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ABSTRACT 

Diabetes, one of the world's most common diseases, poses a significant threat to overall 

health. Among its major health concerns is the depletion and weakening of bones, leading to 

conditions like Charcot Foot or Diabetic Foot. Despite the global prevalence of diabetes and 

its impact on millions of individuals, our understanding of its effects on bone health remains 

limited. Addressing this knowledge gap becomes increasingly crucial which forms the basis 

of this study. Diabetic foot cases often suffer from deteriorating bone health, resulting in 

increased bone curvature, mechanical instability, and porosity.  

This study seeks to investigate mechanics associated with diabetic foot, its analysis and 

employs Artificial intelligence (AI) effectively to address early prognosis of this disease. 

Generative Adversarial Networks (GANs) is used as a preferred methodology in this work to 

produce synthetic data since obtaining rich data in these cases is challenging specially from 

the hospitals in Pakistan. A total of 560 images were synthetically reproduced to assess 

reliability. The reliability of this data was then evaluated using Fréchet’s Inception Distance 

(FID) and Inception Score (IS) to address validation. These Images were used to train 

multiple U-net models, which were further assessed and compared using the Intersection 

over Union (IOU) metric. 

Our study findings demonstrate the potential of AI-generated synthetic images in U-net 

models for accurately identifying the advancement of bone damage in diabetic feet. Notably, 

the Recurrent Residual (R2) U-Net model outperforms other models by effectively detecting 

the progression of the disease on real x-ray images, achieving a significant average IOU 

score of 0.75 which is in coherence with the literature published. These results hold valuable 

implications for clinicians, as they can utilize our findings for early prognosis of this condition, 

facilitating timely intervention and management strategies. 

Keywords: Charcot Foot (CF), Diabetic Foot (DF), GANs, AI, IOU, FID, IS 
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1 INTRODUCTION 

Foot issues are a significant health concern for individuals with diabetes, resulting 

from long-term damage to the blood vessels and nerves in the feet due to 

uncontrolled blood sugar levels. Diabetic neuro-arthropathy manifests as foot 

tingling, numbness, discomfort, and lack of sensation, with CF representing a 

complex complication of neuropathy and diabetes. CF inflicts destructive effects on 

the foot and ankle, characterized by uncontrolled cycles of inflammation, ultimately 

resulting in a rocker-bottom deformation that can be prevented by early diagnosis 

and treatment. First identified by French physician and neurologist Jean Martin 

Charcot in 1868 [1], CF was associated with diabetes mellitus in 1936, posing a 

challenge for skilled practitioners [2] to diagnose. Diagnostic imaging techniques 

including X-rays, CT scans, nuclear medicine scintigraphy, positron emission 

tomography, and magnetic resonance imaging, play a crucial role in diagnosing CF, 

with these techniques providing distinct differences from osteomyelitis. A lot of 

techniques are available in literature for understanding how damage progress in CF. 

However, the management of diabetic feet is still a complex and challenging task for 

healthcare professionals. Artificial Intelligence (AI) faces similar challenges due to 

the multifactorial nature of the disease. Diabetic foot ulcers result from a combination 

of peripheral neuropathy, peripheral arterial disease, and infections, making it more 

difficult for AI to develop a comprehensive understanding of the condition. 

Additionally, diabetic foot ulcers can vary widely in their presentation, making it hard 

for AI algorithms to recognize and classify them accurately. This is why this problem 

was undertaken as a case study in this thesis, to understand how AI can be 

effectively used for detection and classification of this specific problem. 
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AI systems require large amounts of high-quality data to train and develop models 

that can accurately identify and manage diabetic foot ulcers, which may be 

challenging to obtain due to the limited availability of well-curated datasets specially 

across Pakistan. Finally, AI may not be able to replace the experience and judgment 

of healthcare professionals who have years of experience in managing diabetic foot 

ulcers. However, it may serve as an assistive technique for better prognosis & 

diagnosis. 

1.1 Background and motivation 

CF, which has been linked to diabetes mellitus and affects the joints and bones 

(single/multiple involvement), was originally identified in 1883 [3]. Bone regression is 

one of fundamental health concepts being researched upon. Deterioration of bone 

health can be brought on by illness, cancer, etc. Just a very brief recognition is made 

of the idea that diabetes affects bone health in relatively underdeveloped (third 

world) nations. Abnormal blood sugar levels lead to multiple neuropathic problems. 

The foot and ankle's soft tissue, joints, and bones are all impacted by osteoarthritis 

neuropathies. It has been determined that diabetes does weaken bones, which has 

been linked to the "rock bottom" foot syndrome, which causes the midfoot to 

collapse. Joint and bone deformities result from this. Pain and discomfort 

characterize the acute period, which fades over time as progressive damage occurs. 

Age and how diabetes care is provided are more important factors in determining 

risk of developing CF than the type of diabetes [1]. Although polyneuropathy is the 

underlying cause of the illness, its precise pathogenic mechanism is still unknown. 

The condition primarily affects people between the ages of 45 and 60. 

Based on this foundation, our thesis aims to explore the applicability of integrating 

our research with existing image-based visual techniques. By leveraging the 
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remarkable advancements in artificial intelligence (AI) and machine learning 

algorithms, which have revolutionized various fields, we can effectively design and 

implement vital healthcare solutions with optimized resource utilization. Furthermore, 

we will examine the existing body of research on the underdiagnosed CF disease 

and propose a methodology that incorporates relevant methods identified through an 

extensive literature review. 

Currently, the prevalence statistics for a particular disease are relatively low, and 

timely detection plays a crucial role in preserving the affected foot of diabetic 

individuals. Advancements in AI and machine learning have opened up new 

possibilities for computational designs to support healthcare scenarios. In our study, 

the utilization of a tool for early detection of this disease would significantly contribute 

to reducing its spread. Computational imaging processes offer promising avenues for 

addressing identification challenges, and we aimed to develop an open-source 

solution to leverage the emerging field of AI to its fullest potential. Additionally, we 

seek to raise awareness about this under-diagnosed situation, emphasizing the 

importance of providing accessible and doctor-friendly diagnostic tools to enhance 

efficiency in critical healthcare decisions. This endeavor not only represents a step 

towards integrating computational assistance into medical practices but also 

broadens our understanding of the impact of diabetes on bone health. 

1.2 Objective of study 

The study Aims to create a model that will aid in identifying the initial stage of CF so 

that precautions can be taken to avoid progression of the disease.  

1) Understanding & generating augmented data to address, reliability in synthetic 

images. 
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2) a) Detection and b) Analysis of bone damage progression of Charcot’s feet using 

computing, AI, and medical imaging. 

1.3 Problem statement/Research statement 

We attempt to answer the question that can AI and ML using synthetic images 

identify bone damage caused by diabetes. 

In our research, we are determined to experiment for conclusive findings. We aim to 

utilize the concepts of creating augmented relative images to increase the dataset in 

demand. We have the goal to identify the early prognosis of bone damage due to 

diabetes using AI assisted medical imaging. We shall utilize machine learning 

models to detect the required changes in our imaging identification case. 

1.4 Importance to the society 

The demand of society has increased to acquire quick solutions to evade health 

problems that are unaware to society and pose a threat to their health. By 

harnessing the potential of AI and machine learning algorithms, society can benefit 

from enhanced healthcare solutions. Integrating these technologies with image-

based visual techniques can lead to more accurate and efficient diagnosis, enabling 

early detection and treatment of diseases such as CF. This in turn, can improve a 

patient’s outcomes and quality of life. 

The utilization of AI integrated computational techniques can help streamline 

healthcare processes and optimize resource allocation. By mankind informed 

judgements and leveraging computational tools, healthcare professionals can make 

effective use of limited resources, ensuring that essential healthcare solutions are 

delivered to society efficiently and costly-effectively. 
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The study specifically focuses on an underdiagnosed disease, CF. By conducting 

research and developing methodologies to improve its detection and diagnosis, the 

thesis contributes to addressing the challenges associated with underdiagnosed 

conditions, leading to increased awareness, earlier interventions, and improved 

healthcare decision-making for individuals affected by such diseases. 

This will also contribute to the expansion of knowledge not only to academic body 

but also facilitates knowledge sharing and dissemination within the scientific 

community. By building upon previous research, society benefits from cumulative 

understanding of the subject matter and can make further advancements in the field. 

1.5 Contribution of this study 

1) This thesis presents a comprehensive exploration and illustration of a systematic 

approach, employing an open-source software pipeline, to develop an 

identification model for a disease that is frequently underdiagnosed. 

2) It introduces an innovative amalgamation of four key components: Generative 

Adversarial Networks (GANs), metrics for assessing synthetic image quality, 

segmentation models, and evaluation metrics. 

3) By utilizing the open-source pipeline, synthetic images are generated to serve as 

training datasets for constructing a prediction model using real-world datasets. 

Though not reliable, but good where the acquisition of data becomes really 

challenging. 

1.6 Organization of thesis 

This thesis is structured into distinct chapters.  

Chapter 1 serves as the introduction, presenting an overview of the research.  
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Chapter 2 provides an in-depth analysis of the relevant literature necessary for 

comprehending this study.  

Chapter 3 elucidates the methodology employed, outlining the chosen research 

approach and pipeline. 

Chapter 4 scrutinizes the obtained results. 

Chapter 5 concludes with a comprehensive discussion and outlines potential 

avenues for future research. 

In conclusion, we posit that Generative Adversarial Networks (GANs) present a 

viable approach to augmenting our dataset for effective model training. To enhance 

our understanding, we systematically executed a series of experimentation and 

exploration, leveraging existing pathways already investigated within our research 

framework. Our endeavors primarily involved harnessing readily accessible open-

source algorithms and models found in programming language libraries. 
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2 LITERATURE REVIEW 

2.1 Overview of Charcot foot 

In this study, due to long-term damage caused by uncontrolled blood sugar levels to 

the blood arteries and nerves in the feet, foot problems are a major worry for persons 

with diabetes. Diabetes-related neuroarthropathy can result in tingling, numbness, 

pain, and a lack of sensation in the feet. The complex condition of CF can cause 

devastating cycles of inflammation and alter the shape of the foot, giving it a rocker-

bottom deformity. It is a consequence of neuropathy and diabetes. Even for 

experienced doctors, diagnosing CF can be difficult. However, imaging methods like 

X-rays, CT scans, nuclear medicine scintigraphy, positron emission tomography, and 

magnetic resonance imaging might be helpful. The normal course of CF is 

inflammation-fragmentation-coalescence-remodeling. Diabetes often results in foot 

ulcers brought on by neuropathies and ischemia, and CF-related bone regression 

can damage the forefoot, ankle, hindfoot, and Centre of the foot joints. If the stage of 

deformation has progressed past the point of no return, the only recommended 

treatment is to have the sick foot removed as soon as possible to prevent the 

disease from spreading. 

2.1.1 Etiology 

One of the most well-known medical, financial, and societal issues is diabetes. By 

estimates of International Diabetic Federation, one in four adults (26.7%) in Pakistan 

are living with diabetes, the highest national prevalence in the world [4]. According to 

the IDF, 6.7 million people in Pakistan have diabetes, and that number is expected to 

rise to 12.8 million by 2035 [3]. It reduces a patient’s quality of life and affects social 

participation [5]. Diabetes also comes with complications or associated risks such as 
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infection, foot ulceration, and tissue loss in the foot, as well as factors that contribute 

to morbidity and mortality [5]. The illness caused consists of infection, microvascular, 

and neuropathic symptoms. Diabetes is brought on by restricted insulin production, 

which raises blood sugar levels and poses serious risks to one's health or even life. 

Higher glucose levels and hyperglycemia trigger inflammatory reactions and 

compromise cellular immunity. Age, the severity of the illness, and poor glycemic 

control over several years are all risk factors [5]. Therefore, diabetic individuals put 

themselves at risk for developing limb-threatening foot infections and uncontrollable 

diabetes that affects soft tissue and uncontrollable hyperglycemia, which can result 

in osteitis[5]. There are two main forms of diabetes: type 1 diabetes, which results in 

complete insulin shortage and type 2 diabetes that is insulin resistance [6]. Certain 

factors, including genetics, obesity, physical inactivity, and certain medical 

conditions, can risk of developing diabetes [6]. 

2.1.2 Pathogenesis 

Inflammation-Fragmentation-Coalescence-Remodeling is the disease's natural 

progression. To prevent foot deformity, the standard course of therapy is to plaster 

the foot with individualized detachable total contact casts. Reduced pressure 

distribution can be achieved by wearing orthopedic shoes and using their special 

insoles [5]. The only advised treatment is to have the diseased foot removed as soon 

as possible to stop the disease from spreading if the stage of deformation has 

advanced past the point of no return. 
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Figure 1 The patient has a better chance of recovering adequately with off-loading therapy and total 
contact casts if they have an intact longitudinal arch and avoid crippling abnormalities [1]. 

 

The condition is tracked and diagnosed using standard radiography. To evaluate the 

bones while under strain. The measurements on radiographs aid in determining the 

severity of the CF deformity. 

2.1.3 Foot Ulcers 

Amputation risks are increased because of diabetic foot ulcer complications. This 

illness thus tackles the related medical, financial, and societal effects. 

Diabetic peripheral artery disease, neuropathy, or infection make up the majority of 

complexity. However, there is still more research to be done on bone regression 

brought on by its nature. It consists of both ischemia and neuropathy. Diabetes-

related foot ulcers are caused by many neuropathies that impede the ability to feel 

pain and temperature. 
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2.1.4 Bone regression 

Foot complications are said to be the most common cause of hospital admissions 

and lower limb subject [3]. Research focuses on the bone regression that occurs in 

CF. Joint deterioration happens over time. commonly impacts the forefoot, ankle, 

hindfoot, and Centre of the foot joints. 13% of people have diabetes on average [3]. 

