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ABSTRACT 

Due to the daily increase in volume of geospatial data, the need for efficient ways of storing 

and processing such a massive amount of data is becoming a challenge. The geospatial data 

usually contain raster satellite images, points of locations, linear features like roads, 

polygon representing area boundary and trajectories of moving objects etc. There is a need 

to explore different methods to handle and process big geospatial data which is an emerging 

issue. Different techniques and tools are available to handle large geospatial data. Hadoop 

platform is among the leaders which provide big data solutions, However Hadoop lacks 

spatial support. Several extensions are being developed over Hadoop platform for spatial 

data processing. In some cases, the spatio-temporal sequences, usually obtained from GPS 

and smart phones moreover contribute to very large dataset. These datasets typically form 

trajectories. For trajectories, SECONDO, is quite useful as it contains tools to handle 

trajectories. However when trajectories increase in volume it exceeds the capacity of a 

single computer processing hence it should be handled in the context of big data. Hadoop 

based platform of SECONDO, named Parallel SECONDO, which extends the functionality 

of SECONDO with the support of Hadoop is used to deal with massive trajectory data. 

This study focuses on exploring the abilities of Parallel SECONDO to analyze the patterns 

in trajectories of T-drive which could exceed the processing ability of single system. 

Finally the time effectiveness will be compared for tasks performed by single computer 

with Hadoop parallel processing using number of nodes. Our approach will be beneficial 

for testing and proposing geospatial big data solutions.  
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Chapter 1 

INTRODUCTION 

“Time is money” a well quoted words that show the importance of time, resembles 

the recent trends. Everyone wants to get their work done in the minimal time and for this 

purpose human created machine to perform their tasks which saves time and physical 

effort. New technologies overcome the deficiencies of previous technologies and improve 

the time efficiency. This is the era of sharing information and knowledge. This sharing of 

information produces a massive amount of data which needs to be stored and analyzed to 

improve daily life style. This brings the challenge for scientists and researchers, how to 

manage this huge data? how to extract the useful knowledge from this data? how to use the 

data in order to improve services and human lifestyle? These are the questions that we need 

to answer because in this time saving era conventional methods are not very helping. Hence 

we need new technologies like that of big data analytics or parallel processing. Such data 

that exceeds the computation abilities of the current technology is known as “Big Data” 

(Chen & Zhang, 2014). 

Handling big data requires high performance computing or distributed data 

processing. The state-of-the-art industrial standard is the MapReduce model (Dean and 

Ghemawat, 2008). The framework of Apache Hadoop (Murthy et al., 2011) is its open-

source implementation. The original aim of the MapReduce paradigm was to process 

simple text documents. However the implementation of complex algorithms and the 

management of heterogeneous data structures was a challenging task. To counteract this, 
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several extensions and toolkits have been introduced that operate over the Hadoop platform 

enabling a wide range of data management, mining and analysis possibilities. 

With the growing availability of ubiquitous mobile computing devices such as 

smart phones equipped with GPS, the amount of mobility data is increasing. Typically 

mobility data contains both spatial and temporal data which form trajectories representing 

a time-stamped path of an object through space. Movement of these objects contain hidden 

patterns which reflect the behavior of these entities. As we know almost everything 

including people, animals, vehicles etc is in motion. Movement of these objects contains 

hidden patterns due to some behavior and properties of the object which concludes in a 

very informative knowledge. Using this knowledge mankind could improve the way they 

live their life. For example keeping track of person’s path, companies could analyze the 

interests of that person and how to facilitate him with their products could be achieved. In 

case of vehicles trajectories could be used to identify the best routes to reach a particular 

destination by using expert driver knowledge and tracking companies could direct other 

vehicles to follow that perfect path at that particular time. 

Trajectories of different objects could be quite beneficial for identifying patterns, 

hotspots and behavior of the subject. There is a wide range of trajectory data which is 

available freely to download and perform analysis on it. Movebank1, which is a free portal 

for all the trajectories of animals and birds in the world carried out by different researchers 

(Kranstauber et al., 2011). The data sets are freely available to download and analyze. 

 

 

1. http://www.movebank.org/ 

 

http://www.movebank.org/
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The use of location aware technologies such as GPS in vehicles, bicycles and planes 

is quite common. This continuous data is ever increasing which may not be processed on 

a single machine. For example, New York Taxi cab data1, which is freely available and 

consist of almost 2.5 GB of trajectories. ESRI’s ArcGIS on a simple dual core processor 

computer could not even plot this data without crashing. Therefore to process such an 

immense data requires useful tools and distributed framework. There are several datasets 

of trajectories available online for free downloading such as GeoLife GPS trajectories1, T-

Drive dataset2 (which are part of Microsoft Asia research) and CRAWDAD3. 

While several datasets are available spatio-temporal queries are commonly used to 

identify patterns in these datasets. There are several DBMS which provide support for 

spatial operators however only few specialized ones provide support for both spatial and 

temporal data processing. Secondo (Guting et al., 2005) and Hermes (Pelekis et al., 2006) 

are two examples. The nature of movement data means that its size can become very larger, 

and processing and querying it become slow and inefficient. To handle such instances, 

there are moving object database platforms which support parallel query processing. 

Distributed Geographical Information Processing (DGIP) has many benefit, 

however, its application are not straightforward. As cloud computing became prominent, 

several steps were made to advance GIS to the cloud serving as a basis for spatial cloud 

computing. 

Parallel Secondo, a Hadoop based platform is a promising tool to handle big 

mobility data. It combines the distributed processing author ability of Hadoop and the 

useful analytical capabilities of Secondo to store and process trajectories. Parallel Secondo 

 

1. http://www.andresmh.com/nyctaxitrips/ 

 

1. http://www.andresmh.com/nyctaxitrips/ 
2. http://research.microsoft.com/ 
3. http://crawdad.org/index.html 

 

http://www.andresmh.com/nyctaxitrips/
http://www.andresmh.com/nyctaxitrips/
http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/
http://crawdad.org/index.html
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provides hybrid processing where analysis can be run on both sequential and parallel modes 

depending on the available distributed architecture. The learning curve of SECONDO is 

high while Parallel Secondo can be less challenging in comparison to other parallel based 

systems as this is designed for audience with relatively less technical background (Güting 

& Lu, 2015). It depends on the Hadoop framework to assign and program tasks running on 

a computer cluster in parallel, however the tasks’ embedded procedures are then managed 

by SECONDO for the sake of efficiency.  Parallel SECONDO inherits the capability from 

SECONDO to process and analyze spatio-temporal data. 

Parallel SECONDO set Data Server (DS) as its basic processing unit on each cluster 

node and even low end computer could be used as nodes. Among all nodes one is specified 

as Master Data Server (mDS) and others get to know as Slave Data Servers (sDSs). Parallel 

queries are processed strictly on the MapReduce standard base. First they are converted 

into Hadoop jobs by the master database. The tasks are processed in parallel on all sDSs 

and in order to attain a balanced amount of work on the cluster following the MapReduce 

model. Every task fetches its essential data from either the local slave database or remotely 

from the other computers via PSFS (Parallel SECONDO File System). 

Parallel SECONDO can still be used in conventional way of single computer due 

to the front-end SECONDO algebras implemented in new system. To the best of our 

information, for the mobility data processing Parallel SECONDO could be considered as 

the first practical and efficient parallel system for movement data analysis. In Parallel 

SECONDO, parallel queries are only giving in the master database there is no necessity to 

retype the queries for all the contributing systems. They are listed in SECONDO executable 

language and later transformed to Hadoop jobs. Parallel SECONDO is freely available for 
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download Like SECONDO. However at the current time SECONDO fails to establish 

query optimizer supporting the formulation of SQL scripts both for querying and updating 

the database (Di Felice, 2012). SECONDO is quite in a development phase hence it is 

neither stable nor easy to use. 

1.1 Motivation 

Day to day emerging various internet services and social media incorporation 

results in massive amount of geospatial customer information that is stored and collected 

continuously. To find patterns that gives useful knowledge and regularity from such 

massive data could improve the way of dealing various things like navigation, customer 

feedback and requirement. As an example each day before 2013, 618 million users were 

active on Facebook contributing new data that exceeds 500 TB of volume (Lu, 2014). This 

data might not be entirely useful regarding geospatial analysis however extracting our 

required information is a task that needs attention and efficient cost effective solution for 

smaller companies to improve their services which could be achieved using parallel 

processing paradigm on cluster computers. Facebook’s cluster scans 105 TB data every 30 

minutes and has the ability to store 100 PB data in total. 

On the other hand geospatial data has always been big data. These days, large data 

analysis for geospatial data is receiving considerable attention to allow users to analyze 

massive amounts of geospatial data. Geospatial big data typically refers to spatial data sets 

exceeding capacity of current computing systems. McKinsey Global Institute says that the 

pool of personal location data was in the level of 1 Peta Byte (PB) in 2009 and is growing 

at a rate of 20% per year. This estimation did not include the data from RFID sensors and 

those stored in private archives. According to the estimation by United Nations Initiative 
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on Global Geospatial Information Management (UN-GGIM), 2.5 quintillion bytes of data 

is being generated every day, and a large portion of the data is location-aware. Furthermore, 

in Google, about 25 PB of data is being generated per day, and a significant portion of the 

data falls into the realm of spatio-temporal data. This trend will be even accelerated since 

the world becomes more and more mobile in these days. In India, the internet traffic from 

mobile devices already exceeded that from desktop computers (Lee & Kang, 2015). 

Along with this exponential increase of geospatial big data, the capability of high 

performance computing is being required greatly than ever, for modeling and simulation 

of geospatially enabled contents. However, because of limited processing power, it has 

been hard to fully exploit high-volume or high-velocity collection of geospatial data in 

many applications. Recently, distributed, parallel processing on a cluster of commodity 

computers or a cloud such as Amazon EC21 has been becoming widely available for use, 

breaking the existing limitations on processing power. 

However parallel processing is not always a solution and its efficiency becomes 

valuable only if certain factors are catered before choosing this option. One of the main 

factor is the data size. Data size drives the necessity to run queries in sequential or parallel 

mode. Processing queries using more than one node may increase time efficiency; however 

the extent of efficiency increase includes many factors such as volume of data, nature of 

query and number of nodes. This paper proposes an appropriate environment to achieve 

efficiency by using the optimum amount of computation power which can reduce cost. 

Another aspect of this study is to analyze the movement patterns and find some 

useful information which could help the tracking services in providing navigation to 
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customers. This will increase mobility efficiency. Therefore this study could have a huge 

commercial application. Many techniques have been introduced in this aspect already. 

However mostly the techniques take in consideration of the road network and its 

conditions. Few techniques analyze the historical trajectories of vehicles or as in our case 

taxi’s. A massive data is stored in databases of tracking companies without any analysis 

due to the processing limitations. This data could be utilized to gain information taking into 

account the expertise of the taxi drivers as generally they are among those people who 

knew best about the city roads and routes to reach their destination. This analysis has many 

applications in tracking and navigation systems which needs attention especially in 

Pakistan as there are very few tracking companies to provide efficient navigation systems. 

These technologies should be promoted. 

Considering all these latest developments, a thorough study is needed on how to 

utilize these distributed processing efficiently on spatial data and trajectories to analyze the 

patterns in the data to be used in our daily life. 

1.2 National Needs 

We are living in an era where information and data is flooding every second. Soon 

we will be out of technology to process such immense data if we do not start utilizing some 

recent big data handling techniques like parallel processing. Our study will determine an 

efficient provide a solution to process big data efficiently within small budget without 

having to purchase high speed computers as this process could be done with several low 

end computers. In Pakistan following fields could benefit from it. 

 Pakistan National Spatial Data Infrastructure (NSDI) is in process of developing 
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which will link several government departments as well as Non-Government 

Organizations (NGOs) and Universities. Data exchange between departments will 

be possible. This could make access to very large amount of data from different 

departments which will need high performance computing with low cost. 

