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Abstract

Surveillance data images of crowded places have become increasingly important

in today’s world for a variety of reasons. Cloud-based image searching schemes

leverage distributed computing power to search large amounts of data quickly

and accurately, allowing users to easily find relevant images based on their search

queries. Multiple schemes have been proposed but there remain issues related to

the security and privacy of data owners as well as the revelation of search and ac-

cess patterns. Moreover, existing homomorphic techniques for encrypted data are

inefficient enough to be deployed in a real-world environment. A novel scheme for

similar image searching based on homomorphic encryption is proposed for cloud-

connected devices. The scheme is based on probabilistic trapdoors and ensures

the privacy preservation of image data. The scheme also provides search pat-

tern security and is CPA-secure in an adversarial model. The scheme also fulfills

the property of Query-Trapdoor and Trapdoor-Image Indistinguishability. Imple-

mentation and testing of the proposed scheme are carried out over a real-world

data set in order to assess its security and performance in terms of complexity,

computation, and storage overheads.
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Chapter 1

Introduction

1.1 Overview

Surveillance data images of crowded places have become increasingly important

in today’s world for a variety of reasons. In the first place, they are very useful

in preventing and investigating criminal activity, such as theft, vandalism, and

violence. In crowded places, cameras and surveillance data can serve as a de-

terrent to potential criminals, thus reducing crime rates [1]. In addition to their

use in criminal investigations, surveillance data images can also provide valuable

insights into crowd behavior, enabling authorities to detect potential safety haz-

ards or emergency situations before they escalate. This is particularly important

in crowded places such as train stations, airports, and sports arenas, where large

numbers of people gather in confined spaces [2]. Facial recognition in such surveil-

lance systems plays a vital role in carrying out security checks against suspicious

personnel. This is possible nowadays due to installments of intelligent cameras
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and smart surveillance sensors [3].

Surveillance data images can also play a critical role in post-incident investiga-

tions. In the event of a security breach, accident, or emergency, all the data

that has been gathered by these surveillance / smart cameras can be used to re-

construct events, identify potential suspects or witnesses, and help authorities to

develop strategies for preventing similar incidents from occurring in the future [4].

Moreover, the information derived from surveillance data images can be used for

multiple applications; for instance, traffic management, crowd control, and urban

planning. By analyzing the patterns of crowd behavior, traffic flow, and other fac-

tors, authorities can make informed decisions about the design and management

of public spaces, enhancing the safety and well-being of citizens [5].

Figure 1.1: Facial Recognition in Intelligent Surveillance Cameras

The data being used for crowd analysis includes facial detection and then attribute

extraction from those facial images as depicted by figures 6.1 (a) and (b) respec-

tively. The data generated by these devices is so enormously growing each day that

its local storage, management, and security is an issue in itself. With the advance-
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(a) (b)

Figure 1.2: (a) Face Detection (b) Facial Attributes Markings

ments in technology as well as digitization of data, an increase in the necessity for

extra storage capacity has led to the development of multiple third-party storage

servers i.e. cloud services, etc. Cloud Server Providers (CSP) provide storage

as well as different processing facilities to individual users as well as enterprises

where it can be accessed worldwide over internet connectivity [6].

Cloud storage and searching schemes are crucial for the efficient and scalable man-

agement of images stored over the cloud. Cloud storage presents users with the

benefits of on-demand scalable resources and accessibility on a pay-per-use model.

Cloud storage enables users to store large amounts of data without worrying about

storage limitations and can also provide automated backups, ensuring data secu-

rity [7]. In addition, cloud searching schemes make it easier to search and retrieve

images stored in the cloud. Cloud-based image searching schemes leverage dis-

tributed computing power to search large amounts of data quickly and accurately,

allowing users to easily find relevant images based on their search queries [8].

Moreover, cloud searching schemes can also perform image analysis tasks, such
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as object detection/recognition, and content-based image retrieval/classification,

which are essential for various applications, including e-commerce, social media,

and healthcare. Overall, cloud storage and searching schemes play a vital role in

managing and retrieving images stored over the cloud, facilitating fast and effi-

cient access to image data, and enabling innovative applications that rely on image

analysis and search.

However, outsourcing private data poses a threat to confidentiality as the cloud

is termed as honest but curious entity. Another main concern is that many cloud

service providers exploit their customers’ personal information for marketing and

other business objectives. Therefore, to address such issues, the data owners

encrypt their data before outsourcing it to Cloud [9]. Many such encryption

techniques have a number of drawbacks [10] as well as require multiple searchable

encryption schemes [11]. Therefore, it is impossible for a data owner to work on his

cloud data without retrieving it, decrypting it at his end, processing it as needed,

and then encrypting it again in order to return it to the cloud. In addition to

that, additional processing is needed on both the user/owner’s side, which results

in resource usage and time consumption. A lot of searchable encryption techniques

are in use allowing a user to search over encrypted data without the need to disclose

any information about the underlying plaintexts [12].

A basic searchable encryption model is shown in figure 1.3. It contains 3 major

entities i.e., data owner, user(s), and a cloud server. The data owner encrypts

the data and outsources it to the cloud server. Any authorized user generates a

query requesting certain data from the cloud server. In response, the cloud server
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retrieves the requested data and sends that to the user (also known as the client).

The user, in this case, can be the data owner who has outsourced the data and

it can also be some other legitimate user who can access the data at any time

provided he has the required resources. The data can be a document or image or

any other media file.

Figure 1.3: Searchable Encryption Model

As the use of cloud computing becomes more prevalent, the need for efficient and

secure image retrieval methods over the cloud has become increasingly important.

However, the transmission and storage of sensitive visual information, such as

personal images, raises significant privacy concerns. In this research, we propose

a novel privacy-preserving image-based homomorphic approach for similar image

retrieval over the cloud. Our approach utilizes homomorphic encryption tech-

niques to encrypt the visual data, allowing for secure transmission and storage

while preserving the privacy of the users. Additionally, our approach employs an

efficient image-matching algorithm, enabling accurate and fast retrieval of similar

images. Through extensive experiments and comparisons with existing methods,
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we demonstrate the efficiency and security of our proposed scheme for privacy-

preserving similar image retrieval over the cloud.

1.2 Motivation

Cloud storage of surveillance data is a great way to ensure the security and ac-

curacy of important records. By storing this information in the cloud, it can be

accessed quickly by authorized personnel from any location with an internet con-

nection. This makes it easier for authorized users to access critical evidence when

needed, while also providing additional layers of security that are not available

with traditional methods such as paper filing systems or on-site servers. Addi-

tionally, cloud storage allows for automated backups which ensure that all data

remains safe even if there is a power outage or other emergency situation. Fi-

nally, using cloud storage helps reduce costs associated with maintaining physical

infrastructure and provides greater scalability so organizations can easily expand

their capacity as needed without having to invest in new hardware or software

solutions.

This topic is contemporary in its field with the number of users of cloud-connected

devices on an explosive rise day by day. An enormous amount of data is not only

generated but also linked up to many cloud storage(s) where the issue of its privacy

and security still poses a threat. The data from these devices need to be outsourced

in encrypted form so that the data is not accessible to those with no authority

over it. Along with it, the capability to conduct a search over it should also be
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enabled so that the data is accessible easily without the need to download and

decrypt all the data locally. Hence, all searching should be conducted over data

that has been encrypted prior to outsourcing.

Multiple schemes have been proposed but there remain issues related to the se-

curity and privacy of data owners as well as the revelation of search and access

patterns. Moreover, existing homomorphic techniques for encrypted data are inef-

ficient enough to be deployed in a real-world environment. As a result, the ability

to efficiently search over encrypted data using lightweight homomorphic encryp-

tion techniques, together with the necessity for huge data storage in the cloud,

serves as the motivation for this research.

1.3 Advantages and Applications

As the explosive rise is being observed every day in the field of cloud computing,

artificial intelligence, and generation of big data, the data owners are now shifting

towards cloud services which reduces the storage and computational overhead for

resource-constraint devices at the user end. These services are still not getting

attention due to security concerns. Users care about the privacy of their data

being shared and stored outside their jurisdiction. Fortunately, data processing

in the encrypted domain can overcome this issue and provides different privacy-

preserving techniques. Data processing in encrypted domain techniques already

proposed by researchers is not secure for users in terms of privacy-preserving as

approximately all these techniques do the deterministic query searching for batch
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search. In this thesis, we will propose a novel technique that will be capable of

a probabilistic query searching using homomorphic encryption. This will enhance

the privacy of users in terms of search pattern leakage attacks. It also gives users

privileges to control access to their data.

The proposed research has multiple applications where we have big data to han-

dle and confidentiality is a crucial parameter. These vast regions of applications

include but are not limited to:

• The industry of vehicle automation is much broader than a commercial car

setup. As a result of the variety and utility of applications, automated

systems have become increasingly popular with a clear growth market for

vehicles / self-driving vehicles.

• E-healthcare-based medical setups using cloud services for maintenance of

their medical data records.

• IoT-based organizations using cloud services for outsourcing their data.

• Crowded places e.g., airports, railway stations, parking lots, etc. where

security cameras are deployed and connected to cloud services for constant

monitoring and storage.

• Multiple government and private organizations use cloud services for their

outsourced data.

The applications of homomorphic encryption lie in sectors of finance, healthcare,

the military, and different governmental bodies. There are different stakeholders
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in every industry as these deal with sensitive data on a daily basis that is to be

kept confidential in storage as well as secured in its communication. For some

applications in military intelligence, homomorphic encryption (HE) can assist to

balance threats and usefulness in information and data exchange. In summary,

many corporations’ data privacy and utility concerns, particularly sensitive ones,

now need unpalatable trade-offs, which can have terrible consequences for both

corporations and their contributors. Homomorphic encryption schemes potentially

offer a unique solution at a low cost relative to the potential consequences [13].

