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Abstract

Travelling salesman problem (TSP) is one of the fundamental and most re-

searched problems in the study of Approximation Algorithms. Generally, the

algorithm is provided with a metric(V, d) and the aim of the algorithm is to

find a closed tour starting from any random vertex and visiting each and every

point in V with the minimal possible cost of d. It is a known NP-Complete

Problem and has key applications in the areas of logistics, planning, and cir-

cuit design. Although, many successful algorithms have been proposed for

the symmetric TSP problems, but generally those fail to provide adequate

results for the asymmetric problems. We have proposed a new and improved

approximation algorithm for both symmetric and asymmetric TSP problems.

For this purpose 2-opt local search technique has been used with some en-

hancements to generate better results. We have compared our technique

with seven other different algorithms of different types and the proposed al-

gorithm outperforms others in error margin, time and convergence tests. To

cater complexity and time issues in bigger TSP problems, we have introduced

a graph compression technique to ensure the solution of bigger problems in a

timely manner. So here in this improved approximation algorithm, we have

achieved our major objective of receiving a solution which is quite near to

the optimum with minimal comparative computational complexity. In this

thesis, we have used a well known library TSPLIB, and compared our re-

sults with a ruin and recreate algorithm for time, error and convergence. We

have also compared the results of our algorithm with six other well known

algorithms used in this field which include the nearest neighbor, genetic al-

gorithm, simulated annealing, tabu search, ant colony and tree physiology

optimization. The proposed algorithm clearly outperforms other algorithms

for multiple parameters.
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Chapter 1

Introduction

The traveling salesman problem is the most researched problems
in combinatorial optimization domain [3] due to its importance
and usage in different areas of daily life and applications. Lots
of researchers are still pursuing this area who are striving for the
optimization of TSP problems with respect to time, error and
complexity. This problem is usually described as : a salesman
starts his/her journey from an origin city, goes through every
other city once and comes back to the origin city with minimal
possible distance traveled [4–6].

1.1 Motivation

Finding the optimum solution using exact algorithm is very ex-
pensive both in terms of time and resources. Complexity in this
case can reach up to O(n!) due to its NP-Hard status. To deal
with this problem, researchers have devised different heuristics
and approximation techniques for finding a fast and near opti-
mal solution [7].

The effort for finding the optimal result of any NP-Hard
problems can grow exponentially huge, thus making the re-

1
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trieval of solution impractical for relatively larger scale problem
size [3]. Heuristics can minimize the complexity from exponen-
tial to polynomial time by sacrificing some accuracy. Minimizing
complexity from exponential size to polynomial size provides the
advantage of efficient computability and the schemes can be re-
fined for improving the result by reducing the error factor [4].
Majority of such algorithms only cater for the symmetrical prob-
lems while only few take into account the asymmetric problems.
In this thesis, we have devised an algorithm which can work
on both kinds of graphs for the TSP, providing impressive re-
sults in polynomial time. Almost all real world problems that
rely on an effective result of TSP problem like network opti-
mization, logistics, postal, or any other industry which involves
planning, logistics, can greatly benefit from the provided TSP
algorithm [8,9].

1.2 Problem Statement

We have a complete graph G = (V, E) as an input to the al-
gorithm; here nodes are denoted with V and edges are denoted
with E. Every edge (u, v) ∈ E has a non-negative integer cost
denoted with c(u, v) associated with each edge (u, v) ∈ E. The
problem is to find a Hamiltonian cycle (tour) of G with minimum
cost. The approximation algorithm should solve both types of
problems i.e. symmetric and asymmetric with a minimal er-
ror margin. It should effectively solve large input problems in
reasonable amount of time.

1.3 Solution

An Improved approximation algorithm has been devised using
2-opt technique for TSP problem. Our proposed algorithm uti-
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lizes edge swapping technique mixed with some carefully studied
steps to generate near optimal results and solve problems of both
symmetric and asymmetric instances. Moreover, a graph com-
pression technique has been proposed and utilized to solve huge
problems in a limited amount of time without compromising the
accuracy.

Here are the steps for the proposed algorithms, every step is
further described in detail.

• Compute a basic solution of the input problem.

• Compute active edge matrix using graph compression tech-
nique.

• Use 2-opt technique for edge swapping.

• Accept the new solution using acceptance criteria.

• Reshuffle the cycle and repeat until convergence or pre-
defined end of iterations.

1.4 Terminologies

1.4.1 Hamiltonian Cycle

Hamiltonian cycle or Hamiltonian circuit is a cycle in a graph
or closed loop within a graph that visits each and every node in
the graph only once. The minimum weighted Hamiltonian cycle
is the TSP solution.

1.4.2 Shortest Path

Let G is a graph and there exists a path from node X to node
Y denoted as Sxy then Sxy will be called shortest path if and
only if there does not exist any other path from X to Y which
is shorter than Sxy.
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1.4.3 Complete Graph

A graph G is called a complete graph if every pair of nodes V is
connected to each other, or in other words, every node v ∈ V is
connected to each and every other node in the graph. Examples
are provided in Fig 1.1 and 1.2

Figure 1.1: 8 nodes undirected
complete graph

Figure 1.2: 5 nodes undirected
complete graph

1.4.4 Asymmetric and Symmetric Graph

In symmetric or un-directed graphs, the distance between any
two nodes is always same in either direction. The amount of po-
tential solutions of the problem becomes half due to this symme-
try. This is not the case for asymmetric graphs where there are
many more possible solution candidates and routes that makes
solving TSP more tricky. Traffic clashes, various ways airfare
travels and one sided streets are instances of the asymmetrical
TSP [10]. Examples of symmetric graphs are provided in Fig
1.3, 1.4 while those of asymmetric graphs are provided in Fig
1.5, and 1.6.
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Figure 1.3: Matrix for symmetric
complete graph Figure 1.4: Symmetric graph

Figure 1.5: Matrix for
asymmetric complete graph Figure 1.6: Asymmetric graph

1.5 Other Associated problems

There are many other problems associated with the traveling
salesman problem or which are the generalized form of TSP [9].
Bottleneck traveling salesman problem is another instance of
TSP. Here, the high mass edge of the graph searches the mas-
sive graph for Hamiltonian cycle. E.g. the case of large buses for
which small streets are not feasible. Another related problem is
the Traveling politician problem in which a politician is required
to visit each and every city as the voters can visit the nearby
city for listening to speech of politician. In this case the pair-
wise distance between the cities becomes very important. An-
other generalization is the Vehicle routing problem [11] in which
there is a fleet of vehicles and a set of customers that are to be
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served in optimal routes. In the Traveling purchaser problem,
a buyer has a list of articles to buy and a number of market-
places to visit and the price of the articles at each marketplace.
The objective is to minimize the combined cost of traveling and
articles. Other problems include Printing press scheduling prob-
lem, School bus routing problem, Crew scheduling problem and
Interview scheduling problem.

1.6 Conventional Approaches

Following are the conventional approaches for solving the NP-
hard problems like TSP:

• Finding algorithms that always guarantee the optimal so-
lution. Usually the resource demands and computational
complexity of such approaches is impractical.

• Finding algorithms that do not guarantee to provide the
optimal results but strive for finding solutions that are near
optimal. Generally the computational complexity of such
techniques is polynomial at worst.

1.7 Exact Algorithms

As the name suggests, exact algorithms produce the optimal
result for TSP problem by considering each and every unique
solution. An example is the brute force technique that consid-
ers every possible combination or comparison resulting in an
exponential growth with respect to input size, the solution will
become impossible in bigger problems due to its exponential
growth nature. Finding the solution becomes unfeasible even
for a small input size of 20 as the running time can go up to
factorial of the number of cities. There are two types of meth-
ods used for exact algorithms: one method utilizes schemes like
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branch and bound, interior point, cutting plane and branch and
cut. Second method used dynamic programming to solve the
problem. A famous example is that of Concorde algorithm that
falls under the exact solvers’ category which uses a fusion of
branch and bound and cutting planes to avoid dead compar-
isons [10,12,13].

• The algorithm utilizes branch and bound technique if the
number of cities are between 40 to 60 .

• In case the problem size is over 200, it utilizes evocative
method of straight programs using the progressive improve-
ment algorithms.

• It also provides a choice for selection of system for problems
with large distances and cities. They have utilized branch-
and-bound and problem-specific cut generation for solving
a big example consisting of 85,900 cities. [14].

1.8 Non Exact Algorithms

As the name suggests, non-exact algorithms do not always pro-
vide the optimal solution but strive to provide a solution that
is still usable in practical settings with acceptable and practi-
cal computational cost [10]. In other words, there is a trade-off
between time, resources and optimal value.

1.8.1 Approximation or Heuristic algorithms

A variety of heuristics and approximation algorithms have been
proposed by the theoretical computer science community. It
is generally accepted that a near optimal solution that does not
deviate from the optimal solution by more than 2 or 3 percent is
an acceptable scenario for practical problem sizes. Christofides
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is considered a suitable method [15, 16] that has a proven ap-
proximation ratio of 3/2 but the method provides near-optimal
solution for Metric TSP problem only i.e. the input graph must
fulfill the triangular inequality constraints. Other well-known
methods include nearest neighbor, Clarke-Wright and further
improvement like tabu search, simulated annealing, genetic al-
gorithm, and ant colony optimization. All these algorithms are
discussed in detail in chapter 2.

