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Abstract

Traffic Matrix Estimation (TME) techniques address the problem of determi-

nation of a network’s traffic demand matrix from its link load measurements and is

considered critical for capacity planning, anomaly detection and many other network

management related tasks. With the advent of cloud services such as IaaS (Infras-

tructure as a Service), Paas (Platform as a Service) and Saas (Software as a Service),

the traffic patterns are difficult to model since they do not follow a single probability

distribution such as Poisson, Gaussian, Negative Binomial etc., thus decreasing the

estimation accuracy using the available methods.

Traffic Matrix Estimation for a large network with accuracy is of utmost im-

portance and is considered a challenging problem. Many approaches use statistical

inference distribution on traffic matrix elements that rely on initial or available mea-

surements of the traffic flow (mean and variance). This thesis asserts and proposes

a solution for the estimation of traffic matrix that possibly exhibits over-dispersion,

which is a more severe problem with mice flows (i.e. small flows) than the elephant

flows (i.e. large flows). Moreover, this thesis presents a traffic matrix estimator

which shows optimal performance while minimizing errors when there are sparse and

limited measurements(training datasets) availability. Furthermore, this thesis inves-

1



List of Tables

tigates the effects of sparsity and measurement errors (training data errors) for a

large network.

The main contribution of this thesis are 1) investigation for the traffic ma-

trix that may experience over-dispersion and formulation of a two-step optimization

approach with appropriate accuracy and additional constraint. 2) Investigate and

development of a novel architecture that demonstrates superior outcomes for simu-

lations for real datasets and 3) review the case of traffic matrix estimation in which

the measurements (training datasets) may be limited in size and may have missing

information or incomplete data with errors

2



Chapter 1

Introduction

As with the rapid growth telecommunications traffic and network needs net-

work management and planning to establish equipment requirements and routing

information for subdivisions of the Internet is the significant responsibility of service

providers. Network traffic analysis and management plays is the crucial task for the

management of the large networks.

To manage these IP backbone networks traffic matrix information or measure-

ments are required to design , plan and monitor a network. Network managements

tasks includes load balancing , routing protocols configuration etc .Traffic matrix rep-

resents the amount of traffic flows among all possible origin-destination traffic pairs

.The traffic volume between OD nodes is give by traffic matrix elements. A router ,

link or point-of-presence (POP) can be represented as node in a traffic network and

traffic volume is expressed as number of packets and a router or link defines volume

of traffic for a certain time is denoted as counts.

For a certain link measurements its difficult to estimate OD flows information

3



Chapter 1: Introduction

in Traffic matrix since in a network number of the links are usually less the number

of OD flows or simply, more unknown quantities are require to be estimated from a

limited number of known data (link measurement). A ill-posed network problem is

observed here also called an under-constrained network problem and solution for the

ill-posed problem is provided by several researchers using multiple techniques.

Network tomography method is a modern estimation and prediction tech-

nique for traffic matrix prediction with accuracy. This techniques/ model also depicts

a major ill-posed problem in estimation and prediction [4]. Numerous TM estimation

techniques [5–7] exploit the requirement of the prior traffic matrix element informa-

tion and end-to-end measurements, for the distribution and optimization assumptions

for reliable modelling for the prediction of traffic measurements [8, 9].

Two type of network applications need traffic matrix estimation: 1) Online

application and 2) Offline application. First one is related to network traffic man-

agement as it needs to get Traffic matrix within few seconds during a short real time

period. Second one is related to network planning as it requires a Traffic matrix

representing the mean and the static change of OD flows. Therefore, traffic matrix

estimation techniques are directly propositional to the utilization of traffic matrix in

different network applications.

Various literatures emphasized on supplementary data requirement for the

estimation more accurately [10].Popular traditional methods includes tomogravity

method [11], the principal component analysis (PCA) method, [10], etc. However

with the increasing large networks the ill posed and under-determined system is be-

coming a challenging for the prediction and estimation [4, 6, 7]. Current network

architectures and applications have new network traffic statistical features but they

4
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are still modeled by Poisson and Gaussian models, that create anomalies and inac-

curacies in the estimation of network parameters [10] .

1.1 Focus of this Dissertation

Traffic matrix (TM) estimation techniques for multiple network applications

are proposed in this thesis which will allow us to estimate accurate traffic matrix

along with the other network parameters. Considering the link count measurements

are provided by some real datasets. Accurate prediction of the traffic for all source-

destination nodes connected through traffic routes is the main object of traffic matrix

estimation.

Initially the prediction or estimations techniques for the networks are classi-

fied in two categories 1) the deterministic and 2) the statistical . For the determin-

istic approach the characteristics of the prior traffic matrix are required to recognize

a accurate traffic matrix due to under-constrained or ill posed feature traffic matrix

estimation. However the statistical approach required more information about traffic

flows between Origin-Destination(OD) nodes for the true prediction and estimation

of traffic matrix.

For the first contribution we refer the over dispersion problem where sta-

tistical methods usually fail when accuracy is considered. Statistical prediction ap-

proaches do not provide a reasonably accurate solution when faced with the problem

of excessive dispersion. This work shows through real world datasets that dispersion

(over-dispersion in our case) causes serious issues with smaller flows. As a result,

a two-stage optimization strategy is proposed where larger flows are predicted with

5
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reasonable accuracy in the first step with more conservative estimates for dispersed

smaller flows. A second step for optimization with more restriction refines the solu-

tion for dispersed small flows. Experimental results demonstrate that for ill-estimated

flows, prediction can be increased up to 4 orders of predicted values.

For second contribution , a traffic matrix estimation framework is developed

with guaranteed superior performance with availability of limited training data or

outlier measurements. Moreover we investigated the limiting training data chal-

lenges and develop a new algorithms with architecture that can give solution for

these difficulties and guaranteed better performance. This approach provides su-

perior outcomes for estimation of traffic matrix using convolutional neural network

based technique with limited training data availability and outlier end-to-end mea-

surements.

The thesis flow of chapters is as follows: Chapter 2 consist of detailed litera-

ture review, Chapter 3 outlines real world datasets used for our proposed techniques.

Chapter 4 discusses the first contribution estimation of traffic matrix elements that

exhibits less dispersion, which are then step-wise applied for the estimation of the

traffic matrix elements suffering from more over dispersion results. Chapter 5 dis-

cusses the second contribution traffic matrix estimation framework based on neural

network and Chapter 6 finally summarizes and concludes the thesis.

6



Chapter 2

Traffic Matrix Estimation

Traffic matrix plays a vital role in several network applications. These net-

work applications need traffic matrix for the network planning and network manage-

ment. Traffic matrix mainly provides over all information about the data exchange

among different nodes. For network applications, Traffic matrix is very important

input to perform various network related task therefore, its accuracy is considered

very crucial. To estimate these traffic matrix, Traffic Matrix Estimation techniques

must be efficient and accurate for the effective performance of network applications.

In this chapter numerous Traffic matrix estimation techniques and approaches

which are required for multiple applications for large networks such as network de-

signing, dimensions and planning, network management and congestion control are

discussed in detail.

7



Chapter 2: Traffic Matrix Estimation

2.1 Traffic Matrix Estimation Techniques

TME techniques which are produced in large-extent networks are distributed

into two main categories: statistical and deterministic This distribution is based on

the consumption of the techniques in a variety of network applications. In below, we

detailed review about these categories are discuss.

2.1.1 Deterministic approach

Several Traffic matrix estimation techniques that fall into the category of

this approach are the methods that apply prior traffic matrix features to optimize

or find the unique solution in that region. Deterministic techniques use link count

measurements, thus traffic data between all OD traffic pairs are also represented

as constant values in traffic matrix. Usually, deterministic approach provide us the

Traffic Matrix estimation problem as optimization of ill posed problem. Traffic Matrix

estimation approaches that are related to this approach use link count measurements

as constraints having different objective functions. One of the approach [12, 13] use

objective function as max of sum of weighted flows and another approach [11, 13] set

the objective function for the minimum distance between predefined Traffic matrix

that was supposed to be combined with real traffic matrix and created ill-posed

problem.

Usually all deterministic techniques express traffic matrix estimation problem

as optimization problem. Table 2.1 shows few deterministic approaches considering

traffic matrix problem as optimizations problem. These techniques using determin-

8
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Objective Function Constraint
Linear Program maximize

∑n
i=1

∑n
j=1 wijxij Ax ≤ Y

Least Square minimize
∑n

i=1
∑n

j=1(xij − mij)2 AX = Y

Information Theory minimize
∑n

i=1
∑n

j=1
xij

TX
{log

xij

mij
} Ax = Y

Generalized
Kruithof minimize

∑n
i=1

∑n
j=1

xij

TX
{log

xij

mij
− log Tx

TM
} Bx = β

Table 2.1: A variety of deterministic approaches for TME

istic approach are Least Square approach [11], Linear Programming (LP) approach

[11, 14], Generalized Kruithof approach [15],[11] Information coding and theory [11],

[11] . Apply minimize of |AX − Y | rather than AX = Y due to the uncertainty of

the accuracy of real network link counts.

2.1.2 Statistical Approach

This approach is based on assumption on traffic model. The origin-destination

(OD) pair traffic follow a certain distribution such as the Poisson [16, 17] or Gaus-

sian [18]. However, such assumption can be applied on limited number of elements

of the Traffic matrix , eventually it can be applied on specific time period , thus the

hypothesis of these distributions is not valid in general scenario [19].

The statistical approach use the random variable for link count measure-

ment specified over continuous time periods therefore in traffic matrix, all origin-

destination (OD) pairs estimated represents model with statistical characteristics of

the traffic measurements.The Statistical methods include one-step and 2-step Expec-

tation minimization methods, [17], [17], it considers the Bayesian approach method

[16] under its optimization and it also includes Iterative method [17] and moments

method [16]. Traditionally, traffic models such as Poisson [16], and Gaussian [18]

were used in the development of modelling OD measurements. Recent work shows

9
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the implementation of artificial neural networks used as statistical approach as well

using numerous ANN artificial neural network techniques. Statistical approach pro-

vides traffic matrix that combines mean, variance as well as statistical characteristics

required for the different network applications.

2.2 Traffic Matrix Estimation Challenges

Prediction and accurate estimation of traffic matrix is mathematically calculated

using equation (2.2.1).

Y = AX (2.2.1)

In the equation three network parameters are used for a smooth prediction

and estimation. These parameters are measured link loads Y , routing matrix A and

traffic flows X. Routing protocols such as Intermediate System-Intermediate System

(IS-IS) [20] and Open Shortest Path First (OSPF) [21],can be helpful to find the

routes. For large networks, these routes can be obtained using famous algorithms

such as Dijkstra [22] or Bellman-Ford algorithms [23] ;and SNMP protocol.

For the first step in the traffic matrix estimation, X (traffic flows), Y (link

loads) and A (routing matrix) are required for estimation of certain traffic. Equation

(2.1.1) depicts ill-posed condition for under-constrained system , where count of OD

flows is more then the provided number of measured links. This will lead to a infinite

set of solutions for equation (2.2.1) and there will be no unique solution. This is

called ill-posed network problem.

10
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2.3 Problem in the Deterministic Approach

Consider a 3-node network with 2 links and 3 origin-destination flows as

shown in figure 2.1. Links are measured as 12 and 16 and these links can be used for

estimation other link flows.

