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ABSTRACT

The elucidation of three-dimensional protein structure plays a pivotal role in

comprehending biological phenomena. It directly governs protein function and hence

aids in drug discovery. Development of protein prediction algorithms, AlphaFold2

and ESMFold, have the potential to shift the paradigm of protein-based therapeutic

discovery. Turning an amino acid chain into 3D domains and docking them can aid

in unlocking a protein’s full potential. Besides this, the effects of mutations on the do-

main structure can be studied meticulously. Prediction scores from extensive studies

were examined in the hope of searching for newer modalities of transforming protein

therapeutics. Most of these studies failed to find any utility of these algorithms, and a

few suggested, despite their dismal findings, that their utility can be found. The inven-

tors of the algorithms cautioned that the predicted structures and scores have no utility

except regurgitate known structures from the known structure databases. A few possi-

ble applications, as considered in this study, are to predict pre-translation variations,

mutations, and structural changes. A potential correlation of repeatedly manufactured

batches of therapeutic protein is correlated with the structure prediction score as a

measure of thermodynamic instability. 204 unmodified FDA-approved therapeutic

proteins were correlated with their prediction scores and available physicochemical

and functional properties. Slight residual differences among the commercial therapeu-

tic proteins and structures reported in the PDB were found. The potential impact of

mutations on the prediction scores is also studied. No observed correlation was found

between the prediction score and any tested attribute. The algorithms exhibited lower

confidence in predicting structures for sequences with low identity scores when tested

against the UniProt and PDB databases. Other deployed algorithms (i.e., trRoseeta)

were concluded to be more relevant to domain manipulation as well. Reliable struc-

ture prediction from these algorithms highly depends on the model’s architecture and

training data. Ultimately, it was concluded that none of these algorithms have any
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Abstract

value except they show how good they can be at reproducing a known or partially-

known structure. The comparison of AF2 and ESMF resulted in R2 of 0.69, vouching

for their orthogonality. However, the R2 value of physiochemical attributes was as low

as 0.07. Lack of significant correlation of predictability scores with physicochemical

and functional properties cannot vouch for in-vivo stability and molecular function-

ality of a protein. Furthermore, when novel randomized and mutated sequences are

provided to these algorithms, they fail to predict structures with acceptable accuracy.

This is majorly due to the unavailability of similar folds in the training dataset (i.e.,

UniProt and PDB) of these algorithms. Although it might seem that these algorithms

go beyond regurgitating available data, it might not be the case. In this context, these

algorithms are considered no different than GPT4, which also regurgitates available

data. These algorithms do not play well in proving the Levinthal paradox as solved,

yet it remains unsolved.
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Chapter 1

INTRODUCTION

Biological products (biologics) encompass a broad range of therapeutics, in-

cluding vaccines, blood components, allergenics, somatic cells, gene therapy, tissues,

and recombinant therapeutic proteins. Biologics can consist of sugars, proteins, nu-

cleic acids, or their intricate combinations. This diverse class of compounds has rev-

olutionized medicine, offering new and effective treatment options for a wide range

of diseases and conditions. These remarkable biopharmaceuticals, derivatives of nat-

urally occurring human proteins, may range from small peptides like insulin to larger

proteins like monoclonal antibodies. Before the advent of recombinant technology,

biologics were derived from diverse natural sources, including humans, animals, and

microorganisms. The boom of recombinant DNA technology has drastically improved

the selective binding of target-enabled therapeutic proteins to interrupt disease pro-

gression, enhance immune responses, modulate cell signaling, or replace deficient

proteins, leading to improved clinical outcomes. These recombinant proteins exhibit

specific molecular structures and functions, making them highly versatile and potent

therapeutic agents. The therapeutic potential of proteins lies in their folds, functional

regions, and the ability of these functional regions to interact with specific molecu-

lar targets involved in disease pathways. Moreover, these proteins’ high specificity

and affinity allow for precise targeting, reducing potential side effects and improving

patient safety, which can be studied through various in-silicon and in-vivo techniques.

1.1 Therapeutic proteins

Therapeutic proteins are typically large, complex molecules designed to mimic

or enhance the natural functions of endogenous proteins within the human body. They

3



Chapter 1 1.1 Therapeutic proteins

are produced through recombinant DNA technology, involving the genetic engineer-

ing of cells such as bacteria, yeast, or mammalian cells to express and produce the

desired protein. This advanced manufacturing process enables the production of ther-

apeutic proteins on a large scale, ensuring consistent quality and purity.

Recombinant forms of naturally occurring proteins have significantly contributed to

the treatment of numerous diseases, including cancer, diabetes, autoimmune disor-

ders, infectious diseases, and genetic disorders. They have demonstrated remarkable

efficacy, often outperforming traditional small-molecule drugs in terms of specificity

and therapeutic impact. Additionally, the advent of personalized medicine has further

expanded the applications of therapeutic proteins, as they can be tailored to target

specific genetic mutations or disease sub-types.

Protein-based therapeutics are highly successful with great potential. They can be

categorized into groups based on their molecular composition and pharmacological

activity. The molecular categorization is based on the type of class the molecule

belongs to, i.e., enzymes, growth factors, hormones, interferons, interleukins, throm-

bolytics, Fc-fusion proteins, anticoagulants, and blood factors. These compounds are

further categorized according to their molecular modes of action into groups that

attach non-covalently to the target, such as monoclonal antibodies (mAbs); affect

covalent bonds, such as enzymes; and exert activity without specific contacts, such as

serum albumin. Each class of therapeutic protein exhibits unique characteristics that

make them suitable for treating specific diseases i.e., treatment of infections, cancers,

immunological disorders, and other diseases. Based on their pharmacological activity

they can be divided into five sub-classes i.e., replacing an absent or abnormal protein;

enhancing an already-existing pathway; offering a novel function or activity; interfer-

ing with a molecule or organism; and delivering other compounds or proteins, such

as a radionuclide, cytotoxic drug, or effector proteins (1).

Each class of compounds has played a significant role in the treatment of various

disease conditions. For instance, monoclonal antibodies have revolutionized the treat-
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Chapter 1 1.2 Biosimilars

ment of various cancers and autoimmune diseases by selectively targeting specific

molecules on the surface of cells. Trastuzumab (Herceptin) is an Anti-HER2 antibody

that is used in combination with standard adjuvant chemotherapy for breast cancer

treatment and has shown to significantly prolonged survival in high-risk patients (2).

Similarly, Obinutuzumab is used in the treatment of patients with previously untreated

chronic lymphocytic leukemia, while Idarucizumab is used when the reversal of an

anticoagulant is needed during urgent surgical procedures in order to control uncon-

trolled bleeding. A recombinant enzyme, Sebelipase alfa is used in the treatment of

patients with lysosomal acid lipase deficiency (3). At the same time, growth factors are

crucial in stimulating tissue repair and regeneration. One of the best-therapeutically-

characterized growth factors, the Heparin-binding-Epidermal Growth factor, plays

a vital role in wound healing. It binds to the EGFR sub-types HER1 and HER472,

promoting ’re-epithelialization’. Besides wound healing, it has a critical role in an-

giogenesis, cardiac valve tissue development, and the maintenance of normal heart

function (4).

1.2 Biosimilars

Biosimilars, also known as follow-on biologics, are copies of therapeutic pro-

teins approved as having "no clinically meaningful difference" when compared to

their reference-approved therapeutic proteins for which a full regulatory filing has

already been approved. Extensive analytical, toxicological, clinical pharmacy, and

clinical efficacy comparisons are conducted with their reference products to ensure

that the innate variability of protein structure that determines efficacy and toxicity

from batch-to-batch is highly similar to the reference product. By establishing the

similarity and interchangeability of biosimilars with their reference products, regula-

tory agencies ensure that patients can confidently rely on these alternative treatment

options. Since biosimilars are developed to have similar properties and effects as their

reference products, they can be utilized for the same therapeutic purposes. This offers
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Chapter 1 1.3 Unraveling the complexity of Protein Folding

Table 1.1. Biosimilars of Epoetin (EPO)

Country Company Product
Apotex Canada Apo-EPO
Biocon India Erypro Safe
Biosidus Argentina Zyrop
Hospira (Pfizer) USA Retacrit (epoetin zeta)
Hexal Australia Epoetin alfa Hexal

opportunities for expanding patient access to essential treatments while potentially

reducing healthcare costs.

Patients with chronic renal failure develop anemia which is caused by delayed pro-

duction of erythropoietin (EPO) by the peritubular cells of the kidney. This condition

is mainly treated by EPO containing medicinal products like Epoetin-alpha and its

biosimilars as shown in Table ??. A biosimilar of epoetin-alpha, called epoetin-zeta,

was granted marketing authorization by the European Medicines Agency in 2007.

Structurally, epoetin-zeta has higher levels of N-glycans with lactose-amine exten-

sions and lower levels of N-glycan sialylation relative to its reference product which

indicates that their structures are slightly different making it a biosimilar (5). Econom-

ically, a global epoetin-zeta cost analysis report showed a total cost saving of nearly

45% in comparison to epoetin alfa, for Spain and it showed that the availability of

epoetin-zeta decreased the cost by £7.9 per week, for patients in UK (6).

1.3 Unraveling the complexity of Protein Folding

Therapeutic proteins and their biosimilars have emerged as indispensable tools

in modern medicine with their remarkable ability to modulate biological processes and

target specific disease-related molecules. However, the efficacy and safety of these

proteins heavily depend on their three-dimensional structure, which governs their

functional properties. Understanding and predicting protein structure is of paramount
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Chapter 1 1.3 Unraveling the complexity of Protein Folding

importance as it allows researchers and scientists to gain insights into their behavior,

interactions, and potential therapeutic applications. Accurate structure prediction is

a cornerstone in drug design, rational engineering of proteins, and developing novel

therapeutics. By unraveling the complexity of protein folding, a treasure trove of

knowledge with immense potential for improving human health and addressing some

of the most challenging medical conditions can be unlocked.

Protein folding process can be conceptually divided into four levels: primary, sec-

ondary, tertiary, and quaternary structure Figure 1.1. The primary structure refers to

the linear sequence of amino acids that make up the polypeptide chain using 19 dif-

ferent amino acids in combinations. This sequence determines the protein’s folding

pattern and ultimately its function. The secondary structure involves the folding of the

peptide chain into regular patterns such as alpha helices or beta sheets, stabilized by

hydrogen bonds. Tertiary structure describes the overall three-dimensional arrange-

ment of the protein, including the spatial orientation of secondary structure elements.

Finally, multiple polypeptide chains interact together to form the quaternary structure.

Furthermore, multiple combinations of amino acids and polypeptide chains fold to

form different conformations of proteins due to many degrees of freedoms.

The remarkable complexity of proteins was recognized by Cyrus Levinthal in 1969.

For instance, considering three states for each bond and examining a 101-residue se-

quence with 100 covalent bonds (peptide linkages) and 199 distinguishable phi & psi

bond angles, theoretically, a protein has 3100 = 5×1047 potential conformations. To

explore all these possibilities at a protein sampling rate of 3×1020 per year, it would

take approximately 1027 years, emphasizing the immense challenge of exhaustively

testing every conformation (7), (8), (9). The innate programming of proteins coded in

their genetic material enables them to fold into their native states with minimum en-

ergy and maximum stability with a minute window of error, in a fraction of a second.

This significant flexibility and precise folding of therapeutic proteins is essential for

their stability, activity, and interaction with disease targets.

7



Chapter 1 1.3 Unraveling the complexity of Protein Folding

Certain Pre-translational modifications and post-translational modifications play cru-

cial roles in shaping the structure of proteins as well. Pre-translational modifications

occur during protein synthesis and involve modifications to the nascent polypeptide

chain before it is fully synthesized. These modifications include signal peptide cleav-

age, where a signal sequence is removed to guide the protein to its correct cellular

location, and the addition of certain amino acids or protein tags that facilitate protein

folding and stability. Some examples of such pre-translational modifications are splic-

ing, capping, addition of a poly-A tail, histone modification, DNA methylation, and

transcript modification.

Post-translational modifications (PTMs) occur after the protein has been fully syn-

thesized and can profoundly impact protein structure and function. Common PTMs

include phosphorylation, glycosylation, acetylation, methylation, ubiquitination, and

proteolytic cleavage. These modifications can alter protein conformation, stability,

enzymatic activity, subcellular localization, and interaction with other molecules. In

glycosylation, for instance, the attached sugar molecules can influence protein fold-

ing and stability, as well as mediate protein-protein interactions and cell recognition

processes. Besides this, methylation and acetylation can modify the charges and hy-

drophobicity of amino acids, leading to changes in protein structure and function.

Additionally, PTMs can create binding sites for other proteins or signaling molecules,

allowing for intricate regulatory networks within cells. The interplay between differ-

ent PTMs can further regulate protein structure and function, adding an additional

layer of complexity.

Overall, both pre-translational and post-translational modifications are essential for

proteins’ 3D fold formation and their therapeutic function. They expand the func-

tional repertoire of a protein, regulate its activity, and enable it to participate in var-

ious cellular processes. By elucidating the folding pathways and factors influencing

protein folding, therapeutic proteins with enhanced efficacy, reduced side effects, and

improved pharmacokinetics (PK), pharmacodynamics (PD), bioavailability can be

8



Chapter 1 1.4 Protein Structure Prediction

studied, ultimately advancing the development of novel and more effective treatments

for various diseases. Hence understanding and predicting these different levels of

protein folding and the effects of pre-and post-translational modifications is crucial.

Figure 1.1. The four levels of protein folding: primary, secondary, tertiary, and quater-
nary (10)

1.4 Protein Structure Prediction

The primary amino acid chain is the only determinant of the 3D structure of

a protein-based therapeutic (for both biosimilar and its reference product), thus the

amino acid side chains are critical; charged amino acid sides can form ionic bonds,

and polar amino acids can form hydrogen bonds. Weak Van der Waals interactions

mediate interactions between hydrophobic side chains. These side chains primarily

form non-covalent bonds. Cysteines are the only amino acids that have the ability to

form covalent bonds, and they do so by utilizing their side chains. The arrangement

of the amino acids of a given protein depends on side-chain interactions. Thousands

of non-covalent bonds between amino acids stabilize folded proteins. A faithful trans-

lation of the genetic code depends on several sequential molecular recognition events,

each with an inherent error rate. The overall error rate of protein synthesis has been

estimated at one misincorporated amino acid per 104 codons. It reflects accumulated

mistakes from all steps involved in translation. These error rates are dependent on

9



Chapter 1 1.4 Protein Structure Prediction

the thermodynamic stability of the amino acid chain that can be projected through

experimental methods and computational methods of protein structure identification.

1.4.1 Shifting the Paradigm: From Experimental Structure Prediction to In-

silico Computer-Based Approaches

The experimental structure prediction of proteins has long been an empirical

approach in providing invaluable insights into protein structure-function relationships,

paving the way for understanding molecular mechanisms and guiding drug discov-

ery efforts. Through meticulous laboratory techniques and advanced instrumentation,

scientists have strived to decipher the three-dimensional arrangement of proteins, un-

veiling their intricate folding patterns and functional architectures. The techniques

employed include X-ray crystallography, Nuclear Magnetic Resonance (NMR), Cryo-

electron microscopy (Cryo-EM), and Circular dichroism spectroscopy, among others.