1.9 Thesis Organization

Introduction of the problem, motivation, problem statement and
some solution techniques are discussed in first chapter. Famous
algorithms like christofieds, nearest neighbor, simulated anneal-
ing, tabu search, genetic algorithm and ant colony optimization
with some brief problem history are presented in literature re-
view section. Chapter 3 comprises of the proposed methodology,
it discusses in detail the proposed algorithm with some complex-
ity analysis. Chapter 4 provides the details of the well-known
TSPLIB data set that has been extensively used in the empir-
ical evaluation of our proposed algorithm. We have provided
the details of a comparative analysis of our proposed technique
with some other well-known and state of the art TSP algorithms
in chapter 5. The results are provided in tabular form and are
further discussed with the help of some diagrams. Finally in the
last chapter, conclusions are drawn and some future directions
are identified.



Chapter 2

Literature Review

2.1 Background

The TSP problem made its first appearance in mathematical lit-
erature in a 1757 paper by the Leonard Euler. The paper basi-
cally looks for an answer to the knights excursion hassle problem
in chess, i.e. locating a sequence of knights moves starting from
a given square on the chessboard, visiting all different squares
precisely once and then returning back to the starting square [8].

Mathematicians W.R. Hamilton, and Thomas Kirkman pro-
vided solutions to problems that were pretty similar to the TSP
problem in 1800s. A major milestone was achieved with the in-
troduction of Hamiltons Icosian Game by Hamilton, although,
the physical game developed on this scheme failed to generate
any interest from the general public. The concept was based on
the Hamiltonian cycle problem and was a contribution to the
graph theory [17].

The first formal description of the problem is associated with
Karl Menger. He provided the brute-force version of the algo-
rithm and also highlighted that the nearest neighbor technique
does not provide the optimal result for the problem [18].

In 1930 Merrill M. Flood, who was actually looking for the

9
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solution of school bus scheduling, incidentally proposed his idea
of solving the TSP problem by doing mathematical calculations.
Eventually, the term and name ”Traveling Salesperson” was first
time formally used by Hassler Whitney in 1959 [19].

In the 1950s and 1960s, the problem gained much wider pub-
licity in the scientific community to the point that RAND Corpo-
ration started distributing prizes for step by step solution of the
problem. Further notable contributions were made by George
Dantzig, Delbert Ray. Fulkerson and Selmer M. Johnson, who
were part of the RAND Corporation team and used the cutting
plan system technique for finding the solution. This solution
proved to be effective with the inclusion of few refinements and
variations proposed by Dantzig, Fulkerson and Johnson [18].
They were able to solve an example of 49 cities with 26 differ-
ent routes. Dantzig, Fulkerson and Johnson were perhaps the
first notable researchers who deployed branch and bound algo-
rithm system for the very first time alongwith the cutting plan
framework.

Meanwhile, TSP problem also generated considerable inter-
est in other fields of research as well like chemistry, physics,
mathematics and other sciences.

In 1962, the problem gained further public attention after a
contest which was managed by the company Procter & Gamble
in USA to optimally solve a TSP problem for 33 cities. The
company offered a lucrative prize to the winners.

In 1972, Richard Karp showed the NP-Completeness of TSP
problem by reducing from the Hamiltonian cycle problem.

In 70s and 80s, mathematicians like Grtschel, Padberg, Ri-
naldi used cutting planes and branch and bound methods for
solution estimation of up to 2,392 cities.

In 1991 a library named TSPLIB [20] was formed and pub-
lished by the Reinelt which is composed of many tsp problems
studied over the course of 50 years.
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Figure 2.1: Contest to solve 33 cities problem.

In March 2005, Concorde TSP Solver was proposed that pro-
vided a TSP solution for 33,810 points in a circuit board. A tour
of length 66,048,945 units was found and it was demonstrated
that no shorter tour exists. The calculation took roughly 15.7
CPU-years [18].

Further improvements were made in April 2006 when an ex-
ample of 85,900 points was solved using Concorde TSP Solver,
taking more than 136 CPU-years [8]. Detailed history of the
TSP is discussed in [10,19].

TSP serves as a standard for some general heuristics formu-
lated for combinatorial enhancement, e.g. hereditary calcula-
tions, recreated toughening, tabu inquiry, subterranean insect
settlement streamlining, waterway development elements, and
cross-entropy techniques etc.
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2.2 Christofides algorithm

In 1976 an algorithm was proposed that was guaranteed to
provide a solution within 3/2 factor of the optimal solution.
The Christofides algorithm is considered one of the best algo-
rithms due to its ease of understanding, computational com-
plexity, and approximation ratio. This algorithm proposed by
Christofides combines the minimum spanning tree with a solu-
tion of minimum-weight perfect matching [16,21].

First, the minimum spanning tree is calculated and then
added with minimum weight matching, computed on the ver-
tices of odd degrees. Next, a Euler cycle is created from the
combined graph. This Euler cycle is then traversed with short-
cuts to neglect already visited nodes.

In 2011, a more improved version of christofides algorithm
was proposed for k-depot TSP, which shows a closer approxima-
tion of (2- 1/k). If the value of k approaches 2, the approxima-
tion bound becomes close to 3/2 (i.e. The original approxima-
tion of christofides).

2.3 2-Opt and 3-Opt

Optimizing the problem using smaller moves is also a very pop-
ular technique that has yielded promising results. 2-opt and
3-opt algorithms are a branches of local search algorithm which
are commonly used by theoretical computer science community
for the solution of TSP [22]. 2-opt algorithm removes 2 edges
from the graph and then reconstructs the graph to complete the
cycle. There is always only one possibility for adding 2 edges in
the graph for completion of the cycle. If the new tour length is
less than the previous one, it is kept otherwise rejected. Each
pair of edges is checked in the graph .

On the other hand, 3-opt removes 3 edges from the tour re-
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sulting in creation of 3 sub tours and 8 possibilities for adding
new edges to complete the cycle again. Like 2-opt, these steps
are performed on all the combination of edges. Time complex-
ity in 3-opt is O(n3) for a single iteration, which is higher than
2-opt algorithm. Fig 2.2. and 2.3 show the moves of 2-opt and
3-opt algorithms.

Figure 2.2: 2-opt moves Figure 2.3: 3-opt moves

2.4 Lin-Kernighan

Lin Kernighan is a complex variant of the k-opt algorithm. This
algorithm decides at each iteration that which variable k-opt
move should be adopted. This variability of choice in each it-
eration for choosing the value of k in k-opt moves increases the
complexity, but generates better results than other k-opt tech-
niques and is considered the most effective technique for gener-
ating approximate solutions of TSP. Although it is an approxi-
mation algorithm, yet it produces optimum results for majority
of the cases. The detail of this technique is provided in [5].

2.5 Branch and Bound

This technique is one of the most widely used technique for
solving discrete optimization problems. The basic concept is to
split up the viable set into progressive small sub-sets, estimate
boundaries on the objective function value across each sub-set,
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and then use that objective function to filter out certain sub-
sets in future comparisons. This method is easily applicable on
both symmetric and asymmetric problems. A method is studied
in paper [23] using branch and bound technique for asymmetric
problems.

In branch and bound method, a solution is devised and cost
is recorded in upper bound α after traversing a subset. All the
branches which exceed the pre-selected bound are never consid-
ered. If a new solution is achieved with a better value than the
previous one, then α is updated with the new value. The best so-
lution found at the end of this procedure is considered the global
optimum. The method can become inefficient in large problems
if the sub tree expands too large. To overcome this problem,
it can be used in conjunction with some other techniques like
minimum spanning tree relaxation for limited branching. Some
variants of branch and bound methods are studied in detail in
the paper [13].

2.6 Nearest Neighbor

The Nearest Neighbor algorithm (NN) is a straightforward, greedy
approximation algorithm. Tour starts with the selection of a
random initial city and then incrementally adding the closest
unvisited city till all cities are visited.

The steps are simple

• Let G = (V, E) be a complete graph where V are nodes
and E are edges.

• Select a random node v ∈ V and mark it visited.

• Now check for the shortest edge e ∈ E from this node to
the next node.

• Select this next node and mark it as visited.
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• Repeat these steps until all the nodes in V are marked as
selected or visited.

Although this algorithm is computationally very efficient but
generally fails to provide effective results. In paper [7], its em-
pirical results are compared with 5 other algorithms utilizing
TSPLIB problems. In this thesis, we have also compared the
results of our proposed algorithm with nearest neighbor algo-
rithm results. The comparison highlights that nearest neighbor
algorithm is a poor choice for the TSP approximation.

2.7 Simulated Annealing

In 1983, Kirk patrick, Gelatt and Vecchi introduced a power-
ful heuristic algorithm known as simulated annealing. SA is a
heuristic algorithm based on trajectories inspired by the metal
annealing method which slowly freezes into a solid state. SA
is a probabilistic algorithm to find the global optimum of the
problem from the pool of local optimums. Simulated anneal-
ing decides on each step, the probability of keeping the current
solution or moving to the next possible one. The probability
increases or decreases with the quality of the move. A parame-
ter T is used to measure the probability of the move. When T
tends to zero, the probability of selection becomes more unlikely.