 Trajectories data from different department’s vehicles like Rescue 1122, PIA, 

Radio Cab Services, or Military could analyze easily with less time to process it. 

Many patterns can be identified which will help them commercially and improve 

their efficiency. 

 To our best knowledge no such techniques of spatial moving big data are being 

implemented on research level or commercial level which increases the importance 

of this study to benefit the countries tracking system in order to develop as a nation. 

1.3 Background 

Big data’s importance has increased globally with the increase in communication 

and technology for data sharing; this attracts academic and industrial/organizational 

attention. “Big Data” term got familiarized in scientific communities during mid 1990’s 

due to the introduction of internet which provided platform for data sharing and 

information gathering. This increased the concern about the integrity, continuity and 

management of the data. Gradually Big Data’s popularity increased until 2010 when it 

started to become a necessity for Multi-National organizations. Presently this is a buzzword 

on internet, in trade market, in scientific community and during conferences of every type. 

According to Manyika et al., (2011), big data provides innovation productivity and 

competition. Data growth due to technological evolution and invention of multiple sensors 

created a mash of complexity and opportunities for academic as well as scientific 
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community to present innovative techniques that can ease the situation we deal at present. 

Big data caused research aspect to shift its paradigm towards data-driven research. 

Presently Geospatial Big data presents limitless applications in the field of climate change, 

disaster response, disease surveillance, determining different species of trees/rocks using 

hyperspectral imagery and transportation. However data’s privacy, security and 

confidentiality limit the benefits of big data towards society. 

Different industrial, technological, academic or research point defines big data 

distinctly. This makes big data term unclear and complex for several fields (Chen et al., 

2014). Considering the complexity of massive structured and unstructured datasets 

presents a challenge to store, analyze, manipulate and visualize keeping in view the 

available hardware and software technologies. Big data’s unique characteristics were first 

proposed by Laney (2001) describing three dimensions Volume, Velocity and Variety 

(3Vs) that characterize the opportunities and challenges of increasing data volume. 

Increasing technologies and data complexity makes addition of more dimensions essential 

and important. Therefore for data integrity and quality could be catered with adding 

veracity to the list of dimensions. Some more Vs such as validity, visibility, variability, 

value, volatility and visualization have been suggested however they lack the ability to 

express quality of magnitude which brought them at critical evaluation as they do not 

directly explains the definition of “big” in big data, on the other hand they could be useful 

on the concept of big data collection, presentation and processing. This argument turned to 

a new debate when Suthaharan (2014) argued about the original 3Vs support for detection 

of big data characteristics and classification is not enough and liable on early stages. 

Therefore instead he proposed 3Cs: continuity, complexity and cardinality. This made 
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defining Big Data or its characteristics an ongoing endeavor. However this hopefully will 

not affect the processing and handling of big data. 

A discussion carried out by Morais (2012) presented an argument according to 

which “80% of data is geographic”. The basis of this argument was according to the fact 

that most of the data can be geo-referenced and should be considered as the geospatial data 

hence handling of geospatial big data gains importance more than we think. Geospatial 

data usually refers to such objects or relations to which we could assign some coordinates 

according to a particular reference system of Earth. Sources of geospatial data include 

ground surveys, remote sensing, photogrammetry, laser scanning, geolocated sensors, 

mobile mapping, geo-tagged contents, Global Navigation Satellite System (GNSS) 

tracking. For geospatial data, three main Vs could play vital role of characterization and 

defining the data however other Vs may have small influence however could be quite 

useful and relevant for certain characteristics. Therefore the most influential Vs for 

geospatial big data could be defined as following: 

1) Volume: The amount of data stored in archives/disks that includes remote 

sensing imagery/Satellite imagery that is stored since 1960 the start of the first 

meteorological satellite TIROS-1 and ERTS-1(later named Landsat1) in 1972 

makes volume of the images beyond processing ability of regular systems if one 

wants to analyze time series analysis. Technological evolution produces better 

resolution as well as big volume Furthermore new sensors which record geospatial 

data 24/7 creating a massive amount of data like GPS trackers in Vehicles or 

attached to animals for their monitoring. Storing such data is a big issue that has to 

be sorted out. 
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2) Variety: Geospatial data consisting of satellite/airborne platform imagery, 

ground surveyed maps, geotagged imagery/text data, other raster and vector data 

being structure or unstructured makes a complex structure due to its various data 

types that exhibits challenges to present a single solution to cater every type of data. 

Hence efficient models, indexes and data management strategies according to the 

latest technology are required. 

3) Velocity: The continuity of the data depends on the intake of the data and the 

speed of its acquisition like fro remote sensing data the number of satellites and 

their revisit time makes the incoming of the data a challenge to cater. Contents on 

Internet are updated every second and must be dealt with accordingly, the real-time 

GNSS trajectory of million vehicles/animals pose a challenge to process. Therefore 

an efficient system is needed to meet the requirement of the data processing of 

commercial or organizational field. 

4) Veracity: Most of the time geospatial big data’s source is unknown and is 

difficult to verify the authenticity of the data and its level of accuracy varies 

depending on the source hence quality assessment of the data and its improvement 

statistically is an issue to be resolved using new technologies like Big Data. 

5) Visualization:  Showing data on maps or through graphic visualization or 

animation human mind could perform better analysis using its expert knowledge. 

Visualization supports analyst’s perception to identify patterns like outliers in 

trajectories or clusters of same characteristics which will eventually leads to new 

hypothesis along with efficient ways to partition the data for further analysis 

computationally as well as statistically. With the increase in the volume and variety 
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of the data, visualizing the data has become a challenge due to computation 

limitations. Therefore an efficient system could be used to improve the 

visualization which will help end users to determine dominant patterns and 

relationships that emerge from analysis of big data. 

6) Visibility: Due to the intervention of the cloud computing and cloud storage 

the accessibility and processing of the big data has efficiently improved in certain 

ways which were not possible before. This technology has not been matured enough 

and its evolution period is still on its way hence we find multiple issues regarding 

Big Data such as data provenance that is the metadata of the historical data. Once 

these issues get resolved we could finally experience the best outcomes from the 

combination of big data and cloud computing as they could be mutually dependent 

(Lu, 2014). 

These were some of the challenges that users are facing due to these qualities 

capacity for conventional spatial computing technologies to handle such big data is 

becoming an anchor which could weigh down the users time if new technologies are not 

utilized. With the help of these technologies and Big Data encourage people to expect more 

and think big beyond the box, make bigger hypothesis that increases the statistical strength 

of data and capacity to analyze that data critically and effectively. 

Technologies like conventional RDBMS systems falls short in effectively handling 

such exploding data. The main technology gap is due to the limitation of computation 

power of conventional RDBMS of single computer hence it could only carry sequential 

queries on a single system with limited capabilities. With improving hardware abilities 

computation power furthermore increases analysis shows that data is growing at a faster 
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rate than hardware efficiency. There are some hardware present which has the ability to 

handle present big data problem however they will cost the user a fortune which most of 

the organizations and companies tries to avoid. 

Therefore need of parallel system has become imminent. Such systems which could 

combine the power of low end systems and provide same results as we could get from 

performance of super computers. These systems will be both processing and cost efficient. 

However not all parallel systems or database has the ability to handle such amount of data 

like Vertica for example (Lu, 2014). Some of the reasons for their in ability is due to the 

fact that parallel databases are generally designed assuming the probability of failure 

(software or hardware) is rare in clusters. However this probability increases if more 

systems are added into cluster. Hence the one advantage that parallel systems enjoy 

becomes limited and that is scalability. Clusters with more than hundred will possess 

danger of collapsing making the system vulnerable towards failure while exploding big 

data’s requirement could reach to thousands of computer power. 

Above cited issues and problems provide opportunities for researchers to head 

towards a more scalable parallel processing mechanism to remain in the race against big 

data growth. Eventually new improved platforms like MapReduce, SCOPE, Dryad etc. are 

introduced which caters the problems facing earlier. They are intended to provide a flexible 

infrastructure through the network, data storage distributiveness without following the 

relational data model. Furthermore their main focus is not on providing efficient 

performance on clusters reaching hundreds in number rather they keep the system’s fault-

tolerance high in order to maintain integrity. These platforms has successively attracted 

industries and research communities due to their efficient performance for large scale data 
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analysis. Hadoop MapReduce is particular attention gaining approach worldwide for 

processing big data. 

1.3.1 Hadoop Map-Reduce Environment 

Google proposed Map-Reduce Environment in 2003. Whereas the foundation of 

Hadoop was laid by Yahoo employee Doug Cutting and his co-partner Mike Cafarella a 

graduate student of University of Washington. They supported the concept of Map-Reduce 

Environment and introduced in their own search engine which was first named as “Nutch”. 

Now Hadoop is a part of Apache. This system has helped several organizations like 

Google, Yahoo, Facebook etc. process data in the volume of Peta Bytes using clusters 

consisting of thousands computers spread across different data centers operating 10,000 

distinct programs that includes algorithms for large-scale graph/text processing, statistical 

machine translation and machine learning (Lu, 2014). This programming model is 

relatively simple in comparison with other solutions. The functionality of this model starts 

by first implementing Map function which process a <key,value> pair generating a set of 

intermediate <key,value> pairs which is then processed by Reduce function to evaluate all 

values associated with the same intermediate key. Original MapReduce platform proposed 

by Google is kept private, however Apache Software Foundation an open source project 

implemented their technique and released it for general public use. 

The Hadoop core does not support spatial data properties hence Hadoop lacks the 

ability to process spatial data efficiently. Several extensions handle different kind of spatial 

data and as a result more than one extension of Hadoop could be used in a system. 



16 

 

SpatialHadoop, Hadoop-GIS, GIS Tools for Hadoop, HIPI, MrGeo and AEGIS are some 

of the Hadoop extensions currently available to handle raster or vector dataset. 

 SpatialHadoop is a MapReduce extension which enables the processing of spatial 

data with ongoing development. SpatialHadoop extends functionality with efficient 

spatial data storage, indexing, and spatial query support. It is implemented in Java, 

and has no external dependencies. As a library it can be easily integrated into the 

Hadoop framework. Furthermore it has an integrated spatial extension to Pig, called 

Pidgeon. SpatialHadoop offers support for vector data in form of shapes. Three 

vector types (point, rectangle and polygon) can be easily specialized, however 

introducing new types requires modification of other components (Eldawy, 2014). 

 Hadoop-GIS is a spatial data warehousing system, which is furthermore available 

in library form. Initially developed for medical applications, it contains a custom 

query engine known as RESQUE and integration to Hive. The tool is developed in 

Java, C++ and Python, with external dependencies for GEOS and libspatialindex. 

Hadoop-GIS supports vector data using the GEOS library (offering the basic OGC 

SFA geometries). It does not support modification or introduction of new types 

(Giachetta, 2015). 

 GIS Tools for Hadoop provides a toolkit for managing and processing spatial data 

with the primary aim of fitting ArcGIS with Hadoop support. It provides extensions 

to Hive, and multiple geoprocessing tools. The toolkit is developed in Java, 

however some functionalities require ArcGIS software. GIS Tools for Hadoop 

provide the support for the most spatial storage formats by exploiting proprietary 

ArcGIS software (Gao et al., 2014). 
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 HIPI – Hadoop Image Processing Interface is a general toolkit for performing 

image processing on a collection of images. It is furthermore developed in Java. 

Although the tool does not offer processing operations, it enables the handling of 

multiple images in a variety of formats, thus providing easier image access and 

manipulation using standard MapReduce operations. HIPI supports raster imagery 

in the form of floating point value arrays. Images can be grouped to form image 

bundles, which serve as the primary input for processing. 

 MrGeo – MapReduce Geo is the most recently released geospatial raster 

processing library on Hadoop. It is primarily developed in Java with multiple 

dependencies, including GeoTools and Apache Giraph. Currently, it provides the 

most extensive raster processing support over MapReduce with ongoing 

development. MrGeo relies on Java raster representation with additional support 

for geographic location. 