The inherent variability of these methods makes them reliable depending upon sam-

ples’ quality, equipment’s accuracy, and results reproducibility. These experimentally

identified structures can be easily retrieved from UniProt and RCSB Protein Databank

(PDB) databases. The PDB database has over 174,825 experimentally generated struc-

tures available as of 2023 (11). Certain novel proteins and therapeutics have unique

structures that can be predicted using computational methods like I-TESSER, SWISS-

MODEL, MODELLER, Rosetta, Phyre2, etc. which are template-based homology

modeling, protein threading, and ab initio approaches. While prediction methods for

protein structure exhibit substantial variations in their specific procedures, there are

fundamental steps that remain consistent across different approaches. These steps

typically involve the selection of templates, the reconstruction of the structure, the

refinement of the predictions, and subsequent analysis. A range of structure prediction

tools can be found in the provided in Table 1.2
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Chapter 1 1.4 Protein Structure Prediction

Table 1.2. Structure prediction methods are the respective tools that can be employed
for the prediction of structure

Methods and Models Programs and Tools
Homology Modeling/Comparative Modeling:
Create a 3D model of the target protein
using a homologous protein’s empirically
confirmed structure as a guide.

MODELLER, SWISS-MODEL,
Phyre2, RaptorX, I-TASSER

Ab Initio Modeling: Build a 3D model
of the target protein by sampling the protein’s
conformational space without using
any experimental data.

Rosetta, QUARK,
AlphaFold, ESMFold, PCONS5

Threading: Build a 3D model of the target
protein by aligning the protein sequence
with the sequences of proteins of
known structure.

MUSTER, 3D-PSSM,
LOMETS, HHpred

Hybrid Modeling: Combine two or more
modeling approaches to improve the accuracy of
the predicted structure.

CABS-flex, PrimeX,
GalaxyHomomer

Knowledge-based methods: Use existing
knowledge about protein structure and
function to predict the structure of
the target protein.

ProSMoS, ProQ3D,
I-TASSER-2GO

Template-free methods: Build a
3D model of the target protein without
using templates or homologous proteins.

CONFOLD2, MetaPSICOV,
trRosetta

Fragment-assembly methods:
Build a 3D model of the target protein by
assembling fragments of known protein structures.

PEP-FOLD3, Robetta,
QUARK

11
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1.4.2 Structure prediction in Machine Learning era

The accuracy of protein structure prediction algorithms has improved with

significant advances in Machine Learning (ML) and Artificial Intelligence (AI). The

template-free AI models utilized in this context are trained using sequence and 3D

structural data extracted from publicly accessible databases i.e., UniProt (12), RCSB

PDB, Uniclust (13), and MGnify (14) etc. Independent of templates, highly precise

protein structure prediction tools include AlphaFold2 (15), trTosetta (16), Robetta

(17), RoseTTA Fold (18), ESMFold (19), RaptorX (20) and OmegaFold (21). To pre-

dict protein structures from amino acid sequences, each one employs a distinct AI

model and algorithm.

1- AlphaFold2 (2021):

AlphaFold2 is a CASP14 winner with 90% accuracy of structure prediction. In com-

parison with AlphaFold1, AF2 has replaced the convolutional neural network with

an attention-based architecture, removing the rigid information flow from the local

neighbors of the convolutional networks with a flow dynamically controlled by the

network. This has increased its accuracy many folds. Its predictions have been val-

idated experimentally and it was determined that the results have ended up being

similar to predicted structures despite their challenging nature and having very few

related sequences.

Since AF2 depends upon Multiple Sequence Alignment, it is limited by the availabil-

ity of current knowledge, data, and experimentally derived structures present in the

databases, i.e., PDB. Another limitation is that since AF2 was trained on PDB, which

may not have structures of proteins in their natural fold states, i.e., some of the PDB

structures were documented in the presence of other proteins during the solving of

the fold. This limitation is most clearly observable for proteins with multiple native

structures. Furthermore, the implementation of AF2 requires extensive data resources

to download the databases before actual structure prediction.

2- ESMFold (2022):
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ESMFold is a protein structure prediction model which uses transformer models to

encode protein sequences 60 times faster than AF2, eliminating MSA while main-

taining high-quality predictions using as many as 15 billion parameters. Its biggest

advantage is its ability to predict structures many times faster than any other tools

available making it excellent for identifying remote homology and conservation in a

large collection of novel sequences. ESMFold generates structure predictions using

only one sequence as input by leveraging the internal representations of the language

model, ESMFold producing more accurate atomic-level predictions than AlphaFold2

or RoseTTAFold. However, similar to AlphaFold2, it is limited by the training data

that required significant computational resources to run it, which can limit its accessi-

bility.

3- RoseTTAFold (2021):

RoseTTAFold is a "three-track" neural network, meaning it simultaneously takes into

account potential three-dimensional protein structure, interactions between the amino

acids in a protein, and patterns in protein sequences. This architecture enables the

network to collectively reason about the relationship between a protein’s chemical

components and its folded structure by exchanging one-, two-, and three-dimensional

information. AlphaFold2-like precision and constraints apply to it.

4- trRosetta (2021):

A web-based platform for quick and precise protein structure prediction, trRosetta

(transform-restrained Rosetta) is powered by deep learning and Rosetta. A deep neu-

ral network is initially used to predict the inter-residue geometries, including distance

and orientations, using the input of a protein’s amino acid sequence. In the context

of Rosetta, the predicted geometries are subsequently turned into restrictions to steer

the structure prediction based on direct energy minimization. It has good prediction

accuracy but is only applicable to monomer models.

5- OmegaFold (2022):

In order to learn single- and pairwise-residue representations as effective features
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that model the distribution of sequences, OmegaFold uses a deep transformer-based

protein language model that was trained on a sizable collection of unaligned and unla-

beled protein sequences. The 3D coordinates of each heavy atom are lastly predicted

by a structural module. The OmegaFold protein manufacturing model is’super-fast’

since it is independent of evolutionary data. It performed better on single-sequence

inputs than AlphaFold2 and RoseTTAFold. Additionally, OmegaFold outperformed

AlphaFold 2 in terms of statistical prediction accuracy, most likely as a result of the

benefits of its single-sequence-based prediction strategy for both antibody loops and

orphan proteins. On the CAMEO dataset, OmegaFold structures were as accurate as

RoseTTAFold structures (0.75 mean LDDT score) and RoseTTAFold structures with

a mean local-distance difference test (LDDT) score of 0.82.

6- RaptorX (2016):

A web-based program called RaptorX makes predictions about structures and char-

acteristics based on protein sequences. This service makes use of a powerful internal

deep learning model named DeepCNF (Deep Convolutional Neural Fields) to forecast

secondary structure (SS), solvent accessibility (ACC), and disorder regions (DISO).

The complicated hierarchical structure shows the dependency between nearby prop-

erty labels in addition to the complex interaction between sequence and structure.

The experimental findings demonstrated that this server can achieve 84 percent Q3

accuracy for 3-state SS, 72 percent Q8 accuracy for 8-state SS, 66 percent Q3 accu-

racy for 3-state solvent accessibility, and 0.89 area under the ROC curve (AUC) for

disorder prediction when evaluated on CASP10, CASP11, and the other benchmarks.

However, the structure is affected by the availability of sparse evolution data (22).

Conclusion:

Although ML-based tools predict structures with high accuracy, they do not predict

several important aspects of these protein structures i.e., metal ions, cofactors, and

other ligands. Post-transnational modifications, such as glycosylation or phosphory-

lation, and complexes conjugated with DNA, RNA, and their complexes, are also not
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accounted for during these predictions. In addition, amino acid side chains are not

always accurately placed. Each of these listed features may be crucial for protein

function, and many of these are necessary for the integrity of the folds within the

proteins.

1.5 Orthogonality: AlphaFold2 and ESMFold

The Levinthal paradox was better understood when it was shown that a slight

shift in the free energy in the thermodynamic profile of the amino acid chain could

explain the repeatability of the 3D structure. However, the structure variability upon

protein translation remains due to pre-translation modifications triggered primarily

by the thermodynamic instability of the amino acid chain. Predicting the 3D struc-

ture and these instabilities using AI-based models has been challenging until AF2

presented its ability to provide higher than 90% confidence upon repeated prediction,

simulating repeated protein translation. AF2 employs Evoformer, a neural network ar-

chitecture that combines elements of both evolutionary and transformer-based models.

Evoformer architecture incorporates an attention mechanism inspired by transformers,

enabling the networking order to record distant interactions between amino acids in

a protein sequence. It uses an attention matrix to weigh the importance of different

pairwise interactions, allowing for a more accurate prediction of protein structures.

AlphaFold’s training process involves two key components: multiple sequence align-

ments (MSA) and the prediction of distance maps. MSA is derived from diverse sets

of evolutionarily related protein sequences, providing valuable information about co-

evolving residues. This MSA data is used to train the model and generate sequence

profiles that capture the evolutionary conservation of amino acids and come directly

from a publicly accessible database i.e., UniProt, PDB, etc. By training the network

to predict the distances between pairs of residues in a protein sequence, AF2 infers

the 3D spatial arrangement of the protein which it achieves by incorporating a combi-

nation of convolutional layers, residual connections, and attention mechanisms within
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the Evoformer architecture. Further optimization is guided by a scoring function that

considers various physical and geometric properties of proteins. This refinement stage

helps improve the accuracy of the final predicted structures.

Similar to AF2, ESMF is a cutting-edge protein structure prediction method that har-

nesses evolutionary sequence co-variation analysis and large-scale language models.

By examining the co-evolutionary patterns among amino acid residues in a protein

family in order to capture valuable information about residue interactions and struc-

tural constraints, ESMF makes accurate predictions. The strength of ESMF lies in

its ability to integrate diverse sources of information and incorporation of predicted

secondary structure information and contact maps. These additional inputs provide

valuable insights into local structural elements and the spatial proximity of amino

acids, further refining the accuracy of the predicted protein structures. Both AF2 and

ESMF structural module generates model confidence predictions which are displayed

as predicted local distance difference test (pLDDT) scores that range from 0 to 100

and predicted Template Modeling (pTM) scores that range from 0 to 1. A cross-

comparison serving as an orthogonal confirmation shows that the AF2 and ESMF

algorithm predicts the structure of protein domains with an accuracy matching that of

experimental methods.

1.5.1 Predicted Local Distance Difference Test

The predicted Local Distance Difference Test (pLDDT) is a measure of con-

fidence or reliability assigned to each residue in the predicted protein structure. It

represents the predicted accuracy of the local distance difference, which is the dif-

ference between the predicted distances and the true distances in the experimentally

determined protein structure. The pLDDT score ranges from 0 to 100, with higher

scores indicating higher confidence in the predicted local structure. Regions with high

pLDDT scores (e.g., > 80) are considered to have accurate predictions, while lower

scores (e.g., <50) indicate regions where the predictions may be less reliable. Lower
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pLDDT scores may also indicate that the fold is in intrinsically disordered protein

regions (IDPRs).

1.5.2 Predicted Template Modeling

The predicted Template Modeling, or TM-scores (pTM), on the other hand,

is the global metric of structure assessment and evaluates the overall quality of the

predicted protein structure by comparing it to experimentally determined structures

of similar proteins available in the Protein Data Bank (PDB). The pTM score assesses

how well the predicted structure aligns with the known structure of a related protein

template. It ranges from 0 to 1 and a higher pTM score signifies a better alignment

and a higher likelihood of the predicted structure being accurate.

1.5.3 Predicted Aligned Error

Predicted Aligned Error (PAE) is a metric used in the evaluation of protein

domain structure predictions generated by AF2 and ESMF. PAE measures the average

deviation between the predicted and experimental positions of aligned residues in a

protein structure. The predicted structure is first aligned with the experimental or

reference structure followed by the computation of deviation or error for each aligned

residue by measuring the distance between the predicted and experimental positions.

PAE is usually shown as a heatmap (Figure 1.2) with residue numbers running along

the axis and color at each pixel indicating the PAE value for the corresponding pair

of residues. If the relative position of two domains is confidently predicted then the

PAE values will be low (less than 5A) for pairs of residues with one residue in each

domain.

High pLDDT demonstrates strong confidence in the residue structure. Residues

that have low pLDDT scores The global superposition TM-score is an additional ben-

eficial statistic to qualify or quantify the structure prediction. AF2 calculates the

predicted template modeling, or TM-scores (pTM), based on a pairwise error pre-
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Figure 1.2. PAE plot of Trastuzumab (Herceptin) generated by AlphaFold2.

diction, the predicted aligned error (PAE), which calculates the error of each amino

acid’s location, is then calculated. It has been demonstrated that the protein sequence’s

MSA depth has a significant impact on prediction accuracy. It was also determined

that quick and accurate protein structure predictions can be made using just MSA.

Since interactions, functions, and the effects of missense variation depend on the 3D

structure of proteins, the excellent predictability of the 3D structure created by the

AF2 and ESMF suggests that testing biosimilars to determine molecular biosimilarity

will not be as necessary, which will lower the cost of development. Regarding two

different scores, the pLDDT and pTM, they allow the user to judge the reliability

of the predicted structure. The authors of AF2 showed that the scores for different

proteins have a high correlation with actual prediction accuracy (structural similarity

to the native structure).
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LITERATURE REVIEW

The review of the literature is divided into three major sections. The first sec-

tion provides an overview of the ability of AlphaFold2 to perform near-to-experimentally

driven structure prediction. The second section provides a review of the impact of

mutations on the structure of proteins and their ability to bind. Moreover, the last sec-

tion overviews the possible interpretations of prediction scores from these AI-driven

prediction tools to prove their usefulness. The goal is to summarize the findings and

conclusions of key research that has been undertaken in relation to the sections stated

above.

2.1 Structure Prediction - AlphaFold2

AlphaFold2 predicts protein structures with an accuracy competitive with ex-

perimental structures in the majority of cases using a novel deep network-based model

(23). In a study published in Communications Biology, the quality and usability of

AF2 was demonstrated by testing its ability to predict the structure of protein com-

plexes that were identified biochemically, but for which no experimental structural

information was available. The study found that AF2 predicted the structures of the

protein complexes with high accuracy (15). Recently, a study integrated AF2 with

Cryo-Electron Microscopy to build an almost complete structure of the Nuclear Pore

Complexes and revealed the first-ever structure of Plasmodium falciparum surface

protein (Pfs48/45) (24), (25). AF2 was also used to identify a new distinct fold in

rotavirus group B revealing its functionality and the predicted structure of stress-

inducible phosphoprotein 1 (STIP1) revealing its role as a neuroprotective factor

against Parkinson’s disease. AF2 was also used to decipher which DNA mutations
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are involved in genetic traits (26), (27), (28).

Even though AF2 does not take specific properties of Transmembrane (TM) proteins

into account, the reliability of the generated TM structures, when quantitatively inves-

tigated for specific membrane proteins (e.g., dimer modeling and stability in molecular

dynamics simulations) using a template-free model showed that AF2 performs well

in the case of TM proteins and its neural network is not over-fitted. Thus, it was con-

cluded that applications of AF2 structural models can advance TM protein-associated

studies to a higher level (29). Since AF2 was not trained to handle phase boundaries

that triggered an assessment of structural correctness, it was tested in a new database

(30), (TmAlphaFold database: TMDET) and AF2 was found not equipped to deal with

structures for which it has barely any template, such as stand-alone TM segments.

