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Abstract

Recently automatic speech recognition (ASR) has gained a lot of public at-

tention due to spiking interest in the area by some major tech giants. From

voice-activated digital assistants in our homes to voice recognition based

search engines, speech recognition is being used everywhere these days. Mod-

ern voice recognition services support many languages but Urdu is usually

not one of them. In Pakistan huge portion of population do not speak or

understand English. Even some of the popular English voice recognition sys-

tems do not efficiently understand English in Pakistani accent. In this study

we developed a mixed English-Urdu speech recognition system for TPL Maps

Pakistan (a part of the TPL Corp) for their voice-enabled navigation service.

Kaldi an open source speech recognition toolkit is used for development of

speech recognition models. Two different ASR systems are developed and

compared in this study using general Urdu data and mixed data (general

Urdu + roman Urdu addresses). As a part of this study various GMM-HMM

and DNN-HMM models are developed and evaluated for both ASR systems.

In terms of Word Error Rate, ASR system developed using mixed data is

found to achieve better performance as compared to the system trained us-

ing only general Urdu data.

Keywords — Urdu Speech Recognition, navigation, Kaldi, Gaussian Mix-

ture Models, Hidden Markov Models, Deep Neural Network, LSTM
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Chapter 1

Introduction

Over past few decades automatic speech recognition (ASR) has been active

area of research as technology being considered as an efficient means of Hu-

man to Human and Human to machine communication. In past, however

automatic speech recognition has not been used as a primary method for hu-

man to human or human to machine communication. This is partly because

technology at that time was not mature enough to meet standards of users

under real worlds sceneries and partly because other interaction methods

were more preferable like keyboards, mouse, touch.

During recent years use of automatic speech recognition increased con-

siderably compared to past as technology is now mature enough to be even

integrated into smart devices. Mobile applications like Google assistant,

Amazon’s Alexa, Apple’s Siri etc [5, 6] are redefining the way we interact

with our smart devices. There are various reasons behind this trend, one

of these reason is availability of better computational resources. Today we

have more powerful computational resources including multi core processors,

faster storage devices and general purpose graphical processing units (GPUs).

With all these resources it is now possible to train more complex and pow-
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CHAPTER 1. INTRODUCTION 2

erful models efficiently in shorter duration of time. These complex models

have significantly reduced error rates of automatic speech recognition (ASR)

systems leading to better performance and user friendliness. Secondly, with

advancement in big data technologies we now have access to large databases

that we can use to train better efficient models that are more generic in na-

ture. By training models on these huge repositories of real world data we

can avoid assumption that were made due to shortage of data and train more

robust models. Thirdly, a major reason behind progress in speech system is

increased usage of smart devices such as mobile phones, smart wearables,

smart homes, infotainment systems in vehicles etc. On these devices un-

like personal computers traditional input tools like mouse, keyboard are less

convenient and interaction methods such as speech and touch are more pre-

ferred.

These were few of the important reasons behind rapid advancements in

various speech technologies. In the following section some of the popular

application of speech systems are briefly described.

1.1 Applications

Automatic speech recognition has many useful applications most of these

application fall under the category of human to human communication or

human to machine communication. Few of these applications are briefly

discussed here.

1.1.1 Voice Search

Voice search [7, 8] is an important application of speech recognition. Using

voice search user can search for anything using voice commands instead of
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physically typing the search command. Voice search is one of the popular

methods of search in modern smart phone devices and most of the modern

mobile operating systems come with inbuilt voice search feature like Google

assistant and Apple’s Siri. There are various applications of voice search in

different scenarios some of these applications include:

• Query search engines.

• Get driving directions.

• Search for hotels and restaurants.

• Search for products on e-commerce websites.

• Help user with accessibility issues in searching.

• Search map applications for destinations and places.

1.1.2 Speech-to-Speech (s2s) Translation

Usually when two people from different backgrounds don’t understand lan-

guage of each other they need a human interpreter who understands both

languages to translate. Due to the language barrier speakers are unable

to communicate freely or privately. Speech-to-speech [9, 10] translation is

a technique in which one language can be automatically translated to an-

other without the help of interpreter. Using this technique any language can

be translated automatically to any other language thus removing language

barrier between speakers of different backgrounds. Using speech translation

speakers can communicate freely and privatively without any concerns. This

technique can also be integrated into any online messengers like Skype, What-

sapp, Facebook etc. to make these applications more user friendly. Figure
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Figure 1.1: Typical speech to speech (s2s) translation system

1.1 shows main components of a typical s2s system. First step in s2s pipeline

is automatic speech recognition of speaker’s message/query. Obtained text

from speech recognition is then translated into desired language using ma-

chine translation. Finally text obtained from translation is played on the

listeners end using text to speech (TTS). There are various gadget available

in the market that can perform both online and offline s2s translation.

1.1.3 Home Automation

Another important application of speech recognition is in home automation

systems. Automation is becoming an important part of our daily life from

smart homes to autonomous cars a lot of research is going on in this area.

Home automation systems [11, 12] help residents to remotely control various

home appliances. Most of these systems have integrated voice recognition

system through which system is operated. These systems not only reduce

human effort but also save time and are energy efficient. Home automation

systems are also very useful for handicapped and old people with mobility

issues and can also generate alerts in case of emergency and security breach.

With voice recognition service like Alexa these systems are becoming perfect

companion for a modern home.
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1.1.4 Enhanced Gaming Experience

Removing the barriers between gaming experience and real life have al-

ways been target of gaming community. From photo-realistic high definition

graphics to virtual reality experiences the ultimate goal of every advance-

ment seems focused towards making artificial reality indistinguishable from

the actual reality. Regardless of these advancements we still interact with

most of these games using joystick, keyboard, mouse etc. Voice recognition

is changing the way we interact with the games. Instead of using menu for

selection of items in a game, modern games are using voice commands that

are not only fast but more realistic.

Although modern speech recognition systems support multiple languages

but Urdu is mostly not one of these languages. Most of these speech recog-

nition systems are mainly focused on English speech recognition as English

being most common language worldwide. In Pakistan a huge portion of pop-

ulation do not speak or understand English. Development of a Urdu speech

recognition system to provide voice activated services to these Pakistani non-

English and even English speakers can improve the way these people interact

with their smart devices. This study is part of joint effort of national uni-

versity of science and technology (NUST) and TPL maps (a part of the TPL

Corp) to develop Pakistan’s first voice-enabled navigation in Urdu. Devel-

oped Urdu speech based navigation system is integrated into existing TPL

Maps application.
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1.2 Problem Statement

Most of the speech recognition services do not support Urdu language and

others do not recognize Pakistani accent efficiency. Also these services are

difficult to be tailored for specific needs. Like addresses in Pakistan are

most written in Roman Urdu containing code-mixed words from Urdu and

English. For these type of scenarios we need a mixed English-Urdu model

that can recognize both languages at the same time using a mixed language

model. The goal of this thesis is development of voice-enabled navigation

service for recognition of English-Urdu code-mixed addresses. In this study

two different Urdu ASR systems are developed and compared using general

Urdu data and mixed data (general Urdu + roman Urdu addresses). For both

systems various models are developed using state of the art techniques such

as Gaussian Mixture Models (GMMs) and Deep neural networks (DNNs).