 AEGIS is a platform independent library, implemented using NET/Mono 

Framework to exploit the wide possibilities and the simple usage of this object-

oriented development platform. AEGIS supports both raster and vector data 

formats (vector and raster). Vector data is modeled using the OGC (Open 

Geospatial Consortium) SFA (Simple Feature Access) standard. The data model is 

abstract and can have different realizations, and there are wide possibilities for 

introducing new types. Additionally, reference system management is supported 

according to OGC SRC (Giachetta, 2015). 
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1.3.2 Parallel SECONDO 

Another extensible database system developed at the FernUniversität in Hagen that 

allows the user to handle non-standard data and applications especially ones containing 

spatio-temporal information, is Secondo (Lu, 2014). This database system has the specialty 

in handling mobility data (data containing continuous spatial coordinates as well as time 

information). In addition, Secondo could furthermore be utilized for handling other non-

standard data types like vector and raster images. This is an open source system and its 

source code is freely available for users to access and modify database system according 

to their use and environment. 

At the backend of Secondo, BerkeleyDB is used as a store manager which could be 

run on any operating system like Windows, Linux and Mac OS. This system has three 

major components SECONDO kernel, Optimizer and Graphical User Interface (GUI) 

which are written in different languages. 

SECONDO kernel utilize algebra modules for implementation of specific data 

models and furthermore allow user to query from that model and perform analysis. Its 

implementation is on top of BerkeleyDB written in C++. 

Optimizer has the ability to optimize the queries according to the user’s 

requirement. Currently it is restricted for relational environment. However Conjuctive 

query optimization has the abilities to handle any data models. SQL like language is 

supported in Optimization in such a way to adapt PROLOG as optimizer is written in it. 

Graphical User Interface (GUI) enables users to visualize the data especially 

moving data and furthermore has the ability to animate the trajectory of that moving object. 
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Furthermore it could enable users to plot there spatial data with the background layer of 

OSM, Google Map tiles or their own imagery. Java is the scripted language of GUI. 

Secondo with all its abilities to handle spatial moving data has the drawback as 

most of the conventional systems, the lack of distributed processing abilities or to handle 

Spatial Big Data. However as we discussed earlier about the needs of the research 

community for data models that allow user to increase the efficiency of query execution 

time for their analysis. Hence for this purpose extended version of Secondo was developed 

named as “Parallel Secondo”. 

A hybrid parallel processing system, parallel SECONDO built upon Hadoop and a 

set of SECONDO databases. It depend on  the Hadoop framework to assign and program 

tasks running on a computer cluster in parallel, however the tasks’ embedded procedures 

are then managed by SECONDO for the sake of efficiency. From SECONDO, Parallel 

SECONDO inherits the capability of processing special data types, like spatial and moving 

objects. 

1.1.3.1   Merits 

User can use Parallel SECONDO still like on a single computer because of the new 

system keeps the front-end and the executable language of SECONDO. To the best of our 

information, for the mobility data processing Parallel SECONDO is the first practical and 

efficient parallel system. In Parallel SECONDO, parallel queries are only give in to the 

master database there is no necessity to retype the queries for all the contributing systems. 

They are listed in SECONDO executable language and later transformed to Hadoop jobs. 

Parallel SECONDO is freely available for download Like SECONDO and could be 



20 

 

optimized according to the users need. Source code is available for the developers to 

customize according to their environment. 

1.1.3.2   Demerits 

At the current time SECONDO’s failure of established query optimizer supporting 

the formulation of SQL scripts both for querying and updating the database (Paolino Di 

Felice, 2012). SECONDO is quite in a development phase hence it is nor stable neither 

easy to use. 

1.4 Objectives 

“To provide an efficient solution to handle big mobility data and analyze the hidden 

patterns in T-drive dataset to improve tracking and navigation.” 

 To use T-Drive dataset in order to find movement pattern through customized 

spatio-temporal queries. 

 To run the queries on single node and multiple nodes in order to compare and 

measure performance. 

1.5 Literature Review 

Literature review consists of four sections containing big data challenges and 

opportunities, tools used by different researchers to handle big spatial data, critical 

appraisal on SECONDO Parallel SECONDO, available trajectory datasets and their case 

studies. 

Lee and Kang (2015) discuss the challenges and opportunities of big data. Of the 

15 global challenges faced by humanity they consider, 7 challenges are directly related to 

spatial information acquisition and planning. These challenges include energy, clean water, 
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health, population and resources, transnational organized crimes, and peace and conflict. 

These challenges require the analysis of massive spatial datasets and analytical 

information. They discussed how spatial data could be used efficiently and in what 

applications. Furthermore they pointed out some data repositories like Movebank, 

Foursquare and OpenStreetMap etc. These data sets could be useful in extracting valuable 

information. Moreover they mentioned new technologies like Spatial on Line Analytical 

Processing (SOLAP). They discussed about the efforts researchers are putting in this field 

and challenges they are facing. On the other hand Vitolo et al., (2015) discussed the 

implementation of environmental big data analysis through web technologies which will 

help the environmentalists to analyze daily created weather reports and satellite images of 

weather situations. 

Recognizing the role of spatial data, the framework of Hadoop (Murthy et al., 2011) 

has been adapted and extended to process big geospatial data and several efforts in this 

area are ongoing. For example, ESRI, a supplier of Geographic Information Systems has 

added Hadoop support in their ArcGIS products via the ESRI Geometry APIs which 

spatially enable the Hadoop cluster for scalable processing of geo-tagged data. Using this 

approach Gao et al. (2014) used Volunteered Geographic Information (VGI) sites and 

automatically linked the results with ArcGIS Desktop for visualization. The authors further 

constructed a gazetteer from the geospatial information collected from social media such 

as Flickr through geo-tagged images. Spatial Hadoop is an example of another extension 

of Hadoop to process spatial data (Eldawy, 2014). 

SOLAP which is a powerful decision support system for exploring the 

multidimensional perspective of spatial data, was introduced by Li et al. (2014) for 
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environmental monitoring which requires spatio-temporal analysis. The author used this 

system with the Hadoop MapReduce framework for processing large remote sensing data. 

Similarly, in another study, the feasibility of Hadoop MapReduce in a parallel model was 

explored with a broader domain of scientific data and installed in a cluster of high-end 

computers (Golpayegani and Halem, 2009). In their research the authors proposed that 

Hadoop may be used to improve scientific satellite data processing time. 

All the Hadoop based big data platforms mentioned above can handle typical vector 

and raster datasets. However, there are very few big data platforms which can support 

moving objects such as trajectories. Parallel Secondo is one such system which is an open 

source moving object database developed by Lu and Guting (2014). According to the 

authors, Parallel Secondo is useful for handling big mobility data since it provides Secondo 

functionality in a distributed environment. Parallel Secondo uses Hadoop for parallel 

processing. Lu and Guting (2014) compared the processing efficiency of Secondo and 

Parallel Secondo. They performed different queries on OpenStreetMap data as well as GPS 

data of personal trajectories. In a similar study, Orakzai (2014) compared the time 

efficiency of Parallel Secondo to his own approach for processing big mobility data in a 

parallel environment using HBase and achieved better performance than Parallel Secondo. 

However, the system is only a prototype and is not available for general public to 

experiment. 

The use of mobility data using SECONDO is not common due to the new 

technology. Not much work has been done in mobility data using SECONDO. There is a 

dire need to promote the effectiveness of mobility data and the information gathered after 

analyzing such data could be used in multiple fields. 
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Di Felice et al.,(2013) used SECONDO to analyze the trajectories of sex offenders 

in USA counties. They used example data of 20 subjects and 20 sensible areas. The trip of 

these subjects are then analyzed in SECONDO. This study is useful for managing crime 

and reducing it through proper law enforcement on the data analyzed with the help of the 

trajectories of these sex offenders. 

There are several studies which used movement data sets such as T-drive. Yu et al. 

(2015) proposed a system called Cludoop and used T-drive with the Hadoop MapReduce 

based algorithm for clustering the large dataset. A comprehensive experimental evaluation 

on 10 network-connected commercial PC’s was carried out using both huge-volume real 

and synthetic data. The authors demonstrated the effectiveness of the algorithm in finding 

correct clusters with arbitrary shape and the scalability of their proposed algorithm was 

better than state-of-the-art methods. Furthermore they compared the effectiveness of the 

algorithm against other density-based clustering algorithms. 

Liu et al., (2011) proposed an effective method to detect outliers from the taxi 

trajectory dataset of Beijing, the same one we are going to use. They did not only 

formulated an algorithm to detect outliers but also tried to find the causal interaction 

between them which had not been tested before. Detecting outliers from a massive data of 

trajectories is an important task as these outliers could disrupt the analysis that we want to 

perform. When the data becomes massive the chances to effectively remove outliers 

visually becomes very low and requires excessive effort and time. Therefore an efficient 

system was built by the team to not only detect the outliers but also find the reason of its 

existence and production in the data. For this purpose they used road network of Beijing to 

partition the urban area according to road framework into different regions which created 
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region graph that allows them to analyze the traffic flow among these regions and detect 

outliers. They proposed two algorithms: (1) STOTree which could uncover the relations 

between outliers and their causal interactions (2) frequent Subtree that could reveal 

recurrent abnormalities present in the data and furthermore propose inherent problems in 

the road networks. This makes the work an exemplary as always the first step of any 

analysis contains data pre-processing and removing every anomaly data contains. The 

segmentation of urban areas using road networks was further detailed analyzed by Yuan 

(2012) and proposed an image-processing based technique to achieve their goal of 

segmenting the urban areas into regions using road network. They used simple 

morphological operators like dilation, thinning and connected component labeling to 

efficiently segment the urban area. Furthermore they displayed a case study to show 

implementation of this segmentation and its application regarding trajectory analysis. For 

this purpose they used same Beijing taxi cabs dataset but of 3 months duration. 

Another study uses the same data however in another aspect. That is to infer the 

status of the taxi, whether taxi is occupied or available for passengers or either it is parked 

somewhere. Zhu et al., (2011) used probabilistic decision true in order to get the job done 

in which they first used identified features so that local probabilistic classifiers could be 

trained. After training the classifiers they carried out Hidden Semi Markov Model (HSMM) 

for long term travel patterns. This results in an estimation of taxi status (occupied or not). 

However for parking regions they carried out simple algorithms working on the 

displacement values of taxi moreover some geographical landmarks like signals or parking 

areas to separate events like traffic jam or traffic signals. This method could allow city’s 

transportation system and land use planning bodies to improve their assessment and 
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services. Whereas another study benefits directly the taxi drivers in finding passengers and 

vice versa. J. Yuan et al., (2011) proposed a recommender system for people and taxi 

drivers which would allow them to find their ride or passenger in a nearby place and 

furthermore process the fastest route to reach their. They too used the probabilistic model 

in order to find suitable locations where taxi drivers could find passengers and passengers 

could find vacant taxi. For this purpose they used trajectories of 1200 taxis for duration of 

110 days in Beijing. 

For improving the navigation and routing system with the help of drivers expertise, 

J. Yuan et al., (2010), J. Yuan et al., (2011) and J. Yuan et al., (2013) work is recognizable. 

Using time-dependent landmark graph and Variance Entropy Based Clustering approach 

they suggested fast routes to reach destination. Their main focus was to use the expertise 

of the taxi drivers to help general public find fastest routes as local Taxi drivers of any area 

know best routes for a particular destination as it is their job. They used the same T-drive 

data for their analysis and proposal as we are going to work on. J. Yuan et al ., (2011) 

proposed a cloud based system computing for an end user. Through this technique anyone 

could utilize the services on a go and finds the fastest route which taxi drivers are utilizing 

in real time. 