A template-free, ab-initio protein model, used by AF2, showed that it was of suffi-

cient quality to phase the native ORF8 dataset by Molecular Replacement (MR). The

study claims that this approach can prove useful for future structural determination

campaigns where a homologous structure is not available but could aid in the deter-

mination of pre-existing “unsolvable” datasets (31). Evidence that AF2 model has

probably learned the energy function to rank the quality of predicted protein struc-

tures with reliable accuracy, without using any coevolution data and MSA proposes

that it is a good starting point for structural optimization; significant for proteins with

no structural homologs and MSA available, hence leading to a potential improvement

of protein design methods (32). Providing either a template or a MSA for a receptor

allows AF2 to identify the correct structure of the receptor and it might also identify

the binding sites and conformations, and where a peptide must compete for two or

more binding receptors, MSA is helpful (33). AF2 has proven to be useful to predict

the structure of a whole host adhesion device from the Lactobacillus casei bacterio-

phage J-1. As exemplified by the human gut phageome, these AF2-based structure

predictions can be used to revisit phage genome annotations and efficiently character-

ize newly discovered phages (34).
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Furthermore, AF2’s high prediction confidences for fold switchers indicate that it uses

sophisticated pattern recognition to search for one most probable conformer rather

than protein biophysics to model a protein’s structural ensemble, hence it fails pre-

dictions for proteins whose characteristics cannot be completely inferred from their

solved structures. These results highlight the importance of viewing protein structure

as a whole and imply that fold-switching sequences may reveal a tendency for many

stable secondary and tertiary structures through careful investigation (35).

2.2 Impact of Mutations on proteins stricture

protein structure can now be better understood, including its stability and

function and extending its applications, such as predicting the structural context of

mutations associated with a disease or an escape from an immune response. Multiple

studies were conducted on the applicability and interpretation of AF2 scores resulting

in contradicting conclusions.

In order to test the impact of mutations on the fold prediction and hence the binding

ability of proteins, multiple studies were conducted regardless of the disclaimer "has

not been validated for predicting the effect of mutations" provided by the developers

of AF2 (36). It was concluded that the AF2 models do not use template structures

and do not improve binding free energy prediction (∆∆G); hence the prediction of the

impact of a mutation on protein stability remains unresolved through AF2 ((37)).

Since it is crucial to create stable proteins efficiently and logically to be used in in-

dustry and health and help understand protein function where stability effects play

a major role (38), (39) a comparison of several models to predict both the unfolded

wild-type structure and the structures of the folded and unfolded mutant concluded

that structure-based approaches only slightly outperform their sequence-based coun-

terparts (40), (41),(42). The potential of AF2 predictions in the designability of new

therapeutics and structural stability testing through mutagenesis analysis failed when

the confidence scores of AF2 prediction showed no meaningful impact on the stability
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of predictions and, therefore, no direct way to use AF2 for the prediction of ∆∆G upon

mutation in the sequence has been identified yet (43). It was also shown that the best

templates are homology models for the prediction of protein stability change upon

mutation if the protein 3D structure is not available (44), (41).

2.3 AlphaFold2 scores interpretation

Through multiple studies, it has been confirmed that there is no correlation

between the pLDDT and pTM scores and protein stability (∆∆G) as impacted by

mutations on protein stability and function (45). The first structural analysis of hered-

itary cancer genes listed the thermodynamic stability predicted from AF2 structures

as moderate but suggest that the confidence score of AF2 is a strong descriptor for

variant pathogenicity, and the confidence score for a given variant in the AF2 structure

could alone predict pathogenicity more robustly than even the stability predictors with

an Area Under the Receiver Operating Characteristic Curve (AUROC) score. More-

over, the study concluded that the scores provided by AF2 according to the binding

affinity values seem to work especially well in a comparative analysis study of strong

binders competing against weak binders during docking (46).

In another study, factors that contribute to the inaccuracies of AF2 were tested 98-

fold-switching proteins, which adopt at least two different yet stable secondary and

tertiary structures, are the focus of this study. Five predicted, and two experimentally

determined structures of each fold-switching protein were compared in terms of topo-

logical similarity. Generally speaking, 94% of AF2 predictions correctly predicted

one of the experimentally determined conformations but not the other. Despite these

biased findings, AF2’s estimated confidences were moderate-to-high for 74% of fold-

switching residues. This is in contrast to intrinsically disordered proteins’ generally

low confidence, despite their structural heterogeneity. Keeping this in view, since AF2

performs well at discriminating disordered regions, the pLDDT scores can be used

for the characterization of the local dynamics of intrinsically disordered regions. A
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thorough analysis of the pLDDT score could provide insight into the structural tran-

sientness, as well as the local function and dynamics (i.e., disorder–order transition)

of IDP motifs, further enhancing the applicability of AF2 (47).

Although predicting protein structures is challenging due to their ensemble nature,

using a curated collection of apo-holo conformations improvements in the holo form

prediction in 70% of the cases were observed, even though it failed to capture ob-

served conformational diversity as effectively as estimating a single conformation.

The flexibility of the protein’s main chain, specifically in the context of apo-holo pairs

of conformers, showed a negative correlation with pLDDT scores – this relation can

be used to infer local conformational changes linked to ligand binding transitions in

a single 3D model (35).

AF2 is not likely to accelerate the experimental determination of 3D structures by

improving the models for molecular replacement and it does not help resolve other

problems or assist in protein folding applications. The lack of applicability and in-

terpretation of the prediction scores has left a huge gap in understanding how this

deluge of algorithms with claims to predict structure with high accuracy can be used.

Even though the creators of these algorithms have said that no importance should be

given to the predictability scores, it is difficult for the scientists to not dig into these

scores, as each protein has its own score that is reproducible.

Is it because of the length and nature of the amino acid chain, is it because of the

difference in thermodynamic energy, is it because of the 3D structure formed or is

it entirely dependent on what the algorithm has been taught how to regurgitate the

structures available for comparison in the databases like the PDB, UniProt or others.

Another question that needs answering is why are these algorithms getting better in

their predictability scores? Is it because they are getting better at reading the structures

available for simulation, or is it because they are becoming capable of understanding

the Levinthal paradox? These questions will be answered in this thesis
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2.4 Study Rationale

Previous studies have highlighted the potential of protein structure prediction

algorithms like AlphaFold2 and ESMFold in the prediction of ’close-to-native-state-

like’ protein structures and the effects of mutations on this predicted structure. How-

ever, there is a need to critically evaluate the practical utility of these tools and their

ability to efficiently predict novel structures. This study aims to assess the correlation

between prediction scores and physicochemical properties of FDA-approved thera-

peutic proteins. It also examines the impact of mutations on prediction scores and any

effect this has on the functionality of these proteins. By investigating the limitations

and applications of these algorithms, this research seeks to provide insights into their

reliability and potential in protein structure prediction.

2.5 Objectives

The following are the objectives:

• To evaluate the reliability and accuracy of protein structure prediction tools for

therapeutic proteins.

• To identify and compare the most variable regions and classes of therapeutic

proteins, considering physiological, chemical, and functional properties.

• To establish the relationship between protein structure similarity and receptor

binding mechanisms of action, utilizing 3D domain analysis.

• To investigate the impact of mutations on the structural and functional attributes

of therapeutic proteins.

• To test the extent of dependence of AI-based structure prediction tools on the

training data.
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• To employ AI-based structure prediction tools to evaluate and rank therapeutic

proteins (potential biosimilars) for the risk of structural variability based on

prediction scores.
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MATERIALS AND METHODS

This research was based on the observation and the premise that if a given

amino acid sequence ends up with the same 3D structure, then the amino acid se-

quence similarity should suffice to demonstrate the structural similarity of a biosimilar

candidate with its reference product. The second incentive came from the observa-

tion that each sequence when put through structure-prediction algorithms, gives a

single score of confidence, so the score must somehow correlate with the nature of

the sequence since it is not a random score, and reproducible if the algorithm is run

multiple times. Connecting the confidence of predictability with protein structure has

not been reported, and if a correlation can be established, this will allow rank ordering

therapeutic proteins for the risk of structure variability when multiple batches are

produced; thus, claiming that the proteins with high predictability confidence score

will more likely be proven biosimilar. A presumption is made that a low score means

uncertainty that might end up as variability during the pre-translation stages.

The anticipation was to identify proteins that are least likely to show variability in

their structure and thus functional properties, an observation that might allow us to

reduce the testing, which may help lower the current cost burden of $100-300 Million

for the development of each biosimilar.

3.1 Data Collection

204 FDA-approved therapeutic protein’s amino acid sequences ranging from

5 to 1000, were obtained from their regulatory filing (48), listings in the FDA Purple

Book (49), Orange Book (50), the patents reporting amino acid sequences, the Inxight

Drug (51), Kegg Pathway (52), and DrugBank databases (53). The sequences in the
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UniProt database were found to have residual differences compared to the amino

acid sequences in patents; hence, the resources mentioned above were used and cross-

checked through these references for similarity. Conjugated, modified, pegylated, or

combination protein products were excluded. The selected therapeutic proteins were

all commercialized products with proven safety and efficacy.

The list of 204 products included 188 protein molecules and 16 molecules with amino

acid sequence lengths less than 40, classified as polypeptides and not treated as bio-

logical drugs by the FDA (54). The data provided in Appendix A, separate these two

classes, ‘peptides’ for 16 polypeptides and ‘proteins’ for the remaining 188 products.

Each category’s file contains information of the therapeutics name, its brand name,

accession number from Inxight, KeggDrug or DrugBank databases, and Biologics Li-

cense Application (BLA) number or New Drug Application (NDA) number acquired

from FDA approval documentation. Furthermore, details of sequence and sequence

length along with molecular weight computed by Cusabio tool (55), and the type

of therapeutic molecule (i.e., enzyme, monoclonal antibody, blood factor, cytokine,

growth factor, hormone, inhibitors, fusion protein, recombinant human protein, etc.)

are identified in the files provided in Appendix A.

3.2 Structure prediction tools and scores

The amino acid sequences were put into 3D structure prediction with AF2 and

ESMF through ColabFold (56) using the UCSF ChimeraX tool (57) for AF2 and an

independent Google Colaboratory notebook for ESMF (https://colab.research.google.

com/github/sokrypton/ColabFold/blob/main/ESMFold.ipynb#scrollTo=CcyNpAvhTX6q)

(58). The two confidence scores, pLDDT and pTM, for all proteins are reported in

the Appendix A as ‘AlphaFold pLDDT Score’, ‘AlphaFold pTM Score’, ‘ESMFold

pLDDT Score’ and ‘ESMFold pTM Score’.

The correlations between the amino acid chain length, pLDDT, and pTM scores, or-

thogonal comparison between the two algorithms, structure-function relation between
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the predicted molecules, structure-sequence-similarity/identity relations, and molecu-

lar ranking were compared to in anticipation of finding any biosimilarity marker.

3.3 Physicochemical properties

The physicochemical parameters, including hydrophobicity, isoelectric point,

extinction coefficients, and instability index, for all 204 molecules were computed

through a Python script (Appendix C) employing the Expasy ProParam package

(https://web.expasy.org/protparam/) (59). The hydrophobicity was calculated using

the GRAVY (grand average of hydropathy) index to measure the aggregation of

hydropathy of amino acid residues. The isoelectric point (pI) was used to account for

the pH of the protein at a net neutral charge. In addition, the theoretical molecular

extinction coefficients for both reduced and non-reduced cysteine residue structures

were calculated to determine the protein concentration by measuring its absorbance

at 280 nm wavelength. Finally, the proteins’ instability index was calculated based

on the composition of its amino acids, with higher values indicating greater instability

and more variations in protein degradation. These scores were further compared to

gain insights into therapeutic proteins’ physiological and functional properties.

(A) Cysteine Extinction Coefficient:

The cysteine (cys) extinction coefficient represents the theoretical molar ab-

sorption coefficient of the protein at a wavelength of 280 nm, assuming that all cys-

teine residues are involved in disulfide bonds. It calculates the absorption of light at

280 nm due to the presence of disulfide bonds in the protein.

(B) Reduced Cystein Extinction Coefficient:

On the other hand, the reduced cys extinction coefficient provides the the-

oretical molar absorption coefficient of the protein at 280 nm, considering that all

cysteine residues are in the reduced state and hence there are no disulfide bonds. It
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calculates the absorption of light at 280 nm when all cysteine residues are reduced

and not involved in disulfide bonds.

3.4 Protein-target interaction

Docking is an established technique to acquire insight in the binding mode,

affinity, and propensity of a protein-based-therapeutic to its target where the structures

of the subunits have been determined either experimentally or computationally. In this

study, LZerD (https://lzerd.kiharalab.org/about/howtouse/), a web server for pairwise

and multiple protein-protein docking, which uses a soft protein surface representation

with 3D Zernike descriptors and explores the binding pose space using geometric

hashing, was employed for molecular docking (60). The LZerD suite of methods has

been ranked near the top of all server groups in recent rounds of CAPRI (Critical

Assessment of PRedicted Interactions) - a community-wide blind experiment for test-

ing computational algorithms in blind predictions of experimentally determined 3D

structures of protein complexes (61), (62), (63), (64).

The LZerD server was used to dock cytokines, hormones, and fusion proteins with

their respective targets identified through the DrugBank database and retried from the

PDB database. The complexes included one therapeutic protein with a high pLDDT

score and one with a low pLDDT score as ranked by AF2 and ESMF.

PDB structures often have non-standard chain names and residue numbering that

can cause compatibility issues with the docking tools. For standardization, chains

were renamed, and residues were renumbered using UCSF Chimera software (65).

Docked complexes with the highest rank-sum from GOAP, DFIRE, and ITScore

scores, from the LZerD server were given to PRODIGY server and their Gibbs free

energy/binding affinity (∆G), dissociation constant (Kd), Interfacial Contacts (ICs)

and Non-Interacting Surfaces (NIS) values were computed.

The combination of GOAP, DFIRE, ITScore, and PRODIGY represents a robust ap-

proach for protein-protein docking, accounting for various factors affecting the bind-
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ing affinity values. GOAP is an orientation and distance-dependent all-atom statistical

potential computation using a distance-scaled finite ideal-gas reference state for the

distance-dependent components; the parameters of DFIRE (66). DFIRE employs

distance-dependent structure-derived potentials (DDPs), that are used to predict the

energy of a protein-protein complex, accounting for the reference state, which serves

as a baseline for comparing the interactions in the complex. ITScore, on the other

hand, is an energy evaluation method for the electrostatic and van der Waals interac-

tions between the protein and target on the atomic level using statistical mechanics

principles (67). Finally, PRODIGY calculates the binding energy values based on

the 3D structure of the docked complex in the form of Gibbs free energy (∆G) and

dissociation constant (Kd) (68). It also enumerates the number of Interatomic Con-

tacts (ICs) made at the interface of a protein-protein complex within a 5.5 Å distance

threshold and classifies them according to the polar, apolar, and charged character of

the interacting amino acids. Using a combination of these methods provides a com-

prehensive assessment of protein-protein interactions and improves the accuracy of

the docking predictions acquired from LZerD server. Collectively these physiological,

chemical, and functional parameters were employed to analyze their relationship with

prediction scores as discussed in the next chapter.

3.5 Protein domains & pTM score

The pTM score provides a more accurate estimation of the precision of the

predicted protein structure about its native structure. The pTM score indicates the

quality of the predicted model based on the similarity between the predicted structure

and the experimentally determined structure of a related protein, which serves as a

template for the prediction. CASP experiments have found the TM-score a useful

metric for evaluating the accuracy of predicted protein structures, indicating that the

best models for most targets were equal to or better than the best template available in

the PDB. Overall, the results suggest that the TM-score is a valuable tool for assessing
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3.6 Investigating relationship between Predictions, Structural and Sequential

Data
protein structure and domains. 13 out of 188 protein molecules within the dataset had

significantly low pTM scores (<0.5) (69),(70). Since structural flexibility is highly

dependent upon the environment and interactions of proteins, the unavailability of

such experimental data for specific proteins may have led to lower pTM scores. Se-

quence data is the core of the training set for both prediction models; hence lower

sequence identity between the domains of the target and template could also lead to

lower scores since accurate template-based modeling is highly dependent upon the

quality of the template structure available. The presence of multiple domains, where

each has a unique structural feature, also influences the overall prediction score.

