
A Framework Extending TLS/SSL
Level Security To The Application

Layer

By

Zahoor Ahmed Alizai

Fall 2017-MS(IS) - 00000205348

Supervisor

Dr. Hasan Tahir

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree

of Masters of Science in Information Security (MS IS)

In

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(January 2020)

Approval

It is certified that the contents and form of the thesis entitled “A Frame-

work Extending TLS/SSL Level Security To The Application Layer”

submitted by Zahoor Ahmed Alizai have been found satisfactory for the

requirement of the degree.

Advisor: Dr. Hasan Tahir

Signature:

Date:

Committee Member 1: Dr. Seemab Latif

Signature:

Date:

Committee Member 2: Dr. Yousra Javed

Signature:

Date:

Committee Member 3: Ms. Hirra Anwar

Signature:

Date:

i

Thesis Acceptance Certificate

Certified that final copy of MS/MPhil thesis written by Mr. Zahoor

Ahmed Alizai (Registration No Fall 2017-MS(IS) - 00000205348), of

SEECS has been vetted by undersigned, found complete in all respects as per

NUST Statutes/Regulations, is free of plagiarism, errors and mistakes and

is accepted as partial fulfillment for award of MS/MPhil degree. It is further

certified that necessary amendments as pointed out by GEC members of the

scholar have also been incorporated in the said thesis.

Advisor: Dr. Hasan Tahir

Signature:

Date:

Head of Department (HoD)

Signature:

Date:

Dean/Principal

Signature:

Date:

ii

Dedication

I dedicate this thesis to my Parents for their endless prayers, love and en-

couragement.

iii

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another

person, nor material which to a substantial extent has been accepted for the

award of any degree or diploma at NUST SEECS or at any other educational

institute, except where due acknowledgement has been made in the thesis.

Any contribution made to the research by others, with whom I have worked

at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product

of my own work, except for the assistance from others in the project’s de-

sign and conception or in style, presentation and linguistics which has been

acknowledged.

Author Name: Zahoor Ahmed Alizai

Signature:

iv

Acknowledgment

First of all, I would like to thank Allah, the Almighty for giving me the

ability and strength to carry out this research.

My deepest gratitude to my supervisor Dr. Hasan Tahir for his continuous

support and guidance during my thesis. I could not have imagined having a

better supervisor and mentor for my master’s degree. I am also thankful to

my teachers for providing me with an academic base, which enabled me to

complete this thesis.

I am thankful to all my fellows and friends especially Malik Hamza Murtaza

and Mohammad Taha Ajani for their support and motivation.

Last but not the least, I would like to thank my parents for their endless

prayers and support throughout.

v

Table of Contents

1 Introduction 1

1.1 Overview . 1

1.2 Problem Statement . 4

1.3 Solution Definition/Description 4

1.4 Thesis Motivation . 5

1.5 Thesis Contribution . 5

1.6 Thesis Organization . 6

1.7 Summary . 7

2 Literature Review 8

2.1 OSI Model . 8

2.1.1 Physical Layer . 9

2.1.2 Data Link Layer . 9

2.1.3 Network Layer . 10

2.1.4 Transport Layer . 10

2.1.5 Session Layer . 11

2.1.6 Presentation Layer . 11

2.1.7 Application Layer . 12

vi

TABLE OF CONTENTS vii

2.2 Authentication Techniques . 12

2.2.1 Password-based Authentication 13

2.2.2 Key-based Authentication 15

2.2.3 Multi-factor Authentication 16

2.2.4 Biometric Authentication 17

2.2.5 Hardware Authentication 18

2.3 Session Management . 19

2.4 Cookies and Tokens . 21

2.5 Transport layer Security Mechanisms 23

2.6 Summary . 24

3 Research Methodology 25

3.1 Introduction . 25

3.1.1 Research Types . 26

3.1.2 Research Methods and Research Methodology Overview 28

3.2 Thesis Research Methodology 29

3.3 Summary . 30

4 Proposed Solution 31

4.1 Scheme Primitives . 31

4.1.1 Timestamps . 31

4.1.2 Random Numbers . 32

4.1.3 Symmetric Cryptography 32

4.1.4 Asymmetric Cryptography 33

4.1.5 Hash Functions . 33

4.1.6 Message Authentication Code (MAC) 34

TABLE OF CONTENTS viii

4.2 Scheme Features . 34

4.3 Proposed Solution . 35

4.3.1 Registration Phase . 36

4.3.2 Authentication Phase 38

4.3.3 Session Key Establishment 38

4.3.4 Scheme Handshake . 39

4.4 Security Provisions . 40

4.5 Summary . 41

5 Implementation and Results 42

5.1 Scheme Analysis . 42

5.2 Attributes . 43

5.2.1 Secrecy . 43

5.2.2 Aliveness . 43

5.2.3 Synchronization . 44

5.2.4 Man-In-The-Middle . 44

5.3 Scyther Script . 44

5.4 Scyther Results . 46

5.5 Testing and Implementation 47

5.5.1 Environment Setup . 48

5.5.2 Functionality . 54

5.5.3 Results . 55

5.6 Practical Adoption/Case Study 55

5.7 Summary . 58

TABLE OF CONTENTS ix

6 Conclusion & Future Work 59

6.1 Conclusion . 59

6.2 Future Work . 60

6.3 Summary . 61

Bibliography 62

Appendix A Scyther 73

Appendix B Java 77

Appendix C PHP (Server-side) 102

Appendix D JavaScript (Client-side) 116

List of Figures

1.1 Standard Software Development Lifecycle 2

2.1 Physical Layer . 9

2.2 Data Link Layer . 9

2.3 Network Layer . 10

2.4 Transport Layer . 10

2.5 Session Layer . 11

2.6 Presentation Layer . 11

2.7 Application Layer . 12

3.1 Research Types . 26

4.1 Proposed Scheme . 36

4.2 Sample Certificate . 37

4.3 Scheme Handshake . 40

5.1 Scyther Script - 1 . 45

5.2 Scyther Script - 2 . 45

5.3 Scyther Script - 3 . 45

5.4 Scyther Script - 4 . 46

x

LIST OF FIGURES xi

5.5 Scyther Script - 5 . 46

5.6 Scyther Result . 47

5.7 Client Server Application (JAVA) 49

5.8 Traffic Capture - Wireshark 49

5.9 PHP - 1 . 50

5.10 PHP - 2 . 51

5.11 PHP - 3 . 51

5.12 PHP - 4 . 52

5.13 Traffic Capture - Burp Suite - 1 52

5.14 Traffic Capture - Burp Suite - 2 53

5.15 Traffic Capture - Burp Suite - 3 53

5.16 Traffic Capture - Burp Suite - 4 54

List of Tables

4.1 Table of Notations . 36

5.1 Tools & System Specifications 48

xii

List of Publications

1. Z. A. Alizai, N. F. Tareen, and I. Jadoon, “Improved IoT Device Au-

thentication Scheme Using Device Capability and Digital Signatures,”

in 2018 International Conference on Applied and Engineering Mathe-

matics (ICAEM), 2018, pp. 1−5.

2. Z. A. Alizai, H. Tahir, M. H. Murtaza, S. Tahir, and K. Mcdonald-

Maier, “Key-Based Cookie-Less Session Management Framework for

Application Layer Security,” IEEE Access, vol. 7, pp. 128544−128554,

Sep. 2019.

3. M. H. Murtaza, Z. A. Alizai, and Z. Iqbal, “Blockchain Based Anony-

mous Voting System Using zkSNARKs,” in 2019 International Con-

ference on Applied and Engineering Mathematics, ICAEM 2019 - Pro-

ceedings, 2019, pp. 209−214.

xiii

Abstract

By design Transport Layer Security (TLS) and Secure Socket Layer (SSL)

are not designed to work at the application layer. This means that there is

considerable security protocol isolation between the upper and lower layers

of the network stack. The core objective of this research is to extend security

features of TLS and SSL to the application layer. The proposed solution

intends to bind multiple security features such as authentication, mutual au-

thentication, continuous authentication, and session management in a single

secure scheme thereby ensuring that application developers do not have to

deal with security implementations as the same is provisioned through the

proposed scheme. The proposed scheme will embed security mechanisms

like access control and group authentication on top of the extended security

provisions. Thus, improving the overall security of the system drastically.

Session management and authentication is achieved using asymmetric keys

without the use of session cookies and session tokens thus mitigating attacks

such as cookie theft, token forgery and nullifying a vast group of attack vec-

tors. The proposed scheme has been implemented and tested for security

conformance thereby proving its effectiveness and practicality.

xiv

Chapter 1

Introduction

Chapter 1 elaborates the overview of basic concepts, significance and history

of research work. This chapter describes the road map for our thesis and

briefly highlights the further organization and structure of the thesis. This

chapter explains the motivation for carrying out the research work. This

chapter also gives idea about the vital contributions, scope of the work and

key objectives of the thesis.

1.1 Overview

Technological advancements have allowed us with the ease of information sys-

tems being available on mobile devices. Education, banks, health, etc. [1, 2],

all of whom have experienced significant improvement in remote access. As

availability of services and complexity increase, the risk of malicious factors

compromising the information systems also increases. The information sys-

tem at risk can have serious consequences, ranging from nuclear meltdowns

1

CHAPTER 1. INTRODUCTION 2

to identity theft [3]. Security systems that are based on Transport Layer

Security (TLS) [4] and SSL [5] are secure. But these traditional protocols

provide security to moving data; however, these protocols do not secure data,

which is used by information systems, i.e. data at rest. Therefore, TLS and

SSL fail to give security assurances to the systems which are subject to at-

tacks that are not prevented by TLS and SSL. Provable security is provided

by TLS when transferring data [4]. However, some applications are depended

on sessions that are at the application layer which are different from the ses-

sions at the transport layer. Serious design flaws can occur in applications

due to the usual practice of developing of application session mechanisms by

application developers with little or no security knowledge [6]. As shown in

figure 1.1, security is often considered a requirement and is not part of the

conventional Software Design Lifecycle (SDLC) [7].

Figure 1.1: Standard Software Development Lifecycle

Unification of session mechanisms in the application layer is rare and

readily available frameworks are lacking [8]. Application development re-

mains very sensitive to issues such as incorrect coding, logical errors [9] etc.

because of these issues. It is difficult to make a security system which not

only provides security at the transport level but also it provides security to

the data that is available at the application layer. Since there is a diversity

CHAPTER 1. INTRODUCTION 3

in information systems, this makes it hard to set up a unified security archi-

tecture. The practice of implementing customized security measures at the

application layer by the application developer often results in catastrophic

failures [8].

Correct functioning of the information system depends on the authenti-

cation phase. Flawed authentication may result in provisioning of resources

to an adversary or lack of provisioning to a legitimate user. Problems at the

authentication phase often result in systems being compromised which has

been well documented in the literature [10]. When the user is first authenti-

cated, it is necessary for the system to continue to authenticate consecutive

requests that come to the system without explicitly cancelling the overall pro-

cess of authentication. This process is called session management [11]. The

most important phase where a system is usually compromised is at session

management phase, for example, cookies and tokens are the main sources of

continuous authentication for a web system, but they can be attacked and are

a reason for increased attack surface. The analysis of existing protocols and

mechanisms show that standard for application-level session management is

lacking, while transport-level session management is widely standardized [8].

The disparity between these layers means that the application layer cannot

take advantage of session management at transport layer. If sessions are

extended to the application layer, the efforts of securing the system will be

reduced considerably, and it will provide better security to the systems.

Authentication information is collected at the registration step in many

existing systems. This research focuses on how the key setup or key ex-

change can benefit from initial registration phase in the registration process.

CHAPTER 1. INTRODUCTION 4

Many systems benefit from multi-factor authentication, same can be used to

simplify key revocation and key setup. As a result of this, we will be able

to achieve mutual authentication, which is better than server authentication

in conventional setups. As establishing trust between parties who are com-

municating over unsafe media is a difficult problem to tackle, the proposed

scheme can be used in environments where conventional PKI setup is not

suitable. Likewise, there are some situations where it is not ideal for trans-

ferring trust to the third party; the proposed scheme can be used to build

trust [12]. For example, to obtain fake TLS certificates [13], Border Gateway

Protocol (BGP) is used, and then these fake TLS certificates are sold on the

dark web [14]. A multi-party communication scenario can also benefit from

this scheme where participants can be identified to use a resource or in a

situation where the identity of the individual is masked by the group.

1.2 Problem Statement

The following problem statement has been formulated based on the problems

identified during literature review.

“Design and implementation of a comprehensive security framework that will

extend the guarantees provided by TLS/SSL implementations at transport

layer and apply them to the application layer.”

1.3 Solution Definition/Description

The proposed solution provides:

CHAPTER 1. INTRODUCTION 5

• Session management, authentication and continuous authentication.

• Guarantees built on top of transport layer security mechanisms.

• Elimination of passwords, cookies and tokens.

• Provide basis for security mechanisms, such as access control.

Through the implementation of the proposed framework, the attack surface

is drastically reduced.

1.4 Thesis Motivation

Conventional security systems secured using protocols like TLS or SSL are

considered highly secure. It’s a valid assumption; however, it is associated

only with data which is in transport mode, and they do not provide secu-

rity to data in use by the information system. Lack of standardization for

application layer security leads to severe security breakdowns.

1.5 Thesis Contribution

The main contributions are listed as follows:

• The issue of TLS not extending its cryptographic guarantees to the

application layer has been brought to light and the associated concerns.

• Through research it has been shown that cookie theft and token forgery

are the cause of security drawbacks of application layer sessions as they

are based on cookies and tokens.

CHAPTER 1. INTRODUCTION 6

• Discussed the implications of a non-existent unified security architec-

ture which should provide cryptographic guarantees on the application

layer.

• Studied the design of a cookie and token-less methodologies for authen-

tication, mutual authentication, and continuous authentication based

on cryptographically secure primitives. Hence mitigating attacks such

as cookie theft and token forgery.

• The proposed design uses cryptographic keys as an alternative to the

traditional password-based authentication mechanism.

• Designed a session management scheme that is tightly bound to the

authentication mechanism of an application.

• The proposed scheme is tested using a server/client setup implementing

the proposed scheme to achieve session management continual authen-

tication and mutual authentication.

• The scheme has been tested by deploying on an http server. An https

like functionality is achieved in the absence of PKI. The system did

not rely on cookies or tokens for the establishment and continuation of

user sessions.

1.6 Thesis Organization

The organization of the thesis is presented as follows. Chapter 2 presents the

literature review of the important concepts related to this thesis. In chapter

CHAPTER 1. INTRODUCTION 7

3, the research methodology followed during the research has been discussed.