The swelling of the foot brought on by inflammation results in osteolysis, which is 

indirectly to blame for the gradual fracture and dislocation that characterize the 

condition. Most evidence is circumstantial. It has been suggested that the 

development of bone and joint degeneration in neuropathic individuals is caused by 

a neurally driven response that increases peripheral blood flow and actively resorbs 

bone. Midfoot is primarily impacted by Charcot neuroarthropathy. The Sanders 

classification highlights the midfoot as the underlined area affected by Charcot 

disease [7]. When evaluating intraarticular calcaneal fractures involving the posterior 

facet of the calcaneus, the Sanders classification system is employed. It is based on 

the location of intraarticular fracture lines on semi-coronal CT scans. Not only used 

for fracture pattern identification but it’s also used to predict outcome [8]. 
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Figure 2 Diagram showing possible pathogenic processes that could lead to Charcot 
neuroarthropathy (CN). Increased blood flow and neuropathy both seem to be significant, and 
aberrant collagen structure may also be at play [9]. 

 

Infection and ulceration brought on by Charcot neuroarthropathy culminate in limb 

amputation. Thus, to stop the problem's rapid progression toward foot deformity, 

involvement is required to identify the condition early. Bone distortion is a result of 

continuous inflammation [6]. This results in bone reabsorption and fractures at 

multiple places. 
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It is classified into stages: 

•  Stage 0 (Prodromal): Edematous foot with or without bounding pulses and 

temperature elevation. Not many bodily changes are seen. 

•  Stage 1 (Developmental, acute): A brief period of trauma causes bone 

fragmentation, along with joint subluxation and dislocation. Immediate medical 

confirmation is required for an early diagnosis; failure to do so results in a 

permanent change in bone form. 

• Stage 2 (Subacute): Healing of fractures and decreased edema.   

 

Figure 3 Chronic stage (Extremely Alarming).Description of diagnosis via X-ray and MRI imaging 
techniques[10]. 

 

• Stage 3 (Chronic): Bone is remodeled. Three types of Charcot foot classified: 

anatomical, clinical, and radiological. 
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Figure 4 The CF is staged on the anatomical placement of the foot in Rogers and Fryberg's work. 
The first stage of five is displayed. Stage 1 causing IPJ & Phalamges, MTPJs, and skeletally 
damaging alterations; Stage 2 targets the Tarsometatarsal joints (ulceration) at the apex of collapsed 
cuboid cuneiforms; Stage 3 targets the naviculocuneiform, calcaneocuboid, and talonavicular joints 
with fragmentation of CC, TN, and NC joints; Stage 4 targets the ankle joint; and Stage 5 targets the 
calcaneal bone [11].  

 

2.1.5 Charcot foot stages 

 

Figure 5 CF: natural course of disease. 

 

• Stage 0: Prodromal 

This happens when a patient with neuropathy exhibits foot alterations such as 

edema, redness, warmth, and pain that are equivalent to inflammation. These are 

the early warning indications of foot architecture collapse in CF later phases. When 

treating patients with diabetes mellitus, endocrinology engulfs the doctor, therefore 

essential knowledge of stage 0 symptoms is necessary [12]. The stage is recognized 

with fragmentation, dislocation, and osseous debris. Clinically, stage 0 consists of 
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edematous, erythematous warm foot. Where the foot temperature increases high 

with minimal effort such as walking for 50 steps or less with a significant increase of 

about 60% [13]. 

 

Figure 6 The malformation that might result in a CF is demonstrated in this image. This happens 
because the foot bones weaken and lose their ability to feel, which makes it possible for a fracture to 
go undetected by the person who is suffering from it. The foot will continue to distort without casting or 
splinting [14]. 

 

• Stage 1: Development, Acute 

The Acute stage is characterized by erythema, increased foot temperatures, and 

clinically convincing edema that looks like grout. Here, bone fragmentation takes 

place, marked by periarticular fractures and displaced joints, leading to a foot 

deformation. This suggests bone fragmentation occurs during this stage, 

accompanied by periarticular fractures and displaced joints, which ultimately lead to 

foot deformation. This suggests a progressive nature of the condition, where 

structural damage occurs to the bones and joints, resulting in deformity. 
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Figure 7 The fast and gradual degeneration of bones and joints during the acute stage of Charcot 
neuro-osteoarthropathy can be seen in a matter of days or weeks. Total contact casting can 
immobilize an individual and stop additional bone and joint damage. An image of a patient with 
diabetic neuropathy and a scorching foot is seen here. The radiographs are normal in the acute stage 
and may not rule out the diagnosis of acute Charcot neuro-osteoarthropathy. 

 

• Stage 2: Subacute 

The damaged, shattered bones consolidate (also known as coalesce) during this 

stage. Radiographs will indicate the bone's healing stage when the warmth, swelling, 

and redness start to fade. If the essential precautions are not followed at this stage, 

the foot structure will permanently distort. 
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• Stage 3: Chronic 

In this last stage of the illness, healing takes place, leading to reconstruction and 

consolidation. The normal contour of the foot has changed from how it appeared 

initially, even if it is possible to say that the bones have healed because the 

temperature, redness, and swelling are no longer present. The act of stabilizing a 

foot by fusing bone pieces together is an example of consolidation, which results in a 

stable but malformed foot [15]. 

 

Figure 8 X-ray of a deformed (Charcot) foot [1]. 

 

The feet area in question for research is: 

• Meary's angle9: a normal angle of roughly 0 degrees between the line passing 

through the longitudinal axis of the first metatarsal and the line coming from the 

middle of the body of the talus, bisecting the talar neck and head. 

• Cuboid height: distance along a line drawn from the calcaneal tuberosity's plantar 

surface to the cuboid's plantar aspect. 
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Figure 9 Lateral weight-bearing radiographs depict the progression of CF disease in a consistent 
pattern across time (a baseline, b 10 months later). Take note of Meary's angle (black angle), which is 
steadily increasing, the shrinkage of cuboid height, which is turning negative, and the reduction of 
calcaneal pitch (white angle) [1]. 

 

The disease’s main focal starts from the midfoot area that spreads in time, affecting 

the whole foot and in turn keeps on spreading until further notice as shown in Figure 

8. 
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Figure 10 depicts the five patterns of the disease's distribution that can occur alone or in combination 
for the Sanders and Frykberg 1191 Classification scheme of CF. Specifically, S&F I refers for the 
forefoot, S&F II for the tarsometatarsal joints, S&F III for the midtarsal and naviculocuneiform joints, 
S&F IV for the ankle and subtalar joints, and S&F V for the calcaneus [16]. 

 

2.1.6 Charcot Foot Deformation in Diabetes: Prevalence, Diagnosis, and 

Treatment Approaches 

Frequently observed in low socioeconomic classes due to subpar living conditions 

and low incomes, Charcot foot deformity poses significant risks to individuals with 

diabetes. Smoking is a major contributor to vascular disease and cancer, further 

increasing the risk. Neuropathy plays a significant role in causing more than half of 

diabetic foot ulcers, resulting from an uneven distribution of pressure during walking. 

Contribution factors include inappropriate footwear, poor vision (diabetic cases), and 

minor major trauma on foot. 
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Charcot neuropathic osteoarthropathy can lead to anomalies in the middle foot/ankle 

and subsequent ulceration, often resulting in amputations. Unfortunately, doctors 

miss diagnosing Charcot foot in about 95% of the cases before consulting a foot 

specialist [17]. Early detection is crucial, as after 8 weeks, there is a 67% likelihood 

of problems, including deformities [12]. The prevalence of this disease ranges from 

0.1% - 0.9%, emphasizing the importance of early precautions, as it cannot be 

reversed once it has occurred [12]. Other associated symptoms include old age, 

declining bone mineral density, rising HbA1c, rheumatoid arthritis, anemia, renal 

failure, and obesity. Charcot illness really triples the likelihood that a patient will get a 

foot ulcer, eventually increasing that likelihood to 63% [18]. 

To study Charcot osteoarthropathy in type 2 diabetes patients, a research 

methodology was implemented in Pakistan. A total of 1931 subjects of type 2 

diabetes, aged between 50 and 60 years, were examined at a specialized diabetes 

clinic in tertiary care hospital [3]. The assessment included examination was done of 

erythema, swelling, increase in temperature, and musculoskeletal deformity on both 

plantar and dorsal surfaces, which were later confirmed through radiographs. 

Neuropathy assessment involved evaluating pressure, vibration, and joint position. 

The results indicated that 0.4% of the subjects had Charcot deformity, with 0.05%, 

0.15% and 0.2% exhibiting left, right and bilateral deformities, respectively. These 

findings highlighted the need for special care regarding blood glucose control, early 

detection, and risk factor management in individuals with diabetes. 

Diagnostic imaging plays a crucial role in diagnosing and monitoring Charcot foot 

deformity. Conventional radiographs have traditionally been used to monitor the 

disease’s progression and assess bone changes under load, utilizing measurements 

such as Meary’s angle, cuboid height, calcaneal pitch, and hindfoot-forefoot angle. 
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The requirement for the automated processing of these pictures is essential given 

the rising availability and use of medical imaging processes like computed 

tomography (CT-scan) and magnetic resonance imaging (MRI). To identify CF, it 

was proposed to identify the best imaging techniques that can be utilized for 

observation and diagnosis. Traditionally, it has been researched that conventional 

radiographs have played a vital role as a standard to monitor the spreading of the 

disease. Radiograph’s main role is in assessing the foot bones with each other under 

load, hence the stated use of meary’s angle, cuboid height , calcaneal pitch, and 

Hindfoot-forefoot angle. Thus, X-rays provide valuable insights for monitoring 

changes and addressing the issue before it worsens. Magnetic Resonance Imaging 

(MRI) has also been beneficial in assessing the healing process, success of off-

loading treatments, and evaluating soft tissue infections and osteomyelitis. MRI with 

a large field of view (FoV) is required to capture the spread of the disease throughout 

the foot. Fluid sensitive sequence like STIR helps assess edema in the bone marrow 

and soft tissues, while T2- weighted sequence aid in identifying subchondral cysts, 

identify fluid collections, and sinus tracts [1]. 

Offloading, through techniques such as complete contact cast (TCC) that cannot be 

removed, is replaced every 3 days, is a common medical treatment to halt the 

deformity’s growth in acute active stage. and is reviewed every week. Clinical 

evaluation based on edema, erythema, and changes in skin temperature helps 

determine the duration and aggressiveness of off-loading [7]. Transitioning to 

prescribed shoes, boots, or weight-bearing braces is recommended after the acute 

stage to prevent recurrence or ulceration. Monitoring and antiresorptive therapy, 

including calcium supplements and oral bisphosphonates, are additional treatment 
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options. Surgical intervention may be necessary in cases of infected bone, bony 

prominences, or ineffective adaptations of footwear [7]. 

2.2 Artificial Intelligence (AI) in healthcare 

AI is entering the clinical field as a tool for improving performance [19]. With more 

data available for healthcare, AI can be used to analyze a variety of pertinent 

databases with an emphasis on cognitive processes in humans. They include 

effective artificial intelligence (AI) machine learning techniques including neural 

networks, deep learning, and support vector machines (SVM). AI can assist medical 

professionals in making better clinical decisions or replace human-oriented 

outcomes in disciplines like radiography [19]. AI employs algorithms to gather 

features, extract data from enormous databases, and utilize that data in clinical 

settings. To improve feedback accuracy over time, it keeps learning and self-

correcting. 

 

Figure 11 The forms of data considered in the literature on artificial intelligence (AI). The comparison 
is found by scanning the AI literature for diagnosis methods in the PubMed database [19]. 

 

AI is trained using clinical activity data, including diagnosis, screening (X-ray, MRI), 

demographics, and tests, prior to deployment. They have received instruction in the 
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pertinent subject results and aspects. Figure 11 shows how much of the AI literature 

has been dedicated to imaging diagnostics, but current trends in AI adaptation have 

also demonstrated a major interest in other medical specializations like genetics, 

electrodiagnosis, and physiology. AI devices fall into two categories, Machine 

learning and Natural language processing (NLP) [19]. Machine learning analyses 

structural data from fields like genetics, imaging, and others where attempts are 

made to group patients or calculate the likelihood of a particular result. To improve 

the structured data and help machine learning approaches, the NLP method would 

extract information from unstructured data. As a result, research on using machine 

learning in the process of medical picture processing has gained popularity. While 

machine learning tools such as regression and classification tasks are quite popular, 

Deep neural networks widespread the field of machine learning i.e., regression, 

classification, segmentation, detection etc. 

Segmentation is a widely used technique in image analysis as it offers more 

advanced classification of images on a pixel-by-pixel basis [20]. Automated image 

segmentation greatly facilitates the identification and delineation of anatomical 

features and areas of interest. It plays a crucial role in locating precise points of 

interest, such as tumors in brain MRIs or skin cancer in dermatological imaging. The 

effectiveness of image segmentation relies on the quality and quantity of the data 

being analyzed. 

Main reasons for small public datasets: 

● Medical data often contains sensitive patient information, making data protection 

regulations a crucial consideration when sharing public datasets. 
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● Annotating medical data can be a costly and time-consuming process, which 

restricts the availability of large-scale annotated datasets. 

● Medical conditions and abnormalities are often relatively rare, making it 

challenging to collect a significant number of diverse cases for public datasets. 

Artificial intelligence (AI) finds applications in various fields, including stroke 

management. Stroke is the leading cause of death in China and affects over 500 

million individuals worldwide, resulting in a substantial annual cost to the global 

economy of approximately US$689 billion [19]. The application of AI in stroke-related 

studies primarily focuses on early disease detection, diagnosis, treatment, prognosis, 

and outcome prediction. Systems like IBM Watson, cloud-based CC-Cruiser, and AI 

Genetic Diagnostic Analysis have been employed to leverage AI technology for 

healthcare benefits and in-depth clinical research. 

2.3 Problem of data availability 

Due to privacy concerns, costly and time-consuming annotations, and a scarcity of 

data samples, obtaining large amounts of data is challenging. The cost of time, 

patient confidentiality, and annotation were always dependent on the constrained 

and expensive medical competence due to the difficulties in obtaining funds for 

study. Success rates are based on the quantity and quality of data that has been 

annotated by professionals, such as medical specialists. When information is 

obtained from healthcare facilities for law enforcement purposes, privacy is a key 

problem. No patient would want a third party to have their health-related data. For 

example, general data protection regulation 31(GDPR) and personal data act. Asia 

has its own set of rules such as Personal data protection bill in India [21], The South 

Korean Personal Information Protection Commission [22] etc. 
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If research is done under these privacy restrictions, publications are frequently done 

using just theoretical techniques. Only 30% have used private datasets [23], thus 

studies are not reproducible. Additionally, the quality of education is impacted by 

universities and research facilities continuing to use the same medical databases 

over time. 

