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Abstract

This thesis provides the development of families of Runge Kutta methods up to 4th

order for solving non-linear ordinary differential equations. Our motive is to deeply

study and compare several third and fourth order Runge Kutta methods for the sake

of error analysis. First, the basics of differential equations and numerical methods

are elaborated along with development of a few elementary methods. Subsequently,

second and third order Runge Kutta methods are developed from a general frame-

work. The comparison of several third order Runge Kutta methods applied to a few

non-linear problems is provided. Endmost, development and comparisons of several

fourth order Runge Kutta methods applied to a bunch of non-linear problems are

provided.
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Chapter 1

Preliminaries

1.1 Introduction

Most physical problems contain a rate of change of any quantity with respect to

any other quantity. For example, population growth or decay problems involve rate

of change of population or mass over time. The mathematical modeling of such

problems results in differential equations, either linear or non-linear. The motiva-

tion behind solving a differential equation is to find an explicit relation between

the dependent and independent variables, that is free of derivatives. Other than

that, finding a solution is like calculating values for dependent variable at all points

of the domain of problem. When a mathematical problem is solved analytically,

its solution is perhaps exact; however such technique is not always applicable, for

instance it fails for transcendental functions.

Linear differential equations mostly end up with analytical solutions, whereas one

can approximate solution for a non-linear differential equation via numerical tech-

niques. That is why the numerical approach is applied to find solutions of such

problems. A numerical method is an approach to solve mathematical equations via

computer coding. Moreover, the independent variable is discretized which is ideal

for coding. The main concern of research is the analysis of numerical methods for

non-linear differential equations.
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Elementary technique to obtain an approximate solution to differential equations

or initial value problems was first developed in 1768 by Leonhard Euler [1]. In

the beginning, Leonhard Euler, Kendall Atkinson, Weimin Han, and David Stewart

worked to develop elementary numerical techniques for non-linear differential equa-

tions. Primary idea is to truncate the Taylor series and approximate it as a solution

to an initial value problem.

1.2 Differential Equations and their Classification

Definition 1.2.1. An equation expressed in terms of a function of one or more inde-

pendent variables along with finite derivatives of the function is called a Differential

Equation(DE) [2].

There are vast applications of differential equations, from simple mixing problems

to logistic equations of chaotic mathematics. The differential equations are classified

mainly as ordinary and partial differential equations, defined as;

Definition 1.2.2. An equation that involves one or more unknown functions in

terms of a single independent variable and its finite derivatives, is known as an

Ordinary Differential Equation (ODE) [2].

Definition 1.2.3. An equation involving one or more unknown functions in terms

of more than a single independent variable, and its partial derivatives is called a

Partial Differential Equation (PDE) [2].

The ordinary and partial differential equations have there own specifications and

types, and different methods for finding solutions. In general PDE is harder to

solve as compared to an ODE. Often a higher order PDE is converted to a set

of ordinary differential equations, and is solved by methods of ODE. It declares

the significance of developments and improvements in methods for solving ordinary

differential equations.
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Further Types of Differential Equations

The differential equations have further types defined as;

Definition 1.2.4. A DE is linear in y if it is represented as

f(x) = αn(x)
dny

dxn
+ αn−1(x)

dn−1y

dxn−1
+ · · ·+ α1

dy

dx
+ α0(x)y. (1.1)

Also, it satisfies the following conditions:

1) Dependent variable y and it’s derivatives have power 1.

2) Coefficients αn, αn−1, . . . , α0, are functions of independent variable x only.

3) Dependent variable y does not appear as a multiple of its own derivative or in the

form of any transcendental function [2].

The linear ODE has analytical solution and is solved via different methods, such

as variable separable or integrating factor and other methods. Often to solve non-

linear ODE one requires numerical methods,some elementary numerical methods

are discussed in section 1.8 and 1.9.

Definition 1.2.5. A DE is said to be non-linear if any of the conditions provided

in definition 1.2.4, is violated.

Simply, for a non-linear DE the coefficients αn, αn−1, . . . , α0 in eq. (1.1), can appear

as functions defined in dependent variable or as transcendental functions. Moreover,

dependent variable and its derivatives can have power more than 1.

Definition 1.2.6. If f(x) = 0 in eq. (1.1), then such DE is said to be homogeneous;

on the other hand if f(x) 6= 0 then such DE is said to be a non-homogeneous

differential equation [2].
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1.3 Numerical Method

An iterative technique is a mathematical process that utilizes an initial guess to

generate a sequence of approximated solutions for a problem. Here the solution is

obtained by repeating the same step to make the computations automatic. This

systematic approach is called the numerical method.

Explicit and Implicit Numerical Methods

There are two main categories of numerical methods, i.e., explicit and implicit nu-

merical methods. Such categorization is based on calculation steps involved in the

process of estimating the desired value. This helps one to choose an efficient method

based on ease in calculations and sometimes to avoid complex algebraic calculations.

A brief discussion on explicit and implicit methods is given in subsequent sections.

Explicit Numerical Methods

The explicit numerical method calculates a value at a future state or time using

only the current value. It is simple and does not require any tough calculations to

compile the final formula. Let y(x) be the current state and y(x + h) is the future

state; and h is the small step-size, then general form of an explicit numerical method

is given as

y(x+ h) = φ(h, y(x)),

i.e., φ is any function defined only in terms of y(x). Euler method is a famous

example of explicit numerical methods, for reference check section 1.8.1.
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Implicit Numerical Methods

An implicit numerical method calculates the desired future value by using both a

current state or time and the future one. In such a case, there is a high chance

that calculations are tedious. There arises a situation where one must estimate the

future value that is being used in the formula. Let y(x) be the current state and

y(x + h) is the future state; and for a small step size h general form of an implicit

numerical technique is given as

y(x+ h) = ϕ

(
h, y(x), y(x+ h)

)
,

where ϕ is a function defined in both y(x) and y(x+h). That is why it is necessary

either to estimate y(x+h) via some elementary technique or figure it out by algebraic

calculations. Such obstacles are dealt according to the nature of numerical method.

For example, improved Euler method is an implicit method and its process utilizes

the estimation from Euler method. The brief discussion on this case is provided in

section 1.9.1.

Some limitations associated with the numerical methods for ordinary differential

equations are listed below:

• Always requires an initial guess to initiate the iterative process.

• Generates result in a discretized domain of the problem.

• Generally numerical solution has some error when compared to exact solution.

Though error occurs while using a numerical technique but these techniques are

developed in such a way that results meet the error tolerance of a problem. Some

problems have small while some have high error permissiveness, One may define error

tolerance prior and then use an appropriate technique, i.e., higher order method for

smaller error tolerance.
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1.4 Order of a Numerical Method

Step-size (h) is a crucial element for investigating the error of numerical solution,

while solving an initial value problem by any numerical technique. For instance, if

step-size is decreased then the error ultimately reduces. How much change occurs

in the error of numerical solution when the step-size is decreased can be measured.

Such measurement is associated with a numerical method as the order of method.

Generally, let e(h) be the error occurred while solving an initial value problem by a

specific numerical method. if |e(h)| ≈ phn as h→ 0 then n is order of the numerical

method, where p is a constant.

1.5 Errors in Numerical Methods

The main observation of a numerical technique is that some difference between ex-

act and numerical solutions occurs, which is known as error. Over the years mathe-

maticians are trying to develop methods which yield less error. In this research, we

discuss the most significant types of error, i.e., truncation error for numerical meth-

ods. Moreover, for the sake of comparison, the results are generated and depicted

as absolute error graphs. In current section the brief knowledge of different types of

errors in numerical methods is provided.

Absolute Error

Definition 1.5.1. Difference between the true solution and approximated solution

in the approximation process is the absolute error (Abs. error).

Let X? be the approximation to X then

Abs. error = |X −X?|.
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Relative Error

Definition 1.5.2. Difference between true value and approximated value represented

in percentage of true value is the relative error.

Relative error =
|X −X?|
|X|

, X 6= 0,

where X is the true value and X? is the approximated value.