Measured link loads as shown in figure give us the summation results of 12

and 16 as measure link loads. These constrains are shown in figure 2.2 in the form of

equations. This shows the ill-posed network problem where number of knowns and

number of unknowns are under-determined and they have no unique solutuon.

The line AB (hyperplane AB) as shown in figure 2.2 denotes the solutions.

Point P denotes the initial available solution which is required for the prediction

of new solutions. The hyperplane solution is satisfying all spatio-temporal con-

straints.The outcome is initially available traffic matrix or calculated using an al-

ternative method using link measurements such as the gravity model.

Similarly, we consider another toy network in figure 2.3 which have 4 directed

links and six OD paths. Routing matrix is as shown in figure in matrix form, routing

matrix rows represent the connected links and routing matrix and it represents the

OD pairs for linear solution.

To estimate of the traffic matrix with accuracy, it is assumed that an prior

information of the Origin-Destination traffic is accessible for the connection between

the traffic flows and connected links. Once again network shows ill-posed problem and

system of equations for solution is under-constrained , more count of unobservable

then observable are present. This is again an ill-posed or under-constrained problem

as the number of unobservable is greater than the number of constraints (observables)

11
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. Consequently, this is ill-posed problem which will not produce unique solution.

However, we can apply mathematical model rather than deterministic solution. Some

researchers used historic data to calculate prior, then applied some algorithm to

estimate the matrix.

Figure 2.1: Toy network

12



Chapter 2: Traffic Matrix Estimation

Figure 2.2: Solution Hyperplane
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Figure 2.3: A toy cloud network

A =



1 1 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 0 0 0 1 1


(2.3.1)

2.4 Traffic Modeling Problem in the Statistical Approach

Generally four inputs are applied to the statistical approaches as shown in flowchart

in Figure 2.4.

• Assumption on the elements of the traffic matrix: These assumptions influence

particular statistical approach that will be useful and applied.

• Prior Traffic matrix measurements: Statistical methods required a previous es-

14
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Figure 2.4: General diagram for statistical approach

timate of Traffic matrix achieved from prior data and measurements.

• ISIS weights: This input helps to calculate shortest paths to generate the A

matrix.

• SNMP data: SNMP is required to enforce constrains on predicted traffic matrix.

It provides observed link counts.

Statistical approaches vary with assumptions applied on the traffic matrix

components, and on the particular method, to predict and estimate the corresponding

parameters. However, the Expectation Minimization method start with a random

matrix to estimate the Traffic matrix , but it may get trapped in the optimization

because of some wrong assumptions.
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2.5 Various Techniques for TM Estimation

Many techniques and algorithms are introduced previously for Traffic Matrix

estimation for large networks. We analyze and review explaining each technique

proposed earlier.

2.5.1 Generalized Linear methods (GLMs)

In s statistical model, there are two components of linear methods namely

systematic and random. Firstly we consider systematic components as shown in

equation (2.5.1).

Y =
m∑

a=1
γaxa (2.5.1)

Where, xa represents the known independent variable and γa are constant parameter.

In our model we are collaborating both random and systematic components. Now a

GLM is examined which is indicated as,

• Let z be a dependent random variable whose parameter θ1 with distribution is

discussed in section 1.1.

• X1...Xm are the set of independent variables whose predicted result Y.

• A mapping function θ = f(y) linking the parameter θ with the predicted value

Y of the GLM model.

Where z represent normal distribution with θ as mean For optimization of the traffic

matrix the GLM make an important role. NBM and Binomial with optimal properties

are under consideration for the purpose of optimization of traffic matrix A.
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2.5.1.1 Poisson Variation

In poison distribution the variance of the data must be equal to the mean.

var(Y ) = E(Y ) (2.5.2)

Although, we have a data that perform over-dispersion where the mean must

be smaller than variance. In [24] Nelder and Wedderburn presented the relation

between variance and mean by applying iteratively-reweighted least squares (IRLS)

algorithm that only depends on the variance and mean of the data. The final es-

timates are known as quasi-likelihood estimates (MQLE), In maximum likelihood

estimation (MLE) and there are many properties of optimality which are shown be-

low. Let us assume that the variance is directly proportional to mean.

var(Y ) = ϕ E(Y ) (2.5.3)



Ifϕ = 1 then the variance equal to mean

Ifϕ > 1 over-dispersion occurs

Ifϕ < 1 under-dispersion occurs


(2.5.4)

In IRLS algorithm the weight w∗ = ϕ E(Y ), poisson weight w = µ divided by

ϕ, but cancel the factor of of ϕ during the computation of estimator which optimize

the poisson MLE. Therefore poisson optimizations are MQLE when the variance

is directly proportional to the mean. The general form of optimizer variance with
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parameter ϕ is given by,

V ar(γ) = ϕX
′
TX−1 (2.5.5)

Where T = diag(ω1, . . . ., ωn), When ϕ = 1 it will reduce the Poisson variance.

This shows that the Poisson distribution error is fundamental in the existence of over-

dispersion.

2.5.1.2 Negative Binomial

Negative binomial is an alternative method for over-dispersion modeling. It

is start with count data from a PRM and substitute a multiplicative random effect

ϕ to characterize unobserved heterogeneity.

Let us assume we have conditional distribution of Y given that unobserved

random variable ϕ with variance and mean,

Y |ϕ ∼ P (µϕ) (2.5.6)

In this negative poission mode the the data must be poisson if we only find ϕ.

By taking integrate it out of the likelihood function as assumption related to distribu-

tion, efficiently solving the unconditional distribution of the consequence. Moreover,

for mathematically convenient assume that ϕ has γ distribution with parameters a

and b. This distribution with mean a/b and variance a/b2, consider a = b = 1/σ2

which create the mean of the unobserved value equal to 1 . With this data we can find

the unconditional distribution of the event which is called negative binomial distri-

bution. The representation of density in term of parameter a,b and mean calculated

below. Even though in our case a = b = 1/σ2.
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P (Y = y) = Γ(a + y)
y!Γ(a)

baµy

(µ + b)a+y
(2.5.7)

This is the best distribution in term of number of failure a prior to k-th

sequence of Bernoulli distribution with probability success of π. The π density re-

lated to analysis applying substitution from the illustration above. The NBD with

parameters a = b = 1/σ2 with expected value and variance is given by,

E(Y ) = µ

V ar(Y ) = µ(1 + σ2µ)
(2.5.8)

• If σ2 = 0 there is no unobserved heterogeneity.

• If σ2 > 0 then the variance is greater than the mean. So the NBD is ober-

dispersed.

More generally, these types of events can be derived with the help of iterated

law of expectations with taking under consideration of gamma distribution. We need

conditional probability events E(Y |ϕ) = V ar(Y |ϕ) = ϕµ with assumption of mean

equal to 1 and variance. The unconditional mean is generally the expected value of

the conditional mean.

E(Y ) = Eϕ[EY |ϕ(Y |ϕ)] = Eϕµ = µEϕ(ϕ) = µ (2.5.9)

Where, subscripts shows clarification over distribution when considering in expecta-

tions.
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V ar(Y ) = Eϕ[V arY |ϕ(Y |ϕ)] + V arϕ[Eϕ(ϕµ)]

V ar(Y ) = Eϕ(ϕµ) + V arphi(ϕµ)

V ar(Y ) = µEϕ(ϕ) + µ2V arphi(ϕ)

V ar(Y ) = µ + µ2σ2

V ar(Y ) = µ(1 + µσ2)

(2.5.10)

Subscript is used to clarify over the distribution we are taking the expected values

or variance.

2.5.1.3 Simplex Method (SM)

SM [25] is the most general method for numerical solution of the LPM. SM is

based on optimal LPM that are associated with extreme value of the under-observed

region. Thus, SM circulate around the boundary layer of the observed region which

are able to enhance the performance of objective function. As a consequence, some

solution are ignored because they are not related to extreme value.

2.5.2 Linear Programming technique

Goldschmidt [12] intended traffic matrix prediction and optimization problem

by means of a Linear Programming (LP) method. Enhancing OD flows summation

and relating it to limitations that showing the OD flows on a link that equal or

lesser compared to link capacity. Suggestion by authors are that it would be valuable

if path length as a cost function is added weight to obtain more accurate results.

Several different methods have been implemented to tackle the linear programming
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formulation such as Simplex method and Interior Point Technique.

2.5.2.1 Interior Point Method (IPM)

SM is associated with relative extreme value along the edge of the observed

region. In IP method the interior of the observed region cuts to reach the optimal

solution. This concept was implementing for a long time [26, 27]. The LBM of

Frisch [28–30] and the CM of Huard [31, 32]. The IPM is divided into 3 types,

Projective-Scaling (PS) technique [33], and Path-following (PF) technique [34, 35]

and affine-scaling (AS) technique. The affine scaling technique is implemented in

[14] for the solution of optimization problem TM estimation for nonlinear systems.

2.5.3 Gravity Approach Method

For traffic matrix estimation, the gravity based models are used in wide range

of fields in social science [36–38], [39–41], [42, 43], in telephony network [42, 43] and

in transportation networks[39–41]. Initially gravity model was applied in [44] and

was more elaborated and evaluated as Choice Model [19].

Generally, the gravity model is applied on a network to get a pre-defined

Traffic Matrix known as prior TM. This pre-defined traffic matrix include character-

istics of the real TM and estimation techniques associate with prior TM to determine

the solution for ill-posed or under constrained traffic estimation problem.

2.5.4 Gravity Model (GM)

It is sometime called trip distribution models which are implemented in trans-

portation application for optimizing traffic matrix [45]. In GM there is trip exchange
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between urban area and zones which is directly related to attraction of zones and

inversely applied to the separate zones functions. For the traffic links optimization

issues, we gather data packets transferred to and from nodes.

A generalize equation is shown below.

Xji = g(Sj, Wi)
uji

(2.5.11)

Where g(.) is a varying function, Xji is the traffic going from j to i. Sj is a

parameter related to leaving j point. Wj is a parameter shows factors related towards

j and gij shows the friction factors between j and i.

A tomogravity model proposed by Zhang et al [11]. This technique follows two

stages. In first stage the generation of prior TM using SGM that creates usage of intra

link measurement data. In second stage the optimization of prior TM attained from

the GM, using the LSM that find the best set of fitting variable. For larger networks

this implementation needs 7 seconds or less by researchers [11]. Generally, the GM

is used to get the rough set of TM called apriori TM that provides the specifications

of the real TM. Optimization methods such as statistical and deterministic methods

cooperate with the prior traffic matrix information to get a accurate estimate of

solution formed by the limited TM optimization problem.

2.5.5 Generalized GM

This section presents the straightforward gravity model for optimization and

estimation for ill-posed structure of network. As a matter of first importance, we

represent the IP network by Fig 2.5. Figure shows three networks labelled B, C and
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D and they are associated by large netwrok A . The Large Network have dedicated

customer connection and client connection as access and edge points. Generalized

models counts the edge and access joins and in the event that the network has no

large network connection and access interface, we get the straightforward GM as

given below:

T (ei, ej) = T in(ei)
T out(ej∑

ekϵET out(ek)

T (ei, ej) = T in(ei∑
ekϵET in(ek)T out(ej)

(2.5.12)
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Figure 2.5: The IP network components.

