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                                                 Abstract 
 

 

Machine Learning, an effective tool, is being utilized in geotechnical engineering owing to the 

amount of data generated in the past. This work utilizes a machine learning based framework to 

identify a suitable density measure for the cyclic resistance of silty sands and subsequently tests 

the ability of several ML algorithms in producing the cyclic resistance curve. For this purpose, 

the published literature is considered a potential source for collecting the results of cyclic triaxial 

tests conducted at confining pressure of 100KPa on moist-tamped samples of silty sands. The 

compiled data includes several influencing parameters like the Number of cycles to cause initial 

liquefaction (N), grain size (D50), coefficient of uniformity (Cu), void ratio, relative density, 

equivalent void ratio, relative compaction, emin, emax, erange, and fines content. Performing feature 

selection indicates relative compaction and erange as the most influential parameters. Relative 

compaction even proved a better parameter than relative density in terms of normalizing the effect 

of fines on cyclic resistance. On comparing the accuracy of the several models created, Gaussian 

Process Regression (GPR) emerged as the best-performing algorithm for this problem. The GPR 

model is then validated on the unseen data. It is noticed that the model predicts the variation of 

the CSR with the Number of cycles (N) quite satisfactorily but over-predicts with an error up to 

25%. This error can be attributed to the combined effect of other minor factors that are not 

included as input parameters. It can be summarized that relative compaction and erange are capable 

of predicting the curve with reasonable accuracy.  
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Chapter-1 

INTRODUCTION 

 

1.1 Background 

 

Liquefaction has received a great amount of attention because of the devastating consequences of 

this phenomenon. Both laboratory as well as in-situ tests have played an essential role in better 

understanding the underlying mechanism. In laboratories, liquefaction is commonly studied 

through various plots like pore-water pressure build-up graphs, stiffness reduction plots, and cyclic 

resistance curves. These efforts gradually led to the formulation of several numerical constitutive 

models for the liquefaction assessment of soils. Cyclic resistance curve is one of the important 

plots which is required to estimate an equivalent number of cycles (Neq), which is the basis for the 

calculation of the Magnitude scaling factor (MSF) used in simplified procedures. Also, several 

numerical models demand cyclic resistance curves for calibration purposes. R. W. Boulanger & 

Ziotopoulou, 2017 stressed using the liquefaction curve as the input parameter for their plasticity 

soil model (PM4SAND). It usually requires performing a number of cyclic tests to obtain a cyclic 

curve for a specific soil at specific conditions. Owing to the efforts and limitations involved in 

laboratory tests, there is a need for an easy solution to this problem. With the advent of machine 

learning, attempts are being made to address a large number of problems using this technique even 

in geotechnical engineering. Previously, researchers have used machine learning to generate cyclic 

curves for clean sands. However, in the real world, sandy soil sometimes contains fines, which can 

influence the cyclic response of soil to great extent. Presence of fines further complicate the 

process. Though there exists ambiguity in characterizing the effect of fines on the cyclic curve, 

overall a negative effect is reported in a majority of previously conducted studies. 

 

1.2 Problem Statement 

Commonly, semi-empirical methods developed on in-situ tests (SPT, CPT, DMT) are used to 

assess the safety of soil against liquefaction. These empirical methods (Idriss & Boulanger, 2008, 

Boulanger, RW and Idriss, 2014, Marchetti, 2016) only provide information regarding liquefaction 

susceptibility in terms of factor of safety. To obtain other useful information, laboratory tests are 

required. Cyclic resistance curve is considered one of impotant plots that can only be obtained by 
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undergoing extensive laboratory program. If these curves are obtained by any means, numerical 

constitutive model like PM4Sand can be used to assess the complete behaviour of soil under 

dynamic load. To eliminate the shortcommings like availability of cyclic apparatus and tedious 

laboratory procedures, machine learning was employed previously. V. Akhila & Adarsh, 2020; 

and Young-Su & Byung-Tak, 2006 tried to predict cyclic resistance for clean sands using machine 

learning. The work on predicting cyclic curves for silty sands using machine learning is very less 

in number. 

 

1.3 Aims and Objectives 

 

This work is an attempt to study the behavior of soil under cyclic loading and its related influencing 

parameters, as well as, the application of machine learning algorithms. The aim of the work is to 

generate a cyclic resistance curve for silty sands by implementing the framework of machine 

learning. The objectives include the following: 

 

 Compiling the cyclic triaxial test on silty sand samples from published work. 

 To assess the ability of different machine learning algorithms in predicting the cyclic curve. 

 To obtain the parameters that most describe the behavior of soil under cyclic loading                                                                                                                                          

through analyzing the data. 

 

 

1.4 Scope of Thesis 

This work could not provide any solution to resolve the material-specific effect. So, the error in 

predicting cyclic curve can be quite large or negligible depending upon the type of soil. However, 

providing the data of soil containing non-plastic fines, cyclic curve can be generated for the same 

soil at any other fines content quite satisfactorily. 

 

1.5 Thesis Outline 

 

The thesis is organized into five chapters. Chapter-2 discusses the available in-situ procedures for 

liquefaction assessment at the beginning of the chapter. Afterward, the laboratory methods and the 

factors that influence the cyclic resistance curves are discussed in detail. This chapter also entails 
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the basic concept related to machine learning. The procedures of a few of the most popular 

algorithms are also described towards the end of the chapter. 

Chapter-3 details the methodology followed to obtain the desired objectives. 

In Chapter-4, results are discussed and presented in the form of plots. 

Chapter-5 finally concludes the work by enlisting the valuable results. 

And finally, references are listed, and an appendix, which includes the compiled data, is also 

provided at the end. 
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Chapter-2 

LITERATURE REVIEW 

 

 

Liquefaction is a phenomenon mostly related to saturated cohesion-less soils. This is associated 

with the build-up of pore water pressure under the undrained conditions developed by seismic 

loading. The progressive increase in pore water pressure reduces the mean effective stress until 

zero causing the soil to lose its strength. This reduction in strength can pose great damage to the 

structure built on these kinds of soils. Understanding the mechanism of this phenomenon is 

necessary to deal with the hazards associated with it. There are mainly two kinds of mechanisms: 

flow liquefaction and cyclic softening. (Robertson & Wride, 1998), delineate the two mechanisms 

quite exquisitely. According to them, deformations continue to proceed even after the event in the 

flow liquefaction case while deformations stop in cyclic softening. Cyclic softening gets its name 

because it can only undergo visible deformation under cyclic loading opposite to flow liquefaction. 

Flow liquefaction can occur under both static and cyclic loading. Cyclic softening is further 

subdivided into cyclic mobility and cyclic liquefaction with the difference of stress reversal. Cyclic 

mobility produces small deformations without any stress reversal unlike cyclic liquefaction.  

 

 

2.1  Evaluation Methods Based On In-Situ Testing 

 

Liquefaction susceptibility of soil can either be determined from in-situ or laboratory tests. A 

variety of in-situ procedures are developed and improved over the years. It all started with the 

semi-empirical framework devised by (Seed & Idriss, 1971), which involved the SPT blow counts 

correlating the cyclic stress ratio (CSR). Afterwards other in-situ tests like CPTU, DMT and Shear 

wave were also begin to be utilized in formulation of assessment procedures. The basic notion 

behind these simplified methods is to calculate factor of safety for liquefaction. Factor of safety, 

which is the ratio of Cyclic resistance ratio (CRR) to Cyclic stress ratio (CSR), decides whether 

soil is liquefiable. 

 

                                                                         FSliq = 
CRR

CSR
                                                           (2.1) 
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CRR is obtained using in-situ tests like SPTN, CPTu, shear wave etc. CSR which is a measure of 

earthquake loading introduced to soil, is obtained through site response analysis. However, a 

relation is introduced by (Seed & Idriss, 1971) which involves cyclic shear stress and initial 

effective vertical stress. 

 

                                                      CSR = 
τavg

σ’vo
  = 0.65(

amax 

g
) x ( 

σvo

σ’vo
 ) x rd                                                                          (2.2) 

 

Where, amax is the horizontal component of peak ground acceleration, g is the gravitational 

acceleration, σ’vo is the initial vertical stress and rd is the stress reduction factor that accounts for 

the non-rigid response of soil. There are several expressions available in literature for calculating 

stress reduction factor (rd), from simplest to complex ones. The fudge factor of 0.65 in the above 

equation is there to account for the irregularity in earthquake loading. In simple words, 0.65 

converts the irregular waves into equivalent uniform cycles. 

Once the earthquake loading (CSR) is calculated, the Cyclic resistance ratio (CRR) is the thing that 

remains in order to calculate the factor of safety against liquefaction. To determine CRR, there are 

procedures available that will be discussed in following sections. The common thing among all the 

existing procedures is that they are developed based on historical data and for specific standard 

conditions. Mostly, standard conditions include Magnitude of 7.5, vertical effective stress of 1 atm, 

and level grounds. So, in order to use these methods for conditions other than standard ones, 

adjustment factors are required. 

 

                                                          CRR = CRR7.5 x MSF x Kσ x Kα                                                                              (2.3) 

 

MSF is a magnitude scaling factor, Kα is a factor to account for initial stresses, and Kσ is for vertical 

stress other than 1 atm. 

 

These procedures, despite being the semi-empirical in nature, are preferred by geotechnical 

engineers owing to various drawbacks of laboratory test. Laboratory test involve difficult 

procedures for instance, high-quality samples, consumes a lot of money and time, etc. 
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2.1.1  SPTN-Based Procedures 

 

SPT-based procedure is the first ever semi-empirical method developed by (Seed & Idriss, 1971). 

After the first procedure, various other formulations that correlate SPTN and CRR are developed 

by other researchers (Cetin et al., 2004; Idriss & Boulanger, 2008; Youd & Idriss, 2001). These 

procedures are different from one another in terms of the correction factors they include. However, 

the common thing among them is (N1)60. The correlations between CRR and SPTN blow counts 

have suffered adjustments over the years. With the increase in the historical database, (N1)60 gets 

morphed into equivalent blow counts for clean sand (N1)60cs to take into account the effect of fines 

content. (Idriss & Boulanger, 2008) presented the relationship between SPT-N and CRR for silty 

sands.      

 

                      CRR7.5  =  exp [ 
(𝑁1)60𝑐𝑠

14.1
 + (

(𝑁1)60𝑐𝑠

126
)

2

-(
(𝑁1)60𝑐𝑠

23.6
)

3

-(
(N1)60cs

25.4
)

4

 -2.8 ]                           (2.4) 

 

                                                            (N1)60cs = (N1)60 + Δ(N1)60                                                                                        (2.5) 

 

                                            Δ(N1)60 = exp [ 
9.7

FC+0.01
 - (

15.7

FC+0.01
)

2

+ 1.63 ]                                          (2.6) 

 

                                                                (N1)60 = CNCDCRCECSN                                                     (2.7) 

 

  

Fig 2-1 Liquefaction Susceptibility Based on SPTN  

(I. Boulanger, 2010) 
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2.1.2  CPT-Based Procedures 

 

Given the limitation of SPT test in providing continuous profiling of site, CPT test started to gain 

popularity. One of the benefits of CPT is that it provides continuous soil profiling unlike SPT. With 

the increase in usage of CPT, researchers also started to relate CPT parameters with the CRR 

(Boulanger, RW and Idriss, 2014; Moss et al., 2006; Robertson, 2009). The procedures presented 

by different researchers differ a lot in terms of formulations and approach used. For instance, 

(Robertson & Wride, 1998) use soil behavior type index while (Boulanger, RW and Idriss, 2014) 

use different approach. Similar to CRR vs SPTN, Idriss and Boulanger 2014 also presented 

relationship between CRR vs tip resistance (qc) based on the historical data as shown in Fig.2-2. 

The procedure presented by (Boulanger, RW and Idriss, 2014) is described below: 

 

                                     CRR7.5 = exp [ 
qc1Ncs

113
 + (

qc1Ncs

1000
)

2

 -(
qc1Ncs

140
)

3

 -(
qc1Ncs

137
)

4

 - 2.8 ]                         (2.8) 

 

                                                                     qc1Ncs = (qc1Ncs) + Δ(qc1Ncs)                                                    (2.9) 

 

                                          Δ(qc1Ncs) = ( 11.9 + 
qc1Ncs

14.6
) exp [ 1.63 -  

9.7

FC+0.01
 - (

15.7

FC+0.01
)

2

]                      (2.10) 

 

                                                                               qc1Ncs = CN 
qt

pa
                                                        (2.11) 

 

 

Fig 2-2 Liquefaction Susceptibility Based on CPT 

(Boulanger, RW and Idriss, 2014) 
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The procedure of Robertson and Wride 1998 involves following equations. Few of those 

equations got updated in 2009 by Robertson. 

 

                                           CRR7.5 = 93 [ 
Qtncs

1000
 ]

3

+ 0.08               If  50 < Qtncs < 160                              (2.12) 

 

                                            CRR7.5=0.833 [ 
Qtncs

1000
 ] + 0.05                If  50 > Qtncs                                                        (2.13) 

 

                                                                            Qtncs = Kc x Qtn                                                                                                  (2.14) 

 

                                       If Ic < 1.64    K=1 else: 

                                            Kc = -0.403Ic
4 + 5.581Ic

3 - 21.63Ic
2 + 33.75Ic - 17.88                                     (2.15) 

 

                                                       Ic = [ (3.47- log(Qtn))2 + (log Fr + 1.22)2 ]0.5                                           (2.16)  

                                                                    Qtn = ( 
qc− σvo

pa
 ) x (

pa

σvo
 )n                                                       (2.17) 

                                                                          Fr = ( 
fs

qc− σvo
 ) x 100                                                         (2.18) 

                                                                                                                                                                                                                                                                      n = 0.381 x Ic + 0.05 x ( 
σvo

pa
 ) - 0.15                                             (2.19) 

 

 

2.1.3  DMT-Based Procedures 

 

Flat plate dilatometer test is used to measure in-situ strength and other properties of soil. As it is 

sensitive to stress history, cementation and pre-straining, this test also started to gain attention for 

liquefaction evaluation. There exist a relation between one of its parameter KD and CRR. 

(Marchetti, 2016) presented a CRR relation which is developed by incorporating the Qcn and KD 

relation into the CRR relation of (Idriss & Boulanger, 2006). The evaluation of liquefaction from 

DMT is not as popular as SPTN or CPT. 
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                                       CRR7.5 = exp [ 
𝑄𝑐𝑛

540
 + (

𝑄𝑐𝑛

67
)

2

 -(
𝑄𝑐𝑛

80
)

3

 -(
𝑄𝑐𝑛

114
)

4

 - 3]                                      (2.20) 

                                                                    𝑄𝑐𝑛 = 25KD                                                                     (2.21) 

 

2.1.4  Shear Wave Velocity Based Procedures 

 

The reason behind using the small strain parameter for evaluating the large strain phenomenon is 

that shear wave gets influenced by the same factors as the liquefaction. The conventional in-situ 

tests like SPTN and CPT are accurate to describe the plastic phenomenon, still many researchers 

feel the urge to relate the shear wave with CRR. With the improvements in in-situ shear wave 

methods, the use of shear wave in assessing liquefaction potential has been increased. The 

drawback of using shear wave is similar to SPT that is it cannot detect the thin layers. However, 

the use of shear wave is favorable in situations where soils are hard enough to get penetrated by 

SPT or CPT. The commonly used procedures based on shear wave to assess liquefaction potential 

is that of (Andrus et al., 2004) and (Kayen et al., 2013). Andrus & Stokoe 2004 formulations are 

presented in following equations. 

 

 

                                   CRR = [ 0.022 ( 
Ka1Vs1

1000
 )2 + 2.8 ( 

1

Vs1∗ − Ka1VS1
 ) – 

1

Vs1
∗ ) ] x Ka2                         (2.22) 

                                                           VS1 = Vs x ( 
Pa

σ’vo
  )0.25                                                                                                       

(2.23) 

                                                          Vs1* = 215 m/s                   FC < 5%                                         (2.24) 

                                                Vs1* = 215 - 0.5(FC – 5)         5% < FC < 35%                                  (2.25) 

                                                            Vs1* = 200 m/s                FC > 35%                                        (2.26) 

  

Kayen et al 2013 presented a probabilistic nature of the framework. Following are the equations from Kayen 

et al 2013. 
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         CRR = exp [ 
1

1.946
{- (0.0073Vs1)2.8011 – 2.6168ln Mw- 0.0099ln σvo’+ 0.0028FC - 0.4809Φ-1(PL)}] 

                                                                                                                                                                                                                                                  

(2.27) 

  PL = Φ [ 
1

0.4809
 { (0.0073Vs1)2.8011 - 1.946 ln CSR - 2.6168 ln Mw - 0.0099ln σvo’+ 0.0028FC } ]                     

                                                                                                                                                                                                                                              

(2.28) 

 

Ahmadi & Akbari Paydar, 2014, through experimental work proved Andrus & Stokoe method as 

a conservative method and furthered that accurate assessment of liquefaction require formulation 

of soil-specific CRR-Vs1 relation through experiments. 

 

2.2  Laboratory Based Evaluation Methods 

Laboratory tests have remained central in geotechnical engineering to understand the complex 

behavior of soils under controlled conditions. Notwithstanding the fact that these tests are cost-

inefficient, time-consuming, and tedious to perform, the major advancements from empirical 

equations to constitutive models were made based on these laboratory results. In liquefaction 

studies, these laboratory tests proved valuable in understanding the effect of various influencing 

parameters. There are a number of methods exist for liquefaction assessment: stress-based, strain-

based, energy approach, critical state method and shear wave velocity.  

The most commonly used equipment for this purpose are cyclic triaxial test and cyclic simple shear 

test. However, the other instruments like hollow cylinder, torsional shear, shaking table and ring 

shear test are also being used for liquefaction studies. Though it is not possible to imitate the exact 

field conditions in the laboratory. But for reliable results it is essential to carry out the tests under 

conditions close enough to field ones including both in-situ state and seismic loading. The in-situ 

conditions include effective stress, density, deposition of soil, and water conditions while seismic 

loading include mainly the intensity and propagation of shear wave. The mechanism of different 

equipment impose different loading conditions, so the results from one equipment might be 

different from the ones obtained using another equipment. It is considered that shear waves 

propagate upward during the seismic event and cyclic simple shear is the equipment that mimics 

these loading conditions quite accurately.  
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The core differences between cyclic triaxial and cyclic simple shear are that of loading direction 

and stress rotation. Cyclic triaxial test operates on deviatoric loading opposite to cyclic simple as 

well as field stress conditions. Despite the ill representation of seismic loading conditions, triaxial 

setup is more regularly used in laboratories because of its common availability. (Jefferies et al., 

2015) presented the actual loading imposed on soil in field, as shown in fig 2-3.  

 

 

Fig-2-3 Actual Loading Imposed on Soil in Field 

(Jefferies et al., 2015) 

 

Besides the proper field representation, identification of liquefaction state is also important for 

consistency in results. There are mainly two criteria for identification of failure state: i. pore water 

pressure ii. Strain/deformation criteria. The widely used criteria is pore-water pressure ratio (ru) 

which is a ratio of change in pore pressure to initial confining pressure. In triaxial condition, ru= 

Δu/ σ3c’ while in simple shear it is ru= Δu/ σvo’. According to this criteria, soil is considered to be 

liquefied when ru reaches a value of one. But this pore pressure generation is dependent mainly on 

compaction and type of soil. It means that loose soils undergo large deformation when ru=1 unlike 

dense soils. In liquefaction, the increase in pore-pressure is accompanied by the accumulation of 

strain (El et al., 2016). So, it is recommended to use this criterion together with the strain criteria. 

