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Abstract 

Heating, Ventilation, and Air Conditioning (HVAC) systems play a vital role in building 

energy management by controlling the indoor environment and ensuring the occupant’s comfort. 

These systems are responsible for regulating the temperature and air quality inside buildings, 

thereby creating a comfortable and healthy indoor environment for occupants. However, the 

energy consumption of HVACs contributes significantly towards overall energy usage of a 

building and carbon footprint creating a challenge for building energy management. To address 

this challenge, this research proposes the development of a predictive model for HVAC 

temperature forecasting using Machine Learning (ML) algorithms to optimize energy efficiency 

while maintaining thermal comfort in buildings. The study focuses on comparing the performance 

of Transformer Neural Networks and CNN-LSTM, a seq2seq model combining Convolutional 

Neural Networks (CNN) and Long-Short Term Memory (LSTM) on multiple forecasting horizons. 

Both models are validated using data obtained from multiple devices which are deployed in a room 

verified by feedback survey forms filled by occupants. The transformer model outperformed, 

achieving an R2 score of 0.936 at a 1 minute forecasting horizon, surpassing the performance of 

CNN-LSTM model at all tested forecasting horizons. The transformer model yielded significant 

energy savings thereby reducing energy consumption by almost 50 percent compared to the non-

AI conventional methods, particularly at forecasting horizons of 1 minute and 60 minutes, while 

the occupant survey also favored a 60-minute forecasting horizon indicating that the proposed 

model can effectively balance energy efficiency with occupant comfort. The performance of 

transformer model particularly with a 60-minute forecasting horizon underscores its potential to 

optimize energy efficiency while ensuring thermal comfort in building energy management 

systems. 

 

Key Words: Heating Ventilation and Air Conditioning (HVAC), Transformer-based model, 

Energy optimization, Indoor environment
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CHAPTER 1: INTRODUCTION 

1.1 Background, Scope and Motivation 

 Heating, Ventilation, and Air Conditioning (HVAC) systems have become an integral part 

of modern building design and operation. Their significance lies in their ability to maintain optimal 

indoor air quality, thermal comfort, and energy efficiency. As environmental sustainability and 

occupant well-being take precedence in our society, understanding and optimizing HVAC systems 

have gained increased importance. The primary objective of HVAC systems is to create and sustain 

a comfortable indoor environment by regulating temperature, humidity, and air quality. By 

effectively controlling these factors, HVAC systems ensure that occupants can work, relax, or 

engage in activities in a comfortable setting, regardless of external weather conditions. 

Furthermore, these systems play a crucial role in removing indoor pollutants, allergens, and 

excessive humidity, thus promoting healthier indoor spaces and reducing the risk of respiratory 

problems. The prevalence of HVAC systems can be observed worldwide, as they are implemented 

in various types of buildings, including residential, commercial, and industrial facilities. 

 However, the extensive usage of these systems comes at a cost. HVAC systems consume 

a significant amount of energy, primarily derived from fossil fuels, contributing to greenhouse gas 

emissions and exacerbating environmental concerns on a global scale. According to a study 

conducted by Longo et al. [1], it has been revealed that HVAC systems account for a substantial 

portion of global energy consumption. In fact, their findings indicate that a staggering 38% of all 

energy consumed can be attributed to HVAC systems. This energy usage is distributed across 

various sectors, with residential sources accounting for 32% and tertiary industries contributing as 

much as 47%. In residential settings, heating, cooling, and ventilation requirements directly impact 

energy demand. Residential buildings alone contribute to approximately one-third of the total 

energy consumed by HVAC systems. These systems also play a vital role in tertiary industries, 

encompassing commercial buildings, office spaces, educational institutions, and other non-

residential facilities. These sectors account for a significant share of energy consumed by HVAC 

systems. Also, the Earth's climate system has experienced a steady increase in the global mean 
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surface temperature, with a staggering rise of 1.1ᵒC since the advent of the industrial revolution 

[2]. This substantial temperature increase has had far-reaching consequences, including heatwaves, 

extreme weather events, and altered climatic patterns across the globe. As a direct response to 

these rising temperatures, the demand for HVAC systems has intensified, as they provide essential 

cooling and temperature regulation mechanisms in various settings. From residential buildings to 

commercial establishments, educational institutions, healthcare facilities, and industrial 

complexes, HVAC systems have become an integral part of maintaining comfortable and habitable 

indoor environments. They are indispensable in ensuring the well-being, productivity, and safety 

of occupants in the face of increasingly challenging climatic conditions. 

 The unprecedented rise in global mean surface temperature has had a cascading effect on 

various sectors, necessitating the widespread adoption of HVAC systems to counter the adverse 

impacts of heat stress. Heatwaves, characterized by prolonged periods of intense heat, pose severe 

health risks, particularly to vulnerable populations such as the elderly, children, and individuals 

with pre-existing medical conditions. HVAC systems, equipped with efficient cooling 

mechanisms, play a crucial role in mitigating these risks by maintaining suitable indoor 

temperatures and reducing heat-related illnesses and fatalities. Moreover, the effects of climate 

change extend beyond human health and comfort. In sectors such as agriculture, manufacturing, 

and data centres, temperature regulation is paramount for preserving product quality, ensuring 

operational efficiency, and safeguarding critical equipment from heat-related damage. HVAC 

systems are relied upon to provide optimal temperature and humidity conditions, thereby 

supporting essential processes, enhancing productivity, and minimizing economic losses. Given 

the undeniable influence of climate change and the consequent rise in global temperatures, the 

increased adoption of HVAC systems is a pragmatic response to the need for climate adaptation. 

Apart from the impact of man-made climate change, it is crucial to acknowledge the additional 

environmental concerns associated with HVAC systems. These systems not only contribute to the 

emission of greenhouse gases like carbon dioxide but also release dangerous particulate matter and 

other pollutants into the air. Furthermore, the use of refrigerants in HVAC systems, which are 

often toxic and harmful, can have detrimental effects on the ozone layer, exacerbating ecological 

imbalances [3]. The cumulative impact of these emissions poses significant challenges to the 

environment and necessitates a comprehensive approach to mitigate their adverse effects. 
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Considering that individuals spend approximately 90% of their time indoors, it becomes 

increasingly imperative to prioritize clean air and suitable indoor temperatures. People aspire to 

breathe air of good quality and to reside in spaces that maintain a comfortable thermal 

environment. These systems act as a vital defence against the adverse effects of heatwaves and 

extreme temperatures, enabling individuals, communities, and industries to adapt and thrive in an 

ever-changing climate landscape. 

 As societies increasingly prioritize sustainability and energy efficiency, addressing the 

energy consumption and environmental impact of HVAC systems has become an urgent 

imperative. To mitigate the environmental impact and enhance energy efficiency, various 

strategies are being employed in the design, operation, and maintenance of HVAC systems. One 

of the key approaches is the utilization of advanced technologies and equipment. High-efficiency 

heating and cooling equipment, such as heat pumps and geothermal systems, can significantly 

reduce energy consumption compared to conventional systems. Additionally, the integration of 

renewable energy sources, such as solar panels or wind turbines, into HVAC systems can further 

reduce reliance on fossil fuels and decrease greenhouse gas emissions. Furthermore, optimizing 

the design and layout of HVAC systems plays a crucial role in improving energy efficiency. Proper 

insulation, efficient ductwork, and zoning techniques that enable different temperature settings in 

various areas of a building can contribute to substantial energy savings. The installation of smart 

controls and programmable thermostats allows for precise temperature scheduling and adaptive 

operation, optimizing energy usage based on occupancy patterns and environmental conditions. 

Building occupants also play a significant role in achieving energy efficiency in HVAC systems. 

Educating occupants about energy-saving practices, such as adjusting thermostat settings, 

maintaining proper ventilation, and minimizing air leaks, can lead to substantial energy 

conservation. Additionally, occupants' behavior and awareness regarding energy usage can be 

influenced through energy management programs and incentives. 

 As HVAC systems continue to evolve, new technologies and approaches are being 

explored to enhance their performance. The development of smart HVAC systems, which utilize 

advanced sensors, data analytics, and machine learning algorithms, enables real-time monitoring 

and control of indoor environmental conditions. These systems can adapt to dynamic parameters, 



4 

Footnote may be given with Font size 10 of Times New Roman. 

such as occupancy levels, outdoor weather conditions, and indoor air quality, to optimize energy 

consumption and occupant comfort. The development of such smart HVAC systems becomes 

essential that predicts the temperature to optimize energy and thermal comfort. Accurate 

predictions of indoor temperature enable the optimization of HVAC system efficiency while 

simultaneously ensuring the comfort and well-being of occupants [4]. By deploying forecasting 

models, it becomes possible to judiciously manage energy resources, thereby fostering 

sustainability and minimizing environmental impacts. The accurate estimation of indoor 

temperature serves as a fundamental aspect of creating comfortable indoor environments. It allows 

for a fine-tuning of HVAC systems' operation, ensuring that the desired temperature ranges are 

consistently achieved. This not only enhances occupant comfort but also optimizes energy 

consumption by avoiding excessive heating or cooling. The efficient utilization of HVAC systems 

not only reduces energy waste but also contributes to cost savings and promotes environmental 

stewardship. Moreover, precise temperature forecasting models enable proactive energy 

management strategies, as they provide valuable insights into the expected heating and cooling 

demands of a space. By anticipating temperature fluctuations and occupant preferences, building 

operators can implement pre-emptive measures to optimize energy consumption. This proactive 

approach ensures that HVAC systems operate in a targeted and energy-efficient manner, reducing 

unnecessary energy usage and minimizing the associated environmental impacts. 

1.1.1 Machine Learning and Time Series Forecasting 

 Machine learning, a subfield of artificial intelligence, has emerged as a powerful tool in 

various domains, including finance, healthcare, marketing, and supply chain management. One 

particularly important application of machine learning is in time series forecasting, where it has 

revolutionized the field of predictive analytics. By leveraging advanced algorithms and statistical 

models, machine learning techniques enable accurate predictions and insights into the behavior 

and trends of time-dependent data. 

 Time series data refers to a sequence of observations collected over time, typically at 

regular intervals. It encompasses a wide range of real-world phenomena, such as stock prices, 

weather patterns, energy consumption, website traffic, and many others. Analyzing and forecasting 
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time series data is crucial for decision-making, resource allocation, risk management, and 

optimization in various industries. Traditional statistical methods for time series forecasting often 

rely on assumptions of linearity, stationarity, and specific data distribution characteristics. 