Additionally, flexible linkers between the domains may greatly impact the predic-

tion of such regions. These significantly lower pTM scores could have resulted

from the presence of intrinsically disordered regions, multiple domains, complex

folds, lower sequence conservation, predicted secondary structure, lower prediction

power of the model, or simply due to the unavailability of specific combinations

of residues in the training set. A trRosetta domain-based analysis using the AF2

and ESMF pTM scores was carried out to compare the impact of multiple domains

and the prediction power of the modeling tool. NCBI Conserved Domain Database

(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) (71) was used to identify do-

mains in the proteins and categorize therapeutics into single-domain or multi-domains

as shown in Table 4.8 (section 4.7).

3.6 Investigating relationship between Predictions, Structural and

Sequential Data

With increased prediction scores with the better and more complex model

architecture of prediction algorithms, they should be able to able to predict novel

protein folds regardless of the unavailability of similar sequential/structural data in

PDB, UniProt, and other databases. To correlate the dependence of predictions by
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AF2 and ESMF on the availability of structural and sequential data present in PDB,

the PDB Blast Query coverage and Percentage Identity scores were listed down. The

highest similarity sequences against respective therapeutic proteins from UniProt

were also retrieved after alignment. The sequence alignment identity and similarity

scores were recorded in Table 4.10. Every UniProt protein has a respective structure

stored in AlphaFold Database (https://alphafold.ebi.ac.uk/) (72). These proteins, and

pLDDT scores extracted from their respective mmCIF files are also listed for further

analysis in order to find a correlation.

3.7 Randomization & Mutation

The domains sequences identified from NCBI-CDD database were ‘shuffled’

using Molbiotool’s Random Sequence Generator to ensure the highest mutation rate

(https://molbiotools.com/randomsequencegenerator.php) (73). First, a single domain

was randomized through shuffling, and then all the domains of Trastuzumab, Etan-

ercept, Coagulation Factor VIIa, and Darbepoetin alfa were randomized in order to

produce novel molecules. These mutated sequences were ran through BLAST PDB,

and their query coverage, along with their percentage identity scores, were retrieved.

This data was generated and collected to identify any similarities between the ran-

domized sequence combinations and folds present in the UniProt and PDB database

(as shown in Table 4.11) (section 4.9). If the data was available, the AF2 and ESMF

models must have learned them during the training phase. However, if the coverage

and identity scores were extremely low or zero, the AF2 and ESMF models would

rely solely on their training to predict the structure. Since ESMF does not use MSA, it

can be anticipated that this model would perform better than MSA -dependent model

AF2.
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3.8 Affinity Maturation: Trastuzumab

3.8.1 Trastuzumab & Tyrosine-protein kinase erbB-2 (HER2)

Trastuzumab is a Monoclonal Antibody commonly used to treat certain types

of breast cancer. It specifically targets the receptor tyrosine-protein kinase erbB-2,

which is overexpressed in these cancer cells. By binding to erbB-2, Trastuzumab

inhibits signaling pathways involved in cell growth and survival. Receptor tyrosine-

protein kinase erbB-2, also known as HER2, is a protein that plays a crucial role in cell

growth and differentiation. Overexpression of erbB-2 is associated with aggressive

forms of breast cancer and hence serves as a target for therapies like Trastuzumab.

3.8.2 Alanine Scanning

Alanine scanning is an in-silico technique used to study protein-protein inter-

actions and identify key amino acid residues that contribute to the binding affinity

between two proteins. It involves systematically substituting specific amino acids

with alanine and measuring the resulting change in binding affinity values. The in-

crease in affinity value vouches for the increased therapeutic potential of a protein

when tested experimentally, also known as affinity maturation.

3.8.3 mCSM-PPI2

The mCSM-PPI2 tool (https://biosig.lab.uq.edu.au/mcsm_ppi2/) is a compu-

tational tool designed for predicting the effects of mutations on protein-protein in-

teractions (74). It utilizes a machine learning-based approach to estimate changes in

binding affinity upon mutation through alanine scanning. By analyzing the interac-

tions between residues in the complex, mCSM-PPI2 can provide insights into how

specific mutations impact binding strength.
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3.8.4 Trastuzumab & HER2 affinity maturation

An experimentally docked complex of Trastuzumab, Pertuzumab, and the re-

ceptor tyrosine-protein kinase erbB-2 was acquired from RCSB PDB (ID: 6OGE).

The Pertuzumab FAB Heavy and Light chains were removed from the complex

through PyMol tool, resulting in a modified molecule. The remaining structure con-

sisted of Trastuzumab FAB Light and Heavy chains, complexed with the Receptor

tyrosine-protein kinase erbB-2 represented by chains D, E, and A respectively in the

.pdb file. The truncated complex was subjected to alanine scanning using the mCSM-

PPI2 tool. The identified positions can be systematically mutated from the alanine

scanning analysis using 19 possible amino acid substitutions. The resulting mutant

variants can then be assessed for their binding affinity values using the PRODIGY

server. This analysis aims to evaluate the impact of different amino acid changes

on the binding affinity and facilitate the identification of potential modifications that

could lead to the development of a therapeutically enhanced molecule. By leveraging

computational tools like PRODIGY, a comprehensive understanding of the binding

properties can be obtained, aiding in the design and optimization of novel therapeutic

candidates.
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RESULTS

An in-depth analysis of physiochemical and functional parameters resulted in

multiple significant conclusions and each has been discussed in detail below. Briefly,

the very first finding was that both algorithms (AF2 and ESMF) yield comparable

and reproducible scores, confirming the orthogonality of structure prediction uncer-

tainty. However, no correlation was found between any physicochemical or functional

properties of therapeutic proteins with the predictability scores. The binding site pre-

dictions also do not correlate binding properties with protein structure prediction

scores. The predictability confidence scores vary, even if smaller changes or muta-

tions are introduced in the amino acid chain sequence. This observation came from

comparing the scores of proteins whose amino acid chain sequences reported in the

PDB or UniProt was different from the commercial product sequences.

4.1 Sequence Length vs Molecular Weight

The first comparison and correlation made was between the sequence length

and molecular weight with R2 0.99 despite the differences in the molecular weight

of amino acids. This establishes the normal distribution of amino acids in the set of

therapeutic proteins studied.

4.2 Proteins & Peptides Correlation

There was no linear or nonlinear relationship between the sequence length

and the pLDDT or pTM scores (Figures 4.1, 4.2, 4.3). Only peptides showed a weak

positive correlation coefficient (R2 0.40) in pLDDT from AF2, but not in the ESMF
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score. The two algorithms correlated with the correlation (R2) 0.60 for pTM scores

(Figure 4.4), between the two algorithms.

]

Figure 4.1. Correlation between amino acid chain length and pLDDT scores from
AlphaFold2 and ESMFold of therapeutic proteins

]

Figure 4.2. Correlation between amino acid chain length and pTM scores from Al-
phaFold2 and ESMFold of therapeutic proteins

]

Figure 4.3. Correlation between amino acid chain length and pLDDT scores from
AlphaFold2 and ESMFold of therapeutic peptides
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]

Figure 4.4. Correlation between amino acid chain length and pTM scores from Al-
phaFold2 and ESMFold of therapeutic peptides

4.3 Orthogonal comparison between AF2 vs. ESMF

The Pearson correlation of the pLDDT scores between the AF2 and ESMF

on a random subset of around 4000 metagenomic sequences was reported to be 0.79

((? ), however, it was found the Pearson correlation to be 0.72 from the data of

204 molecules (peptides and proteins). The Pearson correlation (corr.) of the pTM

scores between the AF2 and ESMF was 0.88. For comparison, two cut-offs were used:

AA#<40 and 40<AA#<1000. The first was to understand the predictability of polypep-

tides below 40 amino acids from AF2 and ESMF, which resulted in a correlation of

0.83 using the pLDDT score and 0.95 using the pTM score. The second cut-off was of

all the proteins above 40 amino acids and below 1000, which resulted in a correlation

of 0.69 using the pLDDT score and 0.84 using the pTM score. The Pearson corre-

lation (corr.) and correlation coefficient (R2) for pTM scores from both algorithms

were in better agreement than the pLDDT scores (Figure 4.5). Furthermore, the cor-

relation for proteins was relatively lower than for peptides, hence implicating that the

predictability of these tools decreases with an increase in structural complexity.

4.4 pLDDT & pTM Rank ordering Biosimilars

The prediction scores represent the reliability of predicted structures and im-

plicitly account for the structural variability that may occur in-vivo systems due to
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Figure 4.5. Correlation between the pLDDT and pTM Scores of both AlphaFold2 and
ESMFold for proteins

pre-translation modifications during multiple batch productions. These scores can

be used to rank order, and thus make a basis for reduced testing of biosimilar candi-

dates with higher scores. However, since the correlation scores do not conform to any

known physicochemical or function properly, these can be best labeled as random

scores with little justification that recognizable folds with higher structural stability

can be of any predictive value. The Table B.1 (Appendix B) reports a rank order of

therapeutic proteins following the pLDDT scores, and B.2 (Appendix B) uses pTM

scores using both algorithms.

It was noteworthy that all FDA and EMA-approved biosimilars demonstrated pLDDT

scores greater than 80 using the AF2 predictions (Table 4.1). If there were any correla-

tion between the confidence score and the free energy, it would have been a reasonable

assumption that these proteins are more stable, leading to the same 3D structure, and

thus, extensive comparative testing may not be required (9).
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Table 4.1. Confidence scores of approved biosimilars using AF2 and ESMF

Product AA#
pLDDT

(AF2)

pTM

(AF2)

pLDDT

(ESMF)

pTM

(ESMF)

Teriparatide 34 96.80 0.57 89.09 0.51

Etanercept 467 82.10 0.47 79.23 0.41

Ranibizumab 445 94.50 0.90 84.93 0.82

Adalimumab 665 91.50 0.65 81.90 0.53

Rituximab 664 91.30 0.64 81.43 0.54

Trastuzumab 664 91.00 0.61 82.01 0.58

Bevacizumab 667 90.69 0.90 81.01 0.56

Filgrastim 175 90.20 0.87 83.34 0.84

Follitropin alfa 203 89.60 0.84 58.57 0.42

Interferon beta 165 87.70 0.84 84.39 0.86

Erythropoietin-alpha 168 87.70 0.84 83.95 0.85

Interferon alpha 165 87.00 0.84 79.58 0.81

Insulin aspart 51 86.30 0.71 62.55 0.45

Insulin glargine 53 85.60 0.71 57.46 0.38

Somatropin 191 81.50 0.82 74.81 0.78

Infliximab 440 95.00 0.91 84.49 0.79

4.5 Physicochemical Attributes

The 3D structures reflect the underlying intra-molecular interaction that gov-

erns protein folding and stability, such as hydrogen bonding, electrostatic interactions,

hydrophobicity, and van der Waals forces. The protein’s structure, stability, binding

pockets, binding affinity, and desolvation are all heavily influenced by the intramolecu-

lar interactions, which also have an impact on the protein’s physicochemical qualities.

39



Chapter 4 4.5 Physicochemical Attributes

AF2 and ESMF algorithms implicitly capture these attributes, being trained on a large

dataset of experimentally known protein structures. However, there was a very weak

correlation in proteins (Table 4.2) and in the peptide (Table 4.3), resulting in a conclu-

sion that certain protein chunks govern its therapeutic potential rather than the entire

structure for which AF2/ESMF provides prediction scores.

Both AF2 and ESMF consider known structures of homologous proteins, physico-

chemical properties of amino acids, and conformational constraints to generate a 3D

structure that is energetically favorable and perform molecular dynamic simulation

relaxation step, i.e., AMBER force field in AF2, to find the closest-to-native-state

structure. Although they might not typically predict pre-translation variability, which

refers to the variability in the amino acid sequence of a protein that arises from alter-

native splicing, epigenetic modifications, or genetic variations, due to the presence

of these modifications in their training data, they might, again, implicitly account for

such changes. Furthermore, they may indirectly point to pre-translation variability by

generating multiple alternative models that account for different conformations, i.e.,

the generation of five relaxed and unrelaxed conformations in the case of AF2. As a

result, these algorithms were projected to correlate with pre-translation variability on

the structure and function of the protein, however, the predicted structures were found

to be uncertain and could not be used for any purpose unless validated experimentally,

in which case, the predictability becomes a moot point.
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Table 4.2. Correlations between structural and physicochemical parameters of 188 therapeutic proteins with strong correlations (>0.5)

AA MW AF
pLDDT

AF
pTM

ESMF
pLDDT

ESMF
pTM

Hydro-
phobicity

Isoelectric
point

Extinction
coefficients
(red-cys)

Extinction
coefficients
(cys)

Instability
Index

AA 1.00
MW 1.00 1.00
AF pLDDT 0.25 0.25 1.00
AF pTM -0.37 -0.36 0.51 1.00
ESMF pLDDT 0.28 0.29 0.69 0.42 1.00
ESMF pTM -0.23 -0.22 0.42 0.84 0.67 1.00
Hydrophobicity -0.31 -0.32 0.07 0.35 -0.14 0.21 1.00
Isoelectric point 0.20 0.19 0.23 -0.16 0.11 -0.15 -0.24 1.00
Extinction coefficients (red-cys) 0.92 0.92 0.32 -0.26 0.35 -0.13 -0.31 0.20 1.00
Extinction coefficients (cys) 0.91 0.92 0.32 -0.26 0.35 -0.12 -0.31 0.20 1.00 1.00
Instability Index 0.19 0.18 -0.05 -0.19 -0.05 -0.16 -0.42 0.31 0.15 0.15 1.00
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Table 4.3. Correlations between structural and physicochemical parameters of 16 therapeutic peptides with strong correlations (>0.5)

AA MW AF
pLDDT

AF
pTM

ESMF
pLDDT

ESMF
pTM

Hydro-
phobicity

Isoelectric
point

Extinction
coefficients
(red-cys)

Extinction
coefficients
(cys)

Instability
Index

AA 1.00
MW 1.00 1.00
AF pLDDT 0.63 0.69 1.00
AF pTM 0.78 0.81 0.93 1.00
ESMF pLDDT 0.3 0.37 0.83 0.73 1.00
ESMF pTM 0.80 0.81 0.91 0.95 0.78 1.00
Hydrophobicity -0.37 -0.42 -0.27 -0.33 -0.26 -0.36 1.00
Isoelectric point -0.01 0.00 -0.14 -0.16 -0.23 -0.15 -0.34 1.00
Extinction coefficients (red-cys) 0.51 0.58 0.55 0.61 0.38 0.49 -0.40 -0.50 1.00
Extinction coefficients (cys) 0.51 0.59 0.55 0.61 0.39 0.50 -0.40 -0.50 1.00 1.00
Instability Index 0.13 0.16 -0.02 -0.02 -0.05 -0.03 0.04 0.03 0.06 0.06 1.00

42



Chapter 4 4.5 Physicochemical Attributes

Proteins must be folded into their native stable states to perform their function,

which typically involves binding to their respective targets. They have the inherent

ability of stable fold formation and strong binding interactions, acquired through

adaptation and conservation, even when these changes do not directly increase the

organism’s fitness (75). The distribution of polar and apolar residues on the surface

mediate protein-target interactions, influencing their specificity and affinity. Multiple

studies have concluded that the charged residues interact with targets through the ex-

posed surfaces rather than the interface to affect the binding ability of the interacting

proteins. Enhanced intra-molecular electrostatic interactions lower the desolvation

penalty. In contrast, the inter-molecular interactions with charged residues on the

target molecule enable better complementarity and electrostatic steering, resulting

in increased solubility and bioavailability of these proteins in living systems (76).