Many such organizations now outsource their data to cloud storage services where

secrecy and privacy are major concerns.

1.4 Problem Statement

With the widespread use of smart devices and the growth of mobile applications,

a significant amount of image data is being generated daily. However, due to

the limited storage capacity of end-user devices, data needs to be stored exter-

nally, which is often provided by cloud service providers (CSPs). CSPs offer not

only storage but also the capability of searching and processing data over the in-

ternet, without restrictions based on user geo-location or jurisdiction. However,

outsourcing data to CSPs raises privacy concerns as most CSPs do not offer en-

cryption as a service, and those that do, lack techniques for privacy-preserving

image retrieval. Existing searching techniques are not secure enough to protect

user privacy. Many such schemes are deterministic in nature and thus, prone to
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search pattern attacks. Moreover, most image processing and retrieval schemes

do not support content-based image retrieval. Therefore, there is a need for an

image retrieval technique that can ensure user privacy for batch queries, provide

probabilistic searching over the cloud, and support fuzzy searching as well as re-

trieval. This thesis aims to address these challenges by focusing on probabilistic

searching and retrieval scheme for similar images stored over the cloud server.

1.5 Research Methodology

The research methodology for a homomorphic encryption-based searching scheme

for cloud-connected images is divided into different stages. Firstly, a comprehen-

sive literature review of existing homomorphic encryption-based image searching

schemes will be conducted which will help to identify the limitations of existing

schemes and identify opportunities for improvement. The system architecture

will be designed, and the requirements for the proposed homomorphic encryption-

based image-searching scheme will be identified. The system model will be de-

signed to ensure that it meets the requirements for secure and efficient image

searching over the cloud. After that, a homomorphic encryption-based image-

searching scheme will be designed that satisfies the requirements identified in the

previous stage. The scheme will use advanced cryptographic techniques to ensure

that the user’s privacy is protected while allowing efficient searching of encrypted

image data over the cloud. Lastly, the proposed scheme will be implemented, and

its performance will be evaluated through various metrics, including efficiency, ac-
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curacy, and security. The results will be compared with existing image-searching

schemes, and the advantages and limitations of the proposed scheme will be iden-

tified. The scheme will be tested on a cloud computing platform to ensure that

it can handle large amounts of data and support concurrent user queries. Finally,

the thesis will conclude with a discussion of the proposed scheme’s limitations and

some future directions.

1.6 Research Objectives

The main contributions of this study are:

• A comprehensive literature review and analysis of object detection algo-

rithms and existing privacy-preserving image-based searchable encryption

techniques for cloud-connected devices.

• A novel scheme for similar image searching based on homomorphic encryp-

tion is proposed for cloud-connected devices. The scheme is based on prob-

abilistic trapdoors and ensures the privacy preservation of image data.

• Implementation and testing of the proposed scheme are carried out over a

real-world data set in order to assess its security and performance in terms

of complexity, computation, and storage overheads.

1.7 Thesis Organization

The thesis is organized into the following chapters as follows:
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• Chapter 1: This chapter provides a brief overview of the subject, dis-

cusses the motivation for this research, discusses some applications, presents

the problem statement, explains the research goals and approach, and fi-

nally summarizes the contributions.

• Chapter 2: The chapter provides an introduction to searchable encryption

and its types. It also presents homomorphic encryption and discusses some

preliminaries. A comprehensive discussion on object detection algorithms

and some of the latest existing SE schemes are put forward and a comparative

analysis is carried out of some latest state-of-the-art SE schemes over the

cloud. Lastly, some challenges and design goals are presented for a searchable

encryption scheme over cloud storage.

• Chapter 3: The chapter presents the system model with security assump-

tions, security goals, and threat model.

• Chapter 4: The chapter presents the proposed scheme with all its phases

in detail.

• Chapter 5: The chapter revisits security definitions and presents the secu-

rity analysis of the proposed scheme.

• Chapter 6: The chapter presents the performance analysis of the proposed

scheme in terms of computational complexity and storage overhead.

• Chapter 7: This chapter concludes the research.
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Chapter 2

Literature Review

2.1 Overview

The chapter presents an overview of searchable encryption schemes and their types.

It also discusses homomorphic encryption and briefly explains the Paillier Homo-

mophic cryptosystem. Some basic preliminaries are discussed. A comprehensive

literature review is carried out for existing SE schemes as well as object detec-

tion algorithms. Lastly, a comparison is drawn among the latest image-based SE

schemes for cloud-connected devices.

2.2 Searchable Encryption

Over the past few years, the exponential digitization of data and its processing

have given birth to many issues with respect to data storage, maintenance, and

availability of required resources to carry out these functionalities. Third-party
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storage mediums provided a solution for the above-mentioned issues [14]. However,

the cloud has been unanimously termed as ’honest but curious’, and different

security measures are required to ensure the privacy of data before outsourcing

it to cloud storage (CS). In simple terms, a data owner wants to outsource data

but not before encrypting or securing it from any threat from the cloud. Since

the data is stored in encrypted form on the cloud, at the user’s end, encrypted

queries have to be generated and all the processing and searching has to be carried

out over encrypted data [15]. These different searching techniques are termed

Searchable Encryption (SE) [16]. Description, merits, and demerits of different

types of searchable encryption are mentioned in table 2.1.

Table 2.1: Description of Different SE Schemes

Scheme Type Description Merits Demerits

Symmetric SE

(SSE) [17]

Data queried and

retrieved via trap-

door generation

High efficiency, good

security and reliabil-

ity

Prone to information

leakage

Public Key

Encryption

with Keyword

Search (PEKS)

[18]

Data and indices

encrypted with

owner’s public key

More secure than

Symmetric search-

able encryption

(SSE)

Less efficient than

SSE
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Continuation of Table 2.1

Scheme Type Description Merits Demerits

Identity-Based

Encryption

(IBE) [19]

based on PKE wih

key generated by

user’s identity

high efficiency, se-

mantic security and

provides access con-

trol

deterministic search-

ing and queries pat-

terns

Predicate en-

cryption (PE)

[20]

searching over

encrypted data,

queries based on

tokens

no information leak-

age issues, more effi-

cient than PEKS

requirement of high

resources than PEKS

Inner Product

Encryption

(IPE) [21]

based on IBE

schemes and pay-

load hiding

efficiency and high

security with access

control

requirement of high

resources

Multi-keyword

Ranked Search

Encryption

(MRSE) [22]

based on searching

algorithm with sim-

ilarity of keywords

preservation of user’s

privacy

Limited keyword dic-

tionary

Private Infor-

mation Re-

trieval (PIR)

[23]

data retrieval from

CSP without any

keyword or search

queries pattern

leakage

low resources, less

cost of communica-

tions

does not support

searching over plain-

texts
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Continuation of Table 2.1

Scheme Type Description Merits Demerits

Homomorphic

Encryption

(HE) [24]

enable computa-

tions and searching

capability over

encrypted data

end-to-end data pri-

vacy

high computational

and storage over-

heads

End of Table

2.3 Homomorphic Encryption (HE)

Homomorphic encryption schemes enable users to efficiently analyze and operate

on data without decryption, saving resources and time [25]. This entails that

operations that have been carried out over encrypted data will yield the same re-

sults as if done on plaintexts and encryption carried out afterward. Similarly, the

results would be the same if encrypted data undergoes some processing, the un-

derlying plaintext will retain all its original properties. The operations performed

in these cases can be additive or multiplicative where M1 and M2 are two different

plaintexts of messages [26].

• Additive Homomorphic encryption:

E(M1⊕M2) = E(M1)⊗E(M2)

• Multiplicative Homomorphic encryption:

E(M1⊗M2) = E(M1)⊗E(M2)
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Various homomorphic encryption techniques i.e. partial, full and somewhat ho-

momorphic encryption are addressed in [27] [28]. Homomorphic encryption tech-

niques are employed in cloud computing as it allows multiple operations on already

encrypted data without disturbing the integrity of plaintexts. However, the draw-

back of homomorphic encryption is its slow computation time [29]. There are

three types of homomorphic encryption:

1. Fully Homomorphic Encryption (FHE): FHE is the most powerful

type of homomorphic encryption, allowing for arbitrary computations to

be performed on ciphertext data without the need for decryption. FHE is

computationally intensive and currently impractical for most use cases due

to its high computational and memory requirements.

2. Partially Homomorphic Encryption (PHE): PHE allows for a single

type of operation to be performed on ciphertext data without requiring de-

cryption. This type of homomorphic encryption is typically faster than FHE

but is still limited in its functionality.

3. Somewhat Homomorphic Encryption (SHE): SHE is an intermediate

type of homomorphic encryption that can perform a limited set of operations

on ciphertext data without the need for decryption. SHE can be faster and

more efficient than FHE or PHE, making it a popular choice for practical

use cases.

In general, the choice of homomorphic encryption type depends on the specific

use case and the required level of functionality, performance, and security. A
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comparison is given in table 2.2.

Table 2.2: Comparison of Different HE Schemes
Particulars PHE SHE FHE
Number of

Computations 1 1 (upto some
complexity) multiple

Operations
Allowed

either addition
or multiplication

either addition
or multiplication

both
addition and
multiplication

Arbitrary
Computations

not
allowed

not
allowed allowed

Computation on
Encrypted Data yes yes yes

Limitations one
operation

limited
circuit
depth

huge
memory

requirement
Example RSA Gentry Fujitsu

2.4 Preliminaries

2.4.1 Advanced Encryption Standard (AES)

AES is a block cipher [30] based on an iterative structure and Substitution-

Permutation Network with a specified block length of 128 bits (16 bytes / 4 words).

It implies that it processes a data block of 4 columns of 4 bytes (state) taking 128

bits of input i.e. plain-text along with key and outputs an encrypted block i.e.

cipher-text. Since AES is a symmetric key algorithm, the same key is used for

encryption as well as the decryption process. The key size, however, is flexible as
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it can be 128 bit, 192 bits or 256 bits long.