1.3 Thesis Outline

Chapter 2, presents a brief background about a typical speech recognition

system, different models developed during this study and Kaldi (an open

source speech precognition toolkit) used to to develop the system. Chapter

3 is about the literature review of various automatic speech recognition sys-

tems developed so far, mainly focusing on Urdu. In chapter 4 design and

methodology of developed system is discussed. In chapter 5 outcomes of dif-

ferent ASR systems developed during this study and different tests performed

on these systems are discussed. Finally, chapter 6 concludes this thesis and

presents possible future directions.



Chapter 2

Background

2.1 Automatic speech recognition (ASR)

Automatic speech recognition (ASR) is recognition and translation of spoken

language into text. An ASR system is used to estimate most likely sequence

of words for a given a speech input. Figure 2.1 shows the block diagram of

a typical ASR system.

Figure 2.1: Architecture of an ASR system

7
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In a typical speech recognition system, first step is features extraction

from the input speech. Feature extraction involves applying various signal

processing techniques to enhance the quality of input signal and transform

input audio from time domain to frequency domain. Based on the features

extracted a set of acoustic observations X = {x1, x2, x3, ...xk} is generated

given a sequence of words W = {w1, w2, w3, ...wn}. The speech recognizer

then estimated ”the most likely word sequence W ∗ for given acoustic ob-

servations based on set of parameters Θ of underlying model”. This can

be mathematically formulated as conditional probability as shown in equa-

tion 2.1. Equation 2.1 can be further simplified using Bayesian rule and

represented as 2.2.

W ∗ = arg maxW{P (W |X,Θ)} 2.1

W ∗ = arg maxW

{P (X|W,Θ)P (W |Θ)

P (X|Θ)

}
2.2

The term in the denominator P (X|Θ) of equation 2.2 is the prior probability

of given acoustic sequence X which is constant for all W ∗ so can be ignored.

As we have two different models (language and acoustic model), thus there

are two different sets of parameters ΘAM and ΘLM . After assigning relevant

parameters to respective terms, equation 2.2 can be further simplified.

W ∗ = arg maxW

{
P (X|W,ΘAM)P (W |ΘLM)

}
2.3

Where P (X|W,ΘAM) also known as acoustic model (AM) score is the proba-

bility of set acoustic observation given parameters of acoustic model. P (W |ΘLM)
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also known as language model (LM) score is the probability of words given

parameters of language model. Estimation of best acoustic and language

model parameters is an active area of research in speech recognition. Follow-

ing text will briefly explain various blocks in figure 2.1.

2.1.1 Feature Extraction

Feature extraction also known as speech parameterization is used to charac-

terize spectral features of an input audio signal in order to facilitate speech

decoding. Mel-frequency cepstral coefficients (MFCC) introduced by Davis

and Mermelstein [13] is one of the most popular techniques for feature extrac-

tion in speech recognition systems. Reason behind the popularity of MFCC

is its ability to mimic the behavior of human ear. Figure 2.2 shows key steps

involved in calculation of MFCC features.

Figure 2.2: MFCC computation

• Frame Blocking: First step involved in the process is frame blocking

in which streaming audio signal is blocked into frames of 25 ms shifted

by 10 ms.

• Windowing: After blocking, each frame is multiplied by a window

using a windowing function. There are many windowing functions
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available in Kaldi but usually Hamming window is used which can

be mathematically represented as equation 2.4.

w(n) = 0.54− 0.46 cos
( 2πn

N − 1

)
0 ≤ n ≤ N − 1 2.4

Where N is the number of samples in a frame. Multiplying every frame

by Hamming window reduces discontinuities at beginning and end of

each frame. This step is also required because in order to do frequency

analysis (FFT) of each frame it should be continuous.

• Fast Fourier Transform (FFT): Spectral analysis of speech signals

shows that different timbres in a signal have different energy distribu-

tion over frequency. FFT is applied on each frame of N samples to

obtain its magnitude frequency response. This process converts signals

from time to frequency domain. FFT is fast implementation of Discrete

Fourier Transform (DFT).

• Mel Frequency Wrapping: In this step magnitude frequency re-

sponse resulting from FFT is multiplied by triangular bypass filters on

Mel scale to get log energy of each bypass filter. Mel frequency that

is more discriminative at lower frequencies and less discriminative at

higher frequencies mimics the non-linear perception of sound by human

ear. We can convert between Mel frequency (m) and frequency (f) in

Hertz using following equations.

m = 2595 log10(1 +
f

700
) 2.5
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f = 700(10m/2595 − 1) 2.6

Each filter in triangular filter bank has response 1 at the center fre-

quency and decreases linearly towards 0 till it reaches center of adjacent

frequency. In Kaldi default number of filters is 23 because it usually

gives best results on 16 khz speech signals.

• Discrete cosine transform (DCT): After log energy computa-

tions, mel-frequency cepstrum is obtained by applying DCT on filtered

results. Coefficients of mel-frequency cepstrum are called mel frequency

cepstral coefficients or MFCC. Applying DCT after FFT transforms

frequency domain into time like domain called quefrency domain. In

Kaldi by default first 13 coefficients of cepstral are kept as features.

MFCC can be directly used as feature for speech recognition, but in order

to get better performance various transforms are applied on results of MFCC.

One of these transformations is Cepstral Mean and Variance Normalization

(CMVN) [14]. CMVN is a computationally efficient normalization technique

which reduces the effects of noise. Similarly in order to add dynamic infor-

mation to MFCC features first and second order deltas can be calculated.

Given a feature vector X first order deltas can be calculated as.

∆Xt =

∑n
i=1 wi(Xt+i −Xt−i)

2
∑n

i=1w
2
i

2.7

Where wi is the regression coefficients and n is the window width. Second

order deltas can be derived from first order deltas using equation 2.8.
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∆Xt =

∑n
i=1wi(∆Xt+i −∆Xt−i)

2
∑n

i=1w
2
i

2.8

After first and second order delta calculation combined feature vector

becomes

∆Xt = [Xt ∆Xt ∆2Xt] 2.9

Other feature transformation techniques used in Kaldi are Linear Dis-

criminant Analysis (LDA) [15], Heteroscedastic Linear Discriminant Analy-

sis (HLDA) [16] and Maximum Likelihood Linear Transform (MLLT) [17].

These transforms can be applied individually as well as in combination and

can greatly enhance performance of speech recognition system. It is ob-

served that applying diagonalizing MLLT after LDA improves effect of LDA

(LDA+MLLT) [17].

2.1.2 Acoustic Modeling

Acoustic Modeling in ASR system estimates P (X|W,ΘAM). Acoustic model

parameters (ΘAM) are estimated by training the model. In speech data exact

time of words in an utterance is not known so there is a level of uncertainty

involved in training. Hidden Markov models (HMMs) are used to model this

temporal variability of speech. HMMs model a frame or window of frames

of coefficients as state machines. Gaussian mixture models (GMMs) or Deep

neural networks (DNNs) are then used to determine how well each state of
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each HMM fits frame/s of acoustic features to acoustic input. Nature of

training in GMMs is usually generative while in DNNs its discriminative.