Costly and time-consuming data annotation is also a big obstacle to tackle for AI 

algorithms [24]. Pixel-by-pixel annotation is time-consuming, and it is already difficult 

to locate experts in the subject, even if self-annotation is feasible with the 

assumption that the data will be evaluated before use in AI algorithms. Thus, it is 

important to have accurate annotation [25]. Due to extensive annotation use, deep 

neural networks have demonstrated high grade performance in medical image 

segmentation. 

2.4 Synthetic data 

The use of synthetic data could be able to address these problems. It helps with the 

issues of differential privacy that come up when performing medical research [26]. 

This type of data can be used by the bulk of ML-using businesses, including robots, 

agriculture, and health. Some studies employ artificial data to create ground truth. A 

model called Generative Adversarial Networks (GANs) uses convolutional neural 

networks and other deep learning methods to create fake images. It is a machine 

learning unsupervised learning model that automatically detects patterns or 

regularities in input data to provide results that are comparable to the original 

dataset. The challenge is framed by GANs utilizing two sub models: a generator 

model to generate the output and a discriminator model to help distinguish between 

actual (input data) and false data (generated). Both supervised and unsupervised 

learning are employed. Both sub models are trained to create output that is 
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convincing enough to trick the discriminator by producing good examples. A fast-

evolving discipline, GANs is assisting the medical industry with its extraordinary 

capacity to generate essential datasets. 

 

Figure 12 The discriminator D and the generator G are the two models that are taught to a GAN 
during training. However, they could be implemented by any type of differentiable system that maps 
data from one space to another. These are commonly implemented using neural networks[27]. 

 

2.5 Generative adversarial networks (GANS) 

The statistical distribution of training data is used in generative models to produce 

samples from the learned data. We can do tasks like style transfer, semantic image 

modification, and data augmentation by synthesizing the data. The GANs structure 

consists of convolutional layers of fully connected deep networks, spatial filter backs 

with non-linear postprocessing, and network weights learnt through backward 

propagation. It deals with multidimensional vectors and italicizes vectors in latent 

space, or probability space [27]. 

2.5.1 GAN Architectures 

2.5.1.1 Fully connected GANs 

On small image datasets, the fully connected neural networks for the generator and 

discriminator were the first architecture that the GAN developed. i.e., MNIST data, 

TFD (Toronto Face Data Set) [27]. 
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2.5.1.2 Convolutional GANs 

The ground-truth image is itself divided in a Laplacian pyramid, and a conditional, 

convolutional GAN is trained. This GAN is made up of a Laplacian pyramid of 

Adversarial Networks (LAPGAN), which decomposes the generation process using a 

multiscale [27]. To train a pair of stride-based generator and discriminator networks, 

deep convolutional GAN (DCGAN) was also introduced. DCGAN enables spatial up 

sampling and down sampling to be learned during training, which is a crucial 

requirement for mapping the image space to lower dimensional latent space as well 

as to the discriminator. 

2.5.1.3 Conditional GANs 

Both the generator and the discriminator have been made class-conditional in the  

2-D GAN architecture. The benefit is that it offers better representations for creating 

multimodal data. By using the fundamental conceptual pipeline, numerous more 

GANs, including GANs with inference code, Adversarial autoencoders, Vanilla GAN, 

Cycle GAN, Super Resolution GAN (SRGAN), etc., were produced. 

 

Figure 13 The core GAN training loop. By putting random samples, z, through the generator network, 
new data samples, xl, can be generated. Prior to updating the generator, the gradient of the 
discriminator may be modified k times[27]. 
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Semantic image editing, image super resolution, style transfer, classification, etc. are 

just a few of the uses for GANs. 

The Generative Adversarial Network (GAN) is a powerful model that enables the 

generation of realistic samples without the need for explicit knowledge of the 

underlying distribution or additional mathematical assumptions. Its versatility makes 

it applicable to various domains, including both academic and engineering research. 

In the field of computer vision, GANs have found applications in several areas. 

Significant research efforts in GAN development are dedicated to enhancing the 

quality and quantity of generated images. For instance, the ALPGAN model 

introduces a convolutional network within the Laplacian pyramid framework, enabling 

the generation of images in a coarse-to-fine manner [28]. This approach has proven 

effective in improving the visual fidelity and realism of generated samples. 

Self-association GAN (SAGAN) was created, allowing for a broad attention-driven 

modelling for jobs requiring the creation of images. It is a better version because all 

the feature maps are used to build high-resolution details. On the ImageNet dataset, 

it raises the public Inception score from 36.8 to 52.2 and lowers the Fréchet’s 

inception distance from 27.62 to 18.65 [29]. Image Inpainting reconstructs the 

missing features of an image that an observer cannot tell that it has been restored. 

This allows us to remove unnecessary details or complete damage parts of old 

images [30]. Multiple GANs were made each for specific reasons where the other 

GANs lacked such as in Super-Resolution (upscaling videos) that allows generation 

of higher resolution images from lower resolution images with realistic detailing [30]. 
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Figure 14 Image Inpainting example [30]. 

 

The problem arises that GANs require a large dataset as input to train the model as 

in data-hungry to train, such as the DCGAN [31]. In cases of a rare disease or a 

health complex situation of rarity, it would be difficult to train a GAN to reproduce 

medical data to avoid hinderance of privacy issues. 

2.5.1.4 SinGAN-seg GAN 

Thus SinGAN-Seg was introduced to train data for medical image segmentation [32]. 

Its pipeline produces synthetic medical images with corresponding segmentation 

masks for each output image. This GAN is unique from the others in that it generates 

a broader set of images from just one single image. It has a basic architecture of 

SinGAN [33] that has been added with a style-transferring algorithm. The SinGAN 

may train or learn from a single image. It records the internal patches of distributions 

(features) and creates qualitative samples that are varied while visually conveying 

the same information. In this, fully convolutional GANs are arranged in a pyramidal 

structure, and each one learns patched distributions of the image at various scales. 

As a result, new samples of any aspect ratio and size are created while generally 

preserving the same general structure and texture. Once more, the observer is 
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misled by the produced synthetic visuals when compared to the realistic original 

image. 

 

Figure 15 Modification of images. SinGAN can perform a variety of image manipulation tasks, such 
as converting a paint (clipart) into a realistic photograph, editing, and rearranging the objects in an 
image, integrating a new object into an existing image, super-resolving images, and producing an 
animation from a single input. For each of these examples, our model just observes the training image 
(first row) and is trained the same way across all applications, without any architectural adjustments 
or additional fine-tuning [33]. 

 

It is a brand-new unconditional generative model that is trained on a single image, 

generating samples only from random input as opposed to a conditional GAN that 

generates samples based on a "class label," controlling the sort of image that is 

generated. 

There are two main steps imposed in the SinGAN-seg pipeline: 

1) Training the generative model per image 

2) Transferring style per image. 

The synthetic images and accompanying segmented masks would be created in the 

first step. based on the basic architecture of SinGAN [33] generates multiple 

synthetic images and masks from one single image and its mask. 
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Therefore, the generation process identifies as a 1: N generation process. Figure 16. 

Shows this 1:N generation by using [img]N, where N represents number of samples 

generated using the model and the input real image [img]. Then afterwards, this is 

applied in the step for every image in a target dataset, of what we want to generate 

synthetic data. The second step transfers styles(features) from real images into the 

corresponding synthetic images. The second step is depicted in Step 2 in Figure 16. 

This second step is also applied per image. 

 

Figure 16 The entire pipeline for training a 4-channel model is shown in step 1. An adjustment 
employing neural style transfer is shown in Step 2. 4-channels SinGAN is the model's only training 
stage. Except for GN, each generator in the SinGAN implementation receives a four-channel image 
(an RGB image and a ground truth) in addition to the input noise vector. The noise vector is the single 
input for the first generator, GN. Additionally, the discriminators receive four-channel pictures as input, 
made of a binary mask and an RGB image. The discriminators' inputs may be either true or fraudulent 
[32]. 

 

A single image input can generate synthetic images using the SinGAN-seg model. 

The SinGAN-seg employs a 4-channel image as input in contrast to the SinGAN, 

which uses a 3-channel RGB image. It consists of the single-channel ground truth 

segmented masks and the three-channel RBG picture combined into one image, as 

seen in fig. Thus, the 4-Channel picture is produced. This makes it possible to create 

masks for each synthetic image with individual feature adjustments. In the second 

step of the pipeline, the output image of four-channel goes through style transfer 
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method for fine tuning, referred to as Neural-style or neural transfer algorithm [34], 

taking an image and reproduce a new image in a different art of style. It calculates 

content distance (Dc) and style distance (Ds) to the third image. Contents and styles 

are transferred using the content: style ratio. This is to improve the quality of 

generated data by transferring the characteristics of the real images. By Figure 16, 

we can show every image generated GM gets amplified by style transfer from input 

image imM. The produced image is represented by STM (M=0,1,2, 3...999). 

However, this step is optional too, but strongly suggested this style-transferring step 

to improve quality of the output data from the first step. 

Here, we discuss the success that the SinGAN-seg's fundamental algorithm model 

has had in manipulating visual data. Due to the training of a single image, it has 

been put up against a variety of algorithms to determine how well it performs. 

 

Figure 17 shows how Paint-to-image works comparative to other algorithms. SinGAN was trained on 
the image and a down sampled version of paint was injected into one of the scales (coarse levels) at 
test time. The SinGAN generated images preserve the layout and general structure of the clipart while 
generating realistic texture and fine details [33]. 

 

Multiple applications exist due to this model including Paint-to-Image as shown, such 

as: 

• Super-Resolution: A technique to improve resolution of images. 

• Harmonization: Blend a pasted object into the background image in a realistic 

manner. 
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• Editing: Create a smooth composite with picture sections that have been moved 

around and pasted in different places. 

• Single Image Animation: From a single input image, produce a brief video clip 

with realistic object motion. 

From this scenario, SinGAN-Seg was developed on similar concepts as discussed 

having applications of producing medical dataset. The polyp dataset that was 

published with HyperKvasir dataset [reference from Singan-seg paper] was used 

over which the GAN was implemented. 1000 polyp images with corresponding 

masks annotated by medical experts. 

Using this GAN, a total of 10,000 synthetic polyp images and corresponding masks 

were generated with high variations when input scale is 0. Under these 

circumstances while confirming that any segmentation dataset, SinGAN-seg was 

compared with state-of art deep generative models. Three GAN architectures, 

DCGAN, Progressive GAN and FastGAN were used for comparison. The resulted 

synthetic images were compared by Fréchet inception distance which we will discuss 

later. 
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Figure 18 examples of Polyp images produced by various GAN architectures. There are two 
variations of SinGAN-Seg: SinGAN-Seg and SinGAN-Seg-ST, which both have style transfer. For 
transferring style, the best ratio of content to style was selected, as 1 to 1000[32]. 
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GAN 

architecture 

Set 1 Set 2 Set 3 Set 4 Set 5 Mean SD 

DCGAN 270.82 269.79 268.38 268.32 269.13 269.29 1.05 

Progressive 

GAN 

285.81 284.3 282.81 283.54 285.00 284.29 1.18 

FastGAN 74.60 74.43 75.53 75.08 76.20 75.17 0.72 

SinGAN-

Seg 

99.61 98.12 98.27 97.59 97.86 98.29 0.78 

SinGAN-

Seg with 

Style 

Transfer 

43.74 43.35 43.71 43.41 43.11 43.46 0.26 

Table 1 The entire polyp dataset, which contains 1000 images of polyps and the related ground-truth 
masks, was used to train all GAN architectures. The best checkpoints from each GAN model were 
then used to create 1000 synthetic images. In SinGAN-Seg, a style transfer ratio of 1:1000 is 
employed. Bold wording is used to emphasize the best values [32]. 

 

Table 1 shows the best score for SinGAN-seg, depicting the fact that the best 

synthetic images were produced as shown. As a result, the SinGAN-Seg model and 

training pipeline utilized in this study demonstrate the value of employing them to 

create synthetic training datasets for GAN models. 

Since synthetic data is being considered, it needs to be compared to the real images 

whether it can be applied for research purposes in as the input data for model 

training. Thus, evaluation methods are proposed with different metrics to evaluate 

data. Via [35] we can check evaluation tools that are relevant for our proposed 

analysis of synthetic data such as object detection competitions, differences, 

peculiarities, and advantages of widely used annotated formats. Open toolkits are 

available widely on the internet, performing different matricular calculations to assess 

the datasets in question. Our ocular vision can distinguish between vibrant colors 

and depict the object we see through experience, knowledge and learning that 
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includes the structure, distance comparisons etc. Deep Learning convolutional 

networks has become a methodology of choice for medical image analysis [36]. In 

case of Machine learning, it has provided us with Algorithms that would make it 

easier to detect a specific object by model training to aid a person in detection of 

features in an image. Recently with the involvement of AI and machine learning to 

assist research, the results are often described with datasets and metrics. This has 

increased the demand for annotated data, specifically in the medical field. Annotation 

tools are being widely used in aiding to check similarities or identify the objects in 

case such as images [35]. Manual annotation requires expensive and time costing 

methods in which an expert is asked to annotate the data. Evidently speaking, 

medical schools/facilities are also moving towards competency-based education and 

research thus require trainee skills without human intervention [37]. Recent studies 

have also shown evaluating metrics in image segmentation lacks model performance 

assessment reliability and statistical bias when metrics are implemented incorrectly 

[38]. The IOU (Intersection over Union) has been a widely used 2D/3D object 

detection and semantic/instance segmentation metric for evaluation. The 

combination of Regression and Classification has been defined in combination in the 

Deep Learning Algorithms. Considering the case of Object Detection, regression is 

used for the bounding box whereas classification is used for the class inside the 

bounding box. 

2.6 Machine learning libraries 

Machine Learning libraries are software packages providing a collection of 

algorithms, tools and functions that can be implemented for developing machine 

learning models. These libraries help in simplifying training models through data 

processing utilities, pre-implemented algorithms, and evaluation metrics. 
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These packages support the advancement of machine learning techniques and act 

as aiding to simplify complexity of algorithms implemented from scratch, making it 

easier for practitioners and researchers to experiment on different datasets and 

models. 