Nonetheless, this GM is unreasonable because of the way that the unmistakable

treatment to peer connection and access interface by genuine network is generally

existed. Coming up next is the summed up GM which makes the traffic from access

connect to large network interface named as edge traffic. The traffic from large

network node connect to edge interface in genuine network, pi the ith edge connection

of the network, Pi the arrangement of friend joins conveying traffic to the network,

and the connection of all companion joins. Therefore the summed up GM is given

below. The output traffic from the entrance interface to the friend connect is provided
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below :

Tout(ci, pj) =


T in(ci)∑
ck

Lin(ck)
∑

pk∈Pm
T out(pk), ifpj ∈ Pm

0, otherwise

 (2.5.13)

This section deal with simple gravity model and its generalized version. Ini-

tially, an IP network factors are shown in figure 2.5. In the figure, we observe three

peer networks, i.e., network B, network C and network D connected to a large network

A by the appropriate node links and access point network . Both the access points

and node links are denoted as edges, and the interior link in the large network. Both

links (interior) and edge links are commanded and thus denoted as directed links. In

GM only edge links are involve.

The simple GM for this scenario is defined below: [11],

L(ei, ej) = Lin(ej)
Lout(ej)∑
ek

T out(ek)

L(ei, ej) = Lin(ej)
Lout(ej)∑
ek

T in(ek)T out(ek)
(2.5.14)

E shows the network links. In first stage the generation of prior TM using

SGM that creates usage of intra link measurement data. In second stage the opti-

mization of prior TM attained from the GM, using the LSM that find the best set of

fitting variable.

Moreover, this GM is unfeasible due to that the fact that the distinct action

to access and peer link by real network is extensively existed. The following is

simplified GM optimize the traffic matrix for multiple situations. First situation is

inbound traffic (peer link to access link), second situation is outbound traffic (access
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link to peer link) and third situation is internal traffic ( access to access link).

The generalized GM is represented as follows.

Lout(ci, pj) =


Lin(ci)∑
ck

Lin(ck)
∑

pk∈Pm
T out(pk), ifpj ∈ Pm

0, otherwise

 (2.5.15)

The inbound traffic from peer to access link is represented as,

Lout(ci, pj) = Lout(cj)∑
ck

Lout(ck)T out(pi) (2.5.16)

The internal traffic from access to access link cj is represented by.

Linternal(ci, pj) = Lout(cj)∑
ck

Lout(ck)T out
internal(pk, cj) (2.5.17)

Where,

Lout
internal(cj) = T out(cj) −

∑
pk∈P

Tinbound(pk, cj) (2.5.18)

2.5.6 Tomography Model

The traditional statistic approach used for the solution of traffic matrix esti-

mation problem was proposed by Vardi as in equation 2.2.1. .In this section we will

talk about equation 2.2.1 and the routing matrix A. Equation 2.2.1 shows the link

load vector disclose the load for individual direct link. The binary routing matrix

is a matrix, directed links are its rows,the OD pairs are its columns and zero entry

shows no directed link.
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1 EF 2 EG 3 EH 4 FE 5 EG 6 FH 7 GE 8 GF 9 GH 10 HE 11 HF 12 HG
E→F 1
E→G 1 1
F→E 1 1 1
F→H 1
F→H 1 1
G→F 1 1 1
G→H 1 1
H→F 1 1
H→G 1 1

Table 2.2: The network routing matrix

Figure 2.6: The Network Topology

Consider the toy network example in figure 2.5 OD pairs (4x3) and 9 directed

links are shown in figure 2.5. Table shows the routing matrix A , the blank entries

are zero. Every two node (router) routing is pre-specified. As in example both of the

paths G→F→E and G→H→F→E are connecting the OD pair G→E.
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2.5.7 Moore-Penrose Inverse and Least Square method

The routing matrix in Moore-Penrose inverse method is given by A+ and

following four equations reflect the Moore-Penrose Inverse:

AA+A = A

A+AA+ = A+

(AA+)H = AAA

(A+A)H = A+A.

(2.5.19)

The general solution of Equation 2.6.2 is as follows

X = A+Y + (INxN − A+A)T, (2.5.20)

A+ shows the inverse of the routing matrix A (Moore-Penrose), INXN is representing

identity matrix. N-element random vector is given by T, consisting a random value.

2.5.8 Information Theory Method

Information theory and coding is a customary means in communication net-

works [46]. We start with fundamental probability specifications as PX(x). The

ill-posed linear inverse problem is observed in multiple fields as in Seismology, As-

tronomy, and Medical Imaging [46, 46–49]. Therefore it is concluded that some prior

information is required for the reconstruction of the estimation or prediction. To

solve the ill-posed problem minimization equation with regularization parameter and
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penalization function is proposed as in equation below

p(x, y) = p(x)p(y) (2.5.21)

Equation can be defined as product of the marginal probability is equal to the joint

distribution. It can also be related to conditional probability

p(x|y) = p(x) (2.5.22)

Entropy is also one of the crucial element in the prediction of probabilities.

Entropy rule assist us in finding the probability distribution in different situations.

Technically, if initial history information about a random variable is unknown then

uncertainty regarding that random variable is very elevated, hence to minimize this

uncertainty certain distribution should be selected.

And if initial history information about a random variable is known using

few constraints, applying rule of thumb of entropy states to maximize the entropy

H(X|C) of X conditional. Thus we select a solution to maintain the uncertainty

provided the constraints conditions. [47].

The ill-posed inverse problem of a network is observed in multiple fields as in

Seismology, Astronomy, and Medical Imaging [46, 46–49]. Therefore it is concluded

that some prior information is required for the reconstruction of the estimation or

prediction. To solve the ill-posed problem minimization with regularization parame-

ter and penalization function is proposed as in equation (2.5.22)

minx=∥y − Ax∥2
2 + 2.λ2logπ(x), (2.5.23)
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In equation 2.5.23, ∥∥2 represents L2 norm, λ > 0 specifies regularization

parameter and penalization function is given by J(x). Equation 10 leads to the pro-

posals used in several fields with pragmatic and theoretical success. These methods

and strategies are referred as regularization of ill-posed problems [17]. Bayesian ap-

proach [17]is usually considered for regularization when x is estimated from random

variable using initially available probability distribution function with density π(x)

and Gaussian White noise with variance σ2.

2.5.9 Expectation Minimization Method

In authors in [18] considered an OD request as Gaussian conveyance with

a expected value and a fluctuation σ, which are connected via ∑
i = ϕ(λi)c when

λ and ϕ are assessed for c = 2 in [18]). The assumed method is drived from the

expectation minimization and the contingent assumption work Q is given below :
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Q(γn+1, γk) = E(L(γn+1|XT )|Y T , γn (2.5.24)

Where γ = (λ, ϕ) denoting the boundaries to be determined.

The strategy comprises of 2 stages, "Assumption step" and the "Boost step".

In the assumption step, γ and arrangement of interface tallies estimations,

and afterward a continuous arrangement OD requests prediction is conducted. The

deterministic traffic matrix assessment methodology is applied when an earlier TM

and a connection provides the estimation. In [18], the conditions (2.6.6) are compared

with the condition given in (2.6.5) for traffic estimation problem.

0 = cϕλc
i + (2 − c)λ2

i − 2(1 − c)λiβik − cαk
i

0 =
∑

i = 1Lλ−c+1
i (λi − βk

i )

Where

αk
i = Rk

ii + 1
T

∑
t = 1T (mt,i)2

βk
i = 1

T

∑
t = 1Tmt,i

(2.5.25)

Since there are I + 1 obscure boundaries and I + 1 non-straight conditions, the issue

can be settled utilizing Newton-Raphson calculation as follows:

γn+1 = γn − [F (γ(n))]−1f(γn) (2.5.26)

In above equation Jacobian of f(θ) wrt θ is given by F.
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2.5.10 Moment Matching Method

The traffic matrix estimation method for an IP network was first developed

by Vardi. In this, the population of expected values has been carried out by cer-

tain rule and properties which estimated the mean values of different sample data.

This estimation further utilizes to determined the unknown parameters values. The

following equation is used for estimation of unknown parameter.

E(Ai) = Âi =
∑

c

jbijζj

S(Ai, Âi) = Sîi = 1
k

∑
k

Ak
i Ak̂

i − Âk
i Âk̂

i

=
∑

c

jaijaîjζj

(1 < i < î < r)

(2.5.27)

In above equation , aij shows the routing matrix A. Equation can be written in

simplified form as,

Â

S

 =

C

B

 ζ (2.5.28)

S denotes the co-variance matrix of A, and B and C are obtained from the routing

matrix.

2.5.11 Bayesian Method

BM is widely used in TM optimization problem. Tebaldi et al [17] imple-

mented BM. In this approach the model problem’s algebric equations with Markov

chain Monte Carlo Algorithm. In this method the routing matrix can be divided into
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[B1, B2], where B1 and B2 are the non-singular and singular matrices respectively.

Generally, the vector X elements are rearranged in such a way that it can be rewritten

as X = [X1, X2] and it can be derive from,

X1 = B−1
1 (Y − B2X2) (2.5.29)

The rearrangement of B and X can be implemented through QR decompo-

sition [17]. This analysis optimize the full vector X in to X1 and X2. The Gibbs

sampling algorithm was used by Tebaldi. The most generic Markov chain Monte

Carlo algorithm is given by this technique. In this method the element X2 simulate

iteratively from the conditional probability distribution P (X|Xi, Y ). Fopr simula-

tions regarding random variable the conditional probability distribution need to be

simulated. Moreover the conditional probability distribution is implemented to find

random variable for a distribution. The following steps are involved in Metropolis

within Gibbs sampling algorithm are,

• Sketch X2 from the assumed TM with prior TM parameters.

• Claculate prior X1 and posterior X1 using

X1 = B−1(Y − B2X2)

X1(n+1) = B−1(Y − B2X2(n+1))
(2.5.30)

• X2(n+) are rejected or accepted with random probabilistic approach.

• Return to stage 1 and iterate.

min1,

∏r
j=1 P (X1n

j )∏r
j=1 P (X1n+1

j )
(2.5.31)

33



Chapter 2: Traffic Matrix Estimation

2.5.12 Kruithof Method

The Kruithof approach [50] is one of the famous methods used extensively

applied in telephony networks. This method is used with the availability of the

initially available traffic matrix information along with measurement data for given

links. The measurement data links provide the traffic flow entering and leaving in

a node on a particular network , which are actually rows and columns of a traffic

matrix. least square technique and The Kruithof approach were merged together so

that estimated traffic matrix should be stable with traffic flows entering and leaving a

network [51]. This approach was generalized with KL distance [15] and [52] (difference

of two probabilistic distributions) as a a nonlinear optimization.

2.5.13 Neural Networks for TME

Recently Artificial intelligence (AI) and neural network techniques have been

introduced in traffic matrix estimation. Several AI neural network (ANN) model,

which recognize patterns among link counts and actual OD flows are currently re-

searchers interest. The ANN pattern recognition model use data (link measurements)

of network for training and testing to develop a model. The trained data is then used

to predict and estimate traffic matrix. Several researchers have been working on this

emerging field for estimation and prediction using deep learning mechanisms. Re-

current Neural Network, Deep Belief Network, Long Short-Term Memory Recurrent

Neural Network (LSTM RNN) are few notable neural network techniques used for

TME. Recent researchers have used the DNN (deep neural networks) to find the so-

lutions for linear and nonlinear relations between the inputs. Accordingly, the neural

networks provide solution to routing scheme as well as relationships between links
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and traffic flows.

2.5.13.1 Artificial Neural Networks

In Artificial Neural Networks (ANNs) is considered Machine Learning (ML)

model, its motivation is derived by biological behavior of interconnected neurons.