CT = Ek(PT )

PT = Dk(CT )

where : PT = plain− text;

CT = cipher− text;

E = Encryption function

D = Decryption function

k = symmetric key

It is extremely difficult to launch attacks on AES and brute forcing an AES al-

gorithm requires 2key−length which renders the attempt ineffective and highly ex-

tensive. So far, AES is the most secure encryption mechanism being employed all

over the research domain [31].

2.4.2 Paillier Homomorphic Cryptosystem

Pascal Paillier proposed the Paillier cryptosystem [32] based on probabilistic en-

cryption. This partial homomorphic encryption scheme depicts additive homomor-

phic property and is IND-CPA secure. The basic structure of Paillier cryptosystem

is shown in figure 2.1.

Paillier HE allows support for both addition as well as scalar multiplication such

as:
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Figure 2.1: Paillier Homomorphic Cryptosystem

• Homomorphic Addition: For two plaintexts messages m1 and m2 with

corresponding ciphertexts i.e., c1 and c2; the homomorphic addition is car-

ried out by computing (c1 ∗ c2) modn2 = g(m1+m2) ∗ (r1 + r2) mod n2, where

r1 and r2 are some random numbers used in their encryption.

• Homomorphic Scalar Multiplication: For a message m with a cipher-

text c and a scalar number k, the homomorphic scalar multiplication is

carried out as: ck mod n2 = gmk ∗ rkn mod n2 where r is a random number

used in its encryption.

2.4.3 Image Hash

An image hash is a compact representation of an image, usually a string of num-

bers or characters that represent its visual characteristics [33]. Once the hash is
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generated, the image can be compared to other images or identified in a database

based on the hash.

Image −→ Image Hash Function −→ hash of image −→ Hash Database

Images are hashed by converting them into a standard format, reducing their size,

and then using an algorithm to generate unique values based on their content.

There are a variety of applications for image hashing, including image recognition,

content-based image retrieval, and image verification [34]. Applications of image

hashing include multimedia retrieval, social network analysis, and information

retrieval [35].

2.5 Related Work

2.5.1 Object Detection Algorithms

Early research on pattern recognition laid the groundwork for modern object de-

tection and computer vision in the late 1970s to 1980s. Several object detection

algorithms have been put forward by researchers since then [36] [37]. The first

algorithm to combine convolution neural networks (CNN) with the RP method

was R-CNN [38]. It was dual-stage and required high running time and storage

space while carrying out feature extraction of the region of interest (ROI). An

enhanced version, fast RCNN [39] was presented by the use of SPPNET [40].

Another scheme FPN [41] is based on fast RCNN with the capability to process

different image scales. A more improved dual-stage version; faster RCNN [42] was
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proposed with better performance metrics but was also limited to slow real-time

object detection as well as its latency in the training of customized data. Mask

RCNN [43] is based on semantic segmentation masking with high accuracy but

lacks efficiency in the detection of masks at the pixels’ level.

YOLO [44] is a single-stage detection algorithm using Darknet with lesser require-

ment of storage and computational time. It is bound by its object proximity to

accuracy issues. YOLO v2 [45] is based on the novel Dark Net19 with the capabil-

ity to detect over 9000 object classes yet is inaccurate in detecting sizes of objects

from blurry images. SSD [46] was proposed with combined features of RPN and

YOLO. A single-stage algorithm RetinaNet [47] uses the function of focal loss

and claims higher accuracy rates. R-FCN [48] is a dual-stage region-based object

detection algorithm. YOLO v3 [49] is good for real-time object detection applica-

tions and supports Multiple Object Tracking (MOT) [50]. The purpose of MOT

technology is to provide a continuous sequence of images/video frames, identify

moving objects in each frame, and assign the same object an accurate and partic-

ular ID. Other MOT supporting algorithms include Simple Online and Real-time

Tracking (SORT) [51], its enhanced version deepSORT [50], Joint Probabilistic

Data Association Filter (JPDAF) [52], Multiple Hypothesis Tracking (MHT) [53]

and YOLO v4 [54]. Object detection has been revamped as part of the devel-

opment of YOLO v4. Its architecture is based on the CSPDarkent53. Spatial

pooling is used in the backbone to improve receptiveness and identify the required

properties of data images/video frames [54]. A timeline of various object detection

algorithms is described in table 2.3.
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Table 2.3: Description of Different Object Detection Algorithms

Year Name Description

2001 Viola - Jones Al-

gorithm [55]

The Viola-Jones algorithm was one of the earliest

object detection algorithms. It used Haar-like fea-

tures and a boosting classifier to detect faces in

images.

2005 Histogram of

Oriented Gra-

dients (HOG)

[56]

The HOG algorithm used gradients of an image to

detect object edges and was able to achieve high

results in pedestrian detection.

2006 Deformable Part

Model (DPM)

[57]

The DPM algorithm introduced a part-based

model for object detection, where an object is

made up of several parts that can be detected in-

dependently.

2008 Deformable

Parts Model

(DPM) [58]

It was introduced with improved accuracy of ob-

ject detection by modeling the parts of the object

and their spatial relationships.

2011 Region-based

Convolutional

Neural Networks

(R-CNN) [38]

R-CNN was introduced using deep learning tech-

niques.
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Continuation of Table 2.3

Year Name Description

2014 Fast R-CNN [39] Improved version of R-CNN was introduced, which

significantly improved the speed and accuracy of

object detection using a single deep neural net-

work.

2015 Faster R-CNN

[42]

The Faster R-CNN algorithm used a Region Pro-

posal Network (RPN) to generate region proposals

and a Fast R-CNN network to classify and refine

them.

2015 FaceNet [59] FaceNet used a convolutional neural network

(CNN) for facial feature extraction.

2016 Single Shot

MultiBox De-

tector (SSD)

[46]

The SSD algorithm used a single network to per-

form both region proposal and object detection,

achieving real-time performance.

2016 Multi-Task

Cascaded Con-

volutional

Neural Networks

(MTCNN) [60]

Multi-Task Cascaded Convolutional Neural Net-

works (MTCNN) used a cascaded convolutional

neural network to detect faces and extract facial

landmarks.
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Continuation of Table 2.3

Year Name Description

2016 You Only Look

Once (YOLO)

[44]

The YOLO algorithm used a single neural network

to predict bounding boxes and class probabilities

straight from full images, also achieving real-time

performance.

2017 Mask R-CNN

[43]

The Mask R-CNN algorithm extended Faster R-

CNN by adding a branch for predicting object

masks in addition to bounding boxes and class

probabilities.

2017 RetinaNet [47] The RetinaNet algorithm used a focal loss function

to address the class imbalance problem in object

detection, achieving state-of-the-art results.

2018 YOLO version 2

[45]

The YOLO v2 achieved better accuracy in the de-

tection of objects in higher resolution images as

well as lightweight architecture.

2018 YOLO version 3

[49]

The algorithm boasted a higher accuracy and bet-

ter performance in case of detection of smaller ob-

jects.

2018 Cascade R-CNN

[61]

The Cascade R-CNN algorithm used a cascade

of classifiers to refine object detections, achieving

state-of-the-art accuracy on some benchmarks.
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Continuation of Table 2.3

Year Name Description

2019 EfficientDet [62] The EfficientDet algorithm used an efficient back-

bone network and compound scaling to achieve

state-of-the-art accuracy and efficiency on object

detection benchmarks. It has several versions, in-

cluding EfficientDet-D0 to EfficientDet-D6.

2019 CenterNet [63] The CenterNet algorithm used a keypoint esti-

mation approach to detect object centers and

their corresponding bounding boxes. It has sev-

eral versions, including CenterNet-104, CenterNet-

Hourglass-104, and CenterNet-MobileNetV2.

2019 FreeAnchor [64] The FreeAnchor algorithm used a novel anchor-

free approach to object detection, achieving state-

of-the-art accuracy on some benchmarks.

2019 FSAF (Fea-

ture Selective

Anchor-Free)

[65]

FSAF was introduced, which is an anchor-free ob-

ject detection model that uses a novel feature selec-

tion strategy to identify object locations in feature

maps without explicit anchor boxes.
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Continuation of Table 2.3

Year Name Description

2020 YOLO version 4

[54]

YOLO v4 used a number of innovations to improve

accuracy and speed, including a larger network,

multi-scale training, and a new data augmentation

strategy.

2020 EfficientPS [66] The EfficientPS algorithm used a novel feature

pyramid architecture, efficiently improving object

detection accuracy.

2020 SpineNet [67] The SpineNet algorithm used a novel architec-

ture for backbone networks in object detection,

achieving state-of-the-art accuracy and efficiency

on some benchmarks.

2020 RepPoints [68] The RepPoints algorithm used a set of representa-

tive points to represent objects, which were then

used for object detection/segmentation.

2020 DEtection

TRansformer

(DETR) [69]

The DEtection TRansformer (DETR) algorithm

introduced a transformer-based architecture for

object detection, which directly predicted object

instances and their positions without requiring re-

gion proposals.
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Continuation of Table 2.3

Year Name Description

2021 Sparse R-CNN

[70]

The Sparse R-CNN algorithm used a sparsity-

inducing regularization to learn a sparse set of re-

gion proposals, achieving state-of-the-art accuracy

while reducing computation cost.

2021 Deformable DE-

tection TRans-

former (DETR)

[71]

The Deformable DEtection TRansformer (DETR)

algorithm used deformable transformers to im-

prove the performance of DETR on small objects

and densely packed scenes.

2021 YOLO version 5

[72]

Improved version in terms of video frames/web-

cam detection with easy weights transfer. More

lightweight and fast than the previous versions.

2022 Panoptic FPN

[73]

The Panoptic FPN algorithm introduced a unified

architecture for both instance segmentation and

semantic segmentation, achieving state-of-the-art

results on several benchmarks.