However, these assumptions may not hold true in complex real-world scenarios where time series 

data often exhibit nonlinear patterns, trends, seasonality, and irregularities. Machine learning 

techniques, on the other hand, excel in handling such complexities and offer more flexible and 

robust models. Machine learning algorithms employ data-driven approaches to automatically learn 

patterns, relationships, and dependencies from historical time series data. They can capture 

nonlinearity, handle missing values, adapt to changing dynamics, and incorporate multiple 

variables into the forecasting process. By analyzing large volumes of data and detecting intricate 

patterns, machine learning models can generate accurate predictions and valuable insights that 

were previously unattainable.  

 One of the key advantages of machine learning in time series forecasting is its ability to 

handle high-dimensional and unstructured data. With the exponential growth of data sources and 

the advent of the Internet of Things (IoT), organizations are faced with vast amounts of time series 

data from diverse sources. Machine learning techniques, such as deep learning, recurrent neural 

networks, and ensemble models, can effectively extract relevant features and capture complex 

temporal dependencies from such data, enabling improved forecasting accuracy. Furthermore, 

machine learning algorithms can adapt and self-adjust over time, making them well-suited for 

dynamic and evolving time series data. They can automatically update their models based on new 

observations and continuously improve their forecasting performance. This adaptability is 

particularly valuable in domains where time series data exhibit non-stationary behavior, 

seasonality shifts, or sudden changes due to external events or market dynamics. 

 Time series forecasting also plays a vital role in HVAC temperature control, enabling 

accurate predictions of future temperature patterns and facilitating efficient heating and cooling 

operations. In HVAC systems, time series data consists of temperature measurements taken at 

regular intervals, reflecting the dynamic nature of indoor and outdoor environments. By analyzing 

historical temperature data, time series forecasting models can identify underlying trends, seasonal 

patterns, and cyclic variations, enabling HVAC systems to anticipate temperature changes and 
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adjust heating and cooling settings accordingly. This proactive approach improves energy 

efficiency by ensuring that HVAC systems operate optimally and avoid unnecessary energy 

consumption.  

 The integration of machine learning with time series forecasting has resulted in significant 

advancements in predictive analytics. These techniques have been applied to diverse fields, such 

as weather forecasting, financial markets, energy demand forecasting, sales forecasting, anomaly 

detection, and predictive maintenance. The accurate predictions and insights derived from machine 

learning models enable organizations to make informed decisions, optimize resource allocation, 

mitigate risks, and gain a competitive edge in a rapidly changing environment. 

1.1.2 HVACs and Data Driven Control 

 As concerns about energy consumption, environmental impact, and occupant well-being 

grow, there is an increasing need for advanced control strategies that optimize HVAC system 

performance. The emergence of data-driven control approaches, enabled by advancements in 

sensor technology, data analytics, and machine learning, has revolutionized the way HVAC 

systems are managed. By leveraging data and analytics, data-driven control techniques offer the 

potential to enhance energy efficiency, occupant comfort, and system reliability in HVAC 

operations. 

 Traditional control strategies for HVAC systems have often relied on fixed setpoints and 

pre-determined control algorithms. However, these approaches may not adapt well to dynamic 

conditions, changing occupant requirements, or variations in external factors such as weather 

patterns. Data-driven control, on the other hand, leverages real-time sensor data and historical 

information to optimize control actions and dynamically adjust HVAC system parameters. The 

foundation of data-driven control in HVAC systems lies in the availability of sensor data that 

captures relevant environmental and operational information. Sensors placed throughout the 

building monitor variables such as temperature, humidity, occupancy, and air quality. This data is 

then processed and analyzed using advanced analytics techniques, including machine learning 

algorithms, to extract patterns, identify correlations, and make informed decisions about system 

operation. 
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 Data-driven control offers several key advantages for HVAC systems. Firstly, it enables 

personalized comfort control, as it can learn occupant preferences and adjust settings accordingly. 

By analyzing historical data on individual occupant behavior, the system can optimize 

temperature, airflow, and ventilation rates in different zones of the building, tailoring the HVAC 

operation to specific needs and enhancing occupant comfort. Secondly, data-driven control enables 

real-time optimization of energy consumption. By continuously monitoring and analyzing sensor 

data, the system can identify energy-saving opportunities, adapt HVAC operation based on 

occupancy patterns and external conditions, and dynamically adjust setpoints and control 

strategies. This optimization can lead to significant energy savings without compromising comfort, 

resulting in lower utility costs and reduced environmental impact. 

 However, data-driven control in HVAC systems also presents challenges. Issues such as 

data quality, privacy concerns, model interpretability, and computational requirements must be 

carefully addressed. Additionally, the implementation of data-driven control requires expertise in 

data analytics, machine learning, and HVAC system knowledge to ensure effective integration and 

operation. 
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CHAPTER 2: LITERATURE REVIEW 

According to B. Dong et al [5] and A. Foucquier et al [6], currently Physical knowledge-

based, data-driven, and hybrid models are the three types of models used most frequently to predict 

energy consumption and temperature.  

The first type, physical knowledge-based models also called white-box models, plays a 

crucial role in the development of prediction models by employing mathematical representations 

of the fundamental principles of physics [7]. These models rely on a deep understanding of the 

underlying physical processes governing the behavior of the system being modeled. By 

incorporating equations derived from thermodynamics, heat transfer, and fluid dynamics, white-

box models aim to provide accurate predictions based on well-established scientific principles. 

However, it is important to note that the utilization of white-box models presents certain 

drawbacks. One significant limitation is the requirement for extensive knowledge and 

understanding of the specific building or area being modeled. To develop an effective white-box 

model, researchers and practitioners must possess comprehensive information about the structural 

characteristics, materials, and system configurations of the building. This necessitates detailed data 

collection and analysis, including factors such as building layouts, insulation properties, 

ventilation systems, and occupancy patterns. Another challenge associated with white-box models 

is the presence of assumptions within the mathematical equations used. These assumptions are 

based on simplifications and idealizations of the real-world system behavior. While these 

assumptions are necessary to formulate tractable mathematical models, they may not always 

perfectly align with the actual behavior observed in practice. Variations in operating conditions, 

occupant behavior, or unexpected system interactions can introduce discrepancies between the 

model predictions and real-world outcomes [8]. Overall, these models incorporate a deep 

understanding of the physical properties and behaviors of HVAC systems and the surrounding 

environment. By leveraging fundamental scientific principles, physical knowledge-based models 

aim to accurately simulate the energy consumption and temperature dynamics of a building or 

space. They typically require detailed inputs such as building specifications, system 

configurations, and environmental conditions to generate predictions. These models are valuable 
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for their ability to provide insights into the underlying physical processes governing energy 

consumption and temperature regulation. 

Machine Learning (ML) and other data-driven black-box techniques have gained 

significant attention and demonstrated superior performance compared to traditional methods in 

various domains. These approaches leverage the power of advanced algorithms to analyze large 

datasets and extract complex patterns and relationships. In the context of thermal dynamics 

modeling, black-box techniques based on data have shown promising capabilities in simulating 

and predicting temperature dynamics without the need to explicitly identify zone-specific 

characteristics, such as heat capacity and size [10]. The use of machine learning (ML) and data-

driven black-box techniques in thermal dynamics modeling offers increased flexibility and 

adaptability across various building types and environments. These models can handle diverse 

settings and variations in thermal dynamics without requiring manual adjustments for specific zone 

characteristics. This scalability and generalizability are particularly advantageous in scenarios 

involving multiple zones or complex buildings with varying thermal characteristics. However, it 

is important to acknowledge that black-box models come with limitations. While they excel in 

capturing complex relationships, their lack of interpretability can hinder understanding of the 

underlying physical processes. Unlike white-box models that provide explicit equations and 

assumptions, black-box models are treated as "black boxes" with non-interpretable internal 

mechanisms. This lack of interpretability makes it challenging to gain insights into the factors 

driving predictions or identify specific physical phenomena at play. 

Gray-box models represent a hybrid approach that seeks to bridge the gap between white-

box models and the complexities of actual building conditions. These models combine the 

transparency and interpretability of white-box techniques with the incorporation of actual data, 

moving away from relying solely on assumptions. By integrating real-world data, gray-box models 

aim to provide more accurate predictions of thermal dynamics and energy consumption in 

buildings [9]. However, gray-box models do come with their own set of limitations. One 

significant drawback is the requirement for substantial prior information about the building being 

modeled. This includes detailed knowledge of the building's physical characteristics, such as its 

layout, construction materials, and HVAC system specifications. Without comprehensive data, the 
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accuracy of the gray-box model may be compromised. Additionally, gray-box models often rely 

on mathematical presumptions and simplifications to achieve the desired accuracy. These 

assumptions are necessary to strike a balance between model complexity and computational 

efficiency. However, these simplifications may introduce certain degrees of uncertainty and 

limitations to the model's predictive capabilities. Therefore, careful consideration and validation 

of the assumptions made within the gray-box model are necessary to ensure reliable predictions. 

Indoor temperature forecasting has garnered significant attention in recent years, 

prompting extensive research into various machine learning techniques that aim to deliver precise 

predictions. Among the approaches explored, support vector machines (SVM) [11], [12], random 

forests [13], extreme gradient boosting (XGBoost) [14], [15], and artificial neural networks 

(ANNs) [16] have emerged as prominent contenders. These techniques offer unique advantages 

and have been successfully employed in achieving accurate indoor temperature forecasts. SVMs 

leverage statistical learning theory to find optimal decision boundaries, random forests employ 

ensemble learning with decision trees, XGBoost employs gradient boosting algorithms, and ANNs 

mimic the biological neural network structure to model complex relationships. With ongoing 

advancements, the field of indoor temperature forecasting continues to witness improvements in 

prediction accuracy and application potential. An artificial neural network (ANN) is a nonlinear 

statistical technique widely used for various machine learning tasks. It comprises three 

fundamental components: an input layer, a hidden layer, and an output layer. While ANNs have 

proven effective in modeling complex relationships, they encounter challenges when applied to 

time series data, particularly in capturing temporal dependencies between input and output data. 

To address these challenges, time correlation and recurrent neural networks (RNNs) have emerged 

as valuable tools [17]. LSTM (Long Short-Term Memory) is a variant of the recurrent neural 

network (RNN) algorithm that has gained significant popularity in the field of time-series 

forecasting. One of the main challenges faced by traditional RNNs is the issue of exploding or 

vanishing gradients, which can hinder the network's ability to learn long-term dependencies. 

LSTM addresses this problem by introducing a specialized memory cell that allows the network 

to selectively retain and propagate information over longer sequences. Researchers, such as Xu et 

al. [18], have recognized the potential of LSTM for indoor temperature prediction and have 

conducted studies comparing it with other models. In their work, they focused on predicting indoor 
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temperature with a forecast horizon of 5 minutes and compared the performance of LSTM against 

Support Vector Machines (SVM) and Back Propagation Neural Networks (BPNN). The results of 

the study demonstrated that LSTM outperformed the other models in terms of predictive accuracy. 

