of stability relies on the Equation 1.10 to

formally model the stability of the control systems in Chapter 5.

1.5 Related Work

1.5.1 Traditional Analysis Techniques

Traditionally, the design of power electronics system is conducted using

paper-and-pencil proof methods and simulations. One of the main strengths

of the paper-and-pencil proof methods is availability of all mathematical the-

ories and model abstractions which can be utilized by humans to aid or guide

the analysis of given systems. This feature of the paper-and-pencil analysis
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methods has been vital in introducing new analysis techniques [59] [44] [23]

and simplifications, such as small-ripple or linear-ripple approximation [24],

to ease the analysis of otherwise complex power electronics systems. How-

ever, these methods are subject to the issues of scalability and error-prone

nature of humans. That is, the method does not suit well to the problems

with many interrelated or intertwined aspects of the given phenomenon sim-

ply due to lack of the human capability to process large amount of data easily

and efficiently. On the other hand, irrespective of the scale of the given prob-

lem, it is more likely that many assumptions are not documented which are

employed intuitively and therefore can cause serious issue when neglected or

overlooked in the later stages of the system development. Computer-based

simulation methods are also an essential ingredient of the analysis and de-

sign process in power electronics. General purpose circuit simulators, such

as SPICE [70] or SABER [53], are commonly used to analyze and verify the

circuit topologies and choices of circuit components. Another category of

digital simulators, such as MathWorks Simulink [56], allow to describe math-

ematical models, in time or frequency domain, of power electronics circuits

to analyze the performance of these systems. However, these computer based

packages utilize numerical methods [18] to simulate the systems, and hence

are prone to digitization and truncation errors. To address this issue, com-

puter algebra systems, such as Mathematica [85] and Maxima [58], which are

software programs for the symbolic processing of mathematical expressions,

are also employed for the analysis of power electronics systems [51]. However,

the symbolic processing is based on the unverified program codes, and there-

fore prone to bugs [79]. Thus, given the aforementioned inaccuracies, these

traditional techniques should not be relied upon for the analysis of power

electronics systems, especially when they are used in safety-critical areas,

such as implantable medical devices and automotive industry, and mission-

critical areas, such as smart grids, where bugs may lead to heavy monetary
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or human life loss.

1.5.2 Formal Methods

In order to overcome the above-mentioned inaccuracy limitations, formal

methods have also been employed to analyze power converter circuits. Hybrid

automaton has been widely used to formally model and verify hybrid sys-

tems using reachability analysis tools, such as SpaceEX [29], UPPAAL [11],

HyTech [42], PHAVer [28], and HyLaa [5]. Recently, SpaceEx has been em-

ployed to formally verify the Buck and dual active bridge (DAB) convert-

ers [84]. Similarly, a hybrid automaton based formal verification of non-ideal

PWM DC-DC converters is presented using SpaceEx tool [9]. The authors

used the reachability analysis capability of the SpaceEx to formally verify

the stability of the converters. A framework for translating the hybrid au-

tomation of the Buck, Boost and Buck-Boost power conversion circuits into

Mathworks Simulink/Stateflow (SLSF) using an automatic source-to-source

model translation and transformation tool, called Hybrid Source transformer

(HyST), is presented in [10]. The formalization is mainly aimed at saving

a significant amount of time and effort involved in modeling the hybrid au-

tomata for the formal verification of power electronics systems. Design of

controllers for the single output and double output DC-DC Boost and Buck

converter are presented using hybrid automata theory [60] [73]. However,

such analysis involves many abstractions to capture the behavior of the cir-

cuits as a finite state transition system. Moreover, the inherent state-space

explosion problem of model checking also restricts its usage for the continu-

ous systems. Specifically, SpacEx uses LGG algorithm to solve the first-order

linear differential equations which are, in the strict sense, not sound [77].

Recently, an automatic theorem prover (ATP), KeYmaera X [66], has been

developed to formally verify the hybrid systems. KeYmaera X uses differen-

tial dynamic logic (dL), which is a first-order logic, for the implementation
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and specification of the underlying systems and, therefore, cannot be used to

formally verify the functional properties of the systems. For example, inte-

gration and differentiation of generalized functions for modeling, analyzing

and verifying various aspects of the power converters cannot be accomplished

using first-order logic. HOL Light, an interactive theorem prover, has been

used to formally verify the transfer function of pulse width modulation push-

pull DC-DC converter and 1-boost cell DC-DC converter [12] using the signal

flow graph and Mason’s gain formalization to formally verify critical aspects

of the systems, such as stability. However, the formal analysis is conducted

for the frequency domain representation of the power converters and there-

fore cannot be used to formally verify the time-domain based characteristics

of the systems.

Circuit components, i.e., resistor, capacitor and inductor, and circuit laws,

i.e., Kirchoff’s current and voltage laws, have been formally modeled and

used in the formal analysis of analog circuits used in the design of embed-

ded systems using HOL Light [81]. Similarly, differential equations have

been formally modeled in HOL4 for the formal verification of cyber-physical

systems [71]. However, in thesis we have developed the framework for the for-

mal complex domain analysis by using complex-valued functions as opposed

to real-valued functions used in the formal analysis of analog circuits and

cyber-physical systems. This fundamental difference results in more chal-

lenging task of formal verification of power electronics systems. Whereas,

consideration of complex-valued functions is mandatory to incorporate the

harmonics which are inevitable due to switching power electronics circuits.

Moreover, formal modeling of non-homogeneous equations, non-ideal circuit

components and switch have also been developed for the first time to analyze

and design power electronics circuits.

Formal methods have also been employed to formalize the control sys-

tems due to their safety or mission-critical applications. The formalization
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of Laplace transform [80] has been proposed to formally reason and ver-

ify the transformation properties, e.g., existence, linearity, frequency shifting

and differentiation and integration in time domain. This formalization frame-

work allows to verify the correspondence of the time domain representation

of the system, i.e., linear differential equation, to the frequency domain repre-

sentation of the system, i.e., transfer functions.This existing work can be used

along with the formalization proposed in this paper to analyze the stability

analysis of control systems, expressed in terms of their dynamical behaviors

using differential equations.

Block diagrams formalization has been proposed [40] [1] to conduct steady-

state error analysis, i.e., when s→ 0, for feedback and unity feedback control

systems, in frequency domain. However, this formalization does not explicitly

deal with the stability analysis of control systems. Formal stability analysis

has also been proposed for some particular safety and mission-critical ap-

plications. The formal stability analysis of optical waveguides [75] has been

performed by defining the stability condition in terms of the boundedness and

orientation of a ray in a wave guide using multivariate theory in HOL Light.

A logical framework for the formal verification of various strategies for the

platoon vehicle controllers [69] is proposed and is then used for developing

a run-time monitor which can be used for automatic monitoring of the ve-

hicles for stability violation. Similarly, another comprehensive logical frame-

work for the analysis of control systems [68] considers the system differential

equations and obtains their corresponding transfer functions using Laplace

transformation and it also provides a support for the block diagram analysis

of the system in frequency domain. On the basis of this framework, formal

analysis of active realizations of various controllers, Proportional Integral-

Derivative (PID), Proportional-Integral (PI), Proportional-Derivative (PD),

Proportional (P), Integral (I) and Derivative (D) and various active and pas-

sive compensators, such as lag, lead and lag-lead is conducted. However, the
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aforementioned formalizations for the stability are application specific and do

not provide a generic treatment of the stability of the control systems. The

formally verified quadratic roots [71] have been used for the formal analysis

of cyber-physical systems using the real number theory in the HOL4 theorem

prover. However, this formalization of the quadratic formula in real number

theory cannot be used to analyze the complex-domain of the control systems.

1.6 Problem Statement

Power electronics systems exhibit nonlinear behavior due to switching func-

tionality and therefore pose serious challenges of modeling, analyzing and

verification. Mathematically, differential, integral, generalized calculus, one-

sided limits and stability theory are employed to design power electronics sys-

tems. Traditionally, paper-and-pencil and computer-based simulation meth-

ods are used to analyze and verify power electronics systems. However, these

methods cannot guarantee a sound and complete analysis of the systems

due to inherent limitations. Whereas, power electronics applications include

many safety and mission-critical applications, such as medical equipment,

electric vehicles, smart grids, and aerospace engineering, and a minor error

can lead to a catastrophic event, including the loss of human lives. There-

fore, traditional analysis techniques cannot be relied upon for the analysis

and design of safety or mission-critical power processing applications.

1.7 Proposed Solution

The primary objective of this thesis is to develop a higher-order-logic frame-

work for the accurate analysis and design of the power electronics systems

within the sound core of the HOL Light theorem prover (as shown in Figure

1.5). The main contributions of this thesis are:
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Figure 1.5: Proposed Methodology

• We develop higher-order-logic based formalization of basic circuit the-

ory to formally analyze the topology of power electronics circuits. The

formalization includes higher-order-logic models of ideal and non-ideal

circuit components and switching function technique (Sections 3.1 and

3.2). This logical framework allows to formally analyze and verify the

topologies of power electronics circuits. Moreover, the formalization

also contains formally verified results for differential and integral prop-

erties of piecewise functions (Section 3.3) which are mandatory to con-

duct formal analysis of various aspects of power electronics systems.

• We also present formalization of differential equations to express the be-

havior of power electronics circuits and verify their circuit parameters.

The formalization includes higher-order-logic modeling of differential

equations and formally verified results for homogeneous and particular
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solutions of the differential equations (Sections 4.1 and 4.2). Moreover,

formal models of steady-state characteristics and design parameters are

developed to formally specify and verify the power electronics circuit

design and analysis within the sound of core of the HOL Light theo-

rem prover (Section 4.3). To illustrate the usefulness of the proposed

formalization, periodic steady-state analysis of an ideal DC-DC Buck

converter is presented that includes topology, steady-state behavior and

solution verification of the converter (Section 4.4).

• To analyze the stability of power electronics systems, we formally model

the stability criterion in higher-order logic (Section 5.1) that utilizes

the characteristic equation of the system which is obtained from the

transfer function representation of the system. We also provide formally

verified results for the stability analysis of characteristic equations upto

the fourth-order (Section 5.3). These formally verified results are also

supplemented by the formally verified factorization theorems for the

characteristic equations upto the fourth-order (Section 5.2). We use the

proposed stability formalization to conduct formal stability analysis of

an H∞ current, H∞ voltage and H∞ repetitive current controllers for

wind turbines in smart grids using the proposed formalization (Section

5.4).

• Finally, we present formal time-domain periodic steady-state analysis

of non-ideal DC-DC power converters to show the usefulness of the

proposed formalization for the practical design of power electronics cir-

cuits (Chapter 6). Notably, a generic logical framework is presented to

formally express and verify the periodic steady-state behavior of basic

DC-DC power converter topologies using first-order linear differential

equations (Section 6.1). The generic logical framework is then em-

ployed to formally verify the periodic steady-state analysis and design
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of non-ideal DC-DC Buck converter (Section 6.3).

1.8 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we provide a

brief introduction to the HOL Light theorem prover and an overview of Set

and Multivariate theories in HOL Light library to familiarize the reader with

notations and notions used in the proposed formalization presented in the

rest of the thesis. Chapter 3 presents the basic circuit theory and library of

circuit components formalization that enables us to formally specify power

electronics circuits in the HOL Light theorem prover. Chapter 4 describes

higher-order-logic framework to formally specify and verify the n-th order

differential equation representation of power electronics systems in periodic

steady-state. We demonstrate the utility of the proposed formalization, in

Chapter 3 and 4, by formally verifying various aspects of an ideal DC-DC

Buck power converter. In Chapter 5, we present stability formalization of

control systems to formally analyze and verify the stability of systems rep-

resented by their transfer functions. As a case study, we formally verify the

controllers for power converters of a wind turbine which are used in the smart

grids to process intermittent energy generated from the wind. In Chapter

6, a formal analysis of a non-ideal DC-DC Buck converter is performed to

illustrate the usefulness of the proposed formalizations for the design of real-

world power electronics systems. Finally, Chapter 7 concludes the thesis and

outlines some future research directions.
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2

Preliminaries

2.1 HOL Light Theorem Prover

HOL Light [38] is an interactive theorem prover that allows its users to de-

velop new mechanized theories, proofs, and inference rules with the support

of many automated tools and pre-proved mathematical theories, such as Mul-

tivariate set, differential and integration theories. It has been widely-used

for some significant industrial-scale verification applications [32] [35].

A variant of the strongly typed functional programming language, i.e.,

Objective CAML (OCaml), is used to implement higher-order logic in the

HOL Light theorem prover. HOL Light provides a secure and sound plat-

form for the formal verification and specification of the systems. Sound

theorem proving is ensured by the small core that consists of only 1500

lines, including 10 primitive inference rules, such as modus ponens and

reflexivity, whereas soundness is ascertained due to the convergence of all

the mechanized proofs to these inference rules. HOL Light supports back-

ward and forward proof strategies. In the backward proof strategy, a theo-

rem is formally verified using inference rules, whereas, in the forward proof

strategy, the given theorem is broken down into subgoals using HOL Light
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Table 2.1: Higher-order-logic (HOL) symbols and functions.

HOL Symbol Standard Symbol Meaning
∧ and Logical and
∨ or Logical or
¬ not Logical negation
=⇒ → Logical conditional
% c−→a Scalar multiplication of vectors
λ x.t λx.t Function that maps x to t(x)
num {0, 1, 2, . . .} Positive integers data type
real All real numbers Real data type

complex All complex numbers Complex data type
SUC n n+ 1 Successor of a num

rpow x y xy Power with real exponent
max (f(x), g(x)) max(g(x), f(x)) Maximum among f(x) and g(x)

tactics. A tactic is a special ML function used to divide the main goal

into subgoals and perform simple decidable real, complex and vector arith-

metics, such as GEN_TAC, REPEAT_TAC, SIMP_TAC, REAL_ARITH_TAC and

SIMPLE_COMPLEX_ARITH_TAC. In the proposed formalization, we have used

many such tactics to formally verify the power electronics circuits. More

detail on tactics can be found here [38].

We used the HOL Light theorem prover for the proposed work as it is

endowed with the library of the Multivariate set, differential and integration

and topology theories to facilitate the higher-order logic modeling, analysis

and verification of power electronics systems. HOL Light has been utilized,

at intel, for the formal verification of the floating numbers [35]. HOL Light

theorem prover has, also, been employed in the formal verification of the

Kepler’s conjunction [33]. One of the criteria for the efficiency and perfor-

mance of any theorem prover is the number of formally verified theorems

from the list of 100 theorems. HOL Light is on the top by formally verifying

86 theorems from the list [34]. Table 2.1 presents some of the frequently

used HOL Light functions and symbols to facilitate the understanding of the

formalization and verification in the rest of thesis.
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2.2 Multivariate Theory in HOL Light

We present basic definitions and results from set, differential, integration and

topology theories of HOL Light library that will be helpful in understanding

the formalizations, presented in the next chapters of this thesis.