Physicochemical parameters like hydrophobicity and isoelectric point also play a cru-

cial role in these interactions, contributing to the stability of 3D folds formed. The

computed list of physicochemical parameters was analyzed to gain insights into ther-

apeutic proteins’ physiological and functional properties.

The bioavailability, pharmacokinetics, and pharmacodynamics of a therapeutic drug

are greatly influenced by its structural elements, as well as the concentration and

dosage of the drug. The extinction coefficient is often used in protein purification,

quantification, and structural studies where accurate protein concentration determi-

nation is required for therapeutics (77), (78). The extinction coefficient computed

through ProtParam, validated through the findings of Gill and von Hippel (79), is

based on Beer-Lambert Law, which states that the absorbance of a solution (water) is

directly proportional to the concentration of the solute (protein) and the path length

of light through the solution. Since the path length is fixed (1cm), the absorbance

is proportional to the protein concentration. With increased amino acid length, the

protein extinction coefficients, reduced cystine, and oxidized cystines both increase,

exhibiting a Pearson correlation of 0.92 and 0.91 respectively. Larger proteins, like
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monoclonal antibodies, tend to have more chromophores (molecules that absorb light),

such as aromatic amino acids like tryptophan and tyrosine, resulting in a strong posi-

tive correlation. These chromophores contribute to the overall light absorption of the

protein, leading to a higher extinction coefficient. The average extinction coefficient is

105 M−1cm−1 for monoclonal antibodies with an average molecular weight of 69.25

kD and 13.54 M−1cm−1 for hormones with an average molecular weight of 15.29 kD

(Table 4.4).

Since the extinction coefficient is influenced by the electronic transitions that occur

within a molecule, it is in turn influenced by the structure. Confidently predicted

structures can provide insight into the likely folding of a protein, which can in turn

inform predictions of its extinction coefficient. This information can be useful in the

development of methods for measuring the concentration of a protein in a solution,

which is critical for ensuring proper dosing and efficacy of a therapeutic, leading to

a reduction in resource expense during clinical testing. In conjugation with the pres-

ence of chromatophores, protein stability is also affected by the amino acids’ innate

half-life and disulfide linkages. However, a lack of significance of the predictability

scores renders such applications fruitless.
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Table 4.4. Average extinction coefficients (reduced cystine) for all types of molecules
with the average amino acid number and molecular weight

Type of

Molecule
AA# MW

AF

pLDDT

ESMF

pLDDT

Extinction

coefficients

(rd cys)

Instability

Index

Hormone 137.50 15.29 84.54 65.68 13.54 40.05

Cytokine 200.56 23.03 85.76 74.16 23.88 50.87

Growth factor 241.67 26.89 88.73 80.72 32.58 50.78

Inhibitors 293.33 33.35 81.92 80.85 26.35 41.30

Enzyme 456.61 51.11 91.40 87.38 89.34 38.04

Blood factor 557.25 62.50 86.10 84.57 80.33 41.60

Fusion protein 571.20 64.01 84.77 78.07 77.21 43.40

Monoclonal

Antibody
633.33 69.25 91.15 81.39 105.51 47.18

Proteins with a higher abundance of residues with a lower half-life tend to

have a relatively higher instability index. Therefore, they may have a shorter lifespan

in vivo being more prone to degradation. However, even when the pLDDT scores

are high, few proteins have higher instability index (more susceptible to degradation),

i.e., Choriogonadotropin alfa has AF2 pLDDT score 83.40 and the chances of its

degradation in vivo are high (instability index 67.46). Similarly, Sargramostim has a

confidence-predicted structure from AF2 with a pLDDT score of 90.10. Still, the in-

stability index is 63.87, indicating that a reliable structure prediction cannot vouch for

the structure’s stability in vivo. This eliminates the possibility of correlating pLDDT

scores with instability indexes and hence a confidently predicted structure cannot

vouch for the stability of a protein in in-vivo systems.

If the pLDDT score of a structure is high, it vouches for its structure reliability. Still,
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the thermodynamic stability of the structure, as represented by the scores, comes

from the sequences that are not necessarily part of the functional domains or termi-

nal chains responsible for the physicochemical and functional properties. Proteins

with low predictability scores are more likely to show pre-translation modifications

between batches and may exhibit greater variability in their physicochemical proper-

ties. Although all the computed physicochemical properties depend on the sequence’s

residual composition, they remain unaffected by the predicted structures and scores,

resulting in no correlation.

Figure 4.6. AF2 has a slight tendency to produce overfitted results, but in the case of
parathyroid, it ‘under-predicted’ or misfolded the alpha-helix. Expasy ProtScale was
used to verify chemically the presence of two alpha helices in parathyroid, out of which,
only one was predicted by AF2, unlike ESMF and trRosetta. a) Misfold predicted struc-
ture by AlphaFold2 with missing alpha-helix on left. b) Confidently predicted structure
by ESMFold with both helices present c) Confidently predicted structure by trRosetta d)
Misfold structure present in AlphaFold Database with a partially missing alpha-helices

Despite using similar sequences in structure prediction from AF2/ ESMF,

the variability in their conformational folds would result in different experimentally

driven physicochemical parameters, including light absorbance and stability seen

through extinction coefficient and instability index. The folds produced by AF2 and

ESMF vary for similar sequences, i.e., parathyroid (Figure 4.6), affecting the acces-

sibility of residues to the solution. For instance, if a protein region predicted to be

unstable in one conformation becomes buried or stabilized in a different conformation,

the extinction coefficient and instability index may vary drastically.

46



Chapter 4 4.6 Proteins Interactions: Effects of Structural folds

4.6 Proteins Interactions: Effects of Structural folds

The atomic pLDDT by AF2 and ESMF measures atomic-level prediction

accuracy based on the degree of agreement between the predicted model and the

experimental structure. In principle, certain portions of a protein hold therapeutic po-

tential with residues responsible for binding. Parathyroid (PTH) structures predicted

from AF2 and ESMF when docked to the PTHR1 receptor (PDB: Q03431) through

LZerD server and evaluated through the PRODIGY server produced a ∆G value of

-11.1 and -10.3 respectively. Despite the ability of AF2 to misfold structures (Figure

6), as observed in other studies, (80),(81) the predicted structure has a higher pLD-

DT/pTM score (pLDDT: 71.00, pTM: 0.37) and binding affinity in comparison to

ESMF predicted structure (pLDDT: 58.50, pTM: 0.25), indicating that if the domains

are strongly predicted and the rest of the structure does not produce hindrance, strong

binding can be obtained. Therefore, it is in fact possible for a protein residue to have

low atomic pLDDT scores and contribute towards a strong binding affinity with its

target and vice versa.

The literature evidence (82) and residue-residue pair file (.ic) produced by the PRODIGY

server indicated that the residues 1-37 of PTH contributed to the binding with PTHR1.

Few of the residues involved in binding - Ser1, Ser3, Glu4, Ile5, Leu7, Met8, Leu11,

His14, Leu15, Ser17, Met18, Glu19, Arg20, Phe34, of PTH structure predicted from

ESMF had low pLDDT, but when predicted from AF2, had high pLDDT, as repre-

sented in Table 4.5. The lower confidence residues lead to lose interactions hence

lowering the binding affinity for ESMF-PTH. The ICs and NIS being the measures of

the number and type of interactions between the PTH and PTHR1, vary. These scores

are based on the number of salt bridges, hydrogen bonds, and electrostatic interactions

formed between the charged, polar, and apolar residues of the protein and its target.

Therefore, they depend highly on the 3D structure (Table 4.7). One explanation for

this variation in the IC/NIS scores is that in the AF2-PTH structure, charged residues
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Table 4.5. Interacting PTH-PTHR1 residues pLDDT from AF2 and ESMF, although
they have different pLDDT scores but produced similar binding interactions and
scores

PTH
residue
type

PTH
residue
number

AF2
residual
pLDDT

ESMF
residual
pLDDT
(averaged)

Ser 1 85.82 48.86
Ser 3 94.47 66.06
Glu 4 95.84 63.25
Ile 5 96.16 65.74
Leu 7 96.63 65.94
Met 8 97.32 68.10
Leu 11 97.24 61.35
His 14 96.93 64.82
Leu 15 97.02 69.84
Ser 17 96.32 66.47
Met 18 96.94 66.27
Glu 19 96.60 48.86
Arg 20 96.58 66.06
Phe 34 97.32 63.25

are positioned in such a way that they form multiple interactions with apolar residues

of the PTHR1, resulting in a higher charged-apolar IC score in comparison to ESMF-

PTH. Therefore, the IC and NIS scores between the two predicted structures differ

due to variations in their predicted 3D conformations, which can affect the strength

and number of protein-target interactions.
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Table 4.6. AF and ESM predicted cytokines, hormones and fusion proteins binding affinity values calculated from PRODIGY server

AF ESMF
Target PRODIGY G(kcal mol−1) pLDDT PRODIGY G(kcal mol−1) pLDDT

Cytokines Aldesleukin
ILR2
(PDB: 2B5I) -12.20 87.60 -14.50 68.90

Denileukin diftitox
CD25
(PDB: 1Z92) -11.30 72.50 -13.70 46.47

Hormones Aprotinin
Mesotrypsin
(PDB: 5TP0) -10.30 97.00 -10.90 94.25

Parathyroid
PTHR1
(PDB: Q03431) -11.1 71.00 -10.30 58.50

Fusion proteins Alefacept
CD2
(PDB: 1CDB) -9.40 72.80 -12.80 74.24

Belatacept
CD86
(PDB: 1NCN) -10.90 87.80 -10.40 77.00
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In some cases, proteins, by nature, can retain their functional properties re-

gardless of conformational variation, given that the domains were predicted con-

fidently and the remaining structure does not produce hindrance in binding. For

Aldesleukin, Denileukin diftitox, and Aprotinin, the binding affinity (∆G) values with

lower pLDDT predicted complexes from ESMF are relatively better, in comparison to

higher pLDDT scores from AF2 (Table 4.6). Aldesleukin showed a binding affinity of

-12.20 (AF pLDDT: 87.60) and -14.5 (ESMF pLDDT: 68.90). Similar observations

were seen for Denileukin diftitox and Aprotinin, while Parathyroid, Alefacept, and

Belatacept binding to their respective targets produced better energy values for higher

pLDDT scored structures from AF2 in comparison to ESMF predicted structures.

Besides binding affinity, variation in the Interfacial Contacts (ICs) and Non-Interacting

Surfaces (NIS) between charged (e.g., glutamic acid, aspartic acid), polar (e.g., serine,

cystine), and apolar (e.g., alanine, valine) were observed (Table 4.7). Several struc-

tural differences in proteins can influence binding affinity (83), (84). The ICs and

NIS of proteins, and residue-pairs with charged and aromatic side chains are impor-

tant for binding. These residues influence the formation of cationic, electrostatic, and

aromatic interactions between the protein and target molecule helping explain the

drastic variance in the binding affinity. From the given data in Table 4.7, the ∆G is

more favorable for the Aldesleukin structure predicted from ESMF, in comparison

to the AF2 predicted structure from the same sequence. The ∆G value for the ESMF

predicted structure is more negative (-14.5) than the ∆G value for the AF2 predicted

structure (-12.2), which indicates a more energetically favorable interaction in the

Aldesleukin-ESMF case. Additionally, the Kd value for the ESMF predicted structure

is lower (2.2 x 10−11) than that of the AF2 predicted structure (1.1 x 10−9), indicating

a stronger binding affinity of Aldesleukin-ESMF to its target Interleukin Receptor 2

(ILR2). Overall, this data suggests that the ESMF-predicted structure has a stronger

interaction and higher binding affinity with its target, regardless of a lower pLDDT

(68.90) value.
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Table 4.7. PRODIGY results of AF2 and ESMF predicted structures docked with their respective targets

Protein-
protein
complex

AF PTH-
PTHR1

ESMF PTH-
PTHR1

AF Aldesleukin-
ILR2

ESMF Aldesleukin-
ILR2

AF Trastuzumab-
HER2

ESMF Trastuzumab-
HER2

G -11.1 -10.3 -12.2 -14.5 -12.4 -12.3
Kd 7.4 x 10−9 2.7 x 10−8 1.1 x 10−9 2.2 x 10−11 7.6 x 10−10 9.7 x 10−10

ICs charged-charged 1 2 3 7 4 10
ICs charged-polar 7 4 14 12 16 8
ICs charged-apolar 30 34 22 21 20 22
ICs polar-polar 3 1 5 5 6 4
ICs polar-apolar 21 14 18 27 24 18
ICs apolar-apolar 47 37 11 16 19 31
NIS charged 22.06 22.13 26.04 25.64 21.95 22
NIS apolar 48.63 48.95 30.57 30.92 38.15 37.79
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Extending the argument, comparing the ICs and NIS data for the predicted

structures of Aldesleukin, it can be seen that Aldesleukin-ESMF has a higher num-

ber of ICs than AF2. This suggests that the Aldesleukin-ESMF structure has more

extensive interactions with its target molecule than the Aldesleukin-AF2 structure.

Specifically, the Aldesleukin-ESMF structure has more polar-apolar contacts (Table

4.7), which are interactions between polar and non-polar amino acids. This indicates

that the Aldesleukin-ESMF structure is more polar in nature and may have more hy-

drogen bonding interactions with the target molecule, hence resulting in better affinity

values. On the other hand, Aldesleukin-AF2 has more charged-apolar contacts, which

suggests that its structure is more hydrophobic in nature and has relatively more

Van der Waals interactions with the target molecule. The values of NIS charged and

NIS apolar for Aldesleukin-AF2 and Aldesleukin-ESMF are very similar, with only

a small difference between the two. This indicates that both structures have similar

areas that do not interact with the target molecule and that the two methods have pro-

duced comparable results in terms of predicting these non-interacting surface areas.

However, it must be noted that the number of NIS does not account for the nature or

location of the interacting regions.

As deduced, larger molecules like Monoclonal Antibody (mAb), i.e., Trastuzumab,

predicted by AF2 and ESMF have reliable pLDDT (AF: 91.00, ESMF: 0.61) and pTM

(AF: 82.01, ESMF: 0.58) scores indicating higher confidence in predicted structures.

Slight variance in the ∆G, Kd, ICs, and NIS is observed for Trastuzumab-AF2 and

Trastuzumab-ESMF when docked to their respective target HER2 (Table 4.7). This

high variance in pLDDT scores and ∆G of protein complexes indicate that there is no

definitive correlation between the structural and functional parameters hence leading

to a conclusion that these parameters are independent of each other.

