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ABSTRACT 

The recording of electrical activity which is produced by muscles is known as an 

Electromyogram or Electromyographic (EMG) signal. The generation of electric current during 

the contraction of muscles is measured by it. The insight of muscles dynamics and neural 

activation is provided by EMG signal and is thus significant for several different applications, 

such as the studies that try to identify deficiencies of neuromuscular. For researchers and 

practitioners, signal of EMG is very important to observe and evaluate the muscles condition and 

the outcome of the rehabilitation training. The signal of EMG features precision and factors vary 

correspondingly with signal of muscle, fatigue, and features.  

 

The hand movements classification based on signals of surface electromyography 

(sEMG) is a key problem in assistive devices and rehabilitation system control. The 

classification of movements of hand from sEMG is a method that has different applications like 

rehabilitation, interaction of human-machine and prosthetic control. The main issue is that by 

using increase number of features and channels of EMG in order to maximize the number of 

control commands can produce a feature vector of high dimensional. The major challenge is the 

process development to predict the current motion robustly and accurately based on incoming 

sEMG data. To overcome the problems of accuracy and computation linked with high dimension 

vector, feature reduction technique is applied that converts the data to low dimension vector 

space with a bit loss of valuable informative data. 

 

The aim of this thesis is to extract features and to reduce its dimensionality using PCA to 

improve classification success rate and compare the findings of classification accuracy before 

and after applied PCA technique. Six different classifiers were used on the EMG data before and 

after using feature reduction technique and a comparative study of finding is presented in this 

thesis study. 
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CHAPTER 1: INTRODUCTION 

Among the most valuable electrophysiological signals are electromyography (EMG) 

signals which are commonly used in applications of medical and engineering [1]. It is used in 

various applications of rehabilitation and human-computer interface (HCI) by generating 

different commands for these applications in the framework of engineering. EMG signals 

classification based control systems are generally recognized as Myoelectric Control Systems 

(MCSs) [2]. The two among many of the main likely applications of MCSs are electric powered 

wheelchairs [4] and powered upper-limb prostheses [3]. The user’s movements recognized by 

relating predetermined threshold with magnitude features of EMG signals are the most 

commercial EMG based prostheses [5]. But these classifications can only produces control 

commands in small numbers, like scheme of open and close with only an impetus speed. 

The EMG prostheses of multifunction have been established in a number of ways since 

the early 1990s [6 – 10]. In order to maximize the efficacy of these multipurpose EMG 

prostheses, research groups mostly increases the amount of recognized activities that can directly 

increase the control commands in numbers. Conversely, the need of increased informative data 

to be extracted from the signal of EMG leads to it. The information resulting from the 

recognition systems of EMG can be increased by using two most important ways. One is to 

utilize the data that exists in the signal features and other is to obtain information from different 

positions of a muscle [3]. However, a feature vector of high dimension yields simultaneously by 

maximizing the total of EMG features and EMG channels which also produces the 

dimensionality problem curse [6]. It is therefore required to adopt an effective technique of 

dimensionality reduction [8 – 17] to produce an effective outcome in all associated costs, i.e., 

performance of classification, computation, measurement, and in storage. 

The frequent way of reduction of dimensionality of the EMG feature vector is feature 

projection [2]. Numerous studies have proved that projection of feature is preferable in 

performance than other techniques of reduction of dimensionality including Euclidean distance 

used in selection of features [8]. In feature projection, a suitable subclass of new features from a 

set of original feature is created where the criteria of learning is optimized. By using this method, 

not only the classifier power increases but also reduces the feature vector dimensions [8 – 17]. 

Feature vector extraction by Englehart et al. [8] is done over a Wavelet Packet Transform (WPT) 



2 

and a Discrete Wavelet Transform (DWT). They used an unsupervised linear method known as 

Principle Component Analysis (PCA) for dimensionality reduction. Numerous latest researches 

have engaged PCA as the method of reduction of feature in different applications of EMG [9 – 

12]. Another technique of linking PCA and a Self-Organizing Feature Map (SOFM) was 

employed by Chu et al. [13] which is a method of unsupervised linear-nonlinear. However, the 

classifier ability is decreased by the dimensionality reduction if dimension reduced by PCA is 

fewer than twenty orders [14]. 

Linear Discriminant Analysis (LDA) is the supervised linear method and performance 

wise competitive with Nonlinear Discriminant Analysis (NLDA) concerning to class separability 

[15]. Also, comparative to PCA and SOFM, LDA has better performance of classification. In 

addition, from the processing time point of view, it is far more proficient than NLDA and 

SOFM. Furthermore, some other simple methods of extraction in the domain of time and 

frequency [20 – 21] like autoregressive coefficients, energy, mean power frequency, mean 

absolute value, variance, zero crossing rate, and median power frequency can be arrayed as 

method of reduction of feature [22 – 23]. 

This study estimate the act of feature projection methods suggested by using a simple 

systems of pattern recognition established on classifier of one linear discriminant (LD) and 

different EMG sets of feature which represents both approaches, i.e., time domain and time 

scale. In this study, the main focus is on extraction of features and feature reduction techniques 

specifically for solving problem of hand gesture classification with an importance of practical 

considerations. Figure - 1 represents a general procedure of a recognition system of a hand 

motion which is shown below. 

 

 

 

Figure 1 : A common method of a recognition system of hand motion. 
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Several studies came to be on movement identification of ordinary human limbed using 

signals by surface EMG which is to be used for control of prosthetic arm as an input since the 

1980’s. A non-invasive method have used to record an EMG signal of the forearm [24] and 

upper arm [25] in these studies which demonstrates the significance of these researches for the 

purpose to ease such problems of an individuals to have a better life. Below is given the short 

background of the EMG signal. The aim and objective is also discussed. And, the thesis structure 

is outlined at last of this chapter. 

1.1 EMG Background 

Among most important works in the studies of nerve conduction is electromyography 

(EMG). It is a part of the methods for assessing the action potential that is detected, recorded and 

produced by the body muscles. A diagnostic procedure for the control of motor neurons and 

health assessment of the muscle is also known as EMG. The central nervous system (CNS) 

generates the pulse and hence it is the origin of EMG action potential. 

The movement of body parts of a person is done through the signals send from the brain. 

These signals controlled muscle fibers through the motor neuron which results in contraction and 

relaxation of a muscle. The transferred brain signals carrying information through the motor 

neurons and along the nerves moves in pulse repetition, also to be called by means of frequency. 

The produced action potentials as of this instance are recognized as Motor Unit Action Potentials 

(MUAPs) [26]. 

The summation of the amplitudes generated is EMG or known as MUAPs. The activation 

of numeral motor unit and the firing rate of an individual motor unit increases directly 

proportional to the contraction of voluntary muscle of the individual. The physiological 

operation understanding makes easy by EMG that gives the information about force generated by 

muscle, movement, and functions. The countless activities can be done by the EMG signals 

generation that allows us to interact with the world. De Luca (1977) extensively discussed the 

properties and use of EMG [27]. 

1.2 Aims and Objectives 

 The aim of this thesis is to develop the EMG feature reduction technique for optimal 

accuracies. The most important objective of this thesis is to use different feature reduction 
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techniques and choose the best one that can reduce space use by the raw data and work fast 

without removing any useful information.  

1.3 Structure of Thesis 

 This study is organized round the chief objective of EMG feature reduction techniques 

for optimal accuracies. The study starts with an introductory Chapter 1; Chapter 2 presents 

associated work in this study area. Chapter 3 describes different methods. Chapter 4 summarizes, 

examines and discusses results. Chapter 5 is related to Suggestions for future work.  

===================================== 
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CHAPTER 2: REVIEW OF A LITERATURE 

This chapter is related to the essential background knowledge and literature that is 

relevant for understanding the work covered in later chapters of the thesis. The main topics 

discussed here are the Electromyography (EMG) signals basics and its characteristics. 

2.1  Physiology of the Electromyography (EMG) Signal 

Among other methods of recording, one method of recording electrophysiological signals 

is Electromyography (EMG). Several people are possibly aware of with other recording methods 

of electrophysiological signals which includes Electroencephalography (EEG), the electrical 

activity recording occurs along the scalp, and Electrocardiography (ECG, or EKG), the recording 

of heart the electrical activity, etc. Same like that EMG is a method or procedure to compute the 

activity of electrical signal produced by the skeletal muscle fibers when they contract. Muscle 

fibers are like a long tubular cell and a bundle of muscle fibers formed a muscle. The 

composition of EMG signal is like that the signals from each cell of a muscle superpose each 

other and modified by a physiology of person. The device used to record EMG is called 

Electromyography, and the recorded waveform is known as Electromyogram, or the 

Electromyography signal (in short, the EMG).  

The source of electrical for reading the EMG signal is basically the membrane potential 

change of a muscle or we can say the voltage difference from ionic current flows across the 

muscle cells membranes when activated electrically or neurologically which causes contraction 

of a muscle and related measure of potassium ions (K+) and calcium ions (Ca++) [28]. As a 

result of the EMG signal, a valuable analysis of the resulting electrical activity caused by 

underlying biological processes of muscles can be analyzed. 

 

Figure 2 : The Illustration of EMG signal formation 
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Furthermore, one can deduce the neural movement of the spinal cord and possibly the central 

nervous system. The biomechanics of human or animal movement, the deficiencies of 

neuromuscular like affected by stroke and Parkinson’s disease [30] can be diagnosed by 

analyzing EMG signal. The signal of EMG relative to a potential change of muscle cell 

membrane is illustrated in Figure 2 which gives a rough estimate of the observed changes in 

electrical potential just as observed by an electrode and caused by the movement of ions of 

sodium and ions of potassium through sheaths of a cell (by active transport). Muscle fiber 

membrane resting potential is approximately equal to -80/-90 mV [28, 29] relative to external 

side of cell when it is not contracted. Ion pumps maintained this variance which offers the active 

transport as shown in Figure 1. The action is controlled along the nerve motor when anterior 

horn cell of alpha-motor is stimulated by the central nervous system or by a reflex and leading to 

a formed electrical potential at the motor end plates which basically changes in muscle fiber 

membrane diffusion characteristics, primary the inflow of sodium ions. Therefore, the membrane 

develops depolarization that is speedily inverted leading to repolarization through the ion pumps. 

The acquisition methods for EMG signals are categorized into two types: invasive (also 

known as intramuscular) and non-invasive. This thesis focuses on the method of non-invasive 

which is also known as Surface Electromyography (sEMG). Both methods are categorized on the 

basis of electrodes being used (see below figure). 

 

 

                           
 

(a) Typical intramuscular electrodes schematics [35]    (b) Surface electrodes picture from Motion lab Systems [36] 
 

Figure 3: Electrodes for iEMG and sEMG 
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The non-invasive method contrary to other method is also usually a preferable method where 

possible as it is comparatively free of distress and offers a considerable lesser infection risk [32, 

33]. Surface EMG (sEMG for short) acquisition a non-intrusive, relatively simple approach and 

is normally achieved by placing a electrodes pair or an array of more complex multiple 

electrodes on the surface of skin above the muscle to record the electrical activity. On the other 

hand, intramuscular EMG (iEMG) allow placement of monopolar needle or concentric needle 

electrodes near to particular muscles tissue of concern but are less useful for general usages. 