Lee et al., (2014) focused on applying spatial queries like containing, contained in, 

intersects and within Distance on a Hadoop based distributed system using H-Base for 

storage purpose. They used GeoLife GPS trajectory dataset and San Francisco taxi cab 

traces. After applying spatial queries they compared effectiveness of distributed system 

with single computer processing. GeoLife dataset was used again by Uddin et al., (2011) 

who focused on finding Regions Of Interest (ROI). In addition they used San Francisco 
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Taxi Cab data and Starkey, Oregon DeerElk Data. Conditions for region of interest were 

set as (1) a range of speed that an object maintains while in an ROI (2) a minimum duration 

of staying in an ROI area and (3) the density of objects in that area. They modified 

DBSCAN method for density base clustering. First they measured the minimum duration 

of stay point inside region of interest then identified point wise dense regions. 

Yu et al.,(2013) deals with the uncertainty problem in the continuously changing 

data objects CCDOs due to the fact that databases can only be discretely updated. This 

problem was dealt in a Hadoop Map/Reduce environment using GeoLife GPS trajectory 

dataset. Whereas Mathew et al., (2012) proposed a hybrid method for human mobility on 

the basis of Hidden Markov Models (HMMs). The approach was to cluster location 

histories according to their properties, and after that they trains an HMM for each cluster. 

The HMMs is used to allow the users to account with location characteristics as 

unobservable parameters, and also to account with the effects of each individual’s previous 

actions. They report through their experiment using GeoLife real-world location history 

dataset, that a prediction accuracy of 13.85% can be achieved when taking data from 

regions of roughly 1280 square meters. Yuan et al., (2010) used T-Drive dataset to mine 

smart driving directions from the historical GPS trajectories of a large number of taxis, and 

provides a user with the route which takes minimum time to a given destination. A 

Variance-Entropy-Based Clustering approach has been proposed to estimate the 

distribution of travel time between two landmarks in different timestamps. They designed 

a two-stage routing algorithm to compute the practically fastest route. 

All the cited studies are very recent which shows that geospatial big data is an 

emerging discipline. The topic we selected has both commercial and research potential. 
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For processing of very large movement data, Parallel Secondo is a good choice, however 

there is a high learning curve due to its own Secondo executable language that requires 

certain amount of expertise to master all the operators. There are very few studies in 

literature which reports the real performance of Parallel Secondo that gives us the 

advantage to apply this system using real data therefore it can provide an efficient tool to 

handle big mobility data and perform certain analysis. Moreover the use of open source 

geospatial big data platforms such as Parallel Secondo is a good choice for running and 

executing realtime analysis.  
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Chapter 2 

MATERIALS AND METHODS 

2.1 Study Area/Dataset 

There are several datasets of trajectories available online for free downloading for 

example: 

 New York Cab trajectory dataset:  This data set contains information about all the 

New York cab fares along with coordinates of locations from where taxi picked a 

passenger and location of dropping point. 

(http://www.andresmh.com/nyctaxitrips/) 

 Movebank: A free online infrastructure initiated to help researchers manage, share, 

analyze, and archive animal movement data, which has been hosted by the Max 

Planck Institute for Ornithology. The database of Movebank has been designed 

primarily for data sets that include consecutive locations of individual animals, 

which are generally called tracking data. The status of Movebank, at the end of 

2013, is as follows: 1,000 user-created studies, 350 taxa, and more than 61 million 

unique animal locations. (http://www.movebank.org/) 

 Community Resource for Archiving Wireless Data at Dartmouth (CRAWDAD) 

holds wireless network data for research community to utilize this free data and 

develop new and efficient tools to extract information that could be useful 

commercially or from research point of view.  

(http://www.crawdad.org/) 

http://www.andresmh.com/nyctaxitrips/
http://www.movebank.org/
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 Some of the data is available on SECONDO official website in the format which is 

supported by the software (http://dna.fernuni-hagen.de/secondo/). Table 2.1 

contains the list of all the datasets. 

Table 2.1: Open Source datasets available from Secondo Home page. 

Data Set Description 

berlindb The city map of Berlin 

geodb  Zip codes of German cities 

metrodb Some trains of the Berlin metro represented as moving points 

opengeodb  German states and districts. For further information visit 

www.opengeodb.de 

optdb Some relations used by the examples in the optimizer documentation 

osnabrueck  City map of the German city Osnabrück 

transobj A java program converting data from www.dict.cc 

vorwahlobj  Area codes of German cities 

 

To perform spatial pattern analysis and exploring big data solutions we selected T-

Drive taxi trajectory dataset. T-drive dataset was created by Microsoft Research Asia. The 

average sampling interval is about 177 seconds with a distance of about 623 meters. The 

data used in this research are taxi tracks of 7 days only. The size of T-drive dataset is 1.6 

GB. This does not qualify for big data however the possibility to scale up the analysis 

provides an insight into the integrity of the system. This dataset contains the GPS 

trajectories of 10,357 taxis within Beijing, China. Dataset contain trajectories during the 

period of Feb. 2 to Feb. 8, 2008. Each file of this dataset, which is named by the taxi ID, 

http://dna.fernuni-hagen.de/secondo/
http://dna.fernuni-hagen.de/secondo/files/data/berlindb/
http://dna.fernuni-hagen.de/secondo/files/data/geodb/
http://dna.fernuni-hagen.de/secondo/files/data/metrodb/
http://dna.fernuni-hagen.de/secondo/files/data/opengeodb/
http://www.opengeodb.de/
http://dna.fernuni-hagen.de/secondo/files/data/optdb/
http://dna.fernuni-hagen.de/secondo/files/data/osnabrueck/
http://dna.fernuni-hagen.de/secondo/files/data/transobj/
http://www.dict.cc/
http://dna.fernuni-hagen.de/secondo/files/data/vorwahlobj/
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contains the trajectories of one taxi. Full details and properties of dataset is presented in 

Table 2.2. 

However the data is not big enough to make much of a difference in query 

processing as this data is of 7 days duration only, however the possibility to scale up the 

analysis and results could provide a better opportunity to understand the integrity of the 

system we are going to propose and demonstration could be done accordingly. This pilot 

phase could enable commercial organizations to attain valuable information by utilizing 

these Big Data techniques. This data presents real time challenges of handling big mobility 

data including outliers anomaly, trajectory discontinuity and map matching. 

Table 2.2: Characteristics of T-Drive dataset. 

Properties T-Drive 

Time Span of the Collection 

02/02/2008 - 

08/02/2008 

Number of Users 10,537 

Number of trajectories 10,359 

Number of points 15 million 

Total distance 9 million km 

Total duration 144 hour 

 

2.2 Hardware/Computer System 

For computation analysis and performance measurement two different types of 

hardware were required both with powerful computation abilities to be able to handle 
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such big data and contain multiple processors in order to process tasks in parallel. The 

system we used for single node analysis has following specifications: 

 Processor Intel® Core™ i7-4790 CPU @ 3.60GHz × 8  

 Random Access Memory (RAM) 8GB 

 OS  Ubuntu 14.04 LTS 64 bit 

For multi node analysis a powerful system with specifications mentioned below 

was used: 

 PowerEdge R720/R720xd Motherboard TPM 

 2x Intel Xeon E5-2680v2 2.8GHz, 25M Cache, 8.0GT/s QPI, Turbo, HT, 10C, 

115W, Max Mem 1866MHz 

 256GB (16x 16GB) RDIMM, 1600Mhz, Low Volt, Dual Rank, x4 Bandwidth 

To continue with distributed system a virtual machine of Linux Ubuntu 14.04 

64 bit was deployed on Institute of Geographic Information System and Remote 

Sensing (IGIS), National University of Sciences and Technology, Islamabad machine. 

A powerful virtual machine was created with 20 core processors and assigned 

200 GB RAM so that it could contain multi nodes and be useful to test the ability of 

Parallel Secondo. Having 20 processors at hand it was optimal to deploy no more than 

10 nodes of Parallel Secondo system on the machine so that each node could have at 

least 2 processors at their disposal all the time. After deploying the system with all ten 

nodes cluster, a simple query was processed to test the efficiency of the system. Figure 

2.1 illustrates a flow chart of methodology.  
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Figure 2.1: General Flow Chart of Methodology. 
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2.3 Pre-Processing 

The data of taxi trajectory is available in a raw form which means it contains several 

anomalies due to GPS error or system unavailability hence this data first needs to be pre-

processed and required to remove all the uncertainties and error points also known as 

outliers. Figure 2.2 shows sample trajectories of T-Drive dataset in raw form containing 

several outliers. 

 

 

 

 

 

 

Figure 2.2: Outliers in the data. 

Due to the massive amount of points in the dataset, visualization of whole data at 

the same time requires lot of computing power and visually removing all the outliers 

becomes inefficient requiring much of the man power as well. Furthermore due to the dense 

cloud of points in center of the city makes it impossible to remove outlier lying inside city 

being removed and clean the data anomalies. Hence an efficient system is required to 

process the data and maintain its integrity. 
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An automated system is required which could get rid of the outliers logically and 

requires less human interaction. Furthermore the data needed to be arranged in a format 

that could be easily read by the Secondo system without causing too much effort to process. 

For this purpose a script was designed in python language to do the required task. 

2.3.1 Python Script for Outlier Removal 

Python, an interactive high level programming language is widely used and popular 

among programmers with its wide variety of libraries and functions that gives freedom to 

develop variety of application using fewer lines of codes due to its relatively easy syntax 

compared to its competitors such as C++, Java etc. Due to the availability of python 

interpreters on almost every version of OS, programmers are independent to choose their 

platform and implement the code accordingly. 

For the development of script that enables us to achieve our goal of removing 

outliers several libraries were required like RE, OS, datetime, subprocess, math, glob and 

numpy. Most of these libraries were available as default in Linux Ubuntu 14.04.1 LTS OS. 

First task for the script was to collect all the files containing trajectory datasets from the 

directory and read them one by one in which glob library was useful for gathering all files 

with extension of .txt as there were 10,356 files present representing each unique taxi 

trajectory. 

The logic used for detection and removal of outliers was distance measurement. As 

we know there are certain speed limits inside city and its outskirts. These speed limits 

varies according to the type of the roads for example, for single lane road 30 Km/h (19 

Mp/h), 70 Km/h (43 Mp/h) for multi-lane roads whereas National highways could go up to 
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80Km/h (50 Mp/h) and the highest achievable speed could be attained on expressway of 

120 Km/h (75 Mp/h). Hence taking account of some speedsters the threshold limit was set 

as 150 Km/h (93 Mp/h). The threshold speed will thus decide the acceptable distance 

between the points. 

The Python script converts Latitude and Longitude coordinates of points and the 

distance achieved through computing consecutive points to linear distance according to the 

latitude value of Beijing and its respective 1 mile distance. 

The data consist of unique Taxi ID, its coordinates in latitude longitude and 

corresponding date time format. Secondo supports particular type of date and time format 

to be read as instance hence the script has to be able to change the format accordingly. 

Although Secondo gives functions to change the format it will require double computation 

power. Hence it was better to change the format on the run through python script that will 

save time. Putting all the clean data in one file as .csv format would be more efficient. The 

script could automatically upload the data in Secondo database by creating .sec file 

containing some useful commands to import data in Secondo environment. This was done 

using OS and subprocess library that enable us to access terminal of the system from where 

we could start Secondo text interface and complete our task without any human interaction. 

Figure 2.3 shows the flow diagram of processes script followed whereas Figure 2.4 displays 

the output of the script after removing outliers. 

2.4 Parallel Secondo 

After pre-processing, T-Drive queries performance is evaluated on both single and 

parallel nodes of SECONDO. Some spatial queries are applied to find patterns. Parallel 
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SECONDO is a hybrid system and in order to measure the capability of handling extensible 

data model in SECONDO to a group of computers, it’s built up by powerfully coupling the 

Hadoop framework with a set of SECONDO databases. 