2.2.1 Set Theory

A set membership (∈) operation is defined in the higher-order logic as:

Definition 2.1: Set Membership

` ∀ P x. x IN P = P x

An empty set is a modeled as follows:

Definition 2.2: Empty Set

` {} = (λx. F)

There are number of theorems, which are used to eliminate set abstraction.

We present the basic one which has been used in our formalizations,

Definition 2.3: Set Abstraction Elimination

` ∀ p. GSPEC p = p

Where P:A→ bool is a predicate modeling a set.

Finally, a non-empty set related theorem is as follows:

Theorem 2.1: Non empty set

` ∀ x. ∼ ( x IN {} )

The above theorem ensures that empty set has no member.
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2.2.2 Multivariate Theory

HOL Light is endowed with the Multivariate theory to formally reason about

the topology, analysis and geometry in Euclidean space. HOL Light models

an N -dimensional Euclidean space as RN data type [37]. This allows to

formally model an N -dimensional vector in Euclidean space using a higher-

order-logic mapping function, lambda,

Definition 2.4: Vector

` ∀ l. vector l = (lambda i. EL (i - 1) l)

In above definition, vector is a higher-order-logic function, which accepts

a list, l, and maps the elements to an RN space. This ingenious approach

allows to not only formally reason in finite N -dimensional space but also

supports formal reasoning in subspaces, such as real and complex, by instan-

tiating N= 1 and 2, respectively.

There are HOL Light functions which allow to map real, complex and vec-

tor spaces. A term of type complex in HOL Light is defined using Definition

2.4 as:

Definition 2.5: Complex Number

` ∀ x y. complex(x, y) = vector [x; y]

A term of type real can be mapped as a complex number using Cx,

Definition 2.6: Real-to-Complex Mapping

` ∀ a. Cx a = complex(a, &0)

A term of type real1 can be mapped to a real type using drop,

Definition 2.7: Vector-to-Real Mapping

` ∀ x. drop x = x$1

Where $ represents dimension index. A converse operation on term of real

is achieved using the lift function,
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Definition 2.8: Real-to-Vector Mapping

` ∀ x. lift x = (lambda i. x)

The traditional Frechet derivative definition [87] in HOL Light is ex-

pressed as:

Definition 2.9: Frechet Derivative

` ∀ f f’ net.

(f has_derivative f’) net =[
A1
]
linear f’ ∧

((λy. inv (norm (y - netlimit net)))) %

(f y - (f (netlimit net) + f ’ (y - netlimit net))) →

vec 0

has_derivative is a higher-order-logic function, which accepts function

f:RM →RN , derivative of function f’:RM → RN and evaluation point

or interval net:A. net has an arbitrary type, A, specified by the user. In

Assumption A1, linear is another higher-order-logic predicate that ensures

that the derivative function is a linear transformation. The conclusion of

the above definition is a predicate ensuring that the limit of the derivative

approaches zero.

Differentiability of a function is formally modeled in higher-order logic

as,

Definition 2.10: Differentiability within an interval

` ∀ f s.

f differentiable_on s = ∀x. x IN s

==> f differentiable (at x within s)

In the above definition, differentiable_on accepts a function, f, and a real

interval, s, to specify the differentiability of a given function within the in-

terval.

Continuity of a function is formally defined in higher-order logic as,
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Definition 2.11: Continuity

` ∀ x. x IN s ==>

f continuous_on s ==> ∀ e. &0 < e

∃ d. &0 < d ∧

∀ x′. x′ IN s ∧ dist (x′, x) < d

dist (f(x′), f(x)) < e

Above Definition formally specifies the continuity of a function using math-

ematical epsilon-delta definition of continuity. That is, a small change (d) in

the argument of the function leads to the function value (e). Whereas, dist

is a higher-order-logic function to model the small change in the argument

and value of the given function.

The Henstock-Kurzweil integral [49] is defined in higher-order logic, as:

Definition 2.12: Henstock-Kurzweil integral

(f has_integral y) (interval [a, b]) =

(∀e. &0 < e

(∃d. gauge d ∧

(∀p. p tagged_devision_of interval [a, b] ∧ d fine p

⇒ norm (vsum p (λ(x, k). content k % f x) - y) < e)))

In the above definition, e is a positive real number, d is Guage function and

p is the tagged division of the given interval [a, b] which are related using

higher-order logic tagged_division_of and fine functions. Whereas, norm,

vsum and content are higher-order-logic functions which are used to express

the Henstock-Kurzweil condition on the integral y.

Finally, we present definition of the limit and theorems on limits from the

topology theory in HOL Light library. The limit of a function f is formally

modeled in the HOL Light theorem prover, as:

Definition 2.13: Limit of a function

∀f. lim net f = @l. (f → l) net

31



In Definition 2.13, lim is higher-order-logic function which accepts net, of an

arbitrary data-type A, and f, of data-type A → RM . The right-hand side of

lim models the notion of function, f, approaching limit point l, of data-type

RM for the specified net. Whereas, @ is the Hilbert choice operator which

is used as a binding operator. Hilbert choice operator facilitates quantified

substitution in a formal deductive system, such as higher-order logic.

The formally verified right and left-hand side limits in topology theory

are:

Theorem 2.2: Right-hand Side Limit

∀f l a.

(f → l) (at a within {x | x IN s ∧ drop a ≤ drop x})=

(f → l) (at a within {x | x IN s ∧ drop a < drop x})

Theorem 2.3: Left-hand Side Limit

∀f l a.

(f → l) (at a within {x | x IN s ∧ drop x ≤ drop a})=

(f → l) (at a within {x | x IN s ∧ drop x < drop a})

The above two theorems formally verify the equivalence of the limit of a

given function, f, at a point, a, within the interval, s, and limit of the given

function when it approaches the point, a, from right or left. The data-type

of net in the above theorems is specified using s:(real→bool).
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3

Formalization of Basic Circuit

Theory

In this chapter, we describe the formalization of commonly used basic circuit

theory concepts in the analysis and design of power electronics circuits. In

order to formally specify the behavior of the circuit components, we present

higher-order-logic models of circuit components, both ideal and non-ideal

behaviors. Then, we present formal models of modified Kirchoff’s voltage and

current laws which are based on the switching function technique to enable

the formal verification of the circuit topologies. Finally, we present formally

verified results for the integration and differentiation of piecewise functions

which provide formal mathematical machinery in the formal analysis and

design of power electronics circuits.

3.1 Circuit Components Models

3.1.1 Formal Modeling of Ideal Circuit Components

In power electronics circuits, semiconductor devices such as, diodes, BJTs

(bipolar junction transistors), MOSFETs (metal oxide semiconductor field
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effect transistors), IGBTs (insulated gate bipolar transistors) etc, are used

for performing the switching operation. These semiconductor devices play a

key role in the efficient power conversion [6]. Although, these devices differ

in their physics and physical properties, however, as a switch, their function

is to connect or disconnect a path or subcircuit, in a power electronics cir-

cuit, to achieve the desired conversion. Therefore, the functionality of an

ideal semiconductor device as a switch can be modeled using the Heaviside

function, i.e., Equation (1.6), in HOL Light:

Definition 3.1: Switch Functionality

` ∀ t. semi_switch t = if t < &0 then &0 else

(if t = &0 then &1 / &2 else &1)

Definition 3.1 models the functionality of a semiconductor switch as a real

value 1, for connected status, and 0, for disconnected status, in higher-order

logic. Whereas, at the switching instance t, it has value 1/2. The & is a

typecasting operator in HOL Light that maps a number to a real number.

In our formalization, we use switch status or switching function to refer

connected or disconnected switch.

The mathematical expressions for ideal elements in Table 1.1 are formally

defined in HOL Light as,

Definition 3.2: Ideal Inductor Current

` ∀ io L v. ideal_ind_curr v L io =

(λ t. io + Cx (&1 / L) * integral (interval [&0, t]) v)

Definition 3.3: Ideal Capacitor Current

` ∀ C v. ideal_cap_curr C v =

(λ t. Cx C * vector_derivative v (at t))

Definition 3.4: Resistor Current

` ∀ v R. res_curr R v = (λ t. v t * Cx (&1 / R))
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Definition: 3.5 Resistor Voltage

` ∀ i R t. resis_volt i R t = (i t) ∗ Cx (R)

Definition: 3.6 Ideal Inductor Voltage

` ∀ i R t. ideal_ind_volt i L t = Cx(L) ∗ ( vector_derivative i (at t) )

Definition: 3.7 Ideal Inductor Voltage

` ∀ v0 i R t. ideal_cap_volt v0 i R t =

v0 + Cx (1/C) ∗ (integral ( lift[0, t]) i)

The function ideal_resis_volt accepts current i :(real→complex),

through a resistor and resistance value, R :(real), to express the voltage

across the resistor. Similarly, the function ideal_ind_volt accepts the

current value through an inductor, i :(real→complex), and inductance,

L :(real) to express the voltage across the inductor. Finally, the function

ideal_cap_volt models the voltage across a capacitor by using initial

voltage, v0 :(real), capacitance, C :(real), and the current through capaci-

tor, i :(real→complex). Whereas, vector_derivative and integral are

higher-order-logic functions that model the mathematical derivative and in-

tegral, respectively, in HOL Light.

3.1.2 Formal Modeling of Non-ideal Circuit Components

Based on the formally defined models of the ideal inductor, capacitor and

resistor relationships, i.e., Definition 3.2-3.7, we formally model the voltage

and current relationships of non-ideal components, described in Table 1.2, in

higher-order logic, as:

Definition: 3.8 Non-ideal Inductor Voltage

` ∀ i L ESR t. non_ideal_ind_volt i L ESR t = ideal_ind_volt i L t +

resis_volt i ESR t
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Definition: 3.9 Ideal Inductor Voltage

` ∀ V0 L ESR v t. non_ideal_ind_curr V0 L ESR v t = ideal_ind_curr V0 L

v t + resis_curr v ESR t

The function non_ideal_ind_volt takes arguments of inductor cur-

rent, i :(real→complex), inductance, L :(real, inductor ESR, ESR :(real),

and time, t :(real), to express the voltage across the inductor. Whereas,

the function non_ideal_ind_curr accepts the initial voltage, V0 :(real),

inductance, L :(real), inductor ESR, ESR :(real), and time, t :(real), to

find the current through the inductor.

Definition: 3.10 Non-ideal Capacitor Voltage

` ∀ i0 i C ESR t. non_ideal_cap_volt i0 i C ESR t = ideal_cap_volt i0 i

C t + resis_volt i ESR t

Definition: 3.11 Non-ideal Capacitor Current

` ∀ v C ESR t. non_ideal_cap_curr v C ESR t = ideal_cap_curr v C t +

resis_curr v ESR t

The function non_ideal_cap_volt accepts the initial current, i0 :(real),

capacitor current, i :(real→complex), capacitance, C :(real), capacitor ESR,

ESR :(real), and time, t :(real), and returns the voltage across the capacitor.

Similarly, the function non_ideal_cap_curr accepts the capacitor voltage,

v :(real→complex), capacitance, C :(real), capacitor ESR, ESR :(real), and

time, t :(real), to model the current through the capacitor.

Definition: 3.12 Semiconductor on-resistance Voltage

` ∀ i Ron t. semi_resis_model_volt i Ron t =

resis_volt i Ron t

Definition: 3.13 Semiconductor on-resistance Current

` ∀ v Ron t. semi_resis_model_curr v Ron t =

resis_curr v Ron t
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The function semi_resis_model_volt accepts the current, i :(real→
complex), on-resistance, Ron :(real), and time, t :(real), to model the volt-

age across the on-resistance of the semiconductor device. Whereas, semi_

resis_model_currt accepts the voltage across a capacitor, v :(real→
complex ), on-resistance, Ron :(real), and time, t :(real), to determine the

current through the on-resistance of the semiconductor device.

Definition: 3.14 Semiconductor Forward-voltage Drop Model

` ∀ VF i RD t. semi_volt_rises_model_volt VF i RD t = C VF +

rises_volt i RD t

The function semi_volt_resis_model_volt accepts the forward volt-

age drop, VF :(real), current, i :(real→complex), through on-resistances,

Ron :(real), and time, t :(real), to model the voltage across the semicon-

ductor device.

Definitions 3.1-3.14, enable us to formally specify and reason about the

implementation behavior of given converter circuits in higher-order logic.

To accomplish the formal modeling of the basic circuit theory notions, we

also formalize the Kirchoff’s voltage and current laws:

Definition 3.15: Kirchoff’s Voltage Law (KVL)

` ∀ vol_lst t. kvl vol_lst t =

vsum (0..LENGTH vol_lst - 1) (λn. EL n vol_lst t) = Cx (&0)

Definition 3.16: Kirchoff’s Current Law (KCL)

` ∀ cur_lst t. kcl cur_lst t =

vsum (0..LENGTH cur_lst - 1) (λn. EL n cur_lst t) = Cx (&0)

The kvl and kcl functions accept lists of type (R → C), to express the

behavior of the time dependent voltages and currents in the given power

converter circuit and a time variable t. They return the predicates that

guarantee that the sum of the voltages in a loop or sum of the currents at a

node are zero for all the time instants.
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3.2 Switching Function Technique

Voltages and currents at the switching junction in higher-order logic are

defined, as:

Definition 3.17: Modified KVL

` ∀ mod_lst volt_lst t. switch_volt mod_lst volt_lst t =

vsum (0..LENGTH mod_lst - 1) (λ n. EL n volt_lst t * Cx (EL n

mod_lst))

The function switch_volt describes the voltage at the switch junction using

Equation 1.1(a). It accepts a list, volt_lst, which contains all the possible

voltage drops at the switching junction, a list of modes, mod_lst, which

contains the switch status or switching function for each mode, and t is the

time, which indicates that this function is time dependent. Whereas, EL is a

HOL Light function, which accepts a list volt_lst and index of list element

n and returns the corresponding list member.

Definition 3.18: Modified KCL

` ∀ mod_lst curr t. switch_current mod_lst curr t =

curr t * vsum (0..LENGTH mod_lst - 1) (λ n. Cx (EL n

mod_lst))

Definition 3 formally models the current at the switching junction using

Equation 1.1(b). It accepts an argument curr, which represents the total

supplied current to the switch junction, a list of modes, mod_lst, which

contains the switch status or switching function for each mode, and t, which

represents time.