These libraries are kept to the latest updates that continue to improve and evolve, 

pushing the boundaries of machine learning to explore new computational areas. 

Keras 

TensorFlow is a google developed library for machine learning applications in deep 

learning. It can be run on CPUs, GPUs and IoT processors. Via TensorFlow, that 

basically consists of multidimensional arrays called tensors produce a library through 

which it is run is called Keras, a neural network API based on Python [39]. It has four 

working principles: 

● User friendliness 

● Modularity 

● Easy extensibility 

● Work with Python 

Data structures in Keras have the most important aspect called models. There exists 

multiple type of Keras layers available for configuring in terms of neural network as 

listed below: 

● Dense: Core layer in densely connected NN layer. 

● Activation: A function that is applied to a given input  

● Dropout: Input layer given with transformation of dropout. 
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● Flatten: for flattening the input without affect to size of both input and output and 

used in corresponding to model of data tested and trained. 

● Reshape: converting the shape of input tensor to output tensor. 

● Permute: to change dimensions of input and for acts relative to connecting 

convolution networks (ConvNets) and recurrent neural networks (RNN). 

● Lambda: wrap arbitrary expression as layer objects. 

● Activity Regularization: apply update to cost function that is based on input 

activity. 

● RepeatVector:  allows to repeat input vector n times. 

There are also other core layers similar like spatial dropout and masking [39]. 

1. Convolutional layers: Like TensorFlow, convolutional layers available in Keras 

consist of Conv 1D, Conv 2D, Separable Conv 1D, Separable Conv 2D, 

Depthwise Conv 1D, Depthwise Conv 2D, Conv 2D Transpose, and 3D. 

2. Pooling Layers: It includes average pooling, max pooling, average max pooling, 

and global max pooling. 

3. Locally Connected Layers: they include both locally connected 1D and 2D 

layers. 

4. Embedding Layers 

5. Merge Layers 

6. Advanced Activation Layers: Developed for special cases such as LeakyRELU 

(rectified linear unit), PReLU (parametric variation of RELU), Exponential linear 

unit (ELU) and threshold ReLU in addition to SoftMax are also available. 

7. Recurrent Layers: functional exclusive with recurrent neural networks (RNN), 

long short-term memory (LSTM) layer and gated recurrent unit (GRU). 
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8. Normalization Layers: normalization layer (Batch Normalization) provided in 

Keras. 

9. Noise Layers: To reduce noise in data provided such as alpha dropout and 

Gaussian noise etc. 

10. Layer Wrappers: Time distributed wrapper that is applied to the input of time 

space and bidirectional wrapper used with RNNs. 

Segmenting an image involves dividing it into various classes of pixels. This 

technique has various applications, such as identifying tumors medical images and 

differentiating between land and water areas in drone images. Unlike image 

classification, that uses CNNs to output probability score vector, image segmentation 

requires CNNs to produce an image. To achieve this, traditional CNN architectures 

are typically modified. There are many architectures available for image 

segmentation, including transformers. Researchers are also exploring other methods 

to improve performance, such as the use of deep-supervision loss. 

Image segmentation involves partitioning the pixels of an image into distinct classes. 

Applications of this technique include identifying tumor regions in medical images 

and separating land and water areas in drone images. Unlike image classification, 

where CNNs output a probability score vector, image segmentation necessitates 

CNNs to output an image. To accomplish this, conventional CNN architectures are 

often adjusted. There are various architectures available for image segmentation, 

including transformer-based models. Additionally, researchers are continually 

experimenting with other techniques to enhance performance, such as the use of 

deep-supervision loss. 
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Traditionally, CNNs are adept at recognizing the presence of objects in an image. 

However, for segmentation, CNNs must also learn to accurately locate these objects 

within the image. The U-Net architecture is designed specifically for this purpose. 

The original U-Net paper describes it as a network consisting of two parts: an 

encoder section and a decoder section. 

2.7 U-net 

For a deep network to be successfully trained requires sample data annotated in 

thousands of data. Thus, a strong use of data augmentation is required so annotated 

samples are trained for classification efficiently. In the past few years, deep 

convolutional networks have made a name in tasks of visual recognition. However, 

there were limitations because of the size of networks and training datasets. That 

breakthrough was accomplished by ImageNet with parameters for one million 

training images over a large eight-layer network [40]. Convolutional networks were 

based for tasks to classify where a single class label is the output of an image. 

However, in the case of medical images, localization was in demand where each 

pixel is assigned a desired label. Thus, a network was trained to predict each pixel 

class with a patch (local region) around the pixel. This turned out to be the U-net as 

shown with an architecture [41]. 
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Figure 19 As shown in Figure, the U-net architecture (used for an example of 32x32 pixels in the 
lowest resolution) utilizes blue boxes to represent multi-channel feature maps. The number of 
channels is indicated at the top of each box and the x-y size can be found at the lower left edge. 
White boxes symbolize duplicated feature maps and arrows indicate the different operations used 
within the architecture. 

 

The U-net architecture is characterized by its “U” shape, which is symmetrical in 

design. It is compared of two main sections: the contracting path on the left and the 

expansive path on the right. The contracting path is made up of convolutional layers 

that reduce the spatial dimensions of the feature maps. The expansive path, on the 

other hand, is composed of transposed 2D convolutional layers which increase the 

spatial dimensions of the feature maps. This approach can be thought of as an up-

sampling technique. This network is also termed to be a ‘fully convolutional network” 

[42].  The architecture of the U-net can be explained part by part: 

Contracting path 

conv_layer1 -> conv_layer2 -> max_pooling -> dropout(optional) 

Each process in this path is made up of two convolutional layers, with the number of 

channels changing from 1 to 64. This convolutional process increases the depth of 

image. The red arrow pointing down in Figure 19 represents the max pooling 

process, which reduces the size of the image by half (e.g., from 572x572 to 
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568x568). The process is repeated three times until it reaches the bottommost. Two 

convolutional layers are built without the need of max pooling. 

Expansive Path 

conv_2d_transpose -> concatenate -> conv_layer1 -> conv_layer2 
 

This is the path through which the image is upsized to the original size of input. The 

expansive path of U-net architecture uses transposed convolution, which is up 

sampling technique that increases the size of images. It works by adding padding to 

the original image, followed by a convolutional operation. As depicted in the 

architecture Figure 19. the image size is increased. This image is combined with 

corresponding image from contracting path to incorporate information from previous 

layers for more accurate predictions. This process is also repeated three times, 

reaching to the uppermost part of the architecture where the last step is reshaping 

the image to requirements for prediction. The last layer consists of no dense layer 

and just a 1x1 filter sized convolutional layer. 

Thus, in conclusion, U-net can do image localization by predicting the image pixel by 

pixel and claimed in the paper [41] that the network is strong to predict with few 

datasets. Many applications for image segmentation are using U-net. 

There are multiple types of U-net present that were introduced by Keras. The project 

under the name of Keras-U-net-collection consists of functions for configuring Keras 

models with user friendly hyper-parameter options that include hidden layer 

activation, network depth and batch normalization for all U-net variants. These 

variants are as follows: 
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2.7.1 U-Net plus 

The proposed architecture follows the fully convolutional network (FCN) approach 

and is designed as an end-to-end network. It leverages convolutional operations to 

extract features from the input image. In the U-Net plus architecture, all layers except 

the final layer utilize 64 channels in their convolutional operations and are connected 

to a rectified linear unit (ReLU) activation function. The final layer of the U-Net plus 

architecture employs a 1x1 convolutional size with two channels. This configuration 

is employed to map the feature maps to the desired number of output classes. The 

inclusion of 1x1 convolution in the final layer can enhance the network’s robustness, 

which is a common practice in deep neural network [43]. 

The architecture can be illustrated in following diagram: 

 

Figure 20 The U-Net Plus architecture is composed of two main parts: the main architecture and the 
detailed architecture of a block. The main architecture (a) is the overall structure of the network, which 
incorporates multiple blocks to extract features from the input image. The detailed architecture of a 
block (b) includes various operations such as convolution (conv), rectified linear unit (ReLU) and skips 
connections. 

The architecture utilizes skip connections, which link the corresponding feature maps 

from the down sampling and up-sampling stages. This helps to alleviate the problem 

of spatial information loss that can occur during down-sampling and improves the 

network’s ability to focus on extracting useful features through convolutional 
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operations. This architecture utilizes skip connections, which link corresponding 

feature maps from the down-sampling and up-sampling stages. This helps to 

alleviate the problem of spatial information loss that can occur during down-sampling 

and improves the network’s ability to focus on extracting useful features through 

convolutional operations. 

A block in the network architecture includes a skip connection, as well as other 

operations such as convolution, pooling, and deconvolution. Despite the multiple 

feature extraction operations performed within a block, the feature extraction process 

following the skip connection must be based on the previous input information 

obtained through the skip connection. The skip connection and the operations 

between it can be thought of as one skip connection operation. This operation 

extracts the features of the input information before it can be used as input for the 

next operation. The skip connection combines feature information from both small 

and large field of views, which allows for the use of global features. However, the 

feature maps from small field of views are from early features in network. A block 

can be thought of as a skip connection operation that is like convolution, but with 

stronger feature extraction capabilities. By using two blocks in succession, the 

network can enhance its ability to extract complex abstract information. 

2.7.2 Attention U-Net 

Fully Convolutional Networks (FCNs) have been shown to achieve superior 

performance compared to other commonly used registration-based methods in 

image segmentation. U-Net architectures allow effective computing of segmentation 

masks at the same resolution as input images. The fully convolutional architecture 

also allows for the use of images with varying resolutions, unlike traditional 

convolutional networks which have layers that are dependent on the input size. In 
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medical image analysis tasks, the integration of attention Gates (AGs) into the U-Net 

architecture has been shown to improve the accuracy of segmentation models while 

maintaining computational efficiency. The proposed Attention U-Net architecture is 

illustrated in figure 21. Traditionally, cascade CNNs were used to select the Region 

of Interest (ROI) where the target organ is likely located, without using Attention 

Gates (AGs). However, by incorporating AGs into the Attention U-Net architecture, it 

eliminates the need for a pre-selection network. Instead, the Attention U-Net learns 

to focus on the most important local features, while downplaying the less relevant 

ones. This also results in a decrease in false positive rates [44]. Attention Gates 

(AGs) are commonly used in a variety of applications, such as natural image 

analysis, knowledge graphs, and natural language processing (NLP) tasks such as 

image captioning[45] machine translation and classification task. 

 

Figure 21 The proposed Attention U-Net segmentation model consists of an encoding part, where the 
input image is progressively filtered and down-sampled by a factor of 2 at each scale. The number of 
classes is denoted as Nc. Attention gates (AGs) are utilized to filter the features that are propagated 
through the skip connections [46]. 

 

2.7.3 Recurrent and Residual U-Net (RU-net & R2-Unet) 

Two new models named RU-Net, and R2U-Net were introduced for medical image 

segmentation. 
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Figure 22 The RU-Net model is an architecture that incorporates convolutional encoding and 
decoding units with recurrent convolutional layers (RCLs) based on the U-Net architecture. While the 
R2U-Net model is an architecture that uses residual units in conjunction with RCLs [47]. 

 

These two new models, RU-Net and R2U-Net, combine the strengths of three 

recently developed deep learning models: U-Net, RCNN and its variants. The RU-

Net model is based on the U-Net architecture, with the addition of recurrent 

convolutions before down-sampling, before up-sampling, and before the output of 

the segmentation map. The R2U-Net model is like RU-Net, but it utilizes residual 

learning instead. 

U-Net and its variants have been used in multiple scenarios to achieve the 

segmentation for clinical images to study/diagnose health issues. For example, 

Study has been carried out using U-Net plus for semantic segmentation for 

esophagus and esophageal Cancer in computed tomography Images. Doctors can 

diagnose esophageal cancer with the use of accurate segmentation and 3-D 

representation of the oesophagus and esophageal cancer from computed 

tomography (CT) images. The segmentation of the oesophagus and esophageal 

cancer is quite challenging due to irregular and ambiguous boundaries. A 2-D CT 

slice could be used to segment the oesophagus and esophageal cancer using U-Net 

Plus. Two blocks are used in this network architecture to improve the efficiency of 
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feature extraction from complex abstract information, which can successfully resolve 

irregular and ambiguous boundaries. A skip connection operation known as a block 

is comparable to convolution. The architecture is tested with 295 slices from 6 CT 

scans after being trained on a dataset of 1924 slices from 10 CT images. To model 

segmenting the 3-D CT image, the training and test datasets are each multiplied by 

ten. It reported a 0.790.20 dice value and a 5.879.91 Hausdorff distance using the 

new framework. The 3-D segmentation of the oesophagus or the detection of 

esophageal cancer is then constructed using a semi-automatic method. To aid in the 

diagnosis of esophageal cancer, 3-D renderings of the oesophagus or esophageal 

cancer are used [43]. 

In another instance, Attention U-Net was tested for Chest X-ray Lung Segmentation. 

The most prevalent test among medical imaging modalities is the chest X-ray (CXR).  

It is used for the detection and distinction of a variety of diseases, including 

pneumonia, lung cancer, tuberculosis, and COVID-19. The workload of the 

physicians is significantly reduced while reliability and quantitative analysis are 

improved when computer-aided detection methods are integrated into the diagnostic 

pipeline for radiologists. Modern fully convolutional neural networks and an 

adversarial critic model are combined in our approach.  On the Japanese Society of 

Radiological Technology (JSRT) dataset, it achieved a final dice score (dice 

coefficient) of 97.5% and generalized well to CXR images of unseen datasets with 

different patient profiles [44]. 

The extension of U-Net architecture models called RU-Net, and R2U-Net were also 

evaluated in three different applications of field of medical imaging that included 

retina blood vessel segmentation, skin cancer lesion segmentation and lung 

segmentation. Their experimental results showed better performance in 
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segmentation tasks with same number of network parameters when comparing with 

existing methods [47]. 