Strain criteria defines liquefaction as a state when the soil reaches certain level of strain. This strain 

level varies from 2 to 10% (Wu et al., 2004), but most commonly its value is 5% D.A axial strain 

in triaxial condition as recommended by (Ishihara, 1993) and 7% D.A shear strain in simple shear 

setting (Onder Cetin & Tolga Bilge, 2012; Vaid & Sivathayalan, 1996). The relationship between 

double amplitude (D.A) axial strain and D.A shear strain in terms of poisons ratio is presented by 

(Kokusho, 2017) as εD.A = γD.A/(1+ v). For undrained conditions, poisons ratio is 0.5 so, γD.A= 1.5 

x εDA. 
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2.2.1  Stress-Based Method 

Stress based method include the factor of safety, which determined by dividing the resistance of 

soil by the stress applied. The resistance of soil is commonly obtained through laboratory cyclic 

tests. 

Cyclic Resistance Curves 

The results of the laboratory tests are interpreted in form of graphs. The plots like pore-pressure 

generation, strain accumulation, cyclic resistance curves and modulus reduction are considered 

important in studying the soil behavior under cyclic loading. Cyclic curves are plots between the 

cyclic stress ratio and the number of cycles till failure. CSR is the cyclic stress ratio which is a 

shear stress normalized by initial vertical effective stress in cyclic simple conditions. While it is 

ratio of shear stress to initial effective confining pressure. Initial liquefaction is considered as a 

failure state which is determined by either ru or strain criteria. Depending upon different definition 

of failure, different cyclic curves are obtained as is visible in fig 2-4.  

 

 

Fig 2-4 Cyclic Curves for Different Strain Levels 

(adapted from Ishihara, 1985) 

 

Cyclic resistance curves are obtained through performing number of tests on samples with same 

initial conditions (density and confining pressure) at different CSR. It is observed from the fig that 

CSR changes inversely with the number of cycles. The following equation is widely used to 

describe the relation between CRR and number of cycles: 
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                                                                    CRR = a𝑁−𝑏                                                                 (2.29) 

Where a and b are fitting parameters, which are different for different sands. The parameter ‘b’ 

defines the slope of the curve which commonly ranges from 0.08 to 0.4. (Kishida & Tsai, 2014) 

used the value of 0.34 for this parameter for all the sands in calculating Neq.  

 

2.2.2  Energy Method 

Just like stress method, the basic principal of energy method involves comparing the seismic 

demand with soil capacity to resist it. The energy based methods came to use because of two main 

reasons. These methods, unlike stress method, quantify earthquakes in terms of energy which is 

quite simple. The other benefit is that they incorporate the effect of both stress and strain methods. 

When a soil is subjected to dynamic loading, part of this energy is dissipated into the soil. The 

energy dissipated into the soil can be determined through the hysteresis loop formed in a stress-

strain space (Fig 2-5). In cyclic triaxial test, dissipated energy is calculated from the deviatoric 

stress-strain hysteresis loop (Eq- 2.30), while for simple shear stress-strain loop (Eq-2.31). A 

typical hysteresis loop is shown in Fig 2-5.   

 

 

Fig 2-5 Shear stress-strain Plot 

   (Green & Mitchell, 2001) 

 

 

(2.30) 
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 It is observed from previous studies that energy per unit volume required to cause liquefaction 

increases with the increase in density. (Baziar et al., 2011) developed an equation to determine 

capacity energy as a function of relative density confining pressure, coefficient of uniformity (cu), 

mean grain size (D50) and fines content.  

 

2.2.3  Laboratory Shear Wave Methods 

The potential advantages of shear wave velocity urged researchers to relate it with the large strain 

phenomenon. Besides the method based on in-situ shear wave, many researchers have correlated 

laboratory shear wave with the cyclic resistance. Most prominent work is that of (Y.-G. Zhou & 

Chen, 2007) who proposed a relation between CRR and shear wave velocity. (Ahmadi & Akbari 

Paydar, 2014) also developed CRR-Vs1 relation for different soils and concluded that relation is 

soil-specific which is not applicable to all soils. Shear wave can also be used to assess the quality 

of the sample by comparing the in-situ shear wave with the shear wave measured in laboratory. 

Even shear wave can account for the fabric effect. The results of the tests performed by (Wang et 

al., 2006) proved that a reconstituted sample prepared at the same initial shear wave velocity as of 

undisturbed sample can represent the in-situ cyclic strength.   

 

2.2.4  Critical State Soil Mechanics 

Since the conception of critical state soil mechanics coined by (Roscoe et al., 1958), this framework 

has been employed to describe number of mechanical properties of the soil. After its success in 

static conditions, researchers started to use it in cyclic scenarios. Variety of parameters based on 

CSSM have been introduced from which state parameter (ψ), proposed by (Jefferies & Been, 

2006), has proved its worth (Qadimi & Mohammadi, 2014). It is observed in many studies that this 

state parameter not only normalizes the effect of density and confining pressure but also that of 

fines content on cyclic resistance (Hsiao & Phan, 2016; Mohammadi & Qadimi, 2015; A. 

Papadopoulou & Tika, 2008; Wei & Yang, 2019a). Fig 2-6 shows the relationship between CRR 

and (ψ) for Anzali sand, which shows a indirect relation between them. 

 

(2.31) 
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Fig 2-6 CRR- ψ Plot for Anzali Sand 

    (Mohammadi & Qadimi, 2015) 

 

Though a unique relation can be drawn between CRR and state parameter (ψ), but the scatter in the data 

shows that this parameter cannot capture the effect of other factors like fabric of soil. The problem with the 

critical state approach is that the accurate determination of Critical state line is not possible. Many attempts 

have been made to determine the in-situ state parameter (ψ) as well. But determining this parameter from in-

situ test (CPT) is not as easy as it may looks. Apart from difficulties involved in calculations, it is considered 

a better method than SPTN or CPTU based procedures since no adjustments are required in this method 

unlike SPTN or CPT methods. 

 

 

Fig 2-7 Relationship between CRR and State Parameter 

(Jefferies et al., 2015) 
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After all the efforts made in carrying out laboratory studies, various robust constitutive models are being 

used today. These models directly or indirectly include the critical state concept in their formation. The 

disadvantages associated with the numerical analysis is large number of parameters to be calibrated 

through laboratory tests. Also, just like other methods they work within certain accuracy.  

 

2.3  Factors Influencing Cyclic Resistance 

The behavior of soil subjected to dynamic loading is influenced by several factors which include 

state conditions, soil properties and loading characteristics. The impact of these factors on the 

phenomenon has been understood individually in many previous studies. The factors are broadly 

categorized as: 

         i. State conditions: density, confining stress and initial stresses. 

        ii. Soil properties: gradation, grain size, soil type and shape of grain, and fabric of the soil. 

       iii. Loading properties: frequency, loading conditions, intensity, and loading pattern. 

 

2.3.1  State Conditions 

State conditions include relative density, confining pressure, initial stresses and fabric of the soil. 

There are different measures to define the compactness of soil, for instance, relative density, dry 

density, void ratio and inter-granular void ratio (in case of silty sands). Relative density is a 

measure that reflects on the degree of compactness of soil with respect to the maximum density a 

particular soil can achieve. It is observed that with the increase in density, soil tendency to liquefy 

decreases (Mandokhail et al., 2017). It is because the dense soil tends to dilate which prevents 

building of positive pore water pressure during cyclic load. CRR can also be related with the void 

ratio, but relation is soil specific as shown by (Ahmadi & Akbari Paydar, 2014) who used the data 

for different clean sands. The great amount of studies on silty sands show that CRR curve for same 

sand with fines content plummets to lower position than clean sand. From these results it can be 

said that fines content changes the type of soil. But because of the trend that exist in soil with 

increasing fines content, a wide range of studies devoted to normalize the effect of fines. Further 

discussion on fines content effect will be discussed in next section. 
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Fig 2-8 Relationship between CRR and Void ratio (a) Clean sands (Ahmadi & Akbari Paydar, 2014)            

(b) Silty sand (Akbari-Paydar & Ahmadi, 2015) 

 

In contrast to relative density, confining pressure has adverse effect on the liquefaction strength of 

soil. The capacity of soil to resist liquefaction decreases with increasing confining pressure. But 

the effect of confining pressure is more prominent in dense soils and its effect for loose sands is 

nearly negligible (Vaid & Sivathayalan, 1996). (Mandokhail et al., 2017) collected cyclic 

resistance data for several clean sands from the literature published previously and confirmed that 

sand type, relative density, confining pressure, type of test and sample preparation method 

influence the liquefaction resistance.  

One of the most influential factor which is not easy to simulate in laboratories is fabric of the soil. 

This immeasurable factor can lead to inconsistent results for the same soil upon loss of fabric. 

‘Fabric’ is a one word that incorporates different phenomenon like aging of soil, deposition of soil 

and cementation present in soil. Separate studies have conducted on these fabric related factors 

with all confirming their great impact on cyclic resistance. Fabric is the reason for preferring 

undisturbed samples over the reconstituted ones. But because of the effort required in achieving 

high quality undisturbed samples, engineers are left with no other option but reconstituted samples. 

In laboratories, samples are prepared with different techniques mostly, moist tamping, water 

sedimentation and air pluviation. The Cyclic resistance curves for samples prepared using different 

techniques differ a lot. This difference is attributed to the different fabric formed using different 

techniques. Though it is difficult to reproduce the same fabric in the laboratory but through 

different sampling technique the effect of fabric can be understood. It is observed in previous 

studies that moist tamped samples yield more strength to liquefaction than others. 

a. b. 
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Fig 2-9 Sampling Effect (a) Undisturbed samples (b) Reconstituted samples 

(after Yoshimi et al 1984) 

 

There exists a clear distinction between the field and laboratory results. Literature shows that SPT-

N and CPT based methods predict positive effect of fines on cyclic strength contrary to the 

laboratory results (Taylor et al., 2015). (Kokusho et al., 2012) attributed this contradiction to 

cementation of soil. Though Fabric that exists in field cannot be reproduced in laboratory, different 

sampling methods in laboratory somehow elaborate on deposition effect. Despite its poor 

representation of the deposition in field, moist tamping is preferred over other sampling techniques 

in case of silty-sands to avoid segregation of the fines. Likewise other fabric related factors like 

layering effect and ageing have been studied previously (Amini & Qi, 2000; Cappellaro, 2019). 

 

2.3.2  Soil Properties 

The impact of factors related to the soil like particle size, particle shape, gradation, and fines 

content on liquefaction has been reported previously.   

The percentage of particles with size smaller than 0.075 mm are referred to as fines content. Fines 

content can be plastic or non-plastic in nature depending upon the mineralogy. With the revelation 

that silty sands can also liquefy, many researchers directed their focus to this topic. It is observed 

that plastic fines decreases the cyclic resistance of soil, but the interaction of non-plastic fines is 

bit complicated.  This is a reason that a good amount of attention has been paid to understand the 

effect of non-plastic fines on liquefaction strength. For better understanding, a lot of studies have 

been conducted on homogeneous samples with systematic increase of fines content. The results 

presented by one researcher does not support the results of the other researchers. Some reported an 

a. b. 
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increase of strength with the fines others concluded with opposite results. With the further 

clearance on the behavior of the silty sands, researchers seem to agree on the same concept. They 

believe that interaction of fines content with the coarser particles is something that defines the 

behavior of soil at macro level. In the process, terms like inter-granular void ratio and threshold 

fines content came into existence. It is noticed in many works that there is a change of trend after 

a certain amount of fines content regarded as threshold fines content. Threshold fines content is a 

boundary between sand-dominated structure and silt-dominated structure. Theoretically, in a sand-

dominated structure, silts either stay in voids formed by coarser sands or they take part in load 

carrying mechanism keeping the sand as a major contributor. Fig 2-10 presented by 

(Thevanayagam et al., 2002) explains the mechanism quite well. Once the threshold fines content 

is past, the sand-dominated structure shifts to silt-dominated. The range for threshold fines content 

range between 25 and 40 for majority of soils. However, it is not even a unique value for same soil 

(Baziar & Sharafi, 2011; A. . Papadopoulou, 2008) .   

 

 

 

Fig 2-10 Sand-Silt Interaction schematic diagram 

(Thevanayagam et al., 2002) 

 

Majority of previous work reports the negative effect of fines content upto threshold fines content. 

To account the fines effect inter-granular void ratio, which is then morphed into equivalent void 

ratio, is introduced. Following equation is introduced for equivalent void ratio. 

                                                        e*  =  
e +(1−b)fc

1−(1−b)fc
                                      (2.32)                     
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The parameter ‘b’, which determines the amount of fines involved in taking load, is not an easy parameter 

to determine. It usually requires back calculation. However, (Goudarzy et al., 2017) presented the following 

equation. 

                                                   b = [1 – exp (-
a (

fc
fthres

)
nb

  

k
)](

rfc

fthres
)r                                       (2.33)         

 

where, fc = fines content, r= d50/ D10 , D10 = size of sand at 10% passing, d50 = size of silt at 50% 

passing,  fthres= threshold fines content , K= 1- r0.25 . fthres  can be determined by the following 

equation by (Rahman et al., 2008). Nb and a are the fitting parameters whose values are suggested 

as 1 and 0.3 by Laskari et al 2014. (Goudarzy et al., 2016) also observed that the values of these 

parameters vary with the soil and suggested their values to be optimized for maximum R2.  

                                                     Fthres  = 0.40 × (  
1

1+ exp (0.5 − 0.13 ·(
1

r
))

  + r )                                 (2.34) 

 

Besides the amount of fines, shape of the grains is another factor on which this interaction related 

behavior highly depends on (J. Yang & Luo, 2015; J. Yang & Wei, 2012). For clean sands, only 

shape of the sands matters while in silty sands both the shape of fines and sand cause behavioral 

change. 

 

2.3.3  Loading Characteristics 

As stated earlier, different test equipment impose different stress conditions to soil specimen. These 

stresses are also different from the conditions experienced by the soil in field. Cyclic simple shear 

conditions are not same but closer to field conditions. But triaxial setup is most commonly used 

because of its availability. It is observed that the results from cyclic triaxial test differ from those 

obtained through cyclic simple shear. Mostly, the CRR from Triaxial test is always higher than 

simple shear test (Nong et al., 2021; Sadrekarimi, 2016). The curves presented by (Mandokhail et 

al., 2017) using the data of (Peacock & Seed, 1968) shows that curves from triaxial testings lie 

above but with lesser in curvature than those of cyclic simple shear (Fig 2-11) .  
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Fig 2-11 Stress Conditions (a) Cyclic Triaxial Setting (b) cyclic simple shear test 

(Cappellaro, 2019) 

 

 

Fig 2-12 Cyclic Curves for Different Tests 

     (Mandokhail et al., 2017) 

 

This difference, which results in dissimilarity between the values of CSS and CTX, is attributed to 

anisotropic conditions (ko=1) of cyclic simple shear test. If K=1 CRRtx is equal to CRRss. 

However, for Ko≠1 condition, conversion factors are available in literature to convert the CRRtx to 

CRRss, but actual function is more complex which depends  on many factors than simply on Ko 

(Misko-2017, Vaid and Sivathayalan 1996). Later studies used cr which is a ratio between CRRss 

and CRRtx, and reported the dependence of this factor on density and confining pressure. Various 

studies have been devoted to find relation between CRR from triaxial test and CRR from simple 

shear test. Most commonly used conversion factor, which is mainly a function of ko, is that of 

Ishihara et al 1985.  

 

                                                               CRRss = ( 
1+2(ko)ss

3
 ) CRRtx                                                                    (2.35) 

a. b. 
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2.4 Introduction to Machine Learning 

Machine learning is a data driven technique which enables computers to learn from data. An 

algorithm that could understand the patterns and make relation from data is necessary in order to 

perform this task. This second half of this chapter introduces the fundamental concepts of machine 

learning along with the challenges and steps involved in the creation of machine learning model. 

The procedures of a few of the most popular algorithms are also described towards the end of this 

chapter. Most of the concepts presented in this chapter are taken directly from a famous book 

written by (Géron, n.d.). 

2.4.1  Machine Learning Classification 

Depending upon the amount and type of supervision required during training, machine learning 

can be of four types: Supervised, semi-supervised, unsupervised and reinforcement learning. Each 

kind differs from other in terms of data, algorithms, purpose and mechanism. 

In supervised learning, training data which is used to feed an algorithm includes labels (desired 

solutions/output).In simple words, algorithm develops a relation between input and output 

variables present in data and creates a predicting model. The supervised learning has two cases: 

classification and regression. Fig 2-13 shows the difference between the two. Classification is used 

when the desired solution is to classify the data based on input variables while regression deals 

with numeric value. For instance, identification of the spam mails is a classification problem while 

predicting price of a house is a regression. Most common algorithms for supervised learning are: 

K-Nearest Neighbors (KNN), Linear regression, logistic regression, Decision trees, Support vector 

machines (SVM) and neural networks. The details on different algorithms will be presented later 

in this chapter. 

 

     

Fig 2-13 Supervised Learning (a) Classification (b) Regression (Géron, n.d.) 

 

a. b. 
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Unsupervised learning does not include any output variables in data. This kind of learning is used 

for clustering, visualization and dimensionality reduction, and anomaly detection. Clustering 

algorithm finds connections on its own and makes groups of similar data. For instance, algorithm 

makes groups of persons based on their reading interest as shown in fig 2-14 (a). Likewise, 

unsupervised learning is also useful in detecting unusual activity like credit card suspicious 

transaction. Anything that is different from the routine would be detected as ‘anomaly’ by the 

algorithm, just as shown in fig 2-14 (b). The common algorithms for clustering include K-means, 

DBscan and Hierarchical Cluster Analysis (HCA). The algorithms like Principal Component 

Analysis (PCA) and One-class SVM are used for dimensionality reduction and anomaly detection 

respectively.  

 

 

    

Fig 2-14 Unsupervised Learning (a) Clustering (b) Anomaly Detection 

(Géron, n.d.) 

 

Semi supervised learning involves both supervised and unsupervised systems. In this learning, 

little amount of data is labelled while the remaining data is unlabeled. Perfect example to this is 

identification of a person in a group like google photos. Once a new photo is uploaded it recognizes 

the person and all you need is to label that person. This is how semi supervised learning works (fig 

2-15).   

 

Reinforcement learning is entirely different from the other learning systems. System learns by 

observing the environment and performing some sort of action. And the system gets rewarded 

every time it makes right decision and system learns this way. Training a robot is a good example 

for this kind of learning. 

a. b. 



 

24 
 

Based on criterion that whether a system can learn incrementally, machine learning can be of two 

types: Batch learning and Online learning. Batch learning is not capable of learning incrementally. 

First system is trained on all the available data and then it is launched without learning anymore. 

If the pattern in data changes then training is again required on new data unlike online learning. 

Online learning can learn incrementally and hence, great for the system that deals with continuous 

data (like stocks).   

 

 

Fig 2-15 Semi-Supervised learning (Géron, n.d.) 

 

2.4.2  Challenges Involved In Machine Learning 

Notwithstanding the fact that machine learning is a revolutionary technique, it also faces challenges along 

the way. The most common problems it deals with are either data-specific or algorithm-related. 