Every Neuron executes a unique task depending on the number of inputs, and inter-

connection of neurons form a network. We consider a neuron as a node or unit in

computer network. Usually biological neural networks do not form a specific struc-

ture, where as ANN form a layer based network. Input layer is the first layer, then

multiple number of layers hidden layers and finally the output layer is the last layer of

the ANN. Deep learning concept arise here if numerous layers are between input and

output layers. Figure 2.7 depicts the ANN network having 3 input layer (3 neurons),

following 2 hidden layers having 4 neurons , ending with output layer with 2 neurons.

Figure 2.7: Neural networks

In the mid-20th century Artificial Neural Networks (ANNs) were suggested

as a learning algorithm with neurons as drived from biological behaviours. The

backpropagation algorithm with multiple layer network was launched in 1975 [53].

However, the field of ANN was finally emerged with successful results in 21st century
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with the advent of GPUs . It was not possible to train complex networks without high

speed GPUs , as complex computations are required for training data. Now Artificial

Neural Networks (ANNs) can be used for the solutions of non-linear systems which

are in complex form. Nevertheless it is still difficult to manage large number of

parameters to select and be able to learn efficiently, they can effect learning process

and fitting competence.

Computational operations performed in an ANN are defined as:

yi = fi

∑
∀j

Wi.jxj + bi (2.5.32)

In equation above fi denotes the activation function, W(i, j) is the weight

of this layer, bi is the bias, output of the neuron is given by yi and its input to the

next layer and xi is the input from previous layer. To find optimal solution depends

upon the learning phase of W(i, j) and bi parameters. SGD (Stochastic Gradient De-

scent) techniques are applied for optimization using multiple optimization techniques

and functions. Optimization techniques actually minimize the cost function for the

evaluation.

• Activation function: This function is applied on the input values of a neu-

ron/node. Mostly used examples are: Linear, sigmoid, rectified (ReLu) and

hyperbolic tangent.

• Learning Rate: This function is the stepwise iterations to minimize the cost

function.It affects the learning rate in terms of training and testing time.

• L2 regularization: This function increases the cost of neural parameters and

is dependent on the application and this function also avoids over-fitting.
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• ANN size: To determine the training time and fitting capability the topology

of the network has to known; this function determines the size and topology of

the network..

• Other parameters: There are more parameters that effect the training time

such as the optimization algorithm, epoch size (the count of samples performed

every iteration),and the max count of iterations.

2.5.13.2 Neural Networks For Traffic Matrix Prediction

Recently Neural Networks (NN) are involved in modeling and predicting net-

work traffic . Because of the efficient learning and adaptive capabilities of NNs they

are widely used in many network management applications. Neural network algo-

rithms are able to estimate and predict any function when data relationships are not

known [54]. The Neural Network depends upon the observed data instead on the

analytical model for nonlinear, non parametric, and adaptive modeling approach. A

Neural network is fully determined by the data set that can provide its architecture

and parameters.

The interconnected nodes are termed as neurons and all connections are

specified by a weight . Neural network consist of number of neurons:

• An input layer,

• One or more hidden layers and

• An output layer.

The Feed-Forward Neural network architecture is widely famous in various

fields . In this architecture the data pass through the network in forward direction
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only shown in Figure 2.8.

Figure 2.8: Neural Network

A Neural Network when applied as a predictor includes two phases: a) the training

phase b) the prediction phase.

For the first phase the training set is applied to the first layer which is input

layer and the parameters of the neural network with be regulate according to the

parameter setting to develop the output for the specific inputs .

The backpropagation algorithm is mostly used as learning tool which consider

backward propagation of the error when weights are constantly changed until output

error reaches the desired value. That is why neural networks are easily correlate

between input and output corresponding sets.

The testing of Neural network is represented in this phase . A new input

which is not the part of training is applied to neural network to estimate the output

. This new predicted output is based on the findings of the training phase.

Neural Networks should have at least one hidden layer to predict nonlinear
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values. more number of hidden layers will increase the complexity of the network ,

eventually slowing down the training process. The hidden layers and number of nodes

(neurons) in each layer are chosen experimentally. For efficient t neural networks the

activation function should be sigmoid function.

2.5.13.3 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a exceptional type of Neural Net-

works, which has exceptional performance computations and optimization associated

with Computer Vision and Image Processing. CNN successful performance is ob-

served in several areas which includes Image Classification , Data feature extraction

and Speech analysis and recognition. Recently, Emami at el applied CNN and graph

theory to estimate the network parameters and promising results were observed.

The powerful feature of deep CNN is the usage of multiple feature extraction

stages that enhances the learning ability of data representation. Big data clouds and

hardware technology has coined in interesting research ideas in CNN architectures.

Researcher have explored multiple parameters in CNN using various activation and

loss functions, optimizers and architectural advancements.

2.5.13.4 Brief History of CNN

CNN was introduced as new class of Neural Networks (NN) by [55] in 1989

in a task related to Machine Vision. Initially CNN were used as best learning al-

gorithms for image classification and segmentation,and retrieval related tasks [56].

CNNs showed prominent winning results and caught the attention in industry as well.

Today, high-tech enterprises like Microsoft, Facebook, Google, ATT and NEC have
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created research centers for new CNN architecture advancements (Deng et al. 2013).

The most important feature of CNN is its ability to explore correlation in data in

terms of spatial or temporal. CNN architecture is sub divided into various multiple

learning layers to perform multiple transformations [57]. These layers are referred as

convolutional layers and they extract important features from correlated data points.

CNNs when compared with standard Neural Network , it replace the general matrix

multiplication reducing the number of weights and consequently reducing the com-

plexity of the network. CNNs are in fact successful deep learning architecture as it

has hierarchical layers for successful training. The CNN topology (layers) controls

the spatial and temporal correlation reducing the number of network parameters and

increasing the performance using backpropagation algorithms. CNNs have become

more efficient with advent of computation techniques and competent usage of GPUs.

2.5.13.5 CNN Structure/Architecture

CNN has been widely used in computer vision tasks , its multilayered hierar-

chical structure gives it the ability to extract features (low, mid, and high-level) which

is main reason for the popularity of this algorithm . Figure 2.9 shows a representative

CNN structure CaffeNet, which includes 5 convolutional layers and 2 max-pooling

layers and 3 fully-connected layers:

• Convolutional layer: In Figure 2.9 the yellow block shows convolutional fil-

ters. These filters perform the transformation of input images data (feature)

into the output data (feature) , shown as blue blocks in Figure 2.9. A detailed

first layer convolutional process is shown in Figure 2.10. Consider an image as

input for feature extraction using CNN , the convolution filter has three channels
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corresponding to three RGB color dimension of input image. Each filter channel

performs dot product for a specific region to construct a feature channel using a

activation function (usually Relu) [58]. Filter channel make certain iterations to

cover the entire input image and construct rectified feature output. the rectified

feature output will act as input to other convolutional layer. Mathematically ,

the filter process can be viewed as :

ai,l+1 = F (
∑

wi,laa,l + bi,l) (2.5.33)

Where, w, b represents the weight and bias parameters respectively.

Figure 2.9: CaffeNet architecture
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Figure 2.10: Convolution and max-pooling process
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• Pooling layer: Each convolutional layer is followed by pooling layer as shown in

Figure 2.9. Pooling layer performs down-sampling to reduce data dimension of

the input data feature. Max-pooling is achieved by applying 2x2 pooling window

to select 2x2 region input data feature. spatial size for the output data feature

will be reduced by this method. This process will eliminate the redundant data

, hence decreasing data processing load.

• Fully-connected Layer: This layer achieves a comprehensive feature evalua-

tion based on extraction done by convolutional layers and generate N-dimensional

vector , N is the number of the required target as in network parameters N will

be number of unknowns. Later, optimizer function such as softmax can be ap-

plied for required output data using some prediction functions. Recently, many

researchers have focused on the convolutional neural networks optimization and

structural algorithms. VGG, GoogleNet and RestNet are example of deeper

network structures. However, computational cost, slow training process, large

dataset availability are few concerns which can affect the performance and effi-

ciency.

2.6 Deep Belief Networks

Artificial Neural networks has more extended techniques with deep learning

methods, in which machine learning model is used to learn deep hierarchical data

models [59]. Deep Belief network is very significant deep learning model [60, 61], and

its constructed by connecting number of Restricted Boltzmann Machines (RBMs) .

RBMs structure and architecture is shown in figure 2.11.
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Figure 2.11: Stack of RBMs

Figure 2.12: DBN architecture

A unidirectional graphical model of RBM is described in [60] having number

of visible and hidden layers using v and h notations. In layer structure hidden and

visible layers are connected in such a way that peer layers of same units are not

directly connected where as all other layers are connected.In RBM archetecture all

variables are stochastic using Gaussian and Bernoulli probability distribution [61].

A DBN is combination of numerous RBMs as shown in Figure 2.11 and 2.12),

where lower and higher layers are visible to hidden layers only. A joint probability
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distribution function for all layers is characterized as,

p(v, h) = exp(−E(v, h))∑
v,h exp(−E(v, h)) (2.6.1)

RBMs is an unidirectional model consisting hidden and visible layers [61].

Each visible layer is connected to all hidden layer. All values of hidden and visible

layers in RBMs are stochastic in nature usually, incorporated with Gaussian and

Bernoulli distribution.

In above function E denotes the function of energy [61] and generally prob-

ability distributions for visible and hidden layers are Gaussian and Bernoulli and

function is now defined as:

E(v, h) = −1
2

I∑
i=1

(bi − vi)2 −
J∑

j=1
ajhj −

I∑
i=1

J∑
j=1

wi,jvihj, (2.6.2)

I and J are both layers (visible and hidden) [61]. Where as bi and aj are

terms as biases. However if probability distribution is Bernoulli then for both layers

visible or hidden the energy function becomes,

E(v, h) =
I∑

i=1
bivi −

J∑
j=1

ajhj −
I∑

i=1

J∑
j=1

wi,jvihj, (2.6.3)

Gaussian and Bernoulli distributions with conditional probabilities for hidden

units remains constant, and are given as :

P (hj = 1|v) = sigm(ai +
I∑

i=1
wi,jvi), (2.6.4)
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Where sigm (z) represents the sigmoid function [61]. Similarly, for the visible

units which are Gaussian, they are calculated by

P (vi|h) = Nbi + N
J∑

j=1
wijhj, 1 (2.6.5)

Where Nbi + N
∑J

j=1 wijhj denotes the Gaussian probability distribution

whose mean and variance are bi + ∑J
j=1 wijhj, 1 and 1 [61].

For Bernoulli units, the conditional probabilities for are :

P (hj = 1|h) = sigm(bi +
I∑

i=1
wi,jhj), (2.6.6)

Nevertheless, high computational complexity still remain a challenge in deep

learning models [60, 61]. A layer-wise greedy strategy for training model must be

engaged.

2.7 Conclusion

In this chapter, TM estimation problems were classified into two categories

: deterministic approach and statistical approach, few noticeable challenges were

highlighted for traffic matrix estimation.

The motivation to find the solution for the challenges in the prediction and

estimation of Traffic Matrix lead us to develop a TM estimation algorithm using

compressed sensing which is discussed and elaborated through this thesis.

Eventually evaluation of the proposed TM estimation techniques, for both

categories using for real back-bone network was developed. We concluded the chapter
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with a detailed literature review on relevant TM estimation problems.
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Description of Internet datasets

For the performance evaluation two different real world datasets are applied

on proposed algorithms. Motivation for the application of real world datasets is

to evaluate the capability of proposed method feasibly close to real world cloud

networks. Accordingly, real world datasets Abilene [62] and GÉANT [63] are used

for the assessment.