Local Truncation Error

As mentioned earlier that numerical solutions are approximate solutions. For solu-

tion of non-linear differential equations, the truncation of Taylor series up to desired

terms is required. Simply, the higher order terms are ignored, such ignored terms

do have impact on the solution. Thus such truncation process results in truncation

error. The difference between the exact solution at a future point and the numerical

solution at the same point, is called the Local Truncation Error (LTE).

Global Error

Numerical techniques are not applicable on the continuous domain, thus one must

define a domain of problem and discretize it to start iterations. In this way the

numerical solution is generated on such a descritized domain. The cumulative error

over the range of solution is known as Global Error (GE), and is calculated as

GE =
LTE

h
.

The order of GE is actually the order of the numerical method. Details of such

error, are mentioned along with each method described in section 1.8 and 1.9.
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1.6 Initial Value Problem (IVP)

Definition 1.6.1. An initial value problem is the one which has all conditions de-

fined at a single value of independent variable.

Generally an IVP defined in a specific interval [a, b] of independent variable is given

by
dy

dx
= f(x, y), y(xo) = yo, (1.2)

where xo is a point from the interval [a, b]. Often it is assumed to be the initial

point of interval as well, i.e., xo = a. One intends to solve an IVP to fetch a solution

free of derivatives, just an explicit relation between the dependent and independent

variables.

Definition 1.6.2. A solution to an IVP as given in eq. (1.2), is a differentiable

function y = y(x) in the interval [xo, b], i.e., y(xo) = yo and y′(x) = f(x, y(x)) for

all x ∈ [xo, b].

An initial condition associated to the ODE generates a solution y = y(x), i.e., the

point (xo, yo) lies on solution curve. Implies that for various initial conditions the

general solution to the problem generates a set of solution curves. Each of these

solutions satisfy the relevant initial condition [3].

Discretization

The primary step in numerically solving an IVP as given in eq (1.2), is to discretize

domain of the problem. Discretization is a process which transforms a continuous

domain into a finite set of discrete points, also known as mesh or nodal points.

Since the initial point xo is provided thus to initiate the process xo acts as an

input. Suppose domain of interest is [a, b] , i.e., xo = a, and to discretize such

8



domain, identify the points between a and b at which the solution is obtained through

iterations. Let there are total N + 1 points, defined as

xn+1 = xn + (n+ 1)h, n = 0, 1, 2, . . . , N,

where N is total number of sub-intervals the domain [a, b] is divided into. The step

length or step-size of these sub-intervals is a constant h, defined as

h =
b− a
N

.

Definition 1.6.3. A function f(x, y) continuous on a region R = [(x, y) : a ≤ x ≤
b, c ≤ y ≤ d], is said to satisfy the Lipschitz condition if there exist L > 0 and

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|,

where L is the Lipschitz constant for f and (x, y1), (x, y2) ∈ R [3].

Theorem 1.6.1. If f(x, y) is defined in the region R and there exists L > 0 such

that,

|fy(x, y)| ≤ L ∀(x, y) ∈ R,

then f satisfies the Lipschitz Condition in variable y.

Theorem 1.6.2. If f(x, y) is continuous in a region R, f satisfies the Lipschitz

condition on R in variable y and (xo, yo) ∈ R, then the IVP (1.2) has a unique

solution y = y(x) on some sub-interval xo ≤ x ≤ xo + δ [3].

1.7 Taylor Series

Theorem 1.7.1 (Taylor Theorem). Suppose f : (a, b)→ R is a function defined on

(a, b), where a, b ∈ R and a < b. Assume that for a positive integer n, f is n-times

differentiable in the interval (a, b), i.e., fn exists on (a, b), and f, f ′, f ′′, . . . , fn−1 be

continuous on [a, b] , then there exists α ∈ (a, b) such that,

f(x) = f(α)+f ′(α)(x−α)+ f ′′(α)

2!
(x−α)2+· · ·+ fn−1(α)

(n− 1)!
(x−α)n−1+ fn(α)

n!
(x−α)n

9



1.7.2 Taylor Series Method

Consider an IVP as
dy

dx
= f(x, y), y(xo) = yo,

where (xo, yo) is a known point on the solution curve.

If all higher order derivatives of y exist at x = xo then by Taylor series method the

value of y at point xo + h is given by

y(x0 + h) = y(xo) + hy′(xo) +
h2

2!
y′′(xo) +

h3

3!
y′′′(xo) + . . .

The sum of above infinite series yields the value of y at a neighboring point xo + h,

but calculating infinite derivatives is not practically possible. Thus the summation

process needs to be terminated after some finite terms, for instance truncate the

series after kth term as

y(x0 + h) = y(xo) + hy′(xo) +
h2

2!
y′′(xo) + · · ·+

hk

k!
yk(xo) +O(hk+1).

The above formula is the kth order Taylor series approximation of y, and order of

error is k + 1.

1.7.3 Error in Taylor Series Approximation

Taylor series method of order k has the LTE of O(hk+1), so h can be chosen small

as per requirement and ultimately error becomes smaller. Since,

Ek =
1

(k + 1)!
hk+1yk+1(x+ h).

The above expression can be further simplified by substituting derivative of yk+1 as

Ek =
1

(k + 1)!
hk
(
yk(x+ h)− yk(x)

)
.

However, one can fix k and vary the step size h to compare the error.
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1.8 Euler Method

A Swiss mathematician Leonhard Euler developed the Euler method in 1768. It is

the first and basic approach for solving initial value problems numerically. It is a

single-step and first order method requiring just one value to initiate the process.

Other than that, the process determines a future value of slope with the help of the

current slope thus it is an explicit method.

1.8.1 Derivation of Euler Method

Consider an IVP as

dy

dx
= f(x, y), y(xo) = yo, [a, b], (1.3)

where y(xo) = yo is initial condition associated with the problem and [a, b] is domain

of the problem. The Taylor series of y(x+ h) is given as

y(x+ h) = y(x) + hy′(x) +
h2

2!
y′′(x) + . . . (1.4)

Truncate the Taylor series up-to first two terms as

y(x+ h) ≈ y(x) + hf(x, y).

To solve the IVP (1.3) numerically, first discretize its domain as x0 < x1 < x2 <

x3 < · · · < xN , thus we have

y(xn + h) ≈ y(xn) + hf(xn, yn), n = 0, 1, 2, 3, ..., N − 1,

where n is the index for iterations and N is the number of intervals to which the

domain is descritized. N is calculated by the formula as

N =
b− a
h

. (1.5)

The final form of Euler method is

yn+1 = yn + hf(xn, yn), n = 0, 1, 2, 3, ..., N − 1. (1.6)

11



1.8.2 Order of Euler Method

Global truncation error of Euler method is calculated by the help of truncation

process that is given in section 1.8.1. The significant term after truncating the

series is 1
2
y′′(x)h2, that shows the LTE is of second order, i.e., O(h2). To calculate

the global error multiply this term with total number of sub-intervals N , it results

the impact of this second order term on the whole interval as

1

2
y′′(x)h2N.

Use eq. (1.5) and simplify as

1

2
(b− a)y′′(x)h.

If the constant terms are ignored then we are left with h, that implies the global

error is of first order; and hence Euler method is of first order, denoted as O(h).

Graphical interpretation of Euler method

Consider a general IVP as

dy

dx
= f(x, y), y(x0) = y0.

Initial value at x0 is already given, one can estimate the successive value, i.e., y1, by

the help of slope at initial point. The tangent at initial point (x0, y0), approximates

the curve in interval [x0, x1], where x1 = x0 + h.

12



Figure 1.1: Graphical interpretation of Euler method.

In Figure 1.1, solution curve to the IVP is shown in red solid colored curve, and

slope at (x0, y0) is shown in blue dotted line. The gap between exact value and

estimated value at x1 is the error. Similarly, one can figure out values at all points

of discretized domain, i.e, x0, x1, x2, . . . , xn, n = 1, 2, . . . and xn = xn−1+nh. The

equation of tangent line for the interval [xn−1, xn] is given as

y − yn−1 =
dy

dx

∣∣∣∣
(xn−1,yn−1)

(x− xn−1).