P (acceptance) ∼ 1− exp(∆E/CT ))
Here C is a constant related to energy or temperature, and

the value of T is a control parameter and set very high initially.
Simulated annealing allows some bad moves to traverse through
the big solution space. The acceptance of the new state is also
based on some predefined criteria. This process is repeated until
the convergence to the solution [3]. In [24] authors proved that
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threshold acceptance is better than simulated annealing.

2.8 Genetic Algorithm

Genetic algorithm has also garnered considerable attention as
the candidate for the solutions of various optimization prob-
lems. They basically represent a separate class of algorithms
that deal with problems of complex nature. Genetic algorithms
have practical use and importance in various other fields as well
as our social life. Unlike other meta-heuristic methods, GA use
natural selection rules, crossover and mutations to make the
computation easier and faster. These aspects make it more
valuable, better performer, and more efficient algorithm than
others [25–27].

The genetic algorithm is inspired by the genetic operators
of evolution, i.e. selection, crossover and mutation. GA has
been extensively used in literature for TSP and related problems.
Mutation is the most effective operator driving the search for a
better solution. Swapping, flipping and sliding are the main
types of mutations used in GA. The idea behind the genetic
algorithm comes from genes where the offspring is created by
exchanging the genes of their parents. Full life cycle of GA is
described in Fig 2.4.

2.9 Tabu Search

TS was proposed by Fred Glover in 1986 and is also known as
an algorithm for neighborhood search. Here the search method
is primarily based on memory of search history, denoted as tabu
listing. It is an intensive local search algorithm [28]. Tabu
search avoids the problem of getting stuck in local optima by
allowing moves with negative gains and constructing a tabu list
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Figure 2.4: A Genetic Algorithm for solving TSP.

to disallow contradictory moves. Whenever it gets stuck in local
optima, it searches a solution from the neighborhood stored in
memory even if it is worse than the current selected one(negative
gain), thus allowing it to discover more feasible options from the
solution space. Here a tabu list helps TS to avoid cycling in the
tour. Tabu search uses 2-opt moves to enhance the solution.
The running time of this algorithm is O(n3), which makes is
slower than other 2-opt local search algorithms.

2.10 Neural network

Simple and yet challenging optimization problems like TSP has
inspired the researchers to use new and improved techniques in
this domain. Neural network is yet another tool that has been
utilized by the researchers seeking better solutions for TSP. Yet,
results from this field are not comparable to other heuristics.
However, the neural network field is still growing and many im-
provements are under way. Neural networks is a powerful com-
putation technique which provides parallel computation and re-
duces a huge amount of time using parallel technology. Hence,
after maturity this technology can provide the solution for the
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optimization problems at a speed that surpasses the other well-
known techniques.

In their work, Rong Li and Junfei Qiao [17] advocated for
the use of a modified Hopfield neural network. In this paper
two experimental studies were carried out. For experimenta-
tion, they selected 10 and 19 cities for modified and traditional
algorithms respectively. They proved that the modified Hopfield
neural network is more efficient in working as compared to the
traditional Hopfield neural network. Morever, they further jus-
tified that the modified Hopfield neural network technique was
practice able. Other optimization issues can also be solved by
the modified Hopfield neural network according to the analogy.

2.11 Ant Colony Optimization

It has become a very common practice to solve complex prob-
lems with the help of natural phenomena. Solving TSP with
ant behavior, genetic algorithm or tree Physiology are some
examples of this practice. Machine learning scientist Marco
Dorigo outlined in 1993 a strategy for heuristically solving TSP
by deploying a technique of recreation of a subterranean in-
sect province called ACS (subterranean insect settlement frame-
work). It used the analogy that how genuine ants discover short
ways between sustainable sources and their home. Ants behav-
ior is depicted in the Fig 2.5

As ants are blind, so they start navigation toward the food
source from their colony and deposit the pheromones on their
pathway. Every ant searches and follows the path at random.
The probability of following a path increases with the increase of
pheromones in that path. The ants investigate, saving pheromone
on each edge that they cross, until they have all finished a visit.
The algorithm uses artificial ant behavior which records their
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location and quality of the solution so that this path can be
checked for acceptance or rejection in future iterations. The
measure of pheromones storage corresponds to the visit length:
the shorter the visit, the more it stores [1, 2].

In their work, Leila Eskandari, Ahmad Jafarian [29] argue
that ACO is one of the efficient nature motivated meta-heuristic
algorithm which has outperformed a considerable set of algo-
rithms in this domain. They have modified and improved the
ACO algorithm to devise another strategy for solving TSP prob-
lem. Basically they compare both local and global solutions for
finding the best possible solution.

In paper [1] authors used tabu listing to avoid repetition of
path selection in ant colony optimization. Results from the
study show that tabu listing used with ACO considerably im-
proves the overall algorithm time and convergence.

Figure 2.5: Ants behaviour shows they choose shortest path. [1, 2]
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2.12 Tree Physiology Optimization

An important property of nature is sustainability and continu-
ous improvements for survival. This unique property reflects the
pattern of optimization. There are many meta-heuristic algo-
rithms inspired by the nature, which are producing good results
with powerful techniques. Tree physiology optimization is also
one of the nature inspired algorithm used to solve optimization
problems.

The algorithm is influenced by a tree development scheme
that uses the shoot and root feature to achieve optimal survival.
The shooting system expands to a light source in ordinary plant
growth to capture light and initiate the photosynthesis process.
The method of photosynthesis transforms light into carbon with
the assistance of water, which is then provided and used by other
components of the plant, particularly, the root system uses oxy-
gen to elongate shooting in the opposite direction. It consumes
carbon to further elongate inside the floor for water and nutrient
searching, which is then provided for shooting extension system.
The shoot-root system’s connection to ideal development can be
converted by a straightforward concept into an optimization al-
gorithm, shoot searches for carbon using root nutrient, and root
searches for nutrient using shooting system. In paper [7], TPO
results are compared with 5 other algorithms.

2.13 Ruin and recreate

R&R is a simple but powerful meta heuristic to solve combi-
natorial optimization problems. The ruin and Recreate (R&R)
method uses the concepts of simulated annealing or threshold
acceptance with massive actions in place of smaller ones. As the
name suggests, a big chunk of the problem is ruined and recre-
ated. Complex problems like timetable scheduling or vehicle
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routing problems, which are often discontinuous, require large
moves to bypass the local optima. R&R algorithm has proved
to be an important candidate for finding global optimum and
parallelism.

Vehicle routing problem using R&R is discussed in detail in
paper [11]. There is a fleet of vehicle which has to serve differ-
ent number of customers. There is a central depot where the
route of each vehicle starts and ends. Vehicles need to serve the
customers that have certain demands. The idea is to serve the
customers with a minimum route (distance traveled) and within
the capacity of every vehicle assigned to it. A time window con-
straint can also be added to the problem, i.e; every customer can
add start and end time to its service. A total of 56 problems
have been studied in this paper and results are discussed.

Jsprit is an implementation of the algorithm R&R. We have
used that implementation to benchmark the problems from TSPLIB
and compared those results with our proposed algorithm. In this
study, R&R has performed considerably well in terms of error
margin and convergence in some problems.



Chapter 3

Proposed Methodology

Graphs are important type of data structures with many appli-
cations. Traveling salesman problem (TSP) is one of the most
important graph theory problem that belong to NP complete
class of problems [17]. Finding optimal solution for such prob-
lems in real time simulation is currently not possible. Therefore
one may opt for approximation solutions for these problems.
This domain is a hotbed for researchers for past few decades
now, and researchers are actively seeking for effective solutions
to such problems that can be computed in polynomial time.
Research community is consistently looking for novel techniques
and algorithms that can outperform the previous well known
algorithms. TSP problems can be classified into symmetric and
asymmetric TSP problems [10], which are already discussed in
chapter 1. Majority of the proposed algorithms and techniques
solving TSP mainly focus on either symmetric or asymmetric
TSP problems. In this work a new simpler and computationally
cheap algorithm is proposed. The algorithm effectively solves
both type of TSP problems. One of the key aspect of the pro-
posed algorithm is the introduction of a new technique for graph
compression, which reduces computational complexity consider-
ably.
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3.1 Proposed Solution

3.1.1 Basis for Solution

The first step in our algorithm is the generation of the Hamilto-
nian cycle. The Hamiltonian cycle problem works as the basis
of our algorithm. Initially, the algorithm requires to be pro-
vided with a Hamiltonian cycle as a base input to this algorithm.
A random Hamiltonian cycle is quickly computed by using the
greedy technique (least cost edge) and then edge swap technique
is used to iteratively improve upon the original tour. It is perti-
nent to mention that although we have computed Hamiltonian
cycle in a greedy manner for this work, any method can be uti-
lized to compute the Hamiltonian cycle as the effectiveness of
our proposed algorithm would greatly exceed in cases where the
initial Hamiltonian cycle is of higher quality in terms of total
edge weight. However, it is not entirely dependent on such opti-
mistic scenarios only as the proposed edge swap technique along
with graph compression are also keys for proposed algorithm’s
success.

3.1.2 Graph Compression

A Hamiltonian cycle H is a complete cycle from a graph G
=(V,E) where every node is visited only once, here V denotes
the nodes in the graph and E denotes the edges.