 

1. Issues associated with Data  

The issues related to data include quantity as well as quality of the data. It is observed by (Banko 

& Brill, 2001) that on fairly large data, different algorithms perform quite similar. They suggested 

that instead of spending time and money on building more algorithms, quantity of data should be 

ensured. However, in everyday life where we mostly deal with medium sized data, choice on 

algorithm cannot be ignored (Halevy et al., 2009).  

Sometimes, model performs poor not because of quantity but quality of data. For quality data, data 

must include all the relevant features with less noise in it. For instance, in predicting the price of a 

house, the possible input features could be location, size of the house, facilities available etc.  
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However, considering gender as an input to predict the price might not be accurate. Feature 

engineering can help ensuring quality of data by removing outliers, dealing with missing values, 

finding most related features and performing other processes. 

 

 

Fig 2-16 Performance of Algorithms for Large Data 

   (Banko & Brill, 2001) 

 

 

 

2. Issues Related to Algorithm 

The issue that arise because of algorithm include overfitting and under-fitting. When the model 

happens to preform exceptional on training data but poor on unseen data it is referred as overfitting. 

Overfitting is usually associated with the degree of complexity of an algorithm relative to the 

quantity and noise in data. For instance, a complex algorithm like deep neural network can detect 

subtle patterns if the data is too noisy and quantity is too small. Under-fitting is quite opposite to 

overfitting. It happens when algorithm is too simple to understand underlying patterns. The ideal 

case of model is when it performs better on both training as well as testing data sets.  

These challenges can be resolved by using feature engineering to improve data quality, 

regularization in case of overfitting and use of complex algorithm with more parameters in under-

fitting situation. 
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2.4.3  Feature Engineering 

Feature engineering involves a variety of operations to deal with any inconsistency present in data. 

Most common operations include: handling of missing data, Handling of categorical data, Removal 

of outliers, feature selection and Transformation of data.  

i. Handling of Missing Data: 

The raw data can have a lot of missing values in it. To deal with those missing values so that they 

don’t affect the training process there are two options. Either to delete those missing data altogether 

or to fill the missing ones with appropriate values. Sometimes, removing the missing datasets can 

result in loss of data in large amount. So it is preferred sometimes to use mean, median or mode to 

fill the missing value. 

ii. Categorical Data: 

Computer is not designed to understand the categorical or string data. So it becomes a necessity to 

convert any string present in dataset to numeric values like in form of binary numbers. In doing so, 

technique like hot encoding is most commonly employed.  

iii. Cleaning and Transformation of data: 

The major source of inconsistency in data arise from outliers or noise. So, a fair amount of attention 

should be given in removing them during pre-processing stage. There are techniques like 3-

standard deviation and inter-quartile range method to identify the outliers. To visualize the outliers, 

‘boxplot’ is commonly used for this purpose. 

Transformation of the data is also a feature engineering operation which brings all the features to 

a same scale. Transformation reduces the computational effort and makes things easier for an 

algorithm to understand the patterns.  

2.4.4  Feature Selection 

The last but the most important process is finding out features that highly relate to the output. Using 

irrelevant features can not only lead to dubious results but also be a cause of ‘curse of 

dimensionality’. It is also important to ensure that the input parameters are independent of each  
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other else issues relating to multi-collinearity arise. Multi-collinearity does not affect accuracy 

much but it changes the coefficients and P-values (Michael H. Kutner, Christopher J. Nachtsheim, 

John Neter, 2013).  The techniques for feature selection are categorized into three groups: Filter 

methods, Wrapper methods and embedded method (Tadist et al., 2019).  

Filter methods: Filter methods do not involve any model. These are the simplest methods that just 

focus on the features themselves. Pearson correlation, spearman correlation, chi-squared, ANOVA 

are a few of them. 

Wrapper Methods: These methods check the accuracy of the model by adding or removing the 

feature to assess the impact of that feature on the output. Recursive feature elimination and 

sequential feature selection (forward selection, backward selection, floating forward and backward 

selection) are the most popular wrapper methods. The most efficient both in respect to computation 

and accuracy is forward selection method (Bemister-Buffington et al., 2020). 

The underlying procedure of Forward feature selection is worth to describe here. In first loop, it 

creates models for every input parameter and select a parameter that gives the best accuracy among 

all other parameters. In second loop, more models are formed using two parameters but every 

combination include best parameter from previous loop. The combination of two parameters which 

gives the best accuracy is selected for 3rd loop. This can be better understood from the fig 2-17 

presented here.   

 

 

Fig 2-17 Sequential Forward Feature Selection (Mathworks) 
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Embedded methods: These methods are embedded in the models. Once the model is created, 

model automatically perceive the most influencing features. Unlike wrapper methods, there is no 

need to iterate the model for the number of times the features. L-1 regularization, Random-forest 

and decision trees are a few of them.    

 

2.4.5  Optimization And Regularization 

The purpose of both regularization and optimization is same which is to make model more efficient. 

Optimization is searching for the best set of parameters that can reduce errors and increase the 

accuracy of the model. While regularization is to improve the ability of the model on testing data 

by restraining few of the model parameters during training phase. So, optimization and 

regularization are performed in training phase having slightly different purpose. There are several 

optimization techniques are available that help in searching the best hyper-parameters. Gridsearch, 

Randomsearch and Bayesian optimization are the popular ones. In this section, a bit more 

information on Bayesian optimization technique will be shared. 

Bayesian Optimization 

Owing to the limitations present in Gridsearch and Randomsearch, Bayesian optimization 

technique is preferred over them. This technique builds a surrogate model of the objective function 

since surrogate model is much easier than the objective function. At the start, this surrogate 

performs poor but after several iterations, the surrogate approaches the true objective function. 

Based on the assumption that if surrogate performs well with a specific combination of hyper-

parameters then the real model will also yield good performance with the same set of hyper-

parameters. This way the best combination of hyper-parameters is identified. So, the generic steps 

for Bayesian technique involves: 

1. Building a surrogate model 

2. Finding the best parameters for surrogate model 

3. Apply the hyper-parameters to the true objective function 

4. Update the surrogate model with new results 

5. Repeat the process till model stops to improve. 
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2.4.6  Evaluation Measures 

A model is evaluated using an appropriate performance matrix. To assess a regression model, Root 

mean squared error (RMSE), Mean absolute error (MAE) and R-squared (R2) are commonly used 

performance measures. For problems related to classification, performance measures based on 

confusion matrix like accuracy, precision, recall and F-score are more common. Confusion matrix 

counts the number of accurate predictions (True Positive (TP), True Negative (TN)) and number 

of inaccurate values (False Positive (FP), False Negative (FN)). Based on confusion matrix 

precision, recall or accuracy can be measured.  

                                                                      Precision =  
TP

TP+FP
                                                          (2.36) 

                                                                        Recall =  
TP

TP+FN
                                                            (2.37) 

                                                                 Accuracy =  
TP+TN

Total Numbers
                                                        (2.38) 

 

Root mean squared Error (RMSE) and Mean absolute error (MAE) both are the ways to measure 

error between the target values and the predicted ones. They measure the distance between the 

predicted vectors and target vectors in order to get errors. RMSE uses Euclidean distance while 

MAE works on Manhattan distance. The lesser the errors the more accurate is the model. RMSE 

is more sensitive to outliers that is why it is recommended to use MAE if outliers exist in data. The 

formulation of RMSE and MAE are presented in below equations. These error estimators are also 

referred as cost functions and are useful in building a model with minimum error. 

 

                                                    RMSE (X, h) = √
1

𝑚
∑ (h(xi) − 𝑦𝑖)2𝑚

𝑖=1
                                       (2.39) 

 

                                                        MAE (X, h) = 
1

𝑚
∑ |h(xi) − 𝑦𝑖|

𝑚

𝑖=1
                                         (2.40) 

 

Where, m = number of instances, xi = ith instance’s feature vector, h = operation function,              

h(xi) = prediction on ith instance’s feature vector, yi = target value of ith instance  
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2.5  Machine Learning Algorithms 

Tasks related to machine learning can be performed without even knowing much about the 

algorithm. But having an understanding of how an algorithm works can help a lot on deciding a 

right algorithm for a problem in hand. It will also help in debugging the errors in case they occur. 

The most common supervised learning algorithms will be discussed here in this section. As 

mentioned earlier, supervised learning can be used for classification and regression purposes. Some 

of the algorithms are used for only one problem while others can be used for both cases. 

 

2.5.1  Linear Regression 

Linear regression is the simplest algorithm exist in machine learning, suitable for linear data. 

Linear model uses weighted sum of input features plus a bias term (θo) as shown in equation. Model 

uses mean squared error (MSE) as a cost function to minimize the error. Most common way of 

reducing this cost function is gradient descent.   

                                                  y  =  θo+ θ1x1 + θ2x2 + θ3x3 +…….+ θnxn                                                                        (2.41) 

where, y = predicted value, n is a number of input features, θi = weight of the ith feature, θo = bias 

term  

 

 

Fig 2-18 Linear Regression Fitting on data 
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Gradient descent helps in getting an optimal solution by finding the best weights for each feature. 

The basic idea is to tweak the weights iteratively in order to reduce the cost function. It is not only 

used in linear regression but in every algorithm where weights are used as basis, for instance, ANN.  

An important parameter associated with gradient descent is “learning rate” which decides the size 

of step in reaching the minimum loss. Learning steps should neither be too small to increase 

computational effort nor too large to miss the global minimum. Sometimes depending upon cost 

function, there are chances that gradient descent will stuck in local minima instead of reaching 

global minimum. The cost function used in linear regression never faces such problem of local 

minima. There are different methods of gradient descent based on time required to find minimum 

error. Batch gradient, mini-batch gradient, and stochastic gradient are common methods, with 

batch gradient being the slowest and stochastic gradient being the fastest one.   

 

 

Fig 2-19 Gradient Descent (Boehmke & Greenwell, 2019) 

 

Linear regression can be used to fit the non-linear data by adding the powers of feature as new 

features and then training the model on these extended features. This model is then referred as 

polynomial regression. But with the increase in degree the chances are that the model will start 

overfitting the data. To cater this overfitting problem, weights are usually constrained by different 

methods. Ridge regression, Lasso regression and elastic nets are common methods to improve 

generalizability in linear regression. 
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2.5.2  Logistic Regression 

This algorithm classifies an instance by estimating probability that instance belongs to a particular 

class. If the probability is greater than 0.5 it belongs to that class otherwise it relates to other class. 

This model is the simplest and is used only for classification problems.  

 

2.5.3  Decision Trees 

Decision trees, used for both regression and classification problems, are capable of fitting data on 

complex data. Decision trees start with the root node and continue to split in children nodes till 

leave nodes are obtained. Leave nodes are considered to be pure nodes that are unable to split 

further. The important terms commonly used in decision trees are shown in Fig 2-20. Algorithm 

identifies the leave nodes based on purity matrix. The most commonly used purity matrices are 

gini and entropy in classification problem. In case of regression, MSE or MAE is used as a purity 

matrix. Algorithm tries to split the training data in a way that reduces the impurity in classification 

or MSE in regression.  

 

 

Fig 2-20 Terminologies used in Decision Trees 

(Boehmke & Greenwell, 2019) 

One of the advantages of decision trees is that they do not require feature scaling or centering. But, 

they overfit the data if left unconstrained. The reason is that these are non-parametric algorithms 

unlike linear regression which have predetermined number of parameters. The non-parametric 

algorithm does not make a lot of assumptions prior to training and adapt itself to the training data. 
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So, regularization is necessary to avoid overfitting, which includes either pre-pruning or post-

pruning. Another drawback of decision trees is that they are sensitive to rotation of data as well as 

small variation in data. Random forest is an ensemble technique that can deal with the instability 

of decision trees. 

 

2.5.4  Ensemble Techniques 

Sometimes instead of relying on an individual predictor, predictions from a group of predictors are 

aggregated to get better results. A group of predictors may or may not include same algorithm. 

Ensemble techniques always enhances the performance even if the individual predictors are weak 

learners. This hypothesis of “always improves the performance” is true only if the predictors are 

perfectly independent. Independent predictors make uncorrelated errors which is not possible if 

trained on the same data or using same algorithm. To make it possible, either different algorithms 

are used on same data or same algorithm is trained on random subsets of data. There are four 

ensemble techniques which include voting and aggregating, Bagging and pasting, Boosting, and 

Stacking, with bagging as a most common used technique. Voting and aggregating uses same 

training data for different algorithms, then the predictions of algorithms are aggregated. 

Aggregation is simply a mode for classification and mean for a regression problem. 

Bagging and pasting trains the same algorithm on random subsets of the training data. The only 

difference between bagging and pasting is that of sampling replacement. Bagging allows the 

instances to be sampled multiple times for the same predictor unlike in pasting. It is observed that 

bagging, also referred as bootstrap aggregating, performs better than pasting. The popular and 

powerful algorithm based on decision trees trained using bagging method is Random Forests. As 

it is mentioned earlier that decision trees are unstable and overfit more often. The solution to this 

problem lies in ensemble technique like Random Forests. Random forests has almost same hyper-

parameters as that of decision trees. These hyper-parameters can be regularized to get the optimized 

results. An added benefit to random forests is that they make it easy to measure the relative 

importance of each feature, hence, helpful in feature selection process. The downside of random 

forests is that it is a black-box model which means that the mechanism involved in getting 

prediction cannot be interpreted unlike decision trees. 

Another popular ensemble technique is Boosting. The basic process involved in boosting is the 

training of predictors by sequential improvement of the previous model. Because of its sequential  
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training, this technique uses more time as compared to bagging method (parallel training). There 

are many boosting algortihms exist, of which Adaboost and Gradient boosting are the most popular 

ones. Adaboost pays more attention to the training instances that the previous predictor under-

predicted. Those underpredicted instances are then given more weightage when model is trained 

for the second time. The weights are updated again for training for the third time and so on. The 

mechanism of the Gradient boosting is similar to Adaboost but gradient boosting works with 

residual errors instead of weights. XGboost is nothing but the optimized version of gradient 

boosting. If the model overfits it can be regularized either by reducing number of estimators or 

regularizing the base predictor, which is applicable to both bagging and boosting technique. 

However, in case of boosting another regularization technique called “Shrinkage”, which involves 

reducing learning rate, can be used as well.  

 

 

Fig 2-21 Steps involved in Boosting method 

(Boehmke & Greenwell, 2019) 

 

Stacking is the last ensemble technique which is quite different from other methods in a sense that 

instead of using trivial functions to aggregate the predictions of different predictors, it uses a model 

to perform this task. The working of this method is simple. First, the data is divided into two, half 

of which is used to train the models while other half is used to get predictions. The predictions 

obtained are used as an input for a final model, also called blender, which makes the final 

prediction. It is also possible to train several layers of blender with different algorithm in each 

layer. This method is not so common in use.  
 

2.5.5  Multivariate Adaptive Regression Splines 

Multivariate adaptive regression splines (MARS) is a more convenient approach to capture the  
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non-linear pattern in data than polynomial regression. Firstly, it is a non-parametric algorithm, 

unlike polynomial regression which means there is no need to predefine parameters. Secondly, it 

never becomes a reason for multicollinearity which arises because of additional features in case of 

polynomial regression. It performs piecewise linear regression and forms knots (kinks) where data 

changes its trend. Algorithm continues to find knots producing potentially non-linear prediction 

equation. The process involved in MARS can be explained in Fig.2-22. 

 

 

Fig 2-22 Fitting of the data by MARS (a) One Knot (b) Two Knots (c) Three Knots  

(d) Four Knots (Boehmke & Greenwell, 2019) 

Too many knots can reduce the generalizability of the model. So, once all the knots are identified 

it is important to drop the less important knots. This process of reducing knots is called pruning. 

Two most important parameters for this algorithm to be tuned are degree of interactions and 

maximum number or terms retained in final model. The bright side of this model is that it includes 

feature selection mechanism which automatically include or exclude a feature by assessing its 

impact on the error. Besides, this algorithm does not require feature scaling.  The only disadvantage 

associated with this model is that it trains slow because it scans each value to identify cutpoints 

(knots).Now that we have studied few models, Fig 2-23 presents how a different algorithm fits the 

data differently. 
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Fig 2-23 Fitting Comparison of Different Algorithms (a) Polynomial Regression  

(b) MARS (c) Decision Trees (Boehmke & Greenwell, 2019) 

 

2.5.6  Support Vector Machine   

Like Decision trees, Support vector machine is a versatile machine learning model which can be 

used for both regression and classification problems. It is also used for outliers detection. SVM is 

more popular for classification of medium to small sized data. SVM can be performed on both 

linear and non-linear data. In case of linear SVM, the two different classes are separated linearly 

while non-linear is useful for complex data. Fig 2-24 presents a comparison between linear and 

non-linear SVM fitting to data. Just like polynomial regression, non-linear SVM adds new features 

and then fit the linear SVM model on those additional features. This method of adding new features 

is quite interesting unless the degrees are too high. In high degrees, adding new features increases 

computational effort. The solution to this problem is a kernel trick. Kernel trick make it possible 

to get the same results as if the new features are added without adding them in actual. Most 

commonly used kernels are linear, polynomial, Gaussian RBF, and sigmoid.  

      

Fig 2-24  Support Vector Machine Boudaries (a) Linear SVM (b) Non-Linear SVM 

(Boehmke & Greenwell, 2019)  

 

a. b. 
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2.5.7  Artificial Neural Network 

The working mechanism of artificial neural networks is different than the other available machine 

learning algorithms. They train themselves by passing the information through connection between 

the neurons imitating the biological neural system. One of the simplest neural network is 

perceptron which contains one input layer and one output layer with no hidden layer in between 

them. Each neuron, also referred as linear threshold unit (LTU), in input layer is connected to all 

the inputs. A neuron outputs the result after applying activation function to the weighted sum of 

all the inputs connected to that neuron. The architecture of a single neuron comprise of an operator 

and an activation function as shown in fig 2-25. An operator usually adjusts the weights while 

activation function brings non-linearity. Earliest activation function used in linear threshold unit 

(LTU) was step function. But step function does not work well with gradient descent because of 

no slope. So, to deal with this limitation, a variety of activation functions have been proposed over 

the years. Logistic function, hyperbolic tangent function, Relu, leaky relu and sigmoid are few of 

the prominent ones. These activation functions are used depending upon the situation and the 

expected range of output. For instance, hyperbolic tangent function restricts the output function 

between -1 to 1 while logistic function ranges between 0 and 1. 

 

 

Fig 2-25 Architecture of single Neuron  

(Boehmke & Greenwell, 2019) 

 

Given the limitation of simple perceptron that it is incapable of understanding complex patterns, 

multilayer perceptron (MLP) came into existence. MLP, which is a stack of perceptrons, 

comprised of input, output and hidden layers. MLP gets trained in two passes; forward pass and 

backward pass. This training process is referred as Backpropagation neural network. A small batch 

of instances is passed to input layers, which then pass the information to first hidden layer. Hidden 

layer’s connection weights are initialized randomly to prevent training from failure. The neurons  
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present in that first hidden layer process the information and transfers the output to next layer till 

it reaches the output layer. This transfer of information from input layer to output layer with hidden 

layers in between is called forward pass. Once the prediction is made, the process is performed in 

reverse direction to compute the errors made during learning. This is referred as backward pass. 

After the successful computation of errors last step is to tweak the weights associated with each 

input. To accomplish this task algorithm performs gradient descent step to reduce the error. The 

loss function usually used in regression is either MSE or MAE while in classification problem 

cross-entropy is more common.  