Specifically, the evaluation metric used, R-squared (R2), indicated that LSTM achieved an R2 value 

of 0.79. This implies that approximately 79% of the variability in the indoor temperature could be 

explained by the LSTM model. By comparison, SVM and BPNN exhibited lower R2 values, 

suggesting lower performance in capturing the intricate relationships within the data. 

 In a study conducted by Mtibaa et al. [19], the performance of two models, NNARX 

(Neural Network-based Autoregressive Model with Exogenous Inputs) and LSTM, was compared 

in the context of a 6-hour prediction model. The evaluation metrics used were MAPE (Mean 

Absolute Percentage Error) and MAE (Mean Absolute Error). However, it is worth noting that the 

execution time for NNARX was considerably slower compared to LSTM, which is an important 

practical consideration in real-time applications. In contrast, LSTM demonstrated faster execution 

time, completing a 4-hour prediction in less than 15 seconds. On the other hand, NNARX took 

more than 5 minutes to achieve the same prediction. Despite the difference in execution time, both 

models yielded similar results in terms of prediction accuracy. Additionally, the study also 

examined the standard deviation of error for both models. The standard deviation of error for 

NNARX was reported to be 0.45 °C slightly larger than the LSTM. This indicates the variability 

or spread of errors around the predicted values. While LSTM performed better in terms of accuracy 

and execution time, the slightly larger standard deviation of error for NNARX suggests that it may 

have a slightly higher level of inconsistency in its predictions compared to LSTM. In another study 

conducted by Fang et al. [20], a seq2seq LSTM model was proposed for predicting the indoor 

temperature of different building zones. The model consisted of three architectures: LSTM-Dense, 

LSTM-LSTM, and LSTM-Dense-LSTM. The key concept behind this research was the utilization 

of an encoder-decoder framework in the seq2seq model. The encoder component captured 

important features from the input sequence and passed them to the decoder, which was responsible 

for generating forecasts based on the provided information. Among the three architectures 

examined, LSTM-Dense demonstrated the best performance with an RMSE (Root Mean Square 

Error) value of 0.458. The RMSE is a measure of the difference between predicted values and 

actual values, with lower values indicating better accuracy. Another seq2seq model utilized 
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convolutional neural networks (CNN) for feature extraction on the input data, followed using a 

long short-term memory (LSTM) model to predict the interior temperature fluctuation for the next 

120 minutes. This approach aimed to leverage the strengths of CNN in extracting meaningful 

features from the input sequence and LSTM's ability to capture temporal dependencies. By 

employing CNN as a feature extraction mechanism, the model could effectively identify relevant 

patterns and relationships within the input data. This process allowed the model to capture 

important spatial information and extract higher-level features that contribute to accurate 

temperature predictions. After the feature extraction phase, the extracted features were fed into an 

LSTM model. By incorporating an LSTM layer, the model could effectively model the temporal 

dynamics and dependencies in the interior temperature fluctuations. The results of this seq2seq 

model were highly promising, with a high R-squared value of above 0.9. The R-squared value 

indicates the proportion of the variance in the dependent variable (interior temperature) that is 

explained by the model. A value above 0.9 suggests a strong correlation between the predicted 

temperature values and the actual temperature values. Jiang et al. [21] utilized an attention-LSTM 

model that was employed to predict the indoor temperature. The attention mechanism is a 

mechanism that allows the model to focus on relevant parts of the input sequence while making 

predictions. The attention-LSTM model was compared to two other recurrent neural network 

(RNN) variants, namely the Gated Recurrent Units (GRU) and the traditional LSTM. The results 

of the study indicated that the attention-LSTM model outperformed both the GRU and LSTM 

models when the forecasting horizon was 30 minutes or greater. The superiority of the attention-

LSTM model can be attributed to the attention mechanism, which enables the model to selectively 

attend to specific parts of the input sequence that are deemed more important for making accurate 

predictions. This mechanism allows the model to assign higher weights or attention to relevant 

temporal features, thereby capturing crucial information and improving prediction performance. 

The comparison results suggest that for longer forecasting horizons, where capturing intricate 

temporal dependencies becomes more critical, the attention-LSTM model excels in capturing and 

leveraging the relevant information effectively. The ability of the attention-LSTM model to 

dynamically focus on important features within the input sequence leads to improved forecasting 

accuracy compared to the GRU and LSTM models. 
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However, LSTM-based models do have certain limitations that should be considered. One 

of the challenges associated with LSTM networks is their ability to effectively capture long-term 

dependencies in data, particularly when dealing with long sequences. LSTM networks are 

designed to address the vanishing gradient problem and can capture short-term dependencies 

effectively, but they may struggle to capture complex long-term dependencies. The vanishing 

gradient problem refers to the issue where the gradients diminish exponentially over time, making 

it difficult for the network to propagate useful information across many time steps. This limitation 

becomes more pronounced as the length of the input sequence increases. Consequently, when 

training LSTM-based models on long sequences, there is a risk of losing important information 

and compromising the model's performance. Furthermore, LSTM networks process input 

sequences sequentially, one timestep at a time. This sequential processing can result in slower 

training times compared to models that can leverage parallel processing. Each timestep in an input 

sequence must be processed and propagated through the network before proceeding to the next 

timestep, which can be computationally demanding and time-consuming. 

When comparing RNN-based techniques to transformer-based approaches, it has been 

observed that transformer models tend to achieve lower prediction errors. This is primarily 

attributed to the transformer's capability to recognize long-term latent patterns within the entirety 

of the input data [22]. Unlike RNN-based models, transformers employ self-attention mechanisms 

to process input sequences. Self-attention allows transformers to consider all timesteps 

simultaneously, rather than relying on sequential processing. By considering the entire sequence 

at once, transformers can capture dependencies and patterns across long sequences more 

effectively. The self-attention mechanism in transformers enables the model to assign different 

weights or importance to different parts of the input sequence, depending on their relevance to the 

prediction task. This allows the model to attend to relevant information and disregard irrelevant or 

redundant information, leading to improved performance in capturing long-term dependencies. 

The ability of transformers to process input sequences in parallel rather than in a sequential manner 

is a significant advantage. By considering all timesteps at once, transformers can consider the 

entire history of the sequence, facilitating the recognition of complex patterns and dependencies 

that may span across long periods of time. 



14 

Footnote may be given with Font size 10 of Times New Roman. 

This study aims to investigate the effectiveness of transformers in predicting energy usage 

data obtained from multiple devices and surveys. While the use of transformer models for time-

series modeling in indoor temperature forecasting has received limited attention in the literature, 

especially for HVAC temperature forecasting, this research explores their potential. Four different 

forecasting horizons (1, 15, 30, and 60 minutes) were considered, and the models were trained 

using collected data. Real-time control of the HVAC system was conducted using a specially 

designed infrared sensor based remote to evaluate the accuracy of the models' forecasts. Energy 

usage data was collected and compared across different forecasting horizons. Surveys were also 

conducted to gather information on occupants' thermal comfort. This work is particularly 

significant as it contributes to power optimization and enhances occupant comfort. The trained 

model can be applied to optimize HVAC systems in similar setups with sensors and data recording 

devices, indicating broader applicability. The study's findings provide insights into the viability of 

using transformers for energy forecasting and their potential role in creating energy-efficient 

buildings. A schematic representation of the proposed method is given in Figure 1. 
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Figure 1: A schematic representation of the proposed methodology illustrating the data acquisition process into 

cloud storage utilized by a deep learning model that generates temperature predictions to control HVAC. 
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CHAPTER 3: METHODOLOGY 

3.1 Data Acquisition  

The dataset used in this research encompasses a wide range of information obtained from various 

sources, including an air quality analyzer, power quality analyzer, and surveys. The data collection 

process involved sampling the variables at a rate of 1 minute, ensuring a comprehensive 

representation of the dynamic nature of the indoor environment. To organize the collected data 

effectively, it was divided into five distinct classes based on the types of information being 

captured. 

3.1.1 ASHRAE standard 55 and Survey Data 

 The ASHRAE Standard 55, developed by the American Society of Heating, Refrigerating, 

and Air-Conditioning Engineers (ASHRAE), provides guidelines and recommendations for 

thermal environmental conditions in buildings [23]. It specifically focuses on factors such as 

temperature, humidity, air movement, and occupant activity levels to ensure thermal comfort and 

well-being. 

 ASHRAE Standard 55 provides guidance on how to assess and consider human factors that 

influence thermal comfort. This includes factors such as body dimensions, clothing insulation, 

metabolic rates, and personal preferences. By incorporating these factors into the analysis, the 

standard helps to establish a more comprehensive understanding of how occupants perceive and 

experience thermal comfort in different environments. 

 The class of anthropometric measurements in the dataset is derived from surveys 

conducted based on the ASHRAE Standard 55. In order to address any uncertainty in the data, 

the study conducted by Kim et al. [24] proposed the utilization of a minimum of 60 surveys per 

person to achieve stable predictions of thermal preference. Therefore, a total of 84 surveys were 

collected per participant to ensure robustness and mitigate potential uncertainties in the data. The 

survey encompassed various personal parameters including metabolic rate, clothing insulation, 

Body Mass Index (BMI), and body temperature. The metabolic rate, which indicates the rate at 
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which an individual generates heat, was estimated based on the activity level and clothing type of 

the occupants, following the guidelines provided by the ASHRAE standard. Clothing insulation, 

which determines the thermal resistance provided by the clothing worn, was also assessed in the 

survey. The occupants were asked to provide information about the type and thickness of their 

clothing, which allowed for the estimation of clothing insulation values. Body Mass Index 

(BMI), a measure of body composition based on height and weight, was recorded to consider the 

potential influence of body size on thermal comfort. To measure body temperature, a non-

invasive laser thermometer was used. This tool enables surface temperature measurements and is 

commonly employed for assessing body temperature without physical contact. In addition to 

collecting objective data, the survey also included the subjective thermal perception of the 

occupants. The participants were asked to rate their thermal sensation on a 5-point scale, in 

accordance with the categories defined by the ASHRAE standard 55. The scale ranged from -2 to 

2, representing the categories of cool, slightly cool, neutral, slightly warm, and warm, 

respectively. 

 These measurements are essential for understanding the individual variations in thermal 

comfort preferences and responses to indoor temperature conditions. By incorporating the 

anthropometric data based on the ASHRAE Standard 55, the predictive model can account for 

the diverse range of occupant profiles and their impact on thermal comfort. This allows for a 

more personalized and adaptive approach to HVAC temperature forecasting, optimizing energy 

efficiency while maintaining occupant comfort. 