Formally, Let G = (V, E) Where ‖V ‖ = n, n denotes the total
number of nodes. A greedy Hamiltonian circuit H is obtained
by starting from any random node vi ∈ V and then traversing
the next node with minimum edge ei ∈ E. When each and every
node has been traversed, a new edge will be added in the graph
from the least cost edge is selected from the last node to the
initial node to complete the cycle.



24

The time complexity for finding the Hamiltonian cycle de-
pends on the type of algorithm used. There are many greedy
solutions available which guarantee O(n) time complexity. The
TSP graph can be expressed in the form of cost matrix. Ini-
tially full cost matrix is taken. For smaller problem cost matrix
is small, but with increase in matrix size the space cost increases
quadratically. Therefore, we modify the cost matrix and use an
active edge matrix which only have 100 edges for each node.
The complexity of this step is

Time complexity = O(n + k.log(k)) = O(n)
Where n denotes the total number of nodes, k denotes the

nodes which are needed to be activated for that particular node.
So if we select 100 active nodes that means k = 100.

For each graph, a n * n matrix is initialized with 0s, where
n is the number of nodes in the graph. Nearest k points would
be identified and those points will be considered active for that
node vi ∈ V and would be marked 1 in the active edge matrix.

3.1.3 Shuffling

Next step is to shuffle the original Hamiltonian cycle generated
in the first step. The algorithm selects a group of three nodes
from the original cycle and then processes those in clockwise di-
rection in two steps. We would like to highlight that although it
is possible to select variable number of nodes and steps, we have
selected this combination of 3 nodes and 2 steps after extensive
evaluation with different combination of number of nodes and
steps. After this shuffling step, the algorithm mutates and ac-
cepts the new Hamiltonian cycle if it provides some gain over
the previous solution. Shuffling is an iterative process that is
repeated a fixed number of times.
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Time complexity of shuffling is O(n/l), where l is the number
of sub elements to shift clockwise or anticlockwise.

3.1.4 Mutation

Mutation is an integral part of our proposed algorithm. Muta-
tion refers to the on-going modifications to the current solution.
Different techniques have been used for mutation in different al-
gorithms and Lin-kernighan is a famous one which removes two,
three, four or five connections from the graph and then selects
a new solution from 2, 4, 25 or 208 different possible scenar-
ios [5]. Here in this thesis we have applied a simple mutation;
we remove two edges from the complete Hamiltonian cycle H
and revert them and reconnect them again to create a new so-
lution. This is the same technique used in lin-2-opt method [22].

Suppose we have two edges AD and EB, shown in the Fig
3.1. We will remove these two edges from the graph and add
two more edges as AB and ED to complete the graph.

The time complexity of this step would be constant as only
two edges are to be removed and two new edges have to be
added.

Figure 3.1: Reverting an edge in 2-opt algorithm
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3.1.5 Gain Computation

The total weight of this newly computed graph will be calculated
again and if the new sum of weight is lesser than the previous
one, then distance is minimized from the previous value, new
edges will be accepted, otherwise rejected. This step will be re-
peated for every edge in the graph of respective node.
Let x be the distance from node A to node D from the Fig 3.1
and x be the distance from node E to node B. In case of sym-
metric graph, distance from A to D and D to A will be identical.
Let y be the distance from node A to node B and y be the dis-
tance from node E to node D. Then we will have gain as

Gain = Rp - Rn

Here Rp is the sum of edge distance which is to be removed
i.e. Rp = x + x, while Rn be the sum of edge distance which is
to be added in newly graph i.e. Rn = y + y.

We would like to highlight that in the case of symmetric
graphs, we need to calculate gain from two edges that have been
replaced in the graph, while the rest of the graph remains the
same. However, in the case of asymmetric graphs, whole graph
would be computed again, as reverted edges can have different
values. So, the whole graph will get changed when two edges
are reverted and added in the cycle. Time complexity in the
case of symmetric graph will remain constant while in case of
asymmetric graph it will be O(n).

3.1.6 Selection Criteria

Opting for more number of steps and removing more than two
edges will add more complexity to the problem, that’s why we
have kept smaller number of steps and have tried to gradually
improve the solution in this algorithm. Reverting the edges
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and then testing for improved solution is a simple yet powerful
method. But, there is an overhead in this solution. As we
are checking for every suitable solution and then adapting it
in a greedily manner raises the possibility of missing a better
solution. This point can be improved in the future by defining
some constraints for the possible acceptance of a solution e.g.
simulated annealing accepts every better solution with a certain
probability measure [3], and in the case of threshold acceptance,
results are accepted if they satisfy certain threshold values [24].

If gain in the previous step is greater than 0, we will keep
this new solution. The time complexity of this step is constant.

3.2 Complexity Analysis

The time complexity of the proposed algorithm is O(n) in first
step. In second step, it is O(n) for graph compression or active
edge matrix. In the next steps we have

T = O(n) + O(n) + C.O(n) * T.O(n.k) = O(n2)
Where C * T corresponds to the number of iterations in the

algorithm. A loop has been used for shuffling and is denoted
here with C. Another loop has been used for mutations and
swapping, computing gain and accepting the new Hamiltonian
cycle, which is denoted here by T. k is the number of active
edges used in graph compression. It is evident that complexity
of the proposed algorithm is polynomial.
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Algorithm 3.1 An Improved Approximation Algorithm for Sym-
metric & Asymmetric TSP Problems

Input: A file containing three columns, row number, x point, y point
Output: Best tour, Error percentage, time, and complete graph
1- Select a random Hamiltonian cycle H, constructed from a directed
sequence S = p1,p2,p3...pn, such that pn is connected to p1. Initially S can
be selected using a low cost algorithm e.g, greedy algorithm.
1.1- Select AEM matrix through graph compression technique.
2- Initialize set A = S
3- Select a point pq ∈ S
4- Select three points ps, pt, pr ∈ S, such that ps is the point next to pq,
and pr is a point next to pt, and none of pq, ps, pt and pr are the same.
5- check if ps is an active edge for pq, then break this edge to form a path
p1 = pr,,ps

6- Break second edge (pr, pt) of H to form second path p2 = pt,,pq

7- Reconnect p1 with inverted p2 sequence to form a new Hamiltonian cycle
I = pr ,ps, pq, ,pt, I has two new edges (ps,pt) and (pq,pr). The original
p2 and inverted p2 does not differ in length for an undirected (symmetric)
graph.
8- Find the difference ∆d = (dsq + dtr) –(dst + dqr), where dsq is the distance
between point ps and pq. Here (ps,pq) and (pt,pr) are discarded edges and
(ps, pt) and (pq, pr) are new edges.
9- If the ∆d > 0 replace H with I.
10- Repeat steps 4 to 7 until all the pt ∈ S are selected, where pt and pq are
different.
11- Remove current pq from A and select a new pq ∈ A.
12- Repeat step 3 to step 11 until A = φ
13- Repeat step 2 to step 12 for K iterations to achieve convergence.



Chapter 4

Materials

Only a limited number of test problems are publicly available to
benchmark the well known combinatorial optimization problems
like TSP. TSPLIB provides a nice collection of examples that
have been recorded over the course of more than 50 years for
this purpose. In this research work, we have also used this test
suite for benchmarking the results [20]. The examples in the
library are of following natures.

• Problems related to Symmetric TSP (TSP).

• Problems related to Asymmetric TSP (ATSP).

• Problems related to Hamiltonian cycle (HCP).

• Problems related to Sequential ordering (SOP).

• Problems related to Capacitated vehicle routing (CVRP).

4.1 TSPLIB

This library contains multiple problems of different categories
ranging from 10 nodes to 85900 nodes. File format and types
are explained below.

29
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4.1.1 File Format

Each file has two parts, specification part and a data part. In-
formation about content is provided in specifications part in the
form of keyword value pair, while explicit data is present in the
data part. Here we provide some in depth intrinsic detail of a
TSPLIB file.

4.1.2 Type: Describes the type of the data

In this thesis work, we have only considered the symmetric and
asymmetric problems. Below tables describe data types in the
TSPLIB library 4.1.

Table 4.1: Types of data presented in TSPLIB library.

Type Description
TSP Symmetric TSP data
SOP Sequential ordering problem data
ATSP Asymmetric TSP data
HCP Data for Hamiltonian cycle problem
TOUR A collection of tours
CVRP Data for Capacitated vehicle routing problem

4.1.3 Edge Weight Type: Describes the edge weights
in the file

For symmetric problems only EUC 2D and CEIL 2D weights are
considered and benchmarked, while for asymmetric problems the
complete matrix is considered as input. Edge weight types are
defined in table 4.2.
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Table 4.2: Types of edge weights presented in TSPLIB library file.