Even when the sequence remains the same, predicted structures through AI-based

tools alone cannot be wholly relied upon to interpret protein’s functional properties

and hence requires further analysis or experimental validation. Sequence complex-

52



Chapter 4 4.7 TrRosetta: Domains-based analysis

Table 4.8. Single and multi-domain molecules with low pTM (<0.5) predicted from
AF2 and ESMF

Name AF2
pTM

ESMF
pTM Domain

Lepirudin 0.31 0.23 Single
Alefacept 0.36 0.37 Multiple
Parathyroid/Preotact 0.37 0.25 Single
Rilonacept 0.42 0.33 Multiple
Lixisenatide 0.43 0.41 Single
Denileukin diftitox 0.44 0.38 Multiple
Tagraxofusp 0.45 0.39 Multiple
Elosulfase Alfa 0.46 0.49 Multiple
Etanercept 0.47 0.41 Multiple
Menotropins 0.48 0.25 Multiple
Eftrenonacog Alfa 0.49 0.39 Multiple
Aflibercept 0.49 0.47 Multiple
Tositumomab 0.49 0.43 Multiple

ity, structural flexibility, intrinsically disordered regions, or pre-translational modi-

fications might lead to structural variability or poorly predicted structures. While

pre-translational modifications may affect protein folding and stability, they may not

necessarily directly impact the specificity of the protein for its target or its binding

affinity. Therefore, it can be inferred that the functional elements responsible for

physicochemical properties and binding are surface elements that are not inevitably

engaged in the process of folding to the extent that the structure prediction becomes

correlated. This indicates how inherent structural variability results in 3D folds that

might, and in some cases, not determine the functional aspects hence not affecting

the pharmacology or toxicology of the protein.

4.7 TrRosetta: Domains-based analysis

Nearly all the multidomain molecules (mAbs, fusion proteins, etc.), had higher

prediction scores directing that both AF2 and ESMF perform well on multi-domain

proteins, making single and multiple-domain molecules equally likely to have a lower
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pTM score. Multi-domain molecules with longer sequence lengths tend to have larger

radii of gyration, resulting in increased complexity (85). The radius of gyration is the

measure of the compactness of a protein, defined as the root-mean-square distance

of the constituent atoms of a molecule from its center of mass over a trajectory (86).

A larger radius of gyration indicates a more extended or less compact structure, it

might add up to the challenge of structure prediction for the prediction tools to model

a structure accurately, resulting in lower scores. However, the results negate this hy-

pothesis.

Proteins with a larger radius of gyration and multiple domains resulted in relatively

better prediction scores (i.e., Aflibercept and Tositumomab), while the proteins with

a smaller radius of gyration and single domains had relatively lower pTM scores (i.e.,

Lepirudin, Parathyroid, Lixisenatide). The larger molecules might have features that

make them easier to model accurately, such as distinctive folds, recognizable struc-

tural motifs, or simply better MSA, resulting in relatively better scores. Lastly, the

prediction power of these tools also plays a vital role in determining the quality of

the predicted structure.

Extending the repeated-measures analysis, monomer proteins (9 out of 14 listed in

Table 4.9) with lower pTM scores were predicted through Yang Servers trRosetta

(16), which was announced as a winner of a biannually held competition, CASP-15

(2022) (87). Momentous improvements in the pTM scores were seen (Table 4.9),

hence backing up the inference that the accuracy of predicted protein structures in-

creases with the prediction power of an AI-based tool and the algorithm and data used

during its training. Anomalous low pTM scores for Parathyroid and Rilonacept could

indicate that these proteins have more atypical or complex structures, which are not

well represented by the known structures used as templates in the modeling process.

These low pTM scores could indicate the presence of structurally divergent domains

from already known structural data or that the domain’s boundaries are difficult to

determine from the available experimental data. The drastic increase in pTM scores
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Table 4.9. Single and multi-domain molecules with low pTM scores predicted from
AF2, ESMF, and trRosetta

Name AF2
pTM

ESMF
pTM

trRosetta
pTM Domain

Lepirudin 0.31 0.23 0.72 single
Parathyroid/Preotact 0.37 0.25 0.31 single
Rilonacept 0.42 0.33 0.45 multiple
Lixisenatide 0.43 0.41 0.54 single
Denileukin diftitox 0.44 0.38 0.76 multiple
Tagraxofusp 0.45 0.39 0.70 multiple
Elosulfase Alfa 0.46 0.49 0.52 multiple
Etanercept 0.47 0.41 0.67 multiple
Aflibercept 0.49 0.47 0.66 multiple

with prediction power and better training data indicates that it might be possible to

predict complex protein structures with accuracy closer to the experimentally driven

structures.

4.8 Analyzing the Learning of AF2 & ESMF based on available

data

The listed PDB Blast Query coverage and Percentage Identity scores ana-

lyzed the dependence of the predictions made by AF2 and ESMF on the availability

of structural and sequential data found in the PDB database. The pLDDT scores for

Laronidase and Velaglucerase alfa for both predicated and AF2 Database are rela-

tively high (pLDDT: 90+), given that the structural folds and sequences were already

present in PDB as well as in UniProt databases, as supported by the percentage iden-

tity and sequence alignment identity scores. As for Alefacept and Eftrenonacog Alfa,

the scores are slightly low (around 70 to 80), which is also well supported by the avail-

ability of training data being relatively less (lower query coverage, percentage identity,

alignment identity, and similarity) in comparison to Laronidase and Velaglucerase

alfa. For Elosulfase Alfa, the predicated pLDDT is relatively lower (49.7) in com-
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parison to the AF2 DB score (96.06) for the sequence acquired against Elosulfase

from UniProt with 45% sequence identity. The high variation in the score is due to

the differences in the rest of the 55% sequence. Another reason for a low predicted

score for Elosulfase could be due to the unavailability of such combinations of amino

acids in the training data of AF2. As seen before, in the case of Velaglucerase alfa,

the AF2 model performs reliable predictions with higher structure and sequence iden-

tity scores. While AF2 has been trained on a vast amount of protein structure and

sequence data, it is still possible for specific combinations of mutations to fall outside

the ones encountered during training, as in the case of Lepirudin.

The pLDDT score from the AF2 DB for Hirudin variant-1 (UniProt ID: P01050) is

89.93. The first two residues in this variant of Hirudin are mutated to form an FDA-

approved drug Lepirudin. With only two residual differences, it might seem that the

predicted AF2 score has dropped to 55.10, however, when predicted from AF2 Colab

Fold, Hirudin predictions result in a pLDDT score of 57.8. Compared to AF2 DB

scores and structures predicted from AF2 full model, the AF2 Colab notebook uses

no templates (homologous structures) and a selected portion of the BFD database.

Although predictions from AF2 Colab Fold have been validated on several thousand

PDB structures and the accuracy of predicted scores attained was tested to be near-

identical to the full AF system on multiples targets, yet a small fraction is anticipated

to cause a large drop in accuracy due to the smaller MSA and lack of templates avail-

able. This is why smaller proteins precited from AF2 do not have reliable scores. Only

two residual differences in Lepirudin caused a significant drop in the pLDDT score

when predicted from Colab Fold. Keeping this in view, if AF2 and ESMF models

are highly dependent on the availability of folds and sequence patterns in the training

dataset, how would they perform on novel folds?

56



Chapter 4 4.9 Randomization & Mutation: Novel molecules predictions

Table 4.10. BLAST PDB and UniProt compared with AF2 pLDDT scores

Name

PDB-
BLAST
Query
Coverage (%)

PDB-
BLAST
Percentage
Identity (%)

Sequence
Alignment
Identity (%)

Sequence
Alignment
Similarity (%)

Predicted
AF2
pLDDT

UniProt-
AF2 DB
pLDDT

Elosulfase
Alfa 99.00 62.29 45.00 45.00 49.70 96.06

Lepirudin 100.00 96.92 96.90 98.50 55.10 89.93
Alefacept 56.00 63.25 35.40 35.40 72.80 83.66
Eftrenonacog
Alfa 51.00 85.89 45.50 45.50 78.80 80.05

Laronidase 100.00 99.84 95.70 95.70 95.10 95.13
Velaglucerase
Alfa 100.00 100.00 92.70 92.70 97.30 93.55

4.9 Randomization & Mutation: Novel molecules predictions

After the randomization and mutation of single domains, followed by all the

domains of Trastuzumab, Etanercept, Coagulation Factor VIIa, and Darbepoetin alfa,

an analytical comparison was carried out. The original trastuzumab molecule had an

AF2 pLDDT score of 91 and an ESMF pLDDT score of 82.01. When the first domain

in the heavy chain of trastuzumab was mutated, the percentage identity dropped to

75.43% from 93.73%. When all the domains within this molecule were mutated, the

AF2 pLDDT dropped to 25.20 with a percentage identity of 100% for only 3% query

coverage. Clearly backing up the decrease in prediction score due to the unavailabil-

ity of known fold and sequence combinations. The most interesting instances were

Etanercept and Darbepoetin alfa with all the domains mutated. There were absolutely

no hits for both sequences, which means that AF2 would not have any data available

for MSA and probably would have never seen fold for such sequences, hence relying

on its own learning. AF2, when left on its own learning, performs relatively better

for smaller molecules (Darbepoetin alfa pLDDT: 40), in contrast to larger molecules

(Etanercept pLDDT: 32.20). Overall, this data supports the hypothesis that AF2 and

ESMF perform well with known folds and sequence combinations as compared to
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Table 4.11. AF2 and ESMF prediction scores comparison for mutated single and
multiple domains

Trastuzumab
Query
Coverage
(%)

Percentage
Identity
(%)

AF
pLDDT

AF
pTM

ESMF
pLDDT

ESMF
pTM

original 99.00 93.73 91.00 0.61 82.01 0.58
one-domain-mutated 99.00 75.43 79.50 0.53 71.90 0.46
all-domains-mutated 3.00 100.00 25.20 0.15 19.19 0.13

Etanercept:
Query
Coverage
(%)

Percentage
Identity
(%)

AF
pLDDT

AF
pTM

ESMF
pLDDT

ESMF
pTM

original 49.00 100.00 82.10 0.47 79.23 0.41
one-domain-mutated 37.00 100.00 68.50 0.38 68.34 0.39
all-domains-mutated 0.00 0.00 32.20 0.17 24.84 0.13

Coagulation Factor-VIIa:
Query
Coverage
(%)

Percentage
Identity
(%)

AF
pLDDT

AF
pTM

ESMF
pLDDT

ESMF
pTM

original 62.00 100.00 86.10 0.77 87.42 0.79
one-domain-mutated 37.00 100.00 48.80 0.25 43.46 0.24
all-domains-mutated 25.00 40.87 28.10 0.18 25.19 0.14

Darbepoetin alfa:
Query
Coverage
(%)

Percentage
Identity
(%)

AF
pLDDT

AF
pTM

ESMF
pLDDT

ESMF
pTM

original 86.00 95.18 87.70 0.84 83.95 0.85
domain-mutated 0.00 0.00 40.00 0.29 41.64 0.19

novel sequences.

4.10 Trastuzumab: Alanine scanning results

The results obtained from the mCSM-PPI2 analysis revealed that when the

THR residue at position 129 of the Light chain in Trastuzumab (chain D) was mu-

tated to ALA (THR129ALA), the binding affinity between Trastuzumab and chain

A (the receptor tyrosine-protein kinase erbB-2) increased significantly. This indi-

cates that the presence of THR at position 129 may weaken the interaction between

Trastuzumab and the receptor. The substitution to alanine likely eliminates a poten-

tial steric hindrance or alters the hydrogen bonding pattern, resulting in improved

binding affinity. These findings suggest that the specific amino acid residue at po-
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sition 129 of Trastuzumab plays a critical role in its interaction with the receptor

tyrosine-protein kinase erbB-2 (HER2). The observed increase in binding affinity

upon mutation provides valuable insights for understanding the molecular basis of the

Trastuzumab-receptor interaction and potentially guiding future therapeutic interven-

tions. Other than this, all the point mutations resulted in an increase in binding affinity

(decrease in the score) as shown in Table A.3 and Figure 4.7. A significant decrease is

observed for the mutation of PHE on position 173 of the Heavy chain of trastuzumab

(chain E) to ALA. Detailed scoring and description of each point mutation of Chain

D and E are shown in the link provided in Appendix A.3.

Figure 4.7. Trastuzumab-HER2 alanine Scanning Affinity Chart
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Table 4.12. Alanine Scanning results for Trastuzumab-HER2

Chain Wild-type Residue # Mutant
mCSM-PPI2-

prediction
Affinity

E PHE 173 ALA -2.544 Decreasing

D PHE 116 ALA -2.236 Decreasing

E ARG 50 ALA -1.972 Decreasing

E TRP 110 ALA -1.942 Decreasing
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The data presented in this thesis, especially for biosimilars indicates that the

products that proved the safety and efficacy have high pLDDT and pTM scores. Ex-

tending these findings, Protein-based therapeutics (88) are highly successful with

great potential (89). They can be categorized into five groups based on their phar-

macological activity: (a) replacing an absent or abnormal protein; (b) enhancing an

already-existing pathway; (c) offering a novel function or activity; (d) interfering with

a molecule or organism; and (e) delivering other compounds or proteins, such as a

radionuclide, cytotoxic drug, or effector protein. Additionally, they are categorized

according to the molecular types they belong to, such as enzymes, growth factors,

hormones, interferons, interleukins, thrombolytics, Fc fusion proteins, anticoagulants,

blood factors, bone morphogenetic proteins, and engineered protein scaffolds. These

compounds are further categorized according to their molecular modes of action into

groups that (a) attach non-covalently to the target, such as mAb; (b) affect covalent

bonds, such as enzymes; and (c) exert activity without specific contacts, such as serum

albumin. Most therapeutic proteins available on the market today are made of recom-

binant proteins, and hundreds more are undergoing clinical trials for the treatment of

infections, cancers, immunological disorders, and other diseases.

The recombinant products have grown fast with over 200 FDA-approved therapeutic

protein products (90), (91). However, developing these products takes years and bil-

lions of dollars, so they are allowed a 12-year exclusivity in the market, regardless

of their intellectual property status. When these exclusivities expire, biosimilars are

introduced, the copies of the first-licensed recombinant therapeutic proteins to reduce

patient costs (92). While there are many differences in the regulatory approval re-

quirements globally, the primary metrics include establishing molecular biosimilarity
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(often labelled as product-related attributes) and process-related attributes (9). Un-

fortunately, these testing costs range between USD 100 to 300 million, a significant

barrier to adopting biosimilars. The primary amino acid chain is the only determinant

of the 3D structure of a protein-based therapeutic (for both biosimilar and its refer-

ence product), thus the amino acid side chains are critical; charged amino acid sides

can form ionic bonds, and polar amino acids can form hydrogen bonds. Weak Van

der Waals interactions mediate interactions between hydrophobic side chains. These

side chains primarily form non-covalent bonds. Cysteines are the only amino acids

that have the ability to form covalent bonds, and they do so by utilizing their side

chains. The arrangement of the amino acids of a given protein depends on side-chain

interactions. Thousands of noncovalent bonds between amino acids stabilize folded

proteins (93).

A faithful translation of the genetic code depends on several sequential molecular

recognition events, each with an inherent error rate. The overall error rate of protein

synthesis has been estimated at one misincorporated amino acid per 104 codons. It

reflects accumulated mistakes from all steps involved in translation (94). These er-

ror rates are dependent on the thermodynamic stability of the amino acid chain that

should be projected using the AF2 and ESMFold algorithms, and other tools. How

these error rates are related to the protein’s functionality remains to be established.