2022 YOLO version 6

[74]

Improved version in terms of small object detec-

tion but low flexibility and stability as compared

to YOLO v5.
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Continuation of Table 2.3

Year Name Description

2022 YOLO version 7

[75]

YOLO v7 introduced an object detection model

with higher accuracy than previous versions but

low speed than v6.

End of Table

Comparing deep learning image/object detection algorithms can be a complex

task as there are many different factors to consider. However, some key areas of

comparison include accuracy, speed, and efficiency.

• Accuracy: The accuracy of an image detection algorithm is determined by

its ability to correctly identify objects in an image. One way to measure

accuracy is through the use of the mean average precision (mAP) metric. A

higher mAP score indicates better accuracy.

• Speed: The speed of an image detection algorithm is determined by how

quickly it can process an image and output the results. This can be measured

in terms of frames per second (FPS) or inference time.

• Efficiency: The efficiency of an image detection algorithm is determined

by how well it performs while using the least amount of resources possible,

such as memory and processing power.

In summary, the choice of deep learning image detection algorithm depends on the

specific needs of the application. If accuracy is the top priority, Faster R-CNN or
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RetinaNet may be the best options, while YOLO or SSD may be preferred if speed

is the most important factor. Additionally, it’s worth considering the efficiency of

the algorithm to ensure it runs well on the available hardware resources.

2.5.2 Literature Review

Over the years, research into image processing techniques has resulted in a need for

high computations and resources. There are various image processing techniques

available providing a vast field for image searching mechanisms [76] [77]. This

literature review aims to provide an overview of the current state-of-the-art image-

based SE schemes for cloud storage and retrieval [78] [79].

Image-based searchable encryption (SE) schemes for the cloud have become in-

creasingly popular in recent years due to the growing need for secure and efficient

cloud storage of image data. In these schemes, image data is encrypted and stored

in the cloud, while users can search for specific images using keywords or image

content without compromising the security of the data [80] [81].

The first approach of SE over image data is credited to [82] via Scale Invariant

Feature Transform (SIFT) [83]. A major drawback of the research was that it

lacked privacy preservation property and had a huge overhead on the user’s end.

By using a multi-cloud model, [84] addresses these vulnerabilities by preserving

the user’s privacy while preserving the original SIFT features of the image. This

protocol involved two cloud servers and operations involved the division and ex-

traction of image features. This scheme was limited by its deterministic approach
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as query patterns and no randomness factor and was thus prone to traceability

attacks.

Using Paillier cryptography, a scheme for extracting image features was proposed

in [85]. The scheme privacy preservation using SIFT (PPSIFT) discussed a com-

prehensive security analysis based on discrete logarithm problem (DLP) and RSA

encryption algorithm and showed that it provides various attributes of image fea-

ture detection e.g. descriptor matching, local extrema extraction, and descriptor

calculation over an encrypted domain with a single pre-communication round for

data synchronization. Authors claimed that their proposed scheme provides pri-

vacy preservation using SIFT and is secure against ciphertext-only attack (COA).

This scheme, while providing more security than simple homomorphic-based SIFT

is however computationally extensive and requires a high-powered server.

The authors in [86] analyzed the design goals and technical challenges associated

with a cloud-based image processing system. Design targets as set by this re-

search are three-fold with the first target as the functionality i.e. selection of a

specific algorithm from various image processing techniques available according

to the available resources. The second target is set as security requirements with

regard to safeguarding the contents of data (images) from any modification or

theft etc. The efficiency of the overall scheme is kept as the third and final design

target which includes the operational, computational as well as communication

complexity. The research incorporated both local and global feature-based image

searches. Global feature implies the search over the entire image. It involves a

single round of queries and responses between the user and the cloud server. It

31



was carried out by RGB histogram [87] after which the following color descriptor

was computed i.e. Colour Layout Descriptor (CLD) and Colour Structure De-

scriptor (CSD). Local feature extraction for image search means the search over

patches or small vectors containing image data. It involves two rounds of queries

and responses between the cloud server and user/client. SIFT or Histogram of

oriented gradients (HOG) was used for feature extraction from image data.

However, it was seen that the ciphertexts release considerable information leakage

about the plaintexts and simple SIFT or HOG algorithms are insufficient to pro-

tect the contents of images from the cloud server. Similar was the case in global

feature-based image searches. Thus, an additional encryption scheme of homo-

morphic encryption is studied and applied to gain sufficient security over images

before outsourcing data to cloud storage. The overall efficiency of the system is

based on 3 outlooks i.e. computational efficiency at the user’s and cloud’s end

and communication overhead between cloud and user. However, it poses an issue

regarding the efficiency of the system as additional encryption mechanisms imply

an increase in complexity and security but a decrease in overall efficiency. One of

the solutions to this problem is to create a multi-server environment. Another so-

lution is to employ a somewhat homomorphic encryption (SHE) scheme including

secure extraction and detection of image features as well as secure retrieval of im-

ages and matching mechanisms. The drawback with SHE is its finite operational

capabilities with a limited number of multiplications. It can be resolved by a com-

bination of SHE with any technique of multiparty computation. It will provide

better efficiency and better performance than the two schemes being employed
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separately.

Using somewhat homomorphic encryption (SHE), a Hahn Moment-based approach

preserves the privacy and confidentiality of reconstructed images [88]. The merit

of this research was its low utilization of computational power and resources as

compared to other image processing techniques i.e. Discrete Wavelength Trans-

form (DWT) and Discrete Cosine Transform (DCT) [89]. Another merit of this

technique is the usage of Hahn’s calculations and equations with their simple ad-

ditive and multiplicative operations, lack of or very small high-end computations,

low noise sensitivity, and ability of good quality restoration especially in this par-

ticular case of orthogonal Hahn’s equations [90]. Its major application lies in the

domain of pattern and image assessment as well as its identification [91]. However,

the limitation of this model, though based on privacy-preserving homomorphic en-

cryption (PPHE), is its deterministic approach to image searches. It means that

search queries for an image will always yield the same results which can lead to

sniffing attacks.

Another approach to carrying out searching for an image feature similarity in a

cloud setting was presented in [92]. It addressed extraction of both local and

global features using Earth Mover’s distance measure, as well as searchable index

generation. The data owner creates a data set of features (both global and local)

and generates an index for efficient searching. Both these images and indices are

then encrypted at the owner’s end and outsourced to the cloud. The user while

searching has to create an encrypted query through the extraction of a feature

vector from the image and send it to CSP which will respond back with images
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after comparison with the similarity index. The user has to decrypt the image at

its end. This scheme can be applied for Content-based Image Retrieval (CBIR)

but it will require huge storage requirements. The scheme has the demerit of

its increasing computational complexity with an increase in the number of data

images being stored on CSP. More storage will require more searching time and

thus will bring down the overall efficiency.

In [93], a technique for image data privacy preservation based on Linear Binary

Pattern (LBP) was proposed to extract features from images and converting im-

ages to matrices after their encryption. To safeguard the image content, the cen-

tral value of the image-turned-matrix is set as a specific binary value. The user

encrypts the image’s MSB by XOR operation with the Bit plane randomization

method before outsourcing it to the cloud where true random numbers are em-

ployed to ensure the confidentiality and privacy of images. Upon any query from a

user, CSP performs its operations on encrypted data. The merit of this technique

is its low operational overhead at the cloud’s end and no or little additional com-

munication issues between the user and the cloud server. This scheme is limited

as it is only verified over grayscale image data and is feasible for feature-based

search. It does not contribute towards content-based image retrieval (CBIR). An-

other major drawback includes the lack of security for search queries from the

user’s end and its susceptibility to threats regarding insecure search patterns.

A novel scheme was presented in [94] that took elements from Secure Modular

Hashing (SMH) [95] and K-means [96]. Secure modular hashing is a technique of

determining the distance between 2 signals using hashing approach on a modular
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embedded system. K-means is used for the estimation of similarity among a

cluster between 2 or more vectors. The similarity forms an inverse relationship

with the vector distance i.e. maximum the distance, lower the similarity. The

authors in [94] used K-means to generate an index table. Images are encrypted

after the extraction of feature vector(s) at the owner’s end. These encrypted

images and indices are then stored over the cloud. Data user requests CSP with

encrypted feature vector as a search query. The CSP responds with the resulting

image after correlating the similarity between the received feature vector and the

already stored index. The user will decrypt the received image at its end. The

key(s) used for encrypting feature vector(s) and received image(s) are preshared by

the owner. This scheme is limited due to its deterministic approach toward their

search queries. As a result, their system is insecure, as search patterns constitute

a critical component of user privacy.

In [97], a technique called EPCBIR (Efficient and Privacy-Preserving CBIR) that

utilizes cloud assistance was proposed utilizing kNN and LSH. Although their

approach offers a ranking-based image search mechanism, it requires significant

computational resources. The article [98] presents a privacy-preserving system

called PUPPIES that leverages a dynamic partial image-sharing approach. This

method allows data owners to define specific private regions inside an image, such

as a face or a social security number, and assign different privacy policies to each

user.

The scheme in [99] describes a secure recovery mechanism for encrypted YUV

color photographs using DCT. The resulting DC coefficients and AC coefficients,
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as well as the other two color components, are encrypted using stream cipher

technology before outsourcing to the cloud. The Manhattan distance of their

respective histograms is calculated to determine the similarity between the query

trapdoor and the database picture. Finally, the encrypted photos that are the

most similar to the query image are retrieved by the user(s).

The authors proposed SEISA in [100], an approach that allows for secure and

efficient image search while maintaining access control. The method employs an

encrypted image index to achieve efficient searches while keeping image content

private. Furthermore, access control is implemented by requiring users to provide

a valid key or policy in order to decode the index and view the photos. Experiment

results showed that the proposed strategy is successful and efficient. Overall, the

SEISA technique provides a feasible solution for secure image search that includes

access control.