Type Description
FUNCTION A function describes the weights
FULL MATRIX Full matrix with distances
UPPER ROW Row wise upper triangle, no diagonal entries
LOWER ROW Row wise lower triangle, no diagonal entries
UPPER DIAG ROW Upper row with diagonal entries
LOWER DIAG ROW Lower row with diagonal entries
UPPER COL Column wise upper triangle, no diagonal entries
LOWER COL Column wise lower triangle, no diagonal entries
UPPER DIAG COL Upper column with diagonal entries
LOWER DIAG COL Lower column with diagonal entries

4.1.4 Distance Formula

As discussed already, we have used EUC 2D and CEIL 2D for-
mats in our algorithm, and in this section we have described the
formula of calculating the distance from one node to the other.
A floating point coordinates are provided in each file for each
node. e.g. Let

Xi, Yi

denotes the two coordinates X and Y of a node i. Then in case
of EUC 2D the distance between two points i and j would is
calculated as

Xd = Xi −Xj

Yd = Yi − Yj

Dij =
√
X2

d + Y 2
d

The edge weight type CEIL 2D requires that the two-dimensional
Euclidean distances are rounded up to the next integer value.
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4.2 Symmetric problems

We have selected 78 different problems for symmetric TSP from
the library in EUC 2D and CEIL 2D formats. Selected prob-
lems range from 50 nodes to 85900 nodes. We have divided
them into 3 main categories i.e. small, medium and large. In
small category, we have selected 42 problems ranging from 50 to
500 nodes. In the medium category, we have selected 28 prob-
lems ranging from 500 to 5000 nodes and in the large category,
we have selected 8 problems which have a range of 5000 to 85900
number of nodes.

Small category problems are listed in table 4.3. Medium cat-
egory problems are listed in table 4.4, while large problems are
listed in the table 4.5. The name of the problems, number of
nodes and optimum tour values are provided in these tables that
have been used for comparison with different algorithms in the
comparison section.

4.2.1 Input file format

For all problems belonging to symmetric category, the input file
is a text file. The first row contains the optimal value with origin
(0,0). Each file has 3 columns; first column denotes the serial
number, second column the x-axis value and the third column
provides the y-axis value. For example, if we have a problem of
50 nodes, then the text file will have 51 rows, where first row
will have optimum tour value and 0,0 values for x and y-axis,
while another 50 rows will have node number, x-axis value and
y-axis value respectively.
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Table 4.3: TSP Small Symmetric Problems having 50-500 Nodes.

# Symmetric Opt. # of Nodes # Symmetric Opt. # of Nodes
1 a280 2579 280 23 lin318 42029 318
2 berlin52 7542 52 24 u159 42080 159
3 bier127 118282 127 25 pcb442 50778 442
4 ch130 6110 130 26 pr107 44303 107
5 ch150 6528 150 27 pr124 59030 124
6 d198 15780 198 28 pr136 96772 136
7 d493 35002 493 29 pr144 58537 144
8 eil101 629 101 30 pr152 73682 152
9 eil51 426 51 31 pr226 80369 226
10 eil76 538 76 32 pr264 49135 264
11 fl417 11861 417 33 pr299 48191 299
12 gil262 2378 262 34 pr439 107217 439
13 kroa100 21282 100 35 pr76 108159 76
14 kroa150 26524 150 36 rat195 2323 195
15 kroa200 29368 200 37 rat99 1211 99
16 krob100 22141 100 38 rd100 7910 100
17 krob150 26130 150 39 rd400 15281 400
18 krob200 29437 200 40 st70 675 70
19 kroc100 20749 100 41 ts225 126643 225
20 krod100 21294 100 42 tsp225 3916 225
21 kroe100 22068 100
22 lin105 14379 105
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Table 4.4: TSP Medium Symmetric Problems having 500-5000 Nodes

# Symmetric Opt. # of Nodes # Symmetric Opt. # of Nodes
1 p654 34643 654 16 u1432 152970 1432
2 d1291 50801 1291 17 u1817 57201 1817
3 d1655 62128 1655 18 u574 36905 574
4 d657 48912 657 19 u724 41910 724
5 fl1400 20127 1400 20 vm1084 239297 1084
6 fl1577 22249 1577 21 vm1748 336556 1748
7 nrw1379 56638 1379 22 fl3795 28772 3795
8 pcb1173 56892 1173 23 d2103 80450 2103
9 pr1002 259045 1002 24 u2319 234256 2319
10 rat575 6773 575 25 fnl4461 182566 4461
11 rat783 8806 783 26 pcb3038 137694 3038
12 rl1304 252948 1304 27 pr2392 378032 2392
13 rl1323 270199 1323 28 u2152 64253 2152
14 rl1889 316536 1889
15 u1060 224094 1060

Table 4.5: TSP Big Symmetric Problems having more than 5000 Nodes.

# Symmetric Opt. # of Nodes
1 rl5934 556045 5934
2 rl5915 565530 5915
3 rl11849 923288 11849
4 usa13509 19982859 13509
5 brd14051 469385 14051
6 d18512 645238 18512
7 pla33810 66048945 33810
8 pla85900 142382641 85900
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4.3 Asymmetric problems

We have selected 17 problems in the asymmetric category from
the library. All these problems are listed below in the table 4.6.
The second column provides the name of the problem followed
by the optimal value and the total number of nodes in that
problem.

Table 4.6: Asymmetric Problems.

# Asymmetric Opt. # of Nodes
1 br17 39 17
2 ft53 6905 53
3 ft70 38673 70
4 ftv33 1286 34
5 ftv35 1473 36
6 ftv38 1530 39
7 ftv44 1613 45
8 ftv47 1776 48
9 ftv55 1608 56
10 ftv64 1839 65
11 ftv70 1950 71
12 ftv170 2755 171
13 kro124 36230 100
14 p43 5620 43
15 rgb323 1326 323
16 rgb358 1163 358
17 ry48 14422 48

4.3.1 Input file format

The input for the asymmetric TSP problem is again a text file
consisting of a matrix of complete graphs. Due to asymmetric
nature, we can not have only upper diagonal or lower diagonal
matrix as input, because distance from point a to b and distance
from point b to a are not not necessarily the same in asymmetric
problems, so missing matrix cannot be computed at its own.



Chapter 5

Experimental Results &
Analysis

In this section, we present the detailed evaluation of our pro-
posed algorithm using multiple resources and also provide a per-
formance comparison with some other well-known algorithms se-
lected from the literature. We have mainly benchmarked TSPLIB
examples to test the efficiency of our algorithm and have com-
pared it with the R&R algorithm, and some other well known
approximation algorithms selected from the existing literature.
As our algorithm is able to cater both symmetric and Asymmet-
ric problems, we have picked up 78 symmetric and 17 Asymmet-
ric problems from well-known TSPLIB library. The details of
the problems that have been used for empirical evaluation are
provided in Chapter 4.

In existing literature, a large number of algorithms have been
proposed as a possible solution for TSP problem and we wanted
to highlight the efficiency and effectiveness of the empirical re-
sults received by the deployment of proposed algorithm. We
have rigorously evaluated the proposed algorithm and present
our findings in this chapter with a detailed comparison with the
R&R and 6 other approximation algorithms.

Jsprit is an implementation of the ruin and recreate algo-
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rithm [11]. We have empirically tested the R&R algorithm by
using TSPLIB problems, and the results received are presented
in table 5.1 along with the results of proposed algorithm. The
comprehensive comparative analysis of the proposed algorithm
with existing algorithms i.e. Nearest Neighbor (NN), Genetic
Algorithm (GA), Simulated Annealing (SA), Tabu Search (TS),
Ant Colony Optimization (ACO) and Tree Physiology Opti-
mization (TPO) are provided in the Table 5.2.

All the algorithms have been evaluated for the same TSPLIB
problems selected in the initial stage of study. It is pertinent to
mention that the original authors of the paper [7] only targeted
the symmetrical problems and presented the comparative anal-
ysis on the basis of size of the problem and number of iteration
run by each algorithm. The problems have been divided into
3 categories depending upon the number of nodes, i.e.; small,
medium and large. The results for these comparisons are pro-
vided in the Table 5.4, 5.5, 5.6.

5.1 Parameter settings and machine configu-

ration

In proposed algorithm, there are two main variables, niter and
kiter. niter is set for shuffling the Hamiltonian cycle after every
mutation cycle, while kiter is set for number of mutation cycles.
So basically

Total Number of Iterations = niter * kiter
We have divided the benchmark problems into 3 categories

from the library i.e. small, medium and large. Small problems
are in the range of (50 < n ≤ 500), medium benchmark problems
have a range of (500 < n ≤ 5000) and large problems ranges (n
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> 5000). We have defined 2000 iterations for small category and
asymmetric problems, 500 iterations for medium and 50 itera-
tions for problems belonging to big category.
R&R results have also been generated by running the algorithm
on 2000, 500, and 50 iterations for small, medium, and big sized
problems for the sake of fairnes. The Authors that have pub-
lished the results for other algorithms i.e. NN, GA, SA, TS,
ACO and TPO algorithms have opted for a minimum of 10000
iterations for each algorithm [7]. For convergence graph, every
problem has been iterated 10, 100, 500, 1000 and 2000 times
and the corresponding result was recorded.
All the empirical results that have been received by running
the proposed algorithm and R&R on TSPLIB library have been
computed using a core i7, 6600U CPU @ 2.60 GHz * 2 machine
having 16GB RAM and running 64 bit operating system.

5.2 Experiment with R&R

In this section, we have presented the experimental results of
the proposed algorithm along with the results of the well-known
Ruin and Recreate algorithm implemented as Jsprit using simi-
lar settings. Each test case goes through 10, 100, 500, 1000 and
2000 iterations to draw the graph for convergence. We ran both
algorithms for fixed number of times for every TSP problem.
Moreover, we also recorded the time taken by each algorithm to
provide the results for each problem.