Predicting the 3D structure using AI-based models has been challenging until Al-

phaFold2 (AF2) presented its ability to provide higher than 90% confidence upon

repeated prediction, simulating repeated protein translation. The AF2 algorithm is

based on a network-based pair-wise residue distance model. The ESMFold (ESMF)

works by leveraging a large-scale language model and a 3-Dimensional equivari-

ant of a transformer model, trRosetta, is an attention-based neural network; a cross-

comparison serving as an orthogonal confirmation shows that the AF2 algorithm

predicts the structure of protein domains with an accuracy matching that of experi-

mental methods.
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The question about the pathway of protein folding was posed by Levinthal in 1968

(95). An estimate of 10300 was made if a polypeptide of 100 residues will have 99

peptide bonds, and therefore 198 different phi and psi bond angles. If each of these

bond angles can be in one of three stable conformations, the protein may misfold

into a maximum of 3198 different conformations (including any possible folding

redundancy (96). Despite many efforts this paradox remains unsolved, though dis-

cussions of energy landscape framework following pathways that minimize the free

energy along the folding funnel, where proteins navigate a rugged landscape of free

energy to reach their native structure has been suggested (97), (98). Kinetic studies

demonstrate that a number of small domains fold by a nucleation-condensation mech-

anism, in which the final or major transition state resembles an expanded version of

the native structure, with numerous long interactions partially forming to stabilise

an extended folding nucleus, and stronger interactions consolidating (99). A more

traditional framework technique that uses the docking of prefabricated parts of regular

secondary structures to create additional tiny domains (100).

In a wholly human-based model, Keil and colleagues (101) simulated the structure

of trypsin based on the structure of alpha-Chymotrypsin discovered by Blow and

colleagues, about the same time that Levinthal developed his paradox. According to

Christian Anfinsen’s research, proteins’ three-dimensional structures can only be pre-

dicted using information from their main structures. As a result, the first hypotheses

about protein structure were based on using a homologous protein’s known, previ-

ously established structure as a template (102), (103).

With the help of 50 years of rigorous experimental work and the CASP competition,

175,000 three-dimensional structures in the Protein Data Bank are now available.

With significant advances in structure prediction AlphaFold2 has proven the power of

machine learning by identifying patterns in primary sequences that accurately predict

three-dimensional folds (104). The core of AlphaFold2 is a neural network that has

been trained on the vast majority of protein structure data in the Protein Data Bank
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(105) to predict distributions of distances between pairs of residues’ Cb atoms and to

build an artificial force field to control folding without using a specific template but

rather patterns derived from many proteins (106). Sequence databases and multiple

sequence alignments have also been actively utilised. Using the sequence as the ex-

perimental data, AlphaFold is arguing that if a method relies on data from multiple

sequence alignments, whether directly or indirectly, it is an experimental method for

determining structure, similar to X-ray crystallography, NMR spectroscopy, or elec-

tron microscopy.

This work concludes that the high confidence in the structure prediction of therapeutic

proteins does not reflect stability of protein domains, or their properties to bind with

receptors, leading to conclusion that these scores have little significance. Fact that

over time these algorithms have improved their scores is a result of better functionality

of algorithms in regurgitating a known structure. The dream of finding a thermody-

namic clue to the structuring of a sequence into a 3D structure could have allowed

simulation of domains that might be docked with receptors to create new therapies;

and, also support arguments to reduce the testing of biosimilars if the amino acid

chains are identical or highly similar.

The 3D protein structure computation and predictions heavily claimed as major break-

throughs have failed to shake the classic Levinthal paradox. These algorithms simply

reproduce what is already known, adding random errors that are anticipated to be

minimized in the future, yet, giving any significance to these scores will not likely

bring any drug discovery, or safety evaluation of therapeutic proteins.
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CONCLUSION AND FUTURE

PERSPECTIVES

The newer structure prediction methods include improving pairwise and higher-

order residue distance constraints from multiple sequence alignments (107), (108),

and understanding how this information is eventually encoded into a predicted 3D

structure (107), (106), (109), (110). These developments have been reviewed recently

(111), showing how the increasing use of neural network models forms the backbone

of predicting protein structures from their primary sequence. This is supported by the

rise of protein sequence and structure databases (112), (113), which serve as critical

resources for input and training sophisticated prediction methods.

The structural complexity of proteins depends on the number of amino acids, resulting

in lesser confidence in the structure prediction, as predicted by Levinthal. This work

shows that for the category of therapeutic proteins above 40 amino acids, there is a

weak or no correlation between the number of amino acids and their pLDDT or pTM

scores. In the case of polypeptides, it was shown a reverse observation that a smaller

number provides more complexity in prediction and lesser confidence in structure

predictability, as applied to polypeptides.

Both tools have a significantly positive correlation, representing their orthogonality.

The finding of this paper suggests that the predictions based on sequence alone can

not be used to describe the folding of a structure and its accuracy. The pLDDT and

pTM scores do not correlate with any structural or functional parameters and hence

they cannot be used to determine proteins stability in in-vivo systems or propose

concentration and dosing for better efficacy, neither can they be correlated with the

binding properties of proteins even though they are all dependent upon the amino
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acid sequence. While pre-translational modifications may affect protein folding and

stability, they may not necessarily directly impact the specificity of the protein for its

target or its binding affinity. Hence, it can be concluded that the surface elements re-

sponsible for the physicochemical properties and binding are not necessarily involved

in the folding process to a degree that correlates with structure prediction therefore

not affecting the pharmacology or toxicology of the protein.

Even though AF2 has a slight tendency to misfold structures, it performs reliable pre-

dictions on multidomain molecules. However, these predictions can be significantly

improved with better prediction power tools like trRosetta, hence concluding that it

might be possible to predict complex protein structures with an accuracy closer to the

experimental structures in the near future with more robust prediction tools.

Few FDA and EMA-approved biosimilars demonstrated pLDDT scores greater than

80 using the AF2 predictions, thus it can be concured that there is less variability of

the 3D structure, and these molecules may not require extensive testing to establish

molecular biosimilarity. Extending this argument, 188 proteins were rank-ordered in

the context of structural variability using the AF2 pLDDT score. Using these ranks

as evidence of higher structural stability, reduced testing of biosimilars that were pre-

pared from similar amino acid sequences to their reference product can be proposed.

While the future algorithms may bring better predictability, given the innate nature

of translation, the variability caused by the thermodynamic instability is unlikely to

raise these scores very high or change the relative ranking of therapeutic proteins. For

now, it can be concluded that high confidence in the structure predictability assures a

3D structure will be similar between a biosimilar candidate and its reference product.

Future studies may include structure prediction of post-translational modifications

(114), further reducing the testing to establish the biosimilarity of biological drugs

(115). The training of AF2 and ESMF models is highly dependent on structural and

sequential data from multiple databases i.e., PDB and UniProt. If these models have

encountered a certain fold in their training set, they are more likely to provide an
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Chapter 6 Conclusion and Future work

accurate prediction. In order to analyse the effect of availability of structural and

sequential data, BLAST against PDB and UniProt databases for FDA approved thera-

peutic proteins from the dataset was employed.

In the future, the randomized and mutated sequences can be predicted from trRosetta

to include it in the orthogonal comparison and conclude if the prediction power of the

model effects the folds prediction. Additionally, further analysis is required to find

which amino acid contributes the most to destabilizing the overall protein structure

and fold formation. Besides this, testing whether the lack of availability of training

data and/or the prediction power of AI-based tools affects the modeling of protein re-

gions referred to as loops. Loop modeling still remains unresolved and hence requires

in-depth in-silico analysis.
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dimensional arrangement of polypeptide chain in trypsin,” Collection of
Czechoslovak Chemical Communications, vol. 33, no. 7, pp. 2307–2315, 1968.

[102] B. W. Matthews, P. Sigler, R. Henderson, and D. Blow, “Three-dimensional
structure of tosyl-α-chymotrypsin,” Nature, vol. 214, no. 5089, pp. 652–656,
1967.

75

 https://www.mckinsey.com/industries/life-sciences/our-insights/three-imperatives-for-r-and-d-in-biosimilars
 https://www.mckinsey.com/industries/life-sciences/our-insights/three-imperatives-for-r-and-d-in-biosimilars
 https://www.mckinsey.com/industries/life-sciences/our-insights/three-imperatives-for-r-and-d-in-biosimilars


[103] C. B. Anfinsen, “Principles that govern the folding of protein chains,” Science,
vol. 181, no. 4096, pp. 223–230, 1973.

[104] “Home - Prediction Center — predictioncenter.org.” https://predictioncenter.
org/. [Accessed 10-Jun-2023].

[105] R. P. D. Bank, “RCSB PDB: Homepage — https.” https://www.rcsb.org/. [Ac-
cessed 10-Jun-2023].

[106] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin,
A. Žídek, A. W. Nelson, A. Bridgland, et al., “Improved protein structure
prediction using potentials from deep learning,” Nature, vol. 577, no. 7792,
pp. 706–710, 2020.

[107] J. Thomas, N. Ramakrishnan, and C. Bailey-Kellogg, “Graphical models of
residue coupling in protein families,” in Proceedings of the 5th international
workshop on Bioinformatics, pp. 12–20, 2005.

[108] S. D. Dunn, L. M. Wahl, and G. B. Gloor, “Mutual information without the
influence of phylogeny or entropy dramatically improves residue contact pre-
diction,” Bioinformatics, vol. 24, no. 3, pp. 333–340, 2008.

[109] J. Xu, “Distance-based protein folding powered by deep learning,” Proceedings
of the National Academy of Sciences, vol. 116, no. 34, pp. 16856–16865, 2019.

[110] M. AlQuraishi, “End-to-end differentiable learning of protein structure,” Cell
systems, vol. 8, no. 4, pp. 292–301, 2019.

[111] M. AlQuraishi, “Machine learning in protein structure prediction,” Current
opinion in chemical biology, vol. 65, pp. 1–8, 2021.

[112] A. Godzik, “Metagenomics and the protein universe,” Current opinion in struc-
tural biology, vol. 21, no. 3, pp. 398–403, 2011.

[113] “Protein data bank: the single global archive for 3d macromolecular structure
data,” Nucleic acids research, vol. 47, no. D1, pp. D520–D528, 2019.

[114] D. V. Laurents, “Alphafold 2 and nmr spectroscopy: Partners to understand
protein structure, dynamics and function,” Frontiers in molecular biosciences,
2022.

[115] D. P. Ismi, R. Pulungan, et al., “Deep learning for protein secondary structure
prediction: Pre and post-alphafold,” Computational and Structural Biotechnol-
ogy Journal, 2022.

76

https://predictioncenter.org/
https://predictioncenter.org/
 https://www.rcsb.org/


Appendix A

Proteins and Peptides Complete Data -
Github URL

The field of therapeutics encompasses a wide range of molecules that are
used for medicinal purposes. The U.S. Food and Drug Administration (FDA) plays
a crucial role in ensuring the safety and efficacy of these therapeutic molecules. To
facilitate their regulatory processes, the FDA classifies therapeutics into distinct cate-
gories. One such classification is based on the molecule’s composition and structure,
explicitly dividing them into two main classes: proteins and peptides. In this cate-
gorization, molecules with an amino acid sequence length below 40 are considered
peptides rather than therapeutic proteins. This classification helps distinguish and
analyze these molecules based on their unique characteristics and potential therapeu-
tic applications. For a comprehensive analysis, data for proteins and peptides have
been compiled into separate data sets, allowing for a detailed examination of their
properties and attributes.

A.1 Proteins Data

Protein therapeutics represent a significant portion of the FDA-regulated molecules
used in medical treatments. The data set dedicated to protein therapeutics consists
of 188 unique molecules. Each entry in the data set provides valuable information,
including the name, accession number, BLA/NDA status (Biologics License Applica-
tion/New Drug Application), brand name, and the type of molecule.
Additionally, essential characteristics such as the amino acid count, molecular weight,
and amino acid sequence are included. To further aid in understanding these proteins,
scores from advanced structural prediction algorithms, AlphaFold2 and ESMFold are
provided. These scores, such as AlphaFold pLDDT Score and AlphaFold pTM Score,
assess the structural reliability and protein domain predictions, respectively. Other
properties such as hydrophobicity (GRAVY), isoelectric point, extinction coefficients,
and instability index contribute to a comprehensive analysis of protein therapeutics.

Link: Please refer to the proteins data for more information.

A.2 Peptides Data

Peptide therapeutics constitute a distinct subset within the realm of therapeu-
tic molecules, characterized by their relatively shorter amino acid sequences. The data
set dedicated to peptides comprises 16 molecules that fall under this category. These
peptides, with their unique characteristics and potential therapeutic applications, are
of great interest to researchers and clinicians. Similar to the protein data set, each
entry provides relevant details, including the name, accession number, BLA/NDA
status, brand name, and molecule type. Additionally, important information such as
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amino acid count, molecular weight, and amino acid sequence is available for analy-
sis. While peptides generally exhibit shorter sequences, they can still possess diverse
properties crucial for their therapeutic potential. By examining properties such as
AlphaFold2 and ESMFold scores, hydrophobicity (GRAVY), isoelectric point, ex-
tinction coefficients, and instability index, a comprehensive understanding of peptide
therapeutics can be obtained.

Link: Please refer to the peptides data for more information.

A.3 Alanine Scanning Results

The results of the alanine scanning analysis conducted using the mCSM-PPI2
tool are present in the link below. The scanning focused on the Trastuzumab and re-
ceptor tyrosine-protein kinase erbB-2 complex, specifically examining the effects of
alanine mutations on the binding affinity. Detailed information on the mutations and
their corresponding changes in binding strength are provided. These results contribute
to the understanding of the critical residues involved in the Trastuzumab-receptor in-
teraction and shed light on the key determinants of binding affinity.

Link: Please refer to the alanine scanning data for more information.