3.1 Abilene Dataset

Abilene network is developed by Internet2 community and is considered as

high-speed IP backbone network which connects numerous educational institutes in

the United States [34]. The network provide scalable and cost effective academic and

research environment with hybrid packet and optical network. Abilene network data

is accessible to the universities and educational institutes (Internet community) for

the technical research work. Figure 3.1 shows the Abilene network topology across

United States.
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Datasets considered for this thesis are actual Origin-Destination (OD flows)

traffic matrix. It has 144 OD traffic flows which were gathered at 5-minutes constant

interval for a 24 weeks period. The data was assembled by a researcher at the

University of Texas in Austin, Professor Y. Zhang [64] on 12 routing devices. The

routing devices with names and locations are tabulated in Table 3.1.

In Abilene network dataset, traffic measurement and routing information

is available. Traffic measurements provide end-to-end traffic measurement for the

period of 24 weeks long. Each time slots is 5 minute long, consequently there are

more than 2000 measurement points. These measurement points are considered as

to exact 2016 (7 x 24 x 12)/week.

Figure 3.1: Topology of Abilene Network [1]

The Abilene (Internet2) dataset, (a large IP Internet backbone network in

the United States developed primarily for research and teaching) was used to test

our technique. This Dataset gives us traffic measurements statistics and information
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ATLAM5 Atlanta GA
ATLAng Atlanta GA
CHINng Chicago IL
DNV Rng Denver CO
HSTNng Houston TX
IPLSng Indianapolis IN
KSCY ng Kansas City MO
LOSAng Los Angeles CA
NY CMng New York NY
SNV Ang Sunnyvale CA
STTLng Seattle WA
WASHng Washington DC

Table 3.1: Abilene Network with Routers and Locations information

regrading routing matrix for the network. The Abilene network, which includes 11

WAN nodes and 41 network lines, the dataset includes a RM (Routing Matrix) and

OD flows (TM) for a three-week period. As a result, the Abilene network is responsi-

ble for transporting 121 total OD flows. Equation 2.2.1 describes a relationship that

makes calculating link counts simple. The byte counts numbers are sampled every

week at 5 minute time interval, yielding 2016 byte /samples. As a result, the same

amount of sampled values are in network for Link Counts across all 41 linkages.

For our first contribution of this thesis Abilene datasets provide routing ma-

trix information and Origin-Destination traffic flows for a period of three weeks. Abi-

lene network with 11 nodes and 41 directed links is considered for the performance

evaluation. With 11 node and 41 links network have total traffic of 121 Origin-

Destination (OD) flows. Equation 2.2.1 can easily calculate the link counts.

For second contribution Abilene network is applied for the performance evalu-

ation of our proposed CNN-based traffic matrix elstimation technique. We used two

distinct platforms for this, Jupyter Notebook and Spyder python 3.7 on an AMD

Radeon R7 240 PC. All of our simulations were thoroughly tested on Colab, which
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runs TensorFlow and Keras on GPU Tesla K80. The Abilene network for the as-

sessment of this robust technique we consider total of 12 nodes. Since 12 nodes are

considered, number of Origin-Destination flows (OD flows) will be squared of nodes

i.e 144 OD flows. There are 54 directed links, where 30 links are used for the con-

nection among the nodes, rest links provide the connection with all other nodes over

the internet. For this contribution, external node is considered as an independent

node. This node is connected with Abilene Network and load traffic provided to this

independent node. The dataset for this contribution also consider traffic measure-

ments that provide end-to-end traffic measurement for the period of 24 weeks long.

Each time slots is 5 minute long, consequently there are more than 2000 measure-

ment points. These measurement points are considered as to exact 2016 (7 x 24 x

12)/week.

3.2 GÉANT Dataset

GÉANT network dataset provides network traffic measurements to the edu-

cational institutes and research purposes. This network is based in Europe as shown

in Figure 3.2. GÉANT defines the e-infrastructure for educational, investigational

and scientific modernization. GÉANT network is renowned for its incorporated con-

nections and collaborations with high end reliability and unrestricted access to appli-

cations. GÉANT network is a significantly large IP network connecting more than 40

European countries in one backbone network. This network provides circuit-oriented

services with a high speeds up to 100 GBPS.

The GÉANT network is the major network connecting 50 Million users in
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the world. This network interconnects 39 national research and education network

(NREN) with 10,000 scientific institutes across the Europe and all around the world.

This network can reach at maximum speed of 500 GBPS connecting 100 other net-

work all over the world.

The GÉANT dataset is provided in the form of anonymized topology. The

data provides origin-destination traffic data for a period of 4 months. This net-

work topology includes 23 nodes with 74 directed links with 529 possible Origin-

Destination (OD flows). The datasets is provided in XML format with traffic ma-

trices information. To extract the information from XML format, XML parser was

developed on MATLAB to get the traffic matrix and routing matrix information.

Figure 3.2: GÉANT Network [2]
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The datasets (Abilene and GÉANT), 2000 consecutive time samples are used

for simulations, the first 500 (for Abilene network) are used as training dataset to

predict traffic demands. Similarly first 1500 time samples for GÉANT dataset are

applied for training for the prediction of traffic demands.

The GÉANT network is the major network connecting 50 Million users in

the world. This network interconnects 39 national research and education network

(NREN) with 10,000 scientific institutes across the Europe and all around the world.

This network can reach at maximum speed of 500 GBPS connecting 100 other net-

work all over the world.
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TME for Over-dispersion

4.1 Introduction

Traffic Matrix estimation is required for the purpose of network management

as well as future network planning and it is very crucial topic of research for re-

searchers. Monitoring the parameters of the network all at once is often not possible

because of the complexity of the network. Online cloud services such as Platform as a

Service (PaaS), Infrastructure as a Service (IaaS), and Software as a Service (SaaS),

the traffic patterns are diversified its difficult to model them. Numerous scalable

techniques are used to estimate network parameters using statistical signal process-

ing methods suitable for linear models for wide area networks. As the complexity

of network increases, we observe over-dispersion problem in which the TM elements

that show over dispersion, a feature when changes in traffic flows is greater than the

mean. Consequently over dispersion becomes more intense problem with small flows

(mice flows) and this makes Traffic Matrix Estimation very difficult and complicated.

Several new concepts have been developed for the estimate of network param-
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eters, such as traffic volumes [65–67], and network delays , [68, 69]. Kriging [70–72],

Compressed Sensing [63, 73], Cartography [62], and Tomography [65–67], are some

of the approaches used to estimate network parameters. The research contribution

addressed in this chapter is based on a statistical approach to the distribution of

traffic matrix components in order to generate a traffic matrix element expectation

given Link Counts data. These strategies depend on preliminary assumption about

the traffic flows mean and variance. Many authors have utilized various distributions

in their innovative work, such as Gaussian, Poisson, and others [74]. Even if the

available prediction of the traffic flows’ in terms of variances, in terms of mean or

in terms of prior applied distribution is known, the strategies are still largely reliant

on that knowledge [19], the ‘goodness’ of this earlier solution determines the quality

of the solution obtained. Tebaldi [17]and Vardi [16] presented preliminary work on

estimation of traffic in IP network backbones, demonstrating that few elements of

the traffic matrix can be predicted for link load measurements, while the rest can be

algebraically computed, limiting the range of the problem to the estimation of fewer

source-destination (OD pair) traffic flows. If the routing matrix has a rapidly de-

clining eigen values spectrum, such techniques may be useful [71]. Other significant

techniques for traffic matrix prediction and estimation includes Bayesian Learning

techniques for estimation matrix developed by Nie [75] and Xiaobo [76]. Some studies

[77–80] have looked at the best placement of network monitors for scalable network

monitoring. Qazi and Moor investigated the network parameters estimation using

network tomography given the underlying network model was calculated with errors

[81, 82]. The complexity of network tomography-based estimating techniques due

to cloud-based applications, in the presence of heterogeneous traffic has increased
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the traffic matrix estimation [16], and genetic algorithms have also been applied to

the network tomography problem [83]. We establish an optimum solution utilizing

statistical method for the excessive dispersion problem in Traffic Matrix estimation.

To estimate elephant and mice flows, we proposed a optimization method comprising

of two steps.

• In the first stage, larger flows (elephant flows) close to Gaussian approximation

are calculated with reliable accurate predictions, while over-dispersed mice flows

have higher estimation error.

• The second step adds an extra constraint to the second bounded-value optimiza-

tion to provide a solution for smaller flows (mice flows) that are over-dispersed.

4.2 Problem Formulation

We re-examine the topic of ’traffic matrix’ estimate, which is stated as a

linear relationship between:

Y = AX (4.2.1)

Where Y ∈Rmxt is the matrix of (known) Link Count Measurements, and

m shows the number of network links, recorded at time period given by t, binary

routing matrix of size m x n is represented by A ∈Rmxn, where n shows the number

of source-destination paths for the network, it is assumed over long intervals the

routing matrix remains stationary, and that is valid for Internet due to the fact that

majority of the wide area paths are stable on the for number of hours ; X is the

unobservable (Traffic Matrix).
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Researchers have previously modelled the traffic matrix related to various

statistical distributions (Negative Binomial, Gaussian, Poisson etc). Statistical pre-

diction approaches do not provide a reasonably accurate solution when faced with

the problem of excessive dispersion. This thesis work shows the real world dataset

that dispersion causes serious problem for small traffic flows.

As a result, a 2-stage optimization strategy is proposed in which larger flows

are predicted with reasonable accuracy in the first step with more conservative esti-

mates for small dispersed flows. A second optimization step with an extra restriction

(bounded value) refines the solution for dispersed small flows. Experimental results

demonstrate that for ill-estimated flows, prediction can be increased up to four orders

of predicted values.

4.3 Traffic Matrix Estimation for Over-dispersion

The proposed two steps algorithm. Initially, the original model in (1) is

visualized:

Y = AX + ϵ (4.3.1)

Consider a example of a simple network having 3 nodes as illustrated in
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Figure 4.1. The Sample Routing Matrix is given as:

A =



1 1 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 0 0 0 1 1


(4.3.2)

The directed links are represented by the rows of the routing matrix, and

the OD pairs are represented by the columns of the routing matrix considered to be

sorted in the same way (as mentioned above) for simplicity.

It is considered that an initial OD traffic flows history is present in order to

find the direct links among the traffic flows and arrive at an accurate traffic matrix

estimation. Calculate the value of a prior matrix using this prior data, as shown

in [75]. For the previously present historical data, we employ a model (Generalized

Linear Model) to generate the regression co-efficients linking the link flows (predictor)

and response (predicted) variables. A Gaussian distribution is assumed for the Link

counts and OD flows depending on our analysis of the available datasets. It is to

note that this model only has to be run once.
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Figure 4.1: A Cloud Network Example

Then, utilizing the previously calculated regression coefficients, we calculate

a before hand solution using the present known link count vector. By utilizing the

time-based direct links calculated by the GLM without including the space-based

constraints, we get the best projected value of the traffic matrix (Xprior). The linear

model constraints may not be satisfied by this solution. We resolve an optimization

issue comparable to the work in [65] after computing the prior.