Basic unit of training in speech is phone instead of word. A phone is a

smallest unit of speech. Each word consists of sequence of phones. Number

of phone in a language are far less then the total unique words. If we use

words as a training unit then model would have to know each unique word

in a language making the dimensionality of the problem too high to handle.

Words in the speech transcripts are converted to phones using a phonetic

dictionary which contains phones against the words from the vocabulary. In

addition to the dictionary, out of vocabulary (OOV) words a converted to

phones using Grapheme-to-Phoneme (G2P) model which is training using

manually converted words.

A monophone acoustic model is a model trained on individual phones.

A better approach compared to monophone modeling is triphone modeling.

A triphone is a sequence of three phones and it capture the context of the

phone in middle very efficiently. If there are N base phone then there are

N3 possible triphones. Triphones are modeled using HMMs. Using triphones

also increases the dimensionality of data to reduce this effect triphones that

are acoustically similar are tied together using a technique know as state-

tying discussed in section 2.2.1. In Kaldi state-tying is implemented using

decision trees.

Urdu language has approximately 67 phones. Table 2.1 shows a full map

of Urdu phones along with their International Phonetic Alphabet (IPA) and

Case Insensitive Speech Assessment Method Phonetic Alphabet (CISAMPA).
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Table 2.1: List of IPA and CISAMPA of different sounds in Urdu [4]

Sr.# Urdu Letter IPA CISAMPA Sr.# Urdu Letter IPA CISAMPA

Consonants
1 پ P P 36 rʰ  رھ R_H
2 ؚ﮷ pʰ P_H 37 ɽ ڑ  R_R
3 ب B B 38 ɽʰ ڑھ  R_R_H
4 ؚ﮳ bʰ B_H 39 J ی  J
5 م M M 40 jʰ ؚ﮵  J_H
6 ު mʰ M_H 41 ʧ چ  T_S
7 ت،ط t ̪ T_D 42 ʧʰ ق﮷  T_S_H
8 ؚ﮴ t ̪h T_D_H 43 ʤ ج  D_Z
9 د d̪ D_D 44 ʤh ق﮳  D_Z_H
10 دھ d̪h D_D_H Vowels
11 ٹ T T 45  ُ :u  و U_U
12 ﯀ؚ

tʰ T_H 46 ُ      ں  :ũ و U_U_N
13 ڈ D D 47 :o  و  O_O
14 ڈھ dʰ D_H 48 :õ  وں  O_O_N
15 ن N N 49 َ :ɔ  و O
16 ﮲ؚ

nʰ N_H 50 َ   ں  ɔ̃ و : O_N
17 ک K K 51    ،ا  ɑ: A_A
18 ܲ kʰ K_H 52 ̃:ɑ  اں، ں   A_A_N

19 گ ɡ G 53 :i  ی  I_I
20 ݚ ɡʰ G_H 54 :ĩ  ؘ﮵ِ  I_I_N

21 in﮲ؖױ,﮲ؖײ,﮲ؖॢ,﮲ؖऺ ن Ŋ N_G 55 :e  ے  A_Y
22 ق Q Q 56 :ẽ  ؘ﮵  A_Y_N
23 ع ʔ Y 57 e  ِہ  A_Y_H
24 ف F F 58 æ A_E_H
25 V و  V 59 ُه O O_O_H
26 ث ، ص ، س  S S 60 َ :æ ے A_E
27 ض ، ظ ، ز ، د ﮲ Z Z 61 :æ̃ ؘ﮵َ  A_E_N
28 ش  ʃ S_H 62 ِ ɪ I
29 ژ  ʒ Z_Z 63 ُ ʊ U
30 X خ  X 64 َ، ء  ə A
31 غ  ɣ G_G  65 ʊ̃ ُں  U_N
32 H ہ، ح   H 66 َں  ə̃ A_N
33 L ل  L 67 ِ ں  ɪ I_N
34 lʰ ނ  L_H
35 R ر  R
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Table 2.2: Basic Urdu Alphabets

چ ج ث ٹ ت پ ب ا
ز ڑ ر د﮲ ڈ د خ ح
ع ظ ط ض ص ش س ژ
ن م ل گ ک ق ف غ

ے ی ء ہ و

Table 2.3: Secondary Urdu Alphabets

ھ ہ﮴ ں 

Table 2.4: Urdu Diacritics

ً ْْ ٰ ّ ُ ِ َ
Table 2.2 and 2.3 presented above show primary and secondary alphabets

of Urdu. While table 2.4 shows different diacritics used in Urdu writing.

Hidden Markov models (HMMs)

Hidden Markov Model is statistical model used in speech recognition to rep-

resent acoustics of words. HMM model has chain of states in which current

state is hidden and only output of each state can be observed. During acous-

tic training aij and bi(yt) are estimated, where aij is state to state transition

probability (e.g from state i to j) and bi(yt) is the emitting function used to

estimate output observations as shown in figure 2.3. An important feature
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of HMMs is ability to self loop on a state which enables HMMs to model

different phone lengths. First and the last state of the model are known as

non-emitting states. These states are used for entry and exit in the model

and help in concatenation of HMMs and phone models to generate words.

There are various techniques used to estimate distribution of output obser-

vations. In this study two different techniques used for estimating emitting

function bi(yt) are:

• Gaussian Mixture Model (GMM)

• Deep Neural Network (DNN)

Both of these techniques are briefly described in the upcoming sections.

Gaussian Mixture Model (GMM)

While HMM is used to model temporal variability of speech, GMM a statis-

tical generative model is common choice to estimate distribution of output

observations. Combination of both models create a joint acoustic model

capable of describing temporal as well as spectral dynamics of the speech.

Figure 2.3 shows the architecture of an arbitrary GMM-HMM model for

speech recognition. Where Y is output vector of observation sequence. The

S1 S2 S3

a11

a12

a22

a23

a33
Entry

Y = [ y1 y2 y3 y4 y5 ]

Exit

b1(y1) b1(y2) b2(y3) b3(y4)b3(y5)

Figure 2.3: Architecture of left to right GMM-HMM based acoustic model
with 3 states [1]
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model consists of three emitting states S1, S2 and S3 and two non-emitting

states (entry and exit). Model can be fully described using matrix A = [aij]

containing probabilities of all possible transitions from one state to another

and emitting functions for each state bi(yt). Usually model only allows self

loop but no backward transition. Emitting function for a given state used to

estimate the probability of observation vector Y can be expressed by equa-

tion 2.10 below. Observation vector Y can be generated using assigned

emitting function which estimates the probability of observations.

bi(yt) =
M∑

m=1

cmN (yt;µim,Σim) 2.10

N (µim,Σim) is the multivariate normal distribution. Parameters (ΘAM =

{cm, µim,Σim}) of this distribution that need to be estimated are weights,

mean and covariance matrix respectively. For a given frame yt the obser-

vation probability depends only on emission probability bi(yt) of respective

state (i). Whereas the probability of state sequence (S = S1, S2, ...Sk) gen-

eration depends only on state to state transition probabilities [1].