In chapter 4, the proposed scheme and its characteristics are presented. In

Chapter 5, a discussion on the testing, implementation, and results of the

proposed scheme is presented. Chapter 6 presents the conclusion and pro-

poses future work of the proposed scheme.

1.7 Summary

In this chapter, basic concepts and terminologies are introduced regarding

network security, transport layer security and application layer security. It

gives an overview of aim and scope of the thesis and presents the main

objectives of the research work with overall thesis organization. In the next

chapter we will look at the literature review that has been conducted for this

thesis.

Chapter 2

Literature Review

Chapter 2 discusses the related work and terminologies. The related work is

basically the research carried out by different researchers over the years which

is related to the work done in this thesis and contributed towards making a

new solution.

2.1 OSI Model

The Open System Interconnection (OSI) is a networking model that helps in

the implementation of network protocols in 7 steps/layers [15]. The model

explains how control is passed from layer to layer starting from top layer, i.e.

application layer to the bottom i.e. physical layer. Seven layers of the OSI

model are discussed briefly one by one below.

8

CHAPTER 2. LITERATURE REVIEW 9

2.1.1 Physical Layer

The physical layer is the first and bottom layer of the OSI model. This layer

is responsible for representing the physical and electrical interpretation of

the system. This layer is responsible for conveying the bit-streams, radio or

light signal over the network at mechanical and electrical level. Figure 2.1

shows the physical layer.

Figure 2.1: Physical Layer

2.1.2 Data Link Layer

The data link layer is the second layer in the OSI model. Data link layer is

much like network layer except that it is used in transferring of data between

two devices over the same network. This layer is responsible for error control

and flow control in the communication. The process of breaking packets into

small frames is done on this layer. Figure 2.2 shows the data link layer.

Figure 2.2: Data Link Layer

CHAPTER 2. LITERATURE REVIEW 10

2.1.3 Network Layer

The network layer is the third layer in the OSI model. It is responsible

for transferring data between the two networks. The process of breaking

segments that came from transport layer into small units called packets is

performed on this layer. The responsibility of finding the best physical path

for data to reach the destination also lies with the network layer. Figure 2.3

shows the network layer.

Figure 2.3: Network Layer

2.1.4 Transport Layer

The transport layer is the fourth layer of the OSI model. The responsibility of

this layer is to facilitate end to end communication between two devices. The

process of breaking data which is received from session layer into segments

and then sending it to third layer is done by this layer. This layer is also

responsible for error and flow control. Figure 2.4 shows the transport layer.

Figure 2.4: Transport Layer

CHAPTER 2. LITERATURE REVIEW 11

2.1.5 Session Layer

The session layer is the fifth layer of the OSI model. This layer has the

responsibility of starting and end of communication between two devices.

The session is the time between the start and end of the communication. It

is the responsibility of session layer to keep the session active until the data

is transferred successfully. Figure 2.5 shows the session layer.

Figure 2.5: Session Layer

2.1.6 Presentation Layer

The presentation layer is the sixth layer of the OSI model. The main respon-

sibility of this layer is to prepare the data for the application layer. This layer

is responsible for compression, translation and encryption of data which is to

be presented to application layer. Figure 2.6 shows the presentation layer.

Figure 2.6: Presentation Layer

CHAPTER 2. LITERATURE REVIEW 12

2.1.7 Application Layer

The application layer is the seventh and top layer of the OSI model. It is

responsible for providing services to the application program to communicate

with another application program effectively over the network. This layer has

direct link with the user. All user interactions take place on the application

layer. Applications like email clients and web browsers depend on this layer

to initiate the communication. Figure 2.7 shows the application layer.

Figure 2.7: Application Layer

2.2 Authentication Techniques

When accessing a digital device or service, the most important and first ac-

tivity is to identify the legitimate operator so that only an authorized user

can access the service or digital device. Authentication [16] acts as the main

countermeasure that guarantees that a legitimate user has accessed the de-

vice or service, and an unauthorized user is prohibited from accessing the

device or service. Over the years, many methodologies and techniques have

been developed to serve as authentication mechanisms. Web applications

[17] which are of distributed nature and inherently stateless, require au-

thentication data to be submitted for each service request. This continuous

authentication [16] obstructs the proper functioning of service; hence there

CHAPTER 2. LITERATURE REVIEW 13

is a need for a methodology that returns the authentication information, i.e.

the application sessions.

Authentication in any information system is one of the main challenges.

Without an infallible authentication procedure, the system remains extremely

vulnerable and is prone to many malicious interventions. In simple words,

authentication is the verification of an entity whereas authorization is grant-

ing access to a verified entity. Some of the main authentication techniques

are described below.

2.2.1 Password-based Authentication

Password-based authentication is the dominant and reliable authentication

mechanism in use. Password-based authentication is easy to deploy; however,

it is considered a rapidly aging mechanism for authentication.

In [18], authors have performed analysis of several password authentica-

tion schemes and claim that in password authentication schemes tradition

of using mathematical operations which are computationally exhaustive can

result in security vulnerabilities in the scheme. They have also specified a pro-

cedure to crypt-analyze and perform a denial of service attack [19] on those

schemes. The first of the four schemes that they have analyzed is by Yang

et al. [20] which uses passwords in their scheme for authentication and does

not use timestamps, and it is used to preserve identity privacy. The second

scheme that they analyzed is by Islam [21], it is a smart card-based user pass-

word authentication scheme in which timestamps are used. The third scheme

is by Jiang et al. [22] in which smart cards are not used for authentication.

CHAPTER 2. LITERATURE REVIEW 14

Fourth studied scheme is by Wang et al. [23] which is claimed to be resistant

to DoS attacks and is a smart card-based authentication scheme. Authors

highlight that strong point of all the schemes, e.g., Yang et al. scheme uses

encryption and nonce and Islam’s scheme uses timestamps can be joint and

used together to prevent the DOS attack on the schemes.

Written passwords represent a significant security risk. Therefore, pass-

words must be memorized and saved in a safe way. As the size of passwords

increases, remembering alphanumeric data of arbitrary sequences with a com-

bination of special characters become tedious. A limited character set is

feasible in real-world password options as the user must keep password man-

agement in mind [24]. In doing so, possible combinations to form passwords

is effectively reduced. Choices for passwords drift in the direction of a dic-

tionary and commonly used words. Thus, the entropy of a usable password

is cumulatively reduced considerably. Hence, dictionary attacks, brute force

attacks and guessing attacks are very easy to launch on these weak passwords

[25].

Wang et al. [26] addressed the skewed nature of passwords by using 14

datasets that contained almost 113 million sample passwords. Their study

outlines the biased distribution of commonly employed passwords. They

also provide a method to establish the security strength of the used datasets.

“PDF-Zipf” and “CDF-Zipf” are the two models that are proposed in their

work. Natural language processing technique [27] is used by them to propose

distribution models for the used datasets. To calculate the entropy of pass-

word dataset, a new metric based on their findings has also been proposed.

Successful guesses during the attack and dataset sizes are the main factors

CHAPTER 2. LITERATURE REVIEW 15

which influence the metric. [28, 29]. For this study, an English dataset

consisting of “Flirtlife.de” and “RockYou” password dictionaries are used.

With Unicode [30] taking over the internet, passwords in other more obscure

languages such as are becoming more and more prevalent. To cater

to these emerging circumstances, newer models that can be generalized to

support all languages are required.

2.2.2 Key-based Authentication

Key-based authentication techniques [31, 32] are a type of techniques which

are based on something you know. As compared to passwords which require

an authenticatee (the entity to be authenticated) to transfer authentication

data, a solution to a complex mathematical problem is required in key-based

authentication schemes for authentication [33]. In key-based authentication,

no authentication information or keys that are used as a substitute for pass-

words are communicated. These schemes offer a higher security level by se-

curing the authentication information against eavesdropping attacks. Public

keys stored on server-side databases offer the benefit of being resistant to

theft even if the server is compromised [34]. Attacks such as database enu-

meration [35] will only reveal public information, i.e. public keys.

In [36], a unique authentication scheme is developed by employing public

key cryptography formed on integer factorization problem and generalized

discrete logarithm problem. They have compared their scheme with some

other related schemes and proved their scheme is vastly superior as compared

to self-certified [37] authentication schemes.

CHAPTER 2. LITERATURE REVIEW 16

Key-based authentication schemes are typically computationally exhaus-

tive because public key cryptography requires more computational resources

for processing and therefore, it becomes difficult for low-power, low-performance

IoT devices to use public-key cryptography.

Sciancalepore et al. in [38] presented a unique scheme for low perfor-

mance IoT devices that allowed them to efficiently establish a connection

with lower computation cost efficiently. Their proposed key management

protocol (KMP) easily integrates elliptic curve Diffie-Helman and implicit

certificates. Relevant experimental results and proof of concept implemen-

tation proves that their proposed KMP ensures maximum transmission time

saving (up to 86.6%) with respect to traditional methodologies, robust key

negotiation, fast re-keying and efficient security against replay attacks.

2.2.3 Multi-factor Authentication

The problems encountered while employing conventional authentication meth-

ods that are based on the concept of something known, something possessed,

or something owned by the entity that needs to be authenticated has been

the primary reason for the development of the multi-factor authentication

model [39]. The multi-factor authentication paradigm integrates multiple

authentication factors into a single authentication scheme thereby increasing

complexity.

Alizai et al. [33] presented an authentication scheme that incorporates

multiple factors to achieve IoT device security. Their scheme uses digital

signatures and the device’s unique ability to efficiently authenticate devices.

CHAPTER 2. LITERATURE REVIEW 17

Multi-factor approach coupled with device capability has uniquely enhanced

their technique to be resistant to attack vectors such as man-in-the-middle

and replay attacks. However, the flaw in their scheme is that they are using

standard public-key cryptography which is often not suitable for IoT devices

because such devices cannot perform complex calculations efficiently.

Multi-factor authentication offers more security when compared with con-

ventional authentication techniques [40]. However, new attack vectors and an

increase in attack surface is also amplified due to the inclusion of multi-factor

authentication techniques. Side-channel [41] vulnerabilities can be exploited

to attack multi-factor authentication techniques as multi-factor authentica-

tion techniques often rely on side-channel communication mediums. For

example, with higher signal strength software-defined base station, authen-

tication calls and authentication SMS can easily be spoofed. Authentication

procedures that rely excessively on out of band channels and their integrity

can be easily attacked using these attack vectors [42].

2.2.4 Biometric Authentication

Everyone has unique characteristics; these characteristics can be used to

distinctly identify any individual. These characteristics and traits are largely

divided into two types of biometrics, namely, physiological and behavioral.

Biometric features can include fingerprints, iris, retina, palm area, DNA,

face, sounds, signatures or keystroke recognition.

Rathod et al. [43] have performed a detailed survey of fingerprint recogni-

tion systems. In their study, they have shown that fingerprints are the oldest

CHAPTER 2. LITERATURE REVIEW 18

and most commonly used biometric recognition systems. False acceptance

rate and false rejection rate of the biometric recognition systems, as well as

loopholes and lacking areas of each scheme that they have analyzed, is also

discussed.

To authenticate a person more securely and effectively, multiple biometric

features [44] can be used instead of a single biometric feature. To authen-

ticate as a legitimate user, the attacker will need to generate and distort

all kinds of employed biometric information in scenarios where multiple bio-

metric features are used. For example, it becomes a difficult task for an

attacker to get an image of the iris and a fingerprint of enough quality at the

same time; therefore, the attack will be difficult to execute. In [44], a multi-

biometric framework is presented as well as various issues such as multi-data

database, soft multi-biometrics, multi-algorithms fusion methods, identifi-

cation of identical twins, indexing search and embedded hybrid recognition

system are discussed which must be kept in mind at the time of designing a

multi-biometric framework.

2.2.5 Hardware Authentication

Another perspective that makes it possible to uniquely distinguish any en-

tity is “something you have”. For authentication, items such as smart cards

[45], RFID tags [46], USB token keys [47] can be used. Physical device at-

tributes such as PUF [48] can be used to achieve hardware authentication.

Characteristics of the equipment are used as a basis for PUFs. These char-

acteristics are difficult to reproduce. These characteristics depend on many

CHAPTER 2. LITERATURE REVIEW 19

factors like inherent characteristics introduced by fabrication; materials and

environmental noise etc.

Much has been done for standardization of hardware-based authentica-

tion, but it is still an active research domain. Hardware security modules

(HSMs) [49] are standard hardware-based implementations. Encryption ca-

pabilities are provided to other devices such as connected devices or the

network by HSM as it relies on the presence of an integrated cryptographic

co-processor. Purchasing price of HSMs is high. Manufacturers of the latest

advanced computing devices have begun to integrate the Trusted Platform

Module (TPM) [50] onto their devices. They are very similar to HSMs in

their functions; however, they have a direct relationship with the device in

which they were integrated at the time of production. Revocation of keys

is also a major challenge if a TPM is compromised, as it is not feasible to

simply change a device [51]. Major services that TPM provides are that it

stores, generate and limit the use of cryptographic keys. TPM can also be

used for platform device authentication using specific RSA key [52].

2.3 Session Management

There is generally a requirement for a technique that allows the authentica-

tion of succeeding requests after a successful authentication without having

to re-authenticate. Managing consistent sessions is an important part of the

web application. It links succeeding user requests and other stateful informa-

tion together to give rich and interactive user experience. But the existing

standard by which session is managed is cookie-based. It is not a perfect

CHAPTER 2. LITERATURE REVIEW 20

way to manage a session as cookie-based session management is vulnerable

to attacks like session hijacking and session fixation attacks. HTTP achieves

a stateful behavior by employing technologies such as cookies and tokens [53]

as it is stateless by default. Session management is performed by TLS using

identifiers that are transmitted as a part of the initial request messages from

the server [4].

In [11], a technique has been proposed for secure session management

based on a shared secret between both parties, an incremental counter and

HMAC is employed for managing sessions [54]; however, this technique in-

troduces performance and network overheads.

In [3], the authors discussed existing threats against session management

as well as currently deployed countermeasures to secure sessions, including

HTTP only and secure cookie flags. Authors presented a mechanism called

“SecSess” to secure a session. The proposed mechanism provides security to

sessions and is compatible with common web caches. But the problem with

“SecSess” is that it introduces performance and network overhead.

Session management in the application layer is not standardized as it

is in transport layer protocols such as TLS. Security issues related to ses-

sion management are among the top 10 issues of application security for the

Open Web Application Security Project (OWASP) [10]. Session management

mechanisms at the lower levels of the communication stack do not translate

enough session information upwards to the application layer. Applications

not maintaining stateful connections do not maintain session information

even at the lower layers and rely on a one-time request and response pair

[17]. Every request is treated as its own one-time session that is independent

CHAPTER 2. LITERATURE REVIEW 21

of each previous interaction. Session management is usually custom created

in each software solution by the developers. An objective of the presented

work is to incorporate sessions established at lower layers such as the network

layer into the application layer. Doing so results in combining independent

sessions created at different layers of the communications stack into a single

more robust session management mechanism. Such a mechanism provides

better security and stronger cryptographic guarantees. This scheme results

in the creation of a unified standard session management mechanism that

can be incorporated into every software solution and does not require re-

engineering with every implementation, resultantly reducing the time and

complexity required for the implementation of session related security issues.