Minx∥Y −AX∥
2

2
+ ∥X−Xprior∥

1
(4.3.3)

Subject to:

AX ≤ Y

Xi ≥ 0, i = 1, 2, ..n

(4.3.4)
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As a result, the optimizing function seeks to minimize the following:

• Square of errors as in l2 norm in the linear model

• The difference of the predicted traffic flows and the former GLM-calculated

traffic matrix flows.

The mentioned approach results in a solution known as posterior solution

(Xposterior) that integrates the constraints which are based upon space of the model.

Afterwards, the recent Xposterior using the previously available prior Xprior initiating

time dependent prediction, suitable for the linear model constraints based on space as

well. Considering purpose, it is attempted to pivot all the traffic flow matrix compo-

nents which are nearer to the straight line Xposterior = Xprior that is to be considered

as new constraint in computing the final solution. The second optimization is given

below:

Minx∥Y −AX∥2

2
+ 1

σ2 ∥X−Xposterior∥
1

(4.3.5)

Given that:

AX ≤ Y

Xposterior ≥ 1
σ2 (mx + c)

Xi ≥ 0 i = 1, 2, ..n

(4.3.6)

Where σ2 shows the variance of traffic flow matrix.

The result obtained using the first optimization is referred to as employing

a single prior (SP), with alterations proposed in recent research [76], and the total

solution after solving the second optimization is referred to as Single Prior-Bounded

Value method, or SP-BV. The name for our proposed scheme as two-step optimiza-
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tion as, in the first stage, it ties those TM flows that are reliably estimated with little

divergence in time-based prediction with the nearest space-based constraint comply-

ing solution. After establishing TM estimates, i.e. Xposterior = Xprior , it finds the

left behind flows using regression co-efficients for the straight line ,where for ideal

conditions m equals to unity and c equals to 0.

4.4 Performance Evaluation

The Abilene (Internet2) dataset, (a large IP Internet backbone network in

the United States developed primarily for research and teaching) was used to test

our technique. This Dataset gives us traffic measurements statistics and information

regrading routing matrix for the network. The Abilene network, which includes 11

WAN nodes and 41 network lines, the dataset includes a RM (Routing Matrix) and

OD flows (TM) for a three-week period.

As a result, the Abilene network is responsible for transporting 121 total

OD flows. Equation 2.2.1 describes a relationship that makes calculating link counts

simple. The byte counts numbers are sampled every week at 5 minute time interval,

yielding 2016 byte /samples. As a result, the same amount of sampled values are in

network for Link Counts across all 41 linkages.

The plot of variance vs. mean is shown in Figure 4.2. The variation values

for mice and elephant flows are 4 orders of value bigger than the mean values in this

plot, indicating that OD traffic volume is very variable. As a result, over-dispersion

is a problem that affects both large (elephant) and small flows. It contradicts the

typically Poisson distribution assumption, which holds that the mean and variance
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are equal. Figure 4.3 gives the graphical representation of hyper-parameters of shape

and scale. These parameter were modeled using gamma distribution for the given

random variables. (α) and (β) are notations used for the shape and scale parameters

respectively.

Like gamma distributed random variable, the mean rate of the OD count

flows can be supported to a random variable that has normal distribution having

similar mean and variance. It can be seen that the shape parameter is five times

higher in magnitude (on average) than the scale parameter for large flows, moreover

it is seven times higher in magnitude than mouse flows scale parameter. This only

adds to our conviction that:

• The Poisson assumption of mean = variance cannot be applied to dispersed

flows.

• Larger flows are less deviant than smaller flows ( when distribution is Guassian).

enditemize

Likewise, modelling the OD flows not practicable because of the mean values

of the OD flows are high. As a result, in the remainder of this contribution’s

discussion, we regard OD flow methods to be regularly distributed.

The Traffic matrix correlation is illustrated in Figure 4.4. This demonstrates

that smaller OD flows have minimum correlation with one another, whereas

larger i.e elephant OD flows have a lot maximum correlation, as would be seen

in the actual world. As a result, there are significant causal correlations between

some traffic matrix elements. This improves estimation possibilities for the

traffic matrix’s larger (elephant) flows, near to the genuine points even if are
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Figure 4.2: Over-dispersion observed in OD flows (OD flow volumes are in Kbytes)

over-dispersed. The over-distributed mice flows are a difficulty; nevertheless,

predicting the maximum fluxes, our suggested technique can correctly calculate

these.

Figure 4.5 presents the computed slope and y-intercept values for the new con-

straint in our algorithms used for TM estimation. Figure 4.6 and 4.7 depicts how,

the optimization, our algorithm tighten the ‘loosely’ estimated over-dispersed

flows not calculated in the intial stages, bringing them nearer to the ground

truth value of the OD flow to satisfy both constraints. The authors of [74] came

to similar results, stating that only 33 % of the major TM flows accounted for

Figure 4.3: Shape and Scale parameters of the Distribution
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Figure 4.4: Origin-to-destination flow correlation matrix. (Flows are arranged in ascending order, top
left showing mice flows correlations the bottom right showing elephant flows)

over 95.0 % of the total traffic volume. As a result, estimating the big OD fluxes

is sufficient. In addition, network providers are more concerned with determin-

ing the size of larger OD flows. Depending on the assumptions, the authors

adjusted the model to make it little under-constrained for smaller flows in order

to improve predict larger flows, lowering the count of observable in the traffic

estimation. Proposed method is same in that it depends on the notion that ele-

phant flows are more reliable to estimate, which we use to improve our smaller

flows estimation.

Figure 4.7 shows the performance gain of our two-stage strategy over a single
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previous technique for an over-dispersed flows with a change in prediction (time)

and constraint (space) specification. The thesis work assumes for training data

initial 100 time slots are considered for construction of the initial prior using de-

fined models (GLM), and that link end-to-end measurements at random interval

are used to estimate OD flows for 2 specific selected time periods ranging from

100 and 2016. Bigger flows are predicted with good accuracy in the existence

of a healthy prior solution, which is available for larger flows only, and this may

be utilized to reduce the error prediction of the OD flows which are smaller

of the traffic matrix; these numbers demonstrate up to 4 orders of estimation

performance improvement.

The plot of real-time tracking of two mice OD flows is shown in Figure 4.8.

For the purpose of this study, it is assumed that the first 500 time intervals

are utilized as training data over generating the initial solution using linear

models, and using Link Count measurements to estimate all OD flows for the

next 100 time intervals. Our system estimates smaller, OD flows that are skewed

more from normal distribution (than large flows) with higher accuracy, making

Figure 4.5: Computed slope and y-intercept values
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anomaly prediction achievable even for tiny OD flows, as shown in the image.

Furthermore, telecom carriers are more interested in getting an estimate to

within a certain tolerance level, such as 10 % accuracy for network planning and

management purposes. [74].

4.5 Conclusion

A thorough investigation of over-dispersion of traffic flows in traffic matrix is

conducted. We present a two-stage optimal approach that focuses on finding

the reasonable estimation and prediction of the traffic matrix elements for traf-

fic flows while satisfying constraints for improved estimation and prediction of

flows nearer to distributions, and subject to some constraint for small traffic

flows estimation nearer to their ground truth values. Experimentation in the

real scenario the Abilene Network demonstrates, our method produces accurate

estimation results.
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Figure 4.6: The Single Prior (SP) approach to TM estimation

Figure 4.7: SP and SP-BV approach to TM estimation
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Figure 4.8: A comparison of the SP-BV algorithm’s anomaly prediction performance on two mice OD
flows showing that the method’s performance is acceptable for smaller, over-dispersed OD flows, whose

prediction is enhanced by our proposed algorithm.
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Traffic Matrix Estimator

5.1 Introduction

Traffic Matrix estimation plays a significant role in network capacity planning

and dimensioning, as it provides traffic flow information between all pair of node

in a certain network. Poisson [19], and Gaussian [19] are traffic models which

are analytically simple and tractable, however the models provide inadequate

accuracy and efficiency decline when applied to large IP networks. Thus, a new

Traffic matrix estimation technique is required for the accurate measurements

with efficient algorithms for network planning and management function.

Business internet traffic volume in the United States has risen significantly from

45 billion GBs to 112 billion GBs for years 2016 to 2020 respectively, and is

predicted to increase to 224.80 billion GBs by 2023 [84]. The biggest contributors

to this rise in traffic load are,

– Cloud Computing services, which provide all users with an all-in-one In-

ternet solution in the form of Infrastructure as a Services, Platform as a
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Service, and Software as a Service.

– SDNs develop clever technology to ensure Internet users’ Quality of Service

even in the face of increasing Internet traffic.

Conventional traffic engineering techniques are not applied for Software Defined

Networks, which puts a significant amount of strain on the network. Akyildis

et al. presented a detailed study of the obstacles [85] of implementing Software

Defined Networks. In the absence of a Network Monitoring System, the network

is exposed to security threats such as DoS/DDoS [86] and Sybil assaults [75].

Network Monitoring System may detect and stop network traffic irregularities in

real time. In fact, one of the primary motivators for the development of network

traffic estimating methodologies and algorithms is quick anomaly identification.

With traditional Traffic Engineering solutions circumvented in SDNs, after some

time interval before the network’s maximum QoS is stretched out, demanding

further capacity planning by network administrators. As a result, estimating

network parameters is becoming increasingly critical for better and more reliable

network capacity planning and management. Many academics have looked at

the estimation of dynamic live network properties [87]. Network Delays and

[19], Traffic Volumes with packet losses [88] and Network Capacity planning

are the significant elements that affect network QoS. Voice Over IP (VoIP) is

a network application that require end-to-end measurements for delays to be

under a certain threshold. Another network application like capacity planning

make use of appropriate traffic shaping techniques, as adaptive flows may be

harmed by non-adaptive flows if this is not done [89].

Researchers have recently showed a lot of interest in using neural networks to
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estimate traffic matrixes. Artificial Neural Networks (ANNs) [90] and Recurrent

Neural Networks (RNNs) [3] are two architectures that have been used in the

literature to estimate Traffic Matrix. Potential outcomes are noticed employing

a new approach for traffic matrix estimate called Conventional Neural Network

(CNN); although the findings for traffic matrix prediction were impressive, the

forecast will depreciate when real-world data is taken into account. Here are

some perfect conditions:

– An assumption that a large amount of training data is available, which is

rarely the case in reality.

– An assumption that the training data is complete. It doesn’t have any

measurement noise, missing measurements, or outliers, for example.

If any of the preceding considerations are violated, CNN utilizing a typical

design may deliver average performance, for example. We will get poor results

if availability of training dataset is limited and if adaptive learning-rate optimizer

like Adagrad as used in [66], because it will timely lower the learning-rate when

training progresses over time due to the false or variable availability of huge

datasets.

5.2 Related work

The methodologies for measuring network parameters have been extensively dis-

cussed in the research literature. Kriging [63], Cartography [91], Tomography

[92], and Compressed Sensing [74], are a few notable technique-specific termi-

nology coined by academics. The network parameter estimate approaches are
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classified as space, time, or spatio-temporal [17] techniques. The temporal com-

ponent of the m network’s parameter is determined by the network training

dataset that are available, whilst the spatial part is determined by the informa-

tion of the network architecture and its affect on the measured values. In these

spatio-temporal techniques, the network parameter estimate or prediction algo-

rithm belongs to methodologies like Linear Optimization, Bayesian Estimation,

and Expectation Maximization [88].