Intramuscular EMG signals are less noisy recording and much more selective as sEMG signal is 

influenced by the tissue that is under skin depth at the recording site [33]. 

2.1.1  Generic Physiology Electromyography (EMG) Signal 

 A paper reviewed on the decomposition of EMG signal written by Stashuk’s [33] gives a 

very good description about the generation of EMG signal. The discussion in that paper is 

followed by following material. 

2.1.1.1 Muscle Fiber Action Potential (MFAP) 

 Fibers of a muscle are basically the casual term for cells of a muscle, or myocytes, which 

are the singular components combined to make skeletal muscles. Skeletal muscles are 

responsible for making posture, creating motion and changes in position of a body. Their size 

and shape depends on the location of the muscle in a body, but overall structure remains the 

same across people.  

 

 
 

Figure 4: Structure of Skeletal Muscle (National Cancer Institute) 
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Skeletal muscles are usually divided into string like fascicles which are bundled in parallel. 

These strings like structures are further divided into even smaller multinucleated cells which are 

known as muscle fibers. The above figure shows the structure of a skeletal muscle. Two types of 

muscle fibers are there namely as type I muscle fibers and type II muscle fibers. Muscle fibers of 

both types are classified based on the speed of contraction of the fiber. Slow-twitch muscle fibers 

are known as type I which needs more time in order to achieve their maximum tension while 

fast-twitch muscle fibers are known as type II and needs less time in order to achieve their 

maximum tension. Muscle fibers usually have a 50 – 100 µm diameter, and 2 – 6 cm length [34]. 

Every single muscle fiber is typically excited in only single place by only single motor neuron, 

normally close to its midpoint [34]. The structure, known as neuromuscular junction transmits 

motor neurons to muscle fiber. Action potentials (AP) generated by the excited muscle fiber 

propagates away from the neuromuscular junction and is relatively slow (3 – 5 m/s) in both 

direction which is same like the transmission of action potentials alongside the neuron axons. 

This action potential is the important element contributing to the EMG signal detected and is 

known as a muscle fiber action potential (MFAP). The diameter of the fiber, type of electrodes 

and their configuration, its position comparative to the recognition site, and the velocity 

conduction will influence the characteristics of MFAPs. 

2.1.1.2 Motor Unit Action Potential (MUAP) 

The muscle fibers are controlled together in a group and are not excited individually. This 

controlled group of muscle fibers is known as motor unit. A single motor neuron made up a 

motor unit and its corresponding skeletal muscle fibers. A muscle is managed typically by large 

motor neurons nearly around 100 [34]. A motor unit can stimulate anyplace from 100 to 1000 

scattered fibers of muscle over a significant portion of the muscle. Each action potential of the 

motor neuron gets truly and synchronously response from all of the muscle fibers stimulated by 

the similar motor neuron [34]. Normally, as a result, each MFAP are normally not sensed but all 

motor units’ MFAPs summation is sensed. This summation of spatial and temporal of every 

action potential within a motor unit is called as a motor unit action potential (MUAP). The 

cumulative sum of the each MUAP is measured at the surface of skin as a signal. The factors on 

which the detected number of MUAPs depends on the electrode placement as well as the 

electrodes surface area. Moreover, overlapping may occur on muscle fibers from different motor 
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units which upsurges detected number of MUAPs at surface of the skin. The MUAPs cannot be 

distinguished at the skin’s surface without further processing as they are grouped together. 

 Let MFAPi (t) be the waveform generated by i-th fiber of a motor unit of a muscle fiber 

action potential. And, let MUAPj (t) be the motor unit of j-th fiber electrical potential rises as a 

summation of entire MFAPs: 

MUAP𝑗(𝑡) = ∑ MFAP𝑖(𝑡 − τ𝑖)𝑆𝑖
𝑁𝑗

𝑖=1
     (2.1.1.1) 

Where,  

τ𝑖  = Temporal offset of MFAPi (t). 

𝑁𝑗 = Number of fibers in “j” motor unit. 

𝑆𝑖  = Represents the function of neuromuscular junction by a binary number. It has a 

value of 0 if fiber is not fired and 1 if fired.   

 

The muscle fiber velocity conduction and the neuromuscular junction location are the factors on 

which τ𝑖 depends. As pointed out before, the motor unit size is represented by 𝑁𝑗 and is 

approximately equal to 100 – 1000. An electrical signal generated by the sum of resulting current 

which is produced when, in synchrony, hundreds of muscle fibers activated by an individual 

action potential in a motor neuron is freely measurable exterior to the muscle itself [34]. The 

diameter and location of the few closest muscle fibers influences the MUAP size in practice as of 

the reduction of MFAP with a space to the sensing electrode. 

 

 

Figure 5 : An illustration of MUAP composition 
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The MUAP composition as individual MFAPs summation is shown in figure 5. The waveforms 

of MUAP will differ in shape generally because of the variations in fiber potentials delay 

(affecting τ𝑖), possible electrode position changes relative to fibers of the muscle distressing 

MFAPi), and the risk of failing of a specific fiber to fire (affecting Si ). The stochastic biological 

variability source is these variations in the waveform of MUAP [33]. 

2.1.1.3 Motor Unit Action Potential Train (MUAPT) 

It is necessary to fire an action potentials temporal sequence by the specific motor neuron 

in order to keep or exert more force produced by a muscle. This fired temporal sequence of 

action potentials is known as spike train. One MUAP is generated by a single motor neuron 

action potential as already discussed in last section. Motor Unit Action Potential Train (MUAPT) 

is a MUAPs temporal arrangement which resulted when spike train arrived at the junctions of 

neuromuscular of motor unit of all fibers of a muscle [33]. 

 

MUAPT𝑗(𝑡) = ∑ MUAP𝑗𝑘(𝑡 − δ𝑗𝑘)
𝑀𝑗

𝑘=1
    (2.1.1.2) 

 

Where,  

MUAPT𝑗(t) = MUAPT of the j-th motor unit. 

MUAP𝑗𝑘(t) = MUAP generated during the firing (k-th) of the j-th motor unit. 

M𝑗  = Number of times the j-th motor unit fires. 

 δ𝑗𝑘  = Firing time (𝑘-th) of the j-th motor unit. 

2.1.1.4 Composite EMG Signal 

An asynchronous barrage of action potentials generated by many motor neurons when 

there is a greater force required than minimum. Because of the superposition property of electric 

fields, an electrode placed on the surface of skin or either injected into a muscle measures the 

MUAPTs spatial and temporal summation backed from entire motor units recruited inside the 

“sphere of listening”. The electric potentials complex pattern resulted is known as composite 

EMG signal and it is usually in the order of 100µV in amplitude [34]. As the force of muscle 

increases, usually more motor units are enlisted. At poles apart, distinct motor units are enlisted 
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and remain lively for different time spans. Every single MUAPT has its personal features of 

firing intervals in addition and within every MUAPT, the interval of firing changes too. The 

decomposition of the detected EMG signal from different motor units into its MUAPTs is a 

general direction of research. Normally, on the iEMG signal, decomposition of EMG is 

performed as few MUAPTs measured by iEMG. On the other hand, sEMG makes decomposition 

very difficult as it detects many more MUAPTs. 

 

Figure 6 : Mathematical and physiological model for the detected EMG signal composition 

(from Stashuk [33]) 

 

EMG signal representation using both physiological and anatomical model is shown in Figure 6. 

  

EMG(𝑡) = ∑ MUAPT𝑗(𝑡) + 𝑛(𝑡)
𝑁𝑚

𝑗=1
    (2.1.1.3) 

 

Where,  

MUAPT𝑗(t) = MUAPT of the j-th motor unit. 

𝑛(t) = Backgorund noise of instrumentation. 

𝑁𝑚  = Number of motor units that are active. 

 δ𝑗𝑘  = Firing time (𝑘-th) of the j-th motor unit. 
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Figure 7 which is shown below demonstrates from Nawab’s paper, the example of 

decomposition result on the iEMG signal [37]. 

 

 

Figure 7 : Firing times bar plot acquired by the decomposition method in [10]. MU stands for 

motor unit; MVC stands for maximum voluntary contraction. (From Nawab [37]) 

 

The important excitation of muscle information underlying limb movement can reveal by sEMG 

signal. The outcome of which is a typical direction of research to identify intervals of muscle 

activation in the sEMG signal. 

 

 
Figure 8 : The activity of muscle onset detection for clinical EMG signals [30]). 
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The onset detection of activity of muscle by an energy detector is shown as an example in figure 

8 [30]. There are many different factors on which the shape of MUAPs depends as mentioned 

already above. It includes physical characteristics of electrodes, their position comparative to the 

muscle fibers that are active and electrodes arrangement. Also, temporal overlapping of different 

MUAPs makes an EMG signal because of which the actual EMG signal shape is hard to predict. 

In EMG processing, the major challenge is this property. But, the good thing is that the effective 

bandwidth of the EMG signal not rely on the shapes variability and can be supposed as past 

information of the EMG physiology, as illustrated in Figure 9. To develop the detection method 

of EMG signal, this prior knowledge will be used. 

 

 
 

Figure 9 : sEMG power spectrum schematic representation [38]). 

 

 
 

Figure 10 : Electric stimuli schematic  
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2.2  Characteristics of sEMG 

The activity from multiple motor units, motion artifact, power line interference, skin 

electrode interference, and electronics circuit noise present in analogue front end and data 

converter are contained in the measured EMG signal on the skin surface. The main sEMG 

signals characteristics are as follow: 

 

• The amplitude of the measured sEMG signal is in the range of µV to mV, mainly from 0 

mVpk-pk to 10 mVpk-pk depending on the condition and muscle type [39, 40]. 

 

• The resting potential of sEMG signal is usually ~ -80/-90 mV [28, 29]. 

 

• There are two distinctive phases; 

 

o Transient phase monitored by a phase of steady state [41]. 

o Voltages may be either negative or positive during contraction. [42]. 

 

• The frequency bandwidth of a measured sEMG signal ranging from 0 Hz to 2000 Hz, 

with mostly power of the signal falling below 600 Hz (De Luca). The utmost important 

activity bandwidth is in the range of 5 – 500 Hz while further bandwidths like 250 – 450 

Hz are used subject to application and interest area [29, 43 – 45].  

 

o The complete usable range is 0 – 500 Hz [46, 47].  

o The most important spectrum is 50 – 100 Hz [46]. 

o In a frequency range that is between 600 Hz to 2000 Hz, there is mostly noise 

present in this signal and it is very challenging to discriminate signal noise. 

 

• The sEMG signal might be modeled as a non-stationary random process [42, 46]. 

 

• The sEMG signal is a combination signal of each and every potential of a muscle fiber 

near or beneath the every electrode [46]. 
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• The measured sEMG signal required further signal processing to convert the signal into a 

signal which can be used in an EMG processor. 

2.3  Issues of Signal Processing  

The key issues that must be measured from signal processing standpoint are as follow: 

 

• The electrode movement in relation to the skin causes motion artifacts. It is typically 0 – 

20 Hz [42, 46]. 

 

• Quasi-randomness of firing of motor unit [42, 46]. 

 

• Design of an electrode (mainly circuitry design self-interference) [42, 46, 48]. 