3.3 Properties of Generalized Function

The voltages and currents in power electronics circuits are piecewise functions

due to the switching action. We formally verify the integration and differen-
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tiation properties of functions expressed using Heaviside function (Equation

1.6).

Theorem 3.1: Integration of Piecewise Function

` ∀ f a b c x.[
A1
]
(∀t. (λx. f (x)) differentiable_on s) ∧[

A2
]
∼(real_interval [a,b] = {}) ∧

[
A3
]
c ∈ [a, b]

⇒
∫ b
a

(λx. semi_switch x c ) * f (x)) =
∫ b
c

(λx. f (x))

In above theorem, f :(real→ complex) is a complex valued function and

semi_switch is the Heaviside function that models switching functional-

ity. Assumption A1 imposes condition on the differentiability of the given

function, f. Assumptions A2-A3 ensure that a given real interval is a valid

interval with upper and lower bounds, i.e., a and b. Whereas, c∈[a, b] is the

switching instance of the semiconductor switch.

Theorem 3.1 formally verifies the generalized property of step function

that changes the integral limits of the given function f.

Theorem 3.2: Derivative of a Heaviside Function

` ∀ x.
[
A1
]
∼(x = 0) ⇒

vector_derivative (lift ◦ (λx. semi_switch x) ◦ drop) at (lift x) = (lift

0)

In above theorem, Assumption A1 ensures that the singularity point is

excluded from the domain of the given function. In case of power electron-

ics circuits, this singularity corresponds to the switching instance. Whereas,

vector_derivative is the higher-order-logic definition of the partial deriva-

tive in multivariate differentiation theory of HOL Light.

Theorem 3.2 allows to formally reason and verify the differentiation of

circuit parameters in the analysis and design of the power electronics circuits.
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3.4 Summary and Discussions

In this chapter, we described the formal basic circuit theory concepts to for-

mally specify and verify the power electronics circuits. We provide higher-

order-logic models of ideal and non-ideal power electronics circuit compo-

nents and modified Kirchoff’s voltage and current laws at the switching junc-

tion in a circuit. Moreover, to formally reason about the piecewise nature of

the circuit variables, we formally verify results of integration and differenti-

ation of piecewise functions described using Heaviside function.

The formal models developed in this chapter enable us to formally specify

and reason about the topologies of power electronics circuits. The ideal and

non-ideal equivalent circuit models are widely used to analyze the function-

ality and specify the design parameters of the power electronics systems [24].

On the other hand, the switching function technique allows to leverage upon

the modified Kirchoff’s current and voltage laws to specify the circuit pa-

rameters as a single expression which is the core objective of the analysis

techniques in power electronics systems [44]. Finally, the formally verified

results of Section 3.3, i.e., Theorems 3.1 and 3.2, provide mandatory sup-

port for the formal analysis and verification of the power electronics systems

within the sound core of the HOL Light theorem prover. In power electron-

ics systems, formal verification of topology, steady-state behavior and design

specifications require integration and differentiation operations and hence

these results are direly needed to perform the formal analysis and verifica-

tion of involved piecewise functions . The mechanized results of Theorem 3.1

and 3.2 are generic in nature and can provide formal reasoning support for

large class of systems that use piecewise functions to capture the underlying

phenomenon [19].
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4

Formalization of Periodic

Steady-state Analysis

In this chapter, we present the formalization required for the time-domain

periodic steady-state analysis of the power electronics circuits. To formally

describe the behavior of the circuits in steady-state for each mode, we for-

mally model the n-th order differential equations in the HOL Light theorem

prover. In steady-state, the variables of interest in power electronics circuits

are deduced as the solution of the corresponding n-th order differential equa-

tions. Therefore, we provide generic results for the formal verification of the

solution of the n-th order differential equations. This framework enables us

to formally verify the mathematical expression of the variables of the given

circuit which are in practice used to analyze and design the circuits. Finally,

we provide formal models of steady-state characteristics and design specifi-

cations using the circuit variables. The proposed formalization is then used

to formally verify the topology, steady-state behavior and expression for the

steady-state output of a DC-DC Buck converter.
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4.1 Differential Equation Representation

We formalized the nth-order derivative function in higher-order logic as fol-

lows:

Definition 4.1: n-th Order Derivative

` ∀ n f t. (n_vec_deri 0 f t = f t ) ∧

(∀ n. n_vec_deri (SUC n) f t =

n_vec_deri n (λ t. vector_derivative f at t) t)

The function n_vec_deri accepts a positive integer n that represents the

order of the derivative, the function f:(R→ C) that represents the complex-

valued function that needs to be differentiated, and the variable t:(R) that

is the variable with respect to which we want to differentiate the function

f. It returns the nth-order derivative of f with respect to t. Now, based

on this definition, we can formalize the left-hand side (LHS) and right-hand

side (RHS) of Equation (1.3) in HOL Light as the following definitions:

Definition 4.2: LHS of a Differential Equation

` ∀ P y t. diff_eq_lhs A f t =

vsum (0..LENGTH A) (λ n. Cx ( EL n A t) * n_vec_deri n f t)

Definition 4.3: RHS of a Differential Equation

` ∀ L y t. diff_eq_rhs L p t =

vsum (0..LENGTH L) (λ n. Cx (EL n L) * EL n p t)

In the above definitions, A and L are the coefficient’s lists, f:(R → C) and

p(t):(R→ C) are complex-valued functions, and t:(R) is the time variable

to formally model the linear ordinary differential equation.

We formally model the n-th order differentiability of list of functions in

higher-order logic as,

42



Definition 4.4: differentiability of functions

` ∀ n. n_differentiable_fn f n =

n_differentiable_fn [] n = T ∧

n_differentiable_fn (CONS f t) n =

∀ m. ( m <= n ) ==> (λx. n_vec_deri m f t) differentiable (at x)

∧ n_differentiable_fn t n

In the above definition, n_differentiable_fn is recursively defined and ac-

cepts a list of functions, f, and the order of the differentiability, n. First

conjunction defines base case for empty list and assigns it boolean truth

value T. In second conjunction, CONS is a higher-order-logic function in HOL

Light for list manipulation and returns head element of the given list (f) and

rest of the list (t). The order of the derivative of the function, m, is speci-

fied using Definition 4.1. Finally, third conjunction calls the differentiability

function for the function list t.

We formally specify the solution of homogeneous differential equation in

verb|HOL Light| as,

Definition 4.5: Homogeneous Solution

` ∀ Yh L t. n_homo_sln Yh L t = n_homo_sln [] L t = T ∧

n_homo_sln (CONS yh x) t = diff_eq_lhs yh L t = C (&0) ∧

∧ diff_eq_lhs x L t

The higher-order-logic function, n_homo_sln, accepts a list of solution of a

homogeneous differential equation, Yh, list of coefficients of the differential

equation and independent time variable, t. The first conjunct defines the

base case of the recursive definition and assigns true boolean value (T) for

an empty list. The second conjunct formally specifies the condition for the

solution, i.e., the solution satisfies the differential equation. Finally, third

conjunct calls the function for the rest of the solutions in the list.

We formally specify the solution of non-homogeneous differential equation

in HOL Light as,
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Definition 4.6: Non-homogeneous Solution

` ∀ A L yp g t. n_order_homo_sln A L y g t =

diff_eq_lhs A yp t = diff_eq_rhs L g t

The higher-order-logic function n_order_homo_soln accepts lists of coeffi-

cients, A and L, for right- and left-hand sides of a differential equation, lists

of particular solution and function, yp and g, and independent variable, i.e.,

time (t). The formal definition formally specifies the condition for the valid

solution,i.e., solution verifies the differential equation.

We formally define a linear combination of the solutions of a differential

equation in higher-order logic as,

Definition 4.7: Solution of a Differential Equation

` ∀ C yh t. linear_solution C y t =

linear_solution C [] t = Cx (&0) ∧

linear_solution C (CONS h x) t =

Cx (EL (LENGTH C - LENGTH (CONS h x )) ) * (h t) +

linear_solution C x t

The function linear_sol models the linear solution combination of funda-

mental solutions, i.e.,
∑n

i=1 ciyi(t), using the lists of solution functions Yh

and arbitrary constants C.

Definition 4.1 is used to formally define the steady-state condition of the

power electronics circuits as:

Definition 4.6: Steady-state Conditions

` ∀ n. ( steady_state 0 f Tp =

( n_vec_deri 0 f (&0) = n_vec_deri 0 f Tp ) ) ∧

( steady_state (SUC n) f Tp =

( n_vec_deri (SUC n) f (&0) = n_vec_deri (SUC n) f Tp ) )

The above definition is higher-order logic equivalent of steady-state condi-

tions described in Problem (1.3). In the above definition, the first conjunct
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defines the base case which represents the steady-state conditions for the

functions values at the initial time, t = 0 and final time, t = Tp, whereas,

the second conjunct accounts for steady-state conditions for the higher order

function derivatives at initial and final time values.

The above generic formalization allows to formally model the dynamic

behavior of systems represented by differential equations. We have utilized

this formalization to formally specify and reason the periodic steady-state

behavior of power converters, described in Equation 1.3.

4.2 Solution Verification of Differential Equa-

tions

The linearity property of the derivatives (Equation 1.7) is formally verified

for the complex-valued functions as:

Theorem 4.1: Linearity of n-th Order Derivative

` ∀ n f h t.[
A1
]
(λ m t. m ≤ n ⇒ (λ t. n_vec_deri m f t) differentiable at

t) ∧[
A2
]
(λ m t. m ≤ n ⇒ (λ. n_vec_deri m h t) differentiable at t)

⇒ n_vec_deri n (λt. Cx a * f t + Cx b * h t) t =

Cx a * n_vec_deri (λt. f t) t + Cx b * n_vec_deri (λt. g

t) t

Theorem 4.1 formally verifies linearity property of the n-th order derivative

operator, i.e., dn

dxn . The formal verification is accomplished by induction

on the order of the derivative, n in HOL Light theorem prover and using

Definitions 2.10 and 4.1.

Now we formally verify solution of homogeneous differential equation so-

lution in HOL Light as,
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Theorem 4.2: Solution of a Homogeneous Differential Equation

` ∀ Yh C L t.[
A1
]
(n_homo_soln L Yh t) ∧[

A2
]
(n_differentiable_fn Yh (LENGTH L)) ∧

⇒ diff_eq_lhs L (λ t. linear_sol C Yh t = Cx &0 )

Assumption
[
A1
]
formally specifies the solutions of the differential equation

using Definition 4.5. The differentiability of these solutions is formally spec-

ified using Definition 4.4. Whereas, conclusion formally verifies the linear

combination of the differential equation solutions (formally specified using

Definition 4.7) for the specified solution list Yh.

We formally verified the solution of a linear differential equation, repre-

sented by Equation (1.4), in the HOL Light theorem prover as follows:

Theorem 4.2: Solution of a Differential Equation

` ∀ Yh C Yp A L p t.[
A1
]
(n_differentiable_fn Yh (LENGTH A)) ∧[

A2
]
(n_differentiable_fn Yp (LENGTH L)) ∧[

A3
]
(n_homo_soln A Yh t) ∧

[
A4
]
(n_nonhomo_soln L Yh Yp t)

⇒ diff_eq_lhs A (λ t. linear_sol C Yh t + Yp t ) =

diff_equ_rhs L p t

In Theorem 4.2, Assumptions A1 and A2 ensure the nth-order differentiabil-

ity of the fundamental solutions, given as a list Yh, and particular solution,

provided as a list Yp, respectively. The predicate in the Assumption A3, i.e.,

n_order_homo_eq_soln_list, ensures that each element of the list Yh is a

solution of the given differential equation, when p(t) = 0 in Equation (1.3),

where L is the list of coefficients. Similarly, the predicate in Assumption

A4, i.e., n_order_nonhomo_eq_soln_list, ensures that the particular solu-

tion, Yp, satisfies the differential Equation (1.3). The formal verification of

Theorem 4.2 is based on Theorem 4.1 and the formally verified lemma about

solution of homogeneous differential equation, i.e., when p(t) = 0 in Equation
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(1.3). More details about the modeling and verification steps can be found

in our proof script [2].

4.3 Modeling of Steady-state Characteristics and

Design Specifications

In this section, we formally define the periodic steady-state characteristics

and converter specifications described in Table 1.3.

The average value of a circuit variable, such as voltage or current, is

defined in higher-order logic as:

Definition: 4.7 Average Value of a Function

` ∀ s f. average_ac s f =

1
interval_upperbound s − interval_lowerbound s

∗ (integral s f)

Where the function average_ac accepts a real interval, s :(real→bool),

and a variable, f :(real→complex), that can be used to represent the circuit

voltage or current, and returns its average value. The functions interval_

upperboundand interval_lowerbound return upper and lower bounds, re-

spectively, of the given real interval.

Definition: 4.8 Ripple Quantity

` ∀ f tp tv. ripple f tp tv = f tp − f tv

The function ripple accepts a function f :(real→complex), represent-

ing the circuit voltage or current, and time instances, tp and tv, where the

function is maximum and minimum, respectively, to return the ripple (or

maximum change) in the given variable.

Definition: 4.9 RMS of a Ripple Quantity

` ∀ f tp tv. rms_ripple f tp tv =
ripple f tp tv

2 ∗ csqrt Cx ( 3 )
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The function rms_ripple accepts the ripple value of the circuit variable,

fr, and returns the root mean square (RMS) value of the ripple voltage or

current.

Definition: 4.10 RMS of a AC Quantity

` ∀ s f tp fv. rms_ac s f tp fv = csqrt ( (average_ac s f) pow 2 ) +

(rms_ripple f tp tv pow 2 )

The function rms_ac accepts the average (average_ac) and ripple RMS

(ripple_rms) values of a circuit variable, f :(real→complex), to return the

RMS value of the given variable.

Definition: 4.11 Power Dissipation

` ∀ s f tp tv r. pow_ac s f tp tv r = ( (rms_ac s f tp tv) pow 2 ) ∗ Cx (r)

The function pow_ac accepts the RMS value of the current through a

resistance, r, and returns the power dissipation due to the given resistance.