 

Figure 2.3: Flow Diagram of Python Script for Outlier Removal. 

 

Figure 2.4: Point Result after removing outliers from the trajectories using python script. 
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First of all Parallel SECONDO will set up of several processing units on each 

cluster node and even low end computer could be used as nodes. Afterward Parallel 

SECONDO will set DS as its basic processing unit. Each DS containing a compact 

SECONDO system called Mini-SECONDO and its affiliated database and each DS will be 

deployed on one hard disk. For that reason, in computers with numerous hard disks, we 

can set several DSs on the same computer in order to reduce the disk interference to the 

minimum. Similarly the simultaneous tasks containing different Mini SECONDO 

databases can read their data individually. Using several DSs set, we specify one of them 

as the Main Server (MS) that containing the configuration data and management scripts 

that work for the rest of them. Moreover it consists of a Hadoop node being used to receive 

the assigned tasks from the Hadoop framework. 

Secondly based on the Hadoop division Parallel SECONDO will separate the DSs 

into different roles. SECONDO will show the MS on the Hadoop master as its mDS, while 

the left over DSs will be observed as sDSs. The task of these DSs will be to retain in the 

DS Catalog and share it with every cluster node. Therefore, we will set the Mini-

SECONDO database in mDS as the master database of the entire system, while the others 

will be slave databases. The master database will cover worldwide data like the cluster’s 

size, global index structures and the metadata of distributed objects while the slave 

databases will cover only the local objects belonging to the corresponding sDSs and its 

being hidden from users. This gives users the impression of still handling a separate 

SECONDO database. 

Thirdly Parallel SECONDO will be fully compatible with the current SECONDO 

system and both will be combined seamlessly. In principle, the master database can still be 
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used as an ordinary SECONDO system, where all consecutive queries can be handled as 

usual. 

Fourth, in Parallel SECONDO, parallel queries will be processed strictly on the 

MapReduce standard base. These queries will be converted into Hadoop jobs by the master 

database, then will additionally be divided into Map and Reduce tasks by Hadoop. Parallel 

tasks are then processed by all sDSs following MapReduce Model in order to attain 

balanced amount of work. Figure 2.5 shows flow of the structure of Parallel Secondo file 

system and how it processes the data. 

 

Figure 2.5: Architecture of parallel secondo (Jiamin & Guting, 2014). 

During the installation of Parallel SECONDO, Hadoop will be installed by 

unpacking the software and setting HDFS nodes to all MSs. According to Parallel 

SECONDO preferences, its configuration parameters will furthermore set automatically. 

No extension will be made in Hadoop core functionality and without the participation of 

any Parallel SECONDO components the framework will work all by its own mechanism. 
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Furthermore we will perform the same operations on simple SECONDO to 

compare the effectiveness of the system. 

2.4.1 Parallel Secondo Configuration 

As Parallel Secondo is a hybrid system based on Secondo and Hadoop platform, it 

requires first the installation and configuration of Secondo on every node whether Master 

or Slave. Secondo being an open source provides users with its source code that could be 

deployed on users system and requires some steps to configure. The installation on Linux 

and Macintosh operating systems is much easier as compared to Windows system. 

Moreover virtual disk images deployed on Linux system are also available online for users 

to quickly test the performance of the system without having to deploy on their own system. 

Likewise Parallel Secondo also offer users with virtual disk images having Linux 

Operating system to explore the abilities and varieties of functions system has to deliver. 

However users need to follow guidelines according to their operating systems 

provided by the developing team in order to configure their own system. As our system 

resides with the Linux Ubuntu 14.04.1 LTS Operating system, hence first step was to 

update the system and install some additional software or libraries mentioned in the Table 

2.3. 

An online bash script is provided for the users to easily deploy all these additional 

software and also make a configuration file accordingly.  However users could install all 

these libraries one by one on their own. If they don’t trust the script or have fear that script 

might alter their systems internal files which could cause problems for other software’s. At 

the end of the script a configuration file with the name .secondorc is created at the root of 
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the system. Users need to link this file with the systems environment by adding following 

line in the file .bashrc. 

source $HOME/.secondorc $HOME/secondo 

Next step is to download the source code of Secondo available at http://dna.fernuni-

hagen.de/secondo/ for free. Deployment of the software is made simply by unzipping the 

software at $HOME location and making the software by typing make in terminal accessing 

secondo folder. This will install Secondo on your system along with all its algebras and 

libraries. These steps should be repeated on every system user intended to include in the 

cluster. 

The next part is to make Secondo available for distributed processing or making 

Parallel Secondo. There are two more utilities required in case of Parallel Secondo and that 

includes ssh and screen which are the main source of communicating and accessing 

different systems in the clusters. This could be arranged using following commands in 

terminal: 

$ sudo apt-get install ssh 

$ sudo apt-get install screen 

Another requirement is to enable ssh passphraseless hence to access each system 

without having to enter password every time any function wants to access other nodes on 

the slave nodes. This could be achieved by executing following commands: 

$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa 

$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys 

http://dna.fernuni-hagen.de/secondo/
http://dna.fernuni-hagen.de/secondo/
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This will generate a key for every IP of systems in the cluster. Having done with 

ssh user need to download Hadoop source of specific version at the below mentioned 

address http://archive.apache.org/dist/hadoop/core/hadoop-0.20.2/hadoop-0.20.2.tar.gz . 

The tar file of Hadoop downloaded should be placed in secondo/bin directory for Secondo 

algebra to easily access and install according to its environment. 

Next step is to prepare configuration file of Parallel Secondo for the cluster or for 

single node itself. An example configuration file is provided in the source code of Secondo 

inside secondo/Algebras/Hadoop/cluster Management/ with the name Parallel Secondo 

Config.ini. We have to give the address of Java directory as it will be needed for Hadoop 

installation and processes. Then we have to declare the IP addresses of the systems 

network. One system is made the Master node and all the other systems as Slave nodes. It 

is important to give “1234” as default port when configuring SECONDO. The example of 

the configuration changes user have to make is as follows: 

Master = 192.168.1.1:/disk1/dataServer1:11234 

Slaves += 192.168.1.1:/disk1/dataServer1:11234 

Slaves += 192.168.1.2:/disk1/dataServer1:11234 

Slaves += 192.168.1.1:/disk2/dataServer2:14321 

Slaves += 192.168.1.2:/disk2/dataServer2:14321 

 

Above mentioned configuration represents two systems on which four different 

slave nodes were deployed. The first system was furthermore assigned Master node that 

will assign all the Hadoop jobs to each node respectively. This configuration will create 

two dataservers on each system. Furthermore when making cluster containing more than 

http://archive.apache.org/dist/hadoop/core/hadoop-0.20.2/hadoop-0.20.2.tar.gz


42 

 

one system, user needs to give IP of Master node to Hadoop operators as mentioned in an 

example. 

core-site.xml:fs.default.name = hdfs://192.168.1.1:49000 

hdfs-site.xml:dfs.http.address = 192.168.1.1:50070 

hdfs-site.xml:dfs.secondary.http.address = 192.168.1.1:50090 

mapred-site.xml:mapred.job.tracker = 192.168.1.1:49001 

mapred-site.xml:mapred.job.tracker.http.address = 

192.168.1.1:50030 

 

For users wishing to use simple Secondo side by side of Parallel Secondo and that 

the databases could be shared, last line should be activated which allows user to access 

databases residing in simple Secondo. This configuration file should then be copied to 

$HOME/secondo/bin/ directory. 

NS4Master = true 

Additionally we have to alter one line of SecondoConfig.ini at 

$HOME/secondo/bin/ location to turn off the transaction feature which would improve the 

data exchange efficiency between Data Servers (DS), by uncommenting the following line: 

RTFlags += SMI:NoTransactions 

At the end makefile.algebras should furthermore be altered by adding following 

lines that enables Secondo to have abilities of Hadoop Algebras. 

ALGEBRA_DIRS += Hadoop 

ALGEBRAS += HadoopAlgebra 

 

ALGEBRA_DIRS += HadoopParallel 

ALGEBRAS += HadoopParallelAlgebra 
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After making all the changes access through terminal the directory  

$HOME/secondo/Algebras/Hadoop/clusterManagement/ 

Here enter the command that will deploy all the functions of Parallel Secondo on 

each node: 

$ ps-cluster-format 

As we had changed algebras file hence there is a need to reboot Secondo by again 

running make command through terminal. This would made all the necessary files for 

running Hadoop jobs and algebras. This modified Secondo is now in need to deploy mini-

Secondo on every node in the cluster which could be achieved by: 

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManagement 

$ ps-secondo-buildMini –co 

For users wishing to install on single node should replace –co with –lo where c 

represents cluster and l represents localhost. Now Parallel Secondo system is ready to be 

used. 

Initially all nodes have to be started. After that all the monitors of each Parallel 

Secondo node should be activated that could be achieved by using following commands in 

terminal: 

$ start-all.sh 

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManagement 

$ ps-start-AllMonitors 

$ ps-cluster-queryMonitorStatus 

$ ps-startTTYCS –s 1 
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The last command will open the text interface of Parallel Secondo where user can 

create databases and use the maximum abilities of the Parallel Secondo system. GUI could 

furthermore be used for querying and display purposes by running sgui file through 

terminal in $HOME/secondo/Javagui/ directory. User will need to give the master node IP 

and port. The general flow chart of Parallel Secondo configuration is displayed in Figure 

2.6. 

 

Figure 2.6: Flow diagram of Configuration steps for Parallel SECONDO. 

Table 2.3 Additional Utilities for Parallel SECONDO. 

Software 
package 

Version Project home page 

Berkeley DB >4.3.29 Oracle Berkeley DB 

SWI-Prolog 5.6.37 http://www.swi-prolog.org 

GCC  3.4 - 4.1 http://gcc.gnu.org 

Java SDK  1.7 http://www.oracle.com/technetwork/java/index
.html Bison 2.1 http://www.gnu.org/software/bison/bison.html 

Flex 2.5.33 http://www.gnu.org/software/flex/flex.html 

http://www.swi-prolog.org/
http://gcc.gnu.org/
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
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Make 3.79.1, 3.80 http://www.gnu.org/software/make/make.html 

BASH 2.x http://www.gnu.org/software/bash/bash.html 

GSL 1.12 http://www.gnu.org/software/gsl/ 

Libjpeg 6.2 http://www.ijg.org/ 

libreadline 5.2 http://tiswww.case.edu/php/chet/readline/rlto
p.html Hadoop 0.20.2 http://hadoop.apache.org/ 

 

2.5 Spatial Query Formulation 

Formulating spatial queries to extract useful information from the given data is an 

important procedure in our research. As we are dealing with moving data or trajectories 

hence we would need spatio-temporal queries that could analyze patterns in moving objects 

datasets. We would explore some of these special queries like flock, swarm, convoy, 

leadership and motion etc. Furthermore we will find some hidden patterns inside the data 

that gives us advantage in understanding and creating a new direction system. We would 

check its implementation in Parallel SECONDO and analyze patterns in the taxi dataset we 

are going to use. These spatial queries are defined by Li, (2014) is as follows: 

 Flock: A set of moving objects form a flock if every object is contained in a 

disc with specified radius and timestamp. 

 Convoy: A set of moving objects form a convoy if every object belongs to the 

same density-connected cluster at a particular timestamp.   

 Swarm: A set of moving objects form a swarm if every object are in the same 

density-connected cluster where timestamps could not be necessarily 

consecutive. 

 Leadership: Leadership pattern identifies a leader among all the moving objects 

which is directing a flock, convoy or swarm. 

http://tiswww.case.edu/php/chet/readline/rltop.html
http://tiswww.case.edu/php/chet/readline/rltop.html
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 Convergence: A set of moving objects passing through the same circular region 

of radius at any timestamp. 

As discussed earlier Parallel Secondo supports same language as that of Secondo 

however with some additional operators and algebras that allows query to process in 

parallel environment along with the integration of Secondo conventional environment. 