3.1.2 Air Quality 

 The second class of data, air quality, focused on assessing the quality of indoor air and its 

potential impact on occupant well-being. To gather this information, an air quality analyser was 

utilized, capable of measuring multiple parameters related to air pollution and evaluating the 

overall air quality within the building. 

 The air quality analyser collected data on 15 different parameters that are known to 

contribute to air pollution and can have significant implications for indoor environments. These 
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parameters included carbon dioxide (CO2) levels, particulate matter (PM) concentrations, Volatile 

Organic Compounds (VOCs), and ozone (O3) levels, among others. 

 

Figure 2 Air Quality Analyzer 

3.1.3 Power Quality 

 The third class of data, power quality, aimed to monitor and analyse various electrical 

parameters associated with the HVAC system, including voltage, current, and power consumption. 
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A power quality analyser was employed to measure and record these parameters, providing 

valuable insights into the energy consumption patterns of the HVAC system and its overall impact 

on the building's energy usage. 

 

Figure 3 Power Quality Analyser 

The power quality analyser was specifically configured to monitor the energy consumption 

parameters of the HVAC system installed in the room. It collected data on a total of 32 parameters, 

which included voltage levels, current values, active power, and reactive power. 
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3.1.4 Indoor Ambiance  

 The fourth class of data, indoor environment ambiance, focused on capturing various 

variables that contribute to the overall indoor environment within the monitored space. These 

variables included lighting levels, indoor temperature, humidity, pressure, and occupancy status. 

Understanding and monitoring these factors are crucial as they significantly influence occupant 

comfort, well-being, and overall satisfaction within a building. 

Lighting levels were measured to assess the intensity and quality of illumination within the space. 

Proper lighting is essential for creating a comfortable and productive indoor environment, and it 

plays a vital role in occupant visual comfort and task performance. Indoor temperature and 

humidity are key parameters that directly affect thermal comfort. Maintaining an optimal 

temperature and humidity level is important to ensure that occupants feel neither too hot nor too 

cold and to prevent issues such as condensation or excessive dryness. Pressure measurements were 

also recorded to monitor any variations in air pressure within the indoor environment. Changes in 

pressure can impact ventilation and air circulation, which in turn affects indoor air quality and 

comfort. Occupancy status was monitored to determine the number of people present in the space 

at different times. Occupancy data is valuable for analysing patterns, understanding occupant 

behaviour, and evaluating the impact of occupancy on indoor conditions and energy consumption. 

3.1.5 Meteorological Data 

 The meteorological data used in the study played a crucial role in understanding the 

outdoor conditions and their impact on the indoor environment. These data were obtained from 

NOAA's (National Oceanic and Atmospheric Administration) weather database [25], a reputable 

source for comprehensive and reliable meteorological information. 

 The dataset comprised 13 parameters that encompassed a range of meteorological factors. 

One of the key parameters was the outdoor temperature, which provided insights into the ambient 

temperature outside the building. Understanding the outdoor temperature is vital as it directly 

influences the indoor temperature and the heating or cooling requirements of the HVAC system. 

 The NOAA (National Oceanic and Atmospheric Administration) weather database is a 

comprehensive and reliable source of meteorological data. It is maintained by the U.S. government 
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agency responsible for monitoring and forecasting weather and climate conditions. The database 

collects data from various weather stations across the United States and other regions, ensuring 

wide coverage and accuracy. NOAA's weather database contains a vast amount of information 

related to weather conditions, including temperature, humidity, precipitation, wind speed, 

atmospheric pressure, UV index, and more. These data points are collected at regular intervals 

from different locations, providing a comprehensive picture of weather patterns and variations. 

 The sensors used in the devices along with their typology and operational range, to record 

data are provided in Table 1. 
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Table 1 Details of sensors used in the experiments 

Sensor Name  Typology Operational Range 

High Precision Laser 
Dust Concentration 
Sensor 

Type: Optical sensor 

• Working principle: Measures the 
scattered light intensity from dust 
particles using a laser beam 

• Applications: Environmental 
monitoring, indoor air quality 
control, industrial process control 

Particle measurement range 
0.3 to 1.0; 1.0 to 2.5; 2.5 to 10 
(Micron) 
Operating temperature range -
10 ~ + 60 (Celsius) 
Operating humidity range 0 ~ 
99% 
Storage temperature range -40 
~ + 80 (Celsius) 

Low Concentration 
Ozone Gas Detection 
Sensor 

Type: Chemical sensor 

• Working principle: Measures the 
change in electrical conductivity of 
a sensing material exposed to 
ozone gas 

• Applications: Air purification 
systems, gas detectors, sterilization 
equipment 
 

10～1000ppm Ozone 

High Concentration 
Ozone Gas Detection 
Sensor 

Type: Electrochemical sensor 

• Working principle: Measures the 
change in electrical current 
generated by a reaction between 
ozone and a sensing electrode 

• Applications: Ozone generators, 
industrial process control, 
sterilization equipment 
 

10～1000ppm Ozone 

CO2/ TVOC Sensor  

Type: Gas sensor 

• Working principle: Measures 
the change in electrical 
conductivity of a sensing 
material exposed to CO2 
and/or volatile organic 
compounds (TVOCs) 

• Applications: Indoor air quality 
monitoring, HVAC systems, 
smart homes 

 

CO2 = 400ppm to 8192ppm 

TVOC = 0ppb to 1187ppb 

Dust Sensor  
Type: Optical sensor 

• Working principle: Measures the 
light scattering or transmission 

Output Voltage range (Min 3.4 
Volts)  
Operating temperature range -
10 to +65 (Celsius) 
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caused by dust particles using a 
LED or laser beam 

• Applications: Environmental 
monitoring, indoor air quality 
control, industrial process control 

Output Voltage at no dust (0 
to 1.5 Volts) 

Air Quality Co, NH3, NO 
Gas Sensor 

Type: Electrochemical sensor 

• Working principle: Measures the 
change in electrical current 
generated by a reaction between 
the target gas and a sensing 
electrode 

• Applications: Environmental 
monitoring, gas detectors, 
industrial process control 

Carbon monoxide CO 1 – 
1000ppm 
Nitrogen dioxide NO2 0.05 – 
10ppm 

Ethanol C2H5OH 10 – 500ppm 

Hydrogen H2 1 – 1000ppm 

Ammonia NH3 1 – 500ppm 

Methane CH4 >1000ppm 

Propane C3H8 >1000ppm 

Iso-butane C4H10 >1000ppm 

Current Transformer 

Type: Current sensor 

• Working principle: Measures the 
magnetic field produced by an 
electric current passing through a 
wire using a magnetic core and a 
coil 

• Applications: Power monitoring, 
energy management, industrial 
control systems 

Instantaneous Energy for 
Phase 1, 2 & 3: 0 to 10s kJ 

Power Factor: 0 to 1 

Frequency of Energy Line: 
50/60 Hz 

Current Amperes: 0 to 1000 

 

3.2 Data Pre-Processing: 

 Data pre-processing plays a crucial role in the overall performance of a machine learning 

model. Several steps were taken to ensure the data was appropriately prepared before training and 

evaluating the predictive models.  

 Initially, the data from all sensors and devices were combined into a single dataset. This 

integration involved aligning the timestamps of the data points to create a unified timeline. By 

concatenating the data, a comprehensive table was formed with 40,320 rows representing the 

recorded data instances and 78 columns representing the various features or parameters.  

 To ensure consistent scaling and to eliminate any potential bias caused by varying 

measurement units or scales, the dataset was normalized to a range of [0, 1]. Normalization allows 

all input variables to be on the same scale, preventing certain features from dominating the learning 
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process due to their larger magnitudes. In order to capture the temporal patterns and incorporate 

historical information into the predictive models, the input variables were transformed into 60-

minute lag sequences. This decision was based on previous research and preliminary experiments, 

which indicated that a 60-minute lag sequence offered a balance between predictive accuracy and 

the risk of overfitting. By including past observations as input, the models could leverage temporal 

dependencies and capture patterns in the data that contribute to future temperature forecasting. 

 To further enhance the training process and introduce additional variability, a sliding 

window technique was applied. This technique involved dividing the time-series data into smaller 

sequences or windows. This division not only facilitates data augmentation but also enables the 

models to learn from shorter sequences within the overall time-series. In this study, sliding window 

sizes of 1, 15, 30, and 60 were chosen to create different forecast horizons.  

 After the pre-processing steps, the dataset was split into training, validation, and testing 

sets. The split was performed in a ratio of 60:40, with 60% of the data allocated for training and 

the remaining 40% for validation and testing. This division allows for model training on a 

substantial portion of the data while retaining separate sets for evaluating model performance and 

generalization. The specific choices made regarding the training set size were based on 

experimentation and analysis. It was observed that varying the training set size to 50% and 70% 

led to decreased predictive accuracy, with the R2 score dropping below the desired threshold. 

Thus, a training set size of 60% was determined to strike the right balance between data availability 

for training and the model's ability to capture the underlying patterns effectively. 

3.3 Forecasting Models 

 Time-series forecasting is a widely studied problem, and researchers have developed 

various models to address it effectively. In the context of this research, a transformer model is 

utilized for time-series forecasting, which was originally introduced for Natural Language 

Processing (NLP) tasks with promising results [26]. Transformers have demonstrated their ability 

to capture long-term dependencies in sequences, making them well-suited for time-series analysis. 

To assess the performance of the proposed transformer model, it is compared with a recent model 

introduced by Elmaz et al. [10]. The comparison model combines Convolutional Neural Network 
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(CNN) and Long Short-Term Memory (LSTM) network, commonly referred to as CNN-LSTM. 

The CNN-LSTM architecture is specifically designed for time-series forecasting, as it can 

effectively identify both short- and long-term dependencies in the data. 

3.3.1 CNN-LSTM 

 Convolutional Neural Network (CNN) coupled with a Long Short-Term Memory (LSTM) 

network, known as CNN-LSTM, is a powerful model architecture that excels in time-series 

forecasting tasks. This architecture effectively captures both short and long-term dependencies in 

the data, making it highly suitable for addressing complex time-series forecasting problems. 