P (Y |ΘAM) =
∑

S1,S2,...Sk

T∏
t=1

aSt|St−1bSt(yt) 2.11

Where aSt|St−1 is the state transition probability that can also be ex-

pressed as P (St|St−1). There are several schemes for learning acoustic model

parameters (ΘAM) from training data. The most common approach used to

estimate the acoustic model parameters is based on Maximum Likelihood

Estimation (MLE) [1]. Main drawbacks of using MLE are assumptions we

make for GMM-HMM and MLE itself when modeling speech. Discrimina-

tive training methods on the other hand do not make any assumption about
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the distribution of training data. It is one of the major reasons behind the

success of discriminative training algorithms making them principle training

algorithms in speech modeling. Kaldi uses Viterbi algorithm for updating

acoustic model’s parameters (ΘAM) and Gaussian variables.

Deep Neural Network (DNN)

Deep neural network (DNN) is an alternative of Gaussian mixture model

[18]. A DNN is a neural network with more than one hidden layers between

input and output layer. Figure 2.4 illustrates the architecture of a typical

DNN.

Figure 2.4: Architecture of a deep neural network

In DNN each hidden unit or neuron j uses a logistic function which could

be closely related hyperbolic tangent or any other function with well behaved

derivative. This function maps all inputs on that neuron from previous layer

xj to the scaler output yj which acts as an input to the next layer. Equation

2.12 and 2.13 show the relation between xj and yj [18].

yj = logistic(xj) =
1

1 + e−xj
2.12
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xj = bj +
∑
i

yjwij 2.13

Where bj in equation 2.13 is bias of hidden unit j, i represents indexing

of units in previous layer and wij is the weight of the connection from unit i

in previous layer to unit j in current layer. Eventually yj in the current unit

becomes xi for the units in the next layer. Figure 2.5 shows the structure of

a single hidden unit in a feed-forward neural network.

x2 w2 Σ f
Activation function

y

Output

x1 w1

..

.
..
.

xn wn

Weights

Bias

Inputs

Figure 2.5: Architecture of a single hidden unit/neuron of a feed-forward
neural network

In case of multiclass classification problems like speech recognition to-

tal input xj is converted into class probabilities pj using softmax activation

function as shown in equation 2.14.

pj =
exp(xj)∑
k exp(xk)

2.14

Where k is the class index. An important feature and reason behind success

of DNN in speech recognition is their ability to be trained discriminatively

using back-propagation of cost function derivatives measuring the difference

between actual and predicted output for each training case. Natural cost

function for softmax output is the cross entropy between the actual proba-
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bilities and output of softmax.

So far different DNN architectures are designed and tested on speech

recognition tasks. In this study we will focus on time delay neural net-

work (TDNN) and long short-term memory (LSTM). Both type of DNNs

are briefly described in the following sections.

• Time Delay Neural Network (TDNN): As described in section

2.1.2 a typical neural network hidden unit computes weighted sum of all

of its inputs and passes this weighted sum through nonlinear activation

function (usually sigmoid). TDNN uses modified basic unit with delays

d1 to dn as shown in figure 2.6.

Figure 2.6: Architecture of a single hidden unit/neuron of a Time Delay
Neural Network (TDNN) [2]

In TDNN each input from xi to xj is multiplied by various weights one
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for each delay. In case of 14 inputs (n = 14) and delay of 3 (d = 3),

56 weights will be required to compute the weighted sum with each

input being measured on four different points in time. In this way

TDNNs can relate the current input with the context of past events.

The activation function commonly used in TDNN is sigmoid. Common

learning technique used in TDNN is backpropagation which is gradient

decent of the mean squared error of actual and predicted outcomes [2].

• Long Short-term Memory (LSTM): LSTM is a variation of DNN

in which special hidden unit called memory block is introduced. In

memory block there are memory cells having recurrent connections

that store the temporal state of the network. This block also con-

tains special multiplicative units known as gates to control the flow

of information through the unit. In original LSTM architecture [19]

there was an input and output gate in each memory block. Function of

input gate is to control the flow of input activations into the memory

cell while output gate was designed to control the flow of activations

from current memory cell to the rest of the neural network. There

was a weakness in original LSTM architecture that hindered LSTMs

to process continuous input stream if the stream is not subsequenced.

To address this problem later a forget gate was introduced [20] to en-

able adoptive forgetting. Forget gate enabled forgetting or resetting

capability in LSTM cell’s memory. Modern LSTM architectures also

contain peephole connection from memory cells to the gate in the same

cell to learn precise output timing. Figure 2.7 shows the architecture

of peephole LSTM memory cell [21]. It shows input and output to

the memory cell and how different components are connected in LSTM
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memory cell. LSTM networks are famous for sequence to sequence
in

pu
t

g cell h

it

ft

ct

ot

re
cu

rr
en

t

ou
tp

ut

xt

mt

rt

rt�1

yt

LSTM memory blocks

Figure 1: LSTMP RNN architecture. A single memory block is
shown for clarity.

memory cell. The output gate controls the output flow of cell
activations into the rest of the network. Later, the forget gate

was added to the memory block [18]. This addressed a weak-
ness of LSTM models preventing them from processing contin-
uous input streams that are not segmented into subsequences.
The forget gate scales the internal state of the cell before adding
it as input to the cell through the self-recurrent connection of
the cell, therefore adaptively forgetting or resetting the cell’s
memory. In addition, the modern LSTM architecture contains
peephole connections from its internal cells to the gates in the
same cell to learn precise timing of the outputs [19].

An LSTM network computes a mapping from an input
sequence x = (x1, ..., xT ) to an output sequence y =
(y1, ..., yT ) by calculating the network unit activations using
the following equations iteratively from t = 1 to T :

it = �(Wixxt +Wimmt�1 +Wicct�1 + bi) (1)
ft = �(Wfxxt +Wfmmt�1 +Wfcct�1 + bf ) (2)

ct = ft � ct�1 + it � g(Wcxxt +Wcmmt�1 + bc) (3)
ot = �(Woxxt +Wommt�1 +Wocct + bo) (4)

mt = ot � h(ct) (5)
yt = �(Wymmt + by) (6)

where the W terms denote weight matrices (e.g. Wix is the ma-
trix of weights from the input gate to the input), Wic,Wfc,Woc

are diagonal weight matrices for peephole connections, the b

terms denote bias vectors (bi is the input gate bias vector), � is
the logistic sigmoid function, and i, f , o and c are respectively
the input gate, forget gate, output gate and cell activation vec-
tors, all of which are the same size as the cell output activation
vector m, � is the element-wise product of the vectors, g and h

are the cell input and cell output activation functions, generally
and in this paper tanh, and � is the network output activation
function, softmax in this paper.