Thus, corresponding value of y at x = xn is

yn = yn−1 + (xn − xn−1)f(xn−1, yn−1),

or

yn = yn−1 + hf(xn−1, yn−1), n = 1, 2, . . .

That is how Euler method generates a sequence of tangent lines at each point of

discretized domain, but these tangent lines when joined, are not too close to actual

curve. Also, it has lower order of accuracy and requires a very small step size to

achieve high accuracy.

13



1.9 Improved Euler Method

Typical Euler method was frequently used as an elementary method, but there was

a need for improvement to minimize the error. There are two main reasons for

improving Euler method. First, Euler method is a first-order technique with low

order of convergence. Second, decreasing step size after a certain point increases

round-off errors. In such cases, results are not acceptable as per error tolerance

associated with the problem.

1.9.1 Derivation of Improved Euler Method

The initial steps of derivation are same as Euler one, first consider the IVP (1.2) and

the Taylor series as given in eq. (1.4). In this case to reduce the error in solution,

the Taylor series is truncated up to second order of h as

y(x+ h) ≈ y(x) + hy′(x) +
h2

2!
y′′(x). (1.7)

The forward differnce formula for second order derivative of y(x) is given by

y′′(x) =
y′(x+ h)− y′(x)

h
.

Thus eq. (1.7) can be written as

y(x+ h) ≈ y(x) +
h

2

(
y′(x) + y′(x+ h)

)
. (1.8)

After discretizing the domain as x0 < x1 < x2 < x3 < · · · < xN , the eq. (1.8) can

be written as

y(xn + h) ≈ y(xn) +
h

2

(
y′(xn) + y′(xn + h)

)
.

By IVP (1.2), y′(x) = f(x, y) hence,

yn+1 = yn +
h

2

(
f(xn, yn) + f(xn+1, y

?
n+1)

)
, n = 0, 1, 2, 3, ..., N − 1, (1.9)
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where y?n+1 is unknown yet, but here it is estimated using the Euler formula given in

eq. (1.6), i.e., y?n+1 = yn + hf(xn, yn). Thus, improved Euler method is an implicit

method.

1.9.2 Order of Improved Euler Method

Error of improved Euler method is estimated by the help of truncation process

that is given in previous section. The significant term after truncating the Taylor

series is 1
3
y′′′(x)h3, which shows that local truncation error is of third order, denoted

as O(h3). To calculate the global error multiply this term with total number of

sub-intervals N , it results the impact of this third order term in the whole range as

1

3!
y′′′(x)h3N.

Use eq. (1.5) and simplify to get
1

3!
(b− a)y′′′(x)h2.

If the constant terms are ignored then we are left with h2, that implies the GTE is

of second order; And hence improved Euler method is of second order, denoted as

O(h2).

Graphical Interpretation of Improved Euler Method

Considere the IVP (1.2), and recall eq. (1.9) where for n = 0 the equation gets the

following form

y1 = y0 +
1

2
(f(x0, y0), f(x1, y

?
1)), (1.10)

where y?1 = y0 + hf(x0, y0). Let the slope at initial point be m0 and the estimated

slope at (x1, y
?
1) be m1. From eq. (1.10), it is clear that the average of these two

slopes is used to estimate the value y1, let such average slope be mavg.
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Figure 1.2: Graphical interpretation of improved Euler method.

In Figure 1.2, the exact solution of the problem is given in blue solid curve, the

average slope mavg is shown in green solid line while the estimated slopes at xo and

x1 are given in black solid lines. Here the approximate solution curve is estimated

by joining the lines obtained by taking an average of slopes at xo and x1, which is

closer to true solution.

Example 1.9.1 Consider the initial value problem

dy

dx
= 1 + y2, y(0) = 1, [0, 0.5]. (1.11)

Solve the problem with Euler and improved Euler methods, and compare the results.

Problem (1.11) has exact solution y = tan(x+ π
4
), for h = 0.025 the results obtained

by both methods are listed below
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Points (x) Exact solution Improved Euler method Euler method
0.000 1.0000 1.0000 1.0000
0.025 1.1054 1.1053 1.1026
0.050 1.1625 1.1624 1.158
0.075 1.2230 1.223 1.2165
0.100 1.2874 1.2873 1.2785
0.125 2.1497 2.1413 1.9906
0.150 1.3561 1.356 1.3443
0.175 1.4296 1.4294 1.4145
0.200 1.5085 1.5083 1.4895
0.225 1.5936 1.5933 1.5700
0.250 1.6858 1.6854 1.6566
0.275 1.7861 1.7856 1.7502
0.300 1.8958 1.8951 1.8518
0.325 2.0164 2.0155 1.9625
0.350 2.1497 2.1486 2.0838
0.375 2.2983 2.2968 2.2174
0.400 2.4650 2.4630 2.3653
0.425 2.6535 2.6509 2.5302
0.450 2.8689 2.8654 2.7152
0.475 3.1175 3.1128 2.9245
0.500 3.4082 3.4017 3.1634

Table 1.1: Comparison of Euler and improved Euler methods.

The data in Table 1.1, clearly shows that result obtained by improved Euler method

is more closer to the exact solution as compared to Euler method.
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Points (x) Abs. error for Euler method Abs. error for improved Euler method
0.000 0.0000000 0.0000000
0.025 0.0012930 0.0000176
0.050 0.0027931 0.0000267
0.075 0.0045381 0.0000455
0.100 0.0065739 0.0000693
0.125 0.0089566 0.0000991
0.150 0.0117550 0.0001366
0.175 0.0150550 0.0001837
0.200 0.0189630 0.0002432
0.225 0.0236120 0.0003184
0.250 0.0291720 0.0004139
0.275 0.0358570 0.0005359
0.300 0.0439470 0.0006929
0.325 0.0538050 0.0008961
0.350 0.0659090 0.0011618
0.375 0.0808990 0.0015127
0.400 0.0996430 0.0019816
0.425 0.1233300 0.0026172
0.450 0.1536500 0.0034927
0.475 0.1929800 0.0047212
0.500 0.2448500 0.0064837

Table 1.2: Absolute errors obtained by Euler and improved Euler methods.

In Table 1.2, the maximum absolute error obtained by Euler method is 0.2448500,

whereas by Improved Euler method maximum absolute error is 0.0064837 which is

comparatively small. The absolute error curves are given in Figure 1.3.
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Figure 1.3: Absolute error curves obtained by Euler and improved Euler method.

in Figure 1.3 the absolute error curve obtained by Euler method is given by black

dotted line and the absolute error curve obtained by improved Euler’s method is

given by red solid line. The Figure 1.3 shows that absolute error obtained by im-

proved Euler method is much less than Euler method. The maximum absolute error

for improved Euler method is 0.0064837, which is arguable if error tolerance of the

problem is extremely small. In such case, one can skip a second order method and

move to higher order methods , or one can try decreasing the step size. As discussed

earlier, the step size is related to the error per step, so a small step size could help

in decreasing error.

Step Size (h) versus Error

Example 1.9.2 The Initial value problem,
dy

dx
=
x

y
, y(0) = 1, 0 ≤ x ≤ 5,

has exact solution y =
√
1 + x2, solve by improved Euler method. Use multiple step

sizes starting from h = 1 then decreasing by half, and compare results.
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Step size (h) Numerical solution at x = 5 Max. Abs. error for improved Euler method
1.0000 5.1252 0.0858
0.5000 5.1013 0.0075
0.2500 5.0993 0.0008
0.0625 5.0990 0.00001

Table 1.3: Maximum absolute errors in improved Euler method for different step
sizes.