 

• The muscle fibers that will be targeted is determined by the placement of an electrode 

and precise anatomy differs between individuals significantly [49]. 

 

• Nearby muscles cross-talk [31]. 

 

• Action potentials of muscles are altered by the muscle fatigue [49, 51]. 

 

• Electrocardiography (ECG) signals interference when electrode is placed near the heart 

[29]. 

 

• The noise or interference of power supplies or nearby equipment. It is normally 50 Hz – 

60 Hz. 

2.4  Applications of sEMG 

The main applications of sEMG are as follow: 

 

• Human – Computer Interaction is one of the main applications of sEMG that has the 

possiblity to offer a more ordinary interface for supervising different devices and 

computers. Also, it can develop the considerable interaction experience for physical 

disabled users. 
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• Rehabilitation and physiotherapy are also an example of sEMG application as the skeletal 

muscles activity may help a doctor in analyzing or determining that whether muscles of a 

patient is working correctly or not which can be decided by a recorded electromyogram. 

Study is being done to automate the recognition of a recorded electromyogram beyond 

simple use of human-in the-loop [51] which makes an assessment and gives feedback to a 

doctor and also a part of neuro-rehabilitation where a malfunctioning muscle tissue can 

be targeted by a stimulation [52, 53]. 

 

• Prosthetic Control is also an application of surface EMG, and it is also a growing area in 

this field [54]. As it does not cause neural scarring, it has the benefit over neural 

interfaces. Also, specifically for the prosthetic control, it is promising for muscles and 

new clusters of nerve to be mature through techniques like muscle re-innervation by 

targeting [55]. 

 

• Robotic Control: To control humanoid robots, e.g., arms of robots in a natural way, it is 

likely to record EMG signals. It is important to consider the interaction in this more 

natural way with robots as it decreases the time of training for operators. To improve the 

user comfort and the system utility, an interface has been shown in robotics of 

exoskeleton which is being capable to control an instrument without any necessity for a 

traditional link [56]. 

 

• Facial expressions recognition and without audio speech credit for use in study of 

psychology [57, 58], real-time translation of sign language [59], new diagnostic tests for 

diseases [60], and design for lower-limb amputees for fall prevention mechanisms [61] 

are other uses of EMG being explored. 

2.5  Overview of Machine Learning  

Let consider the “Machine Learning” definition to be the branch of study which gives 

ability to machines to acquire without being obviously programmed in the context of this thesis. 

This definition of machine learning is credited to Arthur Samuel (1959); machine learning plays 

the role of explicit encrypting by allowing it, which is to assist as the prediction technique. Other 

fields allied to it contain data mining and statistics. This work informs choices in how to design 
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learners and choose them to make predictions by using analytical and statistical techniques and 

repeatedly draws attention on the literature of machine learning. The focus of this study is on the 

technique of feature reduction by taking in the classified sEMG data and planning a process that 

works almost same but with reduced features of sEMG for optimal accuracies. 

2.5.1  Feature Engineering 

The design and extraction of valuable features is typically the main phase in the “End-to-

End” channel. The most useful way possible is to characterize the primary data which is the main 

idea of study. This can reduce the load of complexity, computational, and informational on any 

predictive algorithm used as well as aid the data interpretation, which also improves the 

performance of algorithms typically. 

As high-performance features frequently eliminate collinear and redundant statistics in 

the data, extraction of feature is too nearly linked to reduction of dimension. Similarly, an aspect 

of dimensionality reduction often incorporate by useful features as this is an actual method of 

supporting algorithm in great performance learning estimate. The possibly composite bargains 

and relations with algorithms estimate involved in the assortment of all single features or 

combinations thereof, the extra load acquired by extraction and the necessity for handcrafting of 

the depiction (usually demanding knowledge of domain-specific) are the main feature design 

downsides. The features issue is well emphasized in classification of sEMG by the exertion in 

efforts to relate them in the literature and great number of features proposed. The diversity in 

capture devices and experimental procedures used is the reason that it is difficult which 

decreases the ability of a researcher to create computable evaluations [43, 56 – 57].  This is 

additional to the normal issues of loss of information from dimensionality reduction and 

interaction of feature classifier. These issues further worsen by the lack of availability of data 

from many potential studies. While for the algorithms benchmarking and competitions such as 

Imagenet, fast progress has made on the shared data sets basis by the community of computer 

vision [58]. 

2.6  Extraction of Surface EMG and Its Classification 

Surface EMG classification and extraction of features was first studied in the 1970s. 

These are the major standards in control and design of prosthetic devices. The research in this 
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field has been expanding very rapidly. This has involved protocol of signal acquisition (selection 

of muscle, placement of electrodes, and techniques of data acquisition), extraction of features 

(reduction or segmentation) for classification purposes mainly. 

2.6.1  Feature Extraction 

The essential part for classification is strategy and selection of feature extraction, 

particularly in study of neuromuscular EMG study and fatigue. The key aim is to enhance 

precision and robustness of classification. The features that contained information can be 

characterized as specifically individual, derivation or group as multi-features from both classes. 

It has to be extremely responsive and selective to the phenomena of study. It can minimize the 

problems of computational load’s and will help in the real-time as well as offline applications. 

It is normally agreed that that single feature provide less comprehensive information as 

compared to any multi features [59]. Therefore, after the identification of features, there is 

necessity for the process of feature reduction. As another factor, this is believed that the 

performance of classification will be affected by it [60], and the key to improve performance of 

classification is the choosing stage of robust features, but not the classifier. 

The weak signals of EMG are recognized as a variable of non-physical, where the MF 

assessment wishes to be discovered from the measurable signals of EMG physical variables as 

other definable pointers. The Amplitude of EMG signal observed MF only if there is decline in 

both features of FD and a rise in the TD features [61]. 

2.6.1.1 Analysis Domains 

There are various fields in the sEMG analysis that might be utilized in combination or 

individually. The identification of features and domain investigation were considered as the 

major standards in the study of surface EMG [62]. The most conventionally used descriptive 

time domain (TD) statistic features are slope sign change (SSC), root mean square (RMS), zero 

crossings (ZC), waveform length (WL), feature related to TD autoregression (AR), and 

maximum amplitude value (MAV). The frequency domain (FD) features that are considered are 

mean frequency (MNF), median frequency (MDF), and peak frequency (PF). The several 

features of time frequency domain (TFD) are stated to stun the characteristics of time-varying of 

the signals of EMG and applied in numerous studies such as continuous wavelet transforms 
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(CWT), Wigner-Ville distribution (WVD), and short time Fourier transform (STFT). Table 1 

highlighted the strength and weaknesses for analysis of each domain. 

The features that are most useful in the TD have been proposed by Hudgins et al. (1993) 

[63]. But those features do not suit with time varying performance of the EMG signal. Numeral 

studies have successively been described using TD, FD along with TFD techniques. The 

assessment and comparison of the fulfillments of these methods with extracted features were 

already carried out. But the study for determining the best features was not performed. 

 

 

Domain Advantage Drawback Notes 

Time 
Easy 

implementation, 

simple, and low 

computational cost 

The non-stationarity 

(time-varying) property 

of EMG signal cannot 

be handled. 

Because of low complexity, 

most cases preferred TD 

features which is desirable 

for implementation in real 

time. 

Frequency Suitable for EMG 

signals and good 

frequency 

localization 

Some features of FD 

have the same 

discrimination in TD. 

“FD based EMG features 

are not good in 

classification of EMG.” [64] 

Time-Frequency 
Good frequency and 

time resolution. 

Expensive, complex, 

and require more 

processing time. 

“The TFD and TD features 

performance is similar.” 

[65] 

 
 

Table 1: The EMG signals domain analysis 
 

 

It is suggested in the study that FD based EMG features were not decent enough in 

classification of signal of EMG [64]. In this study, a detailed theoretical background and review 

of 37 features were given and to avoid redundancies in the EMG features, the study pointed out 

the suitable features in the EMG study to be used. Though the MF wasn’t into the consideration 

in the study because of different approach that may suggest a new understanding in the study. 
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2.6.2  Feature Classification 

For control purposes, surface EMG classification offers more perspective and trustworthy 

information. It is agreed in general that several algorithms of classification like linear 

discriminant analysis (LDA), support vector machine (SVM), artificial neural network (ANN), 

extreme learning machine (ELM), k nearest neighbor (k-NN), multi-layer perceptron (MLP), and 

others give a same act in terms of precision. There remain other ideal features and sets for 

suboptimal feature that are yet to explore for classification. 

Ten isometric contraction classes were classified by Hargrove et al. in 2007 from iEMG 

and sEMG simultaneously collected [65]. The conclusion was that there is no distinction in 

precision of classification from both EMG muscles types. The quantity of channels should be in 

between three channels were suggested by them to achieve optimal accuracy of classification. A 

unique system of classification for the purposes of rehabilitation using two classifiers 

combination that are Fuzzy Inference System (FIS) and Artificial Neuro Network (ANN) is 

designed by Khezri and Jahed in 2009 which yielded a new Adaptive Neuro-Fuzzy Inference 

System (ANFIS) [66]. The algorithm of classification that was proposed generated valuable 

identification successfully for six hand movements’ types. 

The classification performance of multi features built on the algorithm of feature 

reduction Mutual Component Analysis (MCA) has been investigated by Khushaba and 

Kodagoda in 2012 [67]. A satisfactory result yielded by the developed feature reduction. Like 

this work, several other studies have been done with different technique of feature reduction [68 

- 70]. There is a big interval institute in the methodology of the study with proposed features in 

these researches despite modern development and research case studies discussed in Bai et al. in 

2019 [71, 72]. 

To achieve better performance of classification by an instinctive approach is thus needed. 

Based on several aspects of the classification and features extraction protocol for signal 

acquisition, a new policy adopted by this study. In the preliminary study, approaches that 

employed were frequency and time domain (FD and TD). The study also looked into time-

frequency domain details using wavelet transform. For signals like EMG, the most useful 

technique for analysis is wavelets. A time-varying signal component of frequency and time 

require wavelets. A well time and resolution frequency is presented for the classification system. 

The gap between different studies was improved by these approaches. 



21 

2.7  Feature Reduction 

To ease the classifier of too much computational load and for better results of 

classification, a method of feature reduction can be used especially when the feature space is 

huge as wavelet-based features case [48]. The method of reduction of feature can be categorized 

in two: feature selection methods and projection of features. The difference between the two is 

that in feature selection, most suitable features from the set of unique feature set is chosen by an 

algorithm whereas in projection of features, there is a transformation from a large dimension 

feature set into a smaller dimension [73]. The pattern of EMG recognition with wavelets for 

research has been done much by feature projection [74 – 78]. 

2.7.1  Feature Selection 

Though PCA was used to outperformed feature selection [79, 80] it has been rarely used 

in publications. To minimize the space of feature after a so called harmonic wavelet packet 

transforms (WPT), a Genetic Algorithm (GA) was applied by Wang et al. [81]. The coefficient 

of energy and ANN classifier were used by them. They trained the GA from the classifier 

feedback. The GA found optimal features and after that again the ANN classifier was trained 

with these features. 