2.2. Deep LSTM

As with DNNs with deeper architectures, deep LSTM RNNs
have been successfully used for speech recognition [11, 17, 2].
Deep LSTM RNNs are built by stacking multiple LSTM lay-
ers. Note that LSTM RNNs are already deep architectures in
the sense that they can be considered as a feed-forward neu-
ral network unrolled in time where each layer shares the same
model parameters. One can see that the inputs to the model
go through multiple non-linear layers as in DNNs, however the
features from a given time instant are only processed by a sin-
gle nonlinear layer before contributing the output for that time

input

LSTM

output

(a) LSTM

input

LSTM

LSTM

output

(b) DLSTM

input

LSTM

recurrent

output

(c) LSTMP

input

LSTM

recurrent

LSTM

recurrent

output

(d) DLSTMP

Figure 2: LSTM RNN architectures.

instant. Therefore, the depth in deep LSTM RNNs has an ad-
ditional meaning. The input to the network at a given time step
goes through multiple LSTM layers in addition to propagation
through time and LSTM layers. It has been argued that deep
layers in RNNs allow the network to learn at different time
scales over the input [20]. Deep LSTM RNNs offer another
benefit over standard LSTM RNNs: They can make better use
of parameters by distributing them over the space through mul-
tiple layers. For instance, rather than increasing the memory
size of a standard model by a factor of 2, one can have 4 lay-
ers with approximately the same number of parameters. This
results in inputs going through more non-linear operations per
time step.

2.3. LSTMP - LSTM with Recurrent Projection Layer

The standard LSTM RNN architecture has an input layer, a re-
current LSTM layer and an output layer. The input layer is con-
nected to the LSTM layer. The recurrent connections in the
LSTM layer are directly from the cell output units to the cell
input units, input gates, output gates and forget gates. The cell
output units are also connected to the output layer of the net-
work. The total number of parameters N in a standard LSTM
network with one cell in each memory block, ignoring the bi-
ases, can be calculated as N = nc ⇥ nc ⇥ 4 + ni ⇥ nc ⇥ 4 +
nc ⇥ no + nc ⇥ 3, where nc is the number of memory cells
(and number of memory blocks in this case), ni is the number
of input units, and no is the number of output units. The com-
putational complexity of learning LSTM models per weight and
time step with the stochastic gradient descent (SGD) optimiza-
tion technique is O(1). Therefore, the learning computational
complexity per time step is O(N). The learning time for a net-
work with a moderate number of inputs is dominated by the
nc ⇥ (4 ⇥ nc + no) factor. For the tasks requiring a large
number of output units and a large number of memory cells to
store temporal contextual information, learning LSTM models
become computationally expensive.

As an alternative to the standard architecture, we proposed
the Long Short-Term Memory Projected (LSTMP) architec-
ture to address the computational complexity of learning LSTM
models [3]. This architecture, shown in Figure 1 has a separate
linear projection layer after the LSTM layer. The recurrent con-
nections now connect from this recurrent projection layer to the
input of the LSTM layer. The network output units are con-
nected to this recurrent layer. The number of parameters in this
model is nc⇥nr⇥4+ni⇥nc⇥4+nr⇥no+nc⇥nr+nc⇥3,

Figure 2.7: Architecture of LSTMP-RNN memory cell [3]

learning applications such as speech recognition. LSTM based ASR

systems are among state of the art systems with the lowest word error

rate (WER) regardless of underlying language.

2.1.3 Language Model

Language model contains likelihood of co-occurrence of words in the vocabu-

lary. Language model is used to determine P (w) which is hypothesized word

sequence that can be further decomposed using chain rule.

P (w) =
n∏

i=1

P (wi|wi−1, ..., wi) 2.15

Where P (wi|w1, ..., wi−1) in equation 2.15 is the probability of current word

given previous history (w1, ..., wi−1). As creating a model given all possible

word sequences is impracticable n-gram model is used in current state of the

art approaches that limits length of history to n − 1 words. Throughout



CHAPTER 2. BACKGROUND 23

this study various experiment were performed using 3-gram language mod-

els. Although language model optimization is hot area of research in speech

recognition but it is not part of this research, that is why it is briefly discussed

here.

2.1.4 Performance Measure

A common performance measure used to compare different ASR models is

percentage Word Error Rate (WER). WER is calculated using Levenshtein

distance between words [22]. It is calculated by counting number of inser-

tions, substitutions and deletions performed to make two word sequences

equal. Depending upon the problem, cost of insertions, substitutions and

deletions can be set, by default this cost is equal for all operations and is

set to 1. When reference (ref ) transcript is matched with hypothesis (hyp)

each word in hypothesis is assigned respective label based on whether it is

insertion (I), substitution (S), deletion (D) or correct (C).

Tables 2.6 and 2.5 show sample reference and hypothesis with labels

from decoding results of general Urdu and Roman Urdu addresses using

tri3b model.

Table 2.5: Sample reference and hypothesis with labels from addresses de-
codings

ref halar cement dealers mirpur mathelo
hyp hilal cement dealers mirpur mathelo
label S C C C C

Formula for calculating WER is presented in equation 2.16. WER is

calculated after each alignment during decoding process.

WER =
St +Dt + It

N
2.16
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Table 2.6: Sample reference and hypothesis with labels from general Urdu
decodings

ref ਃؚ﮳ ؟্﮵ףں ؾ﮳﮲ؙ﮳ ܥף ٫ ؛﮷ اے ܱ ߔ ࠠ﮵﮲ चؔ﮵﮴ ޟࡊ﮳  ٦़ صף﮳ ﮵ף ؍ ভ٧ ࠠ﮵ ؍ף﮷ފࡳ﮵࠘ ޫ
﮴ ܅ ਊࠠ﮵

﮲ً﮳ࠢ
صף﮳ءؘ﮵ ޓעءی ﮲ࠤ ٝף ؏﮴࠽ף﮳و؞﮵﮲ ࡳ﮵ؐ ا

hyp ਃؚ﮳ ؟্﮵ףں ؾ﮳﮲ؙ﮳ ܥף ܨࡳ اؖױ﮵ *** ܱ ߔ ࠠ﮵﮲ चؔ﮵﮴ ޟࡊ﮳  ٦़ صף﮳ ﮵ף ؍ ভ٧ ࠠ﮵ ؍ף﮷ފࡳ﮵࠘ ޫ
﮴ ܅ ਊࠠ﮵

﮲ً﮳ࠢ
صף﮳ءؘ﮵ ޓעءی ﮲ࠤ ٝף ؏﮴࠽ף﮳و؞﮵﮲ ࡳ﮵ؐ ا

label C C C C S S D C C C C C C C C C C C C C C C C

Where St, Dt, It, Ct are total substitutions, deletions, insertions and

correct responses respectively. N = (St +Dt +Ct) is the number of words in

the reference transcript. Using this formula we can calculate WER of given

samples. For sample in table 2.5 N = 4, where Ct = 3, St = 1, Dt = 0 and

It = 0 so WER for this sample calculated below using equation 2.16 is 25%.

WER =
1 + 0 + 0

1 + 0 + 3
= 0.25

For sample in table 2.6 N = 23, where Ct = 20, St = 2, Dt = 1 and

It = 0 so WER for this sample calculated below using equation 2.16 is 13%.

WER =
2 + 1 + 0

2 + 1 + 20
= 0.13

WER metric explained above is very intuitive and straight forward mea-

sure that can be used to compare different ASR models. In this study WER

is used as performance measure to analyze and compare efficiency of var-

ious ASR models trained and tested during development of different ASR

systems.