The presented scheme can serve as a standard for all custom-built session

management solutions.

2.4 Cookies and Tokens

The most widely accepted technique for authentication and continuous au-

thentication is cookies and tokens. Protocols such as HTTP and HTTPS

make use of cookies for maintaining a stateful session regardless of the state-

less underlying architecture. Malicious cookies obtained as a result of cookie

theft will breakdown any session management technique that relies on the

integrity of cookies. The attacker has a wide range of techniques to simulate

the session of the application, including session fixation [55], cookie theft [56]

and token forgery [55]. An attacker who has no knowledge of the authentica-

tion credentials can regardless of his limitation, create fake sessions if he is in

CHAPTER 2. LITERATURE REVIEW 22

possession of a stolen cookie [57]. A limited number of information systems

rely on short lived cookies to cater for stolen cookies. Reducing the ses-

sion timeouts, after which the user is required to re-enter their credentials is

more of a usability hazard rather than being a defense against an adequately

equipped attacker. An attacker with adequate knowledge will require a very

short time to carry out the malicious tasks and get out of a compromised

system.

A stateless environment requires system developers to implement the ap-

propriate mechanisms [55]. Tokens used in the service requests present a

solution to the cookie theft issue. Tokens resemble cookies in many aspects,

however their dynamic nature and non-reliance on local storage provides an

edge over cookies regarding security requirements of a system. A Token must

be sent with every service request just like a cookie. Tokens are embedded

into the application’s procedural logic, for example, long random strings are

inserted into the POST/GET requests, by attaching them to the end of the

URLs for web resources. The use of a static token or the lack of randomiza-

tion in a token can lead to session fixation attacks [58]. Using low entropy

seeds and improper randomization can also result in session fixation attacks.

For service providers, serving thousands of requests per second, generating

thousands of random numbers is an intensive task. Generating random num-

bers that can be effectively used in conjunction with the token generation

process while preserving adequate entropy is an expensive task. Invalidating

the token requires maintaining extensive blacklist and user must search for

and access this blacklist for each request being processed.

An in-depth study was carried out on the privacy and relevance issues of

CHAPTER 2. LITERATURE REVIEW 23

cookies used by the top ranked (Alexa Ranking) hundred thousand websites

[59]. The study reveals significant occurrences of insecure cookies that can

be easily attacked. X. Zheng et al. [60] studied important websites such as

google.com and Bank of America and found out important cookie related vul-

nerabilities in these websites. In addition, the study also analyzed how these

vulnerabilities adversely affected these websites, along with the implications

of weak cookie implementations in widely used browsers.

2.5 Transport layer Security Mechanisms

Data protection while it is in motion is of paramount importance for any in-

formation system’s secure functioning. Communication security is commonly

achieved by protocols such as TLS. TLS not only provides data confidential-

ity, but tamper proofs the data. Any adversary controlling the network

between the sender and the receiver cannot eavesdrop the communication.

TLS can work with a multitude of key agreement protocols; it also provides

support for different cryptographic guarantees based on the type of cipher

suite used [4]. Each cipher suite provisions a specific set of security primitives

and safeguards.

TLS focuses primarily on establishing a secure and encrypted commu-

nication path between the sender and the receiver [4]. A study by Dietz

et al. [61] presented a technique primarily based on public-key cryptogra-

phy. Their technique achieves clients side authentication over the internet

by extending TLS using an extension known as TLS Origin Bound Cer-

tificates (TLS-OBC). Clients can create authenticated channels with their

CHAPTER 2. LITERATURE REVIEW 24

servers using this TLS extension. They have used TLS-OBC to link authen-

tication tokens that already exist, such as HTTP cookies to authentication

channels. Their technique enhances the authentication security using OBC.

Their technique is compatible with existing network infrastructure. It is hard

in general to distinguish between service by examining the TLS traffic. Kim

et al. [62] proposed a new method for creating service signatures using data

payloads extracted from TLS packets. They have achieved 90% efficiency

in the classification of encrypted TLS traffic based on the source service or

source application.

2.6 Summary

This chapter covers the background and the related work of the thesis. The

related literature has been presented along with a critical analysis of the

studies. Previous research work and schemes used in the literature helps in

formulating the solution to the identified problem. In the following chapter,

we will discuss the research methodology that has been followed during the

thesis.

Chapter 3

Research Methodology

Chapter 3 explains the research methodology that is followed to carry out

this thesis research. For the presented thesis, hybrid approach is selected

after the complete analysis of present research methods. As every research

method is appropriate for different research scenarios of this thesis, hence all

these research methods are followed at different times. A brief description

of the methods that are used in our research methodology along with the

phases followed in the research process, i.e. identifying the problem, formu-

lating hypothesis, making important observations and evaluating the system

is given in this chapter.

3.1 Introduction

The research is the procedure of probing or collecting information specific to

the area under consideration. It can be defined as a scientific investigation to

discover new information and facts [63]. Whenever there is a need to answer

25

CHAPTER 3. RESEARCH METHODOLOGY 26

a problem and finding appropriate solution to that problem, research is per-

formed [64]. As stated by Clifford Woody, research is the process of defining

and redefining the known problem, formulating hypothesis and suggesting

solutions to the known problems, assessing the collected data, making as-

sumptions, deriving conclusion and lastly testing the conclusion for verifying

the stated hypothesis [65].

3.1.1 Research Types

Research methodologies which were proposed in the literature are given below

and described in figure 3.1.

Figure 3.1: Research Types

Descriptive vs Analytical Research: In descriptive research, the present

work is discovered, and small reviews are conducted to find the essential and

linked information and proofs. Its objective is to define the work about the

CHAPTER 3. RESEARCH METHODOLOGY 27

specific area of research which can additionally be used in upcoming research

work. The main features of descriptive research are that the researcher has

no control over the data and present literature; rather they can only find the

proofs and methods. In analytical research, the researcher uses all the gath-

ered information from the reviews and do the critical analysis and assessment

to reach the conclusion [63, 64].

Fundamental vs Applied Research: The research can either be funda-

mental or applied depending on the depth of the knowledge required. In

fundamental research, the main purpose is to collect basic knowledge and

discover the basics of the scientific phenomenon. In applied research, the

focus of the researcher is to find some suitable solution to the problem faced

by other researchers, organizations or society. Different experiments are per-

formed by the researcher to investigate and analyze the problem and achieve

in-depth knowledge of the problem area. The approach to find solutions of

different problems on the based on performed experiments is very helpful [63,

64].

Quantitative vs Qualitative Research: Quantitative research is based

on the quantitative measurement of some features. It can be done in domains

where things can be stated with respect to quantity. Whereas in qualitative

research, things assessed based on the quality, e.g. the human conduct or

opinions on specific things and the purpose behind those opinions [63].

Conceptual vs Empirical Research: Conceptual research is based on

abstract thoughts or the concepts normally used by the theorists. This is

CHAPTER 3. RESEARCH METHODOLOGY 28

done to create new concepts or re-design the present ideas. The empirical

research is based on the observations and experiments without trusting on

any concept or the scheme. It is truly based on their own set of observations,

experiments, and conclusions. In this type of research, firstly, hypothesis is

made based on the facts and then try to assume the outcomes. Researcher

then collects the proofs to accept or reject the hypothesis [63].

3.1.2 Research Methods and Research Methodology

Overview

To conduct the research, different techniques, methods and procedures are

used by the researchers which is called research methodology. The process

is started with conducting reviews until reaching the results and this as a

whole is termed as research methods. The research methodology is defined

as the principles and procedures to carry out research using a scientific ap-

proach. It includes all the stages used by the researcher to find a solution

to the problem. The research methodology is different for different types of

research problems, and the researcher must know the correct way to be used

to follow the research. The research objective should be very clear to the

researcher towards the selection of a research methodology [63, 64]. In this

thesis following research methodology steps are used:

• Explore the session management, authentication, continuous authenti-

cation, Transport layer security mechanisms (TLS), Application Layer

security, attacks and challenges to gather significant knowledge for the

targeted domain.

CHAPTER 3. RESEARCH METHODOLOGY 29

• Narrow down the study to choose some challenges to work on i.e. cookie

theft and token forgery attacks that happens at application layer even

in the presence of TLS.

• Derive hypothesis from the analysis of the existing literature.

• Validate the formulated hypothesis after implementation of the pro-

posed system.

3.2 Thesis Research Methodology

This thesis used the hybrid approach throughout the research, which includes

conceptual, applied and fundamental research methods. This thesis consists

of some steps which are followed throughout the research phases starting

from collecting information till obtaining the results which are then assessed.

All the steps in our research process are given below.

• Define a Research Area

• Literature Survey

• Identify Research Problem

• Develop Hypothesis

• Observations

• Prototype Implementation

• Hypothesis Testing

CHAPTER 3. RESEARCH METHODOLOGY 30

3.3 Summary

In this chapter we have covered different research methodologies that have

been proposed for research which can be followed by the researchers. As

every research method is appropriate for different research scenarios of this

thesis, hence all these research methods are followed at different times. In

next chapter we will look at the proposed solution to the problem that has

been identified in the previous chapters.

Chapter 4

Proposed Solution

Chapter 4 explains the proposed framework that has been designed to miti-

gate different attack vectors. This chapter also discusses the primitives that

are used in the framework and are essential for understanding the correct

working of the framework. Security provisions of the framework are also

discussed in this chapter.

4.1 Scheme Primitives

The primitives used in the proposed scheme are discussed one by one be-

low. Knowledge of these primitives is helpful for understanding the proposed

scheme.

4.1.1 Timestamps

Timestamps are very important to keep track of data when it is moved,

deleted or created online. A timestamp is the present time of an incident

31

CHAPTER 4. PROPOSED SOLUTION 32

that is recorded by a system. A timestamp is used to avoid replay attacks.

For example, a timestamp is used in Kerberos to prevent replay attacks.

Timestamp has been used in the proposed scheme for similar purposes.

4.1.2 Random Numbers

Random numbers are needed in cryptography to generate cryptographic keys,

also used as a nonce i.e. to verify and timestamp, random numbers are also

used as salts which are used as arbitrary inputs in hash functions, and one-

time pads. Random numbers are utilized to make deterministic patterns

unclear. They are also used to remove human biases from pad messages

by increasing the length of the messages. There are two types of random

numbers, true random (TRNG) and pseudo-random (PRNG). TRNG’s are

the type of random numbers in which an unpredictable physical means of the

system is used to generate a number. Whereas in PRNG’s, mathematical

operations and algorithms are used to generate a random number.

4.1.3 Symmetric Cryptography

Symmetric key cryptography uses a single key for both encrypting as well as

decrypting the text. Therefore, it is frequently called same, shared or single

key encryption. Since the key is kept secret, it is also called private or secret

key encryption. Symmetric algorithms are simple, fast and are cost effective

in terms of efficiency. The downside of symmetric key cryptography is key-

exchange, too many keys, and since both sender and receiver use the same

key, messages cannot be verified to have come from a user. The exposure of

CHAPTER 4. PROPOSED SOLUTION 33

the key is undetected when using symmetric key.

4.1.4 Asymmetric Cryptography

Asymmetric cryptography also known as public key cryptography is used to

overcome the downsides and limitations of the symmetric key cryptography.

While at first maintenance of the key is required, the basics of public key

cryptography give an elastic and extensible structure in which the crypto-

graphic functions can be deployed. Asymmetric cryptography provides mes-

sage authentication, non-repudiation, integrity, easy key distributions. The

downside of asymmetric cryptography is it is slow and require computational

resources. The user of the public key should ensure that public key belongs

to the intended owner.

4.1.5 Hash Functions

A hash also known as message digest is a representation of large message in

a smaller fixed length. Hashes are also known as one-way function i.e. the

original message cannot be recovered from a digest. To ensure integrity and

authenticity of the information, hashes are used. Even one bit of change in

original message changes the hash considerably due to the avalanche effect.

Hashes are not used to provide confidentiality. There are different hashing

algorithms like MD4, MD5, SHA1, SHA2, SHA3 that takes the input of

arbitrary length and gives output of fix length.

CHAPTER 4. PROPOSED SOLUTION 34

4.1.6 Message Authentication Code (MAC)

MAC is a type of data which is created to verify the authenticity of the

message. It is created by appending the secret key with the message and then

taking the hash of the whole block. At the receiving end, the user will use

his secret key to create a MAC block and if the received and created MAC

block are same then it will imply that the message has not been changed

intentionally or accidentally in transit.

4.2 Scheme Features

Following is the list of functionalities that are given by the proposed scheme.

• Mutual authentication to two or more than two parties is provided by

the proposed scheme using a certificate that is exchanged at the time

of registration.

• User authentication forms the basis for creation of sessions.

• For each session, cryptographic keys are derived and then discarded,

thus keys are never stored on the device.

• Continuous authentication is provided by the scheme based on a session

key derived for specific time.

• All communication is symmetrically encrypted and integrity checks

(MAC) are applied thus eliminating the need for cookies and tokens.

Ultimately resulting in secure sessions that are not vulnerable to at-

tacks like cookie theft and token forgery.

CHAPTER 4. PROPOSED SOLUTION 35

• Session timeouts are enforced because the derived session key is usable

for a specific time.

• Access control mechanisms can be coupled with session identifiers to

provide better access control for the resources.

• Communication can be made secure because of derived keys from ses-

sion and authentication information.

• The scheme can be extended to provision a secure group communication

scenario in a dictated key distribution fashion.

4.3 Proposed Solution

This research proposes a scheme for achieving authentication, continuous au-

thentication, along with session management at the application layer. This

scheme exploits the fact that a user registration process exists for every ser-

vice that needs to be accessed by users. A side channel can be efficiently

used for public key exchanges. Figure 4.1 shows that side channels can be

used to carry out public key exchanges. These channels such as e-mail, are

typically used for multi-factor authentication in a traditional setup. Table

4.1 explains the notations that are used throughout the scheme.

The key exchange over a side channel ensures that these public keys can

be later used to establish a secure session without using a cookie or a token.

After the key exchange, session establishment may occur at any time. This

process is shown as a sequence of steps in figure 4.1. The steps illustrated in

the figure are discussed in the following sections.