 In the CNN-LSTM model, a CNN is employed as a feature extractor to extract relevant 

features from the input data. CNNs are well-known for their ability to automatically learn and 

identify important spatial features in various types of data, including images, signals, and time-

series data [28]. The CNN component of the model uses 1D convolutions to capture important 

patterns and features from the input time-series data. The extracted features from the CNN are then 

fed into the LSTM component of the model. LSTM, which stands for Long Short-Term Memory, 

is a type of recurrent neural network (RNN) that is specifically designed to address the challenges 

of modeling long-term dependencies in sequential data [29]. LSTMs overcome the issues of 

gradient disappearance and explosion that are commonly encountered in traditional RNNs. They 

achieve this by incorporating a memory cell that can retain information over extended time steps, 

enabling the network to selectively retain and discard information as needed [30]. This memory 

mechanism allows LSTMs to capture and remember long-term dependencies in the time-series 

data, contributing to their effectiveness in time-series forecasting tasks. 

 

 By combining the strengths of CNNs in feature extraction and LSTMs in modeling 

temporal dependencies, the CNN-LSTM architecture offers a comprehensive solution for time-

series forecasting. It leverages the spatial and temporal information in the input data to make 
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accurate predictions and capture complex patterns present in the time-series data

 

Figure 4: Schematic of a CNN- LSTM architecture illustrating the input data is first fed into several convolution 

layers. The output from these layers is then passed on to LSTM cells, and finally to a dense layer that generates 

predictions. 

 Elmaz et al. [10] introduced a CNN-LSTM architecture for time-series forecasting, as 

depicted in Figure 4. The architecture consists of several interconnected layers designed to extract 

features from the input series and make accurate prediction. 

 The input series is initially fed into the CNN component of the model. The CNN consists 

of two stacked layers, with 64 and 128 kernels respectively. These kernels have kernel sizes of 32 

and 16, indicating the receptive field size over the input data. The use of multiple layers with 

different kernel sizes allows the model to capture features of varying scales and complexities. A 

stride of 1 is employed to scan the input series, extracting relevant features. Following the 

convolutional layers, max pooling is applied to reduce the dimensionality of the features and retain 

the most salient information. 

 The output from the CNN component is then passed on to the LSTM layer. The LSTM 

layer consists of a single layer with 60 units, which are responsible for capturing and modeling the 

temporal dependencies within the input series. The LSTM layer utilizes its memory cell and gates 

to selectively remember and forget information, effectively capturing long-term dependencies in 

the data. 

 Finally, the flattened and fully connected layer, connected to the LSTM layer, contributes 

to the prediction process. The flattened layer transforms the output from the LSTM layer into a 
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one-dimensional vector, which is then fed into the fully connected layer. This layer performs 

computations on the extracted features, further refining them for prediction purposes.  

 During the training process, various hyperparameters are tuned to optimize the 

performance of the CNN-LSTM architecture. These hyperparameters include the number of layers 

and units in the CNN and LSTM components, the kernel sizes, and the stride in the CNN, among 

others. The specific values chosen for these hyperparameters are detailed in Table 2 of the paper. 

 

Table 2 List of Hyperparameters 

Learning Rate 0.001 

L2 Regularization Rate 0.1 

Dropout 0.25 

Batch Size 32 

 The batch size of 32 was selected as a common practice in deep learning to strike a balance 

between convergence speed and memory requirements [31]. This choice ensures that a sufficient 

amount of data is processed in each iteration while considering the limitations of the hardware's 

memory capacity. To prevent overfitting, a regularization rate of 0.1 was applied. Regularization 

is a technique that adds a penalty term to the loss function, discouraging the model from relying 

too heavily on any particular set of features. By regularizing the model, it becomes more robust 

and less prone to overfitting the training data. A dropout rate of 0.25 was also incorporated in the 

architecture. Dropout is a regularization technique where randomly selected neurons are ignored 

during the training process. This helps in preventing overfitting by forcing the model to learn more 

robust and generalized representations [31]. 

 The learning rate was set to 0.001. The learning rate determines the step size taken during 

the optimization process. A carefully chosen learning rate ensures a balance between the 

convergence speed and the risk of overfitting or underfitting the data. A smaller learning rate 

allows for more precise updates but may lead to slower convergence, while a larger learning rate 

may cause the model to overshoot the optimal solution. 
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3.3.2 Transformer Neural Networks 

 That's correct. The Transformer model is a type of sequence-to-sequence model, 

commonly used in natural language processing tasks such as machine translation, text 

summarization, and language generation. It excels in handling sequential data by employing an 

attention mechanism that allows it to capture dependencies across the entire input sequence. The 

Transformer model consists of an encoder and a decoder. The encoder processes the input 

sequence and generates a representation that encapsulates the input's contextual information. The 

decoder then uses this representation to generate the output sequence, one element at a time. This 

sequence-to-sequence architecture makes the Transformer model versatile and applicable to 

various tasks that involve encoding and decoding sequential data, not limited to language-related 

tasks. 

 The architecture of the transformer model, as depicted in Figure 5, is employed for HVAC 

temperature forecasting. The input sequence is first passed through a position encoding layer, 

which aids the transformer in capturing temporal patterns and dependencies within the data [32]. 

The positional encoder enhances the model's ability to understand the sequential nature of the input 

sequence. 

 The output from the positional encoding layer is then fed into multiple transformer blocks, 

with our architecture incorporating four such blocks. Each transformer block consists of eight 

transformer heads, with each head having a size of 256. These transformer heads are utilized in 

multi-head attention layers, allowing the model to attend to different parts of the input sequence 

simultaneously and capture relevant information effectively. 
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Figure 5: Architecture diagram of transformer neural network representing the flow of input sequences through multiple layers.  

Furthermore, the architecture incorporates two 1D convolutional layers in the feed-forward layer. 

These convolutional layers have kernel sizes of 1 and filter sizes of 8 and 74, respectively, 

corresponding to the number of features present in the dataset. The convolutional layers serve to 

further process and extract meaningful representations from the input data. After passing through 

the multiple transformer blocks and the convolutional layers, the output data is directed to a 

dense layer with 256 units. This dense layer performs additional computations and generates the 

final output, which represents the predicted HVAC temperature. 

 The transformer architecture's utilization of self-attention mechanisms is a key feature 

that sets it apart. Self-attention allows the network to assign relative importance to different 

elements within the input sequence when making predictions [33]. This dynamic weighting 

mechanism enables the transformer to effectively process input sequences of varying lengths. 

Unlike traditional Recurrent Neural Networks (RNNs), which have a fixed-length context, the 

transformer can capture long-range dependencies in the data, making it suitable for tasks that 

involve extensive temporal or sequential information [34]. 
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 Another notable aspect of the transformer is its employment of multi-head 

attention. With multi-head attention, the model can simultaneously process information from 

multiple representation subspaces and different positions within the input sequence [33]. By 

considering different subspaces, the transformer can capture diverse patterns and relationships 

within the data, enhancing its ability to understand complex and multi-faceted dependencies. This 

multi-head attention mechanism allows the model to efficiently handle both local and global 

information, resulting in more comprehensive and accurate predictions. The self-attention 

mechanism in the transformer can be described mathematically as follows: 

Attention (Q, K, V) = softmax ( 
𝑸𝑲𝑻

𝒅_𝒌
 )V       1 

 In Equation 1, the parameter d_k represents the dimensionality of the key representations 

in the self-attention mechanism. The matrices Q, K, and V are learned during the training process 

and are responsible for mapping the input elements to their respective query, key, and value 

representations. These representations play a crucial role in the self-attention process. 

 During self-attention, the model calculates the similarity between each query and its 

corresponding key representation. This similarity score determines the importance or weight 

assigned to each value representation. The key representations capture information about the 

relationships and dependencies within the input sequence, while the query representations indicate 

the elements of interest that require attention. The value representations contain the actual 

information or features associated with each input element. By computing the dot product between 

the query and key representations and scaling the result by the square root of the dimensionality 

d_k, the self-attention mechanism produces attention weights. These weights reflect the relevance 

of each value representation to the corresponding query. The value representations are then 

multiplied by their respective attention weights and summed to obtain a weighted sum, 

representing the aggregated information or context relevant to the query. 

 The self-attention mechanism allows the model to selectively attend to different parts of 

the input sequence, focusing on relevant elements and capturing important dependencies. By 

dynamically weighing the value representations based on their similarity to the query, the model 

can effectively capture the relevant information needed for accurate predictions. This process of 

attending and aggregating information is performed across all positions in the input sequence, 
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enabling the transformer to capture global dependencies and effectively model long-term 

relationships in the data [33].   

 The flexibility and adaptability of the transformer architecture are particularly 

advantageous when dealing with time-series data. Its self-attention mechanisms enable it to 

effectively model long-term dependencies, while the multi-head attention mechanism allows it to 

capture diverse patterns and relationships within the data. These capabilities make the transformer 

well-suited for tasks involving temporal sequences, such as time-series forecasting. By leveraging 

these characteristics, the transformer architecture has demonstrated remarkable success in various 

domains, including natural language processing and now extending to time-series forecasting. The 

pseudo code for complete architecture of transformer is presented below:  

 

Algorithm 2 Pseudocode of Transformers Neural Networks 

FUNCTION transformer_model (inputs, head_size, num_heads, dropout, ff_dim): 

    x ← LayerNormalization (inputs) 

    x ← MultiHeadAttention (key_dim=head_size, num_heads=num_heads, dropout=dropout) (x,x) 

    x ← Dropout (dropout)(x) 

    res ← x + inputs 

    x ← LayerNormalization (res) 

    x ← Conv1D (filters=ff_dim, kernel_size=1, activation="relu")(x) 

    x ← Dropout (dropout)(x) 

    x ← Conv1D (filters=inputs.shape[-1], kernel_size=1)(x) 

    RETURN x + res 

FUNCTION build (look_back, n_features, num_transformer_blocks, head_size, num_heads, dropout, 

ff_dim, mlp_units, mlp_dropout, horizon): 

    inputs ← Input (shape = (look_back, n_features)) 

    x ← inputs 

    for i in range(num_transformer_blocks): 

        x ← transformer_model(x, head_size, num_heads, dropout, ff_dim) 

    x ← GlobalAveragePooling1D(x) 

    for dim in mlp_units: 

        x ← Dense (dim, activation="relu")(x) 

        x ← Dropout (mlp_dropout)(x) 

    outputs = Dense(x) 

    RETURN Model (inputs, outputs) 
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3.4  Evaluation Metrics 

 To assess the efficiency of the implemented temperature forecasting models, three 

commonly utilized error metrics, namely Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), and R-Squared (R2) are used. 