4.4 Case study: Periodic Steady-state Analysis

of Ideal DC-DC Buck Converter

The DC-DC buck converter is a commonly used power converter that steps

down a given input to a desired output level. In a DC-DC Buck converter,

operating in a continuous conduction mode, a switch controls the flow of en-

ergy from the raw source, Vs, to the output by periodically switching between

Positions 1 and 2, as shown in Fig 6.1a. The energy is stored in the inductor

when the switch is at Position 1, and is dissipated to the output circuitry,

when the switch is at Position 2. The circuit has two modes, i.e., n = 2, de-

fined by the switching instances, t0, ton, and toff . In periodic steady-state the

circuit will repeat its behavior periodically over the time period Tp. More-

over, due to periodic steady-state the dependence on t0 can be dropped and

therefore have assigned t0 = 0 in our analysis. Applying Kirchoff’s current
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and voltage laws in switch Positions 1 and 2, gives the following differential

equations for the respective modes:

iL = iC + iR

d2

dt2
V 1
out(t) +

1

RC

d

dt
V 1
out(t) +

1

LC
V 1
out(t) =

Vs
LC

V 1
out(t) = c1e

s1t + c2e
s2t + Vs

(4.1)

iL = −ic − iR
d2

dt2
V 2
out(t) +

1

RC

d

dt
V 2
out(t) +

1

LC
V 2
out(t) = 0

V 2
out(t) = c3e

s3t + c4e
s4t

(4.2)

Where, Vout is the output voltage of the converter, as shown in the Figure

6.1a, and s1, s2, s3 and s4 are the roots of the characteristic equation of the

converter in two modes. Moreover, s1 = s3 and s2 = s4 due to the identical

characteristic equations. The solution of Equations (4.1-4.2), over the time

period Tp, can be written using the Heaviside step function as

Vout(t) = u(t− ton)V 1
out(t) + (1− u(t− ton))V 2

out(t) (4.3)

In the periodic steady-state, the voltage of the DC-DC buck converter satis-

fies the following conditions

Vout(0) = Vout(T ) ,
d

dt
Vout(0) =

d

dt
Vout(T ) (4.4)

+
−Vs

•1

•2

L

RC

iL iC

iR

Vout

Vout

t0 ton toff

Tp

Figure 4.1: DC-DC buck Converter
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The steady-state conditions provide two algebraic equations, however, there

are four constants involved in the solution. Two more algebraic equations can

be obtained from the continuity of the voltage, i.e., Vout, due to continuous

conduction mode of the circuit, i.e.,

V 1
out(ton) = V 2

out(ton) ,
d

dt
V 1
out(ton) =

d

dt
V 2
out(ton) (4.5)

Equations (4.4-4.5) are used to specify the periodic steady-state voltage that

allows finding the minimum and peak conduction currents in steady-state.

These currents can then be used to determine ripple currents, which are

essentially crucial in specifying the components in the design of the power

electronics circuits.

4.4.1 Topology

The first step, in the formalization of the DC-DC Buck converter consists of

using the switching function technique to write the switch junction voltages.

Now, using Definitions 3.2, 3.3, 3.4, 3.15, 3.16, and 3.17, we can formalize

the implementation of DC-DC Buck converter as:

Definition 4.12: Implementation

` ∀ io L C R Vs Vout VL ton t.

buck_ckt_impl io L C R Vs Vout VL ton t =

(Vl = switch_volt [λt. Cx Vs - Vout t; (λt. –Vout t)]

[&1 - semi_switch (t - t_on); semi_switch (t - ton] t)

∧ (∀t. ∼(t = ton) ⇒

kcl [ind_curr (λt. VL t) L io; cap_curr C (λt. –Vout t);

res_curr R (λt. –Vout t)] t )

In the above definition, Vs is the supply voltage, Vout is the voltage drop at

the junction of all these components, with respect to the ground, and VL is

the voltage drop across the inductor. However, due to the the presence of the
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switching junction, we model the inductor voltage, in the first conjunct, using

the switch_volt function, which is provided with two lists; one for all the

possible voltage drops, and the other with all the corresponding switching

functions for every mode, and an independent variable t. Where, ton, is

the exact switching instant. This voltage is then used to apply the conven-

tional Kirchoff’s current law, using the function kcl, which accepts a list of

currents, and an independent variable, i.e., t.

This implementation model results in the ordinary linear differential equa-

tions of the system, which can be described using Definitions 4.2 and 4.3 as:

Definition 4.13: Behavior Specification

` ∀ io Vs Vout L C R ton t.

buck_diff_equ io Vs Vout L C R ton t =

if (t < ton) then diff_eq_lhs [
1

L ∗ C
;

1

R ∗ C
; 1] (Vout(t)) t =

diff_eq_rhs [
Vs

L ∗ C
] [1] t

else diff_eq_lhs [
1

L ∗ C
;

1

R ∗ C
; 1] (Vout(t)) t = diff_eq_rhs [0] [0] t

According to the proposed methodology, as a first step, we formally verify

the implementation and behavior of the Buck converter using the formal

model of switching function technique and linear order differential equations

as:

Theorem 4.3: Implementation and Behavior

` ∀ i0 Vs VL Vout L C R ton Tp t .[
A1
]
(∀ t. VL continuous_on [0, t] ∧[

A2
]
∼ (C = 0) ∧[

A3
]
(t ∈ (0, Tp)) ∧[

A4
]
∼(t = ton) ∧

[
A5
]
(ton ∈ (0, Tp)) ∧[

A6
]
(∀ t. differentiable_n_vec_deri 1 Vout t) ∧[

A7
]
buck_ckt_impl i0 L C R Vs Vout VL ton t

⇒ buck_diff_equ i0 Vs Vout L C R ton t
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Assumption A1 ensures that the converter is operating in the continuous con-

duction mode. Assumption A2 prevents a division by zero case in the formal

analysis. Assumptions A3-A4 ensure that the time is over one time period

of the system and does not include the singularities, at t0 = 0, t = ton and

t = Tp, due to switching action. Whereas, Assumptions A5 specifies that

the switching time, t = ton, lies within the open interval defined by the

single time period of the circuit. Assumption A6 formally specifies the dif-

ferentiability of the function, Vout, and its first derivative. The predicate

differentiable_n_vec_deri accepts a number, n, and function, f, and

specifies the differentiability of the function upto its nth-derivative. Finally,

Assumption A7 specifies the formal implementation of the power converter

circuit using Definition 4.12. The formal proof of Theorem 4.3 involves tak-

ing derivative of Assumption A7, which consists of piecewise functions, by

employing Theorems 3.1 and 3.2.

4.4.2 Solution of Differential Equations

Following the proposed methodology, the next task is to formally verify the

correctness of the solution of the ordinary linear differential equations of the

Buck converter in HOL Light. Therefore, we define the piecewise solution,

i.e., Equation (4.3), of the Buck converter in higher-order logic as:

Definition 4.14: Solution

` ∀ c1 c2 c3 c4 s1 s2 ton t.

solution Vs c1 c2 c3 c4 s1 s2 ton t =

linear_sol [c1; c2] (cexp_list [s1; s2]) t *

Cx (semi_switch (t - ton)) +

linear_sol [c3; c4] (cexp_list [s1; s2]) t *

Cx (&1 - semi_switch (t - ton)

Where c1, c2, c3 and c4 are arbitrary constants, s1 and s2 are the

roots of homogeneous differential equations corresponding to Equations (7)
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and (8), respectively. Whereas, the cexp_list function is a higher-order-

logic function to express the exponential form of the solution for real and

distinct roots, i.e., s1 and s2, of the circuit. It is defined as:

Definition 4.15: Exponential Solution

` ∀ x. (cexp_list [] = []) ∧

cexp_list (CONS s t) = CONS (λx. cexp (s * Cx (x))) (cexp_list t)

Next, using Definition 4.14, we formally verify the correctness of the solu-

tion of the differential equations, in each mode of the converter, in HOL Light

as:

Theorem 4.4: Solution Verification

` ∀ i0 Vs Vout L C R c1 c2 c3 c4 s1 s2 ton Tp t .[
A1
]
(∀ t. ∼(t = ton) ⇒ Vout = solution c1 c2 c3 c4 s1 s2 ton t) ∧[

A2
]
(s1 = − 1

2RC
+ 1

2

√
1

(RC)2 −
4
LC

) ∧[
A3
]
(s2 = − 1

2RC
− 1

2

√
1

(RC)2 −
4
LC

) ∧[
A4
]
(4 R2 C ≤ L) ∧[

A5
]
(0 < L) ∧[

A6
]
(0 < R) ∧[

A7
]
(0 < C) ∧[

A8
]
(t ∈ (0, Tp)) ∧[

A9
]
∼(t = ton) ∧[

A10
]
(ton ∈ (0, Tp))

⇒ buck_diff_equ i0 Vs Vout L C R ton t

Assumption A1 formally defines the output voltage Vout as a piecewise func-

tion, over the time period, Tp, of the converter circuit. Assumptions A2-A3 for-

mally specify the roots of the equation. Assumption A4 formally specifies the

condition on the circuit parameters for real and distinct roots. Assumptions

A5-A7, ensure the positive values of inductance, resistance and capacitance of

the circuit. Assumptions A8-A9 ensure that the time is over one time period
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of the system and does not include the singularities, at t0 = 0, t = ton and

t = Tp, due to switching action. Whereas, Assumptions A10 specifies that

the switching time, t = ton, lies within the open interval defined by the single

time period of the circuit.

The formal verification of Theorem 4.4 utilized the formally verified re-

sults of Theorems 3.1, 3.2 and 4.2.

4.4.3 Steady-state Expressions for Output Voltage

Finally, we present the formally verified results of periodic steady-state volt-

age of the DC-DC Buck converter as:

Theorem 4.5: Steady-state Output

` ∀ Vs Vout c1 c2 c3 c4 s1 s2 ton t Tp.[
A1
]
(t ∈ (0, Tp)) ∧[

A2
]
∼(t = ton) ∧[

A3
]
(ton ∈ (0, Tp)) ∧[

A4
]
(∀ t. ∼ (t = ton) ⇒ Vout = solution Vs c1 c2 c3 c4 s1 s2 ton t)

∧ [
A5
]
(∀ t. n_vec_deri 1 (λ t. Vout t) continuous at t) ∧[

A6
]
∼ ( s2 - s1 = 0) ∧[

A7
]
steady_state 1 Vout t ⇒(

Vout(0) =
( s2

s2 − s1

)[ (
Vout(0) +

1
s2

d
dt
Vout(0)− Vs

)
e−tons1 + Vs

]
e−Tps1

+
( s1

s2 − s1

)[ (
-Vout(0)− 1

s1
d
dt
Vout(0) + Vs

)
e−tons1 - Vs

]
e−Tps2

)
∧(

− d
dt
Vout(0) =

( s1s2

s2 − s1

)[ (
Vout(0) +

1
s2

d
dt
Vout(0)− Vs

)
e−tons1 + Vs

]
e−Tps1 +

( s1s2

s2 − s1

)[ (
-Vout(0)− 1

s1
d
dt
Vout(0) + Vs

)
e−tons1 - Vs

]
e−Tps2

)
Assumptions A1 and A2 formally specify the analysis over one time period

with singularities, at t = 0 , t = ton and t = Tp, excluded. Whereas, As-

sumptions A3 specifies that the switching time, t = ton, lies within the open
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interval defined by the single time period of the circuit. Assumption A4 for-

mally defines the output voltage Vout as a piecewise function, over the time

period, Tp, of the converter circuit. Assumption A5 formally specifies the con-

tinuity of the function and its derivative, to ensure the continuous conduction

mode. Assumption A6 prevents the division by zero case in the analysis, and

finally, Assumption A7 defines the steady-state of the buck converter.

The formal proof of Theorem 4.5 essentially consists of finding the values

of the function and its derivative at t = 0 and t = Tp , in limit sense, and

the values of arbitrary constants c1, c2, c3 and c4 by utilizing the continuity

assumption A5 and the one-sided limits concepts (Theorems 2.2 and 2.3) due

to singularities at t = 0 , t = ton and t = Tp, due to switching action. More

details about the proof can be found at [2].

4.5 Summary and Discussions

In this chapter, we developed a formal model of linear differential equa-

tions to formally specify the behavior of the power electronics circuits. We

also formally verified the correctness of the solution of differential equations

representing the behavior of circuits, and also the steady-state behavior of

quantities of interests, such as voltages and currents. To enable the formal

specification and verification of the steady-state parameters, we presented

the formal modeling of the steady-state characteristics and design parame-

ters. Finally, we conduct formal periodic steady-state analysis of an ideal

DC-DC Buck converter which includes topology and steady-state behavior

of the circuits.

The formalization, presented in Sections 4.1-4.3, is generic and provides

sufficient support to formally model and reason about different aspects of

a power electronics circuit including implementation and behavior, specifi-

cation, correctness of the solution of differential equations representing the

55



behavior of circuits, and also the steady-state behavior of quantities of inter-

ests, such as voltages and currents. The corresponding proof script, which is

available for download at [2], has 3000 lines of HOL Light code and requires

about 350 man hours of development time.

The proposed logical framework, in conjunction with formalization from

Chapter 3, allowed us to formally specify and verify the nonlinear behavior

of the DC-DC Buck converters in a very straightforward manner. Theorem

4.3 verifies that the implementation and behavior of the Buck converter by

explicitly specifying the conditions on the piecewise functions, e.g., voltages

in the case of DC-DC Buck converter, in the continuous conduction oper-

ating mode of the converter. The formally verified result is very helpful

in the topology selection of the converter, which is usually the first step in

the design procedure and, in practice, consists of an intuitive selection of

topology for a given design specification. Moreover, Theorem 4.4 formally

verifies the correction of the solution of the linear order differential equations

representing the power converter behavior. This result plays a vital role in

the performance evaluation. Once the implementation and behavior (Theo-

rem 4.3), and the solution (Theorem 4.4) of the DC-DC Buck converter is

formally verified, then Theorem 4.5 formally verifies the relationship among

different parameters of the circuit, such as voltage and circuit components, in

periodic steady-state. This result is instrumental in formal verification of the

design objectives, such as desired voltage levels and component values, of the

circuit. However, unlike traditional techniques these formally verified results

give exact conditions in terms of the parameters of the Buck converter as they

have been formally verified using a sound theorem prover. Moreover, these

results are generic in terms of universally quantified variables and contain an

exhaustive set of assumptions required for the validity of the results.
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5

Formalization of Stability Theory

In this chapter, we present formal stability theory analysis of control systems

using their frequency or complex-domain representations, as described in

Section 1.4. We formally model the stability criterion in the HOL Light

theorem prover. Next, we provide formal results for the factorization of the

characteristic equations (Equation 1.10) upto the fourth order. The formal

stability criterion and factorization results are used to exhaustively verify

the stability conditions for the control systems which have characteristic

equations upto the fourth order. Finally, we present formal stability analysis

of power controllers which are used to process the energy generated from

wind turbines in smart grids.