Observations in Table 1.3 show that decreasing the step size reduces the error. How-

ever, a small step size indicates more mesh points and calculations on each of these

points would consume more time. Moreover round-off error might also increase

hence, one can opt for a higher order method, to get lesser error.
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Chapter 2

Runge-Kutta Methods (RK
Methods)

The German mathematician Carl Runge worked on the scheme of Euler method and

developed the Rung-Kutta method in 1895 [4]. His idea was to extend the approxi-

mation in Euler method and hence improve accuracy. Karl Heun and Martin Kutta

contributed to develop higher order schemes; Karl Heun enhanced their work up-to

4th order RK methods.

The background of Runge-Kutta methods is linked to Taylor’s series and improved

Euler method. The idea is same but with small amendment in truncation process of

Taylor’s series. That is to keep more terms that involve higher order of h in series

and truncate it, this results in a higher-order accuracy.

If series is truncated after second-order h terms, then it is a second order RK method

and improved Euler method is a special case of such process. If series is truncated

after third order h terms, then it results a third order RK method. One can generate

a higher order method as per requirement of the modeled problem. It is convenient

to first define a general form of RK methods; afterwards one can derive the RK

method of desired order out of such mathematical formulae.
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2.1 General Form of RK Methods

Consider the IVP (1.2) and the formula of improved Euler method given in eq. (1.9).

If a1 = 1
2
, k1 = f(xn, yn), a2 = 1

2
and k2 = f(xn+1, y

∗
n+1), then eq. (1.9) can

be written as

yn+1 = yn + h(a1k1 + a2k2).

Likewise, one can write the general form up to mth order as

yn+1 = yn + h[a1k1 + a2k2 + · · ·+ amkm], (2.1)

where

k1 = f(xn, yn),

k2 = f(xn + c1h, yn + b11hk1),

k3 = f(xn + c2h, yn + h(b21k1 + b22k2)),

.

.

.

km = f

(
xn + cn−1h, yn + h

m−1∑
i=1

bmiki

)
.

(2.2)

The set of equations (2.1) and (2.2) is the general frame work for RK Methods upto

mth order with a condition,
∑m

j=1 aj = 1. Moreover, one can drive a set of RK

methods out of it for a specific order. These methods are widely used as they have

eliminated the efforts of calculating higher order derivatives a compared to Taylor’s

series method. Euler method is a first order RK method. In this chapter discussions

on second and third order RK methods are provided. For the sake of ease notations

of b1, b2, b3, . . . , b6 instead of b11, b21, b22, . . . , b33 are used respectively .

22



2.2 General Framework for 2nd Order RK-Methods

The second order RK methods have a general formula as given below

yn+1 = yn + h(a1k1 + a2k2), (2.3)

where

k1 = f(xn, yn), (2.4)

k2 = f(xn + c1h, yn + hb1k1).

The expantion of k2 by Taylor’s series up to first order h term is given as

k2 = f + c1fxh+ b1ffyh. (2.5)

For the sake of ease use f as a notation for f(xn, yn), and use equations (2.4) and

(2.5) in eq. (2.3) to get

yn+1 = yn + h

(
a1f + a2(f + c1fxh+ b1ffyh)

)
,

or

yn+1 = yn + hf(a1 + a2) + h2a2c1fx + h2a2b1ffy. (2.6)

Now use the Tayor series from eq. (1.4), up to second order h terms as

yn+1 = yn + hy′n +
h2

2!
y′′n, (2.7)

where y′n = f by IVP (1.2), so eq. (2.7) can be written as

yn+1 = yn + hf +
h2

2!
(fx + ffy). (2.8)

The comparison of equations (2.6) and (2.8) results the following set of equations

a1 + a2 = 1,

a2c1 =
1

2
,

a2b1 =
1

2
.

(2.9)
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The set of equations (2.9) has three equations and four arbitrary parameters, and

a2, b1 and c2 can not be equal to 0. One can choose any one parameter arbitrarily

and obtain a specific type of second order RK method. For MATLAB code, any one

of these unknown parameters is kept as input parameter and rest are found using

the set of equations (2.9). Let us choose a1 as input parameter and generate some

specific second order RK methods.

Derivation of Mid-point Method using the General Framework
for 2nd Order RK Methods

Choose a1 = 0, then the set of equations (2.9) results

a2 = 1, c1 =
1
2

and b1 =
1
2
,

and the formula of Mid-point method is obtained as

yn+1 = yn + k2,

k1 = f(xn, yn),

k2 = f

(
xn +

1

2
h, yn +

1

2
hk1

)
.

Derivation of Improved Euler Method using the General Frame-
work for 2nd Order RK Methods

Choose a1 = 1
2
, then the set of equations (2.9) results

a2 =
1
2
, c1 = 1 and b1 = 1,

hence the formula of Improved Euler method is obtained as

yn+1 = yn +
1

2
h(k1 + k2),

k1 = f(x, y),

k2 = f(x+ h, y + k1h).
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Derivation of Ralston Method using the General Framework
for 2nd Order RK Methods

Choose a1 = 1
3
, then the set of equations (2.9) results

a2 =
2
3
, c1 =

3
4

and b1 =
3
4
,

and the formula of Ralston method is obtained as

yn+1 = yn + h

(
1

3
k1 +

2

3
k2

)
,

k1 = f(xn, yn),

k2 = f

(
xn +

3

4
h, yn +

3

4
hk1

)
.

One can fetch a desired method by fixing the value for a1 in the set of equations

(2.9) and simplifying as shown in the previous cases.

2.3 General Framework of 3rd Order RK Methods

Like the second order RK methods, one can generate a set of 3rd order RK methods

via a general framework. The general form of 3rd order RK methods is given as

yn+1 = yn + h(a1k1 + a2k2 + a3k3), (2.10)

where

k1 = f(xn, yn) = f,

k2 = f(xn + c1h, yn + hb1k1),

k3 = f(xn + c2h, yn + h(b2k1 + b3k2)).

(2.11)

Use eq. (2.4), i.e., k1 = f , in k2 and k3, then expand the Taylor series of both k2
and k3. The exapanded forms are given below

k2 = f + c1fxh+ b1ffyh+
1

2!

(
c21fxxh

2 + 2c1b1ffxyh
2 + b21f

2fyyh
2

)
, (2.12)
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and

k3 = f+c2fxh+h(b2k1+b3k2)fy+
1

2!

(
c22h

2fxx+2c2(b2k1+b3k2)h
2fxy+h

2(b2k1+b3k2)
2

)
.

Use eq. (2.11) in k3 and simplify as

k3 = f + c2fxh+ (b2 + b3)ffyh+ b3c1fxfyh
2 + b1b3ff

2
yh

2

+
1

2
(b3c

2
1fyfxx)h

3 + c1b1b3ffyfxyh
3 +

1

2
(b3f

2fyfyy)h
3 +

1

2
(c22fxx)h

2

+ c2b2ffxyh
2 + c2b3ffxyh

2 + c1c2b3fxfxyh
3 + c2b1b3ffyfxyh

3 + b22f
2h2

+ b2b3f
2h2 + b2b3c1ffxh

3 + b1b2b3f
2fyh

3 +
1

2
(c21b2b3ffxx)h

3.

(2.13)

Now use equations (2.4), (2.12) and (2.13) in eq. (2.10) and simplify to get

yn+1 = yn + (a1 + a2)fh+ a2c1fxh
2 + a2b1ffyh

2 +
1

2
(a2c

2
1fxx)h

3

+ a2c1b1ffxyh
3 +

1

2
(a2b

2
1f

2fyy)h
3 + a3fh+ a3c2fxh

2 + a3b2ffyh
2

+ a3b3ffyh
2 + a3b3c1fxfyh

3 + a3b1b3ff
2
yh

3 +
1

2
(a3c

2
2fxx)h

3

+ a3c2b2ffxyh
3 + a3c2b3ffxyh

3 + a3b
2
2f

2h3 + a3b2b3f
2h3.