 

 

Fig 2-26 MultiLayer Perceptron /Deep Network 

 

Problems associated with deep neural network 

Deep neural network faces a few problems. Vanishing/exploding gradient problem is one of the 

common issues faced by deep neural network which commonly arises because of an inappropriate 

activation function. When there are too many layers in between input and output layers, the weights 

become smaller and smaller as the training progress leaving gradient descent to never converge to 

an optimal solution. This is referred as vanishing of gradient descent. If the weights grow bigger 

and bigger this situation is called exploding of gradient. The solution to this issue is found in careful 

selection of activation function- an activation function that can prevent saturation. By far Relu and 

leaky Relu are considered reliable. The other parameter which needs to be selected with a bit more 

attention is optimizer. In order to speed up convergence it is suggested to try optimizer other than 

gradient descent- the simplest optimizer- else algorithm can stuck into local minima as sown in fig 

2-27. Adagrad and RMSprop are other available options for optimizers. 
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Fig 2-27 Vanishing Gradient Descent (Boehmke & Greenwell, 2019) 

 

 ANN Optimization 

ANN has a range of parameters to tweak if an optimized model is desired. For instance, number of 

neurons in a layer, number of layers, type of activation function for each layer, weight initialization 

and many more. Gridsearch can be used to decide on the optimum number of layers and number 

of neurons. In most cases model with one or two hidden layers works exceptional but for more 

complex data demands more layers. Easy solution to find the optimum number of layers is to start 

with a single layer and continue to increase until it starts overfitting. A model with large number 

of hidden layers are also called deep neural networks. As far number of neurons are concerned, 

neurons in input and output layers will depend upon the dimension of inputs and output. For hidden 

layers it is observed that decent amount of neurons in a layer does the job. Many suggest ignoring 

optimization for number of neurons and layers, use regularization (l1 & l2, early stopping, dropout) 

instead on the model with enough number of neurons and layers. Likewise there are loads of hyper 

parameters to be tuned like learning rate, optimizer, activation function, batch size etc. There are a 

few rules available on each important hyper-parameters for optimal results. For instance, optimal 

learning rate should be half the maximum learning rate, and batch size should neither be too small 

nor too big usually in between 10 to 32.  
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Chapter-3 

METHODOLOGY 

 

Machine learning has emerged as an effective tool to deal with complicated problems in many 

fields. Given the amount of data generated in the past, researchers have started utilizing this 

technique even in geotechnical engineering. Machine learning has proved so efficient tool that a 

lot of ML-based constitutive model exist in geotechnical engineering today (P. Zhang et al., 2021). 

Previously, many papers have been published that employed machine learning techniques for 

liquefaction assessment. Literature on machine learning specific to liquefaction exist in a huge 

number. Some used field data SPTN, CPTu and Shear wave (Ardakani & Kohestani, 2015; Goh, 

1996; Jiang et al., 2018; Pham, 2021; Y. Zhang et al., 2021; Zhao et al., 2021; J. Zhou et al., 2019) 

while others used laboratory data to predict the cyclic curves (V. Akhila & Adarsh, 2020; Sharafi 

& Jalili, 2014; Young-Su & Byung-Tak, 2006) in their relevant works. This work is also devoted 

to implement machine learning algorithms to predict cyclic resistance curves for silty sands. 

Machine learning involves a few general steps, shown in fig 3-1, which are followed in this work 

to accomplish the desired objectives. 

 

 

 

 

 

 

 

 

 

 

The methodology, tools used for machine learning models, and the results obtained will be the 

center of discussion in this chapter. Matlab is used as a tool for model creation while python is 

Data 
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Fig 3-1 Steps Involved in machine learning 
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used for data analyzation and visualization purposes. Python has a range of libraries that make the 

work much easier. 

 

3.1  Data Compilation 

 

The problem in hand depends on many factors as has been discussed in chapter 2. Some of them 

are easy to measure (like relative density, confining pressure), some are immeasurable (like fabric 

effect) while few of them are not available (like shape parameters). The possible and reliable source 

for the required data collection can be previously published work. Depending upon the quantity of 

available data, few of the factors are constrained and only the most influential factors are taken as 

inputs. The data gathered and compiled from the published literature (Askari et al., 2011; Belkhatir 

et al., 2011; Green & Mitchell, 2001; Kokusho et al., 2012; Oka et al., 2018; Rangaswamy et al., 

2010) that include the results of only cyclic triaxial test on silty sands.  

 

The data points are screened out for same confining pressure of 100 KPa, FC=0 to 40% and similar 

sampling method (moist tamping) to rule out the effect of various factors. By screening the data 

and using only one test method, confining pressure, fabric effect and stress condition are kept 

constant. Initially at data collection stage, following variable inputs are included: Number of cycles 

to cause liquefaction (N), Coefficient of uniformity (Cu), Grain size for 50% passing of sand (D50), 

Fines Content (FC), minimum void ratio (emin), maximum void ratio (emax) and void ratio (e). The 

desired target variable, cyclic stress ratio (CSR), is also included in data. After assessment of the 

data, few input parameters are calculated based on void ratio which are relative density, relative 

compaction and equivalent void ratio. The equivalent inter-granular void ratio is calculated using 

the equations presented in chapter-2. The number of cycles required to cause initial liquefaction 

(which include both Ru =1 and axial strain D.A=5%) is selected as a failure criteria in this study. 

Table-1 provides necessary information on the data collected from literatur



 

 

Table-3-1 Information on Compiled Data from Literature 

Sr. Host Sand 
D50 

(mm) 

d50 

(mm) 

Fines Content  

(%) 

Relative 

Density 
Test Failure Criteria 

Data 

Points 
Reference 

Data 

Split 

           

1 Monterey Sand 0.46 0.03 0,5,10,15,25,35 10 - 98 CTX-MT Ru =1 or 5% D.A strain 54 (Green & Mitchell, 2001) 

T
ra

in
in

g
  

D
a

ta
 

2 Yatesville Sand 0.17 0.03 0 – 37 -44 - 78 CTX-MT Ru =1 or 5% D.A strain 97 (Green & Mitchell, 2001) 

3 Christchurch Sand (FBM) 0.168 0.02 1,10,20,30 5 - 81 CTX-MT Ru =1 or 5% D.A strain 55 (Cubrinovski & Rees, 2010) 

4 Christchurch Sand (PSM-1) 0.208 0.018 0,10,20 5 - 44 CTX-MT Ru =1 or 5% D.A strain 14 (Cubrinovski & Rees, 2010) 

5 Christchurch Sand (PSM-2) 0.175 0.018 0,10,25 14 - 70 CTX-MT Ru =1 or 5% D.A strain 14 (Cubrinovski & Rees, 2010) 

6 Firozkooh Silty sand 0.25 0.017 0,15,30 15,30,60 CTX-MT Ru =1 or 5% D.A strain 31 (Askari et al., 2011) 

7 Chlef Sand 0.68 0.05 0,5,10 12,45,50,60 CTX-MT Ru =1 12 (Belkhatir et al., 2011) 

8 Futtsu Sand 0.18 0.06 0,5,10,20,30 30-76 CTX-MT 5% D.A strain 39 (Kokusho et al., 2012) 

9 M31 sand 0.3 0.0225 0,5,15,25,35 7-90 CTX-MT 5% D.A strain 53 
(A. . Papadopoulou, 2008; A. I. 

Papadopoulou & Tika, 2021) 

10 Ahmedabad Sand 0.39 0.038 0,5,10,15,20,25 16-63 CTX-MT Ru =1 23 (Sitharam et al., 2013) 

11 Toyoura Sand 0.19 0.08 10,20 3-55 CTX-MT Ru =1 18 (Wei & Yang, 2019) 

12 Anzali Sand 0.28 - 0 3-55 CTX-MT Ru =1 12 (Mohammadi & Qadimi, 2015) 

13 Cherthala Sand 0.28 0.09 0,10,30 50 CTX-MT Ru =1 or 3-6% D.A strain 9 (M. Akhila et al., 2019) 

14 Hokksund sand 0.44 0.035 0,5,10,15,20,30 25-35 CTX-MT Ru =1 24 (S. Yang et al., 2004) 

15 Mai Liao silty sand 0.13 0.03 0,15 32-82 CTX-MT 5% D.A strain 28 (Huang et al., 2004) 

16 Silica Sand No.6 0.159 0.017 0,20,30 41-52 CTX-MT 5% D.A strain 13 (Enomoto, 2019) 

17 Dhuvaran Silty Sand 0.112 0.085 0,15,30 23,43 CTX-MT Ru =1 or 5% D.A strain 12 (Rangaswamy et al., 2010) 
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d
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D

a
ta

 

18 Ottawa Sand 0.67 - 30 40 CTX-MT Ru =1 3 (Amini & Qi, 2000) 

19 F-75 Sand 0.3 0.02 0,5,15,30 12-81 CTX-MT Ru =1 15 (Oka et al., 2018) 

20 Mai Liao silty sand 0.13 0.03 30 65 CTX-MT 5% D.A strain 4 (Huang et al., 2004) 

21 Monterey Sand 0.46 0.03 20 60 CTX-MT Ru =1 or 5% D.A strain 4 (Green & Mitchell, 2001) 

CTX= Cyclic Triaxial test, MT= Moist tamping, D50 = 50% passing of sand, d50= 50% passing of fines    
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Chapter-4 
 

RESULTS AND DISCUSSIONS 

 

4.1  Feature Selection 

In this step, three methods are used to decide on the most influencing factors. First one is 

spearman heatmap which falls under the category of filter methods. The heatmap for our 

compiled data is presented in Fig-4-1. It is observed from the heatmap that the most related 

parameters are relative compaction, relative density, equivalent void ratio and void ratio. All of 

these highly related parameters define the compactness of soil. This confirms the importance of 

compactness in studying liquefaction of soil. It is suggested not to use both the factors that have 

strong relation between them. So, only one of them (relative compaction, relative density, 

equivalent void ratio and void ratio) is used. Looking at the heatmap, the best parameters should 

be: Relative compaction, erange, D50 and Log N. Though Log N is showing lesser relation with 

the output, still it is added because CRR curve cannot be produced if Log N is not included. The 

decision on input parameters will be finalized after using other selection methods. 

 

 

            Fig 4-1 Spearman Correlation Heatmap 
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The second method that we employed to assess the importance of feature is embedded method. 

The model used to calculate the importance is Random Forest. It is evident from Fig-4-2 that 

relative compaction stays at first position and D50 at second. So, based on this method we consider 

relative compaction, D50 and Log N as important input parameters to define our problem. 

 

 

     Fig 4-2 Feature Importance based on Random Forest Model 

 

The third and the last method used for feature selection is Forward sequential method. This 

method lies under the category of wrapper method and considered as the most reliable one. 

Working of this method is already discussed in chapter-2. However, the results obtained from 

this method are shared in Fig-4-3. It is evident from Fig-4-3 that relative compaction, erange and 

log N are the top three influencing parameters. 

 

 

Fig 4-3 Forward Sequential Method 
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The significance of relative compaction over other density measures can be assessed from the 

plot presented in Fig-4-4. The graph contains the CRR values for several soils with fines content. 

It is noted from the plot that there is well defined relation of CRR with relative compaction. The 

comparison is made with other density measures in Fig-4-4. It turns out that relative compaction 

presents better relation than others. Though the scatter in data for relative compaction is lesser 

than that in case of relative density but this parameter is still not capable to account for material 

specific effect. However, it is seen that relative compaction can normalize the effect of fines upto 

some extent. Fig-4-6 presents the plot between CSR for N=15 and density measures for F-75 sand 

with fines content. Of all the measures, relative compaction proved to be better than others in 

normalizing the effect of fines. 

 

 

 

Fig 4-4 Comparison of Density measures (a) Relative Compaction (b) Relative Density (c) Void Ratio 

(d) Equivalent Void Ratio 
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Fig 4-5 Cyclic Resistance v/s Relative Compaction 

 

 

 

 

   

Fig 4-6  CR-Curves for F-75 sand (a) Relative Compaction (b) Relative Density (c) Void Ratio (d) 
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4.2  Feature Engineering 

Feature engineering deals with the pre-processing of the data, as mentioned earlier, which is 

essential for good results. It includes removal of outliers, handling of missing data, 

standardization and transformation and handling of categorical data. In this work, removal of 

outliers, and transformation of the data are performed. The plots like histogram and boxplot are 

useful in data visualization. Histogram plots help identifying the quality of data through 

distribution while Box Plots are helpful to decide on the outliers. Libraries in python can help 

performing these tasks. Histograms in Fig-4-7 show the variance in the data for the selected 

variables. Histogram for Number of cycles (N) was showing skewness this is the reason for using 

Log N instead of N. Also the distribution for fines content is not impressive. So using this 

parameter as input might not yield good results. Instead using a parameter that can account for 

fines is advisable. In our case, relative compaction proved to be a good measure for fines affect. 

The distribution of other parameters used as input seems satisfactory. 

 

 

Fig 4-7 Histogram Plots for input Features and output variable 
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The extreme values or outliers are removed from the respective variable column by using 

boxplots.  

 

4.3  Model Creation 

After pre-processing of data, the data is fed to an algorithm that could find the relation and make 

predictions based on data. The collected data, reduced to 530 after cleaning process, is used for training 

of the model. Instead of dividing the data into training and testing data sets, complete data is used for 

training purpose. Cross-validation is used to assess both the quality of data and accuracy of the model. 

Bayesian optimizer is used for creating optimized models in Matlab. The optimized hyper-parameters 

for combination of Relative compaction, erange and Log N are shown in Table 4-1 for each model 

created. 

 

Table 4-1 Tuned Hyper-parameters for Models 

Sr. Algorithm Tuned Hyper-parameters 

1 Gaussian Process Regression 
(GPR) 

 Basis Function: constant 
Kernel function: Non-isotropic Rational Isotropic 
Kernel Scale: 0.19 
Sigma: 0.087 
Standardize: True 

2 Ensemble (Bagging) 
 Minimum leaf Size: 8 

No. of learners: 30 

3 Ensemble (Boosting) 
 Minimum Leaf Size: 8 

No. of Learners: 30 

4 Artificial Neural Network (ANN) 

 Number of fully connected layers: 3 
Activation Function: Relu 
Lambda: 0 
Neurons: 10 in each layer 

5 Support Vector Machine (SVM) 

 Kernel function: Linear 
Kernel Scale: 1 
Box Constraint: 0.116 
Epsilon: 0.0116 

 

 

The accuracy of the models are assessed based on several parameters R2, RMSE and MAE. It is 

advisable to always create more than one model and use the one with highest accuracy among 

all.  It was observed that Gaussian process regression outperformed other algorithms used for the  
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given problem. How well Gaussian process regression is trained can be seen in Fig-4-8. There 

are few points which deviate a lot from the actual value. These points indicate that a small portion 

of data is not consistent with the rest of data. This inconsistency can reduce the accuracy of the 

model which certainly it did. It is easy to assess the quality of data but it is really hard to locate 

the portion of inconsistent data. The results of the models are tabulated in Table-4-2.  

 

Table 4-2 Performance of Models 

Sr. Accuracy Measure GPR RF 
Ensemble 

(Boosting) 
ANN SVM 

1 R-Squared 0.87 0.81 0.78 0.72 0.65 

2 Root Mean Square Error 0.049 0.057 0.059 0.063 0.081 

3 Mean Absolute Error 0.033 0.041 0.047 0.054 0.06 

GPR= Gaussian Process Regression, RF= Random Forest, ANN= Artificial Neural Network, SVM= Support Vector Machine   

 

 

 

Fig 4-8 Training Process of GPR Model 

 

Beside these above mentioned machine learning models, two response surface analysis based 

models are also created to estimate Cyclic resistance ratio (CSR at N=15). Total of 96 data points 

for 15 number of cycles from the total of 530 datasets are taken out to create RSA-based models.  
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The surface predicts the CRR using two input parameters. It was observed that relative 

compaction and D50 give maximum possible accuracy for a given model. Fig-4-9 is a surface and 

contours created by a polynomial regression model having a degree of polynomial of 3. It was 

observed that increasing the degree of polynomial from 2 to 3 increased the R2 from 0.66 to 0.73.  

 

 

 

 

Fig 4-9 a) 3-D Surface generated by Polynomial regression model  b) 2D nomogram 

 

Likewise, Fig-4-10 shows the 3d-surface and nomogram obtained by using MARS algorithm. 

The max_terms = 750 and max_degree = 3 are the optimal hyper-parameters for MARS model. 

It is noted that R2 value for MARS (0.77) is slightly greater than that of polynomial regression 

R2 = 0.73 

a. 

b

. 



 

50 
 

model. This is because MARS model is a non-parametric model which decides the surface on its 

own unlike polynomial regression.      

 

 

 

 

 

 

 

Fig 4-10 a) 3-D Surface plot by MARS  b) 2D contour plots 

 

 

R2 = 0.77 

a. 

b

. 
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4.4  Evaluation And Validation 

Once the model is created it is then tested and validated on the unseen data. For that purpose, the 

data of (M. Akhila et al., 2019; Amini & Qi, 2000; Wei & Yang, 2019b) are utilized for evaluating 

the performance of GPR model in predicting the cyclic curve. For the evaluation of the response 

surface based models data sets of Lalita 2018 are used. Although the details of these data is 

provided in Table-3-1, complete data sets are provided at the end of this chapter. Fig-4-11 to Fig-

4-13, the predicted curve and the curve obtained through testing can be compared.  

It is observed that the predicted curve follows the similar trend as of the actual curve, but it over-

predicts.  

 

    

Fig 4-11 Actual vs Predicted curve for Dhuvaran Sand 

 

The error between the actual and the predicted curves ranges between 10% to 50%. For 15% 

fines, the error is next to nothing, which indicates that the parameters that are used for creating 

models are efficient but not sufficient. However, the error in case of 30%, which is around 50%, 

suggests that one parameter that could take into account the minor effects of other parameters 

should be added to improve on the results. The error could also be attributed to the small 

inconsistency present in training data as was observed during training phase and the uncertainties 

in the testing methods for minimum and maximum void ratio reported by many researchers (Rees 
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2010, Askari 2011). The results of Ottawa sand does not show any big error but there is slight 

change of curve due to more over prediction of CSR for low no. of cycles. 

 

    

Fig 4-12 Actual vs Predicted curve for a) Dhurvan Sand (30% FC) b) Ottawa Sand (30% Fines) 

 

 

Fig 4-13 Actual v/s Predicted curve for Mai Liao soil 

 

Further, one more curve was generated for the soil that was part of training process but those 

points for curve was not included in training data. Fig-4-13 is a proof that if soil data is added in 

training data for one condition then model can predict the curve on other condition quite 

accurately. This also confirms that the error we seen in previous validations is because of soil 

specific effect. So, one parameter that can take into account the effect of material effect can 

reduce the error. It was mentioned earlier that relative compaction can somehow take into account 

the effect of fines. To put this notion to test, model is validated on soil, which was part of training 
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data set, for different fines content which were unseen for the model. Fig 4-14 is a proof of the 

fact that model can predict for other fines content with least error. 

 
Fig 4-14 Validation for Fines content  

 

Fig-4-15 presents the error in prediction made by RSA-based models. As it was suggested by the 

R2 value, the error made by these models is quite large. It is noted from the fig 4-15 that Mars 

predicted better with no value greater than 30% unlike Polynomial regression model, in which 

case around two values even exceeded 50%. Both the cases are mostly under-predicting the CRR 

value for the soil used for validation purpose. 