In combination with projection of features, a feature selection is used in the work of Xing 

et al. [82]. The packets energy from WPT were utilized as features and then based on a function 

of discriminative criterion, the feature selection was made. Kuo and Langrebe introduced Non-

parametric Weighted Feature Extraction (NWFE) to reduce the space of feature for further 

dimensionality reduction [86]. An improvement to projection of feature with LDA was 

introduced by NWFE method. However singular matrix inverse calculation occurs when applied 

to WPT energy features. To avoid this matrix from becoming inverse of a singular, a recursive 

feature selection algorithm was implemented by them. This method was deployed for virtual 

hand controlling and showed promising real-time results. 

2.7.2  Feature Projection 

The features can be arranged for example by their ability of discriminative or variance 

while transforming the feature space by a method known as feature projection. The methods of 

feature projection are categorized into supervised and unsupervised. Mainly, supervised with 
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LDA and unsupervised with PCA. The features are sorted by discriminative ability with LDA 

while they are sorted according to the transformed features variance in PCA and then for 

instance 90% features can be selected to hold based on the total variance and others can be 

discarded [75]. Englehart et al. showed in their work that the better classification of feature 

projection is given by PCA than feature selection with class separability Euclidean distance 

criterion [82, 83]. 

An improved PCA functionality by Chu et al. is given by linear transformation with Self-

Organizing Feature Map (SOFM) of nonlinear [77]. They take advantage of coefficients of WPT 

and MAV as features. The accuracy of classification delivered by combination method of PCA 

and SOFM was higher than with only PCA without significantly increase in time of processing. 

The accuracy of highest classification yielded by SOFM alone but it increased processing time 

greatly. This was the reason that firstly feature set reduced by PCA and then SOFM. There was 

also an argument by Khushaba et al. that if non-linear part comes before occurring of PCA then 

it could be further improved [78]. Because of this, they applied Fuzzy C-Means (FCM) algorithm 

and not used SOFM for features clustering based on their separability of classes. Only those 

features were selected from the clusters that backed to the classification and further compact by 

PCA. They used MLP classifier and WPT with packets of energy as features. 

Another method evaluated by Chu et al. in another research which was a supervised 

feature of projection [84]. The feature projection based on LDA method was implemented which 

outclassed both the SOFM and PCA in terms of classification precision and processing time. 

Both PCA and LDA feature extraction performances were also compared by Zhang et al. 

and they concluded the same that PCA was outperformed by LDA [79]. Another approach was 

implemented by them in which they combined two methods, but they did not get the improved 

results as much as related to only using LDA. They executed this in real time with MLP 

classifier on a prosthetic hand prototype. The real-time recognition of hand gesture showed 

promising results with it.  

 

===================================== 
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CHAPTER 3: METHODS 

This chapter includes methods based on pre-processing, feature and classification to keep 

up the work in this study that were not considered in the earlier chapter. 

3.1  EMG Pre-Processing 

In previous chapter, the model representation and the unique basis of EMG signal, the 

MUAPs initiation for EMG signal, obvious the activation of neuromuscular by contraction of 

particular muscle and permissible EMG model realization were discussed. To interpret the 

information enclosed within the EMG signal based approach is the main issue in examining the 

EMG. 

The study aim based on pattern classification of EMG is presented in this chapter. This 

forms the base of the effort in this theory. In Chapter 1, the block diagram of an overall study 

was presented. First stage is initialization of the classification of pattern for the research starts by 

conditioning the signal with appropriate techniques of preprocessing such as segmentation of 

signal and filtering. Extraction of features will take place in second stage as best representation 

of the content of EMG information is by features. This will contain the standardization and 

reduction of feature. As a way to form the result, classification of pattern is implemented in next 

stage. At the end, method efficiency for pattern classification estimation is assessed through 

classification analysis.  

3.1.1  Signal Conditioning of EMG 

 Different systematic methods for the signal or data are implemented in this thesis work. 

This includes the segmentation and process of filtering like removal of noise of direct current 

from the signal. As the primary significant features are the segments lengths that require to be 

concluded, segmentation will be performed [90]. 

 There are two kinds of segmentation scheme generally for EMG investigations. One is 

the disjointed scheme and the other is an overlapped scheme. Neighboring or adjacent sections 

for the extraction of feature of a selected range will be used in first scheme that is disjointed 

scheme. Whereas in the second scheme that is overlapped scheme, an overlapped section of the 

existing with addition of time need to be lesser than the range of selection. 
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The illustration of the two segmentation techniques that can be used in EMG signal handling is 

shown in figure 11.  

 

 

 

Figure 11 : The example of strategy of segmentation  

 

The blue arrows are used to label adjacent and disjointed segments with the marker L that 

represents EMG signal segment length for extraction of features. The time required for feature 

extraction and classification method is represented by τ. Seconds later, classification decision C 

is decided. Moreover, red arrow represents scheme of overlapped segmentation. 

 The segment that is overlapped was used for the segmentation of EMG signal in this 

study. The chosen segment length is related to the minimization of computational problems and 

the characterization establishment of multi-region. Studies have showed the trade-off between 

segment range used and classification time for processing [91 – 92]. They have established the 

statement that classification performance will be affected by configurable parameters which are 

time delay and length of a window. The EMG signal preprocessing sacrifices time response but 

improve the accuracy. 

 Before the procedure of feature extraction, EMG signal were digitally preprocessed. An 

epoch window of 5s for every movement was used to minimize the processing complexity by 

employing a technique. The signal selected for each movement of an arm is of 5s and 

combination of all movements was in particular order so that they were correctly labeled. An 

illustration of it is shown in figure 11. As the requirement of continuous control of prosthesis is 

extraction of feature in a sliding window manner so this type of preprocessing system is 
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employed. The hand and arm movement task performed by a subject is 5s time frame is the 

requirement of acquisition protocol used. The reason to use epoch of 5s fragmented window is to 

certify that no information was ignored. In the process of feature extraction, increment of 

overlapped window of 100ms was used for the entire signal. 

 

3.2  Feature Extraction 

The most significant portion considered for the signal analysis is extraction of feature as 

it provides the most compact and useful indicators set when dealing with compressed signals 

such as EMG especially. A set of data containing most information in reduced size will be 

produced by the process of feature extraction which is required in many signal analysis for the 

basic raw signal representation. Every segment details the data of EMG and are represented by 

the EMG signal features which allow the reliability of system. Also, robustness of it will not be 

discussed. The process of extraction of feature yield complete feature sets by combining every 

time window at particular channels of EMG in global vector to represent pattern of an EMG for 

certain task or movement. It is stated by the Hargrove et al. (2007) that a stage of extraction of 

feature is critical as it is the method of mining the exceptional and valuable data that relies on the 

signal of an EMG [93]. As a result, it will give better class separability. It is believed by several 

researchers that the flawless selection of EMG features is far superior to a worthy classifier. 

Many utilized numerous techniques of extraction of feature. 

3.2.1  Features of Time Domain  

The most generally and advantageous features used in many studies of classification are 

time domain (TD) features. The minimum level of complexity associated with procedure of 

extraction and outstanding in performance compared to other processes like FD and TFD are the 

primary benefit. The importance and usefulness of TD have proved by many studies, specifically 

on their speedy and cool implementations, and also without any need of alteration [90, 94 – 96]. 

There are also drawbacks of TD and one of major among them is the generation of features from 

the signal stationary properties. Mostly EMG captured in dynamic movements and there may be 

very high variations as it is dealing with non-stationary signal. 

TD features are very vulnerable to noise acquired during collection of data as it is 

calculated solely based on the amplitudes of EMG. The extremely important is spectral and 
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temporal information for class movement’s differentiation. Also, distinguishing of performance 

of both TD and FD in classification is the main criteria of it. Most of these features have been 

utilized by many researchers and it is to mention that these all features are not implemented 

together. For the study of classification, features are selected. The features of TD suggested to be 

used in this thesis are six and are briefly defined in following subsections. 

3.2.1.1  Root Mean Square 

 Root mean square (RMS) is modeled like method of Gaussian which is similar to the 

contraction process of usual muscle [97]. The standard deviation (SD) procedure also resembles 

with it [98]. The model of RMS in mathematical form is defined as follow: 

 

𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1                  (3.2.1.1) 

 

Where,  

𝑥𝑖  = EMG signal. 

𝑁 = Signal sample number.  

 

Among the highly recommended features used with analysis of EMG is RMS. 

3.2.1.2  Integrated Absolute Value 

 One of the most generally used in the study of EMG signal and well known by 

researchers is Integrated Absolute Value (IAV) feature. It is computed using the EMG rectified 

by the moving average and is also to be called as Integrated EMG (IEMG). Other names of this 

feature are Mean Absolute Value (MAV), Average Rectified Value (AVR), Average Absolute 

Value (AAV), and the v – order of first order (V1) [96, 98]. The model of IAV in mathematical 

form is given as follow: 

𝐼𝐴𝑉 =
1

𝑁
∑ |𝑥𝑖|

𝑁
𝑖=1                             (3.2.1.2) 

Where,  

𝑥𝑖  = EMG signal. 

𝑁 = Sample number of the signal.  
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3.2.1.3  Zero Crossing 

 The frequency related to analysis of time domain is known as zero crossing (ZC). It is a 

component of spectral measurement where the magnitude of EMG in number permits the level of 

amplitude of zero [94, 98]. The condition of threshold is applied to overcome background noise 

or low-voltage fluctuations. The model of ZC in mathematical form is defined as follow: 

 

𝑍𝐶 =  ∑  [𝑠𝑔𝑛 (𝑥𝑖 X 𝑥𝑖+1) ∩ |𝑥𝑖 −  𝑥𝑖+1| ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑]𝑁−1
𝑖=1    

                   (3.2.1.3) 

 

𝑠𝑔𝑛 (𝑥) = {
1
0

 |
 𝑖𝑓 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 } 

 

Meanwhile, individual feature processes the relation of ZC uphill divided by peaks number (NP) 

[100] which can be measured only by their Spectral Moments (SM) that is discussed in 3.3.2. 

The representation of corresponding feature can be as: 

 

𝐼𝐹 =
𝑍𝐶

𝑁𝑃
=

𝑆𝑀2

√𝑆𝑀0 𝑋 𝑆𝑀4
                (3.2.1.4)  

 

3.2.1.4  Waveform Length 

 The complexity of EMG measure is waveform length (WL). It is well-defined as the 

accumulative sum of overall differences above segment of every time of a signal. This feature is 

defined as wavelength (WAVE) by some researcher. It is also known as signals absolute 

derivative total value. The WL formula is as follow: 

 

𝑊𝐿 =  ∑ |𝑥𝑖+1 −  𝑥𝑖|𝑁−1
𝑖 = 1               (3.2.1.5) 

 

Where,  

𝑥𝑖  = EMG signal. 