It is important to note that the correctness of training data is critical for the

subject under study in this thesis, referred as traffic matrix estimation. The

Expectation Maximum based Estimation technique, for example, employs sta-

tistical inference methods such as traffic matrix elements distribution. These

later utilized for the generation of an expected value of the elements of traffic

matrix based on information from Link Counts. Nevertheless, such methods

largely rely on prior or assumed information of the traffic flow mean and varia-

tion. Numerous scholars have used various distributions for this purpose, such as

Gaussian, Poisson, and others [16]. Even when preliminary estimates of traffic

flows of a available distribution are observed, such techniques depends heavily

on information of the initial prior [88], that serves as a initial note for algorithms

optimize to get a unique solution that satisfies maximum of the problem’s space-

based constraints. As a result, these strategies rely heavily on the ‘goodness’

of a available and earlier solution. The idea of implementing a mixed (hybrid)

approach, parts of the traffic matrix elements are predicted or computed al-

gebraically/mathematically based on link load measurements, was proposed by

Tebaldi et al in his initial research work[17] and Vardi [16] for estimation in large
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cloud networks. This approach considerably decreases the problem’s complexity

because it only requires prediction of a less number of Origin/Destination flows

(OD traffic flows). Many techniques have been demonstrated to be useful in

circumstances where the routing matrix’s Eigen spectrum is rapidly fading [71].

Bayesian Learning approaches developed by Nie and Fan [93] are two notable

contributions linked to the problem of TME.

Recent research literature reveals that Neural Network techniques for estimat-

ing Traffic Matrix utilizing various algorithms produce promising results. For

Network Traffic Matrix estimate, Jiang et al. [90] combine the Neural Network

technique with time and frequency. Emami et al. [3] proposed a Traffic Ma-

trix Estimation architecture based on Convolutional Neural Network (CNN) one

portion of the training data is translated into one larger dimension by taking

network’s topology into account. It allows for the use of Convolutional Neural

Network-based approaches, which are more smart than various kinds of Neural

Networks and are designed for picture (2D) datasets.

Qian et al. [72] propose a new method for estimating Traffic Matrix by using

just current (partial) or incomplete Origin/Destination flow data without any

training data. Recurrent Neural Networks (RNNs) are used in this technique to

estimate unobserved OD flows from known OD flow observations.

Based on a dynamic network measurement paradigm, a compressed sensing

model Qazi et al [91] for Network Traffic Matrix Estimation is developed by

author. Instead of a stationary routing matrix, the model is based on networks

traffic demands . This technique demonstrates how Traffic Matrix estimation

with tolerable mistakes can lower Link Count measurements even more.
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Src/Dst a b c d
a 0 1.2 0 0
b 4.3 0 0 5.6
c 6.3 0 0 3.2
d 0 7.9 0 0

Table 5.1: Link Adjacency Matrix using Graph Embedding technique

– Demonstration of the TM estimation problem.

– Robust CNN Based Traffic Estimation is developed using a statistical tech-

nique for TME

– Performance Evaluation using real world datasets.

– Association of R-CNTME and CNTME performance.

Figure 5.1: Link Adjacency Matrix (traffic volume over directed links is shown)
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Figure 5.2: CNN-based technique (CNTME) [3]
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5.3 Traffic Matrix Estimation Challenge

The Traffic Matrix estimation challenge is generally given by the relationship

below,

Y = AX (5.3.1)

Where, Y ∈Rmxn shows observable Link Count Measurements matrix, and m

present the network links, recorded at specified time intervals. A ∈Rmxn shows

Routing Matrix, where m presents number of wide area network links and n

presents number of nodes. These result in n2 possible paths between nodes.

Before proceeding further, an assumption is made on R (Routing Matrix) that

is not changing or remain constant over long duration, it remains stable (unlike

usual wireless networks). This is true specifically for the case of Internet, as

maximum of the network paths can remain unchanged (stable) for long hours

or may be days. XϵRn2xt is unknown Traffic Matrix.

The traffic matrix issue, as shown in Equation 5.3.1, is very demanding to solve

due to many reasons including; (a) The Routing Matrix A is a ‘Big’ matrix;

and since m << n, the system of equations shows ill-posed problem, under-

determined and under constrained. It’s important to note that a unique solu-

tion may not exist for an under-determined system of equations. If we have a

reasonable, not ill-posed, or over-determined linear system , on the other hand,

then we might have a one-of-a-kind answer. (b) In today’s world of dynamic

software defined, the premise that A is steady is no longer valid. Furthermore, in

today’s world, deterministic algorithms are no longer used to determine routing.

In Software Defined Cloud Computing Platforms, several user-centric decisions
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are still treated as network-oriented decisions in order to achieve good load bal-

ancing on network servers or the network as a whole. The assumption of a

stationary routing matrix is used in first-generation research. As mentioned in

the previous section, A has looked into a variety of spatio-temporal approaches.

Recent work, such as [3], has explored ways for integrating topology informa-

tion into the model employing flexibility, such as using link measurements and

transforming them into the (L2AMs) link matrix. It loosens the space-based

constraints of the issue while allowing exact prediction using a neural network’s

efficient learning process.

5.4 Robust CNN-Traffic Estimator

Emami et al. [3], in a recent paper incorporating convolutional neural networks

and graph embedding, presented an idea to use graph embedding to include

the topology of a network into a neural network-based estimate architecture.

This allows one dimension to be added to the training data. Traditionally, the

training data consists of two 1 D vectors representing L2AMs (link loads) and

source-destination fluxes. The graph technique can be utilized to transform the

observed data of L2AMs link loads( 1D to 2D measurements) by introducing

the topology implicitly into the measurement framework. This is accomplished

using the L2AM [3], a 2D link adjacency matrix. Figure 5.2 displays a prototype

example of this graph embedding technique and an architecture (CNN-based)

for learning source-destination flows properties using L2AMs matrices training

dataset.
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The output of the convolution part, as shown in Figure 5.2, consists of N ma-

trices that are factorized for the generation of N unique feature vectors of size

W x W representing to each OD flow, which are applied to N Fully Connected

Networks (FCN) with a single layer that is hidden and single layer corresponding

to each OD flow which is output layer. We consider L as 13 and W as 9. The

proposed architecture (CNTME) outperforms other contemporary approaches;

but, it is observed that performance deteriorates if it considered that 2-D train-

ing/learning data obtained from topology information of network via L2AMs

(link matrix) is sparse (as it has more the number of OD pairs than the number

of links) and also contain noise in it.

We propose rewiring the proposed architecture that the ultimate feature set

learned is the system as a whole instead each OD flow is considered individually.

This approach will dilutes any learning faults that result in inaccurate features

being learned for individual OD flows. R-CNTME is the name given to this

new suggested architecture. In the following paragraph, we go through this in

further depth.

CNTME architecture magnifies mistakes in the estimation of every individual

OD flow via N parallel FCN if the 2-D training data has measurements that

are limited or have numerous outliers. The features matrices formed after the

down-sampled output of the convolution layers are flattened ahead of (rather

than after) the fully connected layer, resulting in a single feature vector for

the whole system (N OD flows) rather than separate OD flows. This dilutes

the learning errors in the CNN stage that are produced by the sparsity of 2-D

training/learning data, restricted training data, and probable outliers. Figure

78



Chapter 5: Traffic Matrix Estimator

5.3 shows a detailed schematic of the proposed architecture.

Figure 5.3: Schematic for R-CNTME Estimator
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5.5 Performance Evaluation

The evaluation of our proposed approach ROBUST CNN-based can be carried

out using two real datasets.

Abilene Network is the first network-backbone in the United States available for

researchers. It has total of 12 nodes with 54 links. As a result, there are 144

OD flows (because n = 12 and N =122=144). As a total of 54 links (i.e. m =

54), with 30 of them providing connectivity between the near-neighbor nodes.

The remaining nodes form a network that connects all other Internet-connected

nodes. The Abilene Network dataset includes end-to-end traffic measurements

for 24 weeks. 2016 measurement points are available per week (i.e. 7 x 24 x

12 = 2016) because the measurement time windows are considered 5-minute

intervals.

The GÉANT dataset is the second dataset we utilize to performance evalu-

ation of our proposed ROBUST CNN-based approach. This network consist

of 23 WAN nodes and 74 directed WAN links. As a result, the GÉANT net-

work transports a total of 529 potential Origin-Destination (OD) transactions.

The GÉANT dataset contains anonymized topology information and OD Traffic

Data (TM) for a total of 23 WAN nodes and 74 directed WAN links over a four-

month period. This dataset contains traffic matrices (TM) in XML format that

are measured every 15 minutes. A MATLAB-based XML parser is developed

to get the traffic matrix and routing matrix; then Link Counts are calculated

using Equation 5.3.1 in the same way as the Abilene Dataset.

We treat the external network as a separate node in our study. We combine
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it with the Abilene Network’s 12 nodes and the GÉANT Network’s 23 nodes

to handle the load balance between the network (Abilene or GÉANT) and the

external network. As a result, the L2AMs for the Abilene network become 13x13

matrices, while the GÉANT network becomes 23x23 matrices.

We utilize Adam optimizer instead of Adagrad for evaluation of of proposed

architecture to make a reasonable comparison with Emami et al. [3] Since

noise is generated in the training data and Adagrad would be a poor choice

for evaluation as it decreases its learning-rates with training simulation epochs.

Mean Squared Error (MSE) is applied in algorithms as loss function.

We employ the Softplus activation functions, just like Emami et al. [3], because

they don’t have the negative values problem when estimated, hence no more

steps are required for negative values solutions. For input values x, Softplus

generates output values using the function f(x).

f(x) = log(1 + expx) (5.5.1)

As indicated in the preceding section, the suggested approaches’ performance

was assessed using Abilene network datasets and GÉANT network both based

on real captured network traffic. We used two distinct platforms for the per-

formance evaluation , first one is Spyder python 3.7 on an AMD Radeon and

second one is Jupyter Notebook which is available online for simulations . The

PC’s specifications are: Intel Core i7 7770 @3.60 GHz, 32 GB RAM (DDR4).

All of our simulations were thoroughly tested on Colab, which runs TensorFlow

and Keras on GPU Tesla K80. Unless otherwise indicated, we utilize the initial
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first week dataset (1500 samples) for training and same week dataset’s final 500

samples were used for the testing purposes.

We employ recognized metrics, extensively used in the relative current research

work [94] to compare the performance of our approach. The following are the

definitions of these metrics:

SRE(i) =
∥X̂ i−X i∥2

∥X i∥2

(5.5.2)

Where Xi shows the OD flows (actual), X̂i and represent the OD flows (esti-

mated) for i ϵ 1,2,...,n2 at time t.

TRE(t) =
∥X̂ t−X t∥2

∥X t∥2

(5.5.3)

Where Xt represent the OD flow (actual) and X̂t shows the OD flow (estimated)

for time t and T denotes testing period length.

Bias(i) = 1
T

T∑
i=1

(X̂i,t − Xi,t) (5.5.4)

SD(i) =

√√√√ 1
T − 1

T∑
i=1

((X̂i,t − Xi,t) − bias(i))2 (5.5.5)

where Xi,t represents the OD flow (actual), and X̂i,t represents the OD flow

(estimated) for i ϵ 1,2,...,n2 at time t, while T represents the length of the

testing time. It is found that this architecture performs well given training data
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Error Scenario % of Noise in L2AM
Entries

Locations (Noise)
in all Time Indices

Distribution Ap-
plied

E1 30 % Random Gaussian N(0,
25e12)

Table 5.2: E1: Errors simulated in training data L2AM

has no errors. For the L2AM matrix training data, a random noise for 30% of

the non-zero entries is created, respectively. It referred as Error Scenario (E1)

because a Gaussian distribution with a mean equals to zero and a standard

deviation of 5x106 to create noise in 30% locations (random) of the non-zero

values in the training data.