 The Mean Absolute Error (MAE) is a commonly used metric for evaluating the 

performance of regression models, including those used for temperature forecasting. It quantifies 

the average magnitude of the errors between the actual and predicted temperature values. MAE is 

calculated by taking the absolute difference between the actual temperature and the predicted 

temperature for each data point, and then averaging these absolute differences over the entire 

dataset. By considering the absolute differences, MAE captures the magnitude of the errors without 

considering their direction, making it a reliable metric for assessing the overall accuracy of the 

predictions. One advantage of using MAE is that it treats all errors equally, without giving 

additional emphasis to extreme errors [35]. This characteristic is particularly useful in situations 

where extreme errors may occur sporadically but do not significantly impact the overall model 

performance. MAE provides a straightforward measure of the average prediction error, allowing 

for a direct comparison of different models or techniques. This makes it a reliable metric for 

comparing the performance of different models as shown in equation 2. 

𝑴𝑨𝑬 =
𝟏

𝒏
 ∑ |𝒚𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 −  𝒚𝒂𝒄𝒕𝒖𝒂𝒍|

𝒏

𝒊=𝟏
        2 

where n denotes the number of data points in the dataset, ypredicted represents the predicted values 

and yactual represents the actual values. 

 The Root Mean Squared Error (RMSE) is a commonly used metric for assessing the 

performance of regression models, including those used for temperature forecasting. It measures 

the square root of the average of the squared differences between the actual and predicted 

temperature values. RMSE is calculated by taking the squared difference between the actual 

temperature and the predicted temperature for each data point, summing these squared differences, 

dividing by the total number of data points, and then taking the square root of the result. By 

squaring the differences, RMSE gives additional weight to larger errors, including outliers, and 

provides a measure of the overall dispersion or spread of the prediction errors [36]. One advantage 
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of using RMSE is its sensitivity to extreme values or outliers in the temperature predictions. Since 

the error term is squared in the calculation, RMSE amplifies the impact of these extreme values, 

allowing for their identification and evaluation. This can be particularly useful in scenarios where 

outliers have significant consequences or need to be carefully considered in the assessment of 

model performance. RMSE is determined using the following formula as shown in equation 3: 

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
 ∑ (𝒚𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 −  𝒚𝒂𝒄𝒕𝒖𝒂𝒍)𝟐

𝒏

𝒊=𝟏
       3 

The coefficient of determination (R2) is a statistical metric used to assess the quality of a regression 

model, including those used for temperature forecasting. It measures the proportion of the variance 

in the target variable (actual temperature values) that can be explained by the model's predictions. 

R2 is calculated by comparing the sum of squares of the differences between the actual temperature 

values and the mean of the actual values with the sum of squares of the differences between the 

predicted temperature values and the mean of the actual values This is calculated using the 

following formula as shown in equation 4: 

𝑹𝟐 = 𝟏 −
∑ (𝒚𝒂−𝒚𝒑)

𝟐𝒏

𝒊=𝟏

∑ (𝒚𝒂− 𝒚𝒂̅̅̅̅ )𝟐𝒏

𝒊=𝟏

          4 

R2 is a useful metric for evaluating the goodness of fit between the actual and predicted temperature 

values [37]. A higher R2 score indicates a better fit between the model's predictions and the actual 

temperature values. It signifies that a larger proportion of the variance in the target variable can be 

accounted for by the model. In other words, a high R2 score suggests that the model's predictions 

closely match the actual values, indicating a good level of accuracy. R2 is a valuable metric because 

it provides a standardized way to compare the performance of different models. Since R2 ranges 

from 0 to 1, with 1 indicating a perfect fit, it allows for easy interpretation and comparison of 

models. Models with higher R2 scores are generally considered to have better predictive 

performance, as they explain a larger proportion of the variance in the target variable.  

 These error metrics provided a comprehensive evaluation of the models' performance and 

helped in determining the best-performing model for temperature forecasting. 
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CHAPTER 4: MATERIALS AND METHODS 

4.1 Subjects 

 The objective of the study was to investigate thermal comfort levels in relation to HVAC 

temperature forecasting. The research involved conducting experiments in a controlled room 

environment with 4-6 participants. The participants selected for the study were between the ages 

of 24 to 30 years and had a weight range of 55 to 80 kg. 

 Before the study began, the researchers obtained informed consent from each participant, 

ensuring that they were aware of the purpose and procedures of the study. Confidentiality of the 

participants' data was maintained throughout the research process, ensuring that their personal 

information and experimental results were kept private and protected. By conducting experiments 

with human participants, the study aimed to gather data and insights regarding thermal comfort in 

indoor environments. The participants' responses and feedback, along with the temperature 

forecasting models, were used to assess and analyse the relationship between HVAC temperature 

and thermal comfort. 

4.2 Environmental Setup 

 The experiments in this study were conducted in a specifically selected room that provided 

a controlled indoor environment, allowing to have precise control over the temperature while 

closely monitoring other parameters. To accurately measure and analyse the various parameters, 

data collection devices were strategically placed in different locations within the room, as depicted 

in Figure 7. For instance, the power quality analyser (labelled as "3" in the figure) was connected 

to the power source of the HVAC system, allowing for the measurement of electrical parameters 

such as voltage, current, and power consumption. Similarly, the air quality analyser (labelled as 

"5" in the figure) was placed on the workstation, enabling the measurement of various air pollution 

parameters including carbon dioxide, particulate matter, volatile organic compounds (VOCs), and 

ozone. This placement ensured that the air quality measurements were representative of the 

immediate vicinity where the occupants were located. 
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 The experiments were specifically conducted during the winter season when the weather 

conditions were characterized by low temperatures and low humidity levels. This choice of season 

allowed the researchers to evaluate the performance of the HVAC system in maintaining thermal 

comfort under challenging environmental conditions. The trend of temperature during the testing 

phase is shown in Figure 66. 

 

Figure 6: Trend of indoor and outdoor temperatures 

 

Figure 7: Layout of the experimentation room 
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4.3 Experiment Design 

 In this experiment, a comprehensive dataset was created by collecting data from various 

sources, including multiple devices and surveys. The goal was to gather a wide range of 

information related to thermal comfort and HVAC temperature forecasting. To assess thermal 

comfort, efficient surveys were designed based on the ASHRAE standard 55, which provides 

guidelines for indoor thermal environmental conditions and human occupancy comfort. The 

surveys covered personal parameters such as metabolic rate, clothing insulation, body mass index 

(BMI), and body temperature. The ASHRAE standard also provided a method to estimate the 

metabolic rate and clothing insulation based on the occupants' activity level and clothing type. To 

measure body temperature, a laser thermometer was used, which is a non-invasive tool commonly 

employed to measure surface temperatures. Additionally, the thermal perception of the occupants 

was recorded using a scale based on the ASHRAE standard 55. This 5-point scale ranged from -2 

to 2, corresponding to the categories cool, slightly cool, neutral, slightly warm, and warm. 

Meteorological data was obtained from NOAA's weather database. This data consisted of 13 

parameters, including outdoor temperature, UV index, humidity, and other relevant meteorological 

factors. Air quality data was recorded using an air quality analyser, which measured multiple 

parameters contributing to air pollution. This helped evaluate the quality of the indoor air and its 

potential effects on occupant well-being. The analyser measured 15 parameters, including carbon 

dioxide, particulate matter, volatile organic compounds (VOCs), and ozone. Power quality 

monitoring was carried out using a power quality analyser, which measured various electrical 

parameters related to the HVAC system, such as voltage, current, active power, and reactive 

power. The indoor environment ambiance was assessed by considering variables such as lighting 

levels, indoor temperature, humidity, pressure, and occupancy status.  

 Once the data was collected from all these sources, the initial phase of data pre-processing 

involved combining the data from all sensors and devices into a single dataset. This was achieved 

by aligning the timestamps of the data points and concatenating them into a single table. The 

columns of the dataset represented the features/parameters, while the rows represented the 

recorded data points. To ensure that all input variables were on the same scale, the dataset was 

normalized to the range of [0, 1]. To enable the prediction of HVAC temperature, the input 
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variables were converted into 60-minute lag sequences based on literature and preliminary 

experiments. This lag sequence approach allowed for the inclusion of past observations in the 

prediction, which is a common technique used in time-series forecasting. Additionally, a sliding 

window technique was employed to divide the time-series into smaller sequences, serving as a 

method of data augmentation. The forecasting sequence sizes were selected as 1, 15, 30, and 60, 

representing the desired forecasting horizons. Shorter forecasting horizons such as 1 or 15 minutes 

provide real-time information about temperature changes in the HVAC system, while longer 

forecasting horizons such as 30 or 60 minutes offer a more comprehensive view of temperature 

trends over an extended period. 

 The data was then split into training, validation, and testing sets in a ratio of 60:40. This 

allowed the models to be trained and evaluated using a significant portion of the data while 

reserving a portion for independent testing. The training set size was chosen to be 60% based on 

experimentation, which indicated that varying the training set size between 50% and 70% did not 

significantly affect model performance. 

 The transformer neural network architecture, as shown in Figure 5, was utilized for 

temperature forecasting. The input sequence was passed through a position encoding layer, which 

helped the transformer model learn temporal patterns and dependencies in the data. The output of 

the positional encoder was then directed to multiple transformer blocks, with the architecture 

incorporating four such blocks. Each transformer block consisted of eight transformer heads, each 

with a size of 256, which were utilized in multi-head attention layers. Following the attention 

mechanism, two 1D convolution layers were implemented in the feed-forward layer, with kernel 

sizes of 1 and filter sizes of 8 and 74 (corresponding to the count of features present in the dataset), 

respectively. The output data from the multiple transformer blocks was sent to a dense layer with 

256 units, which generated the final output. 

 In addition to the transformer model, the CNN-LSTM architecture proposed by Elmaz et 

al. [10] was also employed for temperature forecasting. This architecture combines a 

Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) network, making 

it particularly suitable for capturing both short and long-term dependencies in the data. The CNN 

component was used to extract features from the input data, while the LSTM component processed 
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the data over time. This combination allowed the model to effectively handle both spatial and 

temporal information in the input data. 

 During the training phase, various hyperparameters were set to optimize the performance 

of the models. The batch size was chosen as 32, following the common practice of balancing 

convergence speed and memory requirements. A regularization rate of 0.1 and dropout of 0.25 

were applied to prevent overfitting. A learning rate of 0.001 was selected to balance the training 

process and prevent the models from overfitting or underfitting. 

 To evaluate the performance of the models, three key metrics were used: Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), and the coefficient of determination (R2). MAE 

is a useful metric as it directly measures the average magnitude of the error, without giving 

additional emphasis to extreme errors. RMSE, on the other hand, takes into account the squared 

error terms, thereby giving additional weight to extreme values. R2 measures the proportion of the 

variance in the target variable that can be accounted for by the model's predictions. A high R2 

score indicates a close agreement between the model's predictions and the actual values. 