𝑁 = Sample number of the signal.  
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The waveform length ratio (WLR) may be another feature that is quite close to WL and useful in 

this thesis. The ratio of the first derivative of WL feature to the second derivative of waveform 

length is known as WLR. It is defined mathematically as follow: 

 

𝑊𝐿𝑅 = log (
∑ |∆𝑥|𝑁−1

𝑖=0

∑ |∆2𝑥|𝑁−1
𝑖=0

)              (3.2.1.6) 

  

3.2.1.5  Slope Sign Change 

 It has mutual eccentric as ZC feature. Slope Sign Change (SSC) is the representation of 

information of frequency signal by calculating its changes [94]. The slopes of changes in positive 

and negative are calculated inside their purpose of threshold within three sequential. This will 

remove EMG background noises. It is defined mathematically as below: 

 

𝑆𝑆𝐶 =  ∑  [𝑓 [(𝑥𝑖 −  𝑥𝑖−1) 𝑋 (𝑥𝑖 −  𝑥𝑖+1)]]𝑁−1
𝑖=2             (3.2.1.7) 

 

𝑓 (𝑥) = {
1
0

 |
 𝑖𝑓 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

 

The parameter threshold value of that feature suggested to be selected is inside range of 50 µV to 

100 mV [97, 99]. However, it may vary if background noise and instrument setting for the gain 

value are not level. 

3.2.1.6  Auto-Regressive Component 

 The approach of statistical based on the EMG signal spectral information knowing the 

location of peak is auto-regressive feature. It is basically an estimate model which defines EMG 

signal as a previous samples linear combination 𝑥𝑖−𝑝 and a white noise 𝑤𝑖 [97, 99]. The 

coefficient of AR is employed in many classification models as feature vector. Mathematically, it 

is defined as follow: 

 

𝑥𝑖 =  ∑ 𝑎𝑝𝑥𝑖−𝑝
𝑃
𝑝=1 + 𝑤𝑖             (3.2.1.8) 
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Where,  

𝑃 = AR  order at specific coefficient of autoregressive. 

𝑎𝑝 = Coefficient of  autoregressive.  

 

It has been suggested in research studies that for EMG analysis, the best order of AR to be used 

is between fourth order (AR4) [97, 99] to sixth order (AR6) [90, 93]. The writer chooses AR6 to 

be used in this study as one of the features of TD. The analysis of movement of hand and finger 

flexion was best tested with AR6. 

 In this study, all the six TD features have been used extensively by scholars as already 

above cited. The AR with mixture of features of TD has been suggested and used in earlier study 

[102]. The better works have shown by them in achieving the feature and EMG signal 

classification. 

 The very high classification accuracy proved by these features in comparison to any FD 

and TFD in detection algorithm of movement of hand [93]. This has been the motivation as 

already described earlier to select TD features for this study and for request into the signal of 

EMG composed within this research framework. 

3.2.2  Features of Frequency Domain  

The other way that may be used for EMG signal analysis is frequency domain (FD). The 

representation of a function of time transformation to the sine waves function of integral or sum 

with different bands of frequencies is spectral components of a signal or frequency. The 

familiarity of this exploration is well identified in different studies mainly with respects to the 

EMG signal. It is unlike to TD as it shows range or frequency band in which signal lies while 

change of signal over time is shown by TD. 

The FD transformation is resulted by the Power Spectral Density (PSD) or the spectrum. 

It is used to study recruitment of MUAPs mostly [103 – 105] or fatigue analysis [106 – 107] for 

EMG signal. The tool that is most useful for signal frequency component studies is PSD. The 

statistical properties have been functional using different approaches to the PSD and are well 

defined as Fourier Transform. The periodogram or other parametric methods can be used for 

estimation of it. 
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The two features of FD or PSD variables which include Mean Frequency (MNF), and 

Median Frequency (MDF) have been extensively used in numerous research studies. The other 

variables of FD that are suitable and may be used are Mean Power Frequency (MPF), Peak 

Frequency (PF), central frequency, frequency ratio, Total Power (TP) and spectral moments. 

 In this study, therefore, six features of FD are selected for analysis. The description of 

these FD features is below: 

3.2.2.1  Peak Frequency 

 The frequency that maintains the full power spectrum is known as peak frequency (PF). It 

is given as below: 

 

𝑃𝐹 = 𝑚𝑎𝑥(𝑃𝑗) , 𝑗 =  1, … , 𝑀              (3.2.2.1) 

 

Where,  

𝑃𝑗  = Power spectrum. 

𝑗  = Frequency bin.  

3.2.2.2  Mean Frequency 

The summation of power spectrum from the frequency and EMG signal divided by the 

intensity of total spectrum is known as the normal value of frequency which is actually a mean 

frequency (MNF) [90, 98, and 108]. It is also recognized as spectral center of gravity and central 

frequency. Mathematically, it is expressed as follow: 

 

𝑀𝑁𝐹 =  
∑ 𝑓𝑗𝑃𝑗

𝑀
𝑗=1

∑ 𝑃𝑗
𝑀
𝑗=1

                           (3.2.2.2) 

 

Where,  

𝑓𝑖  = Spectrum frequency. 

𝑃𝑗  = Power spectrum. 

𝑗  = Frequency bin. 

𝑀  = Frequency bin length. 
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3.2.2.3  Median Frequency 

 Median frequency (MDF) is defined as the frequency spectra division of two equal 

amplitudes. This frequency type can also called as half of total power. 

 

∑ 𝑃𝑗
𝑀𝐷𝐹
𝑗=1 =  ∑ 𝑃𝑗

𝑀
𝑗=𝑀𝐷𝐹 =  

1

2
∑ 𝑃𝑗

𝑀
𝑗=1               (3.2.2.3) 

 

3.2.2.4  Mean Power Frequency 

 The EMG spectrum average power is a mean power frequency (MPF). The MPF model 

in mathematically representation is as follow: 

 

𝑀𝑁𝑃 =  
∑ 𝑃𝑗

𝑀
𝑗=1

𝑀
                          (3.2.2.4) 

 

3.2.2.5  Total Power Frequency 

 A power spectrum aggregate of the EMG is known as total power frequency (TPF). 

Mathematically, it is written as follow: 

 

𝑇𝑃𝐹 =  ∑ 𝑃𝑗
𝑀
𝑗=1 = 𝑆𝑀0                         (3.2.2.5) 

 

The other name of TPF is spectral moment of zero order (𝑆𝑀0) and can be represented as the 

energy [108]. If we put n equals to zero in the above equation then it will be known as Parseval’s 

theorem. That is why; the symbol in the spectrum of frequency for total power is 𝑆𝑀0 [109]. 

 

3.2.2.6  Spectral Moment 

 The power spectrum extraction from the EMG signal can be done by another way known 

as spectral moment (SM). It is a type of approach built on statistical analysis that will yield a 

power spectrum based new feature. The general order of  𝑆𝑀𝑛 definition is given below: 
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𝑆𝑀𝑛 =  ∑ 𝑃𝑗
𝑀
𝑗=1 𝑓𝑗

𝑛, 𝑛 = 1, … , 𝑛            (3.2.2.6) 

 

Where,  

𝑛 = SM order number. 

 

In this study those features are selected for use that enable control based on EMG, show 

speediness in a noisy environment, manage maximum separability of class, and are linked with 

low complexity computation. This is much needed to make better classification of pattern 

performance in EMG. 

 To use TD or FD individually is not sufficient for extraction of features as EMG signal 

include non-stationary or transitory characteristics. The whole analysis of time series in one off 

is given by Fourier series. 

3.3  Statistical Analysis 

The value of purpose clarification of endpoint objective must be goal of scientific study 

in many thesis studies. The values study level will be determined by this endpoint that may have 

the indication of their works. The method that is one of the best is descriptive statistics to achieve 

main goal. In order to adopt a model, researchers may become habitual by using statistical 

purposes as a model. To present data by organizing and compiling in a clarifying way is done by 

descriptive statistics in some way. The impact of it will end in abnormalities in the study results, 

if this is not taken into consideration in the course of study concerning data of extensive scale. 

3.3.1  Descriptive Statistics 

It is to be called as a prior condition in evaluations of hypothetical or in inferences 

making and necessary for various studies involving analysis of biometric [110]. The well-

presented data to get more understanding of study for the researcher’s subject is produced by a 

process known as descriptive statistics. 
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3.3.2  Correlation Coefficients 

The specific monotonic relationship case is a linear connection between two variables. 

The “correlation” term between two continuous variables is used such a linear relationship 

context mostly. 

The coefficients of correlation can be found out by using most commonly two types in 

the biometric analysis. These are known as coefficient of correlation of spearman’s rank and 

coefficient of Pearson’s product moment correlation. The variables type determines the correct 

type of correlation coefficient being studied [111]. 

The identifying approach of the tradeoff, association, or relationship among two or more 

variables is defined as correlation. The irrespective of linear or nonlinear statistical method to 

measure any possible association of two variables is a mathematical definition of correlation 

[112]. The linear strength of computation and relationship amongst variables studied pointed out 

by correlation coefficient. The two variables closeness that are co-vary is statistically calculated 

by it. It just represents as +1 for the excellent positive correlation and -1 as perfect negative 

bond. While over 0, it means there is completely no correlation. 

3.4  Time Frequency Domain 

3.4.1  Fourier Transform 

Joseph Fourier in his study of spectral introduction found wavelets. The Fourier synthesis 

had been elaborated by him which is switching method of TD, as denoted in TD (x(t)) to FD 

(X(f)) as shown in below figure 12. 

 

 

Figure 12 : The general practice in time series signal measurement is known as Fourier 

transforms (FT). 

 

The Fourier series for whichever periodic waveform (2π) can be commonly denoted as: 
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𝑥(𝑡) =  𝑎𝑜 +  ∑ (𝑎𝑘𝑐𝑜𝑠𝑘𝑡 +  𝑏𝑘𝑠𝑖𝑛𝑘𝑡)∞
𝑘=1                   (3.4.1) 

 

While the indications for a0, ak, and bk Fourier coefficient are as follows: 

 

𝑎𝑜 =  
1

2𝜋
 ∫ 𝑥(𝑡)𝑑𝑡

2𝜋

0
                            (3.4.2) 

 

𝑎𝑘 =  
1

𝜋
 ∫ 𝑥(𝑡)𝑐𝑜𝑠𝑘𝑡 𝑑𝑡

2𝜋

0
                  (3.4.3) 

And, 

𝑏𝑘 =  
1

𝜋
 ∫ 𝑥(𝑡)𝑠𝑖𝑛𝑘𝑡 𝑑𝑡

2𝜋

0
                  (3.4.4) 

 

𝑋(𝑓) =  ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡 ; 𝑗 =  √−1
∞

−∞
               (3.4.5) 

 

The main result of Fourier discovers the invisible signal spectral components which 

makes it valuable and excellent in general analysis of a signal. The significant drawback known 

is that it explored the complete signal at once because of FT nature. The exhibited frequencies 

are not localized in time and are inadequate is the concern of this drawback. It can be seen in 

below figure 13. 

 

Figure 13 : Fourier series of a signal in TD is shown in top figure while bottom figure show 

signal in FD. 
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The application of system based on real-time is not realized easily and it is difficult to know that 

when and where a specific situation develops.  

 The TD localization details get compromised while the window is wider and the details 

of localization in FD get compromised while the window is narrower. This is known as 

uncertainty principle effect. The STFT equation can be stated as follow: 

 

𝑋𝑆𝑇 𝐹𝑇(𝜔, 𝛽) =  ∫ 𝑥(𝑡)ℎ(𝑡 −  𝛽)𝑒−𝑗𝜔𝑡 𝑑𝑡
∞

−∞
               (3.4.6) 

 

 Where,  

  𝛽 = The central point of time window. 