5.1 Stability Model

The stability of a root is defined, as a higher-order-logic function, as:

Definition 5.1: Stability Criterion

` ∀ f. stable f = ∼({ x | f x = Cx (0) ∧ Re (x) < 0 }= EMPTY )

In Definition 5.1, f:R2 → R2 represents a complex function, which is a

polynomial in our case, x:R2 is a complex variable, which in our case is the
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root of the given polynomial, and Cx and Re are HOL Light functions, which

are used to convert a real number into a complex number and to retrieve the

real part of a given complex number, respectively.

The predicate stable:(R2 → R2) → bool accepts a polynomial and

returns a boolean output, which is true for a stable root of the polynomial

of the considered system and false otherwise. Definition 5.1 formally models

two conditions for the stability of a root of the given complex polynomial, i.e.,

f x = Cx (0) and Re (x) < 0. These conditions ensure that a complex-

variable, x, is a root of the given polynomial and its real part lies in the

left-half of the complex-plane. Furthermore, these roots are formally defined

as the member of a set which should not be empty if the polynomial has any

stable root. To ensure that all roots of a given polynomial are the members

of this set, however, requires us to find all the roots of the given polynomial.

Therefore, in the next section, we formally verify the roots of a polynomial.

5.2 Factorization of Polynomials upto the Fourth

Order

To formally analyze the stability of the quadratic polynomial, we formally

verify the famous quadratic formula in HOL Light theorem prover as:

Theorem 5.1: Quadratic Roots

` ∀ a b c x .[
A1
]
a 6= 0

⇒ ( Cx a ∗ x pow 2 + Cx b ∗ x + Cx c = Cx 0 ) =

( x = − Cx b +
√
Cx b pow 2 − Cx 4 ∗ Cx a ∗ Cx c

Cx 2 ∗ Cx a
∨

x = − Cx b −
√
Cx b pow 2 − Cx 4 ∗ Cx a ∗ Cx c

Cx 2 ∗ Cx a
)

In the above theorem, a, b and c are real numbers, whereas, x is a complex

variable. Assumption A1 ensures that the polynomial is quadratic. The
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theorem is a formally verified result that a quadratic polynomial has two

roots, using the sound core of the HOL Light theorem prover.

To formally analyze the stability of the cubic polynomial, we formally

verify the factor decomposition of a cubic into its linear and quadratic fac-

tors in HOL Light as follows:

Theorem 5.2: Cubic Factors

` ∀ a b1 c1 d1 r x .[
A1
]
Cx b = Cx b1 + Cx a ∗ Cx r ∧[

A2
]
Cx c = Cx c1 + Cx b1 ∗ Cx r[

A3
]
Cx d = Cx c1 ∗ Cx r ∧

⇒ Cx a ∗ x pow 3 + Cx b ∗ xpow 2 + Cx c ∗ x + Cx d =

(x + Cx r) ∗ (Cx a ∗ x pow 2 + Cx b1 ∗ x + Cx c1)

In the above theorem, a, b1, c1, d1 and r are real numbers which represent

coefficients of the cubic factors. Whereas, x is a complex variable. As-

sumptions A1-A3 formally represent the factor decompositions of the cubic

polynomial.

Next, we present formally verified roots of the cubic polynomial using

Definition 5.1, Theorems 5.1 and 5.2 in HOL Light as:

Theorem 5.3: Cubic Roots

` ∀ a b1 c1 d1 r x .[
A1
]
a 6= 0 ∧[

A2
]
Cx b = Cx b1 + Cx a ∗ Cx r ∧[

A3
]
Cx c = Cx c1 + Cx b1 ∗ Cx r ∧[

A4
]
Cx d = Cx c1 ∗ Cx r

⇒ (Cx a ∗ x pow 3 + Cx b ∗ xpow2 + Cx c ∗ x + Cx d = Cx 0)

= ( x = Cx r ∨ x = − Cx b1 +
√
Cx b1 pow 2 − Cx 4 ∗ Cx a ∗ Cx c1

Cx 2 ∗ Cx a
∨

x = − Cx b1 −
√
Cx b1 pow 2 − Cx 4 ∗ Cx a ∗ Cx c1

Cx 2 ∗ Cx a
)
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In the above theorem, Assumption A1 ensures that the leading coefficient of

the polynomial is not zero, i.e., the given polynomial is cubic. Assumptions

A2-A4 provide the factor decomposition of the given polynomial. Based on

these assumptions, Theorem 5.3 formally verifies that the cubic polynomial

has three roots.

To formally analyze the stability of the quartic polynomial, we formally

verify the factor decomposition of a quartic into its two quadratic factors in

HOL Light as:

Theorem 5.4: Quartic Factors

` ∀ a1 b1 c1 a2 b2 c2 x .[
A1
]
Cx a = Cx a1 ∗ Cx a2 ∧[

A2
]
Cx b = Cx a1 ∗ Cx b2 + Cx a2 ∗ Cx b1 ∧[

A3
]
Cx c = Cx a1 ∗ Cx c2 + Cx b1 ∗ Cx b2 + Cx a2 ∗ Cx c1 ∧[

A4
]
Cx d = Cx b1 ∗ Cx c2 + Cx b2 ∗ Cx c1 ∧[

A5
]
Cx e = Cx c1 ∗ Cx c2

⇒ (Cx a ∗ x pow 4 + Cx b ∗ x pow 3 + Cx c ∗ x pow 2 + Cx d ∗ x

+ Cx e = Cx 0) =

( (Cx a1 ∗ x pow 2 + Cx b1 ∗ x + Cx c1) ∗

(Cx a2 ∗ x pow 2 + Cx b2 ∗ x + Cx c2) )

In the above theorem, a1, b1, c1, a2, b2 and c2 are real-valued variables,

which represent coefficients of the quadratic factors of a given quartic poly-

nomial. Whereas, x is a complex variable. Theorem 5.4 formally verifies the

factor decomposition of the quartic polynomial given the Assumptions A1-A5.

Next, we present formally verified roots of the quartic polynomial using

Theorem 5.1 and 5.4 in HOL Light as:

Theorem 5.5: Quartic Roots

` ∀ a1 b1 c1 a2 b2 c2 x .[
A1
]
a 6= 0 ∧

[
A2
]
Cx a = Cx a1 ∗ Cx a2 ∧[

A3
]
Cx b = Cx a1 ∗ Cx b2 + Cx a2 ∗ Cx b1 ∧
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[
A4
]
Cx c = Cx a1 ∗ Cx c2 + Cx b1 ∗ Cx b2 + Cx a2 ∗ Cx c1 ∧[

A5
]
Cx d = Cx b1 ∗ Cx c2 + Cx b2 ∗ Cx c1 ∧[

A6
]
Cx e = Cx c1 ∗ Cx c2

⇒ (Cx a ∗ x pow 4 + Cx b ∗ x pow 3 + Cx c ∗ x pow 2 + Cx d ∗ x

+ Cx e = Cx 0) =

( x = − Cx b1 +
√
Cx b1 pow 2 − Cx 4 ∗ Cx a1 ∗ Cx c1

Cx 2 ∗ Cx a1
∨

x = − Cx b1 −
√
Cx b1 pow 2 − Cx 4 ∗ Cx a1 ∗ Cx c1

Cx 2 ∗ Cx a1
∨

x = − Cx b2 +
√
Cx b2 pow 2 − Cx 4 ∗ Cx a2 ∗ Cx c2

Cx 2 ∗ Cx a2
∨

x = − Cx b2 −
√
Cx b2 pow 2 − Cx 4 ∗ Cx a2 ∗ Cx c2

Cx 2 ∗ Cx a2
)

In the above theorem, Assumption A1 ensures that the leading coefficient of

the the polynomial is not zero and thus confirming that the given polyno-

mial is quartic. Assumptions A2-A6 provide the factor decomposition of the

given quartic polynomial. Based on these assumptions, Theorem 5.5 formally

verifies that the quartic polynomial has four roots.

5.3 Stability Analysis of Polynomials upto the

Fourth Order

Theorem 5.1 allows us to formally verify the stability conditions for the case

of two roots, using Definition 5.1, as:

Lemma 5.1: Complex Root Case

` ∀ a b c x .[
A1
]
a 6= 0 ∧[

A2
]
b pow 2 - 4 ∗ a ∗ c < 0 ∧[

A3
]
0 < b

a

⇒ stable (λ x. Cx a ∗ x pow 2 + Cx b ∗ x + Cx c )
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Lemma 5.2 Real Root Case 1

` ∀ a b c x .[
A1
]
a 6= 0 ∧[

A2
]
b pow 2 - 4 ∗ a ∗ c = 0 ∧[

A3
]
0 < b

a

⇒ stable (λ x. Cx a ∗ x pow 2 + Cx b ∗ x + Cx c )

Lemma 5.3 Real Root Case 2

` ∀ a b c x .[
A1
]
a < 0 ∧[

A2
]
0 < b pow 2 - 4 ∗ a ∗ c[

A3
]
b <

√
b pow 2 − 4 ∗ a ∗ c

⇒ stable (λ x. Cx a ∗ x pow 2 + Cx b ∗ x + Cx c )

Lemma 5.4: Real Root Case 3

` ∀ a b c x .[
A1
]
a < 0 ∧[

A2
]
b pow 2 - 4 ∗ a ∗ c < 0 ∧[

A3
] √

b pow 2 − 4 ∗ a ∗ c < - b

⇒ stable (λ x. Cx a ∗ x pow 2 + Cx b ∗ x + Cx c )

Lemma 5.5: Real Root Case 4

` ∀ a b c x .[
A1
]
0 < a ∧[

A2
]
0 < b pow 2 - 4 ∗ a ∗ c ∧[

A3
] √

b pow 2 − 4 ∗ a ∗ c < b

⇒ stable (λ x. Cx a ∗ x pow 2 + Cx b ∗ x + Cx c )

Lemma 5.6: Real Root Case 5

` ∀ a b c x .[
A1
]
0 < a ∧[

A2
]
0 < b pow 2 - 4 ∗ a ∗ c ∧
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[
A3
]
- b <

√
b pow 2 − 4 ∗ a ∗ c

⇒ stable (λ x. Cx a ∗ x pow 2 + Cx b ∗ x + Cx c )

Lemmas 5.1-5.6 are formally verified using the multivariate complex, real

analysis and transcendental theories available in the library of the HOL Light

theorem prover. The above formally verified results cover all possible condi-

tions on coefficients, of the second order polynomial, and on the discriminant

of the quadratic formula for the stability of roots, as shown in Figure5.1.

Now, Lemmas 1-6 are used to formally assert the stability of a quadratic

polynomial as:

Theorem 5.6: Quadratic Stability

` ∀ a b c x .[
A1
]
a 6= 0 ∧[

A2
]

0 < b
a
∧ ( b pow 2 - 4 ∗ a ∗ c < 0 ∨ b pow 2 - 4 ∗ a ∗ c

= 0 ) ∨

0 < b pow 2 - 4 ∗ a ∗ c ∧

( a < 0 ∧ ( b <
√
b pow 2 − 4 ∗ a ∗ c ∨

√
b pow 2 − 4 ∗ a ∗ c < - b ) ∨

( 0 < a ∧ (
√
b pow 2 − 4 ∗ a ∗ c < b ∨

- b <
√
b pow 2 − 4 ∗ a ∗ c )

⇒ stable (λ x. Cx a ∗ x pow 2 + Cx b ∗ x + Cx c )

Theorem 5.6 provides a formally verified comprehensive result for the stabil-

ity of the quadratic polynomial under all possible cases that may arise due to

the nature of the discriminant, nature of real coefficients of the polynomial

using HOL Light. The formalization of the quadratic polynomial plays a key

role in the formal stability analysis of cubic and quartic polynomials as will

be observed in the next two subsections.

Finally, the above formalization is used to formally verify the stability of

a cubic polynomial as:
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𝑎 ≠ 0

𝑎 > 0 𝑎 < 0

𝛼 =
−𝑏 + 𝑑𝑖𝑠𝑐

𝑎
, 𝛽 =

−𝑏 − 𝑑𝑖𝑠𝑐

𝑎

𝑑𝑖𝑠𝑐 = 0𝑑𝑖𝑠𝑐 > 0 𝑑𝑖𝑠𝑐 < 0

𝑑𝑖𝑠𝑐 = 𝑏2 − 4𝑎𝑐

𝑅𝑒 𝛼 < 0, 𝑅𝑒 𝛽 < 0𝑅𝑒 𝛼 < 0 𝑅𝑒 𝛽 < 0 𝑅𝑒 𝛼 < 0𝑅𝑒 𝛽 < 0

0 <
𝑏

𝑎
𝑏2 − 4𝑎𝑐 < 𝑏 −𝑏 < 𝑏2 − 4𝑎𝑐 𝑏 < 𝑏2 − 4𝑎𝑐𝑏2 − 4𝑎𝑐 < −𝑏

𝑑𝑖𝑠𝑐 > 0𝑑𝑖𝑠𝑐 < 0𝑑𝑖𝑠𝑐 = 0

Theorem 1

Lemma 5 Lemma 6 Lemma 1 Lemma 2 Lemma 4 Lemma 3

Figure 5.1: Stability of Quadratic Polynomial

Theorem 5.7: Cubic Stability

` ∀ a b1 c1 d1 r x .[
A1
]
a 6= 0 ∧

[
A2
]
Cx b = Cx b1 + Cx a ∗ Cx r ∧[

A3
]
Cx c = Cx c1 + Cx b1 ∗ Cx r ∧

[
A4
]
Cx d = Cx c1 ∗ Cx r[

A5
]
0 < r ∨

( ( 0 < b1
a
∧ ( b1 pow 2 - 4 ∗ a∗ c1 < 0 ∨

b1 pow 2 - 4 ∗ a∗ c1 = 0 ) ) ∨

( 0 < b1 pow 2 - 4 ∗ a ∗ c1 ∧

( a < 0 ∧ ( b1
√
b1 pow 2 − 4 ∗ a ∗ c1 ∨

√
b1 pow 2 − 4 ∗ a ∗ c1 < - b1 ) ∨

( 0 < a ∧ (
√
b1 pow 2 − 4 ∗ a ∗ c1 < b1 ∨

- b <
√
b1 pow 2 − 4 ∗ a ∗ c1 ) ) )

⇒ stable (λ x. Cx a ∗ x pow 3 + Cx b ∗ xpow 2 + Cx c ∗ x + Cx d )

Theorem 5.7 provides a formally verified result for the stability of the cubic
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polynomial under all possible values of real coefficients of the cubic polyno-

mial, and explicitly states the relationship among them for satisfying stability

conditions.