In the scheme PIC [101], a privacy-preserving CBIR scheme was presented for

large-scale data in the cloud. This approach, called PIC, permits encrypted image

searches with efficient access controls determined by data owners. Meanwhile, [102]

discusses encrypted image searching in the mobile cloud domain. Additionally,

[103] introduced a privacy-preserving image search (PPIS) utilizing a convolutional

neural network (CNN) for large-scale medical image data. The authors claim that

the PPIS approach provides secure search queries and privacy preservation of

image data.

In [104], Li et al. presented a new scheme for multi-user cloud-connected image

data that employed CNN, bilinear mapping, and proxy re-encryption. Meanwhile,
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in [105], Y. Duan et al. proposed a CNN-based retrieval scheme for medical image

data that utilized Euclidean distance and kNN. Lastly, Wang et al. introduced a

framework [106] for secure image retrieval in a multi-owner multi-user environment

without the need for key sharing.

The authors developed a unique technique in [107] using CNN for content-based

image retrieval in a cloud environment with a multi-share creation scheme. The

method secures the storage and retrieval of critical photos by dividing them into

numerous shares and encrypting each share with a unique key. Image retrieval is

accomplished by reconstructing the original image from encrypted shares. Deep

learning techniques are used in this scheme to improve the accuracy of picture

retrieval results.

An approach is presented for efficient indexing and retrieving medical images from

a cloud-based system using hashing methods [108]. The solution overcomes privacy

issues by offloading the retrieval procedure to the cloud while maintaining image

security. When compared to existing state-of-the-art strategies, the suggested

method achieves better outcomes in terms of retrieval speed.

Authors in [109] proposed a technique to perform privacy-protected image re-

trieval. The scheme preserves the privacy of the images by encrypting them before

being indexed and stored in the cloud-based system. The retrieval process is then

performed on the encrypted images without revealing any sensitive information.

A novel approach for learning image attributes and generating compact binary

codes for indexing and retrieving images is proposed [110]. The anonymity of
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images is protected by encrypting the binary codes before sending them to the

cloud-based system using a homomorphic encryption algorithm. The proposed

scheme claims better retrieval accuracy while maintaining image privacy than

many state-of-the-art schemes. The authors in [111] discussed methods for de-

tecting similar images, with a focus on using homomorphic encryption and secure

multiparty computation techniques to achieve security and privacy preservation.

Sultan et al. proposed a novel homomorphic-based image retrieval scheme in [112]

for cloud-connected devices. The scheme carried out the encryption of images at

pixel levels and was based on Paillier cryptosystem for encrypted image searching.

It used probabilistic trapdoors for image queries and claims to ensure search pat-

tern security. A novel approach for similarity searching and retrieval for images

of jpeg format is presented in [113]. The scheme is based on Bag-of-Words (BoW)

Model and local Markov Feature [114]. The search for similar images involves ex-

tracting local Markov features directly from the encrypted image file and utilizing

the BoW model to exploit these features, achieving good retrieval accuracy. The

server is responsible for outsourcing image storage, feature extraction, and image

searching, thereby reducing the burden of the data owner.

Li et al. proposed a deep learning-based privacy-preserving scheme for JPEG im-

age retrieval [115]. By utilizing deep learning techniques, the scheme aims to pro-

tect the privacy of image data during retrieval by extracting and comparing image

features without revealing their original content. It preserves the confidentiality

of the original data while retrieving similar images efficiently and accurately. This

scheme has practical applications in a number of domains, such as medical imaging
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and law enforcement, where the privacy of sensitive image data is paramount.

2.6 Security Challenges

Similar image retrieval schemes for cloud-connected devices face several security

challenges, some of which are as follows:

• Confidentiality: The images over the cloud may contain sensitive infor-

mation, such as personal or corporate data, and need to be protected from

unauthorized access or disclosure.

• Data integrity: The images stored on the cloud must remain unaltered,

and their integrity must be protected from malicious attacks or unauthorized

modifications.

• Authentication: It’s essential to ensure that only users that have autho-

rized access can retrieve the images stored on the cloud. Authentication

mechanisms need to be put in place to prevent unauthorized access.

• Search Pattern Security: It is important to ensure search pattern security

such that no information is accessible to any adversary if queries and their

outcomes are stored to gather patterns.

• Data loss or theft: The images stored on the cloud may be subject to data

loss or theft, leading to the compromise of sensitive information.

To address these security challenges, cloud-based image retrieval systems must im-
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plement robust security measures such as access control, encryption, data backup,

and recovery mechanisms, and implement security monitoring and logging capa-

bilities to detect and respond to security incidents promptly.

2.7 Design Goals

A searchable encryption scheme for cloud storage should be designed with several

goals in mind to ensure that it provides both security and functionality. Some

design goals for a searchable encryption scheme for cloud storage include:

1. Efficient Searchability: The scheme should allow for efficient searching

and retrieval of encrypted data from the cloud, without requiring the data

to be decrypted first. The scheme can be applied to large-scale datasets and

does not significantly impact the performance of the cloud system.

2. Security: The scheme should be designed with strong security guarantees,

such as resistance to known attacks, including dictionary and statistical at-

tacks, and provide proof of security.

3. Privacy Preservation: The scheme should ensure the privacy of data

stored on the cloud by encrypting it in a way that prevents unauthorized

access or decryption by third parties, including the cloud service provider.

4. Scalability: The scheme should be scalable to support large amounts of

data and users while maintaining efficient searching and retrieval times.
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5. Usability: The scheme should be user-friendly, easy to implement and

maintain, and integrate well with existing cloud storage and searching in-

frastructure.

Overall, the design goals for a searchable encryption scheme for cloud storage

should aim to balance the competing requirements of security as well as privacy

preservation, efficient searching, scalability, and usability to provide a practical

and effective solution for securing data in the cloud. The trade-off between security

attribute and performance requirements varies with different use cases.

2.8 Summary

The chapter discussed Searchable Encryption (SE) in detail along with its different

types including Homomorphic encryption. It also presented some preliminaries.

A comprehensive analysis of object detection schemes was presented. A literature

review of existing SE schemes for images stored at a Cloud server was carried out

in detail and a comparison was drawn over some common metrics. Lastly, some

challenges for image retrieval were put forward and design goals for our research

were presented. Chapter 3 will present the detailed system model.
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Chapter 3

System Model

3.1 Overview

This chapter puts forward the system model with a detailed threat model, security

goals, and assumptions made in this research. The threat model provides the

security challenges posed to the proposed scheme with the adversary’s capabilities.

3.2 System Model

3.2.1 Network Model

The network model compromises surveillance cameras/sensors, data owner/user,

and cloud server CS. The network model is shown in figure 3.1. The video feed

is generated by the smart cameras with facial recognition and is received by the

owner. The owner extracts the facial images, calculates hash values and encrypts

them along with image data, and outsources them over to the cloud server. The
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cloud server is the major storage entity over which the image search is carried out.

The owner or any authorized user can request any image(s) similar to the images

stored in the cloud. For searching, the user generates a trapdoor by encrypting

the hash value of the query image. After the trapdoor is generated and sent over

to the cloud; the cloud conducts a similarity search over facial images and then

sends the encrypted results back to the user. The user then decrypts the results,

checks for mapped IDs of the images with the faces, and makes a request for

specific images containing those required people. The cloud retrieves the images

and sends them over to the user which decrypts the images at its end.

The encryption keys (including AES symmetric key and Paillier’s public/private

key pair) are generated at the data owner’s end. The facial detection is carried out

by MTCNN [60]. The images are encrypted by AES encryption and facial image

hash values are encrypted by Paillier HE. The query image hash is encrypted by

Paillier’s public key. The search is carried out over the cloud server and retrieved

images are then decrypted by the user via AES decryption.

3.2.2 Threat Model

In the proposed scenario, the threat model consists of two entities: the data own-

er/user and the cloud, with images being the stored data. The primary objective

of an adversary A is to gain access to the image data stored on the cloud. Due

to all communication occurring over a public channel between the owner and the

cloud, interception and subsequent attacks to expose the underlying data are eas-

ily achievable by the adversary. The adversary could be either an outsider or the
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Figure 3.1: Network Model

cloud itself, possessing the capabilities or conditions listed below:

• Only passive attacks can be launched by the cloud server so it can monitor

the network traffic and capture information about the network activity.

• The adversary is constrained by the storage as well as computational re-

sources and the amount of time available to be able to gain access to images
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in polynomial time.

• The adversary has the ability to trace previous search inquiries, search out-

comes, and communication patterns between the owner/user and CS, and

can exploit the information gathered, to their benefit.

3.2.3 Security Assumptions

The following security assumptions have been made in this research:

• The owner is presumed to be completely trustworthy and to pose no harm

to the system’s security.

• The video feed/ image frames generated by the camera are received by the

owner over a secure channel.

• The cloud server is deemed trusted but curious implying that the cloud may

try to get any available information about the data stored over it.

3.2.4 Security Goals

The security goals that are targeted for this research include:

• Adaptive Security: The approach should be secure in the known-ciphertext

model. In an adaptive adversarial model, this means that the CS should not

be able to gather any information about the search, even if they are familiar

with past queries made.
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• Authentic Trapdoor Generation: The trapdoor can be generated only

with the necessary keys by the authorized user(s).

• Search Pattern Security: Search pattern security in the cloud refers to

measures taken to protect the secrecy and privacy of search queries and

outcomes performed by users on data stored in the cloud. This involves

safeguarding against unauthorized access, interception, or manipulation of

search queries and results by adversaries who may attempt to exploit vul-

nerabilities in the cloud infrastructure or network.

• Trapdoor Indistinguishability: The property of trapdoor indistinguisha-

bility is used to protect data stored in the cloud by allowing users to generate

trapdoors that are indistinguishable from one another. It implies that even

if an adversary gains access to more than one trapdoor, it should be nearly

impossible to distinguish these from each other and gain any meaningful

insight into the underlying data.