CHAPTER 4. PROPOSED SOLUTION 36

Table 4.1: Table of Notations
Symbol Notation

S Server’s Identity
C Client’s Identity
RC Client Random no.
RS Server Random no.
EncP UB Encryption with Public Key
DecPK Decryption with Private Key
|| Concatenation
SK Session Key

Figure 4.1: Proposed Scheme

4.3.1 Registration Phase

Traditionally account setup prerequisites include a registration sequence.

The registration phase is used as a precursor allowing user to access the

service. The registration phase is used for creating authorization data, pre-

senting authentication provides access. However, the proposed scheme ex-

tends the functionality of the registration phase by using it for the mutual

authentication of both the service requisitioner, i.e. the client and the ser-

CHAPTER 4. PROPOSED SOLUTION 37

vice provider, i.e. the server. Registration processes rely on the usage of out

of band channels like e-mail, GSM etc. Thus, allowing the association of a

public key to the digital identity that is being presented at the registration

time. Sample certificate is shown in figure 4.2.

Figure 4.2: Sample Certificate

The server receives the client’s public key, along with his registration

credentials (email, phone no etc.). The role of CA is not important here

because the server can very easily verify its authenticity using the side channel

that was previously used for multi-factor authentication, e.g. an email with

verification links etc. Similarly, the client will receive the server’s public key

using the exact same side channel that was used before, for example an email.

The service provider’s identity will be bound to its public key for all future

use, however, to verify the actual identity of the service provider and to relate

it with their domain information, a certification authority can intervene.

CHAPTER 4. PROPOSED SOLUTION 38

4.3.2 Authentication Phase

The server and the client can mutually authenticate each other if both parties

have access to each other’s public key. The authenticator i.e. the server ini-

tiates a challenge response scheme every time it receives a request containing

identity information (ID tag) from the authenticatee, i.e. the client. In the

first step, random number RS, server’s identification S and a timestamp T

are sent to the client. This message is encrypted with the client’s public key.

Upon receiving the challenge, the client will decrypt the received challenge

and generate its own random number. Then with the received challenge,

the client will concatenate its generated number RC and its identification C.

The client will calculate its hash and send the hash and a random number

RC encrypted with public key of the server back to the server. The server,

upon receiving the challenge, will decrypt the received identity C, the random

number RC. After decryption, the RC is concatenated with the previously

sent challenge. This newly created string is again hashed and used for veri-

fication. If the new string’s hash and the received hash are both equal, then

the client is correctly authenticated. The process is shown in the figure 4.3

that after the establishment of digital identities along with public keys, it is

trivial to establish mutual authentication for both client and server.

4.3.3 Session Key Establishment

Once the client and the server possess each other’s randomly generated num-

bers, they can create symmetric keys based on these numbers. Any future

communication will be encrypted using that symmetric key. Hence there will

CHAPTER 4. PROPOSED SOLUTION 39

be no future requirement for re-initiating a challenge response session. To

obtain a symmetric session key, each party must simply concatenate both

random numbers RC and RS. After concatenating, a hash is taken using

a hash function like SHA-256 [66]. The hash value is then attached to the

client’s ID C which is previously stored on the server. This hash value can

be used as the key for session encryption when used in conjunction with the

AES 256-bit symmetric encryption algorithm. This key will remain active

until the session ends or expires. After the establishment of the session key

SK, both communicating parties can easily verify each incoming message’s

origin. The usage of the same encryption key that was computed during the

key exchange phase guarantees that the message has been sent by an authen-

ticated party. Appending message authentication code (MAC) [67] ensures

message’s integrity whereas an appended identification (ID) tag which con-

tains the identity information of the client enables source authentication.

4.3.4 Scheme Handshake

As shown in figure 4.3, an authentication request is sent in the first step

by the client. As a response to the request, the server presents a challenge

to the client as step 2. Decryption of the encrypted challenge enables the

client to successfully complete the challenge and end the negotiation process.

Being able to decrypt the challenge also serves as the proof of identity for

the client. The decrypted data that was obtained during step three is used

in the making of the session key SK. Knowledge of the freshly created session

key is an implicit proof of knowing the correct decryption data in step two,

CHAPTER 4. PROPOSED SOLUTION 40

which in turn proves the authenticity of a client claim. At the server side,

similar events lead to the server being authenticated. As seen in step four,

the server is sent an encrypted challenge. If the server is capable of correctly

decrypting the challenge, it will obtain all the necessary data which will

enable it to create a session key SK. Knowing the correct symmetric key will

imply the authenticity of the server. Therefore, the server and the client are

both mutually authenticated.

Figure 4.3: Scheme Handshake

4.4 Security Provisions

Every message is validated, and it has achieved authentication and continu-

ous authentication. World wide web is a complex environment and session

management in these environments primarily depends upon tokens and cook-

ies. If a message is successfully validated, this indicates that the message is

part of the session, thereby eliminating the need for cookies and tokens. Ac-

cess control mechanisms can be coupled with sessions for the provision of

CHAPTER 4. PROPOSED SOLUTION 41

different resources.

The scheme uses cookie-less and token-less methodologies for authentica-

tion, mutual authentication, and continuous authentication based on crypto-

graphically secure primitives like timestamps (to avoid replay attacks), ran-

dom numbers (for key generation and incorporate randomness), asymmetric

cryptography (for non-repudiation), symmetric key (for secure communica-

tion) and MAC (for message integrity). Hence mitigating attacks such as

cookie theft and token forgery. Session management and authentication is

achieved by the proposed scheme using asymmetric key cryptography.

4.5 Summary

In this chapter we have discussed the proposed solution for the identified

problem. The different steps used in the framework are also explained in

detail. This chapter also discusses the outcomes and security provisions that

the proposed scheme will provide. In the next chapter we will look at the

implementation and test results of the presented framework.

Chapter 5

Implementation and Results

Chapter 5 of the discusses the implementation of the proposed solution and

the technical details. This chapter also discusses the results obtained from

two different environments. The chapter also includes a hypothetical case

study that helps in understanding the scheme as well as its security aspects.

5.1 Scheme Analysis

The presented scheme is analyzed using a network protocol analyzing tool

called Scyther [68]. The tool works by using a script that follows a specific

rule set. Scyther is a tool that verifies a cryptographic protocol against differ-

ent type of attacks such as secrecy, replay, man-in-the-middle and aliveness

attacks.

The outcome of the analysis is presented in figure 5.6. For analyzing the

security of the scheme, a Network Threat Model [69] is simulated to verify

the scheme. It is assumed that:

42

CHAPTER 5. IMPLEMENTATION AND RESULTS 43

• The network is fully or partially in control of the attacker.

• As discussed in Dolev-Yao intruder model [66], the attacker is very

resourceful and can learn, create and deflect messages.

5.2 Attributes

Scyther’s attributes like synchronization, aliveness, protection against man-

in-the-middle and secrecy that are considered when verifying a protocol.

These attributes are discussed in detail below.

5.2.1 Secrecy

First guarantee that is provided by the presented scheme is that it provides

confidentiality to user’s credentials. Analysis of the presented scheme shows

that on untrusted network the communication between both parties will not

be uncovered by any adversary. As shown in figure 5.6, random numbers

of the client, the server and the timestamp utilized in the exchange stayed

undisclosed.

5.2.2 Aliveness

Second guarantee that is provided by the presented scheme is the aliveness

property. The aliveness property guarantees that the response from the re-

sponding party is the result of the request that was generated by the commu-

nicating party. It likewise guarantees that the communication between both

parties is not altered and messages are correctly timestamped and digitally

CHAPTER 5. IMPLEMENTATION AND RESULTS 44

signed.

5.2.3 Synchronization

Third guarantee of the presented scheme is that it addresses the Non-injective

Synchronization (Nisynch) property [70]. Thus, the scheme provides protec-

tion against replay attacks. Nisynch property guarantees that communica-

tion between receiving and sending party is synchronized and is initiated by

the sending party.

5.2.4 Man-In-The-Middle

For all the tests that we conducted, no attack tree was produced. Hence, we

can say that the presented scheme gives protection against man-in-the-middle

attacks.

5.3 Scyther Script

Properties of Scyther i.e. synchronization, aliveness, protection against man-

in-the-middle and secrecy are tested and validated using the Scyther script

that is given one by one in the figures below. Client and the server are tested

and validated individually.

To declare a new variable, keyword “fresh” is used. Timestamp and nonce

creation are shown in figure 5.1. The variable Nonce, ServerRandom and

ServerData are initialized whereas timestamp is initialized for ServerTimes-

tamp in server role. Similarly, in client role, Nonce variable is initialized for

ClientRandom and ClientData.

CHAPTER 5. IMPLEMENTATION AND RESULTS 45

Figure 5.1: Scyther Script - 1

To create a new variable that stores the values of “fresh” type variable,

keyword “var” is used. In Scyther, the way new variables are created to

store the values of the received terms is shown in figure 5.2. ServerRandom,

ServerData, ServerTimestamp are initialized as variables to store the values

received from server in the client role. Similarly, ClientRandom, ClientData

are initialized as variables to store the values received from client in the server

role.

Figure 5.2: Scyther Script - 2

Communication between communicating parties is simulated with two

function namely send 1 and recv 1. The script works in a way that when a

send function is called, there should be an agreeing function at the receiving

end. These function calls must be appended with the same number to work

correctly. The figure 5.3 shows how a message is sent from one party to

another.

Figure 5.3: Scyther Script - 3

CHAPTER 5. IMPLEMENTATION AND RESULTS 46

The figure 5.4 shows how a message encrypted with same keys is sent from

one party to another. The communication is being encoded using the message

hash H() of a key string that is generated during a protocol handshake.

Figure 5.4: Scyther Script - 4

Figure 5.5 shows the properties that were claimed to hold during the pro-

tocol negotiation. These properties are analyzed and verified by the Scyther

Protocol Verification Tool.

Figure 5.5: Scyther Script - 5

5.4 Scyther Results

The figure 5.6 shows Scyther generated results. Scyther verifies and vali-

dates properties of Scyther i.e. synchronization, aliveness, protection against

CHAPTER 5. IMPLEMENTATION AND RESULTS 47

man-in-the-middle for both sides who are communicating. In this case the

communicating parties are the server and the client.

Figure 5.6: Scyther Result

5.5 Testing and Implementation

This section throws light on the testing and implementation of the proposed

scheme. The tools and specifications of the system on which the scheme is

CHAPTER 5. IMPLEMENTATION AND RESULTS 48

implemented and tested are given in the following table 5.1.

Table 5.1: Tools & System Specifications

Name Type/Version

Microsoft Windows 10 64bit
Ubuntu 19.04
Kali Linux 2018.4
Java 8
XAMPP 7.3.2
Php 7.3.2
JavaScript —–
Wireshark 2.6.6
Scyther 1.1.3
Burp Suite 1.7.36

5.5.1 Environment Setup

The proposed scheme has been tested in two distinct environments. i.e.

• A server client environment setup in java.

• A PHP script running on the server side and the client’s browser run-

ning JavaScript.

The client and server were setup and the public key certificates were

exchanged using TLS secure web forms emulating side channels. The same

can be done by using minimal certificates (containing only the corresponding

public keys) and placing them in the corresponding system’s manually. An

echo server was used as the service provider server. A service request was

initiated by the client-side application. The request was answered by the

service provider with an authentication challenge specifically crafted for the

CHAPTER 5. IMPLEMENTATION AND RESULTS 49

authenticating client. After successfully completing a handshake, both the

server and the client agreed upon a symmetric key and established a session

as shown in figure 5.7.

Figure 5.7: Client Server Application (JAVA)

Figure 5.8: Traffic Capture - Wireshark

Cipher objects were instantiated using the symmetric key. The cipher

objects corresponded to AES-CBC [71] and AES-GCM [72] during different

trials. Server and client both were able to authenticate themselves, as well

as keep their session active if the MAC verification was valid (corresponding

CHAPTER 5. IMPLEMENTATION AND RESULTS 50

to the ID tag) i.e. if the MAC is valid, the authenticity of the message

origin is guaranteed. Access control methodology was tested on top of the

session. As shown in figure 5.8, data intercepted by Wireshark was analyzed

and the communication data was found to be encrypted. The encryption was

comparable to AES-CBC or AES-GCM modes of TLS.

This was also tested using a PHP script that was running on the server

side and the client’s browser was running JavaScript as shown in figure 5.9,

figure 5.10, figure 5.11 and figure 5.12. Server and client information is

highlighted in blue and red respectively whereas hashes taken at both sides

are highlighted in green color.

Figure 5.9: PHP - 1

The resulting scenario was very much comparable to the previously men-

tioned client server model. The same results were obtained as mentioned in

the previous implementation. Symmetric session keys were successfully ini-

tialized, and the communication was encrypted using the established session

CHAPTER 5. IMPLEMENTATION AND RESULTS 51

keys.

Figure 5.10: PHP - 2

Figure 5.11: PHP - 3

The communication was tested using Burp Suite as shown in figure 5.13,

figure 5.14, figure 5.15 and figure 5.16. Burp Suite was unable to generate

any trace of the original information. The only visible information was the

CHAPTER 5. IMPLEMENTATION AND RESULTS 52

Figure 5.12: PHP - 4

unencrypted HTTP headers. The HTML data remained totally encrypted

and immune to a man-in-the-middle attack. And the authentication was

achieved without the use of session cookies as shown in figure 5.11 and figure

5.12.

Figure 5.13: Traffic Capture - Burp Suite - 1

CHAPTER 5. IMPLEMENTATION AND RESULTS 53

Figure 5.14: Traffic Capture - Burp Suite - 2

Figure 5.15: Traffic Capture - Burp Suite - 3

CHAPTER 5. IMPLEMENTATION AND RESULTS 54

Figure 5.16: Traffic Capture - Burp Suite - 4

5.5.2 Functionality

Positive results were obtained using Scyther simulation and an implementa-

tion that was deployed in a client server model. Functionality presented was

fully achieved. Strong authentication was achieved due to the exchanged cer-

tificates during the registration phase. This strong authentication was used

as a basis for generating session keys. These session keys were then used for

securing all future communications. The session key can be used to secure

multiple requests without the need for renegotiating the shared secret. This

results in persistent session, state fullness and authentication in a continuous

manner. Renegotiation of the protocol allows forward secrecy to be achieved

i.e. new secret keys are independently generated without depending on the

previous keys. Access control mechanism were laid over the authenticated

sessions to provision service in a restricted fashion i.e. secure provisioning.

CHAPTER 5. IMPLEMENTATION AND RESULTS 55

5.5.3 Results

The presented scheme was successfully tested for the establishment of com-

munication channels that are secure and support mutual authentication be-

tween both communicating parties i.e. the server and the client, without

using TLS and TLS like technologies. The initial keys are exchanged over

a secure side channel leveraging any out of band system that is commonly

used for two factor authentications e.g. the server can send keys to the client

using band email or SMS etc. Multiple sessions were successfully established.