Finally, the above formalization is used to formally verify the stability of

a quartic polynomial as:

Theorem 5.8: Quartic Stability

` ∀ a1 b1 c1 a2 b2 c2 x .[
A1
]
a 6= 0 ∧

[
A2
]
Cx a = Cx a1 ∗ Cx a2 ∧[

A3
]
Cx b = Cx a1 ∗ Cx b2 + Cx a2 ∗ Cx b1 ∧[

A4
]
Cx c = Cx a1 ∗ Cx c2 + Cx b1 ∗ Cx b2 + Cx a2 ∗ Cx c1 ∧[

A5
]
Cx d = Cx b1 ∗ Cx c2 + Cx b2 ∗ Cx c1 ∧[

A6
]
Cx e = Cx c1 ∗ Cx c2 ∧[

A7
]
( 0 < b1

a1
∧ ( b1 pow 2 - 4 ∗ a1∗ c1 < 0 ∨

b1 pow 2 - 4 ∗ a1∗ c1 = 0 ) ) ∨

( b1 pow 2 - 4 ∗ a1∗ c1 < 0 ∧

( a1 < 0 ∧ ( b1 <
√
b1 pow 2 − 4 ∗ a1 ∗ c1 ∨

√
b1 pow 2 − 4 ∗ a1 ∗ c1 < - b1 ) ∨

( 0 < a1 ∧ (
√
b1 pow 2 − 4 ∗ a1 ∗ c1 < b1 ∨

- b1 <
√
b1 pow 2 − 4 ∗ a1 ∗ c1 ) ) ∨

( 0 < b2
a2
∧ ( 0 < b2 pow 2 - 4 ∗ a2∗ c2 ∨

b2 pow 2 - 4 ∗ a2∗ c2 = 0 ) ) ∨

( b2 pow 2 - 4 ∗ a2∗ c2 < 0 ∧

( a2 < 0 ∧ ( b2 <
√
b2 pow 2 − 4 ∗ a2 ∗ c2 ∨

√
b2 pow 2 − 4 ∗ a2 ∗ c2 < - b1 ) ∨

( 0 < a2 ∧ (
√
b2 pow 2 − 4 ∗ a2 ∗ c2 < b2 ∨

- b2 <
√
b2 pow 2 − 4 ∗ a2 ∗ c2 ) )

⇒ stable (λ x. (Cx a ∗ x pow 4 + Cx b ∗ x pow 3 + Cx c ∗ x pow 2

+ Cx d ∗ x + Cx e)

Theorem 5.8 provides an exhaustive set of conditions for the stability of the
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quartic polynomial using the HOL Light theorem prover.

5.4 Case Study: Current and Voltage Controllers

in Smart Grids

Smart grids are networks with intelligent nodes to produce, consume and

share the energy efficiently by leveraging upon the advances in the fields

of communication, electronics and computation [62]. There has been an

enormous increase in the usage of smart grid technology over the world in

the last decade or so [30]. Thus, an insecure and unreliable smart grid can

even lead to disastrous consequences [4].

Among many other challenges, energy harvesting from unconventional

sources, such as wind turbines and solar panels, and processing of this energy

is one of the key challenges in smart grids due to the intermittent nature of

the produced energy [89]. To achieve a steady flow from these sources, power

converters are designed to alleviate the problem. This objective is usually

achieved by designing efficient current and voltage controllers for these power

converters so that a smooth supply of power can be ensured, as shown in

Figure 5.2.

We formally verify the stability of an H∞ current, H∞ voltage and H∞

repetitive current controllers designed for the power converters to enhance

the efficiency of smart grids [89]. H∞ [78] and repetitive control [45] are

control methods, which are used for designing suboptimal controllers and

controllers, which enable the power converters to inject a clean power into

the grid system and thus resulting in more reliable and secure grid operations.

The transfer function of an H∞ current controller is given [89] as:

[TF ]i =
1.7998 ∗ 109(s+ 300)

s2 + 4.33403 ∗ 108s+ 1.10517 ∗ 1012
(5.1)
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Figure 5.2: Efficient energy harvesting using Power converter controllers in
smart grids

The characteristic equation of above transfer function is of second order there-

fore we utilize Theorem 5.2 to formally verify the stability in higher-order

logic as:

Theorem 5.9: H∞ Current Controller

` ∀ a b c s .

stable (λ x. Cx 1 ∗ s pow 2 + Cx 4.3340 ∗ 108 ∗ x +

Cx 1.10517 ∗ 1012 )

The transfer function of an H∞ voltage controller is given [89] as:

[TF ]v =
748.649(s2 + 6954s+ 3.026 ∗ 108)

s3 + 10519s2 + 3.246 ∗ 108s+ 7.7596 ∗ 107
(5.2)

The characteristic equation of this transfer function is of third order therefore

we utilize Theorem 5.7 to formally verify the stability in higher-order logic

as:
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Theorem 5.10: H∞ Voltage Controller

` ∀ a b1 c1 d1 r s .[
A1
]
a = 1 ∧

[
A2
]
b1 = 79669 ∧

[
A3
]
c1 = 3.043 ∗ 108 ∧

[
A4
]
r =

2550

⇒ stable (λ x. Cx 1 ∗ s pow 3 + Cx 10519 ∗ s pow 2 + Cx 3.246 ∗ 108

∗ s

+ Cx 7.7596 ∗ 107)

The transfer function of an H∞ repetitive current controller is given [89]

as:

[TF ]vr =
8.63 ∗ 108(s+ 104)(s+ 1000)(s+ 80)

s4 + 1.55 ∗ 108s3 + 1.83 ∗ 1013s2 + 1.43 ∗ 1017s+ 1.08 ∗ 1019
(5.3)

The characteristic equation of above transfer function is of fourth order there-

fore we utilize Theorem 5.8 to formally verify the overall stability in higher-

order logic as:

Theorem 5.11: H∞ Repetitive Current Controller

` ∀ a1 b1 c1 a2 b2 c2 s .[
A1
]
a1 = 1 ∧

[
A2
]
b1 = 1.557 ∗ 107 ∧

[
A3
]
c1 = 1.70538 ∗ 103 ∧[

A4
]
a2 = 1 ∧

[
A5
]
b2 = 8.403 ∗ 103 ∧

[
A6
]
c2 = 6.375 ∗ 105

⇒ stable (λ x. Cx 1 ∗ s pow 4 + Cx 1.55 ∗ 108 ∗ s pow 3 +

Cx 1.83 ∗ 1013 ∗ s pow 2 + 1.43 ∗ 1017 ∗ s + Cx 1.08 ∗ 1019)

5.5 Summary and Discussions

This chapter presents a formalization for the stability analysis of control

systems, which is a safety-critical system specification. We provided a for-

mal definition of stability in higher-order logic and also formally verified the

roots of characteristic equations, upto the fourth order, that are used for

representing the control systems in the complex-domain. Our formalization
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is based on the multivariate complex, real and transcendental theories avail-

able in HOL Light theorem prover and allows us to conduct the stability

analysis of wide range of control systems almost automatically. For illustra-

tion, we also presented the analysis of voltage and current controllers of the

power converters which are used to ensure the efficient and reliable smart

grid operations.

Theorems 5.9-5.11 formally verify the correctness of the power converter

controllers for a smart grid and the reasoning process was very straightfor-

ward, i.e., only a few lines of code and almost automatic based on simple real

arithmetic. The main distinguishing feature of these theorems, compared to

the corresponding results obtained through the traditional methods, is the

explicit availability of all the assumptions required for the results to hold.

As can be noted from Theorems 5.9-5.11 many of these assumptions spec-

ify very important design constraints. If these constraints are not met then

we may get an unstable controller, which can be very dangerous, given the

safety-critical nature of smart grids.
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6

Case Study: Non-ideal Power

Converters

There are three basic non-isolated DC-DC converter topologies, namely,

Buck, Boost and Buck-Boost, as shown in Figure 6.1. Buck and Boost con-

verters step down and up, respectively, the input DC level, whereas, Buck-

Boost can produce an output DC level that can be greater than or less than

the input DC level.

Power converters are usually modeled using ideal circuit components, as

shown in the Figure 6.1, which allow to easily analyze the functionality of

these circuits. However, this kind of modeling does not allow incorporat-

ing power losses due to non-ideal behavior of the storage components and

semiconductor devices [24]. Therefore, non-ideal circuit converter modeling

(using Table 1.2) is mandatory for the design of the real-world power con-

verters. In order to obtain the impact of these non-ideal behaviors, time

domain based periodic steady-state analysis is conducted. The steady-state

parameters are then used to characterize most of the converter design speci-

fications [24]. We develop a logical framework for the first-order differential

equation representation of the non-ideal power converters which implicitly
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implies the assumption of the negligible capacitor ESR. The assumption al-

lows to analyze the output ripple voltage or current that plays a vital in

design of power converters [24] [23].

Mathematically, the converter behavior in each mode can be represented

as a first-order linear differential equation:

d

dt
yn(t) = anyn(t) + bn

yn(tn) = yn−1(tn−1)

y(t
′

0) = y(t
′

0 + Tp)

(6.1)

Where

t ∈ Tp, Tp ∈
l⋃

i=1

[
t
′

i−1, t
′

i

]
, Tp = t

′

max(i) − t
′

0, n, l, k ∈ N

In Equation (6.1), yn is the function of an independent variable t and, an
and bn are real constants in an n-th mode.

In power converters, the time is considered as an independent variable,

whereas, the voltage or current of the energy storage components is con-

sidered as a dependent variable. The constant bn determines if the linear

differential equation is homogeneous or non-homogeneous. The term is non-

zero when energy source is included in the corresponding configuration. For

every mode, the value of the dependent variable at switching instance serves

Vin

L

C Vout

S

1

2

(a) DC-DC Buck Ideal Power
Converter

Vout

L

C

S

1

2

Vs

(b) DC-DC Boost Ideal
Power Converter

Vin L C

S

1

2

Vout

(c) DC-DC Buck-Boost
power converter

Figure 6.1: DC-DC power converters and equivalent ideal converter circuit
models.
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as the initial condition for the next mode, i.e., yn(tn) = yn−1(tn−1), when

switching instance occurs. Whereas, y(t
′
0) = y(t

′
0 + Tp) refers to the steady-

state condition of the circuit using reference time instance, t0, and tmax(i),

which also define the time period, Tp, of the converter circuit.

The solution to any first-order linear differential equation, represented by

Equation (6.1), in each mode is:

yn = − bn
an

+ cne
−ant t ∈ T, 0 < n ≤ l (6.2)

Where cn is an arbitrary constant, which is determined using the steady-state

conditions for specific converter topology. Generally, for a given converter,

the solution for the dependent variable is a piecewise function (1.6) and is

represented using Heaviside function.

y(t) =
l∑

i=0

yl(t)u(t− tl) t ∈ T (6.3)

The solution, i.e., Equation (6.3), represents the behavior of the circuit vari-

able, either current or voltage, over one time period of the circuit. In this

chapter, we present a formalization which enables the formal verification

of periodic steady-state behavior and design of non-ideal power converters

based on the framework encompassed by Equations (6.1)–(6.3). To accom-

plish this task, the first challenge is to develop a formal library of non-ideal

models of the circuit components and steady-state characteristics and spec-

ifications to formally specify the converter circuits in higher-order logic. In

this regard, we utilize higher-order-logic models of circuit components and

steady-state characteristics and specification developed in Chapters 3 and 4.

The second challenge is to formalize the mathematical framework, such as

differential theory and operation calculus, to formally verify the behavior of

the non-ideal converters, operating in steady-state. We tackle this challenge
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by exploiting, the existence of, the common mathematical formulation, as de-

scribed by Equations (6.1)–(6.3), to develop a unified logical framework, in

the HOL Light theorem prover, for the time-domain based steady-state anal-

ysis of non-ideal power converters. We utilize formally verified properties of

generalized functions (Section 3.2) to conduct the formal analysis and design

of power converters. Moreover, we consider CCM operation of the power con-

verters which, further, allows us to account for only two modes, i.e., l = 2,

when a converter is in steady-state. These considerations simplify the formal

analysis to one time period, TP , of the given converter topology without com-

promising the effectiveness of the time-domain based steady-state analysis of

power converters. In many safety or mission-critical applications, converters

are desired to be operated in the CCM, therefore, the formalization can be

employed to a large spectrum of the power processing applications.

6.1 Steady-state Behavior and Specification of

Converters

The steady-state behavior of a given converter circuit topology is formally

specified in HOL Light, using Definitions 4.2 and 4.3, as:

Definition: 6.1 Behavior Specification

` ∀ a1 a2 b1 b2 y ton t. nideal_power_conv_diff_equ a1 a2 b1 b2 y ton t =

if (t < ton) then diff_eq_lhs [a1; 1] (y(t)) t = diff_eq_rhs [b1] [1] t

else diff_eq_lhs [a2; 1] (y(t)) t = diff_eq_rhs [b2] [1] t

In the above definition, a1, a2, b1, and b2 are real coefficients repre-

senting the coefficients of the corresponding system of first-order differential

equations of the converter. The circuit variable of interest, such as voltage

or current, is modeled using a real to complex function y(t). Conditional

(if. . .else) is used to model two modes constituting the time period, TP, of
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the given circuit.

Now, we formally specify the solution of the differential equations, ex-

pressed as Equation (6.3), to formally analyze the behavior of the circuit

variables in HOL Light, as:

Definition: 6.2 Solution Specification

` ∀ c1 c2 s1 s2 sp1 sp2 ton t.

solution c1 c2 s1 s2 sp1 sp2 ton t =
[
linear_sol_comb [ c1] (cexp_lst [s1]) t

+ sp1
]
∗ Cx (semi_switch (t − ton)) +

[
linear_sol_comb [ c2] (cexp_lst

[s2]) t + sp2
]
∗ Cx (1 − semi_switch (t − ton))

In the above definition, s1 and s2 represent general solution, and, sp1
and sp2 represent particular solutions of the given differential equations. The

linear_sol_comb is a higher-order-logic function which models the general

solution of given differential equation. It accepts a list of coefficients, cor-

responding list of exponential functions, as cexp_list, and time variable,

t ∈ (t0, t0 + Tp). Whereas, semi_switch, having switching instance spec-

ified at ton, is used to model the piecewise nature of the solution over the

time period, Tp, of the converter circuit.