In case of proposed algorithm, for small problems comprising
of 50 to 500 nodes, we decided to run the algorithm on 2000
iterations and with full active matrix, which means that each
and every node is active in the graph. In the Table 5.1, we
have provided the results of conducting the experiment on both
algorithms with the details of individual TSP problem. The col-
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umn optimum, provides the value of optimal result for each TSP
problem provided in TSPLIB library. In column Time, we have
listed the actual wall clock time consumed by individual algo-
rithm for particular TSP Problem. The Error column provides
the actual difference between the received result and the optimal
result on the basis of basic formula. The formula is defined as

Error = ( result - opt ) / opt * 100
In 30 out of 41 selected bench marked problems, belonging to

small category, the proposed algorithm performed better than
R&R. In 11 problems R&R outperformed the proposed algo-
rithm. However, a key highlight of our proposed algorithm in
comparison to the R&R is that for the proposed algorithm, the
error variance never increased more than 7%, while the R&R al-
gorithm produced a below par 42.7% error margin for the prob-
lem pr107. It is also evident from the results that there are
many cases where the error percentage of the results produced
by the R&R is more than 18 percent. Moreover, if we look at
the execution time factor as well, proposed algorithm beats the
R&R by a fair margin while still producing notably better re-
sults for all the tested problems. It is also worth mentioning that
after applying graph compression e.g. for up to 100 nodes, the
time taken by proposed algorithm improved even further. It is
also evident from the graph 5.2, that R&R algorithm performs
so poorly in terms of computation time for the bigger problems
that we had to abort the computation of results for bigger prob-
lems for comparison sake. However, we have recorded the results
from proposed algorithm for all categories and have presented
those in tables 5.4, 5.5, 5.6, for future references.
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Table 5.1: Comparison of proposed algorithm with R&R in time and error

Name Opt.
R&R Proposed Algorithm

Best Error
%

Time
(sec)

Best Error
%

Time
(sec)

berlin52 7542 7,820.80 3.70 5.7 7,544.26 0.03 0.12

bier127 118282 127,550.90 7.84 30.2 119,228.26 0.8 0.58

ch130 6110 6,170.64 0.99 36.3 6,172.32 1.02 0.65

ch150 6528 6,712.87 2.83 52.4 6,683.37 2.38 1.00

d198 15780 15,937.39 1.00 74 16,160.30 2.41 1.85

d493 35002 35,923.41 2.63 258 36,479.08 4.22 14.21

eil101 629 662.89 5.39 15.2 666.93 6.03 0.31

eil51 426 444.42 4.32 2.5 432.35 1.49 0.08

eil76 538 573.28 6.56 6.6 553.01 2.79 0.17

fl417 11861 13,094.38 10.40 207 12,061.45 1.69 8.46

gil262 2378 2,422.93 1.89 108 2,462.66 3.56 2.63

kroa100 21282 21,559.42 1.30 15.8 21,522.49 1.13 0.31

kroa150 26524 26,952.53 1.62 46.8 26,635.40 0.42 0.77

kroa200 29368 30,231.95 2.94 73 30,031.72 2.26 1.39

krob100 22141 22,746.89 2.74 15 22,295.99 0.7 0.33

krob150 26130 26,237.26 0.41 48 26,568.98 1.68 0.76

krob200 29437 29,918.26 1.63 81 30,052.23 2.09 1.71

kroc100 20749 21,154.50 1.95 15 20,815.40 0.32 0.36

krod100 21294 21,842.21 2.57 17.5 21,813.57 2.44 0.31

kroe100 22068 22,413.32 1.56 14.8 22,299.71 1.05 0.34

lin105 14379 14,564.71 1.29 17 15,207.23 5.76 0.46

lin318 42029 42,822.78 1.89 133 44,306.97 5.42 5.76

pcb442 50778 52,910.40 4.20 204 52800 3.98 11.60

pr107 44303 63,228.97 42.72 19 46,066.26 1.08 0.41

pr124 59030 70,108.17 18.77 26 59,667.52 1.24 0.71

pr136 96772 104,690.06 8.18 36 97,971.97 2.25 0.84

pr144 58537 69,368.47 18.50 42 59,854.08 0.46 0.84

pr152 73682 79,805.00 8.31 46 74,020.94 2.11 0.96

pr226 80369 88,804.29 10.50 99 82,064.79 0.82 2.28

pr264 49135 58,608.78 19.28 105 49,537.91 3.78 3.75

pr299 48191 53,950.30 11.95 116 50,012.62 3.27 4.71

pr439 107217 120,717.01 12.59 188 110,723.00 1.83 11.63

pr76 108159 110,467.08 2.13 6.5 110,138.31 0.94 0.23

rat195 2323 2,378.49 2.39 67 2,344.84 6.68 1.80

rat99 1211 1,231.29 1.68 13 1,291.89 1.65 0.40

rd100 7910 8,046.29 1.72 14.8 8,040.52 1.12 0.38

rd400 15281 15,725.07 2.91 177 15,452.15 5.26 10.18

st70 675 693.37 2.72 5.2 710.51 1.96 0.21

ts225 126643 142,681.07 12.66 82.5 129,125.20 1.38 2.28

tsp225 3916 4,371.03 11.62 83.2 3,970.04 3.52 2.27

u159 42080 49,734.95 18.19 47 43,561.22 2.51 0.93
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5.3 Performance Comparison

The graph of Fig 5.1 depicts the error margin in the three al-
gorithms, i.e; proposed, NN, and R&R algorithm. It is evident
that the proposed algorithm outperforms the two other algo-
rithms most of the time, and R&R performed comparatively
better than NN. But it is also worth noting that in some cases,
the R&R algorithm yielded results that were even worst than
NN plus the variance between error margin from R&R is also
considerably higher. On the other hand, the proposed algorithm
produced better and consistent results and never exceeded the
acceptable margin of 7% for problems belonging to small cate-
gory.
Fig 5.2 provides a graphical comparison of time consumed by
the R&R and proposed algorithm. The results advocate for
the supremacy of our proposed algorithm in terms of computa-
tional time. It is pertinent to mention that the computational
time consumed by the proposed algorithm is impressive even for
the considerably larger problems. The computational time per-
formance improved further after the introduction of graph com-
pression technique. The graph clearly shows the abrupt increase
in time taken by R&R algorithm for problems with increasing
number of nodes.

5.4 Comparison with Other Approximation

Algorithms

In this section we elaborate and compare the results of six other
well-known approximation algorithms with our proposed algo-
rithm and highlight the key findings. In the original compari-
tive study [7], the author of the study selected some parameters
like number of iterations and number of experiments on each
algorithm. The minimum number of iterations was selected as
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Figure 5.1: Error Comparison of Proposed algorithm, R&R and NN.

10,000. Each algorithm continued its execution until either they
reached the already published results or completed the defined
number of iterations.

Moreover, the authors of the original article [7] have actually
evaluated the algorithms for multiple facets like worst time con-
sumption etc. but we were more interested in the resultant error
rate of each algorithm. In table 5.2, we have presented the re-
sultant error margin of the six selected algorithms alongwith the
results of the proposed algorithm. Each problem was evaluated
with 2000 iterations of the proposed algorithm. The Table 5.2
provides the error percentage of all the algorithm using simple
basic formula of error percentage i.e; (best - opt / opt) * 100.
It is clearly evident that the results of our proposed algorithm
are much superior and effective than the other approximation
algorithms in terms of error percentage.
Out of the 14 problems, our proposed algorithm yielded the
best results for 11 problems and even for the other 3 problems,
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Figure 5.2: Time comparison of R&R and proposed algorithm with and
without applying graph compression.

the difference is minimal. In problem rat99, The performance of
Tabu search provided better solution with an error percentage of
2.68% while our proposed algorithm yielded a 2.79% error rate.
However, when we regenerated our results with a graph com-
pression technique of using only 40 active edges, our algorithm
produced a much improved error rate of 2.26%, even outper-
forming the initial best performing tabu search. For the prob-
lem eil101, tabu search provided a 6.14% error rate while our
proposed algorithm showed 6.27% error rate. However, again
when we applied graph compression technique, the proposed al-
gorithm was able to beat the tabu search with an error rate of
5.63%. For the problem d198, tabu search showed an error mar-
gin of 1.92% and our proposed algorithm produced 2.74% error.
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And again after reproducing the results with graph compression
i.e. setting active edges to 40, we were able to produce 1.49%
error rate.
It is clearly visible that our proposed algorithm performed well
for more than 80% of the cases in normal execution, and even
for the rest of the cases, our algorithm was able to outperform
the others in terms of error percentage with the introduction of
graph compression technique.
The Fig 5.3, depicts the graphical comparison of error margins
of the 7 different algorithms. The graph clearly shows the im-
pressive performance of the proposed algorithm.