2.8 Intersection over union (IOU) 

Image segmentation is a subfield of image processing within computer science. It is 

used for identifying common features in input image by learning and labelling pixels 

with class i.e., kidney, brain tumor etc. wide range of algorithms are available for 

solving these segmentation problems but by the introduction of convolutional neural 

networks and deep learning, it has an extensive use presently [48]. 

It’s quite difficult to implement this in real life situations, thus the IOU comes into 

play. The concept of IOU is to use it as a metric in evaluation of deep learning 

algorithms that estimates the predicted mask (in medical terms) matches the ground 

truth. It is also referred to as Jaccard Index.   

To use the IOU metric, the following are required: 

● Annotated ground truth (bounding boxes or masks). 

● Similarity of model’s prediction as ground truths. 

IOU Formulae 

Intersection over Union is an instinctive metric, thus not many challenges are faced 

when understanding. It is calculated by the ratio of predicted and ground truth 

annotation over union of these. 

 

Figure 23 The formulae for Jaccard index 
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The formulae can be visualized with bounding boxes, such as 

 

 

Figure 24 IOU Equation [48] 

 

Thus, this shows to be used as a reasonable metric for model to make predictions 

heavily overlapping the ground truth. 

The IOU algorithm runs such that: 

1. From your model, get the prediction. 

2. Make a comparison of the mask (predicted bounding box) and the ground truth. 

3. Calculation of the overlap area and union between the two areas. 

4. Divide the overlap value with the union of these areas. 

5. Make analysis of the result. 

6. Repeat steps 1-5 for all the test image dataset. 

7. Get the average IOU scores for the result. 

The higher the IOU score, the better results (higher overlapping). The greatest value 

is 1 while the least being a 0. On the conditions, we can set our own thresholds for 

evaluation. 
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With modern imaging and its increased availability made a need for automated 

medical image segmentation. 

(IOU) metric has found applications in various contexts, including object detection 

and semantic segmentation. For instance, IOU analysis has been used to evaluate 

the performance of image detection/segmentation models based on (CNN). These 

neural networks are capable of extracting complex hierarchical structures of object 

structures of objects from large datasets. Through extensive training on abundant 

data, deep learning systems can acquire the ability to recognize and interpret 

images, exemplifying a key characteristic of artificial intelligence. Two categories of 

deep learning algorithms for image interpretation can be made. Examples of 

completely convolutional algorithms that employ an encoder-decoder architecture 

include SegNet, U-Net, and SharpMask. In contrast, region-based approaches like 

Mask-RCNN, PSP Net, and DeepLab extract features using a stack of convolutional 

neural networks (CNNs). For most picture segmentation tasks, fully convolutional 

techniques outperform region-based methods when the networks are trained on 

enough annotated datasets. One design was produced that used deep learning 

methods based on the Mask-RCNN to recognize 2D images while segmenting each 

mask component as part of a study [48]. 

2.9 Research gap 

To develop models that would aid in the detection of illness and health issues for 

research, enhancing life and saving lives, society now needs machine learning and 

AI. In general, bone fractures and cancer have been identified using machine 

learning techniques. However, in our scenario, we will be able to detect the 

advancement of bone destruction for CF disease, which is difficult to diagnose in a 

diabetic condition. To diagnose with the aid of artificial intelligence methods, 
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additional bone damage must be stopped. This will stop any future delays and 

lessen the possibility of a higher health decline. 

To identify Charcot foot disease in the bones using medical imaging, our research 

will fill a gap in the literature by combining AI and machine learning. A significant 

portion of research on CF disease focuses on its study of progression, including how 

medical imaging is a fantastic approach for monitoring and diagnosis, how early 

discovery is advantageous, and how delay in detection and progression can 

aggravate the patient's health. The development of a detection model that may be 

used for early prognosis is still pending among experts. To increase the amount of 

data available for training and creating segmentation models for certain diseases 

and health issues, GANs are being utilized to make medical images. They are only 

tested on datasets that are widely accessible, though. These models need at least 

10,000 photos to be trained on powerful GPUs, hence little research has been done 

based on the availability of these resources. Additionally, single image based GANs 

continue to be an underappreciated product because the medical field has not 

utilized them extensively. Furthermore, because CF is a rare, underdiagnosed 

condition, no machine learning or AI techniques have been used in this case yet. 

Only experts are currently addressing this case using their own observations and the 

cutting-edge medical equipment found in hospitals. 
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3 METHODOLOGY 

 

Figure 25 Methodology Flowchart 
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This section displays the model that was trained to create the artificial images, which 

is followed by an open-source visual object detection interface to compare the 

artificial data with the real data [35] after which training a model to recognize the 

diabetic CF utilizing the total data generated. 

3.1 Data Collecting and Processing 

In the preliminary stage, we collected a  dataset of medical images from a healthcare 

facility in Pakistan, with the necessary permissions of the local health departments. 

Our aim was to investigate the prevalence of diabetic feet in the country and 

understand the emerging challenges related to diabetic-related health conditions. 

Given that foot ulcers are a symptom of developing Charcot foot in the future, a 

study to determine the prevalence of foot ulcers and factors related to diabetes was 

undertaken in the Pakistani state of Punjab. Between 2018 and 2019, a sample of 

roughly 1503 diabetics was gathered. A multiple logistic regression was performed 

among those over the age of 18, and the total prevalence of foot ulcers was shown 

to be 16.83% (95% CI: 14.9 - 18.7%). Whereas the prevalence for females was 

17.52% (95% CI: 15.2 - 19.9%) and prevalence for males was 15.48% (95% CI: 

12.3- 18.6%)[49]. Contrast to rural areas, where prevalence was 13.91% (95% CI: 

10.6 - 17.2%), urban areas had a prevalence of 17.96% (95% of CI: 15.7 - 

20.2%)[47]. They had the highest prevalence for people aged 75 and older, at 

66.67% (95% CI: 51.9 - 81.5%). Overweight persons had a prevalence of 25.49% 

(95% CI: 21.3 - 29.7%) and those with incomes over Rs. 61,000 had a prevalence of 

24.4% (95% CI: 15.8 - 32.7%), respectively [49].Therefore, evidence from this study 

indicates that foot ulcers are very common in Punjab, Pakistan. To obtain the 

medical photos, contacts have been made with numerous health institutions. It is fair 

to note that medical image processing is rarely used to identify CF across numerous 
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visits. Most patients are unable to pay for the pricey testing process. To stop the 

disease from spreading, diabetologists, doctors, and orthopedic surgeons directly 

use surgical techniques. Patients are commonly not advised to have medical 

imaging diagnosis, so data in the form of MRI images and CT scans was infrequently 

available. However, because X-rays are so inexpensive, patients are encouraged to 

undergo this imaging diagnosis. Unfortunately, hospitals in Pakistan still use paper 

documentation because much of it has not yet been digitalized. Many hospitals do 

not grant access to such information, even though patients' privacy is protected, and 

security access is restricted to data for ethical grounds. To obtain the dataset, which 

is a lengthy procedure, one would need to go via the proper network, i.e., a 

university, for academic purposes while simultaneously giving agreement that the 

data won't be utilized for other purposes. With time, medical information, including X-

rays of patients who were recently diagnosed with early CF stage by an orthopedic, 

was submitted with the patients' complete consent. Early stage of CF was identified 

in the medical information because patients took the appropriate measures before 

Stage 3 symptoms developed. We can utilize this to determine the early stages of 

the disease. A total of 20 images, showing the x-ray scan from various angles for 4 

patients receiving medical treatment for CF disease, were available. With a few X-

rays depicting the local foot area affected by CF removed from the forefoot side 

without significant bone loss, the images of the CF revealed the bones fractured from 

the mid and higher footing. 
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Figure 26 X-ray Images of CF 

 

Patient Gender Profile view 

 X-ray 

Posteroanterior 

X-ray 

Total 

A Male 2 2 4 

B Female 4 6 10 

C Female 1 1 4 

D Male 1 1 2 

    20 

Table 2 shows the x-ray image dataset contributions of 4 patients having the CF in early stages. 

 

Synthetic data generation presents a potential solution to address the limited 

availability of data, as the provided data was insufficient for training a machine 

learning model. In this case, synthetic data is created using X-ray images in JPEG 

format. X-ray images are considered the most effective method for diagnosing 

deformities and study the bone regression of CF. 

Dimensions Width Height Horizontal 

Resolution 

Vertical Resolution Bit depth Size 

970 x 1600 970 

pixels 

1600 pixels 96 dpi 96 dpi 24 245 KB 

Table 3 shows details of X-ray images collected. 



56 
 

The following prerequisites for the GAN input requirements must be completed 

before attempting to generate synthetic data: 

1. Convert format from jpeg to png. 

2. Use open-source tool to annotate for extracting masks. 

3. Add the layers of the test X-ray and its corresponding masks together to create a 

4-channel image (3 channels for RGB and the 4th channel is the mask). 

Then, using the annotating tool, we create masks. At the National Institutes of Health 

and Laboratory for Optical and Computational Instruments, ImageJ is a Java-based 

image processing application [50]. 8-bit, 16-bit, and 32-bit images can be shown, 

examined, edited, saved, processed, and printed using it. JPEG, DICOM, FITS, GIF, 

BMP, PNG, and raw are among the image formats that can be read by the tool. 

Additionally, it enables "stacks," which are groups of photos that share a single 

window. With the help of its multithread software, laborious tasks can be combined 

with simpler ones. Its open architecture was intended to allow for extension using 

Java plugins. The tool's built-in editor and Java compiler can be used to create 

analysis, unique acquisition, and processing plugins. The User-written plugins solve 

any image processing and analysis problem. ImageJ  was used to trim where 

necessary, annotate the X-ray images to construct the masks (created with the 

orthopedics observation), reduce to a workable image size to avoid overfitting, and 

convert our image format from Grayscale to RGB image. To improve accuracy, we 

magnify in on the images and place precise marks on the foot structures that are 

labelled as being afflicted by Charcot foot disease using the polygon selection tool. 

Once everything is finished, we save the RGB X-ray image together with the 

associated grayscale mask as PNG files. 
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Gimp 2.0 [51] is used to create a 4-channel image utilizing the X-ray image layer and 

the associated mask layer. A free open-source alternative to Adobe Photoshop for 

raster graph editing is called Gimp [51]. It is a cross-platform image editor that works 

with Windows, macOS, Linux, and other operating systems. Both third-party plugins 

and a variety of customization options are supported. It has graphic design aspects 

with assisting plugins like programming methods, extension & flexibility etc. It can 

modify high quality images, produce original artwork, and comprise of graphic design 

elements. 

The four layers make up the four-channel image. The Red, Green, and Blue (RGB) 

channels combine to create an image of color combinations in the first three levels, 

which are the RGB layers. The fourth channel is the alpha layer, which controls what 

is seen in the image and transparently delete any superfluous portions. Opening the 

associated mask and the CF X-ray image is the first step in the procedure. We add a 

layer mask and an alpha channel to the image. Adding a black, white, or grayscale 

layer is not required. Onto the mask layer in the alpha channel, we copy and paste 

the mask image. After producing the alpha channel with the matching mask and 

merging the layers into a single image, we have a 4-channel CF X-ray image. 

3.2 Synthetic X-ray Image Production Using SinGAN-seg. 

We propose the idea of implementing the SinGAN-seg after analyzing the issues 

relating to privacy, dataset availability, and to address the problem of time-

consuming and expensive expert annotation [31] to create numerous synthetic 

photos to help us train a machine to recognize CF when confronted with a sample 

patient medical image. By the concept of U-Net++ [52] applied on the SinGAN-seg, 

Features are extracted by segmenting the images to create similar real like output of 

images. 
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3.2.1 Training the generator 

SinGAN-seg requires parallel programming to create synthetic images because it is 

a GPU-intensive model. In contrast to SinGAN (Original), which just uses an RGB 

image with a noise vector and outputs synthetic graphics, it consists of layered input 

and output. 

All the generators in this model (G0 to GN-1) receive a 4-channel picture as input 

along with a noise vector. The discriminator receives the same input as the 

generator, which can be real or fake, and works simultaneously with the generator in 

the first step, only accepting a noise vector as input. With a single image as input, 

this GAN creates randomized synthetic images with varying alterations according to 

scale. The GAN uses a pyramidal training structure to extract features at various 

scales between 0 and 9 using various kernel sizes. Depending on how much change 

we require, we can generate images at various scales. 

Since this GAN is built on the SinGAN architecture, learning an unconditional model 

that captures the intrinsic statistics of the image is the stated goal. The training 

samples are taken as patches rather than the entire image according to the settings 

of standard GAN [33]. It serves to capture the intricate visual structure at various 

scales. This enables us to capture the overall property, such as the image's form and 

fine texture details. This is illustrated in Figure 16. (SinGAN architecture) with a 

hierarchy of patch-GANs called Markovian discriminator. Each patch oversees 

capturing distributions at various scales. They can't memorize the entire image due 

to their narrow receptive fields and capacity. As a result, internal learning is done on 

a single image different from the perspective of other GANs. The pyramid shows 

generators stacked together {G0,…,GN), trained against image pyramid x:{x0,…,xn} 

where each image is a down-sampled version of x by factor 𝑟𝑛, for r>1. Each 
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generator Gn produces realistic image samples corresponding to the patch 

distribution with images achieved by adversarial training, where Gn fools the 

associated discriminator Dn that tries to distinguish the patches samples with 

patches of xn. 

It starts from the crudest scale and passes sequentially through the generators up 

the finest scale while injecting noise in each scale. Both the generators and 

discriminators have the same receptive field, capturing structures of decreased size 

going up the pyramid field. At the crude scale, the generation is pure meaning spatial 

white Gaussian noise Zn is mapped onto image sample Xn. 

Xn = Gn(Zn)      1 

 

The receptive field being effective is at ~1/2 of the height of the image, thus Gn 

generating object’s global structure and general layout. Each of generators at each 

scale (n<N) add details not generated on previous scales, with spatial noise zn, each 

generator Gn takes the up sampled image versions. 