(2.14)

The Taylor series expansion of yn+1 given by eq. (1.4) up to 3rd order h terms in

simplified form is given as

yn+1 = yn + fh+
1

2
(fx + ffy)h

2 +
1

3!
(fxx + 2ffxy + fxfy + f 2fyy + ff 2

y )h
3. (2.15)

The comparison of equations (2.14) and (2.15) yields the following set of equations

a1 + a2 + a3 = 1, (2.16)

a2c1 + a3c2 =
1

2
, (2.17)

a2b1 + a3b2 + a3b3 =
1

2
, (2.18)

26



a1c
2
1 + a3c

2
2 =

1

3
, (2.19)

a2b1c1 + a3b2c2 + a3b3c2 =
1

3
, (2.20)

a3b3c1 =
1

6
, (2.21)

a3b1b3 =
1

6
. (2.22)

Set of equations (2.16)-(2.22) has seven equations and eight unknown parameters,

which indicates that one of these parameters is arbitrary. However, some more

algebraic calculations on this set results in two equations to be identical. Following

are the brief calculations of such process.

Simultaneously solve equations (2.21) and (2.22) and simplify as

b1 = c1. (2.23)

Thus, one may rewrite eq. (2.22) as eq. (2.23). Now, use eq. (2.23) in eq.(2.17) as

a2b1 + a3c2 =
1

2
. (2.24)

Subtract eq. (2.24) from eq. (2.18) and simplify as,

c2 = b2 + b3. (2.25)

Now use equations (2.23) and (2.25) in eq. (2.20) to get

a1c
2
1 + a3c

2
2 =

1

3
. (2.26)
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Observe that eq. (2.26) is same as eq. (2.19), further simplifications lead to the

following set of equations

a1 + a2 + a3 = 1,

a2 =
3c2 − 2

6c1(c2 − c1)
, c1 6= c2,

a3 =
2− 3c1

6c2(c2 − c1)
, c1 6= c2,

b2 =
1

a3

(
1

2
− (a2b1 + a3b3)

)
,

b3 =
1

6a3c1
,

b1 = c1.

(2.27)

The set of equations (2.27) has six equations and eight unknown parameters, thus

one is free to choose any two parameters and generate different 3rd order RK meth-

ods. Some conditions rise here, i.e., c1 6= 0, c2 6= 0 and c1 6= c2, while making choices

such conditions must be fulfilled. Moreover, one can use same set of equations to

write a MATLAB code while inserting c1 and c2 as inputs.

2.3.1 Derivation of Standard 3rd Order RK Method using
General Framework for 3rd order RK Methods

Recall the set of equations (2.27) and choose c1 = 1
2
and c2 = 1 to get the values of

remaining parameters as

a1 =
1

6
, a2 =

2

3
, a3 =

1

6
,

b1 =
1

2
, b2 = −1, b3 = 2.

(2.28)
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Plug the values listed in set of equations (2.27) into the set of equations (2.10) and

(2.11) to get the standard 3rd order RK method as

yn+1 = yn + h

(
1

6
k1 +

2

3
k2 +

1

6
k3

)
,

k1 = f(xn, yn),

k2 = f(xn +
1

2
h, yn +

1

2
hk1),

k3 = f(xn + h, yn − hk1 + 2hk2).

(2.29)
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Chapter 3

Comparison of Various 3rd Order
RK Methods

The comparison of various 3rd order RK methods applied to different non-linear

initial value problems are provided in this chapter.

Problem 1

In general relativity solutions of the Einstein field equations lead to models of space-

time geometry. The spherically symmetric static solutions of the field equations led

to a non-linear ordinary differential equation given as

dy

dx
=

y√
y2 + α1y + α2y4

, y(0) = 0, (3.1)

where α1 and α2 are arbitrary constants. Take α1 = 0 and α2 = 1 in eq. (3.1) we

obtain a specific case given as

dy

dx
=

1√
1 + y2

, y(0) = 0. (3.2)

The domain of the problem is [0, 1] and exact solution is x = 1
2

(
y
√

1 + y2 +

ln|
√
1 + y2|

)
. For a fixed step size h = 0.05 numerical solution obtained by stan-

dard 3rd order RK method and the exact solution are displayed in Figure 3.1.
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Figure 3.1: Solution obtained numerically via standard 3rd order RK method vs
exact solution.

In Figure 3.1, solution curve obtained numerically embeds closely on the exact so-

lution curve. Here results are obtained by a MATLAB code that utilizes formula

given in eq. (2.29). Small increment generates better results, on the other hand, a

large increment yields more difference between the exact and numerical solutions.

In order to have meaningful comparisons let us keep the same step size and vary the

parameters c1 and c2 within (0, 1] to generate different 3rd order RK methods. By

such process the solution curves obtained numerically embed closely on the exact

solution curve thus generating similar figures as of Figure 3.1. No difference is visible

by such plotting, the difference can only be observed by zooming into the graphs.

A better way to seek and analyze the difference between numerical and exact so-

lutions is to plot absolute error curves. The strategy followed here is to plot the

absolute error curves for standard 3rd order RK method and the methods generated

by varying parameters.

The standard 3rd order RK method has the form given in set of equations (2.29),

where c1 = 1
2
and c2 = 1. Vary both parameters and compare the absolute error

curves for various 3rd order RK methods applied to eq. (3.2). The results are dis-
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played in Figure 3.2, while step size and domain both are same as defined with the

problem.
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Figure 3.2: Absolute error curves of various 3rd order RK methods vs standard 3rd
order RK method.

The choices of parameters follow a pattern, firstly choices closer to 0, secondly choices

closer to 1
2
and lastly choices closer to 1 are taken under consideration. The tabular

data of Figure 3.2 is given in Table 3.1, along with maximum absolute errors in each

each case.

32



Parameters
Method c1 c2 Max. Abs. Error
Standard RK3 1

2
1 5.01440416078580× 10−07

1
10

1
5

4.38410888214946× 10−06

1
5

3
10

3.14822215230492× 10−06

3
10

2
5

2.13477371580062× 10−06

2
5

1
2

1.34151276476313× 10−06

1
2

3
5

7.65325713358855× 10−07

3
5

7
10

4.01521781268066× 10−07

7
10

4
5

2.44962246265246× 10−07

4
5

9
10

3.3742029670325× 10−07

9
10

1 6.51449542976579× 10−07

Table 3.1: Comparison of different 3rd order RK methods with standard 3rd order
RK method.

Discussion

The trend observed in Figure 3.2 is that error reduces when choices are taken closer

to 1. From Table 3.1 it is clear that the choice c1 = 7
10

and c2 = 4
5
results in compara-

tively less error. Observe that standard third order RK method produces error closer

to this particular choice and the minute difference is 2.564781698133340× 10−07.
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Problem 2

A logistic map differential equation is given as

dy

dx
=

1

4

(
y − y2

20

)
, y(0) = 1. (3.3)

The exact solution of problem is y = 20
1+19e−x/4 . and domain of problem is [0,1]. For

a fixed step size of 0.05, numerical solution obtained by 3rd order RK method and

exact solution both embed closely to each other and are presented in the Figure 3.3.
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Figure 3.3: Solution obtained numerically via standard 3rd order RK method vs
exact solution.

Following the process and strategy of varying the parameters c1 and c2 as followed

for Problem 1. Multiple choices of parameters are considered which follow the same

pattern as in Problem 1 and the absolute error curves are shown in Figure 3.4.
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Figure 3.4: Absolute error curves of various 3rd order RK methods vs standard 3rd
order RK method.

Parameters
Method c1 c2 Max. Abs. Error
Standard RK3 1

2
1 1.89756526047802× 10−08

1
10

1
5

9.96657978369342× 10−09

1
5

3
10

1.13112714750230× 10−08

3
10

2
5

1.26560919522234× 10−08

2
5

1
2

1.40013334259947× 10−08

1
2

3
5

1.53479990938621× 10−08

7
10

4
5

1.79895247587325× 10−08

4
5

9
10

1.93614886345728× 10−08

9
10

1 2.07088410864031× 10−08

Table 3.2: Comparison of different 3rd order RK methods with standard 3rd order
RK method.
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Discussion

The trend observed in Figure 3.4 is that error reduces when choices are taken

closer to 0. From Table 3.2 it is clear that the choice c1 = 1
10

and c2 = 1
5
re-

sults in comparatively less error. Observe that standard third order RK meth-

ods produces error closer to this particular choice and the minute difference is

9.009072821086779× 10−09.
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Chapter 4

Fourth Order RK Methods

Derivation of a general framework to develop various 4th order RK methods is

provided in this chapter.