2.2 Kaldi ASR toolkit

Kaldi is an open source speech recognition toolkit released under Apache li-

cense [23]. Development of Kaldi started in 2009 and is now one of the most

popular speech recognition toolkits. The basic idea behind Kaldi was the de-
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velopment of an ASR toolkit that is flexible and extensible. The main reason

behind success of Kaldi is availability of various deep neural network recipes

that other toolkits lack. In the following sections some of the techniques

used in Kaldi like triphone state tying and Weighted finite State Transducers

(WFST) are briefly discussed.

2.2.1 Triphone state tying

A triphone is a sequence of three phones used to efficiently capture the con-

text of the phones compared to monophone. Using triphones as training

unit results into increase in dimensionality. To address this curse of dimen-

sionality parameters tying technique described in [24] was introduced. Kaldi

applies this technique at state level to map acoustically similar triphones to

the same HMM state using decision tree. A binary decision tree is gener-

ated for each phone to cluster its associated triphones. Figure 2.8 shows an

example of triphone state tying.

f-ih+l s-ih+l

Conventional triphones

t-ih+ng

f-ih+l

Tied triphones

s-ih+l t-ih+ng

Figure 2.8: Triphone state tying
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2.2.2 Weighted finite State Transducers (WFST)

A weighted finite state transducer (WFST) is used to map objects in input

alphabet to the objects in output alphabet [25]. WFST is used in Kaldi

to combine the information from language and acoustic models. Acoustic

HMM and n-gram language model are special case of Weighted Finite State

Acceptors (WFSAs). A WFSA model can have one state at a time that is

know as current state. It can transition from one state to another in case of

triggering event. If these transaction have cost associated then finite state

acceptor is called weighted finite state acceptor (WFSA). In case of speech

recognition this cost is associated probabilities. If we add information of final

outcome in WFSA states it can then be interpreted as transducer. In this

way all the information required for an ASR model can be integrated into

one transducer.
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Literature Review

Earliest ASR system for single speaker digit recognition was developed at Bell

Labs in 1950’s but in the last two decades there have been huge advancement

in this field mainly for English language [26]. Among a number of ASR

systems developed lately, few systems were considered notable including;

BYBLOS: BBN’s recognition system for continuous speech [27], SUMMIT:

MIT’s speech recognition system [28] and Dragon: Nuance Communications’

system [29] with an accuracy of 98.5%, 87% and 95% respectively. Although

there is plenty of literature available that concern designing and development

of Automatic Speech Recognition (ASR) systems but there is still a huge

gap when it comes to Urdu ASR development. Similarly, improvements and

research for the recognition of resource rich languages has been significant but

there is still a huge research gap for under resourced languages. This section

mainly focuses on the developments in Urdu ASRs developed using above

mentioned architecture. Authors in [30] presented an Automated Learning

of Accent and Articulation Mapping (SALAAM) system for under resource

languages using the available resource rich languages such as English.

There are several open source speech recognition toolkits available. Some

27
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of the famous tools include; Kaldi, CMUSphinx, Hidden Markov Model

Toolkit (HTK), Simon, Julius etc. We have chosen Kaldi toolkit as it has

proven to provide outstanding results and provides the most advance train-

ing recipes as compared to other tools [31]. It is called a “Low Development

Cost, High Quality Speech Recognition for New Languages and Domains”

[32] and thus can be incorporated for the Urdu language recognition.

Commonly two different architectures are used in ASR development.

First architecture is the combination of Gaussian Mixture Models (GMM)

and Hidden Markov Models (HMM). Second architecture is based on combi-

nation of deep neural networks (DNN) and Hidden Markov Models (HMM).

For GMM-HMM models first major contribution was made about 4 decades

ago when the expectation-maximization (EM) algorithm was used for train-

ing HMMs [33, 34]. In this way, using the effectiveness of GMMs it became

possible to develop ASR systems for real world tasks [35]. Acoustic input in

such systems is given as perceptual linear predictive coefficients (PLPs) or

Mel-frequency cepstral coefficients (MFCCs) features that are computed from

the first and second order temporal differences of the input signal [36, 37].

GMMs are very useful for probability distribution modeling over input data

features associated with the state of HMM. There is plenty of literature avail-

able that focus on the optimization of GMMs flexibility, amount of training

data required to avoid overfitting and increase their evaluation speed [38].

Accuracy can also be improved by combining the MFCC features with tan-

dem features generated using NNs [39]. Performances of GMMs are difficult

to outperform by using new approaches for acoustic modeling.

For NNs, there is plenty of literature available that concern designing and

development of Automatic Speech Recognition (ASR) systems using Deep

Neural Network (DNN) and Recurrent Neural Network (RNN). Hybrid ap-
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proaches for Feed-forward neural network acoustic models were initially ex-

plored in 1990’s [40, 41]. Similarly, RNN and CNN for speech recognition

were initially explored around the same time [2, 42]. More recently, almost

all state of the art research work on speech recognition and acoustic models

includes some form of DNN [43, 18, 44]. CNN and RNN have also proved

to be useful and are being deployed in current state of the art ASR systems

[45, 46] as well as in feature extraction with convolutional layers [47].

Current major research in the development of such systems incorporates

multilingual ASR systems comparing results in the context of scoring outputs

of different DNN-HMM models [48, 45, 49, 50].

In the context of Urdu speech recognition, there are a number of chal-

lenges that are faced by the research community ranging from speech corpora

and phonetic lexicon development, to the testing, training and improvements

of speech recognition system. Two challenges in speech corpus development

are photonic balance and photonic cover [51]. Photonic cover essentially

means that a speech corpus for a specific language contains all the phones

present in that language and if these phones occur in almost the same rel-

ative proportions it is termed as photonic balance [52, 53]. Speech corpus

of a specific language can be developed from isolated words [54], continu-

ous speech [55, 56] or spontaneous speech [57, 58], Moreover, adding more

transcribed spontaneous speech data can always make the dataset richer.

For improving the performance of ASR system various techniques can

be employed. As for the case of read speech, a number of techniques (in-

cluding unsupervised approaches) are used to generate training data. Sim-

ilarly, in the case of spontaneous speech, different techniques are employed

that include; classifying and modeling of speech disfluencies/inconsistencies

[59, 60], finding mostly mispronounced phones and words and modeling them
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separately [61, 62] and recognizing pauses, word lengthening and correctly

detecting filled pauses [63]. An additional limitation for languages that use

similar scripts as Arabic language, e.g. Urdu, Pashto, Persian etc., is that

they optionally use diacritics for vowels that are usually written in the text.

This can be solved by first training a model that uses speech transcriptions

with fully manual diacritics and then further using this model for unsuper-

vised learning of un-transcribed data [64].