 

 

Fig 4-15 observed vs predicted for RSA-Based Models
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Table-4-3 Validation Data set for Cyclic Resistance Curve (used for GPR Model) 

 

Sand Type 

Fines 

Conten

t (%) 

Void 

Ratio 

Relative 

Density 

(%) 

D50 Cu emax emin erange 
Relative 

Compaction 

Cyclic 

Stress 

Ratio 

Cycles to 

Initial 

Liq'n 

Ref. 

Dhuvaran sand 0 0.903 23.8 0.112 1.54 0.98 0.68 0.30 88.02 0.150 20 

(Rangasw
amy et 

al., 2010) 

Dhuvaran sand 0 0.903 23.8 0.112 1.54 0.98 0.68 0.30 88.02 0.125 48 

Dhuvaran sand 0 0.903 23.8 0.112 1.54 0.98 0.68 0.30 88.02 0.100 130 

Dhuvaran sand 0 0.903 23.8 0.112 1.54 0.98 0.68 0.30 88.02 0.088 174 

Dhuvaran sand 15 0.829 42.6 0.1 1.64 0.97 0.65 0.32 89.94 0.175 20 

Dhuvaran sand 15 0.829 42.6 0.1 1.64 0.97 0.65 0.32 89.94 0.150 80 

Dhuvaran sand 15 0.829 42.6 0.1 1.64 0.97 0.65 0.32 89.94 0.125 112 

Dhuvaran sand 15 0.829 42.6 0.1 1.64 0.97 0.65 0.32 89.94 0.100 182 

Dhuvaran sand 30 0.842 43.9 0.09 2.13 1.02 0.62 0.40 87.95 0.175 7 

Dhuvaran sand 30 0.842 43.9 0.09 2.13 1.02 0.62 0.40 87.95 0.150 12 

Dhuvaran sand 30 0.842 43.9 0.09 2.13 1.02 0.62 0.40 87.95 0.125 31 

Dhuvaran sand 30 0.842 43.9 0.09 2.13 1.02 0.62 0.40 87.95 0.100 79 

Ottawa Sand 30 0.7238 34 0.65 93.00 0.87 0.44 0.43 83.54 0.150 3 
(Amini & 
Qi, 2000) 

Ottawa Sand 30 0.7238 34 0.65 93.00 0.87 0.44 0.43 83.54 0.120 12 

Ottawa Sand 30 0.7238 34 0.65 93.00 0.87 0.44 0.43 83.54 0.100 35 

Mai Liao Silty Sand 30 0.810 65 0.11 3.70 1.21 0.59 0.62 88.01 0.159 14 

(Huang et 
al., 2004) 

Mai Liao Silty Sand 30 0.810 65 0.11 3.70 1.21 0.59 0.62 88.01 0.150 20 

Mai Liao Silty Sand 30 0.810 65 0.11 3.70 1.21 0.59 0.62 88.01 0.182 8 

Mai Liao Silty Sand 30 0.810 65 0.11 3.7 1.213 0.593 0.62 88.01 0.192 5 

Monterey Sand 20 0.456 60.4 0.37 17 0.627 0.344 0.283 92.30 0.452 12.1 
(Green & 
Mitchell, 

2001) 

Monterey Sand 20 0.455 60.8 0.37 17 0.627 0.344 0.283 92.38 0.261 310.2 

Monterey Sand 20 0.455 60.8 0.37 17 0.627 0.344 0.283 92.38 0.407 14.1 

Monterey Sand 20 0.454 61.1 0.37 17 0.627 0.344 0.283 92.43 0.317 55 



 

 
 

 
 

Table-4-4 Validation Data set for Cyclic Resistance Ratio (used for RSA-Based Models) 

Sand Type 

Fines 

Content 

(%) 

Void 

Ratio 

Relative 

Density (%) 
D50 Cu emax emin erange 

Relative 
Compaction 

Cyclic 

Resistance 

Ratio 

Cycles to 

Initial 

Liq'n 

Ref. 

F-75 0 0.54 81 0.30 2.1 0.82 0.48 0.34 96.10 0.39 15 

(Oka et al., 
2018) 

F-75 0 0.60 64 0.30 2.1 0.82 0.48 0.34 92.50 0.37 15 

F-75 0 0.78 12 0.30 2.1 0.82 0.48 0.34 83.15 0.14 15 

F-75 0 0.71 32 0.30 2.1 0.82 0.48 0.34 86.55 0.22 15 

F-75 5 0.60 51 0.30 2.0 0.78 0.42 0.36 88.75 0.3 15 

F-75 5 0.68 27 0.30 2.0 0.78 0.42 0.36 84.52 0.2 15 

F-75 5 0.53 68 0.30 2.0 0.78 0.42 0.36 92.81 0.33 15 

F-75 15 0.60 50 0.28 7.5 0.85 0.35 0.5 84.38 0.21 15 

F-75 15 0.54 63 0.28 7.5 0.85 0.35 0.5 87.66 0.3 15 

F-75 15 0.70 31 0.28 7.5 0.85 0.35 0.5 79.41 0.14 15 

F-75 15 0.46 78 0.28 7.5 0.85 0.35 0.5 92.47 0.25 15 

F-75 15 0.75 21 0.28 7.5 0.85 0.35 0.5 77.14 0.12 15 

F-75 30 0.57 60 0.27 30.0 0.98 0.3 0.68 82.80 0.12 15 

F-75 30 0.45 78 0.27 30.0 0.98 0.3 0.68 89.66 0.28 15 

F-75 30 0.61 53 0.27 30.0 0.98 0.3 0.68 80.75 0.13 15 
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Chapter-5 

CONCLUSION 

 

 

This work aims at predicting the cyclic resistance curve for silty sands by implementing the 

machine learning algorithms. For that purpose, data, which includes all the quantifiable 

influencing factors, is collected from the published work. The data includes results of cyclic 

triaxial test performed on the samples of silty sands prepared by moist tamping for confining 

pressure of 100KPa. The compiled data is then used in creating several machine learning models 

following the steps of feature selection and feature engineering. The created models are then 

tested and validated on the unseen data set. The following conclusions can be drawn from the 

results obtained: 

 

 The compactness of the soil is the most influential factor in characterizing the mechanical 

behavior of soil under cyclic loading. The relative compaction proved to be a better density 

measure than relative density. It can account for fines content upto some extent unlike 

relative density. In most of the soils, relative compaction normalized the fines effect on 

cyclic resistance even better than equivalent void ratio. 

 

 Feature selection procedures indicated erange and D50 as equally importan following density 

measure (relative compaction/relative density). Thus any one of them (D50/erange) can be used 

along with Relative compaction as input parameter to generate cyclic resistance curve. When 

compared it is observed that Gaussian process regression algorithm outweighs ANN, 

Random Forest, XGBoost and Support Vector Machine for this problem. The error does not 

exceed 25% except one case in which error was around 50%. The error can be attributed to 

the combined effect of other influencing parameters including both quantifiable and non-

quantifiable. Moreover, model guarantees to account the effect of fines but does not ensure 

the material specific effect. However, model was efficient enough to predict the variation of 

number of cycles with CSR. 
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APPENDIX-A 
 

Table-A Training Data Set 

Sr. Sand Type 

Fines 

Content 

(%) 

Void 

Ratio 

Relative 

Density (%) 
D50 Cu D10/d50 e* emax emin erange 

Relative 

Compaction 

Cyclic 

Stress 

Ratio 

Cycles to 

Initial 

Liq'n 
Reference 

1 Ahmedabad sand  0 0.54 54 0.39 3.75 3.158 0.54 0.68 0.42 0.26 92.208 0.190 16 

(Sitharam et 

al., 2013) 

2 Ahmedabad sand  0 0.54 54 0.39 3.75 3.158 0.54 0.68 0.42 0.26 92.208 0.130 100 

3 Ahmedabad sand  0 0.54 54 0.39 3.75 3.158 0.54 0.68 0.42 0.26 92.208 0.180 26 

4 Ahmedabad sand  0 0.54 54 0.39 3.75 3.158 0.54 0.68 0.42 0.26 92.208 0.205 12 

5 Ahmedabad sand  0 0.44 92 0.39 3.75 3.158 0.44 0.68 0.42 0.26 98.611 0.374 20 

6 Ahmedabad sand  0 0.54 54 0.39 3.75 3.158 0.54 0.68 0.42 0.26 92.208 0.184 20 

7 Ahmedabad sand  0 0.54 54 0.39 3.75 3.158 0.54 0.68 0.42 0.26 92.208 0.153 50 

8 Ahmedabad sand  5 0.54 32 0.38 3.75 3.158 0.62 0.64 0.32 0.32 85.714 0.158 20 

9 Ahmedabad sand  5 0.54 32 0.38 3.75 3.158 0.62 0.64 0.32 0.32 85.714 0.130 80 

10 Ahmedabad sand  5 0.44 63 0.37 3.75 3.158 0.51 0.64 0.32 0.32 91.667 0.230 20 

11 Ahmedabad sand  5 0.54 32 0.38 3.75 3.158 0.62 0.64 0.32 0.32 85.714 0.154 24 

12 Ahmedabad sand  5 0.54 32 0.38 3.75 3.158 0.62 0.64 0.32 0.32 85.714 0.180 7 

13 Ahmedabad sand  10 0.54 27 0.36 3.75 3.158 0.68 0.64 0.28 0.36 83.117 0.130 12 

14 Ahmedabad sand  10 0.44 56 0.38 3.75 3.158 0.57 0.64 0.28 0.36 88.889 0.154 20 

15 Ahmedabad sand  10 0.54 27 0.36 3.75 3.158 0.68 0.64 0.28 0.36 83.117 0.100 165 

16 Ahmedabad sand  10 0.54 27 0.36 3.75 3.158 0.68 0.64 0.28 0.36 83.117 0.118 20 

17 Ahmedabad sand  10 0.54 27 0.36 3.75 3.158 0.68 0.64 0.28 0.36 83.117 0.115 25 

18 Ahmedabad sand  15 0.44 50 0.36 3.75 3.158 0.63 0.62 0.26 0.36 87.500 0.135 20 

19 Ahmedabad sand  15 0.54 22 0.34 3.75 3.158 0.74 0.62 0.26 0.36 81.818 0.109 20 

20 Ahmedabad sand  15 0.54 22 0.34 3.75 3.158 0.74 0.62 0.26 0.36 81.818 0.078 72 

21 Ahmedabad sand  15 0.54 22 0.34 3.75 3.158 0.74 0.62 0.26 0.36 81.818 0.124 7 

22 Ahmedabad sand  20 0.44 43 0.32 3.75 3.158 0.67 0.6 0.25 0.35 86.806 0.132 20 

23 Ahmedabad sand  25 0.54 16 0.31 3.75 3.158 0.82 0.7 0.26 0.44 81.818 0.105 20 

24 Anzali Sand 0 0.72 55 0.28 1.82 - 0.80 0.89 0.58 0.31 91.967 0.400 108  

25 Anzali Sand 0 0.75 44 0.28 1.82 - 0.84 0.89 0.58 0.31 90.131 0.450 11  
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Sr. Sand Type 

Fines 

Content 

(%) 

Void 

Ratio 

Relative 

Density (%) 
D50 Cu D10/d50 e* emax emin erange 

Relative 

Compaction 

Cyclic 

Stress 

Ratio 

Cycles to 

Initial 

Liq'n 
Reference 

                

26 Anzali Sand 0 0.77 40 0.28 1.82 - 0.77 0.89 0.58 0.31 89.518 0.450 13 

(Mohammadi 

& Qadimi, 

2015) 

27 Anzali Sand 0 0.79 33 0.28 1.82 - 0.79 0.89 0.58 0.31 88.367 0.350 51 

28 Anzali Sand 0 0.73 53 0.28 1.82 - 0.73 0.89 0.58 0.31 91.541 0.450 52 

29 Anzali Sand 0 0.74 48 0.28 1.82 - 0.74 0.89 0.58 0.31 90.805 0.500 6 

30 Anzali Sand 0 0.83 18 0.28 1.82 - 0.83 0.89 0.58 0.31 86.150 0.350 5 

31 Anzali Sand 0 0.78 35 0.28 1.82 - 0.78 0.89 0.58 0.31 88.664 0.350 80 

32 Anzali Sand 0 0.88 4 0.28 1.82 - 0.88 0.89 0.58 0.31 84.132 0.300 22 

33 Anzali Sand 0 0.85 13 0.28 1.82 - 0.85 0.89 0.58 0.31 85.359 0.300 29 

34 Anzali Sand 0 0.82 23 0.28 1.82 - 0.82 0.89 0.58 0.31 86.861 0.300 282 

35 Anzali Sand 0 0.75 47 0.28 1.82 - 0.75 0.89 0.58 0.31 90.544 0.500 7 

36 Cherthala Sand 0 0.71 50 0.28 2.36 3.111 0.71 0.858 0.578 0.28 92.173 0.127 79 

(M. Akhila et 

al., 2019) 

37 Cherthala Sand 0 0.71 50 0.28 2.36 3.111 0.71 0.858 0.578 0.28 92.173 0.178 28 

38 Cherthala Sand 0 0.71 50 0.28 2.36 3.111 0.71 0.858 0.578 0.28 92.173 0.152 55 

39 Cherthala Sand 10 0.69 50 0.26 4.00 3.111 0.87 0.847 0.554 0.293 91.736 0.152 42 

40 Cherthala Sand 10 0.69 50 0.26 4.00 3.111 0.87 0.847 0.554 0.293 91.736 0.127 66 

41 Cherthala Sand 10 0.69 50 0.26 4.00 3.111 0.87 0.847 0.554 0.293 91.736 0.178 20 

42 Cherthala Sand 30 0.62 50 0.20 6.25 3.111 0.96 0.789 0.462 0.327 90.303 0.152 29 

43 Cherthala Sand 30 0.62 50 0.20 6.25 3.111 0.96 0.789 0.462 0.327 90.303 0.127 51 

44 Cherthala Sand 30 0.62 50 0.20 6.25 3.111 0.96 0.789 0.462 0.327 90.303 0.178 8 

45 Chlef 0 0.70 50 0.68 3.36 13.600 0.70 0.854 0.535 0.319 90.560 0.350 5 

(Belkhatir et 

al., 2011) 

46 Chlef 0 0.70 50 0.68 3.36 13.600 0.70 0.854 0.535 0.319 90.560 0.250 12 

47 Chlef 0 0.70 50 0.68 3.36 13.600 0.70 0.854 0.535 0.319 90.560 0.150 158 

48 Chlef 5 0.68 45 0.59 5.55 13.600 0.76 0.815 0.51 0.305 89.881 0.250 5 

49 Chlef 5 0.68 45 0.59 5.55 13.600 0.76 0.815 0.51 0.305 89.881 0.350 3 

50 Chlef 5 0.63 60 0.59 5.55 13.600 0.71 0.815 0.51 0.305 92.496 0.150 167 

51 Chlef 5 0.79 12 0.59 5.55 13.600 0.87 0.815 0.51 0.305 84.499 0.150 24 

52 Chlef 5 0.79 12 0.59 5.55 13.600 0.87 0.815 0.51 0.305 84.499 0.350 2 

53 Chlef 5 0.79 12 0.59 5.55 13.600 0.87 0.815 0.51 0.305 84.499 0.250 3 



 

65 
 

Sr. Sand Type 

Fines 

Content 

(%) 

Void 

Ratio 

Relative 

Density (%) 
D50 Cu D10/d50 e* emax emin erange 

Relative 

Compaction 

Cyclic 

Stress 

Ratio 

Cycles to 

Initial 

Liq'n 
Reference 

                

54 Chlef 5 0.68 45 0.59 5.55 13.600 0.76 0.815 0.51 0.305 89.881 0.150 71  

55 Chlef 5 0.63 60 0.59 5.55 13.600 0.71 0.815 0.51 0.305 92.496 0.350 5  

56 Chlef 5 0.63 60 0.59 5.55 13.600 0.71 0.815 0.51 0.305 92.496 0.250 13  

57 FBM 1 0.89 7 0.17 2.00 4.500 0.91 0.907 0.628 0.279 86.183 0.170 5 

(Cubrinovski 

& Rees, 2010) 

58 FBM 1 0.74 60 0.17 2.00 4.500 0.76 0.907 0.628 0.279 93.563 0.475 5 

59 FBM 1 0.89 6 0.17 2.00 4.500 0.91 0.907 0.628 0.279 86.138 0.120 32 

60 FBM 1 0.89 6 0.17 2.00 4.500 0.91 0.907 0.628 0.279 86.138 0.209 2 

61 FBM 1 0.83 28 0.17 2.00 4.500 0.85 0.907 0.628 0.279 89.059 0.228 4 

62 FBM 1 0.82 31 0.17 2.00 4.500 0.84 0.907 0.628 0.279 89.401 0.370 2 

63 FBM 1 0.88 10 0.17 2.00 4.500 0.90 0.907 0.628 0.279 86.642 0.140 16 

64 FBM 1 0.74 62 0.17 2.00 4.500 0.75 0.907 0.628 0.279 93.833 0.334 7 

65 FBM 1 0.82 31 0.17 2.00 4.500 0.84 0.907 0.628 0.279 89.401 0.160 43 

66 FBM 1 0.74 59 0.17 2.00 4.500 0.76 0.907 0.628 0.279 93.402 0.206 126 

67 FBM 1 0.82 31 0.17 2.00 4.500 0.84 0.907 0.628 0.279 89.451 0.194 14 

68 FBM 1 0.73 62 0.17 2.00 4.500 0.75 0.907 0.628 0.279 93.887 0.566 4 

69 FBM 1 0.74 60 0.17 2.00 4.500 0.76 0.907 0.628 0.279 93.563 0.243 21 

70 FBM 10 0.74 60 0.17 2.40 4.500 0.90 0.945 0.597 0.348 91.993 0.175 39 

71 FBM 10 0.74 58 0.17 2.40 4.500 0.91 0.945 0.597 0.348 91.571 0.279 5 

72 FBM 10 0.80 43 0.17 2.40 4.500 0.96 0.945 0.597 0.348 88.920 0.313 2.0 

73 FBM 10 0.74 59 0.17 2.40 4.500 0.90 0.945 0.597 0.348 91.782 0.316 3 

74 FBM 10 0.82 35 0.17 2.40 4.500 0.99 0.945 0.597 0.348 87.603 0.121 40 

75 FBM 10 0.74 59 0.17 2.40 4.500 0.90 0.945 0.597 0.348 91.782 0.200 22 

76 FBM 10 0.79 45 0.17 2.40 4.500 0.95 0.945 0.597 0.348 89.318 0.196 9 

77 FBM 10 0.82 37 0.17 2.40 4.500 0.98 0.945 0.597 0.348 87.989 0.192 5 

78 FBM 10 0.75 57 0.17 2.40 4.500 0.91 0.945 0.597 0.348 91.414 0.239 9 

79 FBM 10 0.71 67 0.17 2.40 4.500 0.87 0.945 0.597 0.348 93.337 0.218 21 

80 FBM 10 0.79 46 0.17 2.40 4.500 0.95 0.945 0.597 0.348 89.468 0.151 29 

81 FBM 10 0.71 68 0.17 2.40 4.500 0.87 0.945 0.597 0.348 93.392 0.284 8 
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Sr. Sand Type 

Fines 

Content 

(%) 

Void 

Ratio 

Relative 

Density (%) 
D50 Cu D10/d50 e* emax emin erange 

Relative 

Compaction 

Cyclic 

Stress 

Ratio 

Cycles to 

Initial 

Liq'n 
Reference 

                