4.1 General Framework of 4th Order RK Methods

The general form of a 4th order RK method is given as

yn+1 = yn + h(a1k1 + a2k2 + a3k3 + a4k4), (4.1)

k1 = f(xn, yn) = f,

k2 = f(xn + c1h, yn + hb1k1),

k3 = f(xn + c2h, yn + h(b2k1 + b3k2)),

k4 = f(xn + c3h, yn + h(b4k1 + b5k2 + b6k3)).

(4.2)

Taylor’s series expansions of k2, k3 and k4 in simplified forms are given below

k2 = f + c1fxh+ b1ffyh+
h2

2!

(
c21fxxh

2 + 2c1b1ffxyh
2 + b21f

2fyyh
2

)
+
h3

6

(
c31fxxx + 3c21b1ffxxy + 3c1b

2
1ffxyy + b31f

3fyyy

)
,

(4.3)
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k3 = f + h

(
c2fx + b2ffy + b3ffy + b3(c1fx + b1ffy)fyh+

b3
2

(
c21fxx

+ 2c1b1ffxy + b21f
2fyy

)
fyh

2

)
+
h2

2

(
c22fxxx + 2c2b2ffxy + 2c2b3(f + c1fxh

+ b1ffyh)fxy + b22f
2fyy + 2b2b3f(f + c1fxh+ b1ffyh)fyy + b23f

2fyy

)
+
h3

6

(
c32fxxx + 3c22b2ffxxy + 3c22b3ffxxy + 3c2b

2
2f

2fxyy + 6c2b2b3f
2fxyy

+ 3c2b
2
3ffxyy + (b2 + b3)

3f 3fyyy

)
,

(4.4)

k4 = f + (c3fx + (b4 + b5 + b6)ffy)h+

(
(c1b5 + c2b6)fxfy + (b1b5

+ b2b6)ff
2
y +

1

2
c23fxx + (b4 + b5 + b6)c3ffxy + ((c1b5 + c2b6)fx

+ (b1b5 + b2b6 + b3b6)ffy)c3fxyh+

(
1

2
(b24 + b25 + b26) + (b4b5 + b5b6

+ b4b6)h

)
f 2fyy + ((c1b5 + c2b6)b4fx + (b1b5 + b2b6 + b3b6)fy)ffyyh

)
h2

+

((
1

2
c21b5 + (c1b1b5 + c2b2b6)f

)
fxxfy +

1

2

(
(b21b5 + b22b6 + 2b2b3b6)f

2fyy

+ (c22fxxx + 2c2b3ffy + b23f
2f 2
yy)b6

)
fy +

1

6
c33fxxx +

1

2
(b4 + b5 + b6)c

2
3ffxxy

+
1

2
(b4 + b5 + b6)

2f 2fxyy +
1

6
(b4 + b5 + b6)

3f 3fyyy

)
h3.

(4.5)
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Use equations (4.3), (4.4) and (4.5) in eq. (4.1) and simplify as

yn+1 = yn + (a1 + a2 + a3 + a4)fh+ (a2c1 + a3c2 + a4c3)fxh
2 + (a2b1

+ a3b2 + a3b3 + a4b4 + a4b5 + a4b6)ffyh
2 +

1

2
(a2c

2
1 + a3c

2
2 + a4c

2
3)fxxh

3

+ (a2b1c1 + a3b2c2 + a3b3c2 + a4b4c3 + a4b5c3 + a4b6c3)ffxyh
3

+
1

6
(a2c

3
1 + a3c

3
2 + a4c

3
3)fxxxh

4 +
1

2
(a2b1c

2
1 + a3b2c

2
2 + a3b3c

2
2

+ a4b4c
2
3 + a4b5c

2
3 + a4b6c

2
3)ffxxyh

4 + (a3b3c1 + a4b5c1 + a4b6c2)fxfyh
3

+ (a3b1b3 + a4b1b5 + a4b2b6 + a4b3b6)ff
2
yh

3 + (a3b3c1c2 + a4b5c1c3

+ a4b6c2c3)fxfxyh
4 + (a3b1b3c2 + a3b1b3c1 + a4b1b5 + a4b2b6c2 + a4b3b6c2

+ a4b1b5c3 + a4b2b6c3 + a4b3b6c3)ffyfxyh
4 +

1

2
(a3b3c

2
1 + a4b5c

2
1

+ a4b6c
2
2)fyfxxh

4 + a4b3b6c1ffxf
2
yh

4 + a4b1b3b6ff
3
yh

4.

(4.6)

The Taylor series expansion of yn+1 by eq. (1.4) is given as

yn+1 = yn + fh+
1

2
(fx + ffy)h

2 +
1

3!
(fxx + 2ffxy + fxfy + f 2fyy + ff 2

y )h
3

+
1

4!
(fxxx + 3ffxxy + 3f 2fxyy + f3fyyy + fyfxx + 5ffyfxy + 4f 2fyfyy

+ 3fxfxy + 3ffxfyy + fxf
2
y + ff 3

y )h
4.

(4.7)

After comparing eq. (4.6) with eq. (4.7), we get following set of equations

a1 + a2 + a3 + a4 = 1, (4.8)

a2c1 + a3c2 + a4c3 =
1

2
, (4.9)

a2b1 + a3b2 + a3b3 + a4b4 + a4b5 + a4b6 =
1

2
, (4.10)

a2c
2
1 + a3c

2
2 + a4c

2
3 =

1

3
, (4.11)

2a2b1c1 + a3b2c2 + a3b3c2 + a4b4c3 + a4b5c3 + a4b6c3 =
1

3
, (4.12)

a2c
3
1 + a3c

3
2 + a4c

3
3 =

1

4
, (4.13)
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a2b1c
2
1 + a3b2c

2
2 + a3b3c

2
2 + a4b4c

2
3 + a4b5c

2
3 + a4b6c

2
3 =

1

4
, (4.14)

a3b3c1 + a4b5c1 + a4b6c2 =
1

6
, (4.15)

a3b1b3 + a4b1b5 + a4b2b6 + a4b3b6 =
1

6
, (4.16)

a3b3c1c2 + a4b5c1c3 + a4b6c2c3 =
1

8
, (4.17)

a3b1b3c2 + a3b1b3c3 + a4b1b5c1 + a4b2b6c2 + a4b3b6c2 + a4b1b5c3 + a4b2b6c3

+ a4b3b6c3 =
1

8
,

(4.18)

a3b3c
2
1 + a4b5c

2
1 + a4b6c

2
2 =

1

12
, (4.19)

a4b3b6c1 =
1

24
, (4.20)

a4b1b3b6 =
1

24
. (4.21)

The set of equations (4.8)-(4.21) has fourteen equations and thirteen unknown pa-

rameters; whereas simultaneously solving the set shows a few equations to be iden-

tical. Following are the brief calculations of the process.

Simultaneously solve equations (4.20) and (4.21) as

c1 = b1. (4.22)

Use eq. (4.22) in equations (4.15) and (4.16), and simplify as

c2 = b2 + b3. (4.23)

Use equations (4.22) and (4.23) in eq. (4.9), and subtract the resultant equation

from eq. (4.10) to get

c3 = b4 + b5 + b6. (4.24)

Use equations (4.22), (4.23) and (4.24) in eq. (4.9) to get

a2b1 + a3b2 + a3b3 + a4b4 + a4b5 + a4b6 =
1

2
. (4.25)
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Equation (4.25) identical to eq. (4.10). Now use equations (4.22), (4.23) and (4.24)

in eq. (4.11), shows that eq. (4.11) is identical to eq. (4.12). Similarly, continue the

process, use equations (4.22), (4.23) and (4.24) in equations (4.13), (4.15), (4.17)

and (4.20), the resultant equations are identical to equations (4.14), (4.16), (4.18)

and (4.21), respectively. Thus, we get the following simplified set of equations

a1 + a2 + a3 + a4 = 1,

a2c1 + a3c2 + a4c3 =
1

2
,

a2c
2
1 + a3c

2
2 + a4c

2
3 =

1

3
,

a2c
3
1 + a3c

3
2 + a4c

3
3 =

1

4
,

a3b3c1 + a4b5c1 + a4b6c2 =
1

6
,

a3b3c1c2 + a4b5c1c3 + a4b6c2c3 =
1

8
,

a3b3c
2
1 + a4b5c

2
1 + a4b6c

2
2 =

1

12
,

a4b3b6c1 =
1

24
,

c1 = b1,

c2 = b2 + b3,

c3 = b4 + b5 + b6.