A spontaneous speech recognition system with single speaker and medium

vocabulary for Urdu has been developed using the Sphinx toolkit [65]. Au-

thors showed that by including read speech into the spontaneous speech

training data, WER can be decreased. Similarly, the work in [66] presented

a speaker independent Urdu ASR system using the Sphinx toolkit with a

limited vocabulary of 52 isolated words. Another work [67] presented a digit

recognizer with entirely Arabic environment using Sphinx toolkit, i.e., it did

not include Romanized scripts. Research work presented in [68], devel-

oped a continuous Urdu speech recognizer that looks for pattern matching

and acoustic phonetic modeling and provides 55 to 60% accuracy. Another

isolated digit recognizer was presented in [69] and [70] uses a multilayer per-

ceptron to develop a similar model that recognize Urdu digits. Authors in

[71] discussed some approaches for improving the recognition rates for Urdu

speech recognition and presented acoustic models for robust Urdu speech

recognition using CMUSphinx. Authors in [72] presented Urdu speech recog-

nition system specifically designed for district names of Pakistan. They have

discussed development challenges and solutions and concluded that accent

independent system performs better for isolated words.

For Hindi language (similar to Urdu), a system has been developed with

65000-word vocabulary and provides accuracy of 75 to 95% [73]. In terms of



CHAPTER 3. LITERATURE REVIEW 31

best WER, a system developed for similar script language i.e. Arabic, authors

in [74] showed WER of 14.9% for Arabic broadcast news transcriptions for

spontaneous microphone-based system. Table 3.1 show the list of various

Urdu speech corpora both public and propitiatory. Stats show thats there is

no publicly available LVCSR corpus for Urdu.

Table 3.1: List of various Urdu Speech Corpora

Lang Duration Speech type Source Speakers Vocabulary Public Ref

Urdu 3 hrs Read Mic 1 7k Yes [75]
Urdu 12 hrs Isolated Telephone 300 139 Yes [76]
Urdu 41.9 hrs Continuous Radio - - No [77]
Urdu 45 hrs Read & Continuos Tel+Mic 82 14k No [78]
Urdu 200 utt Isolated Mic 10 20 No [79]
Urdu 5200 utt Isolated Mic 10 52 No [66]
Urdu 12000 utt Isolated Mic 50 250 No [80]

Table 3.2 shows the summary of different Urdu ASR systems along with

their stats. Most of these systems are trained on small vocabulary using

GMM-HMM models.

Table 3.2: List of various Urdu ASR systems

Genre Vocabulary Speakers Public Technique WER Ref

District Names 139 Multiple Yes GMM-HMM 7.13 % [72]
Frequent words 52 Multiple No GMM-HMM 10.60 % [78]
Phonetically rich sentences 6k Single Partial GMM-HMM 18.80 % [65]
Interviews 14k Multiple No GMM-HMM 68.80 % [71]

In this study different GMM-HMM and DNN-HMM models are trained

and tested on a large vocabulary Urdu speech corpus.



Chapter 4

Design and Methodology

In this chapter details about the development of datasets, phonetic dictionary

and different ASR systems during this study are discussed. This chapter

also explains training and evaluation sequence of different GMM-HMM and

DNN-HMM models.

4.1 Dataset

To train an ASR system for efficient address recognition we used two differ-

ent datasets. Both dataset are prepared by Speech and Language Technol-

ogy Group [81] at School of Electrical Engineering and Computer Science

(SEECS), National University of Sciences and Technology (NUST).

First dataset having transcriptions in general Urdu is prepared using

recordings from various sources including Urdu news bulletins, talk shows, ra-

dio programs, recording of Urdu literature. This dataset has recordings from

more than 144 different speakers. Almost half of this dataset is prepared

by transcribing recordings from online sources. The other half is prepared

by recording various Urdu manuscripts from different sources by members of

32
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speech research group, students and volunteers using Urdu ASR recording

portal developed by Speech and Language Technology Group [82]. Second

dataset having transcriptions in roman Urdu consists of various addresses

in Pakistan recorded by 20 different speakers. This dataset mainly contains

mixed English-Urdu words and numbers used in addresses. All the tran-

scripts present in both datasets are recorded at 16000 Hz. Statistical details

of both datasets are described in following table:

Table 4.1: Statistics of datasets used in this study

Dataset Total Total Vocabulary Size Size Duration
speakers Recordings (words) (GBs) (hours)

General Urdu 144+ 17855 28391 7.1 61.82
Roman Urdu Addresses 18 12918 6194 2.1 16.89

Using above described datasets two different ASR systems are developed

during this study (system Su and system Sm). System Su is developed using

only general Urdu data while system Sm is developed using mixed data (gen-

eral Urdu + roman Urdu addresses). Table 4.2 shows the names of developed

ASR systems along with the names of dataset/s used for its development.

Table 4.2: Different ASR systems developed during this study

ASR System Training Data
Su General Urdu
Sm General Urdu + Roman Urdu Addresses

In reset of the sections models trained for systems in table 4.2 will be

referenced with respective system names (Su or Sm).
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4.2 Phonetic Dictionary

Phonetic dictionary contains mapping of words to respective phones. Pho-

netic dictionaries for both datasets are prepared separately. Around 20%

of the vocabulary for both datasets was manually converted to phones and

rest of the vocabulary was converted using sequitur grapheme-to-phoneme

(g2p) [83]. Training grapheme-to-phoneme model makes conversion process

very fast. Sequitur g2p is a data-driven technique used to solve monotonous

sequence translation problems (like word to phones conversion). Sequitur

g2p has no built in language specification and can be used for any language;

provided example pronunciations for training g2p model. To train a g2p

model manually converted examples (pronunciation dictionary) of words to

phones is used. Each line in the training dictionary has one word followed by

its pronunciation. A g2p model can be trained using this manually prepared

pronunciation dictionary covering most of the phones in the language. After

training g2p model it can be used to generate pronunciations of remaining

words in the vocabulary. Sequitur g2p model can also be integrated with

Kaldi tool kit directly for the conversion of new words in language that are

not in dictionary. For this study two different g2p models were training one

for general Urdu data and other for roman Urdu addresses. Accuracy of

the conversion was manually inspected and minor correction were performed

where required.

4.3 Training

Kaldi not only provide implementation for feature extraction algorithms and

transforms but also includes various recipes for acoustic model training. Kaldi

toolkit provides many examples of various speech datasets (free as well as
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paid). For available examples in Kaldi usually a script (run.sh) is present

containing step by step instructions for feature extraction, training different

acoustic models and testing these models on given dataset. Kaldi includes

different examples depending upon the language for which that example was

developed. Since there is no built-in example for Urdu language in Kaldi,

scripts of an English example voxforge1 were modified to be used for Urdu

language.

Before training acoustic model, language model is generated. A language

model can be used to understand the structure of the language as discussed

in section 2.1.3. Based on provided corpus generated language model can

be used to predict next word in the sentence/transcript based on current set

of words. To generate a language model in Kaldi, a corpus based on de-

sired transcripts is prepared to estimate the structure of given language. For

this study using Kaldi language model generation script various n-gram lan-

guage models with n=3 were generated depending upon underlying language

(General Urdu, Addresses or English).

4.3.1 Training Acoustic Models

Before training of acoustic model dataset is divided into training and test sets.

In this study two types of acoustic models (GMM-HMM and DNN-HMM)

are trained for both ASR systems (Su and Sm). As described in section 2.1.2

in GMM-HMM model, Gaussian mixture model and in DNN-HMM model,

deep neural network is used to estimate the correctness of HMM output

observations. Stepwise description of training process for different GMM-

HMM and DNN-HMM models for both ASR systems is provided below:
1http://www.voxforge.org/

http://www.voxforge.org/
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1. In first step acoustic features from training and testing data were ex-

tracted. For this study MFCC features are used as acoustic feature.