82 FBM 10 0.71 68 0.17 2.40 4.500 0.86 0.945 0.597 0.348 93.556 0.180 75 

(Cubrinovski 

& Rees, 2010) 

83 FBM 10 0.75 57 0.17 2.40 4.500 0.91 0.945 0.597 0.348 91.466 0.436 3 

84 FBM 10 0.72 66 0.17 2.40 4.500 0.87 0.945 0.597 0.348 93.065 0.555 3 

85 FBM 10 0.71 67 0.17 2.40 4.500 0.87 0.945 0.597 0.348 93.337 0.349 4 

86 FBM 10 0.82 36 0.17 2.40 4.500 0.99 0.945 0.597 0.348 87.844 0.225 3 

87 FBM 10 0.79 46 0.17 2.40 4.500 0.95 0.945 0.597 0.348 89.418 0.233 4 

88 FBM 10 0.81 40 0.17 2.40 4.500 0.97 0.945 0.597 0.348 88.476 0.150 16 

89 FBM 10 0.79 44 0.17 2.40 4.500 0.96 0.945 0.597 0.348 89.168 0.257 3 

90 FBM 10 0.80 41 0.17 2.40 4.500 0.97 0.945 0.597 0.348 88.525 0.259 2.0 

91 FBM 20 0.61 75 0.17 11.00 4.500 0.86 0.895 0.511 0.384 94.085 0.429 7 

92 FBM 20 0.67 59 0.17 11.00 4.500 0.93 0.895 0.511 0.384 90.642 0.237 6 

93 FBM 20 0.67 59 0.17 11.00 4.500 0.93 0.895 0.511 0.384 90.588 0.357 3 

94 FBM 20 0.60 76 0.17 11.00 4.500 0.86 0.895 0.511 0.384 94.202 0.216 36 

95 FBM 20 0.60 76 0.17 11.00 4.500 0.86 0.895 0.511 0.384 94.261 0.288 14 

96 FBM 20 0.67 59 0.17 11.00 4.500 0.94 0.895 0.511 0.384 90.479 0.159 40 

97 FBM 20 0.67 59 0.17 11.00 4.500 0.93 0.895 0.511 0.384 90.588 0.198 15 

98 FBM 30 0.70 47 0.17 12.20 4.500 1.04 0.86 0.527 0.333 89.718 0.148 5 

99 FBM 30 0.59 81 0.17 12.20 4.500 0.91 0.86 0.527 0.333 96.038 0.309 8 

100 FBM 30 0.69 50 0.17 12.20 4.500 1.03 0.86 0.527 0.333 90.195 0.195 5 

101 FBM 30 0.59 80 0.17 12.20 4.500 0.91 0.86 0.527 0.333 95.857 0.239 13 

102 FBM 30 0.59 81 0.17 12.20 4.500 0.91 0.86 0.527 0.333 95.917 0.199 33 

103 FBM 30 0.63 68 0.17 12.20 4.500 0.96 0.86 0.527 0.333 93.452 0.403 2 

104 FBM 30 0.69 51 0.17 12.20 4.500 1.03 0.86 0.527 0.333 90.248 0.253 2 

105 FBM 30 0.63 70 0.17 12.20 4.500 0.95 0.86 0.527 0.333 93.911 0.176 35 

106 FBM 30 0.69 50 0.17 12.20 4.500 1.03 0.86 0.527 0.333 90.195 0.150 14 

107 FBM 30 0.71 44 0.17 12.20 4.500 1.06 0.86 0.527 0.333 89.142 0.100 20 

108 FBM 30 0.69 50 0.17 12.20 4.500 1.03 0.86 0.527 0.333 90.195 0.121 27 

109 FBM 30 0.59 80 0.17 12.20 4.500 0.91 0.86 0.527 0.333 95.797 0.379 5 
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110 FBM 30 0.63 69 0.17 12.20 4.500 0.96 0.86 0.527 0.333 93.624 0.199 25  

111 FBM 30 0.63 70 0.17 12.20 4.500 0.95 0.86 0.527 0.333 93.854 0.284 5  

112 Firozkooh Sand 0 0.69 60 0.25 1.65 10.000 0.69 0.84 0.58 0.26 93.491 0.250 15 

(Askari et al., 

2011) 

113 Firozkooh Sand 0 0.78 30 0.25 1.65 10.000 0.78 0.84 0.58 0.26 88.764 0.150 4 

114 Firozkooh Sand 0 0.69 60 0.25 1.65 10.000 0.69 0.84 0.58 0.26 93.491 0.310 2 

115 Firozkooh Sand 0 0.83 15 0.25 1.65 10.000 0.83 0.84 0.58 0.26 86.339 0.113 3 

116 Firozkooh Sand 0 0.69 60 0.25 1.65 10.000 0.69 0.84 0.58 0.26 93.491 0.210 68 

117 Firozkooh Sand 0 0.83 15 0.25 1.65 10.000 0.83 0.84 0.58 0.26 86.339 0.096 15 

118 Firozkooh Sand 0 0.69 60 0.25 1.65 10.000 0.69 0.84 0.58 0.26 93.491 0.240 24 

119 Firozkooh Sand 0 0.78 30 0.25 1.65 10.000 0.78 0.84 0.58 0.26 88.764 0.132 15 

120 Firozkooh Sand 0 0.78 30 0.25 1.65 10.000 0.78 0.84 0.58 0.26 88.764 0.130 16 

121 Firozkooh Sand 0 0.83 15 0.25 1.65 10.000 0.83 0.84 0.58 0.26 86.339 0.078 114 

122 Firozkooh Sand 0 0.78 30 0.25 1.65 10.000 0.78 0.84 0.58 0.26 88.764 0.120 44 

123 Firozkooh Sand 15 0.70 30 0.23 1.65 10.000 0.93 0.82 0.4 0.42 82.353 0.150 10 

124 Firozkooh Sand 15 0.70 30 0.23 1.65 10.000 0.93 0.82 0.4 0.42 82.353 0.140 17 

125 Firozkooh Sand 15 0.69 60 0.23 1.65 10.000 0.92 0.82 0.4 0.42 82.840 0.220 17 

126 Firozkooh Sand 15 0.76 15 0.23 1.65 10.000 1.00 0.82 0.4 0.42 79.545 0.075 350 

127 Firozkooh Sand 15 0.70 30 0.23 1.65 10.000 0.93 0.82 0.4 0.42 82.353 0.142 15 

128 Firozkooh Sand 15 0.76 15 0.23 1.65 10.000 1.00 0.82 0.4 0.42 79.545 0.124 7 

129 Firozkooh Sand 15 0.76 15 0.23 1.65 10.000 1.00 0.82 0.4 0.42 79.545 0.110 20 

130 Firozkooh Sand 15 0.58 60 0.23 1.65 10.000 0.79 0.82 0.4 0.42 88.608 0.230 15 

131 Firozkooh Sand 15 0.69 60 0.23 1.65 10.000 0.92 0.82 0.4 0.42 82.840 0.210 24 

132 Firozkooh Sand 15 0.69 60 0.23 1.65 10.000 0.92 0.82 0.4 0.42 82.840 0.180 76 

133 Firozkooh Sand 15 0.76 15 0.23 1.65 10.000 1.00 0.82 0.4 0.42 79.545 0.112 15 

134 Firozkooh Sand 15 0.70 30 0.23 1.65 10.000 0.93 0.82 0.4 0.42 82.353 0.180 2 

135 Firozkooh Sand 30 0.53 60 0.21 1.65 10.000 0.88 0.84 0.35 0.49 88.235 0.230 15 

136 Firozkooh Sand 30 0.69 30 0.21 1.65 10.000 1.08 0.84 0.35 0.49 79.882 0.079 58 

137 Firozkooh Sand 30 0.69 30 0.21 1.65 10.000 1.08 0.84 0.35 0.49 79.882 0.110 7 
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138 Firozkooh Sand 30 0.53 60 0.21 1.65 10.000 0.88 0.84 0.35 0.49 88.235 0.180 48 

(Askari et al., 

2011) 

139 Firozkooh Sand 30 0.53 60 0.21 1.65 10.000 0.88 0.84 0.35 0.49 88.235 0.220 13 

140 Firozkooh Sand 30 0.69 30 0.21 1.65 10.000 1.08 0.84 0.35 0.49 79.882 0.085 34 

141 Firozkooh Sand 30 0.69 30 0.21 1.65 10.000 1.08 0.84 0.35 0.49 79.882 0.096 15 

142 Firozkooh Sand 30 0.53 60 0.21 1.65 10.000 0.88 0.84 0.35 0.49 88.235 0.240 8 

143 futtsu sand 0 0.88 51 0.18 1.90 2.000 0.88 1.083 0.68 0.403 89.482 0.146 34 

(Kokusho et 

al., 2012) 

144 futtsu sand 0 0.87 52 0.18 1.90 2.000 0.87 1.083 0.68 0.403 89.675 0.157 17 

145 futtsu sand 0 0.80 71 0.18 1.90 2.000 0.80 1.083 0.68 0.403 93.496 0.198 16 

146 futtsu sand 0 0.80 71 0.18 1.90 2.000 0.80 1.083 0.68 0.403 93.496 0.313 4.2 

147 futtsu sand 0 0.94 36 0.18 1.90 2.000 0.94 1.083 0.68 0.403 86.691 0.124 16 

148 futtsu sand 0 0.95 34 0.18 1.90 2.000 0.95 1.083 0.68 0.403 86.332 0.144 1.7 

149 futtsu sand 0 0.80 69 0.18 1.90 2.000 0.80 1.083 0.68 0.403 93.078 0.259 3.6 

150 futtsu sand 0 0.87 53 0.18 1.90 2.000 0.87 1.083 0.68 0.403 89.868 0.150 12 

151 futtsu sand 0 0.80 70 0.18 1.90 2.000 0.80 1.083 0.68 0.403 93.287 0.299 3.5 

152 futtsu sand 0 0.97 27 0.18 1.90 2.000 0.97 1.083 0.68 0.403 85.098 0.118 32 

153 futtsu sand 5 0.96 30 0.16 2.00 2.000 1.06 1.124 0.593 0.531 81.081 0.139 3.7 

154 futtsu sand 5 0.76 69 0.16 2.00 2.000 0.84 1.124 0.593 0.531 90.634 0.160 14 

155 futtsu sand 5 0.77 67 0.16 2.00 2.000 0.86 1.124 0.593 0.531 90.090 0.197 2.6 

156 futtsu sand 5 0.84 53 0.16 2.00 2.000 0.93 1.124 0.593 0.531 86.455 0.115 29 

157 futtsu sand 5 0.99 26 0.16 2.00 2.000 1.08 1.124 0.593 0.531 80.214 0.096 19 

158 futtsu sand 5 0.82 57 0.16 2.00 2.000 0.91 1.124 0.593 0.531 87.464 0.132 36 

159 futtsu sand 5 0.98 28 0.16 2.00 2.000 1.07 1.124 0.593 0.531 80.645 0.120 6.8 

160 futtsu sand 10 0.85 51 0.16 2.70 2.000 1.02 1.167 0.542 0.625 83.430 0.151 2.7 

161 futtsu sand 10 0.86 49 0.16 2.70 2.000 1.03 1.167 0.542 0.625 82.870 0.123 9.6 

162 futtsu sand 10 0.78 62 0.16 2.70 2.000 0.95 1.167 0.542 0.625 86.654 0.120 4.8 

163 futtsu sand 10 0.75 67 0.16 2.70 2.000 0.91 1.167 0.542 0.625 88.202 0.109 13 

164 futtsu sand 10 0.87 48 0.16 2.70 2.000 1.04 1.167 0.542 0.625 82.592 0.096 33 

165 futtsu sand 20 1.03 36 0.15 2.70 2.000 1.35 1.324 0.517 0.807 74.601 0.088 19 
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(Kokusho et 

al., 2012) 

166 futtsu sand 20 0.93 49 0.15 2.70 2.000 1.23 1.324 0.517 0.807 78.659 0.082 37 

167 futtsu sand 20 0.76 70 0.15 2.70 2.000 1.03 1.324 0.517 0.807 86.237 0.111 5.7 

168 futtsu sand 20 0.89 54 0.15 2.70 2.000 1.18 1.324 0.517 0.807 80.340 0.103 7.6 

169 futtsu sand 20 1.03 37 0.15 2.70 2.000 1.34 1.324 0.517 0.807 74.898 0.118 2.7 

170 futtsu sand 20 0.99 41 0.15 2.70 2.000 1.30 1.324 0.517 0.807 76.111 0.070 120 

171 futtsu sand 20 0.71 76 0.15 2.70 2.000 0.98 1.324 0.517 0.807 88.678 0.094 29 

172 Hokksund sand  0 0.85 25 0.44 2.38 6.000 0.85 0.95 0.59 0.36 85.761 0.350 7.4 

(S. Yang et al., 

2004) 

173 Hokksund sand  0 0.85 25 0.44 2.38 6.000 0.85 0.95 0.59 0.36 85.761 0.300 25.3 

174 Hokksund sand  0 0.85 26 0.44 2.38 6.000 0.85 0.95 0.59 0.36 85.853 0.250 50 

175 Hokksund sand  0 0.85 25 0.44 2.38 6.000 0.85 0.95 0.59 0.36 85.761 0.490 15 

176 Hokksund sand  5 0.78 26 0.43 3.43 6.000 0.87 0.87 0.58 0.29 88.714 0.250 31.5 

177 Hokksund sand  5 0.78 26 0.43 3.43 6.000 0.87 0.87 0.58 0.29 88.714 0.370 15 

178 Hokksund sand  5 0.78 25 0.43 3.43 6.000 0.87 0.87 0.58 0.29 88.615 0.300 14.3 

179 Hokksund sand  5 0.78 26 0.43 3.43 6.000 0.87 0.87 0.58 0.29 88.714 0.350 9.4 

180 Hokksund sand  10 0.71 34 0.42 6.59 6.000 0.87 0.8 0.52 0.28 88.941 0.200 85.3 

181 Hokksund sand  10 0.70 36 0.42 6.59 6.000 0.86 0.8 0.52 0.28 89.202 0.250 38.5 

182 Hokksund sand  10 0.71 35 0.42 6.59 6.000 0.86 0.8 0.52 0.28 89.097 0.350 15 

183 Hokksund sand  15 0.67 28 0.41 11.00 6.000 0.89 0.78 0.42 0.36 85.183 0.199 15 

184 Hokksund sand  15 0.67 28 0.41 11.00 6.000 0.89 0.78 0.42 0.36 85.183 0.200 12.5 

185 Hokksund sand  15 0.67 29 0.41 11.00 6.000 0.88 0.78 0.42 0.36 85.285 0.150 139.5 

186 Hokksund sand  20 0.64 32 0.34 13.03 6.000 0.90 0.73 0.4 0.33 85.627 0.200 4.4 

187 Hokksund sand  20 0.66 31 0.34 13.03 6.000 0.93 0.73 0.4 0.33 84.490 0.100 106.4 

188 Hokksund sand  20 0.64 31 0.34 13.03 6.000 0.91 0.73 0.4 0.33 85.418 0.125 62.4 

189 Hokksund sand  20 0.64 31 0.34 13.03 6.000 0.90 0.73 0.4 0.33 85.470 0.150 26.4 

190 Hokksund sand  20 0.66 31 0.34 13.03 6.000 0.93 0.73 0.4 0.33 84.490 0.176 15 

191 Hokksund sand  30 0.61 36 0.33 13.50 6.000 0.95 0.72 0.4 0.32 86.795 0.125 13.3 

192 Hokksund sand  30 0.62 35 0.33 13.50 6.000 0.95 0.72 0.4 0.32 86.634 0.150 7.3 

193 Hokksund sand  30 0.62 33 0.33 13.50 6.000 0.96 0.72 0.4 0.32 86.420 0.122 15 
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(S. Yang et al., 

2004) 
194 Hokksund sand  30 0.62 33 0.33 13.50 6.000 0.96 0.72 0.4 0.32 86.420 0.100 28.5 

195 Hokksund sand  30 0.61 35 0.33 13.50 6.000 0.95 0.72 0.4 0.32 86.741 0.200 3 

196 M31 0 0.67 66 0.30 1.30 11.111 0.67 0.841 0.582 0.259 94.727 0.240 10.2 

A. . 

Papadopoulou, 

2008; A. I. 

Papadopoulou 

& Tika, 2021) 

197 M31 0 0.69 60 0.30 1.30 11.111 0.69 0.841 0.582 0.259 93.854 0.370 3 

198 M31 0 0.67 66 0.30 1.30 11.111 0.67 0.841 0.582 0.259 94.731 0.240 15 

199 M31 0 0.68 61 0.30 1.30 11.111 0.68 0.841 0.582 0.259 93.998 0.190 61.7 

200 M31 0 0.77 28 0.30 1.30 11.111 0.77 0.841 0.582 0.259 89.455 0.150 14.4 

201 M31 0 0.66 69 0.30 1.30 11.111 0.66 0.841 0.582 0.259 95.170 0.420 3.4 

202 M31 0 0.68 63 0.30 1.30 11.111 0.68 0.841 0.582 0.259 94.223 0.228 15 

203 M31 0 0.66 71 0.30 1.30 11.111 0.66 0.841 0.582 0.259 95.416 0.257 15 

204 M31 0 0.77 26 0.30 1.30 11.111 0.77 0.841 0.582 0.259 89.194 0.190 7 

205 M31 0 0.77 26 0.30 1.30 11.111 0.77 0.841 0.582 0.259 89.194 0.100 63 

206 M31 0 0.65 72 0.30 1.30 11.111 0.65 0.841 0.582 0.259 95.617 0.330 4.8 

207 M31 0 0.61 90 0.30 1.30 11.111 0.61 0.841 0.582 0.259 98.389 0.460 4.2 

208 M31 5 0.68 37 0.30 1.60 11.111 0.76 0.762 0.544 0.218 91.832 0.250 11.4 

209 M31 5 0.66 47 0.30 1.60 11.111 0.74 0.762 0.544 0.218 93.038 0.220 14 

210 M31 5 0.67 40 0.30 1.60 11.111 0.76 0.762 0.544 0.218 92.190 0.180 20.3 

211 M31 5 0.68 37 0.30 1.60 11.111 0.76 0.762 0.544 0.218 91.832 0.210 12.7 

212 M31 5 0.71 24 0.30 1.60 11.111 0.79 0.762 0.544 0.218 90.309 0.240 5.5 

213 M31 5 0.64 58 0.30 1.60 11.111 0.72 0.762 0.544 0.218 94.402 0.200 81.4 

214 M31 5 0.71 24 0.30 1.60 11.111 0.79 0.762 0.544 0.218 90.309 0.150 22.4 

215 M31 5 0.68 37 0.30 1.60 11.111 0.76 0.762 0.544 0.218 91.832 0.330 3.8 

216 M31 15 0.56 51 0.30 8.80 11.111 0.77 0.75 0.38 0.37 88.388 0.190 12 

217 M31 15 0.64 29 0.30 8.80 11.111 0.87 0.75 0.38 0.37 84.008 0.200 10.2 

218 M31 15 0.50 68 0.30 8.80 11.111 0.70 0.75 0.38 0.37 92.098 0.290 35.5 

219 M31 15 0.64 29 0.30 8.80 11.111 0.87 0.75 0.38 0.37 84.044 0.156 15 

220 M31 15 0.59 44 0.30 8.80 11.111 0.80 0.75 0.38 0.37 86.957 0.201 15 

221 M31 15 0.58 45 0.30 8.80 11.111 0.80 0.75 0.38 0.37 87.149 0.140 24.5 
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222 M31 15 0.66 24 0.30 8.80 11.111 0.89 0.75 0.38 0.37 83.072 0.250 5.5 

A. . 

Papadopoulou, 

2008; A. I. 