Xn = Gn(Zn, (Xn+1) ^r), n<N     2 

 

The generators in the pyramid have similar architecture. The noise Zn is added to 

image (Xn+1)^r, being fed into the sequential convolutional layers. The GAN does 

not disregard the noise, as often that happens in random schemes conditionally. The 

convolutional layer’s main role is generating missing details (Xn+1) ^r that is residual 

learning. 

               xn =(˜xn+1) ↑r + ψn(zn +(˜xn+1) ↑r),        3 

 

Gn operate the given function where ψn is fully convolutional net with 5 conv-blocks 

of Conv(3x3)-BatchNorm-LeakyReLU. 32 kernels per block are initiated at the 
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crudest scale and increase by the factor of 2 every 4 scales. By changing the 

dimensions of the noise maps, we can generate images of arbitrary size and aspect 

ratio at test time. 

From the largest to the smallest scale, the multi-scale architecture is trained 

successively. Each GAN is fixed after its initial training. The reconstruction term and 

the adversarial term make up the nth GAN's training loss, 

   min Gn max Dn Ladv(Gn,Dn)+αLrec(Gn)    4 

 

The adversarial loss, the distribution of patches in general samples xn and the 

distance between the patches in xn are penalized for Ladv. The collection of noise 

maps that generate samples xn are maintained by the Lrec (reconstruction loss). 

3.2.2 Adversarial Loss  

The generators Gn and Dn Markovian discriminator work together to determine 

whether each area of overlap is fake or real. In order to ensure training stability, we 

utilize the WGAN GP loss, where the overall final discrimination score is obtained by 

averaging over the patch discrimination map. Instead of employing random batch 

sizes, we calculate the loss across the entire image, enabling the network to learn 

boundary conditions, which is a crucial aspect of our setup. 

3.2.3 Reconstruction Loss  

To ensure a random noise input exist to general original image x, 

We choose, 

 {zrec N ,zrec N−1...,zrec 0 } = {z∗,0,...,0},   5 
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where some fixed noise map is z*. (Kept fixed during training). When using these 

noise maps, denote by ˜xrec n the generated image at the nth scale. 

Next for 

n < N, Lrec = Gn(0,(˜xrec n+1) ↑r) −xn2, and for n = N, we use Lrec = GN(z∗)−xN2  6 

 

The reconstructed image ˜xrec (5) n plays a training role to determine the standard 

deviation σn of the noise zn in each scale. Taking σn to be proportional to the root 

mean squared error (RMSE) between (˜xrec n+1) ↑r and xn, giving an indication of 

the number of details that need to be added at that scale. 

We used the Google Colaboratory Notebook to make use of this GAN. With the help 

of the web scripting tool Google Colaboratory, we can employ the required GPU to 

work on programs that have higher running expenses. Since our GAN needs a GPU 

to function, Google Colaboratory was the perfect tool to use because it offered a 16 

GB GPU Tesla T4 for the required training. We set up the requisite libraries and the 

latest version of PyTorch for the GPU call: 

● ‘Numpy’: This library handles arrays and mathematical operations. It offers a 

reliable N-dimensional array object and a large selection of mathematical 

operations that relate to arrays. 

● ‘Matplotlib’: Users can create static, animated, and interactive visualizations 

using the Python charting toolkit matplotlib. 

● ‘OpenCV’: It is a set of programming tools that are primarily made for real-time 

computer vision. It is extensively used in applications including object 

identification and recognition, image processing, video analysis, and others. It 

includes interfaces for C++, Python, and Java and supports a variety of operating 

systems, including Windows, Linux, and macOS. This library, which is often used 
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in computer vision and machine learning projects, provides a variety of tools and 

functions for working with images and videos. 

●  ‘Pillow’: Users of Python can alter images using this open-source package. It 

includes a wide range of image processing features and supports many different 

images file types, including JPEG, PNG, and BMP. It can be used to edit images 

by rotating, resizing, and cropping them. Additionally, it aids with opening and 

editing photos. It is also used to create thumbnails, filter images, improve images, 

change modes, and convert file formats. It is an easy-to-use package that may be 

used for simple image processing applications. It has significant advantages for 

computer vision, machine learning, and artificial intelligence. 

● ‘SciPy’: It is a Python library for technical and scientific computing that is open-

source and free. It provides a wide variety of mathematical tools and techniques 

for jobs like optimization, integration, interpolation, eigenvalue problems, etc. It is 

constructed over the NumPy library. It is frequently used in scientific research, 

engineering, physics, finance, and these fields. When combined with other 

scientific libraries like NumPy and Matplotlib, SciPy may be used to manipulate 

and visualize data even more effectively and robustly. 

● ‘Imageio’: An open-source library provides a straightforward and user-friendly 

interface for reading and writing a range of image and video formats. 

manipulation and visualization. To give even more powerful image modification 

capabilities, Imageio can be integrated with OpenCV and Pillow in addition to 

being built on a variety of other libraries, including NumPy and SciPy. 

● ‘Scikit-image’: Scikit-image is a popular Python image processing library (often 

referred to as skimage). It is an open-source toolkit including several algorithms 

for tasks like image restoration, segmentation, feature extraction, and more. It 
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was built on top of the SciPy and NumPy libraries. Scikit-image is widely used in 

machine learning, computer vision, and image processing. It is well-documented, 

highly strong, and has a large variety of purposes. It may be used with image 

processing tools like OpenCV and Pillow as well as machine learning tools like 

scikit-learn and TensorFlow. 

The 4-channel image is then updated as the training image in the input directory, and 

the training bash command is then executed. Due to the precise configuration 

needed for accurate outcomes, training GAN is challenging. Since conditional 

probability is the foundation of GAN, it is challenging to train for the convergence 

necessary for excellent outcomes. It requires a change in the noise amplitude, loss 

function, or epochs. Although training the model takes a lot of time, we can train 

additional photos in the same model. 

No. of training 

X-ray images 

Approx. size of input 

image (4-channel) 

No. of epochs 

(iterations) 

Learning rate Lambda 

gradient 

Kernel size 

(K.S) 

Additive noise 

continuous weight 

14 650 x 275 2500 0.0005 0.25 3 0.09 

Generator Steps Discriminator Steps Noise continuous 

weight 

Number of layers Stride Padding 

size 

Reconstruction loss 

weight 

3 3 0.09 5 1 K.S/2 10 

Table 4 Configuration of SinGAN-Seg model for optimum results. 

 

As a result, artificial images will be created for the following phase. 

3.3 Comparing real images with synthetic images 

3.3.1 Fréchet Inception Distance 

It is possible to compare our developed medical images to genuine datasets to train 

identification models since we have created medical images for further training. 

Fréchet Inception Distance (FID) score has been a crucial solution statistic since 

GANs were first introduced. A popular evaluation metric for generative models is the 
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FID score. By calculating the separation between their Inception activations, it 

compares the feature representations of generated images to those of actual images 

[53]. The score compares the two groups and gives the statistics on computer vision 

elements of the original photos that were obtained using the inception v3 model for 

image categorization. 

The FID score is calculated as the following: 

1. Compute the Inception activations for the real images and generated images. 

2. Calculate the mean and covariance matrix of the activations for each dataset. 

3. Calculate the Fréchet distance between the two Gaussian distributions defined by 

the activations’ means and covariances. 

The Fréchet distance, a metric for comparing the similarity of two probability 

distributions, is the separation between the distributions' means, with the separation 

between their covariances serving as a weight. 

FID = ||mu_r – mu_g||^2 + Tr(Cov_r + Cov_g -2(Cov_r*Cov_g)^(1/2)  7 

 

Where mu_r and mu_g are the means of the real and generated data activations, 

Cov_r and Cov_g are the covariance matrices of the real and generated data 

activations, respectively, Tr is the trace of a matrix and ||.|| denotes the Frobenius 

norm. A lower number indicates that the generated images are more comparable to 

the genuine ones. The FID score runs from 0 to infinity. 

Following steps are followed for evaluation of images using FID score: 

1. Collect a dataset of real images. 

2. Generate images using the generative model that you wish to evaluate. 



65 
 

3. Compute the activations of the Inception model for both the real images and the 

generated images. 

4. Compute the mean and covariance matrix of the activations for each dataset. 

5. Calculate the FID score using the means and covariances of the activations. 

3.3.2 Inception Score 

A popular evaluation metric for generative models that seeks to gauge the caliber 

and variety of generated images is the Inception Score (IS). It adheres to the 

principle that classifying high-quality images should result in labels with high entropy. 

Based on the class labels predicted by the inception model, it is based on the 

conditional likelihood of the generated images. 

To calculate the IS score, the following steps can be followed: 

1. Collect a dataset of real images. 

2. Generated images using the generative model that you wish to evaluate. 

3. Compute the class labels predicted by the inception model for both the real 

images and the generated images. 

4. Compute the marginal probability distribution p(y) and the conditional probability 

distribution p(x|y) for both the real and generated images. 

5. Calculate the Inception Score as the exponential of the average KL divergence 

between the conditional class labels distribution of the real images and the 

generated images: 

IS =  exp(E_X[KL(p(y|x)||p(y))])     8 

 

Where KL is the Kullback-Leibler divergence and E_x is the expectation over x. 
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It’s important to mention that IS score ranges between 1 and infinity with a high 

score indicating that the generated images are of higher quality and greater diversity 

and visual appeal.  

Because multiple evaluation measures might capture distinct elements, it is vital and 

worthwhile to use two of these evaluation metrics. 

3.4 U-Net models for classification and image segmentation 

We introduce U-Net from Keras library and train 6 different variants of the models. 

This is not only to show which suits best for our image classification of the Charcot 

disease but also to show that Models can be trained on synthetic generated dataset 

to predict when an original image is used as sample. 

Industries frequently use the U-Net architecture for image segmentation and 

classification applications. 

The procedures below can be followed in general to train a U-Net model: 

1. To begin the task at hand, gather a dataset of images and associated labels 

(segmentation or classification). 

2. If necessary, preprocess the data (e.g., resizing, normalization). 

3. Use a deep learning framework, such as Keras or TensorFlow, to define the U-

Net architecture. 

4. Set the loss function, optimizer, and any other training metrics before compiling 

the model. 

5. Set the batch size, number of training epochs, and any other pertinent training 

parameters before training the model on the dataset. 

6. Validate the model using a held-out validation set to keep an eye on overfitting 

and assess the model's effectiveness. 
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After training is finished, the model can be applied to new image predictions. 

Hyperparameters are adjusted during training to get the best performance. These 

variables consist of the learning rate, batch size, and training epoch count. The 

following libraries are also necessary for the procedure: 

● ‘OS’: OS is the name of this Python module for interacting with operating 

systems. You can use the file system to perform operations like creating and 

removing folders. 

● ‘Numpy’: This library manages arrays and numerical operations. It provides a 

robust N-dimensional array object and a wide range of array-related 

mathematical operations. 

● ‘Matplotlib.pyplot’: The charting tool matplotlib.pyplot allows Python users to 

produce static, animated, and interactive visualizations. 

● ‘tensorflow.keras.optimizers. Adam’: Adam is an optimization procedure that 

can be used to change the weights of a neural network. It is the go-to remedy for 

many deep learning problems. 

● ‘datetime’: You can change times and dates using Python's datetime module. 

Date and time objects are creatable and modifiable. 

● ‘CV2’: A free computer vision library. The collection contains around 2500 

algorithms. These algorithms can be used to identify landscapes, detect related 

images in an image database, erase red eyes from flash photos, track eye 

movements, and create overlay markers. Additionally, they can be used to detect 

and recognize faces, identify objects, categorizes human actions in videos, track 

camera movements, track moving objects, extract 3D models of objects, create 

3D point clouds from stereo images, stitch images together to create high-

resolution images of entire scenes, and extract 3D models of objects. 
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● ‘PIL’: The Python interpreter can manipulate images thanks to the Python 

Imaging Library (PIL). The library allows you to view, modify, and save a wide 

range of picture file formats. 

In this instance, we'll use a variety of U-net types from the Keras-U-net-collection to 

verify the training of several U-net models on our dataset. 

U-Net architecture types 

These will include: 

1) U-net with ImageNet trained RedNet15V2 backbone: 

This deep learning U-net image segmentation technique modifies the architecture of 

the network by using a pre-trained RedNet15V2 as the encoder component. The 

RedNet15V2 model was trained on the ImageNet dataset. The features are taken 

out of the input by the RedNet15V2 model and sent to the decoder for additional 

processing. This pre-trained model gives U-Net robust characteristics to work with, 

enhancing model performance with the benefit of avoiding the need for model 

training from scratch and the associated time and processing resources. 

2) U-Net Plus: 

A modified version of the well-known U-net architecture adds more skip connections 

and an attention mechanism to alleviate some of the original architecture's 

drawbacks. The segmentation findings are preserved in high detail because to the 

attention mechanism, which enables the model to take only the most significant 

features and add additional skip connections to optimize information flow throughout 

the network. It offers improvement while keeping the implementation process simple. 

3) Attention U-Net with ImageNet and VGG19 trained backbone: 
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This design includes an attention mechanism whose primary training source was an 

ImageNet-trained model. The segmentation outcomes are enhanced by the model's 

ability to selectively focus on key features thanks to the attention mechanism. This 

architecture offers the U-Net a robust collection of features to work with, enhancing 

the model's overall performance. It benefits activities that call for high-resolution 

feature maps. 

4) U-Net with ImageNet trained EfficentB7 backbone Without Weights: 

The mentioned model is the same as this one. The EfficientB7 model initializes in 

this instance without specified weights, though. With the remainder of the U-net 

architecture, it used random weights and fresh trains. As a result, this strategy 

requires more computational resources and time than using pre-trained weights, but 

it enables fine-tuning the EfficientB7 model for the task at hand. 

5) Recurrent Residual (R2) U-Net: 

Adding a recurrent residual block (R2 block) to the architecture will improve 

performance in this additional U-net variant for image segmentation jobs. To 

enhance outcomes, this block is made to capture long-range dependencies in the 

supplied data. For better network-wide information flow, the R2 U-net incorporates a 

second skip connection. This model not only helps with high-resolution feature map 

jobs, but it also makes the model more accurate. 

6) Attention U-Net from scratch (no backbone or weights) 

The same architecture as before is present here. Determining the architecture of this 

model and initializing random weights without any previously trained 

hyperparameters is the process of training it from scratch. This gives the model a 
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benefit when there is no pre-trained model available for the particular tasks or data 

area. 