 The trained models were then tested in real-time on actual HVAC systems. The test data, 

including the input variables and the corresponding actual temperature values, was provided to the 

selected models to generate predictions. These predictions were then fed into a microcontroller-

based Infrared (IR) module, which controlled the HVAC system based on the predicted 

temperatures. To assess the effectiveness of the AI models in managing the HVAC system and 

predicting energy usage, the energy consumption data was logged using a power quality analyser 

over a period of four days. The data obtained through the AI models was compared with the energy 

consumption data obtained through a traditional, non-AI method of HVAC control. This 

comparison allowed for the evaluation of the AI models' ability to optimize energy consumption 

and maintain thermal comfort. 
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Figure 8 IR-Controller 

 Furthermore, a survey was conducted to obtain feedback from the occupants regarding 

their thermal comfort levels and to assess how well the HVAC system, controlled by the proposed 

architecture, was able to maintain a comfortable indoor environment. The survey included 

questions about occupant satisfaction, perceived thermal comfort, and any discomfort experienced 

during the experiment. This feedback was used to further validate the performance of the 

transformer models in managing the HVAC system and predicting energy usage data. Figure 9 

illustrates the complete flow of the experimental procedure. 
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Figure 9: Flow diagram of forecasting temperature on HVAC 
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Algorithm 2 Experimental Design 

data_sources = ["devices", "surveys"] 

data = collect_data(data_sources) 

clean_data = preprocess_data(data) 

forecasting_horizons = [1, 15, 30, 60] 

best_model = None 

best_score = None 

For horizon in forecasting_horizons: 

    training_set, validation_set, testing_set = split_dataset(clean_data) 

    model = train_model (training_set, horizon) 

    mae, rmse, R2 = evaluate_model (model, testing_set) 

    if best_score is None or R2 < best_score: 

        best_score = R2 

        best_model = model 

microcontroller_module = setup_microcontroller() 

For horizon in forecasting_horizons: 

    test_data = run_test(best_model, horizon) 

    energy_consumption = log_energy_consumption(test_data) 

    feed_predictions(microcontroller_module, test_data) 

 

traditional_energy_data = get_energy_data("non-AI") 

ai_energy_data = get_energy_data("AI") 

compare_energy_consumption(traditional_energy_data, ai_energy_data) 

 

survey_data = conduct_survey() 

validate_model_performance(best_model, survey_data) 

 

 

 

 

  



42 

Footnote may be given with Font size 10 of Times New Roman. 

CHAPTER 5: RESULTS AND DISCUSSION 

The present study evaluates the effectiveness of a deep learning model in predicting HVAC setting 

to optimize energy efficiency while maintaining thermal comfort in buildings by utilizing dataset 

obtained from sensors. The machine learning algorithms were trained for this purpose using 

various time step predictions on the collected dataset for assessing the accuracy of the model's 

predictions. The energy consumption data collected from the resulting prediction outcomes were 

compared with the actual energy consumption to assess the usefulness of machine learning in 

energy optimization. The outcomes of the comparison were then used to determine the extent to 

which the deep learning model is effective in predicting HVAC temperature and optimizing energy 

consumption in HVAC systems supported by survey data used to assess the occupants’ thermal 

comfort 

5.1 Model Evaluation 

 The evaluation of the deep learning models, CNN-LSTM and transformers involved the 

use of different evaluation metrics to assess their performance in forecasting HVAC temperatures. 

The results of the study indicated that both models were effective in predicting HVAC 

temperatures with varying forecasting horizons. 

 Table 3 presents the Mean Absolute Error (MAE) results obtained from the evaluation of 

the models. The MAE metric measures the average absolute difference between the actual and 

predicted temperature values. In this study, the MAE values were compared across the same 

forecasting horizons to determine the accuracy of the models. The results showed that the 

transformers model outperformed the CNN-LSTM model in terms of MAE values. The 

transformers model exhibited a lower range of MAE values, ranging from 0.02 to 0.06 across the 

different forecasting horizons. On the other hand, the CNN-LSTM model had a higher range of 

MAE values, ranging from 0.06 at a horizon of 1 minute to 0.10 at a horizon of 60 minutes. 
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Table 3 Comparison of performance between CNN-LSTM and Transformers at multiple forecasting horizons 

 In addition to the Mean Absolute Error (MAE), the Root Mean-Square Error (RMSE) 

values were also calculated to evaluate the performance of the CNN-LSTM and transformers 

models in forecasting HVAC temperatures. The RMSE measures the square root of the average 

squared difference between the actual and predicted temperature values. 

 For the CNN-LSTM model, the RMSE values ranged from 0.06 to 0.10 across the different 

forecasting horizons. On the other hand, the transformer model exhibited RMSE values ranging 

from 0.03 to 0.07. These results indicate that the transformer model outperformed the CNN-LSTM 

model in terms of RMSE, showing higher accuracy in forecasting HVAC temperatures. The lower 

RMSE values for the transformer model suggest that its predictions were closer to the actual 

temperature values compared to the CNN-LSTM model. This implies that the transformer model 

Evaluation Metrics Forecasting 

Horizon 

CNN-LSTM Transformers 

 

MAE 

1 minute 0.06 0.02 

15 minutes 0.08 0.03 

30 minutes 0.09 0.06 

60 minutes 0.10 0.05 

 

RMSE 

1 minute 0.06 0.03 

15 minutes 0.09 0.04 

30 minutes 0.09 0.07 

60 minutes 0.10 0.05 

 

R2 

1 minute 0.736 0.936 

15 minutes 0.541 0.873 

30 minutes 0.484 0.710 

60 minutes 0.330 0.788 
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had a smaller overall deviation from the true values, indicating a higher level of accuracy in its 

forecasts. 

 However, it is important to note that both models experienced an increase in RMSE as the 

forecasting horizon increased. This suggests that the accuracy of the models' predictions decreased 

with longer forecasting horizons. The rise in RMSE can be attributed to the increased complexity 

of the HVAC system's thermal behavior over extended time periods. As the forecasting horizon 

expands, there may be more factors and external influences that can affect temperature 

fluctuations, making it more challenging for the models to accurately predict the temperatures. 

 These findings highlight the trade-off between forecasting accuracy and the duration of the 

forecasting horizon. While the transformer model demonstrated superior performance in terms of 

lower RMSE values, it is important to consider the limitations in accuracy when forecasting over 

longer time intervals. It may be necessary to strike a balance between the desired forecasting 

horizon and the acceptable level of accuracy based on the specific requirements and constraints of 

the HVAC system. 

 The coefficient of determination (R2) scores were used to assess the predictive power and 

goodness of fit of the transformers and CNN-LSTM models in forecasting HVAC temperatures. 

The R2 score measures the proportion of the variance in the target variable that can be explained 

by the model's predictions. The results of the study indicate that the transformers model 

outperformed the CNN-LSTM model in terms of R2 scores across all forecasting horizons. For 

the transformers model, the R2 scores ranged from 0.936 at a horizon of 1 minute to 0.788 at a 

horizon of 60 minutes. On the other hand, the CNN-LSTM model had R2 scores ranging from 

0.736 to 0.330 across the same horizons. The higher R2 scores obtained by the transformers model 

suggest that it is better able to explain the variation in the HVAC temperature data compared to 

the CNN-LSTM model. This indicates that the transformers model captures a larger proportion of 

the underlying patterns and relationships in the data, resulting in more accurate predictions. 
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(a) CNN-LSTM at 1-minute forecasting horizon 

 

(b) CNN-LSTM at 15-minute forecasting horizon 

 

(c) CNN-LSTM at 30-minute forecasting horizon 

 

(d) CNN-LSTM at 60-minute forecasting horizon 

 

Figure 10: Actual vs Predicted temperatures using CNN-LSTM with temperature on y-axis and Total no. of 

predictions in terms of days are represented on x-axis. 

 However, it is important to note that both models experienced a decrease in R2 scores as 

the forecasting horizon increased. This implies that the models' ability to accurately predict HVAC 

temperatures diminishes over longer forecasting horizons. The decline in R2 scores can be 

attributed to the increased complexity and uncertainty in the HVAC system's behavior over 

extended time periods. 
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 These findings emphasize the trade-off between forecasting accuracy and the duration of 

the forecasting horizon. While the transformers model demonstrated superior performance in terms 

of higher R2 scores, indicating better explanatory power, it is important to consider the limitations 

of longer forecasting horizons. As the time interval being forecasted increases, the models may 

struggle to capture all the intricate dynamics and external influences affecting temperature 

variations, resulting in a decrease in prediction accuracy. 

 Figure 1010 and Figure 11 demonstrate a notable distinction in the temperature 

values predicted by the CNN-LSTM and Transformer models as compared to their actual values. 

Figure 10 contains four subplots that illustrate the performance of the CNN-LSTM model in 

predicting temperature values. The blue line in each subplot represents the actual temperature 

values, while the yellow line represents the predicted values. Among all the tested forecasting 

horizons, the subplot for 1-minute forecasting horizon in the CNN-LSTM model shows the closest 

alignment between the predicted temperature values and the actual temperature values. Figure 11 

comprises four subplots that depict the performance of Transformers in making predictions at 

different forecasting horizons. The subplot for the 1-minute forecasting horizon in Figure 11 

provides evidence of the superior performance of Transformers in predicting one step ahead as it 

almost overlaps the actual values. Subplots (b), (c), and (d) of the same figure show that the 

performance of Transformers at forecasting horizons of 15, 30, and 60 minutes was also 

significantly better than that of the CNN-LSTM model. The figures suggest that the transformer 

model produced more accurate predictions, as the plot of the actual and predicted values almost 

entirely overlap at forecasting horizon of 1. 
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(a) Transformers at 1- minute forecasting horizon 

 

(b) Transformers at 15-minute forecasting horizon 

 

(c) Transformers at 30-minute forecasting horizon 

 

(d) Transformers at 60-minute forecasting horizon 

         

Figure 11: Actual vs Predicted Temperatures using Transformers with Temperature on y-axis and Total no. of 

predictions in terms of days are represented on x-axis. 

5.2 Energy Optimization 

 The primary objective of the study was to investigate the potential of deep learning models 

in optimizing energy consumption in HVAC systems. The results, as illustrated in Figure 12, 
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highlight significant differences in energy consumption patterns between different time intervals 

and the utilization of deep learning algorithms compared to traditional non-AI methods. 

 The dark magenta bars in Figure 12 represent the energy consumption under the traditional 

non-AI method. Comparing these bars with the yellow and green bars representing the utilization 

of Transformer models for 1-minute and 15-minute prediction horizons, respectively, reveals 

inconsistent energy consumption behaviour at different time intervals. This suggests that the deep 

learning models have the potential to optimize energy consumption by making more accurate 

predictions and adapting the HVAC system's settings accordingly. 