Papadopoulou 

& Tika, 2021) 

223 M31 15 0.54 56 0.30 8.80 11.111 0.75 0.75 0.38 0.37 89.448 0.370 6.5 

224 M31 15 0.54 58 0.30 8.80 11.111 0.75 0.75 0.38 0.37 89.879 0.420 6 

225 M31 15 0.48 72 0.30 8.80 11.111 0.69 0.75 0.38 0.37 93.017 0.340 23.5 

226 M31 15 0.62 35 0.30 8.80 11.111 0.84 0.75 0.38 0.37 85.080 0.171 15 

227 M31 15 0.64 29 0.30 8.80 11.111 0.87 0.75 0.38 0.37 84.008 0.150 12.7 

228 M31 15 0.56 51 0.30 8.80 11.111 0.77 0.75 0.38 0.37 88.462 0.230 15 

229 M31 15 0.52 62 0.30 8.80 11.111 0.73 0.75 0.38 0.37 90.670 0.281 15 

230 M31 25 0.41 82 0.30 16.80 11.111 0.70 0.686 0.35 0.336 95.609 0.245 15 

231 M31 25 0.68 3 0.30 16.80 11.111 1.02 0.686 0.35 0.336 80.553 0.160 6.4 

232 M31 25 0.66 7 0.30 16.80 11.111 1.01 0.686 0.35 0.336 81.204 0.170 2.5 

233 M31 25 0.45 69 0.30 16.80 11.111 0.75 0.686 0.35 0.336 92.847 0.211 15 

234 M31 25 0.45 69 0.30 16.80 11.111 0.75 0.686 0.35 0.336 92.837 0.280 5 

235 M31 25 0.65 10 0.30 16.80 11.111 0.99 0.686 0.35 0.336 81.699 0.090 28 

236 M31 25 0.66 7 0.30 16.80 11.111 1.01 0.686 0.35 0.336 81.204 0.120 10 

237 M31 25 0.66 9 0.30 16.80 11.111 1.00 0.686 0.35 0.336 81.534 0.130 8.2 

238 M31 25 0.48 62 0.30 16.80 11.111 0.78 0.686 0.35 0.336 91.278 0.194 15 

239 M31 25 0.52 49 0.30 16.80 11.111 0.84 0.686 0.35 0.336 88.736 0.170 36.4 

240 M31 25 0.46 67 0.30 16.80 11.111 0.76 0.686 0.35 0.336 92.410 0.190 13.4 

241 M31 35 0.62 37 0.27 24.60 11.111 1.03 0.777 0.345 0.432 83.170 0.170 6 

242 M31 35 0.39 90 0.27 24.60 11.111 0.74 0.777 0.345 0.432 96.972 0.177 15 

243 M31 35 0.46 75 0.27 24.60 11.111 0.83 0.777 0.345 0.432 92.440 0.149 15 

244 M31 35 0.47 72 0.27 24.60 11.111 0.84 0.777 0.345 0.432 91.749 0.230 4.6 

245 M31 35 0.44 79 0.27 24.60 11.111 0.81 0.777 0.345 0.432 93.681 0.150 7.3 

246 M31 35 0.46 74 0.27 24.60 11.111 0.83 0.777 0.345 0.432 92.376 0.149 15 

247 M31 35 0.63 34 0.27 24.60 11.111 1.05 0.777 0.345 0.432 82.509 0.080 40.4 

248 M31 35 0.48 69 0.27 24.60 11.111 0.86 0.777 0.345 0.432 90.940 0.141 15 

249 Mai Liao Silty Sand 0 0.97 32 0.13 1.88 2.667 0.97 1.125 0.646 0.479 83.553 0.180 20 
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250 Mai Liao Silty Sand 0 0.73 82 0.13 1.88 2.667 0.73 1.125 0.646 0.479 95.145 0.460 45 

(Huang et al., 

2004) 

251 Mai Liao Silty Sand 0 0.93 41 0.13 1.88 2.667 0.93 1.125 0.646 0.479 85.285 0.210 20 

252 Mai Liao Silty Sand 0 0.73 82 0.13 1.88 2.667 0.73 1.125 0.646 0.479 95.145 0.570 9 

253 Mai Liao Silty Sand 0 0.73 82 0.13 1.88 2.667 0.73 1.125 0.646 0.479 95.145 0.520 20 

254 Mai Liao Silty Sand 0 0.73 82 0.13 1.88 2.667 0.73 1.125 0.646 0.479 95.145 0.535 16 

255 Mai Liao Silty Sand 0 0.80 68 0.13 1.88 2.667 0.80 1.125 0.646 0.479 91.444 0.440 20 

256 Mai Liao Silty Sand 0 0.85 57 0.13 1.88 2.667 0.85 1.125 0.646 0.479 88.973 0.340 20 

257 Mai Liao Silty Sand 0 0.85 57 0.13 1.88 2.667 0.85 1.125 0.646 0.479 88.973 0.375 9 

258 Mai Liao Silty Sand 0 0.73 82 0.13 1.88 2.667 0.73 1.125 0.646 0.479 95.145 0.500 28 

259 Mai Liao Silty Sand 15 0.73 70 0.12 2.30 2.667 0.95 1.058 0.589 0.469 91.850 0.490 8 

260 Mai Liao Silty Sand 15 0.80 55 0.12 2.30 2.667 1.03 1.058 0.589 0.469 88.278 0.320 20 

261 Mai Liao Silty Sand 15 0.73 70 0.12 2.30 2.667 0.95 1.058 0.589 0.469 91.850 0.440 20 

262 Mai Liao Silty Sand 15 0.76 64 0.12 2.30 2.667 0.99 1.058 0.589 0.469 90.284 0.380 7 

263 Mai Liao Silty Sand 15 0.76 64 0.12 2.30 2.667 0.99 1.058 0.589 0.469 90.284 0.360 20 

264 Mai Liao Silty Sand 15 0.80 67 0.12 2.30 2.667 1.03 1.058 0.589 0.469 88.278 0.260 150 

265 Mai Liao Silty Sand 15 0.76 64 0.12 2.30 2.667 0.99 1.058 0.589 0.469 90.284 0.320 75 

266 Mai Liao Silty Sand 15 0.73 70 0.12 2.30 2.667 0.95 1.058 0.589 0.469 91.850 0.410 42 

267 Mai Liao Silty Sand 15 0.80 55 0.12 2.30 2.667 1.03 1.058 0.589 0.469 88.278 0.300 40 

268 Mai Liao Silty Sand 15 0.76 64 0.12 2.30 2.667 0.99 1.058 0.589 0.469 90.284 0.365 18 

269 Mai Liao Silty Sand 15 0.76 64 0.12 2.30 2.667 0.99 1.058 0.589 0.469 90.284 0.338 36 

270 Mai Liao Silty Sand 30 0.73 78 0.11 3.70 2.667 1.06 1.213 0.593 0.62 92.081 0.210 20 

271 Mai Liao Silty Sand 30 0.73 78 0.11 3.70 2.667 1.06 1.213 0.593 0.62 92.081 0.200 32 

272 Mai Liao Silty Sand 30 0.73 78 0.11 3.70 2.667 1.06 1.213 0.593 0.62 92.081 0.240 7 

273 Mai Liao Silty Sand 30 0.76 73 0.11 3.70 2.667 1.09 1.213 0.593 0.62 90.511 0.200 7 

274 Mai Liao Silty Sand 30 0.73 78 0.11 3.70 2.667 1.06 1.213 0.593 0.62 92.081 0.229 13 

275 Mai Liao Silty Sand 30 0.76 73 0.11 3.70 2.667 1.09 1.213 0.593 0.62 90.511 0.165 18 

276 Mai Liao Silty Sand 30 0.76 73 0.11 3.70 2.667 1.09 1.213 0.593 0.62 90.511 0.180 11 

277 Mai Liao Silty Sand 30 0.76 73 0.11 3.70 2.667 1.09 1.213 0.593 0.62 90.511 0.154 29 
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278 Mai Liao Silty Sand 30 0.76 73 0.11 3.70 2.667 1.09 1.213 0.593 0.62 90.511 0.160 20 

(Huang et al., 

2004) 
279 Mai Liao Silty Sand 30 0.73 78 0.11 3.70 2.667 1.06 1.213 0.593 0.62 92.081 0.160 215 

280 Mai Liao Silty Sand 30 0.81 65 0.11 3.70 2.667 1.15 1.213 0.593 0.62 88.011 0.140 25 

281 Monterey Sand 0 0.70 65 0.46 1.50 10.000 0.70 0.821 0.631 0.19 96.115 0.439 73.1 

Green & 

Mitchell, 

2001) 

282 Monterey Sand 0 0.83 -5 0.46 1.50 10.000 0.83 0.821 0.631 0.19 89.129 0.179 3.9 

283 Monterey Sand 0 0.70 64 0.46 1.50 10.000 0.70 0.821 0.631 0.19 95.997 0.590 12.6 

284 Monterey Sand 0 0.83 -4 0.46 1.50 10.000 0.83 0.821 0.631 0.19 89.222 0.180 5.0 

285 Monterey Sand 0 0.70 64 0.46 1.50 10.000 0.70 0.821 0.631 0.19 95.997 0.505 58.1 

286 Monterey Sand 0 0.67 81 0.46 1.50 10.000 0.67 0.821 0.631 0.19 97.846 0.598 30.1 

287 Monterey Sand 0 0.73 46 0.46 1.50 10.000 0.73 0.821 0.631 0.19 94.113 0.362 108.1 

288 Monterey Sand 0 0.67 81 0.46 1.50 10.000 0.67 0.821 0.631 0.19 97.846 0.511 168.1 

289 Monterey Sand 0 0.74 43 0.46 1.50 10.000 0.74 0.821 0.631 0.19 93.732 0.343 87.0 

290 Monterey Sand 0 0.73 48 0.46 1.50 10.000 0.73 0.821 0.631 0.19 94.278 0.484 7.1 

291 Monterey Sand 0 0.74 43 0.46 1.50 10.000 0.74 0.821 0.631 0.19 93.732 0.395 36.0 

292 Monterey Sand 0 0.74 43 0.46 1.50 10.000 0.74 0.821 0.631 0.19 93.763 0.465 12.1 

293 Monterey Sand 0 0.73 47 0.46 1.50 10.000 0.73 0.821 0.631 0.19 94.164 0.522 6.1 

294 Monterey Sand 0 0.73 47 0.46 1.50 10.000 0.73 0.821 0.631 0.19 94.164 0.389 50.6 

295 Monterey Sand 0 0.71 57 0.46 1.50 10.000 0.71 0.821 0.631 0.19 95.272 0.399 351.0 

296 Monterey Sand 0 0.73 47 0.46 1.50 10.000 0.73 0.821 0.631 0.19 94.226 0.408 34.6 

297 Monterey Sand 0 0.71 58 0.46 1.50 10.000 0.71 0.821 0.631 0.19 95.378 0.525 15.1 

298 Monterey Sand 0 0.71 58 0.46 1.50 10.000 0.71 0.821 0.631 0.19 95.378 0.597 5.1 

299 Monterey Sand 5 0.65 55 0.44 1.70 10.000 0.73 0.755 0.566 0.189 94.794 0.408 25.0 

300 Monterey Sand 5 0.63 65 0.44 1.70 10.000 0.71 0.755 0.566 0.189 95.914 0.426 83.1 

301 Monterey Sand 5 0.60 80 0.44 1.70 10.000 0.68 0.755 0.566 0.189 97.632 0.591 28.1 

302 Monterey Sand 5 0.66 50 0.44 1.70 10.000 0.74 0.755 0.566 0.189 94.277 0.401 38.1 

303 Monterey Sand 5 0.63 64 0.44 1.70 10.000 0.71 0.755 0.566 0.189 95.880 0.488 22.6 

304 Monterey Sand 5 0.64 63 0.44 1.70 10.000 0.72 0.755 0.566 0.189 95.759 0.552 10.1 

305 Monterey Sand 5 0.60 82 0.44 1.70 10.000 0.68 0.755 0.566 0.189 97.885 0.525 46.1 
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306 Monterey Sand 10 0.52 80 0.42 2.20 10.000 0.66 0.702 0.47 0.232 96.896 0.601 44.0 

Green & 

Mitchell, 

2001) 

307 Monterey Sand 10 0.58 52 0.42 2.20 10.000 0.73 0.702 0.47 0.232 92.917 0.495 8.0 

308 Monterey Sand 10 0.58 52 0.42 2.20 10.000 0.73 0.702 0.47 0.232 92.917 0.398 35.0 

309 Monterey Sand 10 0.56 63 0.42 2.20 10.000 0.70 0.702 0.47 0.232 94.469 0.595 9.1 

310 Monterey Sand 10 0.58 52 0.42 2.20 10.000 0.73 0.702 0.47 0.232 92.985 0.306 173.1 

311 Monterey Sand 10 0.56 63 0.42 2.20 10.000 0.70 0.702 0.47 0.232 94.469 0.403 112.1 

312 Monterey Sand 10 0.51 81 0.42 2.20 10.000 0.66 0.702 0.47 0.232 97.089 0.514 109.1 

313 Monterey Sand 15 0.51 63 0.40 11.50 10.000 0.72 0.67 0.419 0.251 93.779 0.358 45.1 

314 Monterey Sand 15 0.64 11 0.40 11.50 10.000 0.86 0.67 0.419 0.251 86.425 0.215 38.0 

315 Monterey Sand 15 0.46 82 0.40 11.50 10.000 0.66 0.67 0.419 0.251 96.864 0.673 20.1 

316 Monterey Sand 15 0.46 82 0.40 11.50 10.000 0.66 0.67 0.419 0.251 96.864 0.501 49.0 

317 Monterey Sand 15 0.46 82 0.40 11.50 10.000 0.66 0.67 0.419 0.251 96.931 0.579 23.1 

318 Monterey Sand 15 0.64 11 0.40 11.50 10.000 0.87 0.67 0.419 0.251 86.372 0.178 99.0 

319 Monterey Sand 15 0.51 63 0.40 11.50 10.000 0.72 0.67 0.419 0.251 93.842 0.469 10.1 

320 Monterey Sand 15 0.64 11 0.40 11.50 10.000 0.87 0.67 0.419 0.251 86.372 0.306 8.0 

321 Monterey Sand 25 0.35 97 0.37 17.00 10.000 0.63 0.627 0.344 0.283 99.331 0.417 338.2 

322 Monterey Sand 25 0.35 98 0.37 17.00 10.000 0.63 0.627 0.344 0.283 99.476 0.614 56.0 

323 Monterey Sand 25 0.63 -1 0.37 17.00 10.000 0.96 0.627 0.344 0.283 82.448 0.247 8.0 

324 Monterey Sand 25 0.34 98 0.35 25.30 10.000 0.61 0.625 0.335 0.29 99.546 0.516 52.0 

325 Monterey Sand 25 0.40 76 0.35 25.30 10.000 0.69 0.625 0.335 0.29 95.025 0.305 124.1 

326 Monterey Sand 25 0.40 76 0.35 25.30 10.000 0.69 0.625 0.335 0.29 95.084 0.407 21.0 

327 Monterey Sand 25 0.41 76 0.35 25.30 10.000 0.69 0.625 0.335 0.29 94.947 0.470 14.1 

328 Monterey Sand 25 0.63 0 0.35 25.30 10.000 0.96 0.625 0.335 0.29 82.110 0.149 55.0 

329 Monterey Sand 25 0.45 61 0.35 25.30 10.000 0.74 0.625 0.335 0.29 92.134 0.251 60.0 

330 Monterey Sand 25 0.45 60 0.35 25.30 10.000 0.75 0.625 0.335 0.29 92.006 0.311 29.1 

331 Monterey Sand 25 0.45 61 0.35 25.30 10.000 0.74 0.625 0.335 0.29 92.264 0.450 6.1 

332 Monterey Sand 25 0.63 -2 0.35 25.30 10.000 0.96 0.625 0.335 0.29 81.905 0.226 8.0 

333 Monterey Sand 35 0.52 56 0.31 38.50 10.000 0.90 0.69 0.378 0.312 90.903 0.081 42.4 
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334 PSM-1 0 0.81 41 0.21 2.20 5.556 0.81 0.927 0.642 0.285 90.718 0.368 4 

(Cubrinovski 

& Rees, 2010) 

335 PSM-1 0 0.90 10 0.21 2.20 5.556 0.90 0.927 0.642 0.285 86.512 0.121 71 

336 PSM-1 0 0.91 5 0.21 2.20 5.556 0.91 0.927 0.642 0.285 85.834 0.150 17 

337 PSM-1 0 0.91 6 0.21 2.20 5.556 0.91 0.927 0.642 0.285 85.924 0.249 2.0 

338 PSM-1 0 0.81 43 0.21 2.20 5.556 0.81 0.927 0.642 0.285 90.919 0.243 13 

339 PSM-1 0 0.81 42 0.21 2.20 5.556 0.81 0.927 0.642 0.285 90.869 0.200 54 

340 PSM-1 10 0.78 23 0.21 2.90 5.556 0.94 0.861 0.505 0.356 84.551 0.198 13 

341 PSM-1 10 0.78 22 0.21 2.90 5.556 0.95 0.861 0.505 0.356 84.408 0.176 25 

342 PSM-1 10 0.81 14 0.21 2.90 5.556 0.98 0.861 0.505 0.356 83.012 0.178 12 

343 PSM-1 10 0.82 12 0.21 2.90 5.556 0.99 0.861 0.505 0.356 82.829 0.159 18 

344 PSM-1 20 0.75 23 0.21 12.20 5.556 1.03 0.834 0.449 0.385 82.942 0.161 12 

345 PSM-1 20 0.67 42 0.21 12.20 5.556 0.94 0.834 0.449 0.385 86.559 0.233 11 

346 PSM-1 20 0.73 26 0.21 12.20 5.556 1.01 0.834 0.449 0.385 83.564 0.141 28 

347 PSM-1 20 0.67 44 0.21 12.20 5.556 0.94 0.834 0.449 0.385 86.975 0.219 16 

348 PSM-2 0 0.82 41 0.18 2.20 4.444 0.82 0.941 0.637 0.304 90.143 0.243 10 

349 PSM-2 0 0.81 44 0.18 2.20 4.444 0.81 0.941 0.637 0.304 90.642 0.265 4.0 

350 PSM-2 0 0.90 14 0.18 2.20 4.444 0.90 0.941 0.637 0.304 86.249 0.121 50 

351 PSM-2 0 0.90 14 0.18 2.20 4.444 0.90 0.941 0.637 0.304 86.158 0.214 2 

352 PSM-2 0 0.81 42 0.18 2.20 4.444 0.81 0.941 0.637 0.304 90.243 0.191 59 

353 PSM-2 0 0.90 14 0.18 2.20 4.444 0.90 0.941 0.637 0.304 86.249 0.150 12 

354 PSM-2 10 0.80 24 0.18 2.60 4.444 0.96 0.888 0.506 0.382 83.853 0.141 30 

355 PSM-2 10 0.72 45 0.18 2.60 4.444 0.88 0.888 0.506 0.382 87.660 0.284 8 

356 PSM-2 10 0.79 25 0.18 2.60 4.444 0.96 0.888 0.506 0.382 83.993 0.177 9 

357 PSM-2 10 0.72 45 0.18 2.60 4.444 0.87 0.888 0.506 0.382 87.813 0.246 50 

358 PSM-2 25 0.63 61 0.18 68.80 4.444 0.92 0.941 0.42 0.521 87.385 0.159 74 

359 PSM-2 25 0.58 70 0.18 68.80 4.444 0.87 0.941 0.42 0.521 89.987 0.288 12 

360 PSM-2 25 0.58 69 0.18 68.80 4.444 0.87 0.941 0.42 0.521 89.760 0.266 15 

361 PSM-2 25 0.62 61 0.18 68.80 4.444 0.92 0.941 0.42 0.521 87.546 0.239 9 
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362 Silica Sand No.6 0 0.87 42 0.16 1.60 7.059 0.87 1.046 0.634 0.412 87.286 0.152 11 