These datasets for proteins and peptides as well as the data of alanine scanning provide
a valuable resource for further analysis and investigation into their roles in therapeu-
tic applications and molecule design. By examining their unique characteristics and
properties, researchers and clinicians can gain insights into their potential efficacy,
safety, and mechanisms of action.
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Appendix B

Biosimilars - Rank order

Table B.1.
Rank order from pLDDT score AF2

Rank# Name pLDDT (AF) 38 Panitumumab 91.90
1 Asparaginase erwinia chrysanthemi 97.40 39 Emicizumab 91.90
2 Alglucerase 97.30 40 Pembrolizumab 91.90
3 Velaglucerase alfa 97.30 41 Olipudase alfa 91.90
4 Dornase alfa 97.20 42 Tocilizumab 91.70
5 Aprotinin 97.00 43 Fremanezumab 91.60
6 Rasburicase 96.40 44 Eculizumab 91.60
7 Ocriplasmin 96.40 45 Mepolizumab 91.60
8 Taliglucerase alfa 96.20 46 Ixekizumab 91.60
9 Pancrelipase amylase 96.10 47 Gemtuzumab ozogamicin 91.60
10 Digoxin Immune Fab (Ovine) 95.70 48 Alirocumab 91.60
11 Palivizumab 95.50 49 Ipilimumab 91.50
12 Sacrosidase 95.40 50 Pertuzumab 91.50
13 Galsulfase 95.30 51 Elotuzumab 91.50
14 Laronidase 95.10 52 Nivolumab 91.50
15 Infliximab 95.00 53 Adalimumab 91.50
16 Palifermin 94.90 54 Ramucirumab 91.40
17 Idarucizumab 94.90 55 Tildrakizumab 91.40
18 Vestronidase Alfa 94.80 56 Reslizumab 91.40
19 Bevacizumab 94.60 57 Isatuximab 91.40
20 Avalglucosidase alfa 94.60 58 Burosumab 91.40
21 Ecallantide 94.50 59 Aducanumab 91.40
22 Ustekinumab 94.50 60 Mogamulizumab 91.40
23 Ranibizumab 94.50 61 Risankizumab 91.30
24 L-asparaginase 93.60 62 Ravulizumab 91.30
25 Glucarpidase 93.50 63 Obiltoxaximab 91.30
26 Ofatumumab 93.50 64 Bezlotoxumab 91.30
27 Interferon beta-1a 93.00 65 Eptinezumab 91.30
28 Thyrotropin Alfa 92.90 66 Odesivimab 91.30
29 Sebelipase alfa 92.70 67 Rituximab 91.30
30 Belimumab 92.60 68 Evinacumab 91.30
31 Cerliponase alfa 92.60 69 Ansuvimab 91.30
32 Idursulfase 92.60 70 Cemiplimab 91.20
33 Asfotase alfa 92.50 71 Canakinumab 91.20
34 Brodalumab 92.40 72 Polatuzumab vedotin 91.20
35 Romosozumab 92.10 73 Sacituzumab govitecan 91.10
36 Satralizumab 92.10 74 Dostarlimab 91.10
37 Crizanlizumab 91.90 75 Anifrolumab 91.10
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Rank# Name pLDDT (AF) 117 Alemtuzumab 90.20
76 Efgartigimod alfa 91.10 118 Alpha-1-proteinase inhibitor 90.20
77 Hyaluronidase (Ovine) 91.10 119 Filgrastim 90.20
78 Margetuximab 91.00 120 Caplacizumab 90.10
79 Siltuximab 91.00 121 Evolocumab 90.10
80 Trastuzumab 91.00 122 Ibalizumab 90.10
81 Ocrelizumab 91.00 123 Sargramostim 90.10
82 Atezolizumab 91.00 124 Emapalumab 89.90
83 Belantamab mafodotin 91.00 125 Lanadelumab 89.90
84 Obinutuzumab 91.00 126 Chymopapain 89.70
85 Natalizumab 91.00 127 Avelumab 89.60
86 Mirvetuximab Soravtansine 91.00 128 Follitropin 89.60
87 Inebilizumab 91.00 129 Aflibercept 89.10
88 Catridecacog 91.00 130 Reteplase 89.10
89 Maftivimab 90.90 131 luspatercept-aamt 89.00
90 Erenumab 90.90 132 Urofollitropin 89.00
91 Cetuximab 90.90 133 Brolucizumab 88.90
92 Benralizumab 90.90 134 Anakinra 88.40
93 Daratumumab 90.90 135 Daclizumab 88.20
94 Atoltivimab 90.90 136 Ibritumomab tiuxetan 88.20
95 Loncastuximab tersirine 90.90 137 Belatacept 87.80
96 Becaplermin 90.90 138 Interferon beta-1b 87.70
97 Secukinumab 90.80 139 Darbepoetin alfa 87.70
98 Muromonab 90.80 140 Erythropoietin 87.70
99 Tralokinumab 90.70 141 Omalizumab 87.60
100 Sarilumab 90.70 142 Albiglutide 87.60
101 Necitumumab 90.70 143 Aldesleukin 87.60
102 Tafasitamab 90.70 144 Drotrecogin alfa 87.50
103 Teprotumumab 90.70 145 Abatacept 87.40
104 Golimumab 90.70 146 Insulin degludec 87.40
105 Galcaneuzumab 90.67 147 Insulin detemir 87.40
106 Naxitamab 90.60 148 Antithrombin Alfa 87.40
107 Tezepelumab 90.50 149 Interferon Alfacon 1 87.30
108 Basiliximab 90.50 150 Eflapegrastim 87.00
109 Denosumab 90.50 151 Insulin Regular 87.00
110 Vedolizumab 90.50 152 Interferon alfa-2a 87.00
111 Dupilumab 90.50 153 Tositumomab 86.60
112 Durvalumab 90.40 154 Insulin aspart 86.30
113 Urokinase 90.40 155 Rilonacept 86.20
114 Olaratumab 90.30 156 Tenecteplase 86.20
115 Guselkumab 90.20 157 Oprelvekin 86.20
116 Dinutuximab 90.20 158 Coagulation Factor VIIa 86.10
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Rank# Name pLDDT (AF)
159 Alteplase 86.00
160 Insulin lispro 86.00
161 Interferon alfa-2b 86.00
162 Insulin glargine 85.60
163 Insulin glulisine 85.50
164 Blinatumomab 85.40
165 Interferon gamma-1b 84.50
166 Protein S human 83.70
167 Coagulation factor IX 83.60
168 Dulaglutide 83.40
169 Choriogonadotropin alfa 83.40
170 Chorionic Gonadotropin (Human) 83.40
171 Etanercept 82.10
172 Agalsidase Beta 81.60
173 Metreleptin 81.60
174 Somatotropin Recombinant 81.50
175 Menotropins 80.60
176 Conestat alfa 80.30
177 Human C1-esterase inhibitor 80.30
178 Romiplostim 79.30
179 Eftrenonacog Alfa 78.80
180 Lixisenatide 78.20
181 Mecasermin 75.80
182 Lutropin alfa 75.30
183 Alefacept 72.80
184 Denileukin diftitox 72.50
185 Parathyroid/Preotact 71.00
186 Tagraxofusp 67.20
187 Lepirudin 55.10
188 Elosulfase Alfa 49.70
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Table B.2.
Rank order from pTM score AF2

Rank# Name pTM (AF) 45 Urofollitropin 0.84
1 Asparaginase erwinia chrysanthemi 0.95 46 Interferon alfa-2b 0.84
2 Alglucerase 0.95 47 Follitropin 0.84
3 Velaglucerase alfa 0.95 48 Aldesleukin 0.83
4 Taliglucerase alfa 0.95 49 Sargramostim 0.83
5 Galsulfase 0.94 50 Albiglutide 0.83
6 Ocriplasmin 0.94 51 Alpha-1-proteinase inhibitor 0.83
7 Laronidase 0.94 52 Oprelvekin 0.83
8 Dornase alfa 0.94 53 Aprotinin 0.83
9 Pancrelipase amylase 0.94 54 Somatotropin Recombinant 0.82
10 Sacrosidase 0.94 55 Anakinra 0.82
11 Avalglucosidase alfa 0.94 56 Reteplase 0.81
12 Vestronidase Alfa 0.93 57 Drotrecogin alfa 0.81
13 Sebelipase alfa 0.93 58 Ecallantide 0.80
14 Cerliponase alfa 0.93 59 Metreleptin 0.80
15 Idursulfase 0.93 60 Conestat alfa 0.77
16 Palivizumab 0.92 61 Human C1-esterase inhibitor 0.77
17 Olipudase alfa 0.92 62 Coagulation Factor VIIa 0.77
18 Catridecacog 0.92 63 Choriogonadotropin alfa 0.77
19 Infliximab 0.91 64 Chorionic Gonadotropin (Human) 0.77
20 L-asparaginase 0.91 65 Becaplermin 0.74
21 Rasburicase 0.90 66 Dulaglutide 0.73
22 Ranibizumab 0.90 67 Coagulation factor IX 0.73
23 Bevacizumab 0.90 68 Romiplostim 0.72
24 Idarucizumab 0.90 69 Insulin degludec 0.71
25 Ustekinumab 0.90 70 Insulin detemir 0.71
26 Interferon beta-1a 0.90 71 Insulin Regular 0.71
27 Palifermin 0.90 72 Insulin glargine 0.71
28 Urokinase 0.89 73 Insulin aspart 0.71
29 Digoxin Immune Fab (Ovine) 0.89 74 Insulin lispro 0.70
30 Antithrombin Alfa 0.88 75 Insulin glulisine 0.70
31 Hyaluronidase (Ovine) 0.88 76 Interferon gamma-1b 0.70
32 Glucarpidase 0.88 77 Asfotase alfa 0.69
33 Ofatumumab 0.88 78 Protein S human 0.67
34 Thyrotropin Alfa 0.88 79 Galcaneuzumab 0.66
35 Filgrastim 0.87 80 Eflapegrastim 0.66
36 Chymopapain 0.87 81 Agalsidase Beta 0.66
37 Brolucizumab 0.86 82 Satralizumab 0.66
38 Efgartigimod alfa 0.85 83 Mogamulizumab 0.65
39 Belimumab 0.85 84 Inebilizumab 0.65
40 Interferon Alfacon 1 0.85 85 Pembrolizumab 0.65
41 Interferon alfa-2a 0.84 86 Adalimumab 0.65
42 Interferon beta-1b 0.84 87 Alirocumab 0.64
43 Darbepoetin alfa 0.84 88 Emicizumab 0.64
44 Erythropoietin 0.84 89 Nivolumab 0.64
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Rank# Name pTM (AF)
90 Ansuvimab 0.64 135 Ipilimumab 0.62
91 Golimumab 0.64 136 Tildrakizumab 0.62
92 Panitumumab 0.64 137 Olaratumab 0.62
93 Gemtuzumab ozogamicin 0.64 138 Necitumumab 0.62
94 Tocilizumab 0.64 139 Atezolizumab 0.62
95 Evinacumab 0.64 140 Basiliximab 0.62
96 Dupilumab 0.64 141 Dostarlimab 0.62
97 Alemtuzumab 0.64 142 Secukinumab 0.62
98 Ixekizumab 0.64 143 Cetuximab 0.62
99 Odesivimab 0.64 144 Ocrelizumab 0.62
100 Rituximab 0.64 145 Erenumab 0.62
101 Aducanumab 0.64 146 Naxitamab 0.62
102 Eptinezumab 0.64 147 Risankizumab 0.61
103 Romosozumab 0.64 148 Siltuximab 0.61
104 Elotuzumab 0.64 149 Trastuzumab 0.61
105 Bezlotoxumab 0.64 150 Cemiplimab 0.61
106 Mirvetuximab Soravtansine 0.64 151 Dinutuximab 0.61
107 Obiltoxaximab 0.64 152 Sarilumab 0.61
108 Muromonab 0.64 153 luspatercept-aamt 0.61
109 Burosumab 0.63 154 Sacituzumab govitecan 0.61
110 Brodalumab 0.63 155 Maftivimab 0.61
111 Natalizumab 0.63 156 Tralokinumab 0.61
112 Vedolizumab 0.63 157 Margetuximab 0.61
113 Crizanlizumab 0.63 158 Lanadelumab 0.61
114 Mepolizumab 0.63 159 Tezepelumab 0.61
115 Polatuzumab vedotin 0.63 160 Abatacept 0.60
116 Anifrolumab 0.63 161 Guselkumab 0.60
117 Loncastuximab tersirine 0.63 162 Mecasermin 0.60
118 Teprotumumab 0.63 163 Ramucirumab 0.60
119 Denosumab 0.63 164 Evolocumab 0.60
120 Ibalizumab 0.63 165 Tenecteplase 0.59
121 Pertuzumab 0.63 166 Emapalumab 0.59
122 Isatuximab 0.63 167 Avelumab 0.57
123 Durvalumab 0.63 168 Alteplase 0.57
124 Canakinumab 0.63 169 Belatacept 0.57
125 Eculizumab 0.62 170 Blinatumomab 0.57
126 Belantamab mafodotin 0.62 171 Caplacizumab 0.54
127 Obinutuzumab 0.62 172 Lutropin alfa 0.52
128 Atoltivimab 0.62 173 Omalizumab 0.52
129 Fremanezumab 0.62 174 Daclizumab 0.50
130 Ravulizumab 0.62 175 Menotropins 80.60
131 Daratumumab 0.62 176 Conestat alfa 80.30
132 Tafasitamab 0.62 177 Human C1-esterase inhibitor 80.30
133 Reslizumab 0.62 178 Romiplostim 79.30
134 Benralizumab 0.62 179 Eftrenonacog Alfa 78.80
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Rank# Name pTM (AF)
175 Ibritumomab tiuxetan 0.50
176 Tositumomab 0.49
177 Aflibercept 0.49
178 Eftrenonacog Alfa 0.49
179 Menotropins 0.48
180 Etanercept 0.47
181 Elosulfase Alfa 0.46
182 Tagraxofusp 0.45
183 Denileukin diftitox 0.44
184 Lixisenatide 0.43
185 Rilonacept 0.42
186 Parathyroid/Preotact 0.37
187 Alefacept 0.36
188 Lepirudin 0.31
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Appendix C

Physiochemical Attributes computation
Source Code

1 pip install biopython
2
3 import pandas as pd
4 from Bio.SeqUtils import ProtParam
5
6 # Define the function to calculate GRAVY
7 def calc_gravy(seq):
8 # Calculate the GRAVY (Grand average of hydropathicity) value for a

given protein sequence.
9 kd = ’ACDEFGHIKLMNPQRSTVWY’

10 seq = ’’.join(aa for aa in seq if aa in kd)
11 seq = seq.replace(’\n’, ’’) # Remove any newline characters
12 pp = ProtParam.ProteinAnalysis(seq)
13 return pp.gravy()
14
15 # Define the function to calculate isoelectric point
16 def isoelectric_point(seq):
17 pp = ProtParam.ProteinAnalysis(str(seq))
18 isoelectric_point = pp.isoelectric_point()
19 return isoelectric_point
20
21 # Define the function to calculate extinction coefficient
22 def extinction_coefficients(seq):
23 pp = ProtParam.ProteinAnalysis(str(seq))
24 extinction_coefficients = pp.molar_extinction_coefficient()
25 extinction_coefficients_no_cys = extinction_coefficients[0] # with

reduced cysteines
26 extinction_coefficients_cys = extinction_coefficients[1] # with

disulfid bridges
27 return extinction_coefficients_no_cys, extinction_coefficients_cys
28
29 # Define the function to calculate instability index (< 40 protein

stable)
30 def instability_index(seq):
31 seq = seq.replace(’ ’, ’’)
32 seq = seq.replace(’\n’, ’’)
33 if ’X’ in seq:
34 return 0
35 else:
36 pp = ProtParam.ProteinAnalysis(str(seq))
37 instability_index = pp.instability_index()
38 return instability_index
39
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40
41 # Read the input Excel file
42 df = pd.read_excel(’protparam_input_data.xlsx’)
43
44 # Apply the functions to the sequence column and store the results in

new columns
45 df[’GRAVY’] = df[’Sequence’].apply(calc_gravy)
46 df[’Isoelectric point’] = df[’Sequence’].apply(isoelectric_point)
47 df[’Instability Index’] = df[’Sequence’].apply(instability_index)
48
49 % Create the columns for Extinction coefficients (reduced cys) and

Extinction coefficients (cys)
50 df[’Extinction coefficients (reduced cys)’] = None
51 df[’Extinction coefficients (cys)’] = None
52
53 % Loop through the rows of the dataframe and compute the extinction

coefficients for each sequence
54 for index, row in df.iterrows():
55 cys_extinction_coefficients, no_cys_extinction_coefficients =

extinction_coefficients(row[’Sequence’])
56 df.at[index, ’Extinction coefficients (reduced cys)’] =

no_cys_extinction_coefficients
57 df.at[index, ’Extinction coefficients (cys)’] =

cys_extinction_coefficients
58
59 % Save the output to a new Excel sheet
60 df[[’Name’, ’Sequence’, ’GRAVY’, ’Isoelectric point’, ’Extinction

coefficients (reduced cys)’,
61 ’Extinction coefficients (cys)’, ’Instability Index’]].to_excel(’

peptides - protparam_output_data2.xlsx’, index=False)

Listing C.1 Python code
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