The model can be adjusted for greater optimum with more flexibility and adaptability 

thanks to this training from scratch, albeit it will cost more computational resources 

and require a larger dataset. 

Pre-trained models can add bias from earlier trials or data that may not be ideal for 

the new tasks, even while they are good for initialization points. 

Obs. Model type Learning 

rate 

activation Filter number Batch 

Size 

Epochs/iterations 

1 U-Net 1e-3 LeakyReLU (32,64,128,256,512) 4 50 

2 U-Net Plus 1e-3 LeakyReLU (32,64,128,256,512) 14 50 

3 Attention U-

Net 

1e-3 LeakyReLU (32,64,128,256,512) 5 50 

4 U-Net 1e-3 LeakyReLU (32,64128,256,512,1024) 10 50 

5 Recurrent-

Residual U-

Net 

1e-3 ReLU (32,64,128,256,512,1024) 5 50 

6 Attention U-

Net 

1e-3 LeakyReLU (32,64,128,256,512,1024) 3 50 

Table 5 shows the parameters adjusted for each model training. 

 

3.5 Intersection over union (IOU) Score 

Semantic segmentation is a technique frequently applied to medical imaging. What is 

in the image and where is it positioned inside the image are the two questions that 

are examined in relation to images in computer vision. To be more specific, dense 

prediction is the labelling of an image's pixels to each object (class) that is displayed. 

Labeling a group of pixels that constitute separate categories is thus crucial to deep 

learning systems. It is very helpful in a variety of identification applications. Machines 
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can supplement radiologists' analysis in our method of diagnosing medical images, 

saving time and money on test diagnoses. 

Medical photos have been generated with masking so that problems in a particular 

case can be identified. For instance, detecting brain malignancies, bone fractures, 

etc. The IOU is a figure that expresses how much two boxes overlap. IOU assesses 

the Ground truth in the segmentation situation. It is the proportion between the 

overlap and combined prediction and ground truth areas. The value can be between 

0 and 1, with 0 denoting no overlap at all and 1 denoting complete overlap. With this, 

we decide the prediction is True Positive (TP), False Positive (FP), or False 

Negative (FN). IOUs threshold is typically set at 0.5 but depends on the 

circumstance. The threshold  0.5 works well in our situation because the overall 

structure of the photos is similar. Considering this, comparing the real image to the 

ground truth images is a useful item detection measure. 
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4 RESULTS  

In this chapter, we will present the outcomes and findings from our proposed 

methodology. This chapter serves as the core of thesis, where our research 

objective is addressed and evaluated with gathered evidence. By presenting in a 

concise and structured manner, this chapter highlights key discoveries, patterns and 

relationships observed in the investigation. 

4.1 Data pre-processing 

For creating synthetic images, we use the SinGAN-seg model for training via google 

Collaboratory. Google Collaboratory allows access to GPU that is available which is 

a requirement for the training. A 16 GB memory of Tesla T4 type is available for 

training on google Collaboratory that is the minimum requirement. First, we create a 

4-channel image for the x-ray images being trained upon. Using ImageJ opensource 

tool, we crop out unnecessary image details to content and create the masks for 

further process. We also convert the images from JPEG format to PNG which 

enables better quality storage and the format of input for the training. We also resize 

from larger scale to a 0.3 times size which is an approximate of 650 x 250-pixel size. 

This is since we need an optimum image size for training to avoid over-fitting and 

reduce our time and resource costs. We then use the Gimp 2.0 software for merging 

the mask into the alpha channel. Our image consists of RGB 3 channels and the 4th 

channel as the alpha channel that acts as the transparency layer. 

4.2 GAN training and results 

For SinGAN-seg process, the following dependencies are installed: 

● Imageio version 2.21.1 

● Numpy version 1.23.1 
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● Matplotlib version 3.5.3 

● Scikit learn version 1.1.2 

● SciPy version 1.9.0 

● Tqdm version 4.64.0 

Load the files onto the google Collaboratory notebook and install the dependencies. 

Upload the 4_channel image in the image input directory that would be called upon 

for training by the train.sh scripting. 

GANs in general are difficult to train, thus hyperparameter are to be adjusted for 

convergence towards optimal results. For our GAN we adjust the hyperparameters 

as follows: 

● Hyper parameters: 

Kernel size: default = 3 

Number of layers: default = 5 

Net padding size: default = 0 

Stride: default = 1 

● Pyramid parameters: 

Pyramid scale factor: default = 0.75 

Noise_ amplitude (continuous noise weight): 0.09 

Image minimal size at coarser scale: 25 

Image maximal size at coarser scale: 250 

● Optimization hyper parameters: 

Number of epochs to train per scale: 2500 

Schedular gamma: 0.1 

Learning rate: 0.0009 
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Generator inner steps: 3 

Discriminator inner steps: 3 

Lambda gradient (gradient penalty weight): 0.25 

Reconstruction loss weight: default = 10 

For the x-ray data, training a model over a 4-channel picture requires roughly 1 hour 

and 15 minutes. Depending on the input image's pixel size and the image itself, it 

would alter. It would be costly in terms of time and resources depending on the 

precise quality of the training image. For our experiment, the image size was chosen 

to prevent underfitting, overfitting, time, and resource costs. 

The ability to learn another 4-channel image in the same notebook is a benefit of 

training the SinGAN-seg. indicating that the same training materials can be utilized 

repeatedly. 

The SinGAN-seg creates random artificial images at various scales. The benefit of 

this GAN is its capacity to maintain the object's inherent universal structure unless 

requested. The amount of alteration that can be made in the photographs depends 

on the scale, from lowest to largest. For example, an image at scale 0 would be a 

complete reconstruction of itself but scaling up results in minimal modifications. We 

select a scale 1 image for our goal in the following model training since it generates 

changes that can be used as measurements. 
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Figure 27 SinGAN-seg trained three different images and their respective masks input, creating three 
models, allowing to generate synthetic output while preserving the overall structure. The scale used 
allows for slight modifications to be made without compromising the universal structure of the image. 

 

As shown in Figure 27. the synthetic images created are not up to mark with edging 

details. In our case of bone X-rays, the edge details of the bones need to be more 

defined as it is the most important feature for data collection for image segmentation. 

The style transferring algorithm was developed with that objective in mind. To 

transfer the style, there are various configurations that may be employed, and the 

default setting for the number of epochs is 1000. We use the algorithm to apply the 

style of the input image to the resulting synthetic ones. If the universal structure is 

the same, we can also use style pictures from another image to apply to the desired 

image. Thus Figure 28. shows the changes depicted after the style transfer has been 
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made. In this paper, we take the style from the input image and transfer it to the 

generated images. The style to content ratio 1: 1000 was taken and 16 GB tesla T4 

type GPU was utilized for the process. It takes 18 seconds for the process to 

complete. 

 

Figure 28 illustrates how style transfer can help develop images with additional details that are 
visible. Between synthetic images and their style-transferred images, there is a noticeable visual 
improvement. The second row with style transferring appears to provide higher quality. 

 

4.3 FID score 

A total of 14 original images were used to reconstruct 560 synthetic images. With 

visual representation, we also require metrics to assess the usefulness of synthetic 

images by contrasting them with the real images. We determine the separation 

between the feature vectors computed for actual and produced images using the 

Fréchet inception distance (FID). With a perfect score of 0.0 denoting identical, the 
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lower score will imply that the two groups of photos are more comparable and share 

similar data. 

 As the evaluation GAN-generated images often involves the use of this metric, we 

also employ the Inception score to make comparisons. The score is calculated in a 

way that higher values indicate better-quality images. For this purpose, we select two 

training images and calculate the FID score based on randomly chosen set of 10 

generated images. Results were provided in table 6. 

The generated images corresponding to their real training images are similar if their 

FID scores are low depending on the algorithm and conditions you have placed. 

Generated Images A Original Image A Generated Images B Original Image B 

SIFID Score (As Reference) SIFID Score (As Reference) 

Image 1 112.624681 Image 1 196.9133563 

Image 2 97.53735321 Image 2 153.0880456 

Image 3 77.55707639 Image 3 187.1537887 

Image 4 113.7532085 Image 4 161.3026366 

Image 5 101.4250138 Image 5 171.6562017 

Image 6 112.4381324 Image 6 156.5474843 

Image 7 125.8133925 Image 7 160.2341075 

Image 8 100.9401481 Image 8 149.0759948 

Image 9 99.08005014 Image 9 152.4348914 

Image 10 102.2032255 Image 10 139.9210889 

Mean FID Score 104.3372281 Mean FID Score 162.8327595 

Std. Deviation of 

FID Scores 

12.24671672 Std. Deviation of 

FID Scores 

16.72339666 

Table 6 shows the Single image FID score (SIFID) in the range of 77 to 113 for training image A and 
139 to 197 for training image B. The mean and std. deviation shows that, under our circumstances, 
generated images are structurally quite comparable to the original image. 
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The Fréchet Inception Distance (FID) score is not deterministic and can vary 

depending on several variables, including the model's architecture, the size of the 

training dataset, the caliber of the real images, and the task being assessed. The 

overall structure of the forms in the images is explicitly stated in our GAN design to 

be maintained, and as we specified no modification in it, the conditions were 

maintained in the generated images. 

If the generated images and the genuine image look visually comparable, then the 

created images may have a similar structure and visual content. The FID score is a 

gauge of how closely the feature distributions in the generated and real images 

resemble one another. The score range for both images in Table 6. is under our 

condition optimum, which denotes a more comparable distribution of characteristics 

between the produced and real images. 
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4.4 Inception Score 

We also take in the metric to calculate the Inception Score (IS) to ensure that the 

quality of the generated images is quite like the original image. Thus, we carried out 

experiments to find out the finding. 

Obs. Image A IS Score Obs. Image B IS  

0 Image_A.png (As Reference) 0 Image_B.png (As Reference) 

1 31_img_ST 0.001898 1 29_img_ST 0.001584 

2 39_img_ST 0.001231 2 20_img_ST 0.001049 

3 0_img_ST 0.001181 3 32_img_ST 0.001125 

4 2_img_ST 0.001022 4 0_img_ST 0.001154 

5 38_img_ST 0.001046 5 38_img_ST 0.001065 

6 13_img_ST 0.001052 6 23_img_ST 0.001202 

7 41_img_ST 0.001043 7 41_img_ST 0.001051 

8 24_img_ST 0.001116 8 26_img_ST 0.001022 

9 34_img_ST 0.001056 9 35_img_ST 0.001237 

10 33_img_ST 0.001061 10 44_img_ST 0.001683 

 Mean IS  0.0011706  Mean IS 0.001217 

 Std. Deviation 
of IS 

0.0002507  Std. Deviation 
of IS 

0.000219 

Table 7 displays tabulation for real images A and B with corresponding randomly produced images 
and IS ratings for comparison. The values of mean and std. deviation reveal that the generated 
photos are quite similar in quality to their training images. 

We can see that minor differences show the images having similar quality and 

diversity. The plot graph in Figure 29 shows how much values difference exist 

between IS scores. 
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Figure 29 shows variations of IS scores of image A and image B with their corresponding generated 
images. 

 

Both the FID score and the IS score exhibit value ranges with little variation, 

suggesting that the photos are very comparable. Consequently, it can be 

demonstrated that the resulting images are also CF X-ray images that have minor 

structure changes. 

4.5 U-NET model training  

Keras introduced the KERAS U-net collection through which 6 models of U-net 

variations were trained for semantic segmentation for the identification of CF through 

X-ray images. 

Because of SinGAN-seg, we were able to produce a total of 560 X-ray images with 

corresponding 560 masks. These were taken as input and converted to .tiff format 

which is commonly used for medical data purposes. It doesn’t reduce the quality of 

the images thus we move forward to create datasets of images and masks. We then 

resize the images to 128 and normalize. Using the train test split, we separate 90% 

of data for training and the other 10% for testing and view the images for Sanity 

check as shown in Figure 30. 
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Figure 30 Training dataset normalized and resized for our U-Net models training. 

 

For training the U-net models, we take the input shapes of the training images 

(image height, width, and channels) and move forward to our model training. 

The training time for each model is as shown: 

U-Net Model Type Execution Time Iterations completed 

Model 1: U-net with ImageNet 
trained RedNet15V2 backbone 

0:02:34.014152 

 

24 

Model 2: U-net Plus with 
ImageNet and VGG19 backbone  

0:01:56.748635 

 

31 

Model 3: Attention U-net with 
ImageNet and VGG19 backbone 

0:01:36.028577 

 

17 

Model 4: U-net without weights 
and EfficeintB7 backbone 
 

0:10:19.398329 

 

31 

Model 5: Recurrent Residual (R2) 
U-net from scratch- no weights 
and backbone 
 

0:07:43.450895 

 

20 

Model 6: Attention U-net from 
scratch – no weights and 
backbone 
 

0:03:28.992021 

 

19 

Table 8 shows the execution time taken for each model to be trained with Early stopping with 
limitation of 50 epochs. 

 

After multiple trials with each model with different backbones, we were able to train 

the best performed models of each. We collect and save the history of performance 

of models while training in csv format all the previous training data for each model. 

The loss function, labeled as "binary cross entropy," is passed as the first argument 

supplied to the build() method. During training, this loss function is used to calculate 
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the error between the expected output and the actual output. In this case, it is a 

binary cross-entropy loss, which is commonly used for binary classification tasks. 

The optimizer, which is stated as Adam(learning_rate = 1e-3), is the second 

argument passed. Adam is a particular kind of gradient descent technique that is 

typically used for deep learning model training. The default setting for Adam's 

optimizer is 1e-3 (0.001) for the learning rate. To reduce the loss function, this 

optimizer modifies the model's parameters. 

Adam(learning_rate = 1e-3) refers to the optimizer, which is the second argument 

supplied. Adam is a specific type of gradient descent method that is frequently 

applied to the training of deep learning models. The learning rate for Adam's 

optimizer is set by default to 1e-3 (0.001). This optimizer changes the model's 

parameters to lower the loss function. 

In conclusion, this code sets up all the six models to use accuracy and dice coef. as 

evaluation metrics, as well as binary cross-entropy loss, Adam optimizer, and a 

learning rate of 0.001. The fit() method can be used to train the model once it has 

been constructed. 