Figure 5.3: Error comparison between proposed algorithm and
NN,GA,SA,TS,TPO and ACO.
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Table 5.2: Comparison of proposed algorithm with existing algorithms

# TSP Problem
Existing Literature Proposed Algorithm

Algorithm Error % Error %

1 eil51

TPO
NN
GA
SA
TS

ACO

2.64
18.56
6.60
3.08
3.08
9.73

2.37

2 berlin52

TPO
NN
GA
SA
TS

ACO

2.17
8.50
5.36
5.55
2.63
5.04

0.03

3 st70

TS
NN
GA
SA

TPO
ACO

2.26
12.82
3.81
3.16
3.28
12.08

1.96

4 eil76

TPO
NN
GA
SA
TS

ACO

3.49
13.80
5.95
5.42
4.41
9.78

2.87

5 pr76

TS
NN
GA
SA

TPO
ACO

1.64
21.05
13.70
4.48
5.26
9.78

0.94

6 kroA100

SA
NN
GA
TS

TPO
ACO

4.68
16.05
6.79
5.82
5.55
7.80

1.13

7 ch130

NN
SA
GA
TS

TPO
ACO

17.82
7.34
8.20
9.94
6.63
13.16

2.34
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# TSP Problem
Existing Literature Proposed Algorithm

Algorithm Error % Error %

8 ch150

TS
NN
GA
SA

TPO
ACO

5.12
8.42
7.30
8.18
6.35
12.60

2.54

9 a280

GA
SA
NN
TS

TPO
ACO

8.82
9.74
19.98
8.60
7.89
11.20

6.29

10 rd400

GA
SA
NN
TS

TPO
ACO

8.42
10.05
19.23
35.62
19.04
26.03

5.89

11 pcb442

GA
SA
NN
TS

TPO
ACO

9.73
13.08
16.10
63.70
19.64
24.93

3.98

12 rat99

TS
NN
GA
SA

TPO
ACO

2.68
13.03
6.16
5.48
4.53
9.36

2.79

13 eil101

TS
NN
GA
SA

TPO
ACO

6.14
17.01
9.04
6.86
7.31
19.70

6.27

14 d198

TS
NN
GA
SA

TPO
ACO

1.92
14.46
5.09
3.81
5.49
14.27

2.74
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5.5 Asymmetric Results

We have computed the results of 17 problems from the category
of asymmetric problems. Results have been presented in table
5.3. It is worth noting that our proposed algorithm was able
to achieve the optimal results for 2 of the problems. Further-
more, the received error margin for 6 problems is under 10%.
However, we still feel that there is lots of room for refinement
in the algorithm if we have to tackle the asymmetric problems
as vigilantly as the symmetric TSP problem . The possible im-
provements are also highlighted in the chapter of Future Work.
Hopefully with the improvements mentioned in future work, we
will be able to achieve better performance for asymmetric TSP
problem as well.

Table 5.3: Asymmetric results from proposed algorithm and Nearest
neighbour

Asymmetric Opt
Proposed Algorithm nearest neighbour
Best Error (%) Best Error (%)

br17 39 39 0 92 135.90
ft53 6905 8585 24.33 13062 89.17
ft70 38673 44904 16.11 56905 47.14

ftv170 2755 5205 88.93 9274 236.62
ftv33 1286 1354 5.29 2117 64.62
ftv35 1473 1680 14.05 2470 67.68
ftv38 1530 1677 9.61 2550 66.67
ftv44 1613 1915 18.72 2853 76.88
ftv47 1776 2164 21.85 3875 118.19
ftv55 1608 1901 18.22 3571 122.08
ftv64 1839 2391 30.02 4235 130.29
ftv70 1950 2726 39.79 4760 144.10

kro124 36230 37538 3.61 54881 51.48
p43 5620 5620 0 5768 2.63

rbg323 1326 3181 139.89 5884 343.74
rbg358 1163 3040 161.39 5890 406.45
ry48 14422 14940 3.59 18237 26.45
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5.6 Qualitative Results

In this section, we present the received results of our proposed
algorithm by deploying the graph compression technique for all
3 categories of problems that is small, medium, and big. The
results of small category problems are provided in the table 5.4,
and the resultant comparison graph is depicted in fig 5.4. For
comparison sake, we have also implemented and presented the
results of nearest neighbor algorithm along with the results of
our proposed algorithm. An important point to be noted is that
for all small category problems, our proposed algorithm pro-
duced the error margin percentage of below 7%. We would like
to mention that only one of problems that is p264 produced a
below par 13% error margin rate. But once we added the num-
ber of active edges, it provided a much improved error rate of
3.78%. That means all the problems were successfully managed
under error margin of 7%. In graphs 5.5, 5.6, 5.4, we can clearly
see that the variance of error is less in proposed algorithm as
compare to nearest neighbor.

5.6.1 Statistical Analysis

In this section, we have provided the graphs for convergence
of both proposed and R&R algorithms. For this purpose, we
ran and executed the selected examples with 10, 100, 500, 1000
and 2000 iterations. We have plotted the results for 8 different
problems. From the diagrams, it is clearly visible that that
in general, the proposed algorithm converged faster than the
R&R. Only for one problem i.e. eil101, although the proposed
algorithm performed well in the beginning, but in the end R&R
showed better results in convergence.
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Table 5.4: Comparison of proposed algorithm with nearest neighbour drawn
by graph compression technique in small category

# Symmetric opt Proposed Algorithm Nearest Neighbor

1 a280.txt 2579 6.0256 22.0671
2 berlin52.txt 7542 0.03137 19.0787
3 bier127.txt 118282 0.86683 14.7696
4 ch130.txt 6110 2.5507 23.9818
5 ch150.txt 6528 2.6766 25.5302
6 d198.txt 15780 2.2228 17.9979
7 d493.txt 35002 4.6442 24.6968
8 eil101.txt 629 6.1919 31.1991
9 eil51.txt 426 2.6464 20.5657
10 eil76.txt 538 5.299 32.3408
11 fl417.txt 11861 1.6936 27.427
12 gil262.txt 2378 3.2634 36.3106
13 kroa100.txt 21282 1.1341 26.193
14 kroa150.txt 26524 2.9467 26.7149
15 kroa200.txt 29368 3.7162 21.896
16 krob100.txt 22141 0.70763 31.679
17 krob150.txt 26130 1.6714 25.6248
18 krob200.txt 29437 2.2473 25.6296
19 kroc100.txt 20749 0.32471 26.885
20 krod100.txt 21294 2.4403 26.5636
21 kroe100.txt 22068 1.1458 25.0099
22 lin105.txt 14379 1.3808 41.6146
23 lin318.txt 42029 3.1604 28.5626
24 pcb442.txt 50778 5.2409 22.0687
25 pr107.txt 44303 0.89112 5.3612
26 pr124.txt 59030 1.0717 17.397
27 pr136.txt 96772 2.3174 24.8066
28 pr144.txt 58537 0.52838 5.3192
29 pr152.txt 73682 4.3161 16.3146
30 pr226.txt 80369 0.66134 17.8134
31 pr264.txt 49135 13.0335 18.0886
32 pr299.txt 48191 2.0508 24.295
33 pr439.txt 107217 6.7901 22.4452
34 pr76.txt 108159 0.56165 41.8855
35 rat195.txt 2323 6.9404 18.8961
36 rat99.txt 1211 2.9929 29.2093
37 rd100.txt 7910 1.1272 25.6784
38 rd400.txt 15281 6.3221 25.4372
39 st70.txt 675 3.0801 19.338
40 ts225.txt 126643 2.2892 20.4121
41 tsp225.txt 3916 3.2468 23.3145
42 u159.txt 42080 3.3684 29.9169
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Figure 5.4: Error comparison of Proposed algorithm with NN in small
category.

5.7 pla85900 Solution

This is a special problem in TSPLIB library. It consists of 85900
nodes. It is the largest optimally solved problem for TSP. It was
solved in 2005/06 with the Concorde algorithm [8]. Solving this
problem with the proposed methodology was a big challenge for
us as it demanded huge memory resources. For representing this
problem as a matrix, atleast 55GB of memory was required. The
solution graph and a zoomed view of that graph are shown in
figures 5.15, and 5.16.
To cater for this huge memory requirement problem, we divided
the big problem into 4 smaller problems. We solved those small
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Table 5.5: Comparison of proposed algorithm with nearest neighbour drawn
by graph compression technique in medium category

# Symmetric opt Proposed Algorithm Nearest Neighbor

1 d1291.txt 50801 7.3098 17.9922
2 d1655.txt 62128 8.1439 20.5469
3 d2103.txt 80450 5.2668 8.7241
4 d657.txt 48912 5.0073 27.1189
5 fl1400.txt 20127 4.1048 34.0085
6 fl1577.txt 22249 3.7165 25.5828
7 fl3795.txt 28772 6.2056 18.9544
8 fnl4461.txt 182566 10.3626 24.4244
9 nrw1379.txt 56638 9.1572 23.6192
10 p654.txt 34643 3.4548 25.3112
11 pcb1173.txt 56892 7.3696 23.5287
12 pcb3038.txt 137694 10.0527 27.5094
13 pr1002.txt 259045 5.3415 21.8308
14 pr2392.txt 378032 7.7408 22.0022
15 rat575.txt 6773 8.0157 24.75
16 rat783.txt 8806 7.9636 27.8114
17 rl1304.txt 252948 4.94 34.3349
18 rl1323.txt 270199 5.4118 22.9075
19 rl1889.txt 316536 4.4935 26.5842
20 u1060.txt 224094 5.0191 25.6775
21 u1432.txt 152970 8.0601 23.4327
22 u1817.txt 57201 7.9166 24.3038
23 u2152.txt 64253 10.2833 24.7878
24 u2319.txt 234256 8.439 19.008
25 u574.txt 36905 4.6943 27.0339
26 u724.txt 41910 8.0203 31.7662
27 vm1084.txt 239297 5.493 25.9812
28 vm1748.txt 336556 6.4284 21.2545

problems and at the end merged them together to get the ap-
proximate solution. To break one big problem into 4 small prob-
lems, we took the average of x-axis points and y-axis points. All
those points on x-axis which were less than the average value
were placed below the virtual line and all those points on x-axis
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Figure 5.5: Error comparison of Proposed algorithm with NN in Medium
category.