 

The dependency of the resolution of frequency and time is on the size of the window and the 

content of regional frequency is provided by STFT. The shorter time window up to a restricted 

amount like as quasi-stationary for a particular time. By mean of this that window size is 

necessary for precision measurement which is the disadvantage of this method. The unproductive 

way of localization time-frequency is revealed by STFT due to its operation “response interval” 

or scale. 

 

3.4.2  Wavelet Transform 

Another improved version of FT is described as wavelet transform (WT). In this section, 

other aspects and links between WT, STFT, and FT with regards to properties are explained. In 

order to gain precise look on characteristics of wavelets, algorithm observations are defined. 

The first strategy is determined by the scale in wavelets investigation, one kind of TFD 

analysis. Besides, many practices in signal interpretation and numerical designations performed 

by methods are recognized as wavelets. The signal dataset is run at numerous instances of 

dilation and translation by algorithms of WT. A large window can be used for viewing the vast 

information in detail. Similarly, small window can be used to view the small information detail. 

The result analysis estimation in the structure of both the trees and the forest is showed by WT. 

The WT investigation method, several debate and opinions of WT approaches are 

covered and unveiled in current section with analysis decoration of WT in previous described 
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reports Bruce et al. (1996) and Englehart et al. (2001) [113 – 114]. The new passion among 

scholars in data processing and analysis of signal has been caught by WT. 

WT are the best for processing of signal for multiple applications. It is also pre-eminent 

when applied in different directions like communication, transient study, and signal. The 

satisfied outcome is given by WT to the FT and STFT dilemmas. It is referred to below figure 

14. 

 

Figure 14 : The approaches of WT are different to the STFT as it enforced a timely adaptable 

window [115]. The essential properties of localization of frequency in both TD and FD are 

produced by WT technique. 

 

Because of the fixed size window, resolution of fixed frequency and time is produced by 

STFT for the entire signal. In contrast to it, WT produces window of different size given that 

various resolutions of frequency and time [115]. A “dissociations” process of a signal has 

exhibited by the ultimate method of WT property. A decomposition of power signal with 

specified coefficients detail is represented by it. Though, wavelet function width differs with 

every spectral component, it provides and computed coefficients details for every window made. 

The regular series of FT is described as WT which is working one scale either frequency 

or time, it works for both time and frequency on the basis of multi-scale. The decomposition of 

raw signal into components of scaled and decoded known as coefficient is done mother wavelet. 

The STFT flaw which use window of fixed size overwrites by this process. The illustration of 

overall process of WT is shown below in figure 15. 

 

Figure 15 : The process of WT in general approach 
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The function of zero mean is basically known as mother wavelet or wavelet function ψ (t) 

and satisfies the condition of admissibility: 

 

𝐶𝛹 =  ∫
|𝛹(𝜔)|2

|𝜔|

∞

−∞
 𝑑𝜔 <  ∞                (3.4.7) 

 

 Where,  

  𝐶𝛹      = Admissibility constant. 

𝛹(𝜔) = Fourier transform of the wavelet function. 

 

The procedure to be “admissible” should be centered and zero averagely in both space of 

frequency and time which represent the mother wavelet application. The condition of 

admissibility will be satisfied by this in WT. One can define the WT window function as ψab(t): 

 

𝛹𝑎𝜏(𝑡) =  
1

√𝑎
𝛹 (

𝑡− 𝜏

𝑎
)                 (3.4.8) 

 

 Where,  

  𝑎 = Scaling  factor. 

τ = Translation parameter (time shift). 

 

The scaling factor “a” must be positive while a, τ 𝜖 R and a ≠0. The mother wavelet 

represented as the position, τ = 0 and scale a = 1. The other wavelets can be produced by 

utilizing these at several translation and scale. 

 

3.5  Feature Reduction 

It is crucial to implement feature extraction method to draw important embedded 

information and delete undesired interferences and component from the signal of EMG. The 

adoption of feature vector is important as successful classification greatly depends on it. 

However, several classification investigation of the EMG signal has utilized a set of features that 
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has conceded some redundant features. Then, for analysis of EMG, the employment of feature 

reduction strategy is a basic need. 

A great degree of harmony in their dimensionality or attributes could be shown by 

extracted features. It is therefore a need of reduction technique that may able to reduce the 

dimensionality feature. Different methods include Principle Component Analysis (PCA), Linear 

Discriminant Analysis (LDA), and independent component analysis [116]. One technique that is 

PCA have used in this thesis for the assessment of features performance.  

The methods of feature reduction comprises of representation of low-dimensional feature 

with capability of improved discriminatory that are of main interest. There are various 

approaches that have been examined for extraction of feature and dimensionality reduction, such 

as PCA, LDA, and ICA. To resolve dilemmas of classification especially, LDA is designed. It 

aims to increase the determinant proportion of calculated units of between-class sets to the 

between-class sets determinant of the units of computation. 

Reduction of feature has been recognized as “curse of the dimensionality”, and has been 

used to remove correlated problems among vast feature vector dimension [93]. This problem 

arises with high muscle channels implementation. One can decrease the feature dimensionality 

problems with the help of feature projection. Feature projection also helps in creating a set of 

features that improves the performance of classification as well as the price of computational 

reduces. 

In this thesis, one type of feature reduction technique is explored which includes PCA 

[117]. This technique will serve to reduce the feature dimension, computational price 

minimization and to provide a set of feature that improves the result of classification. In the 

following subsections, these two procedures of feature projection are presented.  

 

3.5.1  Principle Component Analysis (PCA) 

A method of conversion applied because of its easiness in pre-processing and analysis of 

a signal [118], feature reduction [119] and for assistive devices controller design [120] and 

rehabilitation systems [121] is known as principle component analysis. PCA is commonly 

adopted and an established method in various works of research involving bio-signals [122], and 

is introduced as an approach of standard in classification studies. Recently, several modifications 
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have been established to overcome the data dimensionality problems and for proper visualization 

of data in PCA. 

The details of class label are not included in this procedure as it is depended on feature 

projection data. The matrix of data reconstructed statistically by PCA through process of 

diagonalizing by the matrix of covariance. The correlation between data variables is acquired by 

the method. The correlation within the variables manifested by the first few substances only if 

both variables evaluated and calculated are associated. The illustration of PCA computation steps 

are shown below in figure 16. 

 

 

Figure 16 : The illustration of strategy for feature reduction problem using PCA. 

 

Let consider a dataset X with number of samples n multiplied by m measurements. 

  

𝑋 = 𝑛 ×  𝑚         (3.5.1) 

For the full dataset the mean vector of dimension (µ) and covariance matrix of X are computed 

by using subtraction. The covariance matrix eigen decomposition is calculated by PCA which 

will produce eigenvalues (λ) as the weights and principle components known as eigenvectors (W) 

sorted firstly with highest magnitude. The orthogonal components number is decided with the 

help of eigenvalues which makes them important for analysis in future, while the connection 

between original variables and new components will be established by eigenvectors. These are 

used in making the matrix of principle components and then multiplied by the set of data of 

original one. This will yield the new set of data for purpose of classification. 
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3.5.2  Uncorrelated Linear Discriminant Analysis (ULDA) 

The technique recognized for problem of dimensional reduction and feature extraction is 

LDA. The utilization of it is in various studies such as analysis of sensors in recent years [124], 

text classification [126] and recognition of fingerprint [125]. A set of features having larger 

dimension varied into groups is accepted as an input by LDA by shaping the fine projection that 

highlight new features toward a space of dimension reduced in size while preserving the group 

composition. It maximizes gap between the classes and shrinks the gap between classes which as 

a result reach the highest separation.  

A type of LDA which is acknowledged as Uncorrelated Linear Discriminant Analysis 

(ULDA) is another method of dimensional reduction engaged in this thesis. As discussed widely, 

LDA best isolate targets or classes by a linear variables combination [127, 128]. A classical LDA 

require matrices that are scatter to be nonsingular. Because of this reason, limitation problems 

and the lack of dataset de-correlation supervision, ULDA was suggested by Jin et al. in 2001 

[129]. This will provide bad results while allocating with groups of great unnecessary info in sets 

of data. 

The novel dimensional reduction tactic introduced by Jieping et al. in 2004 is named as 

ULDA which uses the technique of Generalized Singular Value Decomposition by generating 

uncorrelated features in the converted space to deal with data that is under sampled [132]. The 

provided details by them on ULDA have thus been useful in several exploration studies as a 

technique of projection of feature [130 – 131, 117]. The transformation steps are shown in below 

figure 17 for the ULDA technique of feature reduction. 

 

Figure 17 : The illustration of ULDA steps. 
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ULDA is a technique for extraction of feature that is supervised. It uses Fisher criterion 

based on analysis of discriminant. ULDA tries joined variables linearly described as vectors of 

uncorrelated discriminant while PCA discovers for objectives in the data that are of highest 

diversity. The separability between classes maximize by the vectors regarding the Fisher 

criterion. The constraint of so-called “S-orthogonality” must be satisfied by ULDA obtained 

vectors in matrix transformation is the key difference between LDA and ULDA [117]. 

 

3.6  Pattern Classification Strategy 

The attention of corresponding level given to arm movements of less dexterous, such as 

grasping, elbow movement, and gross hand movements have not been gained by recognition of 

EMG pattern classification of hand movements. Also, the accuracy results of similar 

classification not give the same performance level. To analyze data input inside a representation 

of particular pre-defined sets for the movements of hand can be done by classification based 

EMG control. The several approaches involve by it for classification, feature extraction, and 

dimension reduction. The strategy of data collection applied also includes in the current study. 

The researcher utilized classifier types and feature sets to attain accuracy of high standard such 

as Artificial Neural Network (ANN) [109, 133 – 134], Linear Discriminant Analysis (LDA) 

[131, 135], and support vector machines (SVM) [136 – 137]. 

The structure of standardized classification has been employed in the last decades to 

analyze the EMG signals collected using sets of pre-stated movement [93]. Thus, various 

techniques of classification and feature type have been used in several examination studies 

showing the practicality of surface EMG mechanism [90]. The notion for strategy control 

continued by Tenore et al. in 2009 by using EMG based for flexion and extension of different 

fingers on movement of fingers using 32 channels EMG [139]. The excellent classification 

achievement is managed by them but cost them fortune in time processing because of the 

electrodes in large number. However, the compulsions for making state of the prostheses art 

would significantly reveal without discrediting the efficiency of classification by EMG channels 

modification. 

The accuracy of classification analyzed by Hargrove et al. in 2007 [71] used methods of 

five classification pattern (multilayer perceptron, LDA, linear perceptron, hidden Markov model, 
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Gaussian mixture model). They determined that there was no major variance in these classifier 

performances. Moreover, they also recommended that the achievement of more accuracy can be 

opted for the classification by using three channels optimal EMG signal, if dimensionality 

reduction and feature sets selection added is significant than the classification method selection 

and channels are chosen carefully. Scheme et al. in 2011 continued these works where they rated 

ten classifiers comparable achievement tested [140]. 

The additional examination on LDA was completed by Khushaba et al. (2012) [141]. 