We use above formalization to formally verify the steady-state behavior

of the given converter circuit, in higher-order logic, as:

Theorem: 6.1 Behavior Verification

` ∀ a1 a2 b1 b2 c1 c2 s1 s2 sp1 sp2 ton Tp t.[
A1
]
∼(a1 = 0) ∧

[
A2
]
∼(a2 = 0) ∧[

A3
]
(s1 = −a1) ∧

[
A4
]
(s2 = −a2) ∧[

A5
]
(sp1 = −b1

a1
) ∧

[
A6
]
(sp2 = −b2

a2
) ∧[

A7
]
(∼(t = ton) ∧

[
A8
]
(∼( ton ∈ (0, Tp) ) ∧[

A9
]
y t = solution c1 c2 s1 s2 sp1 sp2 ton t

⇒ nideal_power_conv_diff_equ a1 a2 b1 b2 ton t

In the above theorem, Assumption A1-A2 ensure that the order of the

differential equation is not reduced. Assumptions A3-A6 specify the general

74



and particular solution in terms of the circuit parameters, i.e., a1, a2, b1 and

b2. Assumption A7 ensures that the switching instance is excluded. Simi-

larly, Assumption A8 specifies the time period of the converter as an open

interval to exclude the switching instances at the upper and lower bounds

of the time period. Assumption A9 formally specifies the solution of the dif-

ferential equations using Definition 6.2. Finally, based on these assumptions

the steady-state behavior of a converter circuit, as differential equations, is

formally verified in the conclusion.

Once the generic solution for the differential equations for power convert-

ers is formally verified, then, we formally verify the coefficients to specify the

solution w.r.t the given initial condition in HOL Light as:

Theorem: 6.2 Coefficients of a Solution

` ∀ a1 a2 b1 b2 c1 c2 s1 s2 sp1 sp2 ton Tp t.[
A1
]
(∀t. solution c1 c2 s1 s2 sp1 sp2 ton t continuous_on at t ) ⇒

c1 = (solution c1 c2 s1 s2 sp1 sp2 0 t − sp1) ∧

c2 = ( (solution c1 c2 s1 s2 sp1 sp2 0 t − sp1) ∗ cexp (s1 ∗ ton + sp1 − sp2 )

In the above theorem, formal expression for the c1 is formally verified

by simply using function value at t = 0. Whereas, c2 is formally verified

using one-sided limits at switching instance, ton, along with the continuity

assumption, i.e., A2. Both expressions are formally verified in terms of the

initial condition, general and particular solution.

The formalization, in this section, provides higher-order logic framework

for the formal verification of the non-ideal power converters basic topologies

which are modeled using first-order differential equations.

6.2 Steady-state Characteristics

Now, we formally verify a result based on the steady-state principle, i.e.,

Equation (1.8), in HOL Light, as,
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Theorem: 6.3 Steady-state Principle

` ∀ a1 a2 b1 b2 c1 c2 s1 s2 sp1 sp2 ton Tp t.[
A1
]
(∀t. solution c1 c2 s1 s2 sp1 sp2 ton t continuous_on at t ) ∧[

A2
]
( steady_state 0 (∀t. solution c1 c2 s1 s2 sp1 sp2 ton t) 0 =

steady_state 0 (∀t. solution c1 c2 s1 s2 sp1 sp2 ton t) Tp ) ∧[
A3
]
average_ac (0, Tp) (∀t. solution c1 c2 s1 s2 sp1 sp2 ton t) = 0

⇒ b1
a1
− b2

a2
=
(
(solution c1 c2 s1 s2 sp1 sp2 0 t − sp1) ∗ cexp (s1 ∗ ton ) + sp1

− sp2
)
∗ cexp (−a2 * Tp) −

( (solution c1 c2 s1 s2 sp1 sp2 0 t) − sp1 )

In Theorem 6.3, Assumption A1 ensures the continuity of the solution func-

tion. Whereas, Assumption A2-A3 ensure that the converter is operating in

the steady-state. The conclusion of the above theorem is formally verified

using steady-state conditions in terms of the coefficients of differential equa-

tions representing power converters.

Theorem 6.3 is formally verified using the steady-state conditions, i.e.,

Assumptions A2-A3 . Whereas, Theorem 3.1 is used to treat the integral

involved in formally verifying the expression using Assumption A3 and A21.

Finally, we formally verify the ripple quantity of interest, such as voltage

or current, in HOL Light, as,

Theorem: 6.4 Ripple Quantity

` ∀ c1 c2 s1 s2 sp1 sp2 ton Tp t.[
A1
]
(∀ t. y(t) = solution c1 c2 s1 s2 sp1 sp2 ton t) ∧[

A2
]
∼ (( 1 − cexp ( s1 Cx ton + s2 ∗ Cx (TP − ton) ) = Cx 0)

⇒ ripple y ton 0 = (cexp s1 ∗ ton) − 1

1 −
(
cexp (s1 ∗ ton + s2 ∗ (T−ton) )

) [ sP1 ∗ ( cexp s2 ∗ ( TP −

ton ) − cexp ( ( s1 ∗ ton ) + s2 ∗ ( TP − ton ) )
)
+ sP2 ∗

(
1 − cexp s2 ∗ ( TP −

ton )
) ]

+ sP1 ∗
(
1 − cexp ( s1 ∗ ton ) )

In the above theorem, we utilize Definition 4.8 to formally verify the ripple

in the variable of the interest. The solution of the converter is passed as a

function y(t), in Assumption A1, which is evaluated at time instance 0 and
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ton. Whereas, Assumption A2 arises from the algebraic manipulation of the

expression to avoid the divide by zero case.

The formalization, presented in this section, along with the formalization

described in Chapter 3, allows us to formally analyze and verify the steady-

state behavior of the non-ideal power converters, including circuit implemen-

tation and specification behavior, periodic steady-state characteristics and

design specifications.

6.3 Periodic Steady-state Analysis of Non-ideal

DC-DC Buck Converter

DC-DC Buck converter circuits [24], also called step down converter or chop-

per, steps down an input energy level to a desired output energy level.

This basic topology is widely used for power processing in many mission

or safety critical applications, such as earth-orbiting spacecrafts and electric

vehicles [24]. In such applications, non-ideal models of power converter cir-

cuits are used to analyze and verify the design specifications to achieve high

efficiency and performance.

A simple DC-DC Buck converter circuit is shown in Figure 6.2a. Under

the continuous switching action of MOSFET (Q) and diode (D), the circuit

exhibits various configurations, termed as modes of the circuit, to achieve

the desired power conversion. However, in steady-state, the behavior of the

system becomes repetitive over time period, Tp. The time period is deter-

mined by the switching instances ton and toff of Q and D, respectively, i.e.,

Tp = ton + toff. Figure 6.2b shows the equivalent non-ideal model of the con-

verter that is commonly used to analyze the ripple in the inductor current,

which can significantly affect the efficiency, performance and size of the Buck

converters [24]. The first step in the analysis of converter circuits involves

identification of the modes of the given circuit. As shown in Figure 6.2b,
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Figure 6.2: DC-DC Buck power converter and equivalent non-ideal converter
circuit model.

when S2 is connected, and S1 is disconnected then the Buck converter op-

erates in Mode-1, and the circuit behavior can be obtained using Kirchoff’s

voltage law, according to which the algebraic sum of all the voltages within

the network loop must be equal to zero [20], as:

Vs = v1Q(t) + v1L(t) + v1RL
(t) + v1C(t)

v1C(t) = v1load(t) = v1out = I11 (t)Rload

(6.4)

Where Vs is a voltage source, and, v1Q(t), v1L(t), v1RL
(t) and v1C(t) are voltage

drops across Ron, L, RL and C or Rload, respectively, in Mode-1.
Similarly, when S1 is connected and S2 is disconnected then the Buck con-

verter operates in Mode-2, in Figure 6.2b, and the behavior can be obtained
using Kirchoff’s voltage law, as:

VD + vRD
(t) + v2L + v2RL

+ v2C = 0

v2C(t) = v2load(t) = v2out = I21 (t)Rload

(6.5)

Where VD is the forward voltage drop of diode, and, vRD
(t), v2L, v2RL

and

v2C are the voltage drops across RD, L, RL and C or Rload, respectively, in

Mode-2.
Due to negligible capacitor ESR assumption, Equation 6.4 and 6.5 can

be reduced to:
d

dt
I11 (t) + (

Ron +RL +Rload

L
)I11 (t) =

Vs
L

d

dt
I21 (t) + (

RD +RL +Rload

L
)I21 (t) = −

VD
L

(6.6)

The solutions to the above non-homogeneous first-order differential equations
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are:
I11 (t) = (

Vs
Ron +RL +Rload

) + c1 exp
−(

Ron+RL+Rload
L )t

I21 (t) = −(
VD

RD +RL +Rload
) + c2 exp

−(
RD+RL+Rload

L )t

(6.7)

A unified single expression, representing the solution in two modes, can be
expressed using the Heaviside function [19], as:

I(t) = I11 (t)u(t− ton) + I21 (t)(1− u(t− ton)) (6.8)

Once the periodic steady-state circuit variables are available from the im-

plementation and specification of the Buck converter, then, periodic steady-

state characteristics and converter specifications can be obtained by using

the mathematical expressions of Table 1.3.

6.3.1 Topology

The implementation of the non-ideal DC-DC Buck converter, i.e., 6.4 and

6.5, is defined in higher-order logic, as:

Definition: 6.3 Implementation

` ∀ i0 I1 I2 L C Rload RD RL RC Ron Vout Vs VD Vsw ton t.

non_ideal_buck_ckt_impl i0 I1 I2 L C Rload RD RL RC Ron Vout Vs VD Vsw ton t

=

( ∀t. (0 < t) ∧ ∼(t = ton) ⇒ ( Vsw t = switch_volt [ (λt. −−Cx Vs +

semi_resis_model_volt Ron I1 t); (λt. semi_volt_resis_model_volt VD

I1 RD t)] [1 − semi_switch_ (t − ton); semi_switch_ (t − ton)] t ) ∧

(kvl [Vsw; non_ideal_ind_volt I1 L RL; non_ideal_cap_volt i0 (λt. I1 −

I2 C Rc] t) ∧ (Vout t= ideal_resis_volt I1 Rload t) )

In the above definition, the first conjunction formally models the switch

junction voltage, i.e., Vsw, using Definitions 3.1, 3.17, 3.12 and 3.14. The

second conjunction formally models the implementation of the circuit using

Kirchhoff’s voltage law, i.e., Definition 3.15, along with the voltages and
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currents of inductor and capacitors, i.e., Definition 3.8 and 3.10. The as-

sumption in the second conjunction ensures that the circuit behavior is not

specified at the singularity point, i.e., ton.

The correspondence between the implementation and specification of the

given non-ideal Buck converter is formally verified, in HOL Light, as:

Theorem: 6.5 Implementation and Behavior

` ∀ i0 Vs a1 a2 b1 b2 I1 I2 VD L C Rload RL RC RD Ron ton Tp t .[
A1
]
(∀ t. I1 (t) = I2 (t)) ∧

[
A2
]
(RC = 0) ∧[

A3
]
∼ (L = 0) ∧

[
A4
]
a1 = Ron+RL+Rload

L
∧[

A5
]
a2 = RD+RL+Rload

L
∧
[
A6
]
b1 = −Vs

L
∧
[
A7
]
b2 = −VD

L
∧[

A8
]
(t ∈ (0, Tp)) ∧

[
A9
]
∼(t = ton) ∧[

A10
]
non_ideal_buck_ckt_impl i0 I1 I2 L C RD Rload RL RC Ron Vs ton t

⇒ nideal_power_conv_diff_equ a1 a2 b1 b1 y ton t

Assumptions A1 and A2 formally specify that the capacitor current is zero,

which in turn implies that the inductor current is supplied to the resistor in

both the modes. Assumption A3 ensures that the inductance, L, of the in-

ductor is not zero to avoid the undefined divide by zero case in the formal

analysis. Assumptions A6-A8 ensure that the circuit behavior is specified

over one time period of the converter circuit with singularities excluded at

t = 0, t = ton and t = Tp. Finally, Assumption A10 and conclusion predi-

cates formally specify the implementation and behavior of the converter using

Definition 6.2 and 6.3, respectively. The formal verification of the above the-

orem is conducted by using Definitions 3.1-3.18, along with some complex

arithmetic reasoning.

Next, we formally verify the correctness of the solution of the given piece-

wise differential equations, representing BUCK converter behavior, using

Theorem 6.1 and 6.2, in HOL Light as:
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Theorem: 6.6 Behavior Verification

` ∀ i0 Vs a1 a2 b1 b2 I1 I2 VD L C Rload RL RC RD Ron ton Tp t .[
A1
]
∼(Ron = 0) ∧

[
A2
]
∼(RL = 0) ∧

[
A3
]
∼(Rload = 0) ∧[

A4
]
∼(RD = 0) ∧

[
A5
]
∼(VD = 0) ∧

[
A6
]
∼(Vs = 0) ∧[

A7
]
a1 = Ron+RL+Rload

Vs
∧
[
A8
]
a2 = RD+RL+Rload

VD
∧[

A9
]
b1 = −Vs

L
∧
[
A10
]
b2 = −VD

L
∧[

A11
]
s1 =−(Ron+RL+Rload

L
) ∧

[
A12
]
s2 =−(RD+RL+Rload

L
) ∧[

A13
]
(sp1 = −Vs

Ron+RL+Rload
) ∧

[
A14
]
(sp2 = −VD

RD+RL+Rload
) ∧

[
A15
]
∼(t = ton) ∧[

A16
]
(ton ∈ (0, Tp)) ∧[

A17
]
(∀t. y t = solution c1 c2 s1 s2 sp1 sp2 ton t continuous at) ⇒

nideal_power_conv_diff_equ a1 a2 b1 b2 y ton t

Then above theorem formally verifies the steady-state behavior of the

DC-DC Buck converter circuit for a1, b1, a2, b2, s1, s2, sp1 , sp2 , c1 and c2,

which are formally specified in Assumption A7-A14, within the circuit time

period, i.e., (0, Tp).