Table 5.6: Comparison of proposed algorithm with nearest neighbour drawn
by graph compression technique in large category

# Symmetric opt Proposed Algorithm Nearest Neighbor

1 rl5915.txt 565530 8.186 25.10
2 rl5934.txt 556045 9.209 22.98
3 rl11849.txt 923288 10.3 22
4 usa13509.txt 19982859 10.3 23
5 brd14051.txt 469385 10.3 23
6 d18512.txt 645238 9.7 25
7 pla33810 66048945 9.24 17.08
8 pla85900 142382641 10.14 22.23

which were greater than that value were placed over the line.
Which means that all the points that fell below the line were
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Figure 5.6: Error comparison of Proposed algorithm with NN in large
category.

placed in the 3rd and 4th quarter, while all the points above
the line were placed in 1st and 2nd quarter. Same technique
was used with the y-axis points. So we calculated all the points
which fall in 1st, 2nd, 3rd and 4th quarters. We considered ev-
ery problem as an independent problem and solved it, in the
end all problems were merged together. That produced an error
margin of 10.14%, In table 5.7, results of each small problem,
total best distance and computed error has been provided.

5.8 Summary

After carefully analyzing the results of proposed algorithm with
7 other algorithms in similar settings, we are able to conclude
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Figure 5.7: eil51 convergence
graph comparison of proposed

algorithm and R&R

Figure 5.8: eil76 convergence
graph comparison of proposed

algorithm and R&R

Figure 5.9: kroa150 convergence
graph comparison of proposed

algorithm and R&R

Figure 5.10: kroa200 convergence
graph comparison of proposed

algorithm and R&R

Table 5.7: Individual solution of the problem PLA85900

Name Opt Best Error

Quad 1 - 42213702 -
Quad 2 - 41973309 -
Quad 3 - 36864495 -
Quad 4 - 35775820 -

PLA85900 142382641 156827326 10.14

that proposed algorithm outperforms all other well-known algo-
rithms in terms of all important factors like error variance, con-
vergence, and computation time. Here we will discuss average
error and average time taken of proposed algorithm and R&R
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Figure 5.11: krob100 convergence
graph comparison of proposed

algorithm and R&R

Figure 5.12: p654 convergence
graph comparison of proposed

algorithm and R&R

Figure 5.13: u159 convergence
graph comparison of proposed

algorithm and R&R

Figure 5.14: eil101 convergence
graph comparison of proposed

algorithm and R&R

algorithm. We have seen that proposed algorithm produced bet-
ter results as compared to R&R for error margin, computation
time, and convergence rate. The results have been provided in
the table 5.1 and are further depicted with the help of diagrams.

For the 41 problems extracted from TSPLIB library for the
small category, the average error variance for the R&R stood at
6.79% while for our proposed algorithm, this value was 2.33%.
R&R is considered one of the best algorithms for TSP problem
so the difference in this result is quite significant. Even for those
cases where R&R produced a better result than our proposed
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Figure 5.15: Solution graph of
pla85900 problem

Figure 5.16: Zoomed view of
solution graph of pla85900

algorithm, the difference was of very minor nature. The average
time consumed by R&R and proposed algorithm is 64.63 sec-
onds and 2.41 seconds respectively. This is again significant and
highlights the efficacy of our proposed algorithm.

All the results of proposed algorithm and the nearest neighbor
algorithm for all categories of symmetric graphs are mentioned
in the tables 5.4, 5.5, 5.6. Graphs of error, time and convergence
are also drawn to demonstrate the effectiveness of different al-
gorithms. Overall, the results strongly advocate for the efficacy
of our proposed algorithm for almost all kind of symmetric TSP
problem instances.



Chapter 6

Conclusion & Future Work

6.1 Conclusion

The proposed algorithm performed very well in the computa-
tional complexity of techniques that provide the practical ap-
proximation ratio with both symmetric and asymmetric prob-
lems. The algorithm finds a tour with minimum complexity and
computational time of TSP using edge swap and graph compres-
sion techniques with impressive results in terms of approxima-
tion ratio, time and convergence. Graph compression technique
has been applied to solve the relatively larger problems in rea-
sonable time.

Problems from the TSPLIB library [20] has been divided into
small, medium and big categories for benchmarking. In first
comparison, we have compared and contrasted our results with
the state-of-the-art algorithm known as ruin and recreate with
respect to time, convergence and error variance from optimum
results.

In second comparison, the results of the proposed algorithm
are compared with 6 other well known algorithms published in
research paper [7], algorithms selected for comparisons are NN,

57
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GA, SA, TS, ACO and TPO. The performance of our proposed
algorithm has proved to be extremely impressive. NN algorithm
has been the fastest followed by the proposed algorithm, TPO
and GA. Based on the problem size, different algorithms shows
different patterns in time consumption. Tabu search and ACO
depicts exponential time increase as the problem size increases,
while others show a slight increase in time with problem size. In
average error comparison, proposed algorithm performed out-
standing followed by Tabu search, TPO and GA. Tabu search
better performance in average error could be due to its diversifi-
cation mechanism like swap, reversion and insertion techniques
and the tabu list which ensures the best selection of the solu-
tion candidate. TS still shows up to 64% of error margin in a
problem of 442 nodes. This problem can be addressed by us-
ing some other algorithms in tabu list mechanism. In accuracy
GA shows consistent results with error margins less than 15%
in all selected problems. It uses mutation process which derives
it toward better solution. If we compare the individual results,
proposed algorithm performs best followed by TS, TPO and GA.

Results of asymmetric type problems have been presented in
table 5.3, with some more refinements in the proposed algorithm,
results for asymmetric TSP problems can become consistent.
Some of those points have also been mentioned in future work.

6.2 Future work and Modification

• Choice of base architecture: The base architecture used
in this thesis is nearest neighbor. Other algorithms can
also be used to feed a base Hamiltonian cycle to the algo-
rithm. However, the main reasons for their selection of the
greedy approach is it’s simplicity and time efficiency. As
the selection of the Hamiltonian cycle at the initial stage
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is significant for the overall performance of the algorithm,
considerable amount of research is needed to select an ef-
fective sub-optimal Hamiltonian cycle algorithm which can
give good results as compared to greedy without effecting
the time efficiency of proposed algorithm.

• Different Mutations: In the proposed algorithm, a single
mutation is used for simplicity sake i.e. two edges are re-
moved from the graph and added up with two more edges to
complete the graph. However, this single mutation does not
guarantee better results. Ruin and recreate algorithm [11]
uses multiple mutations like swap, reversion and insertion
to ensure a closer solution to the optimum value. Other
mutations could also be used in this algorithm to keep it
simple and efficient.

• Greedy approach: This algorithm uses a greedy approach
for the selection of best tour after mutation. Greedy ap-
proach tends to eliminate or ignore other possibly better
solutions from the table, so in the near future, we will aim
to adopt a better selection criteria such as threshold accep-
tance or simulated annealing etc.

• Data set and architecture: In this work, we have only
used Euclidean 2D and Ceil 2D type problems from TSPLIB
library. This benchmark library has some other important
problems as well where data is available in other formats
like MAN-3D (Manhattan distance in 3d), geographical dis-
tances or matrix form [20]. The proposed algorithm can be
improved to accept any input type. The architecture used
in this algorithm can also be improved to cater for the big-
ger problems in memory. Right now we have divided the
last problem in 4 small problems to solve it in memory.
PLA85900 is an example with 85900 nodes. It consumes a



60

lots of resources to solve a matrix of 85900 * 85900 in mem-
ory. Architecture can be modified to solve any matrix using
arrays. For example, instead of placing the whole matrix
in memory, there should be a way to only place required
information in memory, which will speed up the algorithm
as well.

• Better graph compression technique: Graph compres-
sion technique is perhaps the most important task that de-
mands attention as finding TSP solutions for larger prob-
lems tends to become problemtic due to demand of re-
sources. We have used a simple graph compression tech-
nique in this thesis but the technique is too simple for our
liking. The proposed technique activates an edge if and
only if it is near to the required node. A new and better
technique can be devised for compression which can take
into account all the nearest points in 360 degrees. This will
be of great help in graphs where many points are assem-
bled in a small area. Moreover, a separate module can also
be developed which can be used with other algorithms for
graph compression purpose.

In this thesis, we have proposed a very simple and efficient ap-
proximation technique to solve both symmetric and asymmetric
TSP problems using 2-opt local search with some enhancements.
Graph compression technique has been used for finding the so-
lution of larger sized problems. For benchmarking, TSPLIB
library problems have been used. With the help of these new
and simple techniques, we have empirically justified the perfor-
mance of our proposed technique taking into account the factors
of time, accuracy and complexity.
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