They testified an accuracy of ordinary classification of approximately 90% in distinguishing 

amongst single and combined movements of fingers. They apted EMG of two channels for finger 

movements from eight participants containing ten individual classes and collective movements 

of fingers. In distinction to it, set of other studies in classification of movements of hand was 

completed using both amputee and normal subjects. In this study, the classification precisions 

differences can be seen as they use EMG of six channels subsequent in fifteen classes of 

movements of fingers [142]. 

Both Khushaba et al. in 2012 and Al-Timemy et al. in 2013 could not confirm that 

whether the accuracy of classification involved in the study was exaggerated by the number of 

EMG channels or not [141 – 142]. However, the result given by both studies may be limited by 

the movement class’s characteristics and the data usage for training or testing. The classification 

performances generalization influence by both of these circumstances, and therefore the need to 

take actions in the contexts of EMG channel, between EMG muscles association, their features 

and findings drawn based conclusion suitably for this new study is present. It is worth to note 

that as this type of study is in connection with datasets of big numbers so the window of 

classification for the set of data (CW) is calculated as below:  

 

𝐶𝑊 =
𝑥𝐿−𝐿

𝐿𝑖𝑛𝑐
                                     (3.6.1) 

 

Where,  

 

𝑥𝐿     = Size of full dataset. 

𝐿      = Window length.  

𝐿𝑖𝑛𝑐  = Window size increment. 
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3.6.1  Artificial Neural Network (ANN) 

It is usual to employ multilayer perceptron (MLP) for use in classification of EMG signal 

and has made reasonable achievement for movement of steady-state classification with 

promising performances which has been described in numerous research studies [144 – 147]. 

The algorithms based on biological inspiration are known as artificial neural networks 

(ANNs) where the information about the problem is dispersed in neurons and their weighted 

connection. ANNs are based on human brain function mapping formations and are non-linear. 

They are significant worth for modeling, principally at the association of underlying facts is not 

explained. Below is the figure 18 that shows basic configuration of ANN and its architecture 

consisting of three layers: first one is input layer, middle layer is hidden, and third one is layer of 

output. Moreover, every layer has a bias vector, a weight matrix and a vector output. 

 

 

Figure 18 : The ANN basic architecture 

 

3.6.1.1  Back-Propagation Neural Network 

 The algorithm known for effective system training and its behavior for better 

understanding is back-propagation neural network (BPNN) classifier algorithm [144, 148 – 150]. 

The BPNN uses abide by a standard processing systems group which by transmitting signals 

interacts with each other over huge number of connected weights. 

The hyperbolic tangent sigmoid function is used by the algorithm and the applied 

functions for the hidden and the layers of output are linear. This is finished disconnected for 

every individual layer. The process of training shall adjust the connected loads and preferences 
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to the desired yield map. The ANN generalization and their procedures achievement is done by 

modernizing bias values and weights equivalent to the algorithm of Levenberg-Marquardt 

optimization and applied gradient descent as the purpose of learning [151]. 

The algorithm of BPNN in basic form can be fixed firstly by preparing the weight 

standards and level of the network threshold to uniform small distribution of random numbers, 

the computation particulars for BPNN can be originated in Karlik et al. publication published in 

2003 [152]. The BPNN activation functions is recognized as sc : R → (0, 1) and well-defined by 

the following equation [153]. 

 

𝑠𝑐(𝑥) =
1

1+ 𝑒−𝑐𝑥                 (3.6.1.1) 

 

Where,  

𝑐 = constant which should be positive.  

The initiation purposes shape differs with respect to the c value. 

3.6.2  Linear Discriminant Analysis (LDA) 

The broadly utilization of Linear Discriminant Analysis (LDA) is classification of human 

hand movement based on data of EMG [116, 125, 131, 142]. The LDA purpose is to find a hyper 

plane that can classify the facts of data unfolding classes of distinct movement of hand. The 

hyper plane is obtained by investigating for a estimation which displays extreme gap amongst 

typical classes and decreases within class diversity as assumed that the data is normally 

distributed. 

The multi-class classification details are given by Balakrishnama and Ganapathiraju in 

1988 [154] using algorithm of LDA and summarize the procedure as follows: 

 

• Express the dataset of features for training purpose as well as for testing purpose 

so that it will be classified in the original space. 

 

𝑥1 =  (

𝑎11

𝑎21

𝑎12

𝑎22

𝑎13

𝑎23

⋮ ⋮ ⋮
𝑎𝑚1 𝑎𝑚2 𝑎𝑚3

) , 𝑥2 =  (

𝑏11

𝑏21

𝑏12

𝑏22

𝑏13

𝑏23

⋮ ⋮ ⋮
𝑏𝑚1 𝑏𝑚2 𝑏𝑚3

) , . . 𝑥𝑖 =  (

𝑖11

𝑖21

𝑖12

𝑖22

𝑖13

𝑖23

⋮ ⋮ ⋮
𝑖𝑚1 𝑖𝑚2 𝑖𝑚3

) 
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• The mean computation of every feature set (U1, U2, … , Ui) in “i ” class. 

Moreover, the mean of average for the complete input data (xi). 

• The mean computation of universal vector (U) for the complete set of data, 

approximately for two basic problems of class; 

 

𝑈 = 𝑝1  ×  𝑈1 +  𝑝2  ×  𝑈2               (3.6.2.1) 

 

Whereas, p1 and p2 are the priory classes probabilities. 

• To get the corrected data, subtract the mean from every point of data. 

 

   𝑥𝑖
0 = 𝑥𝑖 −  𝑈                 (3.6.2.2) 

• Define the matrix of covariance (covi) of the group (i) given by; 

 

𝑐𝑜𝑣𝑖 =  
(𝑥𝑖

0)
𝑇

𝑥𝑖
0

𝑛𝑖
                (3.6.2.3) 

Where,  

ni = Sample class (i) number. 

• Calculate the between-group combined covariance matrix provided by 

 

𝑃𝑐𝑜𝑣 =  
1

𝑛𝑡𝑜𝑡𝑎𝑙
 ∑ 𝑛𝑖𝑐𝑜𝑣𝑖

𝑔
𝑖=1                (3.6.2.4) 

 

Where,  

 covi  =  Covariance matrix 

 ni  =  The number of sample class (i) 

 ntotal  =  The entire number of samples for all classes 

 g  =  Number of classes. 

• Calculate the converse of within-group combined 𝑃𝑐𝑜𝑣−1 matrix. 
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• Calculate the inverse of between-group combined 𝑃𝑐𝑜𝑣−1 matrix. 

 

• Employ the rule of discriminant role for a k unit given by 

 

𝑓𝑖 =  𝑈𝑖𝑐𝑜𝑣−1𝑥𝑘
𝑇 −  

1

2
 𝑈𝑖𝑐𝑜𝑣−1𝑈𝑖

𝑇 + 𝑙𝑛(𝑃𝑖)            (3.6.2.5) 

 

Where,  

𝑥𝑘
𝑇  =  The input sample data 

𝑃𝑖  =  Prior probability vector 

 

𝑃𝑖 =  
𝑛𝑖

𝑛𝑡𝑜𝑡𝑎𝑙
                (3.6.2.7) 

 

The numbers of input sample number k having extreme fi are allocated to “i” class. The main 

notion of LDA is to categorize individuals features conferring to their class of movement in 

which the priori likelihoods can be maximized. The computational time of LDA is better than 

ANN, otherwise both performed similarly. The detail discussion of this was done by Tkach et al. 

in 2010 [96]. 

 

3.6.3  Support Vector Machine (SVM) 

 A binary classifier that practices each class examples as support vectors to produce hyper 

plane (linear case) which splits classes with the broadest margin is known as SVM classifier. A 

parameter C is specified as it is not always possible to separate classes. It was set to 1 in this 

work.  

 SVM was protracted with a scheme of one-versus-all to enable classification of multi-

class as it is a binary classifier. This means that for each class a binary classifier was created. All 

samples are positive samples fitting to that class while others are considered as negative samples. 

All binary classifiers co-operates when classifying a new test sample to select output class for 

classifier of multi-class [156].  
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3.6.4  K-Nearest Neighbor (KNN) 

 Another classifier is an procedure of K-Nearest Neighbor. It discovers the K points of the 

data trained with the minimum distance of Euclidean to the test model while classifying a new 

test sample. The test sample then classified by it as the class that contains mostly the neighboring 

points. The nearest neighbor class is chosen if tied. 

 

3.6.5  Quadratic Discriminant Analysis (QDA) 

 The regular LDA non-linear form is basically QDA where between classes the covariance 

matrix may differ. The covariance matrices may be inverted to avoid singularity problems using 

the pseudo inverse for particular implementation which results in parting of quadratic as in LDA 

instead of linear. The parameters for QDA were same as used for LDA [157]. 

 

3.7  Classification Performance Evaluation 

The studied algorithms performance is analyzed by the scheme of ultimate measure of the 

classification. The classification strategy achievement is assessed by utilizing a non-functional 

evaluation. The involvement of prosthetic arm is not needed in this technique to evaluate the 

estimation of classification process achievement in the study. As a result, classification that is 

accurate based on the class of movement of user and can be used as standard for the performance 

classification. 

 

3.5.1  Classification Accuracy 

One metric is accuracy for evaluating a system of classification. The performance of the 

classification system is justified by using the computational information and its percentage of 

correct system classification. The right prediction percentage has been used in many studies and 

it can be defined as follow: 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 𝑋 100%     (3.7.1) 
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Accuracy, as for classification of binary might be determined as below based on negative and 

positive: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 𝑋 100%       (3.7.2)  

Where, 

 TP = True Positives 

 TN = True Negatives 

 FP = False Positives 

 FN = False Negatives 

 

 In the meantime, for a system of classification, percentage of error can be found as: 

 

𝐸𝑟𝑟𝑜𝑟 =  100% −  𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦     (3.7.3) 

 
 

3.7.2  Classification Plot 

The results of classification can be shown by using classification plot that utilized time 

series based trained classifier. The classification plot is an appropriate technique for output 

classifier analysis which has been discussed by Chan and Green in 2007 [143]. The accurate 

class together with the class targeted on the y-axis alongside a scale of time in the x-axis is 

drawn in this graphical plot. The benefit of this type of plot is that it exhibits the distributions 

error and their time locations. 

 

======================================= 
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CHAPTER 4: RESULTS AND DISCUSSION 

The likely combinations from everything in chapter 3 comprise of several values of variables 

which includes 16 methods of feature extraction, one method of feature reduction and six 

classifiers. As the main aim of this study is to increase the accuracy of classification as much as 

possible, PCA is used as a dimension reduction technique. Firstly, all six classifiers were used on 

extracted features and the accuracy with execution time was measured without applying PCA 

and results are summarized in table 4.1 and table 4.2. Secondly, these six classifiers were used 

after applying PCA technique on extracted features and summarized results in table 4.3 and table 

4.4 with accuracy and execution time respectively. After correlation of results, it is found which 

classifier performance is better after applying PCA technique. 

 

A. Dimension Reduction Optimization 

 

The feature reduction becomes obvious while using PCA for classification as certain 

features is ignored and therefore in the selected features most of the information becomes limited 

for the entire dataset. Also, this technique of feature reduction once employed leads to change 

the classification accuracy as it is up to the code written by the programmer and uses reduction 

of features as is required. Therefore, for calculation of classification accuracy, selected 

components changes after PCA employment and used SVM, KNN, LDA, QDA, ANN and 

TREE as a classifiers. 