The scheme eliminated the need for any kind of cookies or tokens. On top

of the authentication a basic model for access control restrictions can easily

be implemented that can leverage the session information. This technique

can be used in systems that do not have the typical security mechanisms

available as well as the scheme can be overlaid on existing communication

technologies.

5.6 Practical Adoption/Case Study

To illustrate the practicality of the proposed system, the following case study

is presented.

Alice is running an e-commerce store. Bob is a regular customer and

often purchases few things from Alice. The server is setup in a way that once

the client creates an account on server providing two factors for verification

like email and SMS, the server stores the client information like username,

password, credit card number etc. Whenever the client wants to purchase

something, client has to login and start purchasing, and the amount will be

CHAPTER 5. IMPLEMENTATION AND RESULTS 56

deducted from the credit card. Bob wants to perform secure transactions in

the current scenario. Following are the two possible assumptions based on

the above case study that should be addressed to secure the communication

channel.

Assumption 1: TLS is unavailable

TLS could be unavailable because of following two reasons:

i) The server is not https secured.

ii) A client is unable to establish secure session.

In both cases, communication is vulnerable to eavesdropping.

Question:

What happens if a secure server is not setup or client is unable to establish

secure session because of device’s misconfiguration or unavailability of PKI?

Answer:

Bob executed a transaction on a vulnerable connection. An attacker in the

middle easily sniffed the packet. Now the attacker has access to Bob’s au-

thenticated information as well as the cookie which is valid for the next 7

days or 15 days depending on the implementation. Now the attacker can

execute transactions masquerading as Bob until the cookie expires.

Assumption 2: TLS is available, but cookie and token information can

be extracted. Attack is still possible even if TLS is available because of the

following two reasons.

i) Low entropy or not enough randomness used in token generation

ii) Cookie leakage or server is not using “https” only cookies

In both cases, authenticated information is leaking.

Question

CHAPTER 5. IMPLEMENTATION AND RESULTS 57

What happens if cookie and token information are leaking because of above

reasons?

Answer:

TLS is available, but due to the lack of randomness in token generation

and low entropy, the eavesdropper captures the packet and extract required

information from it. Now the attacker has access information (session to-

ken/cookie) which can be used by an attacker to pretend as Bob for next

transactions. In this scenario availability of TLS does not guarantee that the

actual client is not authenticating.

Solution to Problems:

In future, Bob wants to establish a secure communication session with Al-

ice in the unavailability of TLS and PKI. If Alice and Bob at the time of

registration exchange implicit certificates (which only contains relevant in-

formation like email and public key). Both do not know each other, but after

exchanging certificates, whenever Bob uses the already exchanged certificate,

Alice can verify that it’s the same user who has exchanged the certificate and

vice versa. This way both Alice and Bob can verify each other and perform

transactions until one party relocate the already exchanged certificate.

Using the scheme presented in this thesis, Alice and Bob can exchange cer-

tificates at the time of registration, verify each other once at the time of

registration and then securely perform transactions in the unavailability of

TLS and PKI.

CHAPTER 5. IMPLEMENTATION AND RESULTS 58

5.7 Summary

In this chapter, the implementation of the solution and the results are dis-

cussed in detail which belongs to our objectives described at the beginning

in chapter 1. The scheme is tested using a network protocol analyzing tool

called “Scyther”. The traffic is also monitored using “Wireshark” and “Burp

Suite” and found to be encrypted. In the next chapter conclusion of the

thesis is given.

Chapter 6

Conclusion & Future Work

Chapter 6 concludes the presented thesis and highlights potential future re-

search directions. It describes different research prospects of our research and

identifies open research problems that still need to be solved by the research

community.

6.1 Conclusion

Managing sessions and authenticating a valid user are both essential for the

effective and efficient security of the system. Application development re-

mains very sensitive to issues such as incorrect coding, logical errors, etc.

Security systems that are based on TLS and SSL are secure, but these tra-

ditional protocols provide security to moving data only. They do not give

security assurances to the systems which are subject to attacks that are not

prevented by TLS and SSL. Since there is a diversity in information systems,

this makes it hard to set up a unified security architecture.

59

CHAPTER 6. CONCLUSION & FUTURE WORK 60

In this research we have proposed a secure and effective mutual authen-

tication scheme. This scheme extends the functionality of the registration

phase to exchange already known authenticated information of the server

and the client i.e. public keys. Authentication is achieved by the scheme

using minimum transactions over the network. A shared secret is created

at the end of a successful authentication. This shared secret can be used

with different cipher suites. The proposed scheme depends on Message Au-

thentication Code (MAC) and identification data that is affixed with every

succeeding message to establish the authenticity of the message.

The attack vectors that are linked with tokens and cookies are eliminated

because the proposed scheme does not use any of these as an authentication

information transporter. The scheme is alternative for mutual authentication

in networked applications which traditionally required public key infrastruc-

ture (PKI). The scheme is resistant to a range of attacks which were tested

using Scyther. The attacks resisted are cookie theft, token forgery, session

hijacking and man-in-the-middle.

6.2 Future Work

The future work that can be done with respect to this scheme is that hard-

ware tokens can be studied in detail so that if they can be used as a source

of authentication information for this scheme. As PGP involves initial key

exchange, this scheme can also be looked at to be used with PGP and

Blockchain. Android and IOS applications for secure communication can

also be built using this scheme. For group communication, collaborative key

CHAPTER 6. CONCLUSION & FUTURE WORK 61

generation schemes can be studied in detail to use with the proposed scheme.

6.3 Summary

This chapter has presented the conclusion of the thesis. Furthermore, it

describes potential future directions in which this thesis can be extended for

further research work.

Bibliography

[1] L. Catarinucci et al., “An IoT-Aware Architecture for Smart Healthcare

Systems,” IEEE Internet Things Journal, volume 2, no. 6, pp. 515−526,

Dec. 2015.

[2] J. Lee, B. Bagheri, and H. A. Kao, “A Cyber-Physical Systems archi-

tecture for Industry 4.0-based manufacturing systems,” Manufacturing

Letters, volume 3, pp. 18−23, Jan. 2015.

[3] KM. Kenney, “CyberTerrorism in a Post-Stuxnet World,” Orbis, volume

59, no. 1, pp. 111−128, Jan. 2015.

[4] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,”

RFC 8446 Aug. 2018.

[5] E. Rescorla,“[Review] SSL and TLS: designing and

building secure systems,” 2001. [Online]. Available:

http://dannyreviews.com/h/SSL TLS.html. [Accessed: 13-Nov-2019].

[6] H. Y. Shih, H. L. Lu, C. C. Yeh, H. C. Hsiao, and S. K. Huang, “A generic

web application testing and attack data generation method,” in Advances

in Intelligent Systems and Computing, 2018, volume 733, pp. 232−247.

62

BIBLIOGRAPHY 63

[7] N. Nazir and M.K. Nazir, “American Scientific Research Journal for Engi-

neering, Technology, and Sciences.,” American Scientific Research Journal

for Engineering, Technology, and Sciences, volume 42, no. 1, pp. 166−187,

Sep. 2018.

[8] K. Zhao and L. Ge, “A Survey on the Internet of Things Security,” in

2013 Ninth International Conference on Computational Intelligence and

Security, 2013, pp. 663−667.

[9] A. One, “Smashing the stack for fun and profit,” Phrack 49, volume 7,

no. 49, pp. 1996−11, 1996.

[10] OWASP, “OWASP Top 10 - 2010: The Ten Most Critical Web

Application Security Vulnerabilities,” 2010. [Online]. Available:

https://owasptop10.googlecode.com/files/OWASP%5CnTop%5Cn10%5Cn-

%5Cn2010.pdf. [Accessed: 01-Apr-2019].

[11] P. De Ryck, L. Desmet, F. Piessens, and W. Joosen, “SecSess: keeping

your session tucked in away in your browser,” in Proceedings of the 30th

Annual ACM Symposium on Applied Computing - SAC ’15, 2015, pp.

2171−2176.

[12] Y. H. Lin et al., “SPATE: Small-group PKI-less authenticated trust

establishment,” IEEE Transaction on Mobile Computing, volume 9, no.

12, pp. 1666−1681, Dec. 2010.

[13] H. Birge-Lee, Y. Sun, A. Edmundson, J. Rexford, and P. Mittal, “Bam-

boozling Certificate Authorities with BGP,” in USENIX Security Sympo-

sium (SEC), 2018, pp. 833−849.

BIBLIOGRAPHY 64

[14] D. Maimon, Y. Wu, M. McGuire, N. Stubler, and Z. Qiu, “SSL/TLS

Certificates and Their Prevalence on the Dark Web — Venafi.”

[Online]. Available: https://www.venafi.com/sites/default/files/2019-

02/Dark-Web-WP.pdf. [Accessed: 19-Jun-2019].

[15] J. Zhao, J. Bai, Q. Zhang et al., “The Discussion about Mechanism of

Data Transmission in the OSI Model,” in 2018 International Conference

on Transportation Logistics, Information Communication, Smart City

(TLICSC 2018), 2018.

[16] A. Al Abdulwahid, N. Clarke, I. Stengel, S. Furnell, and C. Reich, “Con-

tinuous and transparent multimodal authentication: reviewing the state

of the art,” Cluster Computing, volume 19, no. 1, pp. 455−474, 2016.

[17] K. J. Kim, C. G. Kim, T. K. Whangbo, and K. Yoon, “A continuous

playing scheme on RESTful web service,” Cluster Computing, volume 19,

no. 1, pp. 379−387, Mar. 2016.

[18] K. Garrett, S. R. Talluri, and S. Roy, “On vulnerability analysis of

several password authentication protocols,” Innovations in Systems and

Software Engineering, volume 11, no. 3, pp. 167−176, Sep. 2015.

[19] M. Abliz, “Internet Denial of Service Attacks and Defense Mechanisms,”

University of Pittsburgh, March,2011 p. 50.

[20] F. Y. Yang, C. W. Hsu, and S. H. Chiu, “Password authentication

scheme preserving identity privacy,” in Proceedings - 2014 6th Interna-

tional Conference on Measuring Technology and Mechatronics Automa-

tion, ICMTMA 2014, 2014, pp. 443−447.

BIBLIOGRAPHY 65

[21] S. H. Islam, “Design and analysis of an improved smartcard-based

remote user password authentication scheme,” International Journal of

Communication Systems, volume. 29, no. 11, pp. 1708−1719, Jul. 2016.

[22] Q. Jiang, J. Ma, G. Li, and Z. Ma, “An improved password-based remote

user authentication protocol without smart cards,” Information Technol-

ogy and Control, volume. 42, no. 2, pp. 150−158, Jun. 2013.

[23] Ding Wang, Chun-Guang Ma, Qi-Ming Zhang and Sendong Zhao, “Se-

cure Password-based Remote User Authentication Scheme against Smart

Card Security Breach”, Journal of Networks, Volume. 8, No. 1, PP.

148−155, Jan. 2013.

[24] M. Lennartsson, “Evaluating the Memorability of Different Password

Creation Strategies: A Systematic Literature Review,” 2019.

[25] H.J. Mun, S. Hong, and J. Shin, “A novel secure and efficient hash func-

tion with extra padding against rainbow table attacks,” Cluster Comput-

ing, volume 21, no. 1, pp. 1161−1173, Mar. 2018.

[26] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian, “Zipf’s Law in

Passwords,” IEEE Transactions on Information Forensics and Security,

volume 12, no. 11, pp. 2776−2791, Nov. 2017.

[27] J. Hirschberg and C. D. Manning, “Advances in natural language pro-

cessing,” Science, volume 349, no. 6245. American Association for the

Advancement of Science, pp. 261−266, 17-Jul-2015.

BIBLIOGRAPHY 66

[28] J. Bonneau, “The science of guessing: Analyzing an anonymized corpus

of 70 million passwords,” in Proceedings - IEEE Symposium on Security

and Privacy, 2012, pp. 538−552.

[29] M. Dell’Amico, P. Michiardi, and Y. Roudier, “Password strength: An

empirical analysis,” in Proceedings - IEEE INFOCOM, 2010, pp. 1−9.

[30] “Unicode Consortium.” [Online]. Available: http://www.unicode.org/.

[Accessed: 29-Jun-2019].

[31] R. Amin and G. P. Biswas, “An Improved RSA Based User Authenti-

cation and Session Key Agreement Protocol Usable in TMIS,” Journal of

Medical Systems, volume 39, no. 8, p. 79, 2015.

[32] A. Witkovski, A. Santin, V. Abreu, and J. Marynowski, “An IdM and

key-based authentication method for providing single sign-on in IoT,” in

2015 IEEE Global Communications Conference, GLOBECOM 2015, 2015,

pp. 1−6.

[33] Z. A. Alizai, N. F. Tareen, and I. Jadoon, “Improved IoT Device Au-

thentication Scheme Using Device Capability and Digital Signatures,” in

2018 International Conference on Applied and Engineering Mathematics

(ICAEM), 2018, pp. 1−5.

[34] L. Liu, J. Xu, C. Guo, K. Jiehui, S. Xu, and Z. Biao, “Exposing SQL

Injection Vulnerability through Penetration Test based on Finite State

Machine,” in 2016 2nd IEEE International Conference on Computer and

Communications, ICCC 2016 - Proceedings, 2017, pp. 1171−1175.

BIBLIOGRAPHY 67

[35] I. G. N. Mantra, M. Alaydrus, and H. M. Misni, “The web security and

vulnerability analysis model on Indonesia Higher Education institution,”

in 2016 International Conference on Informatics and Computing, ICIC

2016, 2017, pp. 154−157.

[36] C. Meshram, C.-C. Lee, C.-T. Li, and C.-L. Chen, “A secure key au-

thentication scheme for cryptosystems based on GDLP and IFP,” Soft

Computing, volume 21, no. 24, pp. 7285−7291, Dec. 2017.

[37] D. Li, H. Chen, C. Zhong, T. Li, and F. Wang, “A New Self-Certified Sig-

nature Scheme Based on NTRUSing for Smart Mobile Communications,”

Wireless Personal Communications, volume 96, no. 3, pp. 4263−4278, Oct.

2017.

[38] S. Sciancalepore, G. Piro, G. Boggia, and G. Bianchi, “Public Key Au-

thentication and Key Agreement in IoT Devices With Minimal Airtime

Consumption,” IEEE Embedded Systems Letters, volume 9, no. 1, pp.

1−4, Mar. 2017.

[39] A. Ometov, S. Bezzateev, N. Makitalo, S. Andreev, T. Mikkonen, and

Y. Koucheryavy, “Multi-Factor Authentication: A Survey,” Cryptography,

volume 2, no. 1, p. 1, Jan. 2018.