6.3.2 Steady-state Principle

Next, we formally verify the steady-state principle for the output of the non-

ideal DC-DC Buck converter in HOL Light as:

Theorem: 6.7 Steady-state Principle

` ∀ c1 c2 s1 s2 sp1 sp2 ton Tp t.[
A1
]
∼(Ron = 0) ∧

[
A2
]
∼(RL = 0) ∧

[
A3
]
∼(Rload = 0) ∧[

A4
]
∼(RD = 0) ∧

[
A5
]
∼(VD = 0) ∧

[
A6
]
∼(Vs = 0) ∧[

A7
]
a1 = Ron+RL+Rload

Vs
∧
[
A8
]
a2 = RD+RL+Rload

VD
∧[

A9
]
b1 = −Vs

L
∧
[
A10
]
b2 = −VD

L
∧[

A11
]
(s1 =−(Ron+RL+Rload

L
) )∧

[
A12
]
(s2 =−(RD+RL+Rload

L
) )∧[

A13
]
(sp1 = Vs

Ron+RL+Rload
) ∧

[
A14
]
(sp2 = VD

RD+RL+Rload
)[

A15
]
(steady_state 0 (λt. solution c1 c2 s1 s2 sp1 sp2 ton t) 0 =

steady_state 0 (λt. solution c1 c2 s1 s2 sp1 sp2 ton t) TP ∧
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[
A16
]
average_ac (0, TP) (λt. solution c1 c2 s1 s2 sp1 sp2 t) = 0 ∧[

A17
]
(∀ t. solution c1 c2 s1 s2 sp1 sp2 ton t continuous at t) ⇒

Ron+RL+Rload
Vs

+ RD+RL+Rload
VD

= ( (solution c1 c2 s1 s2 sp1 sp2 ton 0 −
Vs

Ron+RL+Rload
) ) ∗ cexp ( −(RD+RL+Rload

L
) ∗ ton) + Vs

Ron+RL+Rload
+ VD

RD+RL+Rload
) ∗

cexp −(RD+RL+Rload
VD

∗ TP) −

((solution c1 c2 s1 s2 sp1 sp2 ton 0) − Vs
Ron+RL+Rload

)

Assumptions A1-A6 ensure that a1 and a2 are not zero. Assumptions A7-

A14 formally specify the coefficients of the first-order differential equations,

i.e., a1 and a2, and general, s1 and s2, and specific solutions, sP1 and sP2 ,

of the given differential equations. Whereas, A15-A17 formally specifies the

initial, steady-state and continuity conditions, respectively, on the output

current of the given circuit, i.e., solution.

6.3.3 Steady-state Characteristics and Design Specifi-

cations

Finally, we proceed to formally verify the periodic steady-state characteristics

and specifications of a non-ideal DC-DC Buck converter in higher-order logic

as:

Theorem: 6.8 Design and Specifications

` ∀ i0 Vs VD Vin I L C Rload RL RC Ron c1 c2 s1 s2 sp1 sp2 ton Tp C_eff C_ratio t.[
A1
]
(∀ t. I t = solution c1 c2 s1 s2 sp1 sp2 ton t) ∧[

A2
]
(s1 = −(Ron+RL+Rload

L
) ) ∧

[
A3
]
(s2 = −(RD+RL+Rload

L
) ) ∧[

A4
]
(sp1 = Vs

Ron+RL+Rload
) ∧

[
A5
]
(sp2 = −VD

RD+RL+Rload
) ∧[

A6
]
∼
[
( 1 − cexp ( −(Ron+RL+Rload

L
) ∗ Cx ton −

(RD+RL+Rload
L

) ∗ Cx (TP − ton) ) = Cx &0
][

A7
]
average_ac (0, TP) (λt. solution c1 c2 s1 s2 sp1 sp2 t) = 0[

A8
]
C_ratio =

ideal_resis_volt (rms_ac ( 0, TP ) I ton 0) Rload t

Vs
∧[

A9
]
C_eff =

power_ac ( 0, TP ) I ton 0 Rload
power_ac ( 0, TP ) I ton 0 Rload + power_ac ( 0, TP ) I ton 0 (Rload + RD + Ron + RL)

⇒
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[
CONJ1 :

]
ripple I ton 0 =

(cexp (−( Ron+RL+Rload
L

) ∗ ton) − 1)

1 −
(
cexp (−( Ron+RL+Rload

L
) ∗ ton − (

RD+RL+Rload
L

) ∗ (T−ton) )
)[

Vs
Ron+RL+Rload

∗
(
cexp(−(RD+RL+Rload

L
) ∗ (TP − ton)) −cexp((−Ron+RL+Rload

L
) ∗ ton)

− (RD+RL+Rload
L

) ∗ ( TP − ton )
)
+

−VD
RD+RL+Rload

∗
(
1 − cexp −(RD+RL+Rload

L
) ∗ ( TP − ton )

) ]
+ Vs

Ron+RL+Rload
∗
(
1 − cexp ( −(Ron+RL+Rload

L
) ∗ ton )

)
∧[

CONJ2 :
]
rms_ac ( average_ac (0, Tp) I ) ( ripple I ton 0 ) =

1
2csqrt(3) (ripple I ton 0) ∧[

CONJ3 :
]
C_ratio = Rload

2Vscsqrt(3)
(ripple I ton 0) ∧[

CONJ4 :
]
C_eff = Rload

Rload+Ron+RD+RL

In the above theorem, CONJ1 is formally verified using Theorem 6.4, along

with the Assumption A1-A7. Whereas, CONJ2 is a formally verified result for

the RMS value of the current using Definitions 4.7-4.11. Finally, Assump-

tion A8-A9 are used to formally specify the converter ratio and efficiency,

respectively, utilizing definitions of voltage across output load resistor, i.e.,

Definition 3.4, and power loss, i.e., Definition 4.11, due to the non-ideal be-

havior of components of the Buck converter. Formally verified results of

CONJ1− 2 are also employed to formally verify the BUCK converter ratio

and efficiency in CONJ3− 4.

6.4 Summary and Discussions

This chapter presents an approach for the formal time-domain based steady-

state analysis and design of the non-ideal power converter circuits, which are

used in many safety-critical applications, using interactive higher-order logic

theorem proving. Primarily, a logical framework for first-order differential

equations for basic power converter topologies is developed which leverages

upon the formalization of basic circuit theory and differential equations (in

Chapter 3 and 4, respectively) to formally verify the design specifications of
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the real-world power converters The formally verified results provide suffi-

cient conditions on the circuit variables and parameters due to mathematical

rigor involved in verifying the corresponding closed form expressions within

the sound core of HOL Light theorem prover. Based on the proposed formal-

ization, we conducted the formal time-domain based steady-state analysis

and design of a non-ideal DC-DC Buck converter.

The proposed formalization provides a comprehensive logical framework

to formally analyze and verify the behavior and design specifications of non-

ideal power converters in periodic steady-state. Formal models of non-ideal

components of the converter circuits, in Section 3.1, and switching function

technique, in Table 1.2, allow us to formally verify the behavior of the current

or voltage quantities of the circuit components based upon their connections

in the given circuit. Such an analysis is used for the topology selection which

is usually the first step in the circuit analysis [61]. We employed the aforemen-

tioned formalization to formally verify the implementation behavior of DC-

DC Buck converter as Theorem 6.5 in HOL Light. Formally verified results in

Section ??. i.e., Theorems 6.1 and 6.2, allow us to formally express and verify

the time-domain based steady-state behavior of the Buck converter as The-

orem 6.6. Finally, Theorems 6.7 and 6.8 provide formally verified results for

the steady-state characteristics and specifications of BUCK converter, such

as ripple, power loss, efficiency and converter ratio, mainly using Theorems

6.3 and 6.4. In practice, steady-state condition is employed to specify the

values of circuit components, such as inductor and capacitor, for the given

design requirements [24]. Whereas, ripple in the current or voltage quanti-

ties is essential to derive the analytical expression for power losses, and thus,

plays a vital role in designing power converters with desired efficiency and

performance. Unlike traditional analysis techniques [51] [23] [24], the formal

verification within the sound core of HOL Light theorem prover allowed us

to obtain an exhaustive set of assumptions explicitly stating constraints on
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Figure 6.3: Quantification and comparison of formal verification of ideal and
non-ideal power converters

the circuit variables. The real challenge in the proposed formalization was to

account for the singularities due to highly non-linear switching operation in

the converter circuits. Therefore, the proposed formalization ensures secure

and reliable time-domain based periodic steady-state analysis and design of

the power converter circuits for the safety or mission-critical applications.

Moreover, the formal time-doamin based periodic steady-state analysis of

other interesting converter topologies, i.e., non-ideal Boost and Buck-Boost

converters [24], can readily be conducted by just instantiating the variables

with the parameter values of the given converter circuit. The HOL Light

code for the proposed formalization and case study is available for download

at [3].

Figure 6.3 shows the comparison of the verification effort involved in pro-

ducing the mechanized proofs for ideal and non-ideal power converters using

the HOL Light theorem prover. The overall effort has been divided into four

major challenges, i.e., formal modeling, mathematical foundations, steady-

state and design analysis. The formal modeling choice directly affects the
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amount of the formalization of the mathematical notions needed to conduct

the formal analysis of the given system, and, therefore can be regarded as the

most difficult and time consuming phase of the formal verification of power

converters. Given the extensive formal modeling background of the user, the

difficultly level for this part of the proposed formalization was substantially

reduced, as shown in the Figure 6.3. Whereas, the formal periodic steady-

state analysis and design challenges, for the non-ideal power converters, were

of a moderate difficulty level due to the requirement of intensive guidance

from the user to mechanize the proofs. In the formal periodic steady-state

analysis and design of the non-ideal power converters, the multivariate tran-

scendental, differential and integral theories of HOL Light were utilized to

exhaustively specify and verify the systems. Usually, interactive theorem

proving is considered quite expensive in terms of the time and effort required

to accomplish the formal verification task, but this comparison reveals inter-

esting trend of decreasing time and effort required in the presence of reusable

formal libraries. Whereas, resulting formalization of the non-ideal power con-

verters is valuable as it allows to use interactive theorem proving technique

for designing real-world power converters for safety or mission-critical appli-

cations.
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7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have proposed to use higher-order-logic theorem proving

for the analysis and design of power electronics circuits as a complemen-

tary approach to the state-of-the-art simulation and paper-pencil techniques.

Power electronics circuits are characterized as hybrid systems, i.e., the sys-

tems that exhibit continuous behavior driven by discrete switching events,

and thus pose serious challenges of modeling, analyzing and verification us-

ing traditional techniques. The main motivation for developing a theorem

proving based analysis and design framework for power electronics systems

is to leverage upon the high-expressiveness of higher-order logic and sound-

ness of theorem provers to ensure an accurate and exhaustive analysis and

design of power electronics circuits. Thus, the proposed solution can prove

to very useful for the analysis and design of safety and mission-critical power

processing applications.

The primary objective is to develop a comprehensive logical framework

in higher-order logic to facilitate the formal specification and verification of

power electronics systems in both time-doamin and frequency domain. The
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proposed formalization, mainly, facilitates the periodic steady-state analysis,

in time-domain and stability analysis, in frequency domain, of power elec-

tronics circuits. In time-domain analysis, notable feature of the proposed

formalization is that it caters for the hybrid behavior of power electronics

circuits using higher-order-logic theorem proving. In this regard, a formal

library of power electronics circuit components is developed which is ac-

companied by the formalization of basic circuit theory notions and formally

verified properties of piecewise functions. To enable the formal time-domain

based steady-state analysis of power electronics, we also present formaliza-

tion of differential equations that includes formal verification of the circuit

parameters, formal library of important steady-state characteristics and de-

sign parameters. The above formalization framework enables to formally

specify and reason about various crucial aspects of power electronics circuits

in time-domain, including, topology, behavior and parameter verification.

The major advantage of the time-domain formalization is that it caters for

the hybrid behavior of the systems by incorporating singularities which are

inevitable due to switching operation in the modeling and analysis of the

power electronics systems. Moreover, the logical framework is based on the

real-valued complex functions and hence capable of formally specifying and

verifying almost all type of the power electronics systems, such as AC-AC,

DC-AC or AC-DC circuits. The proposed formalization is employed to for-

mally verify the periodic steady-state analysis and design of the ideal and

non-ideal DC-DC Buck converters. The formal verification included topol-

ogy, behavior and design specification of the circuits.

In this thesis, we have also presented a formalization of the stability

theory in complex domain. We formally model the stability definition in

higher-order logic using characteristic equation which is the denominator of

the transfer function of the system. To enable the formal reasoning about the

stability criterion, we also produced mechanized proofs for the factorization of
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the characteristic equations upto the fourth order. Next, we formally verified

the stability criterion for the characteristic equations within the sound core of

the HOL Light theorem prover. The main advantage of the proposed formal

stability analysis is that the formal results are generic and can be readily used

to formally verify all engineering system that have characteristic equations

upto the fourth order. We utilize the proposed formalization to formally

verify the stability of the power converter controllers which are direly needed

to smooth the intermittent energy flow from the wind turbines in a smart

grid. The formal verification in the HOL Light theorem prover resulted in

the exhaustive set of assumptions in terms of coefficients of the characteristic

equations.

7.2 Future Work

The formalization and verification results, presented in this thesis, open new

avenues in using theorem proving for the precise analysis of power electronics

systems as a complement to the simulation and model checking techniques.

The proposed theorem proving logical framework for power electronics sys-

tems can be further equipped and strengthen by adding new features. Some

of the future extensions are outlined below.

• Dynamic behavior of power electronics circuits is vital to the perfor-

mance evaluation. In this regard, a hybrid approach leveraging upon

the strengths of two formal methods techniques, i.e., theorem proving

and model checking, can be very useful. For example, the formally ver-

ified results presented , in Section 4.4 and Chapter 6 can be used to for-

mally specify the automaton representing power converters to evaluate

the dynamic behavior of the power converters, which are traditionally

derived using paper-and-pencil analysis.
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• The proposed formalization of steady-state behavior and design of

power electronics circuits can be easily extended to incorporate the

switching losses of circuits [47], which are also an important considera-

tion in many safety and mission-critical power processing applications.

• The formalization framework of stability can be easily extended to in-

corporate the formal verification of marginally stable and unstable roots

of the presented polynomials, which are also important for the design of

many interesting control system designs in power electronics systems.

• Incorporating formally verified results of this thesis into the conven-

tional computer based tools by linking the HOL Light with these ex-

ternal tools [38], such as MathWorks Simulink/Stateflow [57] and Max-

ima [58], which will allow users (other than formal methods practition-

ers) to generate formal proofs of the power electronics systems.

• The proposed formalization allows to formally verify power electronics

circuits as a single-input single-output system (SISO). However, compli-

cated analysis and design of power electronics systems involves model-

ing the systems as multi-input multi-output systems (MIMO) [64]. The

state space representations largely depends upon linear algebra tech-

niques, such as eigen-value analysis [31], to analyze and design power

electronics systems. In this regard, the proposed formalization of sta-

bility in Chapter 5 can be used to perform runtime verification [50]

of eigenvalues for a system represented and analyzed using state space

representation.
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