3.3 Summary

In this chapter, the system model was discussed with a detailed threat model,

security goals, and assumptions made in this research. Chapter 4 will present the

proposed scheme for secure similar image retrieval from Cloud.
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Chapter 4

Proposed Work

4.1 Overview

This chapter puts forward the proposed scheme for homomorphic-based similar

image retrieval for cloud-connected devices. The system model is discussed with a

detailed threat model, security goals, and assumptions made in this research. All

phases of the proposed scheme are presented in detail along with their algorithms.

The research includes the following contributions:

• A comprehensive literature review and analysis of object detection algo-

rithms and existing privacy-preserving image-based searchable encryption

techniques for cloud-connected devices.

• A novel scheme for similar image searching based on homomorphic encryp-

tion is proposed for cloud-connected devices. The scheme is based on prob-

abilistic trapdoors and ensures the privacy preservation of image data.
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• Implementation and testing of the proposed scheme are carried out over a

real-world data set in order to assess its security and performance in terms

of complexity, computation, and storage overheads.

The security analysis is carried out in detail in chapter 5 and the performance

analysis is presented in chapter 6 respectively.

4.2 Proposed Scheme

The proposed similar-image searching scheme has a two-step process where the

faces in the images are detected by MTCNN [60]. Next, the detected image is

encrypted using Advanced Encryption Standard (AES) encryption. To improve

the efficiency and performance of the algorithm and reduce storage and computa-

tion overhead, the proposed scheme uses two different encryption techniques. In

addition to AES encryption, the algorithm uses Paillier homomorphic encryption

to provide secure searching via trapdoors over encrypted data. The faces detected

are then passed through a perceptual hash function whose resultant these values

are then encrypted using the Paillier HE. These encrypted image hashes are used

to carry out similar image searches, ensuring the security and confidentiality of

the data. The proposed scheme consists of six major phases that are discussed in

detail as follows:
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4.2.1 Key Generation Phase

The Paillier cryptosystem uses a probabilistic algorithm for key pair generation

that generates a Public Key and a Secret (Private) Key. This algorithm requires

an input parameter, "pb," which determines the number of bits used to generate a

prime number. The output of the algorithm is a secret (private) key, denoted by sk,

and a public key, denoted by pk. To generate these keys, the algorithm randomly

generates two prime numbers, p and q, that are independent of each other, based

on the "pb" parameter. Using these prime numbers, the Secret Key sk and Public

Key pk are then computed. The Secret Key sk is kept secret and is only used for

decryption, while the Public Key pk is used for encryption. The secret key sk is

also used as AES symmetric key. The algorithm for the key generation phase is

shown in figure 4.1.

Figure 4.1: Key Generation Phase
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4.2.2 Image Encryption Phase

All the image data Ii is encrypted by AES using the AES symmetric key sk to get

the encrypted images EIi
. The algorithm for image encryption is shown in figure

4.2.

Figure 4.2: Image Encryption Phase

4.2.3 Facial Hash Encryption Phase

In the facial hash encryption phase, the facial images are passed through an image

hash function to obtain hash values Fhi
which are then encrypted via the Paillier

cryptosystem using a public key pk in a loop that utilizes the "p()" function.

This function is an exponential function that raises the input parameters, namely

g,HFi
,n2, to generate the encrypted facial hashes EHFi

. The algorithm is shown

in figure 4.3.

4.2.4 Trapdoor Generation Phase

The user selects a query image, and calculates its hash value HQI
. The hash value

is then encrypted by the Paillier homomorphic encryption using the public key

pk, similar to the facial hash encryption phase. The trapdoor TQ is generated as

a result as shown in figure 4.4.
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Figure 4.3: Facial Hash Encryption Phase

Figure 4.4: Trapdoor Generation Phase

4.2.5 Similar Searching Phase

In this phase, the actual search for a similar image takes place at the cloud server.

The trapdoor that is generated in the previous phase TQ is multiplied by a scalar

value of "-1" following the property of scalar multiplication of Paillier cryptosystem

[32]. The result of such multiplication is then added with all the existing encrypted

hash values EFi
and the resultant values are stored in a vector VR. The vector VR

is then returned to the user. The user decrypts it by using secret key sk, checks for

similar image results according to the predefined similarity threshold. The user

then makes a specific request for image(s) by providing its ID in relation to the

mapping of facial image hashes. The algorithm is shown in figure 4.5.
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Figure 4.5: Similar Searching Phase

4.2.6 Image Decryption

All the retrieved image data EIi
is decrypted by AES at the user’s end using the

AES symmetric key sk to get the images Ii. The algorithm for image decryption

is shown in figure 4.6.

Figure 4.6: Image Decryption Phase

4.3 Addition / Deletion of Images

The proposed scheme allows the data owner to add or delete single or multiple

images at any instant in time. Since the proposed scheme follows a run-time

probabilistic trapdoor-based searching algorithm, there is no maintenance of the
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index tables or ranked entries. For all trapdoors that are generated to carry out

searching, a one-to-many search sequence is carried out from scratch which will

have no impact on the scheme if more images are added to the existing ones or if

one or multiple are deleted from the stored image data at the cloud server.

4.4 Summary

This chapter presented the proposed scheme for homomorphic-based similar image

retrieval for cloud-connected devices. All phases of the proposed scheme were

presented in detail along with their algorithms. The properties of correctness and

soundness were discussed as well. The security analysis is carried out in detail in

chapter 5.
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Chapter 5

Security Analysis

5.1 Overview

In this chapter, the security definitions are revisited in detail. The security analysis

is presented in terms of the aforementioned definitions, leakages, soundness, and

correctness of the proposed scheme. Lastly, a comparison among the latest schemes

is drawn with respect to different security attributes.

5.2 Security Definitions

The research follows the security definitions introduced by Tahir et al. in [116].

The definitions are extensively employed and widely recognized in probabilistic

trapdoor-based searchable encryption schemes, and are discussed as follows:
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5.2.1 Adaptive Security

This implies the ability of an adversary A to make queries depending on the

outcomes of earlier inquiries. A scheme is thus considered secure with respect to

Adaptive Indistinguishability if the adversary A is unable to distinguish (provided

with its record of earlier search queries) between two different data chunks con-

structed adaptively with the same length, similar trapdoors, and similar search

patterns; with a probability outcome of greater than 1/2.

5.2.2 Non-Adaptive Security

The term non-adavtive security entails that an adversary A is not capable of mak-

ing queries depending on the outcomes of earlier searches. A scheme is considered

secure with respect to Non-adaptive Indistinguishability if the adversary A is un-

able to distinguish between two non-adaptively constructed different data chunks

of same length, similar trapdoors and search patterns with a probability outcome

of greater than 1/2.

5.2.3 Query - Trapdoor Indistinguishability

Query - Trapdoor indistinguishability is termed as a searching procedure per-

formed through encrypted trapdoors generated by unencrypted queries. A ran-

dom, probabilistic trapdoor is generated for each query, so a duplicate search for

the same query results in two completely different trapdoors, and neither reveals

information about the query made. The adversary A is not able to differentiate
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between the two trapdoors, even if it maintains an adaptive query history and

associated trapdoors. In order to predict contextually relevant query information,

the A opponent must perform extensive operations as well as store large amounts

of data in polynomial time.

5.2.4 Trapdoor - Image Indistinguishability

The level of complexity in a homomorphic-based SE protocol is closely tied to

the Trapddor-Image indistinguishability. To ensure that the associated trapdoors

remain secure during searches, the queries, trapdoors, and similar image searching

should be sufficiently complex to prevent any leakage of information about the

facial images. This means that, even in the event of an adaptive history (consisting

of query, trapdoor, and facial images), the trapdoor must remain indistinguishable

when the same search term is used again. Additionally, even minor changes to the

query should result in significant alterations to the trapdoor, causing the search

results to differ significantly from previous searches and vice versa. By making

the trapdoor unpredictable, adversaries are unable to predict which image will be

retrieved from the list of encrypted facial image hashes, thereby ensuring both the

security of queries and the privacy of user(s).

5.2.5 Search Pattern Security

The scheme provides secure search patterns due to the generation of probabilistic

trapdoors. Secure search pattern refers to the ability of an adversary A in deter-
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mining if the same query is being made again. Because our technique is based on

probabilistic trapdoors, the trapdoor for the same keyword will be different when

created at various timestamps and thus efficiently conceals the search pattern.

5.2.6 Chosen Plaintext Attack (CPA) Security

The scheme is labeled as IND - CPA secure if an adversary A is unable to dis-

tinguish between the underlying chosen plaintext for encryption as a result of a

security game with a probability of no higher than 1/2 i.e. if any probabilis-

tic polynomial time adversary has just a small advantage over random guessing.

Moreover, if security definitions of Query - Trapdoor Indistinguishability and Trap-

door - Image Indistinguishability are met, it implies that the scheme is IND-CPA

secure as well.

The scheme is labeled as IND - CPA secure, if any probabilistic polynomial time

adversary has just a small advantage over random guessing regarding output ci-

phertext. Let Setup (KP , E , D) for scheme be defined for this game representing

public/private key pair generation, encryption, and decryption respectively, the
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game follows as:

(sk,pk)←KG(pb)

EIi
← Encs(Ii, sk)

EHFi
← Enc(pk,HFi

)

(m0,m1)←A(pk)

a←{0,1}; ma←A(x)

Output(â ?= a)

if â = a; output 1;otherwise output 0

The scheme is labeled as IND - CPA secure if an adversary A is unable to dis-

tinguish between the underlying chosen plaintext for encryption as a result of a

security game with a probability of no higher than 1/2 i.e. if any probabilistic

polynomial time adversary has just a small advantage over random guessing.