Table 2.4 shows the list of some of the additional operators for parallel Secondo: 

Table 2.4 Additional Operators for Parallel Processing. 

Kind Name Signature

 spread stream(T) → flist(T)

collect flist(T) → stream(T)

hadoopMap flist x fun(Map) x bool → flist

hadoopReduce flist x fun(Reduce) → flist

hadoopReduce2 flist x flist x fun(Reduce) → flist

Assistant para flist(T) → T

Flow

Hadoop

 

Flow operators are responsible for distributing and collecting data from nodes 

whereas Hadoop operators process the queries in parallel environment according to Map-

Reduce paradigm whereas Assistant operators are used for those functions which are not 

yet supported by Hadoop operators hence they convert the data back to simple form on 

runtime. 

2.5.1 Simple Parallel Queries 

We will start with some simple queries and some necessary steps needed to create 

a database containing trajectories dataset. After opening the text interface or GUI of 

Parallel Secondo first step requires creating and opening a new database which was 

accomplished using following commands: 
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creating database TDrive; 

open database TDrive; 

Defining a schema according to our dataset attributes and their types is the next 

step which would allow us to import data according to the schema we have defined: 

let TDPSchema = [const rel(tuple([ 

  TaxiID: string, 

  UTC: string, 

  Date: string, 

  Speed: real, 

  Longitude: real, 

  Latitude: real   

]))  

value()]; 

 

Here we have created an empty tuple relation with all the attributes our dataset 

contains. There has been an additional attribute of speed which we had calculated through 

python script so that it could be useful in further analysis. Importing the data directly from 

CSV file into the empty relational tuple we had just created was achieved by executing 

following command: 

let Raw = TDPSchema     

csvimport['../bin/CompleteOutliersRemoved.csv', 1, "#", ","] consume; 

 

Here first parameter of csvimport function as could be noticed is the address of the 

file we want to import data from whereas next parameter asks for number of line user want 

to skip that contains description about the data or the labels of the attributes. In our case its 
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only one row that contained the labels of the attributes. If user is not sure of how many 

rows to skip or some comments are present inside the data which should not become the 

part of the data could moreover be skipped by declaring the symbol in third parameter with 

which every comment starts. Last parameter asks for the separator symbol between 

attributes. Some constant declaration for parallel processing would be useful for user like 

defining the size of clusters (number of slave nodes or DS) and furthermore the number of 

parallel processes user wishes to make for the system. 

let CLUSTER_SIZE = 1; 

let PS_SCALE = 8; 

As we were using at that time only single node system containing one master and 

one slave node. Whereas PS_SCALE value was defined 8 as there were 8 processors 

present in the system we were using hence it would be appropriate to run 8 parallel 

processes or tasks. 

Till now the data has been successfully imported into the system in a raw form 

hence next step is to generate points according to the attributes Latitude and Longitude so 

that we could plot them if we like or perform analysis on point data. The conventional way 

of doing therefore in simple Secondo is as follows: 

let Points = Raw feed extend[ I: str2instant(.Date + "-" + .UTC), 

P: makepoint(.Longitude, .Latitude)] 

consume 

 

Here the feed operator will produce the stream of values from Raw tuple so that 

each value could be read one at a time, the extend operator will add a new attribute in the 
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table for new values to be stored without disturbing the other values whereas str2instant 

operator is converting date and time value to instant according to Secondo format and at 

last make point is responsible for generating points in the database. However we could run 

this same query in parallel however first we have to distribute the data to each slave node 

or DS according to a unique ID in our case TaxiID. Spread operator is responsible for such 

operation: 

let taxi_id_dlf_raw = Raw feed spread[;TaxiID, CLUSTER_SIZE, 

TRUE;]; 

Here the data has been spread into 8x1 matrix with the Distributed Local File (DLF) 

flist. Two file types are supported in parallel (1) DLF (2) DLO (Distributed Local Object). 

DLF will divide the data into R x C matrix where R represents rows and C represents 

columns of the data whereas DLO will divide the data into N X 1 matrix where N is the 

total number of nodes in the cluster. By giving TRUE as the third parameter files will be 

divided as DLF otherwise FALSE will make it DLO flist. Now we can execute parallel 

query according to our requirement: 

let PointsHMap = taxi_id_dlf_raw  

hadoopMap[DLF, TRUE  

; . extend[ I: str2instant(.Date + "-" + .UTC), 

P: makepoint(.Longitude, .Latitude)] ] 

collect[] consume; 

 

Here basic operator hadoopMap will let the slave nodes process the data as a Map 

operation and at the end collect operator will gather the results as a simple tuple. Same 
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function could be done using hadoopReduce operator which will process Reduce task of 

the Map-Reduce paradigm. 

let PointsHRed = taxi_id_dlf_raw  

hadoopReduce[TaxiID, DLF, PS_SCALE  

; . extend[ I: str2instant(.Date + "-" + .UTC), 

P: makepoint(.Longitude, .Latitude)] ] 

collect[] consume; 

 

Unfortunately there is no operator yet defined by Secondo that could provide the 

both functionalities of Map and Reduce task as one operation however users could use 

hadoopMap and hadoopReduce operators in same query where hadoopMap will just 

perform Map operation without processing the internal function and hadoopReduce will 

carry the rest of the process as reduce task. 

Having coordinates accurately converted to points, next we could make trajectories 

of each taxi according to its unique ID. The conventional sequential way of executing query 

would be: 

let taxiTrajectory = Points feed sortby[TaxiID asc, I asc] 

groupby[TaxiID; Traj: group feed approximate[I, P] ] 

consume; 

 

Where first data is sorted according to TaxiID and the Instant in ascending order so 

that no discrepancy should occur and then groupby operator will collect all the points of 

same TaxiID in another attribute Traj according to approximate operator which will 
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compute linear approximation between sampling points and Instants. The same query in 

parallel as hadoopMap and hadoopReduce could be displayed as: 

let taxi_id_dlf_PHMap = PointsHMap feed spread[;TaxiID, 

CLUSTER_SIZE, TRUE;]; 

let taxitrajectoryHMap1 = taxi_id_dlf_PHMap 

hadoopMap[DLF, TRUE 

; . sortby[TaxiID asc, I asc] 

groupby[TaxiID; Traj: group feed approximate[I, P] ] 

] 

collect[] consume; 

 

let taxitrajectoryHRed = taxi_id_dlf_PHMap 

hadoopReduce[TaxiID, DLF, PS_SCALE 

; . sortby[TaxiID asc, I asc] 

groupby[TaxiID; Traj: group feed approximate[I, P] ] 

] 

collect[] consume; 

 

These are some of the simple queries to begin with the analysis of the data. As we 

go further to analyze the data, complexity of the queries increase. 
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Chapter 3 

RESULTS AND DISCUSSION 

 

3.1 Computation Efficiency 

The first task according to our objectives is to find the efficiency of our proposed 

system. For this purpose we have to process a query on single node system as well as multi 

node system comparing efficiency with the sequential query that is of simple Secondo 

without processing it in parallel using Hadoop operators. 

To query the T-drive, the data was divided into four parts (each consisting of 1, 5, 

10 and 15 million points respectively). Each part is run with multiple nodes to observe the 

optimal performance. Parallel Secondo was configured on a single node as well as on 

multiple nodes. Spatio-temporal queries were selected based on filtering, clustering, search 

and creating trajectories from points. These queries are basic steps often required when 

analyzing mobility data. All spatio-temporal queries were run with 1, 5, 10 and 15 million 

points. 

3.1.1 Single Node Parallel Secondo 

Deploying Parallel Secondo on the single computer with one Master node and one 

Slave node allow us to compute the efficiency. For example, is it worth to spend extra 

money for different hardware and still could get the best out of single computer by utilizing 

the maximum computation power that the system can get.  
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As our data contained about 15 million points of trajectory data, we divided this 

data in 4 parts by limiting the number of points in order to get an idea of when will this 

system be better efficient and for how much data. In 4 parts we process data with 1, 5, 10 

and 15 million points separately. Figure 3.1 illustrates the minimum amount of time 

required to process creating trajectories query in Parallel Secondo distributed environment. 

The x-axis shows number of data points while y-axis plots the time duration. The graph 

demonstrates the performance of a single node configured with Parallel Secondo. It is 

argued that parallel queries are efficient only for big data and for small data conventional 

sequential queries should be used. 

 

Figure 3.1: Graph showing computation efficiency of single node system. 

It can be seen from Figure 3.1, that for less number of points the system is not useful 

as the data first need to be distributed and then it have to be again collected from the 

dataserver that makes the processing time more than that of the sequential query. However 

as we started reaching the maximum number of points (15 Million) that we had, parallel 

system efficiency started improving and the processing time decreased that shows us that 
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this system is useful even on single node if we have Big Data because this system lets 

system use its full capacity of computation.  

However the difference is still not much significant yet on 15 million points. If we 

draw the trend line of the graph using polynomial order 2 which fits the trend of the graph 

shown in above Figure, we can see a clear improvement in the efficiency of the system 

with having much bigger data to compute. This shows that this system is cost efficient too. 

It could enable user to utilize maximum computation power to get the best results in less 

time for processing Big Data. 

 

Figure 3.2: Graph showing computation efficiency of single node system and its trendlines. 
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3.1.2 Multi Node Parallel Secondo 

The same procedure was implemented on a cluster of parallel node secondo system 

by applying same query but with varying cluster size to get the efficiency graph of the 

system and the ability of parallel secondo to withstand big data handling technique. 

Here again data was processed in four parts with increasing points of 1, 5, 10 and 

15 million. The same query was processed by activating different number of nodes at a 

time in order to find pattern in computation sequence and judge the optimal number of 

nodes required to process how much data. Graphs show different results achieved. 

The graphs shown in Figure 3.3, 3.4, 3.5, 3.6 and 3.7 represent the variation in 

efficiency according to the size of the data. It is not ideal approach to increase the number 

of nodes indefinitely because it will add more time to distribute and collect the data from 

nodes then to process. Therefore it will decrease the efficiency as demonstrated in the 

graphs.  

 

Figure 3.3: Computation Efficiency of Multiple Node System (1 Million Points). 
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Figure 3.4: Computation Efficiency of Multiple Node System (5 Million Points). 

 

Figure3.5: Computation Efficiency of Multiple Node System (10 Million Points). 
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Figure3.6: Computation Efficiency of Multiple Node System (15 Million Points). 

 

Figure 3.7: Graph showing computation efficiency of multiple node system. 

4

4.5

5

5.5

6

6.5

7

7.5

8

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(M

in
u

te
s)

Nodes

Sequential Parallel

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 1 0

TI
M

E 
(M

IN
U

TE
S)

NODES

1 Million Points 5 Million Points 10 Million Points 15 Million Points

42.2595 sec

1:35 min
1:55 min

4:19 min



58 

 

According to our analysis, 1 million point data is not big enough to be processed in 

parallel environment hence sequential query is still a better approach for datasets 

containing points less than 1 million. However if for any reason one wishes to process 

query in parallel paradigm then 2 nodes will give the maximum efficiency close to 

sequential efficiency. The ideal number of nodes changes with the increase in size. As we 

increase the data to 5 million, the ideal performance of parallel secondo reaches to 3 node 

system, 10 million points show 4 node system as its best approach and for full data of 15 

million points 6 nodes would be sufficient to attain maximum advantage from the system 

in analyzing the data. With the increase of data size optimal number of nodes will increase 

and therefore will be the computation power. 

This shows that our proposed system is good enough for big data however for small 

data sets lack the ability to produce improved results. Fortunately Parallel Secondo has the 

compatibility of processing both sequential and parallel queries that makes it versatile in 

nature to handle any amount of data big or small efficiently. 

Additionally there are other factors which can cause slow distribution of jobs. For 

instance, one factor is the cost of join. When the datasets need to be joined and stored on 

different nodes, the data need to be transmitted between the nodes to perform the join. 