The performance history data for each model, including loss and accuracy at each 

epoch, is then plotted. 

Consequently, we plot the training and validation loss across the quantity of epochs. 

Both the training and validation loss values, which are taken from the history object, 

are set in the loss and Val loss variables, respectively. The number of epochs is 

created as an array using the range() method. The training loss is then plotted in 

yellow and the validation loss in red on the same graph using the plt.plot() method. 



83 
 

The legend is added to the plot using the plt.legend() function, and the x- and y-axes 

are labelled as "Epochs" and "Loss," respectively. 

The training and validation dice coefficients are then similarly plotted over the 

number of epochs. Both the training and validation dice coefficient values, which are 

taken from the history object, are set in the acc and Val acc variables, respectively. 

The training dice coefficient is then plotted in yellow and the validation dice 

coefficient in red on the same graph using the plt.plot() method. The legend is added 

to the plot using the plt.legend() function, and the x- and y-axes are labelled as 

"Epochs" and "Dice," respectively. 

The plot is finally shown on the screen using the plt.show() function. To summaries, 

we display the model's training and validation loss and dice coefficients across the 

number of epochs, which can be helpful to assess the model's performance and to 

spot potential overfitting or underfitting. While the training limit was set to 50 epochs, 

we also used the early stopping method that helped stopping from overfitting the 

models. Early stopping involves monitoring the performance of the model during 

training and stopping the training process early if certain criteria are met. The 

benefits of using Early stopping are: 

• Prevents over-fitting as U-Net is prone to this when dealing with limited training 

data by monitoring on validation set and stopping the training process when 

performance starts to degrade, benefiting in generalizing well over data. 

• It saves valuable computational resources and training time as stops the process 

once model achieves satisfactory rather than waiting for predefined number of 

epochs to complete. 
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• Improves model generalization over unseen data by preventing models from 

becoming overly complex and memorize noise in training data. 

• Simplifies model selection by providing useful criterion for model selection by 

comparing performance of different models on validation set. 

• Increases stability and reproducibility as final model will be consistent across 

different training runs while being stable. 

The following are the plotted results of each of the models: 

 

 

Figure 31 The graphs of loss and Dice of each model show the changes while training and validation 
of each model. 
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Understanding how well the model can match the training data during training is 

possible with the help of the loss plot. The model can match the training data more 

accurately the lower the loss. A model that overfits the training set of data has a low 

training loss but a large validation loss. 

A statistic for assessing the efficacy of image segmentation methods is the Dice 

coefficient. It gauges how closely the expected and actual segmentations resemble 

one other. Perfect overlap is indicated by a Dice coefficient of 1, while no overlap is 

shown by a Dice coefficient of 0. A model is likely to be a good model if both the 

training Dice coefficient and the validation Dice coefficient steadily rise as the 

number of training epochs rises. Inferring from this that the model can generalize 

effectively and isn't overfitting the training set of data. 

The optimal model will often be the one with the highest validation dice coefficient 

and lowest validation loss. With these ideas in mind, a comparison between the 

models can be made to determine the best and worst performance of the trained 

model. 

Comparing the loss graph to check how much model was able to fit the training data, 

all the models showed a trend of low training loss and low validation loss. For model 

1,5 and 6, the performance was quite good with low validation loss until the last 

epochs where a huge loss occurred in validation and was recovered in half an epoch 

later. Models 2 and 3 were quite stable in training with both training and validation 

loss being exponentially low. In the case of model 4, the initial epochs were difficult 

as validation loss fluctuations existed until later the model fit itself to perform with 

lower loss. This indicates that all the model performances were good. However, the 

difference of their performance was made visible by the dice coefficient metric plot 
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graph. A high training dice and low validation dice can signify overfitting, which 

means both the models perform well on the training data but struggle to generalize to 

new data. Due to its poor performance on unobserved data, the model in this 

instance is not regarded as a good model. Thus, would require regularization or early 

stopping to prevent overfitting. 

4.6 Performance comparison 
 

Model Type Weights Backbone Performance trends 

Model 1:  
U-Net 

ImageNet ResNet15V2 Demonstrated a noticeable trend of improved training and 
validation accuracy, which increased as the number of 
epochs was increased, indicating a favorable gradient. 

Model 2:  
U-Net Plus 

ImageNet VGG19 The validation dice gradient fluctuated alongside the 
training dice gradient in the middle of epoch execution but 
improved later. 

Model 3: 
Attention U-Net 

ImageNet VGG19 The model performed well by maintaining a higher 
validation dice score than the training dice score during 
training, indicating proficiency in predicting training data 
and generalizing to unseen validation data. 

Model 4:  
U-Net 

From 
Scratch 

EfficeintB7 The model initially struggled with validation but improved 
later, suggesting poor generalization to unseen data. 
Overfitting to the training data might have occurred due to 
model complexity or limited training data. 

Model 5:  
Recurrent 

Residual (R2) 
U-Net 

From 
Scratch 

From Scratch Model 5 performs effectively with higher validation dice 
scores than training dice scores, indicating successful 
training with some variability. The model shows good 
generalization despite complexity and potential lack of 
overfitting. Overall, the model performs well despite 
unpredictable validation data, indicating successful 
training and generalization. 

Model 6: 
Attention U-Net 

From 
Scratch 

From Scratch The model experienced overfitting indicated by a drop in 
validation dice score after a certain point in training 
despite increasing stability. Although the model recovered, 
this indicates a need for improved generalization to 
unseen data. 

Table 9 Each model is trained with specific weights and backbones showing the performance trends 
on the same training generated dataset. 

 

Several pre-trained weights and backbone alternatives are available in U-Net, a 

common architecture for image segmentation applications, each with their own 

advantages that we have utilized from model 1 to 4 as shown in Table 9. Here is a 

brief list of their benefits: 
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Pre-trained Weights: U-Net models with pre-trained weights were developed using 

huge datasets and frequently a distinct task, such as image classification. As a 

starting point for transfer learning, these pre-trained weights enable quicker 

convergence and increased performance when fine-tuning on segmentation tasks. 

They record broader characteristics and patterns, which helps the model learn more 

quickly. 

Example used in our training models in Table 9 is ImageNet. Millions of labelled 

photos make up the massive image database known as ImageNet, which is 

frequently used to train and test deep learning models for image classification tasks. 

It has been crucial in improving the field of computer vision research, stimulating 

algorithmic innovations, and acting as a benchmark dataset for assessing model 

efficacy. The advancement of deep learning methodologies and the development of 

computer vision have both been heavily influenced by ImageNet. 

Backbones: The foundational architecture upon which the U-Net model is based is 

referred to as the U-Net backbone. Various backbone topologies, such VGG, 

ResNet, or EfficientNet, provide a variety of advantages: 

• ResNet: With their skip connections, ResNet backbones solve the vanishing 

gradient issue and allow for deeper networks. They increase data flow and aid in 

capturing more complicated characteristics, which enhances segmentation 

performance. 

• VGG: VGG backbones are renowned for being both straightforward and efficient. 

Due to their applicability for smaller datasets, they offer high feature extraction 

capabilities and are frequently utilized in U-Net models. 
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• EfficientNet: To obtain the best trade-offs between model size and accuracy, 

EfficientNet backbones use a compound scaling technique. They are excellent for 

contexts with limited resources because they use memory and computing 

resources so efficiently. 

4.7 Visual model Prediction tests 

The performance of the trained segmentation models is then assessed for prediction 

on test data. The tf.keras.models.load model() function is used to load the model 

initially. The next step is to choose a random image from the test dataset and to get 

the ground truth label for it. The loaded model is then applied to the chosen test 

image and its label to produce a prediction. The next step is to choose a random 

image from the test dataset and to get the ground truth label for it. The loaded model 

is then applied to the chosen test image and its label to produce a prediction. The 

plt.imshow() function is then used to plot and display the prediction, test image, and 

ground truth label. 

We then determine the IOU for this solitary test image between the ground truth label 

and the prediction of 6 images that were not trained for synthetic images. The IOU is 

a metric that assesses the degree of agreement between expected and actual 

labelling; a value of 1 denotes a perfect match (that is theoretical), while a value of 0 

denotes complete overlap. 
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These are the displays of sample test images, test masks and the predicted masks 

of each of the models trained with their IOUs: 

Model 1: U-Net  

 

Single Image IOU Average IOU of Dataset 

0.8034092 0.71790123 

 

 

Model 2: U-Net Plus 

 

Single Image IOU Average IOU of Dataset 

0.7472584 0.64247054 
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Model 3: Attention U-Net with ImageNet trained backbone 

 

Single Image IOU Average IOU of Dataset 

0.812018 0.7275119 

 

Model 4: U-Net with ImageNet trained without Loading Weights 

 

Single Image IOU Average IOU of Dataset 

0.88514024 0.71767753 

 

Model 5: Recurrent Residual (R2) U-Net 

 

Single Image IOU Average IOU of Dataset 

0.84098256 0.7571535 
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Model 6: Attention U-Net from Scratch – no backbone or weights 

 

 

 

 

Figure 32 Visualization of model predictions on a sample test CF x-ray image. An example single 
image IOU score for each model is provided, along with a comparison to the total average IOU score. 
When the IOU threshold is set at 0.5, the models produce very promising findings. 

 

4.8 IOU Score 

We also use the panda’s library to generate the IOU values for each test image. We 

calculate the IOU of the images tested for visual prediction of each model and then it 

the mean average IOU of the sample test images and print it. The IOU between the 

prediction and ground truth label for each image is then determined using code that 

is implemented to loop through the whole test dataset. The average IOU for all test 

photos is printed after that as shown in Figure 32. 

 

 

 

 

Single Image IOU Average IOU of Dataset 

0.8459928 0.7044198 
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5 CONCLUSION & DISCUSSION 

It is essential that AI and machine learning be applied in the healthcare system due 

to the rapidly growing use of these techniques in research. With the help of artificially 

generated datasets, we have shown in this study that training models for medical 

professionals to utilize in recognizing CF can be beneficial for improving 

segmentation accuracy and predictability. It is proven by the FID and Inception Score 

results that synthetic images can be compared to and share characteristics with the 

original X-ray images of the foot of the criminal. As a result, GANs can be applied to 

any image collection, specifically to increase the amount of data for use in medical 

research. As the synthetic data doesn’t belong to any living person, there won't be 

any ethical issues about patient privacy breaches. The ability to produce various 

image data with behaviors that can be applied to instructional purposes is another 

benefit of this. 

Additionally, since the IOU scores on the test data were higher than the cutoff of 0.5, 

the u-net models are being used in industries to create quite accurate image 

segmentation models. However, we may improve the performance of the models 

even more by adding more data for training, which is exactly why generating 

synthetic images would prove useful where medical data collection is difficult due 

multiple reasons including ethical, privacy, rarity of disease, expensive tests etc. 

Also, by experimenting with 6 different types of U-Net models, model 5: Recurrent 

Residual (R2) U-net turned out to be performing quite good with the given conditions. 

Since it was trained from scratch, the model was trained quite good against the other 

model under the same conditions of resources and epochs. It is a good sign that the 

model can generalize to new data when the validation dice consistently performs 
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better than the training dice. A further indication that the model is learning and 

developing throughout the training procedure is the constant growth in the training 

dice. The model is still functioning well overall, despite the validation dice fluctuating, 

which raises the possibility that the validation set contains some unpredictability. It's 

also important to note that the training loss is dropping slowly throughout the course 

of training, which shows that the model is improving and making fewer mistakes on 

the training set. A strong sign that the model is functioning well is the validation loss 

is also low and decreasing. It shows that the model is capable of accurately 

segmenting the validation data while also doing it with a minimal amount of error. 

Comparative analysis 

There are various things that can be done to better enhance the Recurrent Residual 

R2 U-Net model that can also be implied on the other tested models: 

● Increasing the dataset size: The model should be able to learn more general 

features that will help it perform better with more data. 

● Augmenting the dataset: The model will be exposed to more variations of the 

same images and be better able to generalize by randomly performing 

transformations to the images in the dataset, such as rotation, scaling, and 

flipping. 

● The architecture of the model is being fine-tuned: To increase performance, the 

U-Net model's architecture can be changed to incorporate additional layers or 

layers of various kinds. 

● By increasing computational resources, i.e., GPU would also allow us to increase 

filter numbers and numbers of epochs trained. This will not only allow us to train 

models with better performance but also reduce the time costs. 
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The model is designed to work for 2D images because the image segmentation is 

univariate. This model can be used as a decision-supporting tool by doctors to 

identify Charcot's disease in the early stages. This test can be useful and carried out 

under initial symptoms that would indicate CF disease exists. These include 

ulcerification, redness, pain, numbness in the foot. 

Singan-seg when tested in its initial research of its performance with other GANs 

was able to produce the best results, indicating that they can produce synthetic 

images via just one image at best quality. However, since it utilized scale 0 under its 

own observations, we tested our images that were trained on scale 1 to keep the 

generalized overall shape of our x-ray images foot intact. Even though the results of 

synthetic image production were good, we still had limitations under that same 

general structure i.e., if the x-ray image trained is of a 50-year-old person, it will 

remain a 50-year-old persons synthetic images with internal changes. Thus, it can 

only be proposed to be comparative to local data i.e., national rather than 

international where average feet size varies. 

This experiment still can be improved as many difficulties were raised during the 

process. In the case of training data, the original data is tough itself as a radiologist 

must make sure that the x-ray images provided shows clarity. Furthermore, rather 

more complex training data will be difficult to train and make predictions. In our case, 

not only the bone features were different, but the global structure pictorial angular 

view also varied. For future perspective, experiments can be made on the criteria 

that one of these features of the image’s dataset must be the same. Yet, a lot of 

future experiments can be conducted that could replace the doctor’s opinion of 

results. However, yet until AI and machine learning algorithm advance, this model is 

an aiding tool for doctors to determine the disease conditions. We still can conclude 
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a fact that there exists a future where AI will be integrated in medical imaging 

machinery such that it would be able to give us direct results of identification. 

In the modern world, machine learning and AI technology have advanced 

significantly. It is imperative to employ these technologies in healthcare to learn how 

fantastic health may be sustained by incorporating technology. Computerization has 

expanded the digital world to aid the public in numerous activities. 
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