(4.26)

In the set of equations (4.26) there are eleven equations and thirteen unknown pa-

rameters, hence two parameters are arbitrary. Some fixed values of these parameters

can generate a specific 4th order RK method [10].

Creating an algorithm for MATLAB code by using the set of equations (4.26) is a

tedious task. In this thesis, c1 and c2 are considered to be input parameters and for

remaining parameters use crammers rule to get the following set as

a1 = 1− a2 − a3 − a4, (4.27)

a2 =
6c2c3 − 4(c2 + c3) + 3

12c1(c1 − c2)(c1 − c3)
, c1 6= c2 6= c3, (4.28)
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a3 =
6c1c3 − 4(c1 + c3) + 3

12c2(c3 − c2)(c1 − c2)
, c1 6= c2 6= c3, (4.29)

a4 =
4(c1 + c2)− 6c1c2 − 3

12c3(c3 − c2)(c1 − c3)
, c1 6= c2 6= c3, (4.30)

b1 = c1, (4.31)

b2 = c2 − b3, (4.32)

b3 =
c2(4c3 − 3)(c1 − c2)

12c21c3 − 8c1(c3 + c1) + 6c1
, (4.33)

b4 = c3 − b5 − b6, (4.34)

b5 =
c2(5− 4c2)− c1(3− 4c3)− 2c3

24a4c1(c3 − c2)(c2 − c1)
, c1 6= c2 6= c3, (4.35)

b6 =
1− 2c1

12a4c2(c2 − c1)
, c1 6= c2, (4.36)

a4 =
1

24b3b6c1
. (4.37)

In set of equations(4.27)-(4.37), each unknown parameter is defined in terms of c1
and c2, except for c3. Which means, an expression of c3 in terms of c1 and c2 is

required, further simplifications for c3 leads to an interesting result. Calculations of

this result are given subsequently.

Use eq. (4.37) in eq. (4.36) and simplify for b3 as

b3 =
c2(c2 − c1)
2(1− 2c1)

. (4.38)

Simultaneously solve equations (4.33) and (4.38) to get

c3 = 1.
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Upon utilizing c3 = 1 in the set of equations (4.27)-(4.37) a simplified set of equations

is formed as

a1 = 1− a2 − a3 − a4,

a2 =
2c2 − 1

12c1(c1 − c2)(c1 − 1)
,

a3 =
2c1 − 1

12c2(1− c2)(c1 − c2)
,

a4 =
4(c1 + c2)− 6c1c2 − 3

12(1− c2)(c1 − 1)
,

b1 = c1,

b2 = c2 − b3,

b3 =
c2(c1 − c2)
2c1(2c1 − 1)

,

b4 = 1− b5 − b6,

b5 =
c2(5− 4c2) + c1 − 2

24a4c1(1− c2)(c2 − c1)
,

b6 =
1− 2c1

12a4c2(c2 − c1)
.

(4.39)

The set of equations (4.39) is used to generate an algorithm for the MATLAB code,

where c1 and c2 are input parameters. Choices for c1 and c2 must be made under

some conditions deduced by the set of equations (4.39), i.e., c1 and c2 both can not

be equal to 0 or 1, also c1 6= c2. Exceptionally, most widely used standard 4th order

RK method can not be driven using set of equations (4.39), it can be driven from

set of equations (4.26), the derivation is provided in subsequent section.
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4.1.1 Derivation of Standard 4th Order RK Method using
General Framework for 4th order RK Methods

Recall the set of equations (4.26), and choose c1 = 1
2
and b2 = 0, we get the follwoing

set of equations

a1 + a2 + a3 + a4 = 1,

1

2
a2 + a3c2 + a4c3 =

1

2
,

1

4
a2 + a3c

2
2 + a4c

2
3 =

1

3
,

1

8
a2 + a3c

3
2 + a4c

3
3 =

1

4
,

1

2
a3b3 +

1

2
a4b5 + a4b6c2 =

1

6
,

1

2
a3b3c2 +

1

2
a4b5c3 + a4b6c2c3 =

1

8
,

1

4
a3b3 +

1

4
a4b5 + a4b6c

2
2 =

1

12
,

a4b3b6 =
1

12
,

b1 =
1

2
,

c2 = b3,

c3 = b4 + b5 + b6.

(4.40)

Solve the set of equations (4.40) and determine the remaining parameters as

a1 =
1

6
, a2 =

1

3
, a3 =

1

3
, a4 =

1

6
,

c2 =
1

2
, c3 = 1, b1 =

1

2
, b3 =

1

2
,

b4 = 0, b5 = 0, and b6 = 1.

(4.41)
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Now plug the values listed in the set of equations (4.41) into the set of equations

(4.1) and (4.2) to get the standard 4th order RK method as

yn+1 = yn + h

(
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

)
,

k1 = f(xn, yn) = f,

k2 = f(xn +
1

2
h, yn +

1

2
hk1),

k3 = f(xn +
1

2
h, yn +

1

2
hk2)

k4 = f(xn + h, yn + hk3).

(4.42)

Graphical Interpretation of Standard 4th order RK Method

Recall initial value problem as given in eq. (1.2), and formula of standard 4th order

RK method given by eq. (4.42). For n = 0 we have

y1 = y0 +
h

6
(k1 + 2k2 + 2k3 + k4),

k1 = f(x0, y0),

k2 = f(x0 +
1

2
h, y0 +

1

2
hk1),

k3 = f(x0 +
1

2
h, y0 +

1

2
hk2)

k4 = f(x0 + h, y0 + hk3).

(4.43)

Likewise Euler method the standard 4th order RK method utilizes y(x0) to figure

out y1 but approximation involves average of four slopes k1, k2, k3 and k4. That is

y1 is approximated as

y1 = y0 + h(average slope),

where,

Average slope =
1

6
(k1 + 2k2 + 2k3 + k4).
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Figure 4.1: Graphical interpretation of standard 4th order RK method.

In Figure 2.1, the solution curve of problem is given in blue solid curve and all the

approximated slopes are given in black solid lines while error is shown by a red solid

line. Here the initial slope k0 estimates the slope at midpoint of [x0, x0+h], i.e., k2.

From set of equations (4.42), witness that there is an upgrade in k2 which estimates

a slope k3 at x0 + h
2
. Hence this upgraded slope at k3 leads to a better estimation

at x1 = x0 + h, i.e., k4.
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Chapter 5

Comparison of Various 4th Order
RK Methods

The comparison of various 4th order RK methods applied to non-linear initial value

problems are provided in this chapter.

Problem 1

A special case of Riccati equations has IVP as

dy

dx
=
−y3

2
, y(0) = 1. (5.1)

The domain of the problem is [0, 2] and exact solution is y = 1√
1+x

. For a fixed step

size h = 0.05, numerical solution obtained by standard 4th order RK method and

the exact solution are plotted in Figure 5.1.
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Exact Sol

Figure 5.1: Solution obtained numerically via Standard RK-4 method vs exact so-
lution.

In Figure 5.1, solution curve obtained numerically embeds closely on the exact so-

lution curve. Here results are obtained by a MATLAB code that utilizes formula

given in eq. (4.42). Small increment generates better results, on the other hand, a

large increment yields more difference between the exact and numerical solutions.