(Enomoto, 

2019) 

363 Silica Sand No.6 0 0.87 42 0.16 1.60 7.059 0.87 1.046 0.634 0.412 87.193 0.169 12 

364 Silica Sand No.6 0 0.87 42 0.16 1.60 7.059 0.87 1.046 0.634 0.412 87.193 0.155 20 

365 Silica Sand No.6 0 0.86 45 0.16 1.60 7.059 0.86 1.046 0.634 0.412 87.802 0.133 184 

366 Silica Sand No.6 20 0.66 52 0.14 11.30 7.059 0.93 0.91 0.428 0.482 86.076 0.155 13 

367 Silica Sand No.6 20 0.67 51 0.14 11.30 7.059 0.94 0.91 0.428 0.482 85.766 0.129 29 

368 Silica Sand No.6 20 0.66 51 0.14 11.30 7.059 0.94 0.91 0.428 0.482 85.921 0.176 12 

369 Silica Sand No.6 20 0.66 51 0.14 11.30 7.059 0.94 0.91 0.428 0.482 85.869 0.145 20 

370 Silica Sand No.6 30 0.63 50 0.13 12.90 7.059 0.98 0.885 0.383 0.502 84.639 0.118 20 

371 Silica Sand No.6 30 0.63 50 0.13 12.90 7.059 0.98 0.885 0.383 0.502 84.691 0.056 374 

372 Silica Sand No.6 30 0.64 49 0.13 12.90 7.059 0.99 0.885 0.383 0.502 84.484 0.154 4.5 

373 Silica Sand No.6 30 0.63 51 0.13 12.90 7.059 0.98 0.885 0.383 0.502 84.795 0.132 12 

374 Silica Sand No.6 30 0.64 49 0.13 12.90 7.059 0.99 0.885 0.383 0.502 84.484 0.092 46 

375 Toyoura sand 10 0.91 7 0.19 3.27 2.488 1.09 0.94 0.54 0.4 80.544 0.123 15 

(Wei & Yang, 

2019a) 

376 Toyoura sand 10 0.80 36 0.19 3.27 2.488 0.96 0.94 0.54 0.4 85.794 0.248 15 

377 Toyoura sand 10 0.72 55 0.19 3.27 2.488 0.88 0.94 0.54 0.4 89.431 0.378 15 

378 Toyoura sand 10 0.72 55 0.19 3.27 2.488 0.88 0.94 0.54 0.4 89.431 0.422 10 

379 Toyoura sand 10 0.91 7 0.19 3.27 2.488 1.09 0.94 0.54 0.4 80.544 0.113 10 

380 Toyoura sand 10 0.91 8 0.19 3.27 2.488 1.08 0.94 0.54 0.4 80.797 0.141 15 

381 Toyoura sand 10 0.91 8 0.19 3.27 2.488 1.08 0.94 0.54 0.4 80.797 0.148 10 

382 Toyoura sand 10 0.80 36 0.19 3.27 2.488 0.96 0.94 0.54 0.4 85.794 0.269 10 

383 Toyoura sand 10 0.85 23 0.19 3.27 2.488 1.02 0.94 0.54 0.4 83.288 0.172 15 

384 Toyoura sand 10 0.85 23 0.19 3.27 2.488 1.02 0.94 0.54 0.4 83.288 0.179 10 

385 Toyoura sand 20 0.92 3 0.19 3.70 2.488 1.22 0.93 0.48 0.45 77.204 0.073 15 

386 Toyoura sand 20 0.91 5 0.19 3.70 2.488 1.21 0.93 0.48 0.45 77.650 0.104 15 

387 Toyoura sand 20 0.80 30 0.19 3.70 2.488 1.08 0.93 0.48 0.45 82.451 0.190 15 

388 Toyoura sand 20 0.72 47 0.19 3.70 2.488 0.99 0.93 0.48 0.45 86.097 0.311 10 

389 Toyoura sand 20 0.91 5 0.19 3.70 2.488 1.21 0.93 0.48 0.45 77.650 0.110 10 
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390 Toyoura sand 20 0.92 3 0.19 3.70 2.488 1.22 0.93 0.48 0.45 77.204 0.080 10  

391 Toyoura sand 20 0.80 30 0.19 3.70 2.488 1.08 0.93 0.48 0.45 82.451 0.204 10 

392 Toyoura sand 20 0.72 47 0.19 3.70 2.488 0.99 0.93 0.48 0.45 86.097 0.284 15 

393 Yatserville 0 0.75 70 0.17 2.40 2.870 0.75 0.972 0.653 0.319 94.527 0.323 11.1 

(Green & 

Mitchell, 

2001) 

394 Yatserville 0 0.89 26 0.17 2.40 2.870 0.89 0.972 0.653 0.319 87.445 0.224 5 

395 Yatserville 0 1.01 -11 0.17 2.40 2.870 1.01 0.972 0.653 0.319 82.410 0.076 31.4 

396 Yatserville 0 0.89 25 0.17 2.40 2.870 0.89 0.972 0.653 0.319 87.327 0.168 14 

397 Yatserville 0 1.01 -10 0.17 2.40 2.870 1.01 0.972 0.653 0.319 82.437 0.090 14.5 

398 Yatserville 0 0.75 68 0.17 2.40 2.870 0.75 0.972 0.653 0.319 94.235 0.342 11.1 

399 Yatserville 0 1.09 -37 0.17 2.40 2.870 1.09 0.972 0.653 0.319 79.066 0.067 60.4 

400 Yatserville 0 0.76 68 0.17 2.40 2.870 0.76 0.972 0.653 0.319 94.184 0.286 23.1 

401 Yatserville 0 1.08 -32 0.17 2.40 2.870 1.08 0.972 0.653 0.319 79.661 0.087 11.3 

402 Yatserville 0 1.07 -32 0.16 2.40 2.870 1.07 0.972 0.653 0.319 79.698 0.110 2.3 

403 Yatserville 0 0.88 27 0.17 2.40 2.870 0.88 0.972 0.653 0.319 87.696 0.137 36.1 

404 Yatserville 0 1.08 -33 0.17 2.40 2.870 1.08 0.972 0.653 0.319 79.612 0.066 43.3 

405 Yatserville 0 1.11 -45 0.17 2.40 2.870 1.11 0.972 0.653 0.319 78.195 0.063 78.5 

406 Yatserville 4 1.00 -30 0.16 2.60 2.870 1.08 0.911 0.609 0.302 80.361 0.111 6.3 

407 Yatserville 4 0.82 31 0.16 2.60 2.870 0.89 0.911 0.609 0.302 88.505 0.229 19.1 

408 Yatserville 4 0.83 28 0.16 2.60 2.870 0.90 0.911 0.609 0.302 88.022 0.136 8.6 

409 Yatserville 4 0.94 -10 0.16 2.60 2.870 1.02 0.911 0.609 0.302 82.938 0.127 7.2 

410 Yatserville 4 0.94 -9 0.16 2.60 2.870 1.01 0.911 0.609 0.302 83.016 0.113 12 

411 Yatserville 4 0.75 52 0.16 2.60 2.870 0.82 0.911 0.609 0.302 91.751 0.335 7.1 

412 Yatserville 4 0.85 20 0.16 2.60 2.870 0.93 0.911 0.609 0.302 86.888 0.211 15 

413 Yatserville 4 0.75 52 0.16 2.60 2.870 0.82 0.911 0.609 0.302 91.798 0.283 11.1 

414 Yatserville 4 0.83 28 0.16 2.60 2.870 0.90 0.911 0.609 0.302 88.124 0.163 3.2 

415 Yatserville 4 0.84 23 0.16 2.60 2.870 0.91 0.911 0.609 0.302 87.358 0.148 6.3 

416 Yatserville 4 0.94 -11 0.16 2.60 2.870 1.02 0.911 0.609 0.302 82.771 0.094 28.3 

417 Yatserville 4 1.02 -37 0.16 2.60 2.870 1.10 0.911 0.609 0.302 79.605 0.077 30.3 



 

78 
 

Sr. Sand Type 

Fines 

Content 

(%) 

Void 

Ratio 

Relative 

Density (%) 
D50 Cu D10/d50 e* emax emin erange 

Relative 

Compaction 

Cyclic 

Stress 

Ratio 

Cycles to 

Initial 

Liq'n 
Reference 

                

418 Yatserville 4 1.02 -36 0.16 2.60 2.870 1.10 0.911 0.609 0.302 79.724 0.081 20.3 

(Green & 

Mitchell, 

2001) 

419 Yatserville 4 0.82 30 0.16 2.60 2.870 0.89 0.911 0.609 0.302 88.314 0.243 11.1 

420 Yatserville 4 0.75 52 0.16 2.60 2.870 0.82 0.911 0.609 0.302 91.751 0.249 33.1 

421 Yatserville 4 0.82 30 0.16 2.60 2.870 0.89 0.911 0.609 0.302 88.314 0.188 54 

422 Yatserville 7 0.77 29 0.16 2.60 2.870 0.89 0.872 0.528 0.344 86.286 0.297 15.1 

423 Yatserville 7 0.96 -25 0.15 2.60 2.870 1.09 0.872 0.528 0.344 77.998 0.132 4.3 

424 Yatserville 7 0.78 27 0.16 2.60 2.870 0.90 0.872 0.528 0.344 85.935 0.225 58.1 

425 Yatserville 7 0.98 -32 0.16 2.60 2.870 1.11 0.872 0.528 0.344 77.131 0.088 29.6 

426 Yatserville 7 0.77 31 0.16 2.60 2.870 0.89 0.872 0.528 0.344 86.504 0.323 7.1 

427 Yatserville 7 0.89 -6 0.16 2.60 2.870 1.02 0.872 0.528 0.344 80.807 0.161 4.2 

428 Yatserville 7 0.90 -9 0.16 2.60 2.870 1.03 0.872 0.528 0.344 80.296 0.086 65 

429 Yatserville 7 0.90 -9 0.16 2.60 2.870 1.03 0.872 0.528 0.344 80.340 0.124 16.8 

430 Yatserville 7 0.76 34 0.16 2.60 2.870 0.87 0.872 0.528 0.344 87.012 0.307 6 

431 Yatserville 7 0.76 34 0.16 2.60 2.870 0.87 0.872 0.528 0.344 87.012 0.283 9.1 

432 Yatserville 7 0.96 -25 0.16 2.60 2.870 1.09 0.872 0.528 0.344 77.998 0.113 8.3 

433 Yatserville 7 0.94 -20 0.16 2.60 2.870 1.07 0.872 0.528 0.344 78.675 0.084 29.4 

434 Yatserville 7 0.76 34 0.16 2.60 2.870 0.87 0.872 0.528 0.344 87.064 0.241 20.1 

435 Yatserville 7 0.75 35 0.16 2.60 2.870 0.87 0.872 0.528 0.344 87.166 0.251 25.1 

436 Yatserville 12 0.66 55 0.15 3.50 2.870 0.84 0.84 0.517 0.323 91.274 0.284 11.1 

437 Yatserville 12 0.83 3 0.15 3.50 2.870 1.03 0.84 0.517 0.323 82.941 0.153 29 

438 Yatserville 12 0.87 -10 0.15 3.50 2.870 1.07 0.84 0.517 0.323 81.037 0.144 3.4 

439 Yatserville 12 0.75 28 0.15 3.50 2.870 0.94 0.84 0.517 0.323 86.628 0.267 7 

440 Yatserville 12 0.88 -12 0.15 3.50 2.870 1.08 0.84 0.517 0.323 80.773 0.097 31.4 

441 Yatserville 12 0.76 25 0.15 3.50 2.870 0.95 0.84 0.517 0.323 86.182 0.231 12.6 

442 Yatserville 12 0.87 -10 0.15 3.50 2.870 1.07 0.84 0.517 0.323 81.079 0.116 9.3 

443 Yatserville 12 0.70 44 0.15 3.50 2.870 0.88 0.84 0.517 0.323 89.330 0.386 12.1 

444 Yatserville 12 0.66 54 0.15 3.50 2.870 0.84 0.84 0.517 0.323 91.150 0.255 11.7 

445 Yatserville 12 0.83 3 0.15 3.50 2.870 1.03 0.84 0.517 0.323 82.853 0.188 10.9 
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446 Yatserville 12 0.88 -11 0.15 3.50 2.870 1.08 0.84 0.517 0.323 80.870 0.090 28.3 

(Green & 

Mitchell, 

2001) 

447 Yatserville 12 0.69 45 0.15 3.50 2.870 0.88 0.84 0.517 0.323 89.551 0.339 13.1 

448 Yatserville 12 0.66 57 0.15 3.50 2.870 0.84 0.84 0.517 0.323 91.594 0.312 7.1 

449 Yatserville 12 0.83 5 0.15 3.50 2.870 1.02 0.84 0.517 0.323 83.117 0.224 4 

450 Yatserville 12 0.70 42 0.15 3.50 2.870 0.89 0.84 0.517 0.323 89.076 0.370 15.1 

451 Yatserville 12 0.76 26 0.15 3.50 2.870 0.95 0.84 0.517 0.323 86.341 0.201 47.1 

452 Yatserville 17 0.57 78 0.15 4.50 2.870 0.79 0.802 0.502 0.3 95.754 0.376 16.7 

453 Yatserville 17 0.57 76 0.15 4.50 2.870 0.80 0.802 0.502 0.3 95.444 0.349 15.7 

454 Yatserville 17 0.82 -7 0.13 4.50 2.870 1.08 0.802 0.502 0.3 82.432 0.159 5.2 

455 Yatserville 17 0.75 17 0.15 4.50 2.870 1.00 0.802 0.502 0.3 85.780 0.263 6 

456 Yatserville 17 0.68 41 0.15 4.50 2.870 0.92 0.802 0.502 0.3 89.458 0.156 16.7 

457 Yatserville 17 0.83 -8 0.15 4.50 2.870 1.08 0.802 0.502 0.3 82.297 0.128 20.9 

458 Yatserville 17 0.72 28 0.15 4.50 2.870 0.96 0.802 0.502 0.3 87.381 0.248 7 

459 Yatserville 17 0.75 18 0.15 4.50 2.870 1.00 0.802 0.502 0.3 85.927 0.222 14 

460 Yatserville 17 0.72 26 0.15 4.50 2.870 0.97 0.802 0.502 0.3 87.123 0.212 25 

461 Yatserville 17 0.57 76 0.15 4.50 2.870 0.80 0.802 0.502 0.3 95.480 0.406 15.1 

462 Yatserville 17 0.83 -11 0.15 4.50 2.870 1.09 0.802 0.502 0.3 81.893 0.091 62.4 

463 Yatserville 17 0.69 38 0.15 4.50 2.870 0.93 0.802 0.502 0.3 88.934 0.102 118.8 

464 Yatserville 17 0.73 25 0.15 4.50 2.870 0.97 0.802 0.502 0.3 87.017 0.201 46.6 

465 Yatserville 17 0.69 38 0.15 4.50 2.870 0.93 0.802 0.502 0.3 89.029 0.245 2.5 

466 Yatserville 17 0.75 18 0.15 4.50 2.870 1.00 0.802 0.502 0.3 85.927 0.198 38 

467 Yatserville 26 0.66 27 0.13 6.60 2.870 0.96 0.728 0.483 0.245 89.225 0.190 69 

468 Yatserville 26 0.65 31 0.13 6.60 2.870 0.95 0.728 0.483 0.245 89.767 0.192 14.1 

469 Yatserville 26 0.66 29 0.13 6.60 2.870 0.96 0.728 0.483 0.245 89.436 0.273 5.1 

470 Yatserville 26 0.62 43 0.13 6.60 2.870 0.92 0.728 0.483 0.245 91.421 0.330 14.1 

471 Yatserville 26 0.75 -9 0.12 6.60 2.870 1.07 0.728 0.483 0.245 84.740 0.169 7.1 

472 Yatserville 26 0.66 28 0.13 6.60 2.870 0.96 0.728 0.483 0.245 89.330 0.219 9 

473 Yatserville 26 0.75 -10 0.13 6.60 2.870 1.07 0.728 0.483 0.245 84.598 0.126 30.1 
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474 Yatserville 26 0.67 25 0.13 6.60 2.870 0.97 0.728 0.483 0.245 88.962 0.161 21 

(Green & 

Mitchell, 

2001) 

475 Yatserville 26 0.66 28 0.13 6.60 2.870 0.96 0.728 0.483 0.245 89.383 0.249 13 

476 Yatserville 26 0.63 40 0.13 6.60 2.870 0.92 0.728 0.483 0.245 91.023 0.283 11.1 

477 Yatserville 26 0.62 43 0.13 6.60 2.870 0.92 0.728 0.483 0.245 91.366 0.301 14.1 

478 Yatserville 26 0.75 -9 0.13 6.60 2.870 1.07 0.728 0.483 0.245 84.740 0.151 9.4 

479 Yatserville 37 0.68 0 0.12 8.70 2.870 1.01 0.684 0.397 0.287 82.957 0.178 7 

480 Yatserville 37 0.61 24 0.12 8.70 2.870 0.93 0.684 0.397 0.287 86.557 0.285 4.1 

481 Yatserville 37 0.73 -16 0.10 8.70 2.870 1.07 0.684 0.397 0.287 80.702 0.118 7.7 

482 Yatserville 37 0.75 -25 0.12 8.70 2.870 1.10 0.684 0.397 0.287 79.606 0.078 46.3 

483 Yatserville 37 0.61 26 0.12 8.70 2.870 0.93 0.684 0.397 0.287 86.773 0.234 10 

484 Yatserville 37 0.66 8 0.12 8.70 2.870 0.99 0.684 0.397 0.287 84.060 0.141 9.1 

485 Yatserville 37 0.68 1 0.12 8.70 2.870 1.01 0.684 0.397 0.287 83.099 0.116 29 

486 Yatserville 37 0.67 5 0.12 8.70 2.870 1.00 0.684 0.397 0.287 83.598 0.112 35.7 

487 Yatserville 37 0.72 -11 0.12 8.70 2.870 1.05 0.684 0.397 0.287 81.417 0.092 19.3 

488 Yatserville 37 0.61 25 0.12 8.70 2.870 0.93 0.684 0.397 0.287 86.665 0.224 12.1 

489 Yatserville 37 0.67 4 0.12 8.70 2.870 1.00 0.684 0.397 0.287 83.498 0.194 3.4 
               

 
               

 
               

 
               

 
               

 
               

 
               

 
               

 
               

 

                



 

 
 

 