[40] D. Wang and P. Wang, “Two Birds with One Stone: Two-Factor Au-

thentication with Security beyond Conventional Bound,” IEEE Transac-

tions on Dependable and Secure Computing, volume 15, no. 4, pp. 708−722,

2018.

BIBLIOGRAPHY 68

[41] Z. Li et al., “FBS-Radar: Uncovering Fake Base Stations at Scale in

the Wild,” in 24th Network and Distributed System Security Symposium

(NDSS), 2017.

[42] M. Pannu, R. Bird, B. Gill, and K. Patel, “Investigating vulnerabili-

ties in GSM security,” in 2015 International Conference and Workshop on

Computing and Communication (IEMCON), 2015, pp. 1−7.

[43] V. J. Rathod, N. C. Iyer, and S. M. Meena, “A survey on fingerprint

biometric recognition system,” Proceedings. 2015 International Confer-

ence on Green Computing and Internet of Things, ICGCIoT 2015, pp.

323−326, 2016.

[44] R. Gad, N. El-Fishawy, A. EL-SAYED, and M. Zorkany, “Multi-

Biometric Systems: A State of the Art Survey and Research Directions,”

International Journal of Advanced Computer Science and Applications,

volume 6, no. 6, 2015.

[45] Q. Jiang, J. Ma, G. Li, and X. Li, “Improvement of robust smart-card-

based password authentication scheme,” International Journal Commu-

nication Systems, volume 28, no. 2, pp. 383−393, Jan. 2015.

[46] A. X. Liu and L. A. Bailey, “PAP: A privacy and authentication protocol

for passive RFID tags,” Computer Communications, volume 32, no. 7−10,

pp. 1194−1199, May 2009.

[47] W. M. AlOmari and H. Abusaimeh, “Modified USB Security Token for

User Authentication,” Computer and Information Science, volume 8, no.

3, 2015.

BIBLIOGRAPHY 69

[48] P. Gope, J. Lee, and T. Q. S. Quek, “Lightweight and Practical Anony-

mous Authentication Protocol for RFID Systems Using Physically Un-

clonable Functions,” IEEE Transactions on Information Forensics and

Security, volume 13, no. 11, pp. 2831−2843, Nov. 2018.

[49] D. Fox, “Hardware Security Module (HSM),” Datenschutz und Daten-

sicherheit - DuD, volume 33, no. 9, pp. 564−564, Sep. 2009.

[50] T. Caddy, S. W. Smith, and A. Stavrou, “Trusted Platform Module,”

in Encyclopedia of Cryptography and Security, Boston, MA: Springer US,

2011, pp. 1332−1335.

[51] TCG, “TPM Main Part 1 Design Principles,” Specification version,

volume 1. p. 184, 2011.

[52] Microsoft, “Trusted Platform Module Technology Overview (Win-

dows 10) — Microsoft Docs,” Microsoft.com, 2017. [Online]. Avail-

able: https://docs.microsoft.com/en-us/windows/security/information-

protection/tpm/trusted-platform-module-overview. [Accessed: 18-Nov-

2019].

[53] J. Jussila, “Http Cookie Weaknesses , Attack Methods and Defense

Mechanisms: a Systematic Literature Review.“ University of Jyvaskyla,

2018.

[54] P. Kamal, “State of the Art Survey on Session Hijacking,” Global Jour-

nal of Computer Science and Technology, volume 16, no. 1, pp. 39−49,

2016.

BIBLIOGRAPHY 70

[55] S. Calzavara, A. Rabitti, and M. Bugliesi, “Dr Cookie and Mr Token

- Web session implementations and how to live with them,” in CEUR

Workshop Proceedings, 2018, volume 2058.

[56] K. Lacroix, Y. L. Loo, and Y. B. Choi, “Cookies and Sessions: A Study

of What They Are, How They Work and How They Can Be Stolen,”

in Proceedings - 2017 International Conference on Software Security and

Assurance, ICSSA 2017, 2018, pp. 20−24.

[57] W. Bin Lee, H. B. Chen, S. S. Chang, and T. H. Chen, “Secure and

efficient protection for HTTP cookies with self-verification,” International

Journal of Communication Systems, volume 32, no. 2, 2019.

[58] A. Amira, A. Ouadjaout, A. Derhab, and N. Badache, “Sound and Static

Analysis of Session Fixation Vulnerabilities in PHP Web Applications,” in

Proceedings of the Seventh ACM on Conference on Data and Application

Security and Privacy - CODASPY ’17, 2017, pp. 139−141.

[59] A. Cahn, S. Alfeld, P. Barford, and S. Muthukrishnan, “An Empirical

Study of Web Cookies,” in Proceedings of the 25th International Confer-

ence on World Wide Web - WWW ’16, 2016, pp. 891−901.

[60] X. Zheng, J. Jiang, H. Canada, and U. C. Berkeley, “Cookies Lack

Integrity: Real-World Implications,” Usenix Security, pp. 707−721, 2015.

[61] M. Dietz, A. Czeskis, and D. S. Wallach, “Origin-Bound Certificates: A

Fresh Approach to Strong Client Authentication for the Web,” Proceedings

of the 21st USENIX conference on Security symposium, pp. 317–331, 2012.

BIBLIOGRAPHY 71

[62] S.-M. Kim, Y.-H. Goo, M.-S. Kim, S.-G. Choi, and M.-J. Choi, “A

method for service identification of SSL/TLS encrypted traffic with the

relation of session ID and Server IP,” in 2015 17th Asia-Pacific Network

Operations and Management Symposium (APNOMS), 2015, pp. 487−490.

[63] S. Rajasekar, P. Philominathan, and V. Chinnathambi,

“Research Methodology”, 2013. [Online]. Available:

http://arxiv.org/pdf/physics/0601009.pdf. [Accessed: 08-Oct-2019].

[64] W. C. Booth, G. G. Colomb, and J. M.

Williams, “The Craft of Research.” [Online]. Available:

http://sir.spbu.ru/en/programs/master/master program in international

relations/digital library/Book Research seminar by Booth.pdf. [Accessed:

08-Oct-2019].

[65] C. Woody, “Chapter 3: Research

Methodology,” 2001. [Online]. Available:

https://shodhganga.inflibnet.ac.in/bitstream/10603/2026/16/16 chapter

3.pdf. [Accessed: 09-Oct-2019].

[66] H. Gilbert and H. Handschuh, “Security analysis of SHA-256 and sis-

ters,” International Workshop on Selected Areas in Cryptography, volume

3006, pp. 175–193, 2004.

[67] S. Kelly and S. Frankel, “Using HMAC-SHA-256, HMAC-SHA-384, and

HMAC-SHA-512 with IPsec,” RFC 4868 May 2007.

[68] C. Cremers, “Scyther tool,” 2016. [Online]. Available:

https://people.cispa.io/cas.cremers/scyther/. [Accessed: 24-May-2019].

BIBLIOGRAPHY 72

[69] D. Dolev and A. C. Yao, “On the Security of Public Key Protocols,”

IEEE Transaction Information Theory, volume 29, no. 2, pp. 198−208,

Mar. 1983.

[70] C. J. F. Cremers, S. Mauw, and E. P. de Vink, “Injective synchronisa-

tion: An extension of the authentication hierarchy,” Theoretical Computer

Science, volume 367, no. 1−2, pp. 139−161, Nov. 2006.

[71] D. McGrew and D. Bailey, “AES-CCM Cipher Suites for Transport

Layer Security (TLS),” RFC 6655 Jul-2012.

[72] J. Salowey, A. Choudhury, and D. McGrew, “AES Galois Counter Mode

(GCM) Cipher Suites for (TLS)”, RFC 5288, pp. 1−8, Aug. 2008.

Appendix A

Scyther

File name: appsec.spdl

/*This program and associated code were created to simulate the research ti-

tled “Key-based Cookie-less Session Management Framework for Application

Layer Security” published in IEEEAccess, DOI: 10.1109/ACCESS.2019.2940331.

The author of the research retains all the rights to this program and associ-

ated source code. This program and associated source code are distributed

under the GNU General Public License. Any third-party modules that were

used in the creation of this program and its source code are the property of

their respective owners and are governed by their respective licenses.

Copyright (C) <2019><Authors: Zahoor Ahmed Alizai & Malik Hamza

Murtaza>

This program is free software: you can redistribute it and/or modify it un-

73

APPENDIX A. SCYTHER 74

der the terms of the GNU General Public License as published by the Free

Software Foundation, either version 3 of the License, or (at your option) any

later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABIL-

ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along

with this program. If not, see <https://www.gnu.org/licenses/>.*/

usertype Timestamp;

hashfunction H;

protocol handshake(Server, Client)

{

role Server

{

fresh ServerRandom: Nonce;

fresh ServerTimestamp: Timestamp;

send 1(Server,Client,{Server,ServerRandom,ServerTimestamp}pk(Client));

var ClientRandom: Nonce;

recv 2(Client,Server,H(Client,ServerRandom,ServerTimestamp,

ClientRandom),{ClientRandom}pk(Server));

//Server Sending data to client aftrer handshake is complete.

APPENDIX A. SCYTHER 75

fresh ServerData: Nonce;

send 3(Server,Client,{Server,ServerData}H(ServerRandom,ClientRandom));

//Server Receiving Client’s Data.

var ClientData: Nonce;

recv 4(Client,Server,{ClientData}H(ServerRandom,ClientRandom));

claim Server1(Server,Secret,Timestamp);

claim Server2(Server,Secret,ServerRandom);

claim Server3(Server,Secret,ClientRandom);

claim Server4(Server,Secret,ServerData);

claim Server5(Server,Secret,ClientData);

claim Server6(Server,Niagree);

claim Server7(Server,Nisynch);

claim Server8(Server,Alive);

claim Server9(Server,Weakagree);

};

role Client

{

var ServerRandom: Nonce;

var ServerTimestamp: Timestamp;

recv 1(Server,Client,{Server,ServerRandom,ServerTimestamp}pk(Client));

fresh ClientRandom: Nonce;

send 2(Client,Server,H(Client,ServerRandom,ServerTimestamp,

ClientRandom),{ClientRandom}pk(Server));

//Receive server data

var ServerData: Nonce;

APPENDIX A. SCYTHER 76

recv 3(Server,Client,{Server,ServerData}H(ServerRandom,ClientRandom));

//Client sends data to server

fresh ClientData: Nonce;

send 4(Client,Server,{ClientData}H(ServerRandom,ClientRandom));

claim Client1(Client,Secret,Timestamp);

claim Client2(Client,Secret,ClientRandom);

claim Client3(Client,Secret,ServerRandom);

claim Client4(Client,Secret,ClientData);

claim Client5(Client,Secret,ServerData);

claim Client6(Client,Niagree);

claim Client7(Client,Nisynch);

claim Client8(Client,Alive);

claim Client9(Client,Weakagree);

};

};

Appendix B

Java

File name: zatpclient.java

/*This program and associated code were created to simulate the research ti-

tled “Key-based Cookie-less Session Management Framework for Application

Layer Security” published in IEEEAccess, DOI: 10.1109/ACCESS.2019.2940331.

The author of the research retains all the rights to this program and associ-

ated source code. This program and associated source code are distributed

under the GNU General Public License. Any third-party modules that were

used in the creation of this program and its source code are the property of

their respective owners and are governed by their respective licenses.

Copyright (C) <2019><Authors: Zahoor Ahmed Alizai & Malik Hamza

Murtaza>

This program is free software: you can redistribute it and/or modify it un-

77

APPENDIX B. JAVA 78

der the terms of the GNU General Public License as published by the Free

Software Foundation, either version 3 of the License, or (at your option) any

later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABIL-

ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along

with this program. If not, see <https://www.gnu.org/licenses/>.*/

package zatpclient;

import java.net.*;

import java.io.*;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.util.Base64;

import java.util.Random;

import java.util.Scanner;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.crypto.SecretKey;

import javax.crypto.spec.SecretKeySpec;

import javax.swing.JTextArea;

APPENDIX B. JAVA 79

import zatplib.*;

public class ZatpClient

{

private static final String SELFID = “zahoor”;

private static Socket connectionSocket;

private static Scanner recDataFromServer;

private static PrintStream sendDataToServer;

private static boolean connected = false;

private static boolean sessionEstablished = false;

private static SecretKey AESKey = null;

public static void connectToServer(String serverAddress)

{

try

{

//init connection to server

connectionSocket = new Socket(serverAddress,4567);

//init write to / read from server streams

recDataFromServer = new Scanner(new InputStreamReader

(connectionSocket.getInputStream()));

sendDataToServer = newPrintStream(connectionSocket.getOutputStream());

connected = true;

}

catch (IOException ex)

{

connected = false;

APPENDIX B. JAVA 80

Logger.getLogger(ZatpClient.class.getName()).log(Level.SEVERE, null, ex);

}

}

public static void disconnectFromServer(JTextArea loggerArea)

{

try

{

AESKey = null;

connectionSocket.close();

recDataFromServer.close();

sendDataToServer.close();

sessionEstablished = false;

connected = false;

loggerArea.setText(“”);

}

catch (IOException ex)

{

Logger.getLogger(ZatpClient.class.getName()).log(Level.SEVERE, null, ex);

}

}

public static boolean getConnectionStatus()

{

return connected;

}

public static boolean getSessionStatus()

APPENDIX B. JAVA 81

{

return sessionEstablished;

}

public static void negotiateProtocol(JTextArea loggerArea)

{

//load presonal key pair

user self = userManager.retrieveUserInformation(SELFID);

//start protocol

String dataFromServer;

//send user id to server

sendDataToServer.println(self.getUsername());

//wait for server’s response

dataFromServer = recDataFromServer.nextLine();

//check if the server acknowledges to user

if(dataFromServer.contains(“KCA”))

{

loggerArea.append(“Server Could Not Find The User.”);

}

else

{

try

{

//decrypt recieved challange

loggerArea.append(“(Challahge Recieved) ” + dataFromServer + “”);

byte[] challange = self.decrypt(Base64.getDecoder().decode(dataFromServer));

APPENDIX B. JAVA 82

//decrypted challange

String decryptedChallangeString = new String(challange, “UTF8”);

loggerArea.append(“(Decrypted Challange) ” + decryptedChallange

String+“”);

//generate client side random

Random rand = new Random();

long clientsRandom = rand.nextLong();

loggerArea.append(“(User’s Random) ” + clientsRandom+“”);

//concat client’s random with recieved string

String responseToChallange = decryptedChallangeString+“”+clients

Random;

loggerArea.append(“(Challange Responce) ” +responseToChallange+“”);

//create responce hash from concatenated string

String responseHash = Base64.getEncoder().encodeToString

(MessageDigest.getInstance(“SHA-256”).digest(responseToChallange.

getBytes()));

/*

* load server’s public key

*/

user server = userManager.retrieveUserInformation(“server”);

String encryptedClientRandom = Base64.getEncoder().encodeToString

(server.encrypt((“”+clientsRandom).getBytes()));

//send the base64 hash and the base64 encrypted client’s random

(server’s PU) back to server for authentication.