5.3 Security Analysis

This security analysis of the proposed scheme is presented with a game-based

approach as follows:

5.3.1 Game 1: Query-Trapdoor Indistinguishability

Suppose there are multiple query images, denoted as QI1 , QI2 , ..., QIi
, for all the

images Ii. The game involves three phases between an adversary and a challenger.
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• Query Phase: The process begins with the challenger generating encrypted

trapdoors for multiple facial images against the images Ii. Next, the ad-

versary sends a query image QIi
to the challenger, who in turn responds

with the corresponding encrypted trapdoor TQi
. This cycle of queries and

responses continues to take place until the adversary has gathered a polyno-

mial number of query-trapdoor pairs.

• Challenge Phase: The challenger, in this phase, flips a fair coin a← 0,1, and

the adversary selects two queries QIa and QIb
, which are then sent to the

challenger. If the coin lands on heads, the challenger generates the trapdoor

TQa for QIa and sends it back to the adversary.

• Outcome Phase: To win the challenge, the adversary must correctly guess

which query, i.e., either QIa or QIb
, is associated with the received trapdoor,

with a probability greater than 1/2. If the adversary cannot make such a

guess with high probability, the scheme is considered secure with respect to

Query-Trapdoor Indistinguishability.

Let KG, Es, Enc, TrG, SimSearch, Ds be a similar image-based homomorphic

SE scheme over a set of images Ii, facial image hashes HFi
, query image QI , secu-

rity parameter λ and adversary A over ’N’ number of facial images respectively.

A probabilistic experimental function is as follows:
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(sk,pk)←KG(pb)

EIi
← Es(Ii, sk)

EHFi
← Enc(pk,HFi

)

for 0 < i < N :

(sA,QIi
)←A(sA,TQ1 ,TQ2 , ....TQi

)

TQi
← TrG(QIi

,pk)

a←{0,1};

(sA,QI0 ,QI1 ←A(sk,pk)

TQa ← TrG(QIi
,pk)

a′←AN+1(sA,TQa)

TQ′
a
← TrG(QIj

,pk);j ∈N

ifa′ = a; output 1;

otherwise output 0

where sA represents the state of the adversary A. Such a scheme can be pro-

nounced secure with respect to Query-Trapdoor Indistinguishability if the proba-

bility remains less than 1/2.

The proposed scheme builds upon the key generation and encryption phases of the

Paillier cryptosystem. It generates distinct encrypted facial image hashes through

probabilistic encryption and creates a unique trapdoor for each query, even if the
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query is repeated. A probabilistic search algorithm produces the most similar

image to the trapdoor via a predefined threshold value, making it impossible for

the adversary A to accurately guess the original image or the facial image searched

from an encrypted result. Additionally, both the adversary A and CS are unable

to predict or deduce the search pattern. Thus, as a result of the probabilistic

trapdoors, the proposed scheme satisfies the security definitions of adaptive &

non-adaptive security, as well as Query-Trapdoor indistinguishability.

5.3.2 Game 2: Trapdoor-Image Indistinguishability

Suppose there exist multiple trapdoors, denoted as TQ1 , TQ2 , ..., TQi
, for all the

images Ii stored at CS. The game involves the following three phases between an

adversary and a challenger:

• Query Phase: The process begins with the challenger generating encrypted

trapdoors against the image data Ii. Next, the adversary sends an encrypted

trapdoor TQi
to the challenger, who responds by returning the most similar

image according to a predefined similarity threshold. This cycle of queries

and corresponding responses goes on until the adversary has collected a

polynomial number of trapdoor-image pairs.

• Challenge Phase: The adversary selects two new trapdoors TQa and TQb
and

sends them over to the challenger. The challenger flips a fair coin a← 0,1,

and performs a search among the encrypted images to select the most similar

image EIi
, which is then sent back to the adversary.
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• Outcome Phase: The adversary A then has to make a guess about the

resultant trapdoor a or b with a probability of higher than 50% otherwise

the scheme is termed be attain Trapdoor-Image Indistinguishability.

Let KG,Es,Enc,TrG,SimSearch,Ds be a similar image-based homomorphic SE

scheme over a set of images Ii, facial image hashes HFi
, security parameter λ and

adversary A over ’M’ number of images:

(sk,pk)←KG(pb)

EIi
← Es(Ii, sk)

EHFi
← Enc(pk,HFi

)

for 0 < i < M :

(sA,TQi
)←A(sA, I1, I2, ...Ii)

Ii← SimSearch(EHFi
,TQi

)

a←{0,1};

(sA,TQ0 ,TQ1 ←A(Ii,pk)

Ia← SimSearch(EHFa
,TQa)

a′←AN+1(sA, Ia)

TQ′
a
← TrG(QIj

,pk);j ∈N

ifa′ = a; output 1;

otherwise output 0
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where sA represents the state of the adversary A. The scheme can be pronounced

secure with respect to Trapdoor-Image Indistinguishability if the probability re-

mains less than 1/2.

The proposed scheme conducts searches as per the similarity of the encrypted

images stored at CS, where trapdoors are generated probabilistically that ensure

that even for the same query, multiple distinct trapdoors are generated in every

iteration. Additionally, it is nearly impossible for the adversary A to establish a

query-trapdoor-image connection, even if the adversary tracks the search history

and outcomes. The scheme’s use of probabilistic encryption to generate facial

image hash values and trapdoors, with each encrypted trapdoor being unique,

means that the likelihood of the adversary predicting the correct outcome is always

less than 1/2. Therefore, the proposed scheme satisfies the security definitions of

search pattern security and Trapdoor-Image Indistinguishability.

Since the scheme is proven to be secure with respect to both Query - Trapdoor

Indistinguishability and Trapdoor - Image Indistinguishability, it implies that the

scheme is IND-CPA secure as well.

5.3.3 Leakages

In a typical scenario, it is assumed that the adversary A launches the attack and

is not constrained by using any weak structure in place of the proposed scheme.

The focus of the leakages discussed below is the information that is revealed in

polynomial time:
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• Leakage L1: It is linked to information kept on CS, specifically the number

of encrypted image data and encrypted facial image hashes. All the images

are outsourced to CS after encryption, so CS can only know just the quantity

and not the underlying plaintexts.

L1 =
{

EIi
,EHFi

,(number of EIi
),(number of EHFi

)
}

• Leakage L2: It is linked to the generation of trapdoors from the queries.

By using Paillier encryption, the trapdoor is probabilistically created and

offers no insight into the underlying query being made at any point in the

proposed scheme.

L2 =
{

((gQI )∗ (rn))(modn2)
}

• Leakage L3: It is connected to the final outcome of the proposed searchable

encryption scheme. The search is conducted at CS, and all authorized enti-

ties and the adversary A, can have access to the results. The search results

are encrypted after the result of an "addition" function, and only the data

owner/ authorized user (possessing the secret key) can decrypt them. They

do not contain any details about the underlying search terms or queries.

L3 =
{

ADD(TI ,EHFi
),(VR)

}
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The assumptions and leakages mentioned above are linked and rely on one another.

As a result, in order to achieve the maximum degree of security, it is necessary

to strictly adhere to all security assumptions. Additionally, none of the leaks are

revealing the plaintext or any details on the properties of the plaintext; as a result,

the suggested method is strong and adheres to security requirements. According to

the corollary presented in [116], such a scheme can be termed a privacy-preserving

searchable encryption scheme.

5.3.4 Soundness

Soundness refers to the property that an adversary cannot produce any false posi-

tive search results, i.e., the scheme does not return any result that does not match

the search query. In other words, if the scheme returns a search result, it is guar-

anteed to be a valid match for the search query. A searchable scheme that lacks

soundness may be susceptible to security threats aiding an adversary to get access

to critical information by submitting a carefully crafted search query that returns

false positives.

For the proposed scheme to be deemed sound, it must ensure that the security

parameters (g,λ,µ) and the key pair (pk, sk) used to encrypt facial hash values

EHFi
via encryption function Enc(pk,HFi

), as well as the search process using

trapdoors (TQ), do not generate false positives and always produce meaningful

search results with a high degree of probability.
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5.3.5 Correctness

Correctness, on the other hand, refers to the property that the scheme returns

all the valid search results, i.e., it does not miss any match for the search query.

A searchable scheme that lacks correctness may fail to return valid search results

leading to data loss or privacy threats.

The correctness of the proposed approach can be verified by ensuring that the

security parameters (g,λ,µ) and the key pair (pk, sk) used to encrypt facial hashes

(EHFi
) through the function Enc(pk,HFi

), as well as the search process using

trapdoors TQ, consistently yield similar images with a high degree of probability.

Thus, the proposed homomorphic-based similar image SE scheme possesses the

properties of both soundness and correctness and thus, ensures the confidentiality

and integrity of the encrypted data.

5.4 Security Attributes Comparison

The section presents a comprehensive comparison among many schemes with re-

spect to different security attributes. Homomorphic encryption entails that the

processing can be carried out on encrypted data with similar results as if done on

the underlying plaintexts without revealing any information about the plaintexts.

Index-based implies that the scheme is reliant on ranking/indices or lookup tables

that can lead the CS to gain information about the trapdoor-image relation. The

lack of any index and probabilistic trapdoors will ensure search pattern security.
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No leakage of information about the data will lead to a scheme providing privacy

preservation. Table 5.1 presents the security attributes comparison.