Network bandwidth can also make distributed computing slower. Orakzai et al. (2015) 

describe partial parallelization, partial cluster utilization, network cost, disk IO, and sorting 

costs among others which can reduce the performance. 
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3.2 Pattern Analysis 

The next objective to find certain patterns related to taxi trajectories or any other 

trajectories which could be beneficial for the society in navigation or traffic management. 

The GUI of parallel Secondo is relatively less user friendly as compared to proprietary 

software like ESRI ArcGIS, ERDAS Imagine or even some of open source software like 

QGIS which provide user friendly GUI and pre-developed functions in the form of buttons 

or tools with proper help available. As Secondo is still under development phase hence it 

requires a little more user friendly environment. 

Some of the patterns we have identified in this research are as follows: 

3.2.1 Detailed Road Mapping 

We face different traffic condition at different times of the days, moreover situation 

changes entirely on the weekends due to the built up infrastructure and their inhabitant 

characteristics like if there is a school or college nearby road then there is a possibility of 

increase traffic situation at morning starting time and school leaving time. The same occurs 

if there is a number of offices nearby road that has specific leaving time. History records 

of trajectories could be a great tool to map the road conditions throughout the day that will 

makes navigation systems an advantage to suggest routes to users according to the time of 

the day. 

Hence we choose a random road segment for our analysis that contains following 

landmarks adjacent to roads location which could be the influential factors for road traffic 

conditions. 

Yulong 2nd St = 40.120284, 116.669145 to 40.120309, 116.674296 

Contains: 



60 

 

Niulanshan Winery Franchise Store 

Golden Phoenix 

Beijing Hongleyuan Information Consultation Service Center 

China Construction Bank 

Postal Savings Bank of China 

To represent the road in Parallel secondo we have to use the coordinates to 

makeline() operator which will make only one straight segment by utilizing two points. 

Whereas if road is not straight and composed of more than two points than collect_line() 

operator will  be helpful to create line in Parallel Secondo. To cover the whole width of 

road buffer will be created around the line at fix distance. 

let StartPoint = circle(makepoint(116.47111501161794, 39.952968221), 

0.0005, 2) 

let StopPoint = circle(makepoint(116.47620047991018, 39.954556088), 

0.0005, 2) 

let Road = bufferLine(makeline(center(StartPoint), 

center(StopPoint)), 0.0008) 

 

Now to analyze this roads temporal situation of taxi trajectories we have to use 

multiple queries in Parallel mode as well as sequential mode for better efficiency. As 

parallel queries are efficient for big data hence once data is filtered out then it is better to 

implement sequential queries. 

This ability of processing parallel as well as sequential queries on a single platform 

without reconfiguring makes the system flexible and easy to use. 
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Figure 3.8: Yulong 2nd St Road representation in Secondo. 

Therefore our first step should be to spread the trajectory data to all the nodes in 

order to start parallel query. 

let taxiroutes = taxiTrajectory feed spread[;TaxiID, 

CLUSTER_SIZE,TRUE;]; 

This will create DLF files in all the nodes in the cluster. Now we are able to perform 

hadoopMap operator in order to filter out all the trajectories that passed the road under 

analysis. 

let Road_taxi = taxiroutes hadoopMap[DLF, TRUE 

; . filter[(.Traj passes StartPoint) and (.Traj passes StopPoint)]  

extend[StartTime: inst(initial(.Traj at StartPoint)), 

StopTime: inst(initial(.Traj at StopPoint)), 

Roadm: .Traj at Road]] 

collect[] consume 
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Operator initial() will create extract the initial intime value when trajectory entered 

the region and inst() will convert that value to instant. For precise analysis we filtered the 

trajectories which passes both the points (starting and ending) so that only those trajectories 

could be included in the analysis which covered the whole road segment. 

let RoadPeriod = Road_taxi feed  

extend[TotalTime: get_duration(createPeriods(.StartTime, 

.StopTime, TRUE, TRUE)), Length: length(gk(.Roadm))] consume 

Another way to remove all those taxi trajectories which just crossed the road and 

furthermore passed through both start and stop points of road at any other time using 

removeshort() operator which will remove any taxi period that is short in duration. 

let Road_Filter = RoadPeriod feed extend[Roadmfilter: .Road3m 

atperiods(removeShort(deftime(.Roadm), [const duration value (0 

20000)]))] consume 

Here all the trajectories that took under 20 seconds to cross the road will be removed 

and only trajectories which took more than 20 seconds will remain as the road segment is 

785 meters long. Next as we wish to perform hourly analysis on this road hence we will 

limit our results to the fixed duration accordingly. 

let Roadld = Road_Filter feedproject[TaxiID, FilterTime, 

Roadmfilter] extend[RoadmT: .Roadmfilter atperiods(createPeriods( 

[const instant value "2008-02-04-20:00:00.000"], [const instant value 

"2008-02-04-21:00:00.000"], TRUE, TRUE))] consume; 

Here we are limiting the results only for time duration 8 pm to 9 pm on 4th February 

2008. The next task includes calculating the length of the trajectory, average speed and 
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time duration it took to cross the road and again filters will be apply in order to remove 

such trajectories which took too long time due to stays, crossing the road more than one 

time in the same hour or any other reasons. For some more precision distance filter is 

furthermore added in order to separate all the trajectories that stayed in the road for specific 

time that didn’t filtered them out on time basis however have not actually cross the 

complete road. 

let Roadduration = Roadld feed extend[Roadl: length(gk(.RoadmT)), 

Roadd: get_duration(deftime(.RoadmT)),Roads: avg_speed(.RoadmT, 

"WGS1984")] consume; 

let Roadfilter = Roadduration feed filter[.Roadd > [const 

duration value (0 10)]] filter[.Roadd < [const duration value (0 

10000000)]] filter[.Roadl > distance(StartPoint, StopPoint)] consume; 

We get three types of results in the form of duration the taxis took to cover the 

whole segment, average speed and the number of taxis passed that particular road in 

particular time.  

query Roadfilter feed avg[Roads]; 

query create_duration(Roadfilter feed extend [Duration: 

duration2real(.Roadd)] avg[Duration]); 

query Roadfilter count; 

Hourly analysis were conducted to find any pattern in T-Drive. Daily graphs of all 

three results the time, speed and count of the taxi are displayed following. In the duration 

graph we see variations throughout the day. We could see the ups and downs at particular 

times. These graphs show very low correlation with one another and no prominent patterns 

are discernible. This is due to the small number of taxis passing the road as this data is of 
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just one week. If we have data of months or year we could average out the daily routine of 

the traffic. Similarly speed graphs moreover show very little patterns whereas count graphs 

show one prominent pattern that count of taxi passing through the road increases after 0900 

hours and gets its peak at evening around 1400 to 1600 hours. 

3.2.2 Routing-Analysis 

It is not always about finding the shortest route or the fastest one. For users to save 

fuel and make their trip economical it is essential to find a route that gives minimum 

breakpoints and let the vehicles to maintain constant speed as much as it can to improve 

the mileage of the vehicle. Taxi drivers usually knows the best routes of the city. However 

sometimes even they misjudge the cost of the destination they want to reach. Hence by 

studying different taxi trajectories of a certain time one can estimate the best route to reach 

the destination without wasting much fuel. These trajectories could furthermore be useful 

to estimate time in future according to the past records. Navigation systems like Google 

Maps could only estimate the time using road network without traffic influence. However 

this way we could be able to estimate time to reach destination keeping in view the amount 

of traffic on that particular day at that particular time using past experiences of the drivers. 

Figure 3.9, 3.10 and 3.11 displays the graphs of average duration, count and speed of taxis 

on the road throughout the week. 
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Figure3.9: Daily graphs of time duration Horizontal axes (time of day) Vertical axes 

(time in minutes). 
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Figure 3.10: Daily Graphs of Taxi Count Horizontal axes (Time of day) Vertical axes (Time in 

minutes). 
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Figure3.11: Daily Graphs of Average Speed of Taxi, Horizontal (Time of day) Vertical (Speed in 

km/h). 
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Beijing Capital International Airport = 116.584321, 40.077808 

Marriot City Wall Hotel = 116.434096, 39.905151 

According to google map: 

 

Figure 3.12: Google Map navigation system from Airport to Marriot Hotel Beijing. 

Google map gives us three different routes to reach our destination moreover time 

required. However mostly this time does not incorporate the amount of traffic it face. These 

time representations could be improved using historic data of trajectories of vehicles that 

will share their actual experience on the road and they could determine the accurate time 

required to reach our destination as shown in the Figure 3.13. 

By filtering all the taxis trajectories that starts their journey from airport and reach 

destination of hotel, we could see the actual time it took for drivers to complete their route. 

According to these driver the first route which Google estimated 32 minutes took almost 1 

hour. However chances of errors here are more as we have example of only two taxis. 

However if we have data of taxi trajectories for more duration like month or year then we 

will have more examples of trajectories that took the same route on different time which 
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will let us analyze the condition of the route at different period of time in a day and week. 

Hence more data is required to complete the analysis accurately. 

 

Figure 3.13: Directions suggested by Routing Analysis in Parallel Secondo GUI. 

To achieve this analysis following queries were utilized. First step contains 

demarcation of airport and hotel location. By making point according to their latitude and 

longitude coordinates we will get point values of both airport and hotel. However as 

chances of taxi trajectories of passing right through that point is low hence a region is made 

as circle around both points that covers the road which connects these points. 

let Airport = circle(makepoint(116.584321, 40.077808), 0.0005, 5) 
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let Hotel = circle(makepoint(116.4273380799, 39.903717084), 

0.0005, 5) 

 

  

   (a)       (b) 

Figure3.14: Representation in Parallel SECONDO (a) Airport (b) Marriot Hotel. 

Here circle operator is responsible for making region by carrying out three 

parameters as point, radius distance and edges of the shape (value should be within 2-101). 

Next step contains filtering out all the trajectories that passes both these location/regions. 

For this purpose we would process parallel query as system has to compute all 10,356 taxi 

trajectories and will take time hence using hadoopMap operator to perform the filter 

operation. There is no need to spread the data again as we had already spread trajectory 

data to all the nodes in the previous analysis. 

let Route = taxiroutes hadoopMap[DLF, TRUE 

; . filter[(.Traj passes Airport) and (.Traj passes Hotel)]  

extend[AirportTime: inst(initial(.Traj at Airport)), HotelTime: 

inst(initial(.Traj at Hotel))]] 

collect[] consume 
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This will result all the trajectories that passed these two points. Furthermore we 

computed the time at which they passed these locations in order to analyze that whether 

these trajectories chose to go from airport to hotel or they were just passing by at different 

points.  

let RoutePeriod = Route feed extend[AtoHTime: 

createPeriods(.AirportTime, .HotelTime, TRUE, TRUE)] consume 

This will create the period in between both passing. Now using this period we will 

create the trajectory in form of line as well as moving point (mpoint) for representation 

purposes. 

let Routempoint = RoutePeriod feed extend[AirtoHotel: .Traj 

atperiods(.AtoHTime), AtoHDuration: get_duration(.AtoHTime)] consume 

Operator get_duration() will convert period into time duration and the atperiods() 

operator is useful for creating mpoint according to the given period. Finally some time 

filters should be placed in order to extract only those taxis that choose the direct path from 

airport to hotel. 

let RouteAtoH = Routempoint feed extend[AtHTrajectory: 

trajectory(.AirtoHotel),  

AvgSpeed: avg_speed(.AirtoHotel), Length: 

length(gk(.AirtoHotel))]  

filter[.AtoHDuration > [const duration value (0 1500000)]]  

filter[.AtoHDuration < [const duration value (0 4500000)]] 

consume 
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As Google maps stated the time to reach hotel through any path greater than 30 

minutes hence 25 minutes was chosen as lower limit for the trajectory keeping in view 

some exceptions and the upper limit be given as 75 minutes in case of some really worst 

traffic jam situations. Some extra information could furthermore be collected like the 

average speed of the vehicle and the distance travelled by the vehicle which are 

accomplished by using avg_speed() and length() operator. 