//client random will be decrypted on server side, and the concatenated

APPENDIX B. JAVA 83

string will be recreated.

//the concatenated string will be hashed and used as a

proof of authentication.

sendDataToServer.println(encryptedClientRandom);

sendDataToServer.println(responseHash);

dataFromServer = recDataFromServer.nextLine();

if(dataFromServer.contains(“KCA”))

{

loggerArea.append(“AUTHENTICATION FAILED!”);

}

if(dataFromServer.contains(“ACK”))

{

String str = decryptedChallangeString.substring(0,decryptedChallange

String.indexOf(“”))+“:”+clientsRandom;

loggerArea.append(“(KeyGenString)” + str + “”);

byte[] bAESKey = MessageDigest.getInstance(“SHA-256”).digest

(str.getBytes());

String sAESKey = Base64.getEncoder().encodeToString(bAESKey);

loggerArea.append(“Protocol Negotiated, Setting up session key.”);

loggerArea.append(“(Session Key) ” + sAESKey + “”);

AESKey = new SecretKeySpec(bAESKey, 0, bAESKey.length, “AES”);

loggerArea.append(“Secure Channel Established.

Proceed With Requests To The Server.”);

sessionEstablished = true;

}

APPENDIX B. JAVA 84

}

catch (IOException — NoSuchAlgorithmException ex)

{

Logger.getLogger(ZatpClient.class.getName()).log(Level.SEVERE, null, ex);

}

}

}

}

File name: zatpserver.java

/*This program and associated code were created to simulate the research ti-

tled “Key-based Cookie-less Session Management Framework for Application

Layer Security” published in IEEEAccess, DOI: 10.1109/ACCESS.2019.2940331.

The author of the research retains all the rights to this program and associ-

ated source code. This program and associated source code are distributed

under the GNU General Public License. Any third-party modules that were

used in the creation of this program and its source code are the property of

their respective owners and are governed by their respective licenses.

Copyright (C) <2019><Authors: Zahoor Ahmed Alizai & Malik Hamza

Murtaza>

This program is free software: you can redistribute it and/or modify it un-

der the terms of the GNU General Public License as published by the Free

APPENDIX B. JAVA 85

Software Foundation, either version 3 of the License, or (at your option) any

later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABIL-

ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along

with this program. If not, see <https://www.gnu.org/licenses/>.*/

package zatpserver;

import java.io.InputStreamReader;

import java.io.PrintStream;

import java.net.ServerSocket;

import java.net.Socket;

import java.security.MessageDigest;

import java.sql.Timestamp;

import java.util.Base64;

import java.util.Random;

import java.util.Scanner;

import zatplib.*;

public class ZatpServer

{

private static final String SELFID = “server”;

APPENDIX B. JAVA 86

public static void main(String args[]) throws Exception

{

//create server and listen for connections

ServerSocket serverSocket = new ServerSocket(4567);

Socket connectionSocket = serverSocket.accept();

//init write to / read from client streams

Scanner recDataFromClient = new Scanner(new

InputStreamReader(connectionSocket.getInputStream()));

PrintStream sendDataToClient = new PrintStream(connectionSocket

.getOutputStream());

//load presonal key pair

user self = userManager.retrieveUserInformation(SELFID);

//start protocol

String dataFromClient;

//recieve user’s id

dataFromClient = recDataFromClient.nextLine();

System.out.println(“User ’́“+dataFromClient+”̀‘ wants to authenticate.”);

//look for the user

user client = userManager.retrieveUserInformation(dataFromClient);

//if client info not found, drop request

if(client==null)

{

sendDataToClient.println(“KCA”);

serverSocket.close();

connectionSocket.close();

APPENDIX B. JAVA 87

recDataFromClient.close();

sendDataToClient.close();

return;

}

//else continue negotiation

System.out.println(“username = ” + client.getUsername());

System.out.println(“public key = ” + client.getBase64PublicKey());

//sending encrypted challange + timestamp

Random rand = new Random();

long serversRandom = rand.nextLong();

Timestamp ts = new Timestamp(System.currentTimeMillis());

String challange = serversRandom+“”+ts;

System.out.println(“sending challange = ” + challange);

byte[] cipherData = client.encrypt((challange).getBytes());

String challangeString = Base64.getEncoder().encodeToString(cipherData);

sendDataToClient.println(challangeString);

System.out.println(“Challenge Sent = ”+ challangeString);

//recieve clients random

String sEncryptedClientsRandom = recDataFromClient.nextLine();

String sClientsRandom = new String(self.decrypt(Base64.getDecoder().

decode(sEncryptedClientsRandom)), “UTF8”);

System.out.println(“Clients Random is = ”+sClientsRandom);

//recieve clients authentichash

String sRecievedAuthenticHash = recDataFromClient.nextLine();

//recreate authentic hash for authentication

APPENDIX B. JAVA 88

String recreatedAuthenticHash = Base64.getEncoder().encodeToString

(MessageDigest.getInstance(“SHA-256”).digest((challange+“”+sClients

Random).getBytes()));

System.out.println(“recieved auth hash : ”+sRecievedAuthenticHash);

System.out.println(“recreated auth hash : ”+recreatedAuthenticHash);

if(sRecievedAuthenticHash.compareTo(recreatedAuthenticHash) == 0)

{

sendDataToClient.println(“ACK”);

System.out.println(“Successfully Authenticated!”);

}

else

{

sendDataToClient.println(“KCA”);

System.out.println(“AUTHENTICATION FAILED!”);

serverSocket.close();

connectionSocket.close();

recDataFromClient.close();

sendDataToClient.close();

return;

}

serverSocket.close();

connectionSocket.close();

recDataFromClient.close();

sendDataToClient.close();

}

APPENDIX B. JAVA 89

}

Two files in zatplib (library folder).

File name: user.java

/*This program and associated code were created to simulate the research ti-

tled “Key-based Cookie-less Session Management Framework for Application

Layer Security” published in IEEEAccess, DOI: 10.1109/ACCESS.2019.2940331.

The author of the research retains all the rights to this program and associ-

ated source code. This program and associated source code are distributed

under the GNU General Public License. Any third-party modules that were

used in the creation of this program and its source code are the property of

their respective owners and are governed by their respective licenses.

Copyright (C) <2019><Authors: Zahoor Ahmed Alizai & Malik Hamza

Murtaza>

This program is free software: you can redistribute it and/or modify it un-

der the terms of the GNU General Public License as published by the Free

Software Foundation, either version 3 of the License, or (at your option) any

later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABIL-

APPENDIX B. JAVA 90

ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along

with this program. If not, see <https://www.gnu.org/licenses/>.*/

package zatplib;

import java.security.InvalidKeyException;

import java.security.NoSuchAlgorithmException;

import java.security.PrivateKey;

import java.security.PublicKey;

import java.util.Base64;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.crypto.BadPaddingException;

import javax.crypto.Cipher;

import javax.crypto.IllegalBlockSizeException;

import javax.crypto.NoSuchPaddingException;

public class user

{

private String userName = null;

private PrivateKey userPrivateKey = null;

private PublicKey userPublicKey = null;

Cipher encryptCipher = null;

Cipher decryptCipher = null;

APPENDIX B. JAVA 91

user(String Id, PublicKey PU)

{

userName = Id;

userPublicKey = PU;

try

{

this.encryptCipher = Cipher.getInstance(“RSA”);

this.encryptCipher.init(Cipher.ENCRYPT MODE, userPublicKey);

}

catch (NoSuchAlgorithmException — NoSuchPaddingException — Invalid-

KeyException ex)

{

Logger.getLogger(user.class.getName()).log(Level.SEVERE, null, ex);

}

}

user(String Id, PrivateKey PK)

{

userName = Id;

userPrivateKey = PK;

try

{

this.decryptCipher = Cipher.getInstance(“RSA”);

this.decryptCipher.init(Cipher.DECRYPT MODE, userPrivateKey);

}

catch (NoSuchAlgorithmException — NoSuchPaddingException — Invalid-

APPENDIX B. JAVA 92

KeyException ex)

{

Logger.getLogger(user.class.getName()).log(Level.SEVERE, null, ex);

}

}

user(String Id, PrivateKey PK, PublicKey PU)

{

userName = Id;

userPublicKey = PU;

userPrivateKey = PK;

try

{

this.encryptCipher = Cipher.getInstance(“RSA”);

this.decryptCipher = Cipher.getInstance(“RSA”);

this.encryptCipher.init(Cipher.ENCRYPT MODE, userPublicKey);

this.decryptCipher.init(Cipher.DECRYPT MODE, userPrivateKey);

}

catch (NoSuchAlgorithmException — NoSuchPaddingException — Invalid-

KeyException ex)

{

Logger.getLogger(user.class.getName()).log(Level.SEVERE, null, ex);

}

}

public String getUsername()

{

APPENDIX B. JAVA 93

return userName;

}

public boolean publicKeyExists()

{

return userPublicKey != null;

}

public PublicKey getPublicKey()

{

return userPublicKey;

}

public String getBase64PublicKey()

{

return Base64.getEncoder().encodeToString(userPublicKey.getEncoded());

}

public boolean privateKeyExists()

{

return userPrivateKey != null;

}

public PrivateKey getPrivateKey()

{

return userPrivateKey;

}

public String getBase64PrivateKey()

{

return Base64.getEncoder().encodeToString(userPrivateKey.getEncoded());

APPENDIX B. JAVA 94

}

public byte[] encrypt(byte[] data)

{

byte[] returnData = null;

try

{

returnData = encryptCipher.doFinal(data);

}

catch (IllegalBlockSizeException — BadPaddingException ex)

{

Logger.getLogger(user.class.getName()).log(Level.SEVERE, null, ex);

}

return returnData;

}

public byte[] decrypt(byte[] data)

{

byte[] returnData = null;

try

{

returnData = decryptCipher.doFinal(data);

}

catch (IllegalBlockSizeException — BadPaddingException ex)

{

Logger.getLogger(user.class.getName()).log(Level.SEVERE, null, ex);

}

APPENDIX B. JAVA 95

return returnData;

}

}

File name: userManager.java

/*This program and associated code were created to simulate the research ti-

tled “Key-based Cookie-less Session Management Framework for Application

Layer Security” published in IEEEAccess, DOI: 10.1109/ACCESS.2019.2940331.

The author of the research retains all the rights to this program and associ-

ated source code. This program and associated source code are distributed

under the GNU General Public License. Any third-party modules that were

used in the creation of this program and its source code are the property of

their respective owners and are governed by their respective licenses.

Copyright (C) <2019><Authors: Zahoor Ahmed Alizai & Malik Hamza

Murtaza>

This program is free software: you can redistribute it and/or modify it un-

der the terms of the GNU General Public License as published by the Free

Software Foundation, either version 3 of the License, or (at your option) any

later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABIL-

ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

APPENDIX B. JAVA 96

Public License for more details.

You should have received a copy of the GNU General Public License along

with this program. If not, see <https://www.gnu.org/licenses/>.*/

package zatplib;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.PrintWriter;

import java.security.KeyFactory;

import java.security.KeyPair;

import java.security.KeyPairGenerator;

import java.security.NoSuchAlgorithmException;

import java.security.PrivateKey;

import java.security.PublicKey;

import java.security.spec.InvalidKeySpecException;

import java.security.spec.PKCS8EncodedKeySpec;

import java.security.spec.X509EncodedKeySpec;

import java.util.Base64;

import java.util.Scanner;

import java.util.logging.Level;

import java.util.logging.Logger;

public class userManager

{

APPENDIX B. JAVA 97

/* public static void main(String[] args)

{

createUserInformation(“server”);

createUserInformation(“zahoor”);

*/

public static user retrieveUserInformation(String Id)

{

File userInfoFile = new File(Id+“.key”);

if(userInfoFile.exists())

{

try

{

Scanner userInfoFileReader = new Scanner(new File(Id+“.key”));

String keyFileStatusFlag = userInfoFileReader.nextLine();

System.out.println(“key file status = ” + keyFileStatusFlag);

int flagStatus = Integer.parseInt(keyFileStatusFlag);

String sPK, sPU;

byte[] bPK, bPU;

PublicKey PU;

PrivateKey PK;

switch(flagStatus)

{

case 1:

sPU = userInfoFileReader.nextLine();

bPU = Base64.getDecoder().decode(sPU);

APPENDIX B. JAVA 98

PU = KeyFactory.getInstance(“RSA”).generatePublic(new X509

EncodedKeySpec(bPU));

return new user(Id, PU);

case 2:

sPK = userInfoFileReader.nextLine();

bPK = Base64.getDecoder().decode(sPK);

PK = KeyFactory.getInstance(“RSA”).generatePrivate(new PKCS8

EncodedKeySpec(bPK));

return new user(Id, PK);

case 3:

sPU = userInfoFileReader.nextLine();

sPK = userInfoFileReader.nextLine();

bPU = Base64.getDecoder().decode(sPU);

PU = KeyFactory.getInstance(“RSA”).generatePublic(new X509Encoded

KeySpec(bPU));

bPK = Base64.getDecoder().decode(sPK);

PK = KeyFactory.getInstance(“RSA”).generatePrivate(new PKCS8

EncodedKeySpec(bPK));

return new user(Id, PK, PU);

default:

break;

}

}

catch (NoSuchAlgorithmException — InvalidKeySpecException — FileNot-

FoundException ex)

APPENDIX B. JAVA 99

{

Logger.getLogger(userManager.class.getName()).log(Level.SEVERE, null, ex);

}

}

return null;

}

public static void createUserInformation(String Id)

{

try

{

//create a file for the user specified as the argument

PrintWriter userInfoFile = new PrintWriter(Id+“.key”);

//create a new rsa key pair for the user

KeyPairGenerator kpg = KeyPairGenerator.getInstance(“RSA”);

kpg.initialize(1024);

KeyPair kp = kpg.generateKeyPair();

PublicKey PU = kp.getPublic();

PrivateKey PK = kp.getPrivate();

userInfoFile.println(3);

userInfoFile.println(Base64.getEncoder().encodeToString(PU.getEncoded()));

userInfoFile.println(Base64.getEncoder().encodeToString(PK.getEncoded()));

userInfoFile.flush();

userInfoFile.close();

}

APPENDIX B. JAVA 100

catch (IOException — NoSuchAlgorithmException ex)

{

Logger.getLogger(userManager.class.getName()).log(Level.SEVERE, null, ex);

}

}

public static void createUserInformation(user userObject)

{

try

{

//create a file for the user specified as the argument

PrintWriter userInfoFile = new PrintWriter(userObject.getUsername()+“.key”);

if(userObject.privateKeyExists() userObject.publicKeyExists())

{

PublicKey PU = userObject.getPublicKey();

PrivateKey PK = userObject.getPrivateKey();

userInfoFile.println(3);

userInfoFile.println(Base64.getEncoder().encodeToString(PU.getEncoded()));

userInfoFile.println(Base64.getEncoder().encodeToString(PK.getEncoded()));

}

if(!userObject.privateKeyExists() userObject.publicKeyExists())

PublicKey PU = userObject.getPublicKey(); userInfoFile.println(1);

userInfoFile.println(Base64.getEncoder().encodeToString(PU.getEncoded()));

}

if(userObject.privateKeyExists() !userObject.publicKeyExists())

{

APPENDIX B. JAVA 101

PrivateKey PK = userObject.getPrivateKey();

userInfoFile.println(2);

userInfoFile.println(Base64.getEncoder().encodeToString(PK.getEncoded()));

}

}

catch (IOException ex)

{

Logger.getLogger(userManager.class.getName()).log(Level.SEVERE, null, ex);

}

}

}

Appendix C

PHP (Server-side)

File name: index.html

<!–This program and associated code were created to simulate the research

titled “Key-based Cookie-less Session Management Framework for Applica-

tion Layer Security” published in IEEEAccess, DOI: 10.1109/ACCESS.2019.2940331.