Table 5.1: Comparison of Security Attributes

Attributes HE
based

Index
based

Probabilistic
Trapdoors

Secure Search
Pattern

Preserving
Privacy

[82] ✓
[84] ✓ ✓ ✓
[85] ✓ ✓ ✓ ✓
[88] ✓ ✓
[92] ✓
[93] ✓
[94] ✓ ✓
[97] ✓
[86] ✓ ✓
[99] ✓
[101] ✓ ✓ ✓
[102] ✓ ✓
[103] ✓ ✓ ✓
[107] ✓
[108] ✓ ✓ ✓ ✓
[109] ✓ ✓
[110] ✓ ✓
[111] ✓ ✓
[105] ✓ ✓ ✓
[104] ✓ ✓ ✓
[112] ✓ ✓ ✓ ✓
[115] ✓ ✓
[113] ✓ ✓ ✓
PS ✓ ✓ ✓ ✓

It is clear from the table 5.1 that while most of the schemes provide privacy

preservation, many are susceptible to secure search pattern attacks. Schemes

presented in [85, 108, 112, 113] generate probabilistic trapdoors. The scheme [112]

is based on HE but the proposed scheme follows a pixel-by-pixel match of images.

The proposed privacy-preserving scheme presented in this research is based on

homomorphic encryption, generates probabilistic trapdoors thus ensuring secure

search patterns, and carries out searching at run-time without the maintenance of
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any index table.

5.5 Summary

In this chapter, the security definitions were revisited in detail. The security anal-

ysis was presented in terms of the aforementioned definitions, leakages, soundness,

and correctness of the proposed scheme. Lastly, a comparison among the latest

schemes was drawn with respect to different security attributes. The performance

analysis is carried out in chapter 6.
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Chapter 6

Performance Analysis

6.1 Overview

The chapter presents a comprehensive performance analysis of the proposed work

in three major parts. Firstly, the performance metrics are defined and explained

in terms of the computing time required to run a protocol and are displayed

graphically. Secondly, the storage overhead of the proposed scheme is presented.

Finally, the computational complexity of our proposed scheme is described in

comparison with the latest schemes.

6.2 Dataset Description

The dataset used for the testing and the performance analysis of our proposed

work is Chokepoint Dataset [117]. The dataset is developed for studies in person

identification in a real-world surveillance scenario situation. An array of three
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Figure 6.1: Multiple Images from Chokepoint Dataset

cameras was set above multiple doors to film persons going naturally through

them. A lot of facial pictures were taken when a person was entering through a

door or an enclosed space. The images were saved in jpg format. It was implied in

the making of the dataset that faces in such cases will differ in terms of sharpness,

lighting, and misalignment owing to automated face position depending on a per-

son’s posture. The dataset is optimal to use for a similar image search scheme as is

done in our proposed work. Figure 6.1 show some of the images from the dataset.

It shows that many images are showing no person and thus no detectable facial
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image, while some have more than one person in line with the camera lens. Some

faces have been captured properly, whereas few have been captured in a different

posture failing to show clear-cut facial features.

6.3 Performance Metrics

The simulations for our proposed work were carried out in a client-server model

where the AES encryption of the images, Paillier HE of the facial hash values,

generation of trapdoor, and finally, the decryption of retrieved image(s) are carried

out by the data owner at client side and searching is carried out the cloud server.

Both the client and server-side simulations were carried out on a system of core

i7, 7th generation with 16 GB RAM and 256 GB SSD running Ubuntu OS 18.04.5

LTS (64 bits). The testing was carried out over 500 images as well as up to

500 facial images from the chokepoint dataset. The facial images were retrieved

from the dataset via MTCNN [60]. After that, the perceptual hash values were

calculated for all facial images.

The AES encryption of images was done in iterations of 100 images. The time

taken for AES encryption of 100, 200, 300, 400, and 500 images came out to be

3.91 sec, 9.2 sec, 12.8 sec, 17.94 sec, and 21.19 sec respectively. The images in jpg

format were saved in png format after AES encryption so as to retain the images’

original features. The results of image encryption via AES are shown graphically

in figure 6.2 where the x-axis shows number of images and time (in seconds) is

plotted at y-axis.
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Figure 6.2: Images Encryption Time (Standard Encryption-AES)

The next part of the scheme included the encryption of facial image hash values by

Paillier HE. It was carried out for 500 facial image hash values, first with iterations

of 10 up to 50 and then 100 up to 500 images. The time taken for image hash

calculation and Paillier HE is presented in the table 6.1 and shown graphically in

figure 6.3. The graph includes number of image hash values and time taken (in

seconds) plotted on x-axis and y-axis respectively.

The phase of a similar search was carried out via trapdoor generation and using

properties of scalar multiplication and addition. The time taken to generate the

trapdoor was 14 milliseconds and searching was carried out over 500 facial image

hashes in iterations of 10 up to 50 and then 100 up to 500 hashes. The time

taken for similar image search is presented in table 6.2 and the results are shown
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Table 6.1: Facial Image Hash Encryption (Paillier HE) Time
No. of Facial
Image Hashes

PHE Encryption
Time (sec)

10 0.057
20 0.141
30 0.252
40 0.296
50 0.428
100 0.659
200 1.988
300 2.301
400 3.291
500 4.112

Figure 6.3: Facial Image Hash Encryption (Paillier HE) Time

graphically in figure 6.4. The graph includes number of image hash values and

time taken (in seconds) plotted on x-axis and y-axis respectively.

The AES decryption of images was done in iterations of 100 images, similar to

AES encryption phase. The time taken for AES decryption of 100, 200, 300, 400,

73



Table 6.2: Similar Image Searching Time
No. of Facial
Image Hashes

Time
(seconds)

10 0.018
20 0.037
30 0.0.056
40 0.0.069
50 0.095
100 0.171
200 0.361
300 0.582
400 0.783
500 0.988

Figure 6.4: Similar Image Searching Time

and 500 images came out to be 1.78 sec, 3.67 sec, 6.73 sec, 7.91 sec, and 11.04

sec respectively. The results of image encryption via AES are shown graphically

in figure 6.5 where the x-axis shows number of images and time (in seconds) is

plotted at y-axis.

Lastly, a comparison of execution time and storage overhead was drawn for our
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Figure 6.5: Images Decryption Time (Standard Decryption-AES)

scheme with another image-based homomorphic SE scheme [112]. The authors in

[112] ran simulations for their scheme on a single image with a single object. They

claimed that their scheme ran for 42.766 seconds and took up storage space of 2.54

MB in total. In comparison, a single image with a single detectable face of size

47.9 kB was encrypted with AES, and a size increase of 1.4 MB was observed. The

AES encryption was executed in 0.046 seconds. After that, the perceptual hash

was calculated for the facial image and it was encrypted via Paillier HE taking

0.01 seconds. For searching, the trapdoor generation and searching took 14 and

5 milliseconds respectively. The image retrieved was decrypted in 0.015 seconds.

The proposed scheme took a total of 65 milliseconds with a storage overhead of

1.4 MB overall.
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6.4 Storage Overhead

The storage overhead indicates the increase in the size of images after AES en-

cryption. The values of sizes before and after AES encryption are shown in the

table 6.3 for up to 500 images. It is evident from the table entries that there is

a drastic change in the sizes of the images such that for 100 images, the cumu-

lative size is 5.4 MB which translates to 137.6 Mb after AES encryption making

it 2448% increase. Similarly, for 500 images, the increase in size is approximately

2578%. This shows the needful for 3rd party storage services i.e., cloud server as

local management and storage of such huge data is very difficult and poses many

security threats as well.

Table 6.3: Storage Overhead
No. of
Images

Before AES
Encryption

After AES
Encryption

100 5.4 MB 137.6 MB
200 10.6 MB 275.3 MB
300 15.9 MB 412.9 MB
400 21.3 MB 550.5 MB
500 25.7 MB 688.2 MB

6.5 Computational Complexity

The section presents a comparison of the computational complexity of our pro-

posed scheme for some of the latest SE schemes. Table 6.4 shows the compu-

tational complexity of our proposed scheme against state-of-the-art SE schemes.

For all algorithms, the complexity is defined in terms of asymptotic notations such

that M shows the total number of images, N and F represent the image objects
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and facial hashes respectively while P denotes the number of pixels in an image

and finally, S is used for the classes of different image data. O(1) represents the

complexity for hash functions used for trapdoor generation functions employed by

different schemes of [97], [112] as well as our proposed work.

Table 6.4: Computational Complexity
Phases [97] [101] [106] [112] PS

Key Generation O(2λ+1) O(2λ) O(2λ+1) O(2λ) O(2λ)
Feature Extraction
Object Detection O(N) O(M.N) - O(N.P ) O(N)

Image Encryption O(M) O(M) O(M2 +1) O(M) O(M)
Index Generation O(N) O(M.N) O(8M.S2) - -

Trapdoor Generation O(1) O(N) O(4S2) O(1) O(1)
Searching O(2N) O(2.M.N) O(4S2 +2S.M) O(M.N.P ) O(M.N)

Image Decryption O(M) O(M) O(M2 +1) O(M) O(M)

6.6 Summary

The chapter presented a comprehensive performance analysis of the proposed

work. The performance analysis was discussed in three major sections. Firstly,

the performance metrics were defined and explained in terms of the computing

time required to run a protocol and were displayed graphically. Secondly, the

storage overhead of the proposed scheme was presented. Finally, the computa-

tional complexity of our proposed scheme was presented in comparison with some

of the latest schemes. The research is finally concluded in chapter 7.
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Chapter 7

Conclusion

Surveillance data images of crowded places have become increasingly important in

today’s world for a variety of reasons. Cloud-based image searching schemes lever-

age distributed computing power to search large amounts of data quickly and ac-

curately, allowing users to easily find relevant images based on their search queries.

A novel scheme for similar image searching based on homomorphic encryption is

proposed for cloud-connected devices. The scheme is based on probabilistic trap-

doors and ensures the privacy preservation of image data. Implementation and

testing of the proposed scheme are carried out over a real-world data set in order

to assess its security and performance in terms of complexity, computation, and

storage overheads. The efficiency and better testing of the scheme can be done

by its deployment over a real Cloud platform as well as by introducing parallel

processing. Although the research is novel in its context, the factor of human de-

pendency can be eradicated by the development of a fog/edge layer in the scheme

and can be regarded as potential future works.
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