Now for representation it would be wise to display only required attributes as this 

process could take time if entries are in large amount. The feedproject[] operator allow us 

to choose the attributes we want to display. 

query RouteAtoH feedproject[TaxiID, AtHTrajectory, AirtoHotel, 

AvgSpeed, Length, AtoHDuration] consume 

There are chances that the taxi might have stopped at a particular stop in search of 

passengers. That will disrupt the analysis integrity and estimation of time would be 

inaccurate hence breakpoints could moreover be analyzed if the taxi choose to stay at a 

point for a longer time apart from signals. 

query RouteAtoH feed extend[AtHBreakPoints: 

breakpoints(.AirtoHotel, create_duration(0,10000))]] consume 

Stay duration is greater than 10 seconds. In our condition none of the two taxi 

stops at any point that shows the integrity of the analysis. 
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3.2.3 Brakes Analysis 

Analyzing the points where vehicles have to apply brake most of the time or gets 

stuck in the traffic could allow us to identify the reason of obstruction and how the users 

can avoid such situations of sticking in traffic jams. 

For such analysis Parallel Secondo provides several operators to query the stay 

points and then clustering options using DBScan and maximum distance techniques. These 

analysis will be helpful to analyze the regions where most of the times vehicles have to 

stop due to traffic jam, signal or for parking purposes. 

In parallel processing finding break points could be accomplished by using 

following lines of commands: 

let TaxiBreaks = taxiroutes hadoopMap[DLF, TRUE 

; . extend[BreakPoints: breakpoints(.Traj, 

create_duration(0,60000))] ] 

collect[] consume 

Here all the trajectories will be computed and all breaks in the trajectories where 

taxi stayed for more than a minute will be stored in TaxiBreak variable in form of points. 

Projecting all these points on Parallel Secondo GUI would cause immense amount of 

computation power and time, moreover there are chances that the system crashes for 

displaying such large amount of data hence for displaying purpose we selected break points 

of top 1000 trajectories in Figure 3.15 using head[] operator. 

query TaxiBreaks feedproject[TaxiID, BreakPoints] head[1000] consume   

However displaying break points will not be useful enough until we perform some 

clustering analysis which will determine the regions of interest. There are different types 
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of clustering algorithms present in the Parallel Secondo environment which includes 

DBSCAN and maximum distance based algorithms. Examples of both algorithms and their 

results are shown in the Figure 3.16 and 3.17. 

let taxi_breaks = TaxiBreaks feed spread[;TaxiID, CLUSTER_SIZE, TRUE;] 

 

 

let BreaksClusterDB = taxi_breaks hadoopMap[DLF, TRUE 

; . projecttransformstream[BreakPoints] collect_points[TRUE] 

cluster_c[100, 0.005] namedtransformstream[BCluster] ] 

collect[] consume 
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Figure 3.15: Brake Points of taxi trajectories in Beijing. 

Clustering the brake points using DBSCAN algorithm gives us advantage to study 

those regions where massive amount of occurrence took place. As the figure above 

displayed the city center crowded with break point clusters. A one pattern to be noticed is 

that the point density increases vigorously at the junctions and crossings which could 

identify the positions of traffic signals. 

 

   

Figure 3.16: Clustered results of DBScan Algorithm. 

Similarly we applied maximum distance based clustering and compared with 

DBSCAN clustering. 
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let BreaksClusterMD = taxi_breaks hadoopMap[DLF, TRUE 

; . projecttransformstream[BreakPoints] collect_points[TRUE] 

cluster_d[0.005] namedtransformstream[BCluster] ] 

collect[] consume 

 

Until now our data was not significantly big to make a difference. However some 

queries require more computation power than the others like the one mentioned above. 

Clustering requires powerful computation as it has to analyze all the points and their 

neighborhood. Hence processing this query in parallel environment and comparing with 

sequential mode gives us a significant difference. Until now we were having time 

efficiency of maximum 2 minutes on this data. However clustering query as DBScan 

algorithm gives us time efficiency of 53.7786 seconds on 10 nodes in comparison of 

sequential query with processing time of 5:06 minute. If we scale up this difference we will 

get the true application of big data and its advantages. Even the maximum distance based 

algorithm creates a more significant difference where parallel query took 1:41minute 

processing time and sequential query after 20 minutes gives no response. This shows the 

effectiveness of parallel environment. 

 

Figure 3.17: Clustered Results of Break Points using Maximum-Distance algorithm. 
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Green points represent maximum distance based clustering whereas blue points are 

the DBSCAN clustering points. Count of DBSCAN clusters are way less than maximum 

distance based that is 702 to 28299 respectively. This is because DBScan algorithm put 

limits at clusters to have minimum number of specified points (in our case 100) so that 

clusters could be made only those places where density of the points is higher whereas 

maximum distance based cluster have no such limitations. 

 

 

 

Figure 3.18: Comparison between Cluster density of DBScan and Maximum-Distance algorithm. 
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3.2.4 Stops Analysis 

Analyzing the trajectories of history in a bulk could let us have important 

information about where most taxi drivers tend to find their passengers and which point 

will be close to the user who want to avail the services of taxi. 

This analysis can be done by the same method as applied in the previous analysis 

of break points by increasing the duration value to one hour. It will compute all the points 

where the taxi has stayed at one place for more than one hour. This could be taxi parking 

area or any other parking slot. The results of such analysis is shown in Figure 19. 

let TaxiStops = taxiroutes hadoopMap[DLF, TRUE 

; . extend[BreakPoints: breakpoints(.Traj, 

create_duration(0,3600000))]] 

collect[] consume 

Figure 3.19 shows the stop or parking points of different Taxi. Mostly these 

points are off road that represents parking areas inside buildings or off road. If we 

perform DBScan cluster analysis to check at which parking region more than 50 taxi 

parked in the span of 7 days. We get the results as shown in Figure 3.20: 

Blue dots shown in Figure 3.20 represents the cluster of taxis inside a parking 

spot. If we increase the maximum distance parameter to 0.01. We will get some more 

results:  

As we see now we get three different locations of parking spots. By decreasing 

the minimum number of points to 20 we even get more frequent locations where most of 

the taxi drivers prefer to park. 
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3.2.5 Speed Analysis 

Analyzing the areas and time where most drivers exceeds the speed limit of the 

road, will help the traffic control units to take precautions at that particular time and place 

to avoid accidents. 

 

 

Figure 3.19: Stop Points of Taxi’s in Beijing City. 

For such analysis we use speed operator which determines the speed of the moving 

point and accordingly filters out the required results we need. Following set of commands 

are utilized in order to carry on the process. 

let Speed120 = taxiroutes hadoopMap[DLF, TRUE 

; . extend[Speedm: .Traj when[speed(.Traj, 

create_geoid("WGS1984"))>33.333]] ] 

collect[] consume 
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Figure 3.20: DBScan Cluster of minimum 50 points. 

 

Figure 3.21: DBScan cluster of minimum 20 points. 
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Figure 3.22: (a) Clusters with minimum point value 20 and maximum distance value 0.005.(b) 

Clusters with minimum point value 20 and maximum distance value 0.01. 

After collecting those moving points that move more than 120 km/h (33.333 m/s) 

speed in another attribute we will again spread the new data on parallel nodes in order to 

carry out results faster. 

let taxi_speed120 = Speed120 feed spread[;TaxiID, CLUSTER_SIZE, TRUE;] 

let Speed120V = taxi_speed120 hadoopMap[DLF, TRUE 

; . project[TaxiID, Speedm] extend[Speedv: vertices(.Speedm)] ] 

collect[] consume 

 

query Speed120V feed filter[maximum(speed(.Speedm, 

create_geoid("WGS1984")))>33.333] extend[MaxSpeed: 

maximum(speed(.Speedm, create_geoid("WGS1984")))] consume 

 

The resultant query will give us 2867 taxi that violated the speed limit of 120 inside 

and outside the city out of 10,356. Figure 3.23 shows the regions where speed exceeded. 
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We could see that points reach the far end of the Beijing on expressway and 

motorways which are likely to go faster. However if we apply cluster algorithm using 20 

as minimum number of points and 0.01 as distance parameter we get the results as shown 

in Figure 3.23: 

The results in Figure 3.24 show that even in city center drivers tend to go faster at 

several occasions. 

 

Figure 3.23: Points where taxi speed exceed 120 km/h. 

     

Figure 3.24: DBScan cluster of speeding points. 
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Chapter 4 

CONCLUSION AND RECOMMENDATIONS  

 

4.1 Conclusions 

This study demonstrates a series of experiments which were carried out in a 

distributed spatio-temporal DBMS, Parallel Secondo, to test its efficiency. Parallel 

Secondo uses the Hadoop framework to share tasks across multiple processing nodes. 

T-drive datasets with varying numbers of data points were queried using standard 

spatio-temporal queries in sequential and parallel frameworks of Parallel Secondo. The 

results highlight that increasing the number of nodes in the distributed system will not 

always produce efficiency. This is due to the unavoidable overhead of distributing the 

processing to multiple nodes. The number of data points and the complexity of the 

spatio-temporal query are the principle factors which determine if parallel processing 

will be more efficient. The results of the study suggest optimal node numbers for 

different cases of queries and different volumes of data. This will serve as a guide for 

researchers wishing to improve the efficiency of spatiotemporal queries on large 

datasets. 

Vehicles trajectories furthermore show the behavior of the driver and its needs. 

Analyzing such prospects leads us to an understanding world and brings easiness in 

human society. Knowledge extraction from historic data could be much more valuable 

than expectations if used correctly. Need of big data techniques for such analysis are 

imminent and requires much opportunities for researchers to focus on different 
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innovative analysis using fast processing. These techniques should be refined in such a 

way that common user or researcher with low IT background could efficiently use such 

system in order to carry out analysis of its own field as data is everywhere and the need 

of studying data and extracting information from that data is increasing day by day with 

the evolution of technology and need of more luxury in human life. 

In future, we plan to use Amdahl’s law in order to check the distribution strategy 

of Parallel Secondo and the type of query being run. Amdahl’s law is defined as “a law 

governing the speedup of using parallel processors on a problem, versus using only one 

serial processor.” In the current study, the default data partitioning strategy of Parallel 

Secondo is not optimised for all kinds of queries. The users should calculate the 

probability of each type of query a benchmark model BerlinMOD has (e.g. range, point, 

join etc.) and based on that decide the best partitioning strategy which has the least 

overall querying cost. 

4.2 Recommendations 

We furthermore suggest some of the analysis that are possible if we could have 

live feed of the trajectories from different vehicles such as: 

4.2.1 Crime Investigation 

Increasing crime rates in every corner of the world need a special concern. Using 

trajectories of the vehicles we could establish a system to track down the path of the 

criminal’s vehicle by tracking the nearby vehicles at that particular instant which could 

make possible to get information of the culprits heading in a particular direction. 
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4.2.2 Commercial Advertisement 

Sending messages to the valuable customers about the new products and sale 

offering by different companies is becoming a famous tool for promotion and 

advertisement of the product. However to identify valuable customers would be a plus 

point rather than sending messages on mobiles to random users. One way to estimate these 

particular customers could be done by studying the behavior of different personalities by 

analyzing their vehicle trajectories like which vehicles have the same route to their owner’s 

work where the outlet of the company is present. Where vehicle visits most of the time will 

determine the interests of that particular owner’s taste. 

4.2.3 Live traffic reports 

Having live feed of the traffic could make the navigation system to next level. If a 

vehicle is stuck in a traffic jam identified by the trajectory condition of that vehicle could 

allow navigation system to divert all other users to some other route so that they could 

avoid the traffic jam. 
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