The author of the research retains all the rights to this program and associ-

ated source code. This program and associated source code are distributed

under the GNU General Public License. Any third-party modules that were

used in the creation of this program and its source code are the property of

their respective owners and are governed by their respective licenses.

Copyright (C) <2019><Authors: Zahoor Ahmed Alizai & Malik Hamza

Murtaza>

This program is free software: you can redistribute it and/or modify it un-

102

APPENDIX C. PHP (SERVER-SIDE) 103

der the terms of the GNU General Public License as published by the Free

Software Foundation, either version 3 of the License, or (at your option) any

later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABIL-

ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along

with this program. If not, see <https://www.gnu.org/licenses/>.*/–>

<!DOCTYPE html>

<html>

<head>

<script src=“jsencrypt.min.js”></script>

<script src=“Sha256.js”></script>

<script src=“asciitohex.js”></script>

<script type=“text/javascript”>

function buf2hex(buffer)

{

// buffer is an ArrayBuffer

// create a byte array (Uint8Array) that we can use to read the array buffer

const byteArray = new Uint8Array(buffer);

// for each element, we want to get its two-digit hexadecimal representation

APPENDIX C. PHP (SERVER-SIDE) 104

const hexParts = [];

for(let i = 0; i <byteArray.length; i++)

{

// convert value to hexadecimal

const hex = byteArray[i].toString(16);

// pad with zeros to length 2

const paddedHex = (’00’ + hex).slice(-2);

// push to array

hexParts.push(paddedHex);

}

// join all the hex values of the elements into a single string

return hexParts.join(”);

}

// Check for the various File API support.

function loadDoc()

{

if (window.File window.FileReader window.FileList window.Blob)

{

document.getElementById(“fileapi status”).innerHTML = “File API Sup-

ported”;

}

else

{

document.getElementById(“fileapi status”).innerHTML = “File API Not Sup-

ported”;

APPENDIX C. PHP (SERVER-SIDE) 105

var xhttp = new XMLHttpRequest();

var clientid = “email@email.email”;

xhttp.open(“POST”, “handshake1.php”, false);

xhttp.setRequestHeader(“Content-type”,“application/x-www-form-

urlencoded”);

xhttp.send(“email=”+clientid);

document.getElementById(“current status”).innerHTML =

xhttp.responseText;

//start decrypting challange

var decrypt = new JSEncrypt();

decrypt.setPrivateKey(document.getElementById(“privkey”).value);

var uncrypted = decrypt.decrypt(xhttp.responseText);

document.getElementById(“current status”).innerHTML = document

.getElementById(“current status”).innerHTML + “
<h2>Unencrypted

Challange:</h2>” + uncrypted;

//create client’s 128 bit random number and hex encode it

var array = new Uint8Array(16);

window.crypto.getRandomValues(array);

var clientrandom = buf2hex(array.buffer);

document.getElementById(“current status”).innerHTML = document

.getElementById(“current status”).innerHTML + “

<h2>clientrandom:</h2>” + clientrandom;

//produce the client’s proof of successfull decryption

var clientproof = uncrypted+“:”+clientrandom+“:”+clientid;

APPENDIX C. PHP (SERVER-SIDE) 106

document.getElementById(“current status”).innerHTML = document

.getElementById(“current status”).innerHTML + “
<h2>

clientproof plain text:</h2>” + clientproof;

var digestHex = SHA256(clientproof);

document.getElementById(“current status”).innerHTML = document

.getElementById(“current status”).innerHTML + “
<h2hash:</h2>”

+ digestHex;

//encrypt client random using server’s public key

var encrypt = new JSEncrypt();

encrypt.setPublicKey(document.getElementById(“serverpukey”).value);

var encryptedclientrandom = encrypt.encrypt(clientrandom);

document.getElementById(“current status”).innerHTML = document

.getElementById(“current status”).innerHTML + “<h2>client’s encrypted

random </h2>”+encryptedclientrandom;

document.getElementById(“current status”).innerHTML = document

.getElementById(“current status”).innerHTML + “
<h2>sending

challangehash:{clientrandom}PUserver to server</h2>”;

//send digest and clientrandom to the server

var challangeresponce = “email=”+clientid+“digest=”+digestHex+“

&clientrandom=”+

toHex(encryptedclientrandom);

var handshake2request = new XMLHttpRequest();

handshake2request.open(“POST”, “handshake2.php”, false);

handshake2request.setRequestHeader(“Content-type”, “application/x-www-

form-urlencoded”);

APPENDIX C. PHP (SERVER-SIDE) 107

handshake2request.send(challangeresponce);

document.getElementById(“current status”).innerHTML = document

.getElementById(“current status”).innerHTML + “
” +

handshake2request.responseText;

}

</script>

</head>

<body onload=“loadDoc()”>

<div id=“status fileapi”>

<h2 id=“fileapi status”></h2>

</div>

<div id=“status div”>

<h2Value:</h2>

<div id=“current status”></div>

</div>

<div id=encryptedcontent”>

</div>

<textarea id=“privkey“ style=“display:none;” rows=“15” cols=“65”>

—–BEGIN RSA PRIVATE KEY—–

MIICXAIBAAKBgQCZlke4Y2R+Tj9pdKI9jxpPfHuVzuke/inoPIYk6D

/AGoNmSNRGN8/zlSsJlIXCP0Z6L4AI3WIiBY1ZEzayhYSniN1eGD9/h

96Z6jsVrMgUSz3fCAUkL0qKyF0OLu5D6ZJt1s8WErrvHiuacYbk7RKA

l7mZGJYq0wwnBunavMALXwIDAQABAoGAanfh+fF0vZYSoVEIEvJ7

w7RAm8YWlrSMaoBiYX1ajBoVErfT52VTU8EJV5fM7a4ddiAtene1Sm5

APPENDIX C. PHP (SERVER-SIDE) 108

c4O3P0gt6u+qnc4DzaoyPwywqWlJA337Ppt8vUBbAGqP8+IeY6emG++

K5GzYrZrhG/GKqVyp+gcOGsyoRHDEeki/I7R/74MkCQQD5K2h7p31D2d

z/NqmDbYdk/Z4IBm6AGIDdq4oHmQF/C2ICLYV0VkQbY6W0lWGKAH5

+zxMWcNpWl1xnUArMLCN7AkEAncwaxB4YNUxgTYvn322ZC2Duvgr2z

/kC2w8Hyaws2UswlUtvgDE3WD3uOd8A44rungKho0COykgK+lP5PRPQ

bQJAWCrp/8dWZenzb0NSXDUnka7EeqZ790u0XbvTTbjwdJn8hjTBYlccJ

mzuN6YcK47dM9XmNSydtcI9ajlCeNitfQJACUUWRXMnJOppteSEKKH9

naeCHvPx7+HHAyts37IXqGQ8ZGjcEgHSKILq3cd1++gLgIjTCg4e1U9KJc6

NE8N4OQJBAK479nWDCEMiI/fxeQwIfzmiGwTDN2hDL3A4aXQQzzNRM0

TJ7CVNAYjfK/+9k0lMLuGxJtiSU8wQuoo/kP2FcJI=

—–END RSA PRIVATE KEY—–

</textarea>

<textarea id=“serverpukey” style=“display:none;” rows=“15” cols=“65”>

—–BEGIN PUBLIC KEY—–

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCNIWh1PdM9o

VkVH6VVOgSQBPIZNVQ+YS994n0fLdPGcvt90j0VQQSQvEBB+Dwn

AzY+wxWEm0HxefHbN5jhr3Tp/PGb+EGLT6zfxHvuzXCdvltN/0f6

AzBoTSeo0pf1QD4u8cu7aqJeKBX9/f99d8TGWcfsH1TgnVUmqTgSIGXI7

wIDAQAB

—–END PUBLIC KEY—–

</textarea>
</body>

</html>

File name: handshake1.php

APPENDIX C. PHP (SERVER-SIDE) 109

<?php

/*This program and associated code were created to simulate the research ti-

tled “Key-based Cookie-less Session Management Framework for Application

Layer Security” published in IEEEAccess, DOI: 10.1109/ACCESS.2019.2940331.

The author of the research retains all the rights to this program and associ-

ated source code. This program and associated source code are distributed

under the GNU General Public License. Any third-party modules that were

used in the creation of this program and its source code are the property of

their respective owners and are governed by their respective licenses.

Copyright (C) <2019><Authors: Zahoor Ahmed Alizai & Malik Hamza

Murtaza>

This program is free software: you can redistribute it and/or modify it un-

der the terms of the GNU General Public License as published by the Free

Software Foundation, either version 3 of the License, or (at your option) any

later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABIL-

ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along

with this program. If not, see <https://www.gnu.org/licenses/>.*/

APPENDIX C. PHP (SERVER-SIDE) 110

//receive User ID

$email = $ POST[“email”];

//Check for corresponding public key in database

$servername = “localhost”;

$username = “root”;

$password = “”;

$dbname = “registration”;

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect error)

{

die(“Connection failed: ” . $conn->connect error);

}

//find id in db

$sql = “SELECT email, pukey FROM users WHERE email = ’$email”’;

$result = $conn->query($sql);

//retrieve corresponding Public key

if ($result->num rows == 1) {

// output data of each row

while($row = $result->fetch assoc())

{

$pukey = $row[“pukey”];

//send challenge

APPENDIX C. PHP (SERVER-SIDE) 111

$bytes = openssl random pseudo bytes(16, $cstrong);

$random by Server = bin2hex($bytes);

$dateTime = new DateTime();

$timestamp = $dateTime-Timestamp();

$unencryptedchallange = $servername.“:”.$random by Server.“:”.$timestamp;

$userrecordfile = fopen($email.“.txt”, “w”) or die(“Unable to open file!”);

fwrite($userrecordfile, $unencryptedchallange);

fclose($userrecordfile);

if (!$publicKey = openssl pkey get public($pukey)) die(’Loading Public Key

failed’);

$encryptedchallange = ”;

if (!openssl public encrypt($unencryptedchallange, $encryptedchallange, $pub-

licKey)) die(’Failed to encrypt data’);

$encryptedchallange = base64 encode($encryptedchallange);

echo $encryptedchallange;

}

}

else if

($result->num rows <1)

{

echo “0 results”;

}

else

{

echo “too many results”;

APPENDIX C. PHP (SERVER-SIDE) 112

}

$conn->close();

?>

File name: handshake2.php

/*This program and associated code were created to simulate the research ti-

tled “Key-based Cookie-less Session Management Framework for Application

Layer Security” published in IEEEAccess, DOI: 10.1109/ACCESS.2019.2940331.

The author of the research retains all the rights to this program and associ-

ated source code. This program and associated source code are distributed

under the GNU General Public License. Any third-party modules that were

used in the creation of this program and its source code are the property of

their respective owners and are governed by their respective licenses.

Copyright (C) <2019><Authors: Zahoor Ahmed Alizai & Malik Hamza

Murtaza>

This program is free software: you can redistribute it and/or modify it un-

der the terms of the GNU General Public License as published by the Free

Software Foundation, either version 3 of the License, or (at your option) any

later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABIL-

ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

APPENDIX C. PHP (SERVER-SIDE) 113

Public License for more details.

You should have received a copy of the GNU General Public License along

with this program. If not, see <https://www.gnu.org/licenses/>.*/

<?php

$digest = $ POST[“digest”];

$encryptedclientrandom = $ POST[“clientrandom”];

$email = $ POST[“email”];

echo “2>Server is verifying response for ”.$email.“</h2>”;

$servername = “localhost”;

$username = “root”;

$password = “”;

$dbname = “registration”;

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect error)

{

die(“Connection failed: ” . $conn->connect error);

}

//find id in db

$sql = “SELECT * FROM serverinfo WHERE clientid = ’$email”’;

$result = $conn->query($sql);

//retrieve corresponding Public key

APPENDIX C. PHP (SERVER-SIDE) 114

$clientrandom = ”;

if ($result->num rows == 1)

{

// output data of each row

while($row = $result->fetch assoc())

{

echo hex2bin($encryptedclientrandom).“/>”;

$serverprikeytext=$row[“serverprikey”];

$serverprikey = openssl pkey get private($serverprikeytext);

if (!openssl private decrypt(base64 decode(hex2bin($encryptedclientrandom)),

$clientrandom, $serverprikey)) die(’Failed to encrypt data’);

try

{

$myfile = fopen($email.“.txt”, “r”) or die(“Handshake phase 1 incomplete!”);

$clientproofcheck = fgets($myfile).“:”.$clientrandom.“:”.$email;

echo “
”.$clientproofcheck;

$recheckhash = hash(’sha256’,$clientproofcheck);

echo “
”. $recheckhash;

if($digest == $recheckhash)

{

echo “<h1 >Authentication Completed, proceed with session key establish-

ment </h1>”;

}

else

{

APPENDIX C. PHP (SERVER-SIDE) 115

die(“Authentication Failed”);

}

catch (Exception $e)

{

echo “Handshake phase 1 incomplete!”;

}

}

}

?>

Appendix D

JavaScript (Client-side)

1) A Sha256 library used in this research is developed by Angel Marin, Paul

Johnston. Library code is available on:

http://www.webtoolkit.info/javascript sha256.html#.XdeuougzbIU

2) Libraries used for encryption/decryption and key generation in this re-

search is available on:

https://github.com/travist/jsencrypt

3) A library used for ascii to hex conversion is available on:

https://gist.github.com/valentinkostadinov/5875467

116