Feature 

selection 
SVM KNN LDA QDA ANN TREE 

PCA 48.3 70.3 40.9 33.1 56.3 26.2 
 

Table 2 : PCA implemented (in percentage) classification accuracies 

 

Feature 

selection 

SVM KNN LDA QDA ANN TREE 

53.9 76.4 30.4 9.1 59.0 46.9 
 

Table 3 : Without PCA implemented (in percentage) classification accuracies 

 

Feature 

selection 

SVM KNN LDA QDA ANN TREE 

138.8 88.5 12.1 35.7 273.0 56.3 

 
Table 4 : Execution time (in seconds) of classifiers without PCA implemented 
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Feature 

selection 
SVM KNN LDA QDA ANN TREE 

PCA 66.7 40.4 6.0 10.1 150.7 30.5 
 

Table 5 : Execution time (in seconds) of classifiers with PCA implemented 
 

The key goal of this study is to save the information of maximum amount existing in 

the set of features while reducing the principle components number simultaneously to 

minimize the cost of computation. It is worth noticing that after applying PCA the 

execution time decreases while accuracies increase in some classifiers. 

  

B. Train and Test Data Sizes Optimization 

 

To divide a dataset into two proper sets i.e. training and testing data sets plays a very 

important role in any machine learning step of application-oriented. If the ratio of 

number of elements in both sets is not proper then it might lead to over-learn or 

under-learn the system which is unpredicted for improper algorithm learning by the 

system. Hence, there is optimal division of training and testing data respectively. In 

this study, one third repetitions of the movements were used approximately to 

generate test set while to make the training set, residual repetitions were used and 

noted the accuracy in each case which is already summarized above. In each case, 

PCA is used for feature reduction and for classification, Support Vector Machine 

(SVM), K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), 

Quadratic Discriminant Analysis (QDA), Artificial Neural Network (ANN) and Fine 

Tree (FT) classifiers are used. It was notice in LDA and QDA that there is increase in 

accuracy at a linear rate as the training data set increases. Hence, for all classification, 

this proportion was chosen and to make the confusion matrix of the same. 

  

C. Confusion Matrix and Accuracy 

 

The received data fed into a model after carrying out the cleaning, preprocessing, and 

disputing to get the output as a probability. But the drawback of this procedure is that the 

effectiveness of model is not known. The maximum performance of optimization is the 
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requirement which is directly proportional to the effectiveness. So, measurement of 

effectiveness is a need of this study. To measure the effectiveness, confusion matrix was 

used as tool. 

 

1. Accuracy 

 

The classifier correctness measurement after some training is known as accuracy. 

Different factors like training dataset size, dataset type, classifier type, seeding 

value, etc. affects accuracy. The accuracy of classification is lower when the 

complete set of data is taken as features. To cater it 16 features were selected for 

algorithm along with their moments. From the table 2, KNN looks to provide the 

maximum accuracy possible. 

 

2. Confusion Matrix Accuracy 

 

As already discussed, effectiveness measurement of the classification is a 

requirement and confusion matrix technique is basically a performance 

measurement for classification of learning of machine. It is like an NXN matrix 

from its outlook where “N” is number of classes for classified data. The rows of 

this matrix represent number of data classes in actual and column of this matrix 

signify number of data classes predicted. Therefore, for any classifier, the matrix 

should be a diagonal matrix ideally and all the elements being 1 for 100 percent 

accurate prediction. But, matrix also show the number of classification interpreted 

incorrectly with their positions as all predictions are not always correct in 

practice. From the table 4.1 and table 4.2 respectively, it can be seen that twelve 

types of classifications are done – PCA-SVM, PCA-KNN, PCA-LDA, PCA-

QDA, PCA-ANN, PCA-FT, SVM, KNN, LDA, QDA, ANN, FT. The confusion 

matrix was made for each type. Hence, 12 types of confusion matrix are shown 

below with 11 classes each. The idea of getting type of error make by the 

classifier is done by confusion matrix. The accuracy of classification is shown by 

the color of the boxes. 
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Figure 19 : Confusion matrix of SVM classifier after and before PCA 
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Figure 20 : Confusion matrix of KNN classifier after and before PCA 
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Figure 21 : Confusion matrix of LDA after and before PCA 
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Figure 22 : Confusion matrix of QDA after and before PCA 
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Figure 23 : Confusion matrix of TREE classifier after and before PCA 
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Figure 24 : Confusion matrix of ANN classifier after and before PCA 
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4.1 Limitations 

There are surely some limitations in this thesis as with any studies. Firstly, the study 

covers only some hand movements and overall muscles were not covered. However, the 

movements chosen were mostly used in daily routine. Also, because of limited datasets for the 

analysis of training and testing, there could be variation in classification accuracies if there is 

increase in number of datasets. Therefore, it is proposed to consider all limits or factors as set up 

for the use of this technique in the study. Thirdly, pre-processing and classification for the 

analysis was implemented offline in this study. It is thought that in real time analysis, the 

functional accomplishment might be not good or lower because of transitions periods possibly 

between sessions of rest movements. This may affect the classification performance and may 

results several effects on the characteristics of the EMG signal. 

 

==================================== 
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CHAPTER 5: FUTURE WORK 

Like in other research studies, in this thesis too, limited time specifies the end of an 

effort. It is therefore possible to compute numerous additions and ideas to do more experiments 

and improve the existing application. The future works suggestions are as follow: 

 

• Usage of real-time or online data to inspect suggested technique from the subject. 

The online method of performance can be calculated using the recommended 

offline system. But, the acquired data must be from an extended period to use 

online records processing to confirm the results reproducibility as many days 

might be require for reaching. It is therefore a requirement of developing a new 

online method for the classification act evaluation. 

 

• The proper investigation is a need for transition phases or regions between 

movements of two states to apply data analysis online. For online purpose, the 

removed areas are not adequate as used in offline treating. 

 

• For the online classification, the adaptive method has to be windowing system 

which is thought can reduce the errors of classification. Also, the delay time can 

be shortening amongst the processing and process of classification by this 

technique. Therefore, computational cost improves for online recognition. 

 

• In order to observe the success rates, experiments should be conducted with more 

hand movements of different subjects using the autonomous system of EMG. 

 

• Experiment should be performed with hand amputees to investigate the successful 

classification rates. This data along with a suitable feature extraction should be 

processed properly and also be able to give a real application solution for robotic 

hand control. 

 

======================================= 
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APPENDIX A 

Subjects Classifiers Before PCA After PCA 

Subject 1 

SVM 73.5 % 68.2 % 

KNN 76.8 % 72.4 % 

LDA 52.9 % 66.5 % 

QDA 54.7 % 59.7 % 

ANN 70. 0 % 60.5 % 

FT 58.9 % 40.3 % 

Subject 2 

SVM 76.4 % 69.8 % 

KNN 79.3 % 71.6 % 

LDA 51.3 % 65.9 % 

QDA 57.1 % 61.5 % 

ANN 73.4 % 64.9 % 

FT 62.4 % 32.4 % 

Subject 3 

SVM 75.7 % 72.2 % 

KNN 75.4 % 73.6 % 

LDA 52.7 % 68.0 % 

QDA 58.9 % 63.7 % 

ANN 71.1 % 64.3 % 

FT 61.8 % 42.0 % 

Subject 4 

SVM 67.0 % 60.6 % 

KNN 75.7 % 70.7 % 

LDA 47.8 % 58.7 % 

QDA 49.3 % 50.9 % 

ANN 63.4 % 55.9 % 

FT 55.5 % 31.4 % 

Subject 5 

SVM 80.5 % 76.1 % 

KNN 79.0 % 74.7 % 

LDA 61.8 % 72.6 % 

QDA 65.8 % 69.2 % 

ANN 76.1 % 67.6 % 

FT 72.5 % 41.9 % 

Subject 6 

SVM 79.4 % 77.1 % 

KNN 77.6 % 73.9 % 

LDA 62.7 % 72.7 % 

QDA 55.0 % 66.9 % 

ANN 76.7 % 69.7 % 

FT 64.3 % 39.0 % 

Subject 7 

SVM 77.8 % 74.6 % 

KNN 80.0 % 74.4 % 

LDA 63.6 % 71.9 % 

QDA 66.8 % 68.2 % 

ANN 75.4 % 68.8 % 

FT 65.7 % 44.4 % 

 
Table 6 : Classification accuracies of classifiers before and after implemented PCA 
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ABBREVIATIONS 

EMG     Electromyography 

 

HCI     Human Computer Interface 

 

MCSs    Myoelectric Control Systems 

 

WPT    Wavelet Packet Transform 

 

DWT    Discrete Wavelet Transform 

 

PCA    Principle Component Analysis 

 

SOFM    Self – Organizing Feature Map 

 

LDA    Linear Discriminant Analysis 

 

NLDA    Nonlinear Discriminant Analysis 

 

LD    Linear Discriminant 

 

CNS    Central Nervous System 

 

MUAP   Motor Unit Action Potential 

 

EEG     Electroencephalography 

 

ECG or EKG   Electrocardiography 

 

sEMG    Surface electromyography 

 

iEMG     Intramuscular electromyography 

 

MFAP     Muscle Fiber Action Potential 

 

AP    Action Potentials 

 

MU    Motor Unit 

 

MVC    Maximum Voluntary Contraction 

 

MF    Muscle Fatigue 

 

FD    Frequency Domain 
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TD    Time Domain 

 

SSC    Slope Sign Change 

 

RMS    Root Mean Square 

 

ZC    Zero Crossing 

 

WL    Waveform Length 

 

AR    Autoregression 

 

MAV    Maximum Amplitude Value 

 

MNF    Mean Frequency 

 

PF    Peak Frequency 

 

MDF    Median Frequency 

 

TFD    Time Frequency Domain 

 

STFT    Short Time Fourier Transform 

 

CWT    Continuous Wavelet Transforms 

 

WVD    Wigner-Ville Distribution 

 

ANN    Artificial Neural Network 

 

K-NN    k Nearest Neighbor 

 

SVM    Support Vector Machine 

 

MLP    Multi-Layer Perception 

 

ELM    Extreme Learning Machine 

 

FIS    Fuzzy Inference System 

 

ANFIS   Adaptive neuro-fuzzy inference system 

 

MCA    Mutual Component Analysis 

 

GA    Genetic Algorithm 
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NWFE   Non-Parametric Weighted Feature Extraction 

 

FCM    Fuzzy C-Means 

 

SD    Standard Deviation 

 

IAV    Integrated Absolute Value 

 

MAV    Mean Absolute Value 

 

AVR    Average Rectified Value 

 

AAV    Average Absolute Value 

 

NP    Number of Peaks 

 

SM    Spectral Moments 

 

WAVE   Wavelength 

 

WLR    Waveform Length Ratio 

 

MPF    Mean Power Frequency 

 

TP    Total Power 

 

PSD    Power Spectral Density 

 

SM    Spectral Moment 

 

FT    Fourier Transform 

 

WT    Wavelet Transform 

 

PCA    Principle Component Analysis 

 

ULDA    Uncorrelated Linear Discriminant Analysis 

 

BPNN    Back Propagation Neural Network 

 

MLP    Multilayer Perceptron 

 

===================================== 
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