 Examining the blue line representing the Transformers' energy consumption at a 30-minute 

forecasting horizon, we observe periodic declines in energy consumption. This implies that the 

Transformers model successfully adjusts the HVAC system's settings to minimize energy 

consumption during specific intervals. Furthermore, the red bars representing the Transformers 

model at a 60-minute forecasting horizon demonstrate consistent behaviour, with energy 

consumption remaining stable throughout the morning and afternoon and slightly decreasing 

during the evening. This suggests that the Transformers model is able to optimize energy 

consumption over longer time intervals. 

 Overall, the findings indicate that deep learning models, particularly the Transformers 

model, can effectively optimize energy consumption in HVAC systems. By leveraging the power 

of deep learning algorithms, these models are capable of making accurate predictions and 

dynamically adjusting the HVAC system's settings to achieve energy efficiency. This has the 

potential to significantly reduce energy consumption and improve the overall sustainability of 

HVAC systems. 

 Figure 13 clearly illustrates the significant impact of different forecasting horizons on net 

power consumption in the evaluated models. The transformer model with a 1-minute horizon 

stands out with the lowest net power consumption of 8.19 kWh, indicated by the yellow line. In 

contrast, the non-AI method, represented by the dark magenta line, exhibits the highest net power 

consumption at 16.54 kWh. 
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Figure 12 Bar plot representing the net power consumption over 3 time periods in a day. 

These findings highlight the power of the transformer model in capturing energy usage patterns 

and developing optimized control strategies for HVAC systems. By analyzing historical data and 

making accurate predictions, the model is able to make intelligent adjustments to HVAC systems 

in real-time, resulting in substantial energy savings. The significantly lower net power 

consumption achieved by the transformer model indicates its efficacy in optimizing the operation 

of HVAC systems, leading to more efficient energy utilization and reduced costs. 

 It is worth noting that the other models tested in the evaluation also demonstrate varying 

net power consumption values, ranging from 8.67 to 13.83 kWh, depending on the specific time 

period and forecasting horizon. These variations suggest that different models and forecasting 

horizons may have distinct impacts on energy consumption patterns. This observation underscores 

the importance of carefully selecting the appropriate model and forecasting horizon to achieve 

optimal energy savings and system performance. 

 Overall, the results from Figure 13 emphasize the potential of the transformer model in 

capturing energy usage patterns and developing optimized control strategies for HVAC systems. 

The significant difference in net power consumption between the transformer model with a 1-

minute horizon and the non-AI method showcases the advantages of leveraging machine learning 

techniques in energy optimization. These findings provide valuable insights for building managers 
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and energy professionals seeking to implement more efficient HVAC control strategies, ultimately 

leading to reduced energy consumption and improved sustainability. 

 

Figure 13 Bar Plot representing daily Average Power Consumption for all models. 

Figure 14 provides further insights into the impact of time of day on power consumption in the 

evaluated models. It reveals that the evening period generally exhibits the lowest power 

consumption across all models, except for the Transformer model with a 15-minute forecasting 

horizon. This suggests that the evening period offers favorable conditions for energy optimization, 

potentially due to lower occupant activity or external factors such as outdoor temperature. 

 Interestingly, the Transformer model with a 15-minute forecasting horizon displays higher 

average power consumption during the morning and evening periods compared to other models. 

This indicates that the model may struggle to accurately predict and adjust for energy requirements 

during these specific time periods. Conversely, the non-AI method consistently records the highest 

power consumption across all periods, highlighting the limitations of traditional approaches in 

energy optimization compared to machine learning-based models. 
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Figure 14 Trend of Power Consumption among all models 

The trend of power consumption throughout the day, as depicted in Figure 14, provides valuable 

information about the behavior of the HVAC system. The yellow line representing the Transformer 

model shows greater instability at a 1-minute forecasting horizon compared to other models. This 

suggests that the shorter forecasting horizon may introduce more fluctuations and challenges in 

accurately predicting energy usage patterns, leading to less stable power consumption trends. 

However, as the forecasting horizons increase, the instability in the power consumption trends 

decreases, as shown in Figure 14. Longer forecasting horizons allow the model to capture more 

data and make more accurate predictions, resulting in smoother power consumption patterns. This 

observation underscores the importance of selecting an appropriate forecasting horizon that 

balances the trade-off between prediction accuracy and computational requirements. 

 The peaks in Figure 14 indicate instances where the HVAC system had to handle 

higher loads to maintain the desired conditions based on the recorded parameters used for making 

predictions. These peaks represent periods of increased energy demand, potentially influenced by 

factors such as occupancy patterns, outdoor temperature fluctuations, or specific activities within 

the building. On the other hand, the dips in Figure 14 suggest that the HVAC system was put into 

sleep mode or operated at a reduced capacity when the energy requirements fell below a certain 

threshold. This approach, known as demand response or load shedding, allows for energy savings 



52 

Footnote may be given with Font size 10 of Times New Roman. 

during periods of lower demand. Therefore, these findings have important implications for the 

development of energy-efficient HVAC control strategies as well as the selection of appropriate 

deep learning models based on the time period and forecasting horizon. 

5.3 Thermal Comfort 

In addition to assessing energy consumption optimization, this study also focused on evaluating 

thermal comfort using three different models. The assessment of thermal comfort was conducted 

over a period of time, during which data on thermal comfort was collected through surveys. These 

surveys included evaluations of thermal comfort during three distinct time periods, accompanied 

by the collection of data on metabolic rate and clothing insulation. 

 The study involved healthy occupants, and their clothing insulation levels ranged from 0.91 

to 1.25 clo, in accordance with the standards set by ASHRAE. The metabolic rate of the occupants 

ranged from 1 to 1.12 met units, which are indicators of their activity levels and heat production. 

The results presented in Figure 15 demonstrate that the model with a 60-minute forecasting horizon 

provided the highest level of thermal comfort to the occupants, followed by the model with a 30-

minute forecasting horizon. The models with a 1-minute and 15-minute forecasting horizon 

yielded similar levels of thermal comfort. 

 Figure 15 includes donut charts that illustrate the percentage of occupants experiencing 

different levels of thermal comfort during each time period. It is important to note that the thermal 

comfort scale used in the survey includes categories such as "Neutral," "Slightly Warm," and 

"Slightly Cool." The outermost donut represents the morning time period, the middle donut 

represents the afternoon, and the innermost donut represents the evening time period. The colors 

used in the donut charts represent the thermal sensations reported by the occupants. Specifically, 

red indicates a feeling of warmth, yellow represents a slightly warm sensation, green signifies a 

neutral thermal sensation, and blue indicates a slightly cool sensation. 

 Upon comparing the indoor temperature data from Figure 6 with the thermal sensations 

depicted in Figure 15, several observations can be made regarding the performance of the deep 

learning models in relation to occupants' comfort. When the transformers model with a 1-minute 
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forecasting horizon was employed, only one person expressed complete dissatisfaction with the 

model's performance in the afternoon, as shown in Figure 15(a). This dissatisfaction occurred when 

the average indoor temperature reached 28.671 degrees Celsius. However, it is important to note 

that the majority of occupants felt either neutral or slightly warm, indicating a satisfactory level of 

thermal comfort. 

 

(a)  

 

(b)  

 

 

 

 

 

 

 

 

 

(c)  

 

(d)  

Figure 15 Nested donuts representing the thermal comfort of the occupants for models on different forecasting 

horizons at three multiple time periods of the day where outermost donut represents morning, middle donut 

represents afternoon and innermost donut repres 

 For the models utilizing a 15-minute and 30-minute forecasting horizon, none of the 

occupants reported feeling uncomfortable. Instead, most occupants reported experiencing partial 

comfort for 50% of the experimental duration. The average indoor temperature ranged from 26.79 

to 27.74 degrees Celsius for the model with a 15-minute horizon. Similarly, for the model with a 

30-minute horizon, the indoor temperature ranged from 24.161 degrees Celsius in the morning to 

26.79 degrees Celsius in the afternoon and 26.1 degrees Celsius in the evening. These slight 
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variations in average indoor temperature were found to have an impact on the occupants' thermal 

sensations. 

 Figure 15(c) demonstrates that when the average indoor temperatures changed slightly for 

both models, the occupants reported feeling slightly cooler compared to Figure 15(b). Throughout 

the entire experimental period, the indoor temperature ranged from 23.68 to 27.46 degrees Celsius 

when using the transformers model with a 60-minute forecasting horizon. During this period, most 

occupants reported feeling completely satisfied with the thermal conditions, and the sensation of 

partial comfort was the lowest among all the models tested, as depicted in Figure 15(d). 
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CHAPTER 6: CONCLUSION 

This study implements a predictive model based on machine learning to forecast HVAC 

temperature while optimizing energy consumption and thermal comfort. The goal of this research 

is to explore the potential of transformers and CNN-LSTM models in achieving accurate 

predictions for various forecasting horizons. The models were trained on a comprehensive dataset 

comprising air quality, power quality, and thermal comfort parameters obtained from multiple 

devices and surveys. The performance of the models was assessed using standard evaluation 

metrics, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R2. The 

results of this study indicate that the Transformer model, consisting of 4 transformer blocks with 

8 transformer heads in each multi-head attention layer, outperformed the recent CNN-LSTM 

model. Specifically, the Transformer model achieved an impressive R2 score of 0.936, 

demonstrating its ability to accurately predict HVAC temperature. The model exhibited low MAE 

and RMSE values of 0.02° and 0.03° respectively when forecasting 1 minute ahead. These findings 

highlight the effectiveness of the Transformer model in capturing the complex patterns and 

dynamics of HVAC temperature. The predicted temperature values generated by the Transformer 

model were then transmitted to the HVAC system through an infra-red controller, and the energy 

consumption and thermal comfort levels were monitored using surveys and power quality logs. To 

evaluate the efficiency of the machine learning models, the collected data was compared with 

consumption data obtained through a conventional, non-AI approach to HVAC control. The test 

results revealed that the Transformers model achieved the best balance between energy 

consumption and thermal comfort when projecting 60 minutes ahead. This model achieved 

significant energy savings of 47.5% while maintaining a high level of satisfaction among the 

occupants throughout the entire day. On the other hand, when using a 1-minute forecasting 

horizon, the energy consumption was significantly reduced to 8.19 kWh, resulting in a 50.5% 

energy savings. However, this came at the expense of thermal comfort, with 8.33% of occupants 

reporting feeling uncomfortable compared to 0% for the model with a 60-minute horizon. 
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