In order to have a meaningful comparison let us keep the same step size and vary

the parameters c1 and c2 within (0,1) to generate different 4th order RK methods.

By such process the solution curves obtained numerically embed closely on the exact

solution curve thus the process yields similar figures as of Figure 3.1. No difference

is visible by such plotting, the difference can only be observed by zooming into the

graphs.

A better way to seek and analyze the difference between numerical and exact so-

lutions is to plot absolute error curves. The strategy followed here is to plot the

absolute error curves for standard 4th order RK method and the methods generated

by varying parameters. The standard 4th order RK method has the form given in

eq. (4.42), where c1 = c2 =
1
2
. The choices closer to 0, 1

2
and 1 are taken under con-

sideration and an important point here is that c1 = c2 only for standard 4th order

RK method. The rest of variations are made with conditions that both parameters
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can not be 0 or 1, and c1 6= c2. Compare the absolute error curves for different 4th

order RK methods applied on eq. (5.1). Results are displayed in Figure 5.2, while

step size and domain both are same as defined with the problem.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x
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10
-8

1

2

3

4

5

6

7

8

9

1  RK-4 Standard

2  c1=1/10, c2=1/5

3  c1=1/5, c2=3/10

4  c1=3/10, c2=2/5

5  c1=2/5, c2=1/2

6  c1=1/3, c2=2/3

7 c1=3/5, c2=7/10

8  c1=7/10,c2=4/5

9  c1=4/5, c2=9/10

Figure 5.2: Absolute error curves of various 4th order VS standard 4th order RK
method.

The choices of parameters follow a pattern, first c1, c2 < 1
2
, second c1 ≤ 1

2
and c2 ≥ 1

2

and third c1, c2 > 1
2
. The tabular data of Figure 5.2 is given in subsequent Table

5.1, along with maximum absolute errors in each of the distinct methods.
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Parameters
Method c1 c2 Max. Abs. Error
Standard RK4 1

2
1
2

1.21718835011109× 10−09

1
10

1
5

2.41163832237490× 10−08

1
5

3
10

1.83668016351390× 10−08

3
10

2
5

1.39585784042495× 10−08

2
5

1
2

9.90654291932458× 10−09

1
3

2
3

1.46270173750906× 10−09

3
5

7
10

5.10261441988291× 10−08

7
10

4
5

4.24873145554727× 10−08

4
5

9
10

2.63350745655089× 10−08

Table 5.1: Comparison of different 4th order RK methods with standard 4th order
RK method.

Discussion

Observations in Table 5.1 show that 4th order RK method is the best choice, as it

generates comparatively less error. Otherwise, maximum absolute error increases

for choosing the parameters either closer to 0 or 1.

50



Problem 2

The Gompertz tumor growth model is given as

dN

dt
= a N ln

(
b

N

)
. (5.2)

In this modal N(t) is the number of cells in a tumor that grows over time. The

positive contants a and b depend on the type of tumor, whether the tumor is being

treated, and on the kind of treatment.

Consider a simple case by choosing a = b = 1 and initial number of tumor cells to

be 2 units we get the IVP as

dN

dt
= N ln

(
1

N

)
, N(0) = 2. (5.3)

The exact solution of problem is N = 2e
−t and domain of problem is [0,1]. For a

fixed step size of 0.05, numerical solution obtained by 4th order RK method and

exact solution, both embed closely on each other and are presented in Figure 5.5.
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Figure 5.3: Exact solution vs numerical solution obtained by standard 4th order RK
method.

Follow the process as followed for Problem 1 and plot absolute error curves obtained

for multiple choices of both parameters.
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8  c1=4/5,c2=9/10

9  c1=1/3, c2=2/3

Figure 5.4: Absolute error curves of various 4th order RK methods vs standard 4th
order RK method.

Parameters
Method c1 c2 Max. Abs. Error
Standard RK4 1

2
1
2

6.86767844815250× 10−08

1
10

1
5

1.30088052774369× 10−07

1
5

3
10

1.15432211122979× 10−07

3
10

2
5

1.02181226369069× 10−07

2
5

1
2

8.84544968382528× 10−08

1
3

2
3

6.22314431097948× 10−08

3
5

7
10

1.54315801914606× 10−07

7
10

4
5

1.26705950398431× 10−07

4
5

9
10

8.22473413819580× 10−08

Table 5.2: Comparison of different 4th order RK methods with standard 4th order
RK method.
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Discussion

There is no trend observed in Figure 5.6 and from Table 5.4 the choice c1 = 1
3
and

c2 =
2
3
that is a choice closer to 1

2
, results in minimum error. Otherwise, maximum

absolute error increases for choosing the parameters either closer to 0 or 1. Some

more choices of the form c1 <
1
2
and c2 >

1
2
to compare the absolute error curves

are displayed in Figure 5.7.
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1

2
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1  RK-4 Standard

2  c1=1/3, c2=2/3

3  c1=2/5, c2=3/5

4  c1=13/30, c2=17/30

Figure 5.5: Absolute error curves of different 4th order RK methods, where c1 < 1
2

and c2 > 1
2
.

Parameters
Method c1 c2 Max. Abs. Error
Standard RK4 1

2
1
2

6.86767844815250× 10−08

2
5

3
5

6.22314431097948× 10−08

3
10

7
10

6.70403315083945× 10−08

9
20

13
20

6.83056864403397× 10−08

Table 5.3: Comparison of different 4th order RK methods, where c1 < c2, with
standard 4th order RK method.
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In Table 5.5 the difference between maximum absolute errors of standard RK-4 and

second choice is 6.445341371730211× 10−09. Second choice has slightly less error as

compared to the standard RK-4, hence it is comparatively a better choice for the

Problem 2.

Observations from last problem show that standard 4th order RK method is not

necessarily a best method. Also, if both parameters are chosen closer to 1
2
results

in minimum error. Furthermore, no change occurs by enhancing the domain of

problem in each case.
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Chapter 6

Conclusion

This thesis discusses numerical methods for solving non-linear ordinary differential

equations. The study and development of RK methods up to the 4th order are pro-

vided. The families of second, third and fourth order RK methods are developed by

truncating the Taylor series, and a set of non-linear equations with some unknown

parameters in each case are obtained. Each set has some input parameters, i.e., one

can generate a specific method by varying these parameters. Each method’s math-

ematical set of equations is further simplified to generate MATLAB codes. While

deriving such a set for third and fourth order RK methods, some important con-

straints are discussed to choose the input parameters. The comparisons of various

third and fourth order RK methods applied to non-linear problems, such as the

special case of the Riccati equation, logistic map IVP and Gompertz tumor growth

model, are provided in chapter 3 and 5.

In case of family of third and fourth order RK methods, there are two free parame-

ters c1 and c2. These parameters are chosen under some conditions, such as, c1 6= c2,

also c1 and c2 both are non-zero real numbers. The comparison of various third or-

der RK methods applied to considered problems leads to a main observation that

for considered problems standard 3rd order RK method is not a better choice. For

first problem the choice c1 = 7
10

and c2 = 4
5
generates solution with comparatively

less error. For second problem the choice c1 = 1
10

and c2 = 1
5
is better. Prominent
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observation from comparison of different fourth order RK methods is that both of

these parameters generate accurate results if these are chosen closer to 1
2
, that is

closer to the choices in standard fourth order RK method. In problem 1 the stan-

dard 4th order RK method generates solution with less error and in problem 2 the

choice c1 = 1
3
and c2 = 2

3
results in minimum error.

Thus, on the basis of considered problems one can not conclude that only standard

third and fourth order RK methods are better. Moreover, observations from each

problem shows that the standard third and fourth order RK methods are suitable

if the error tolerance associated with the problem is not sensitive. For the error tol-

erance up to fifth decimal place of value, any method from both families is suitable.

Else, if a sensitive tolerance appears then one can vary the parameters and choose a

best suitable method from the family. The sensitive error tolerance can be tackled

by upgrading the mesh points or taking a small step size.
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