5.6 Performance Evaluation with Different Number of

CNN and FCN Layers for Datasets

To evaluate our design, we first introduce faults in the 2-D training L2AMs data

based on the error scenario E1 presented in Table 5.1 to test the performance

of our suggested method. This allows us to test the model while simulating the

impacts of sparsity and training data mistakes. Using the supplied hidden layers,

we change the number of CNN layers and FCN layers from 3 to 5 as shown in

Table 5.3 and 5.4 for Abilene network and GEANT network respectively.

CNN Layers (2x2) FCN Layers

3 81:144
2 81:100:144
2 81:100:121:144
2 81:90:100:121:144
1 81:144

Table 5.3: CNN layers and FCN Layers for Abilene Network

It can be seen in Figure 5.5 and 5.6 that the performance of SRE varies marginally

based on the count of CNN layers and FCN layers for Abilene network. How-
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CNN Layers (2x2) FCN Layers

3 81:529
2 81:100:529
2 81:100:121:529
2 81:90:100:121:529
1 81:529

Table 5.4: CNN layers and FCN Layers in GEANT Network

Figure 5.4: E1 Error Scenario in SPYDER 3.7

ever, if the count of CNN layers and FCN layers is raised, we see a significant

improvement in TRE performance; the best optimization for TRE metrics is ob-

served with 3 CNN layers and 2 FCN layers. Similar SRE and TRE performance

is shown in Figure 5.7 and 5.8 for GEANT network. Best performance evalu-

ation for GEANT network is also for 3 CNN layers and 2 FCN layers. When

there is increase in the neurons count in the FCN’s hidden layers, it promotes

overfitting, while having less neurons in the hidden layers is going to create

underfitting problem.

As a result, the number of layers (CNN and FCN) cannot be raised imprecisely,

because network anomaly prediction necessitates a good estimator in both di-
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Figure 5.5: SRE of CNN and FCN variation in Abilene Network
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Figure 5.6: TRE of CNN and FCN variation in Abilene Network
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Figure 5.7: SRE of CNN and FCN variation in GÉANT Network
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Figure 5.8: TRE of CNN and FCN variation in GÉANT Network
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mensions (temporal and spatial). The additional hidden layers in the FCN

portion may increase the system’s SRE performance at the expense of TRE

values, as estimator performance degrades on datasets due to problem of over-

fitting. Quick anomaly detection is one of the prime factor for the designing of

new algorithms and systems in the Network Traffic Estimation Problem.

5.7 Performance Evaluation of R-CNTME and CNTME

5.7.1 Training Data Sparsity Impact

On the Abilene Dataset, we generated multiple sparsity factors for this experi-

ment. The topology is synthetically modified to have twelve nodes (12), however

the linkages is dictated by the factor of sparsity. The factor of sparsity is the

total zero entries numbers divided by the maximum number of entries in the

(link load adjacency) L2AM1 training dataset. We make sure that the topology

is intact, with a path connecting individual OD pairs. The OD flows among the

144 OD pairs are identical to those of the Network (Abilene), but connection

numbers are modified according to the simulated topology with various factors

(sparsity). The Figures 5.9 and 5.10 presents the experiment results and out-

comes. When the sparsity factor is decreased to 0.20, superior response is shown

in R-CNTME TRE of 0.1870 or less in 90% of situations, whereas CNTME has

a value of 0.270. When the sparsity factor is increased to 0.6, the prior values

increases to 0.20 and 0.290, respectively. R-CNTME and CNTME demonstrate

minor degradation as sparsity is raised in SRE graphs.
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Figure 5.9: SRE Performance Evaluation and Comparison of R-CNTME AND CNTME with different
sparsity
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Figure 5.10: TRE Performance Evaluation and Comparison of R-CNTME AND CNTME with different
sparsity factor
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5.7.2 Training Data Size Impact

Figure 5.11 and 5.12 shows the SRE and TRE performance at variable training

and test data sizes respectively. With increase in the training data size, R-

CNTME’s performance improves, as seen from TRE results. 90% of R-CNTME

TRE values are ≥ 0.19 based on training data of 1500; which further drops to

0.2 when the data is decreased to 300. The TRE performance of CNTME is

worse across all training data sets, and it also exhibits unstable behavior as a

result of the model influenced by the problems like underfitting and overfitting

as discussed before. It also demonstrates R-robustness CNTME’s in the face

of restricted training data availability. Given any ranges of training data size,

R-CNTME outperforms CNTME in terms of SRE.

5.7.3 Performance Evaluation and Comparison

Figure 5.13 and 5.14 presents the CDFs for the clean Abilene dataset, whereas

Figure 5.15 and 5.16 shows the CDFs for clean GEANT dataset. Both datasets

are clean without any artificially generated errors effects or sparsity factor in the

L2AM training data. For both datasets the TRE and SRE measurements show

that R-CNTME has the best performance. The Abilene dataset performance

presents that in 95% of cases, R-CNTME has an SRE value of 1.5 or less, com-

pared to 82% for CNTME. Similarly, R-CNTME’s performance indicates TRE

values of less than 0.20 for 90% of the predictions. CNTME has a comparable

value of 0.24. For GEANT datasets 80 % cases in RCNTME reflects SRE value

of 1.6 or less , however CNTME shows less then 60 % cases for SRE value of

1.6. R-CNTME’s performace is also superior for TRE values ,showing value less
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Figure 5.11: CDF of Spatial Relative Error for Dataset
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Figure 5.12: CDF of Temporal Relative Error (TRE) for Dataset
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Figure 5.13: CDF of Spatial Relative Error (SRE) for Dataset
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Figure 5.14: CDF of Temporal Relative Error (TRE) for Dataset
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Figure 5.15: CDF for GÉANT Dataset
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Figure 5.16: Temporal Relative Error (TRE) of for Dataset
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then 0.2 for more then 90 % of cases, where as CNTME TRE value falls below

0.5 when compared with R-CNTME’s performance.

The CDFs behavior is also depicted as though it were fitted to a standard pdf

(Figure 5.17 and 5.18) for Abilene datasets. These graphs demonstrate that

R-CNTME outperforms CNTME. Furthermore, performance is better in terms

of bias and standard deviation for both datasets (Abilene and GEANT) for

our proposed scheme R-CNTME than CNTME. Figure 5.19 and 5.20 shows the

performance evaluation of R-CNTME in terms of bias and standard deviation for

Abilene dataset. Similarly Figure 5.21 and 5.22 presents the bias and standard

deviation for GEANT dataset.
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Figure 5.17: PDF of Spatial Relative Error for dataset
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Figure 5.18: PDF of Temporal Relative Error for R-CNTME and CNTME
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Figure 5.19: Bias and OD Flows performance evaluation for both algorithms
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Figure 5.20: Performance in terms of Bias and standard deviation
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Figure 5.21: Bias: Performance Evaluation of dataset
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Figure 5.22: Standard Deviation: Performance Evaluation of dataset
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5.7.4 Tracking Performance for OD flows

Performance of the OD flows prediction is displayed in Figure 5.23-5.28 for six

random OD flows when compared to the ground truth for the Abilene datasets.

It is obvious that R-CNTME outperforms CNTME when OD flow prediction

comparison to CNTME. And it is obvious it accurately estimates OD flows, as

well as tracks unusual changes in accordance with the ground reality. Similarly

performance of OD prediction is shows in Figure 5.29-5.34 for six random OD

flows when compared to the ground truth for GEANT network datasets. For

this dataset R-CNTME again outperforms CNTME.
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Figure 5.23: OD Tracking Performance for Abilene Network
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Figure 5.24: OD Tracking Performance for Abilene Network
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Figure 5.25: OD Tracking Performance for Abilene Network
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Figure 5.26: OD Tracking Performance for Abilene Network
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Figure 5.27: OD Tracking Performance for Abilene Network
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Figure 5.28: OD Tracking Performance for Abilene Network
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Figure 5.29: OD Tracking Performance for GEANT Network
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Figure 5.30: OD Tracking Performance for GEANT Network
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Figure 5.31: OD Tracking Performance for GEANT Network
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Figure 5.32: OD Tracking Performance for GEANT Network
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Figure 5.33: OD Tracking Performance for GEANT Network
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Figure 5.34: OD Tracking Performance for GEANT Network
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5.8 Conclusion

In backhaul cloud networks, accurate traffic estimation is critical for early iden-

tification and prevention of anomalies. In this thesis, an architecture for Traf-

fic Matrix Estimation was presented using Convolutional Neural Network for

Cloud Networks Traffic Estimate, that demonstrates superior performance even

with sparse data and random noise errors in 2-D training datasets, and limited

training dataset availability than previous work for Network Traffic Matrix es-

timation. The suggested architecture offers stable performance with training

data artefacts, as well as enhanced Error and Anomaly Detection performance,

according to extensive simulations using real-world datasets.
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Conclusion and Future Work

Several network applications involve different types of traffic measurements and

information. Network applications such as a network control with effective so-

lutions for congestion, capacity planning for large networks, traffic management

and engineering and network optimization required certain network measure-

ments such as traffic volume in real time that includes both mean and variance

of traffic volumes. Several applications require delay information. Therefore,

network applications select an appropriate traffic matrix estimation technique

to utilize the traffic information maintain the accuracy and efficiency of the

estimation of traffic matrix.

In this thesis we investigated the traffic matrix that may experience over-dispersion

and formulation of a two-step optimization approach with appropriate accuracy

and additional constraint. We developed a novel architecture that demonstrates

superior results for the estimation and prediction of traffic matrix applying and

neural network technique.

Initially estimation techniques are classified in two categories 1) the determin-
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istic and 2) the statistical. For the deterministic approach the characteristics

of the prior traffic matrix are required to recognize a accurate traffic matrix

due to under-constrained or ill posed feature traffic matrix estimation. However

the statistical approach required more information about traffic flows between

Origin-Destination (OD) nodes for the true prediction and estimation of traffic

matrix.

For the first contribution we referred the over dispersion problem where statis-

tical methods usually fail when accuracy is considered. Statistical prediction

approaches do not provide a reasonably accurate solution when faced with the

problem of excessive dispersion. This work shows on actual dataset dispersion

causes serious problem to small data flows. As a result, a two-stage optimization

strategy is proposed with simulations in which large data flows are predicted with

reasonable accuracy in the first step with more conservative estimates for small

flows which are dispersed. A second optimization step with an extra restriction

refines the solution for dispersed small flows. Experimental results verified that

for ill-estimated flows, estimation and prediction can be increased to 4 orders of

values.

For second contribution, a robust traffic matrix estimation framework is devel-

oped with guaranteed superior performance with availability of limited training

data or outlier measurements. Moreover we investigated the limiting training

data challenges and develop a new algorithms with architecture that can give

solution for these difficulties and guaranteed better performance. This approach

provides superior outcomes for estimation of traffic matrix using convolutional

neural network based technique with limited training data availability and out-
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lier end-to-end measurements.

For future work , a robust technique with artificial neural network algorithms is

considered for a large back-bone network which can perform with more evalua-

tion factors involved. Large network for a institutional campus will be considered

for performance evaluation. Furthermore , more constraints can be applied for

compressed sensing techniques for traffic matrix estimation.
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