To calculate MFCC feature using Kaldi make_mfcc script is used. De-

tailed process for extraction of these features is describe in section 2.1.1

2. After feature extraction, cepstral mean variance normalization (CMVN)

is applied on resulting features. For this purpose compute_cmvn_stats

script is used in Kaldi.

3. After feature extraction and normalization a basic mono phone acoustic

model called mono was trained and tested on the test set.

4. In the next step a basic triphone model tri1 was trained using same

features as monophone model. Number of leaves and Gaussian used to

train the network are set to 2000 and 11000 respectively.

5. Next model trained was tri2a using delta transformed features. First

and second order deltas ∆ + ∆∆ are used as features for this model

number of leaves and Gaussian used in training are set to 2000 and

11000 respectively.

6. Then tri2b triphone model was trained by applying LDA+MLLT trans-

form on the acoustic features using train_lda_mllt script. Again same

number of leaves (2000) and Gaussian (11000) were used to train the

model.

7. Last triphone model tri3b was trained by applying LDA+MLLT+SAT

feature transforms using train_lda_mllt script followed by train_sat

script. Total leaves was set to 2000 total Gaussian were set to 11000

while training the model.
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8. Using the alignments from tri3b two different DNN-HMM models were

trained:

• nnet2: A setup in Kaldi containing deep neural network (DNN)

training recipes like time delay neural network (TDNN) 2.1.2.

nnet2 recipe used for this study is based on TDNN2. Features

used for DNN in Kaldi are 40 dimension MFCC(spliced) + LDA

+ MLLT + fMLLR transformed features. The neural network

sees only a window of transformed features having 4 frames on

either side of central frame at a time. Trained TDNN model is

a 6 layer model with 4 hidden layers. Network was trained for 6

epochs with initial learning rate of 0.0017 and final learning rate

of 0.00017. Implementation details of TDNN architecture can be

found in the paper of this recipe [84]

• nnet3: A setup in Kaldi containing more general kind of deep

neural network (DNN) training recipes like RNN, LSTM 2.1.2

From this study a long short-term memory (LSTM) 2.1.2 based

DNN recipe3 was used. Trained LSTM model is 11 layer model

with 9 hidden layers. Network was trained for 6 epochs with

initial learning rate of 0.0003 and final learning rate of 0.00003.

Complete description of the work can be found in the relevant

paper for the recipe [85].

Above training steps were used while training acoustic models for both

systems Su and Sm. After completion of training process both systems (Su

2TDNN recipe used for training nnet2 model https://svn.code.sf.net/p/kaldi/
code/trunk/egs/swbd/s5c/local/online/run_nnet2_ms.sh

3LSTM recipe used for training nnet3 model https://github.com/kaldi-asr/kaldi/
blob/master/egs/wsj/s5/local/nnet3/tuning/run_tdnn_lstm_1a.sh

https://svn.code.sf.net/p/kaldi/code/ trunk/egs/swbd/s5c/local/online/run_nnet2_ms.sh
https://svn.code.sf.net/p/kaldi/code/ trunk/egs/swbd/s5c/local/online/run_nnet2_ms.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/local/nnet3/tuning/run_tdnn_lstm_1a.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/local/nnet3/tuning/run_tdnn_lstm_1a.sh
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and Sm) were extensively tested using different test sets and language models

to analyze their performance.

4.4 Testing

After training different acoustic models for both ASR systems extensive test-

ing was performed on the trained models to test the efficiency of these models.

Models were tested on different datasets using various language models. Flow

of testing performed on the trained models is described in this section.

At the start of this study first models trained were for system Su based

on general Urdu data. After training these models, general Urdu test set

was used to test the accuracy of the model on general Urdu transcripts using

general Urdu language model. But our final goal was to recognize code-mixed

roman Urdu addresses using system Su. For this purpose a new language

model was developed using addresses dataset and models were tested on

addresses. As acoustic model is trained on phones so we generated roman

counter parts of all the general Urdu words and results were satisfactory.

After testing best model was hosted on TPL server and real time voice queries

from clients using TPL maps mobile app and decodings against those queries

were observed for few months. Although results were satisfactory but English

digits in addresses were not being properly recognized by ASR system Su. To

resolve this issue a new ASR system Sm was developed for which models were

trained and tested thoroughly using mixed data (general Urdu + roman Urdu

addresses). The resulting models were first tested on the test set containing

mixed transcripts and mixed language model. After verifying results on

mixed data, acoustic models were tested on addresses language model using

addresses transcripts only. After this testing it was observed that system Sm
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stated recognizing English digit properly.

After finalizing ASR system some additional test scenarios were also ap-

plied on the final system Sm. Its Acoustic models were tested against new

speakers that were not included in training data. Following three different

additional test scenarios were applied on system Sm:

• Random roman addresses were recorded by four different speakers that

were not in training data. These new addresses were then tested on var-

ious acoustic models of ASR system Sm using roman language model.

Results indicated similar outcomes for new speakers compared to speak-

ers in training set.

• After testing on speaker not in training set we focused accent testing

on our final system Sm. For this purpose librispeech which is a famous

speech dataset recorded in American accent was used. We recoded 50

random transcripts from librispeech dataset in Pakistani accent in voice

of four different Pakistani speakers. These same transcripts in Ameri-

can and Pakistani accent were then tested on our model as well as on

pre-trained librispeech models using librispeech language model. Mod-

els tested during this test were tri3b and nnet2 from both librispeech

and system Sm.

• This accent testing was further extended by testing system Sm and lib-

rispeech models on 363 Pakistani accent Youtube English test data from

four different speakers. This data was new for both models. Models

tested during this test were also tri3b and nnet2 from both librispeech

and system Sm. Results indicated similar outcomes likes before with

that acoustic models of ASR system Sm performed well on Pakistani

accent as compared to librispeech models which indicates the need for
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training model on Pakistani speech data.

Result of each test described above are discussed in details in chapter 5.



Chapter 5

Results and Discussion

During this study extensive testing was performed on developed ASR sys-

tems. In this chapter results of developed ASR systems on various testing

scenarios discussed in section 4.4 are presented and discussed in detail.

5.1 Testing Results

Figure 5.1 shows the Word Error Rate (WER) for different acoustic models

of system Su on general Urdu Language Model (LM) trained using general

Urdu speech data (i.e. recordings and their transcriptions). As different

Kaldi recipes (acoustic models) were initially trained for system Su using

general Urdu transcriptions, thus initial results were obtained by testing

these models only against general Urdu transcriptions. Results shown for

different Kaldi recipes depicted expected behaviour, that is, the performance

of acoustic models gradually improved as their complexity and richness in-

creased. Thus WER (%) for mono, tri1, tri2a, tri3b, nnet2 and nnet3 was

54.22, 31.07, 31.34, 27.98, 23.39, 15.34 and 14.12 respectively. Though theses

results were satisfactory for the general Urdu speech, but the goal of this ASR

41
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Figure 5.1: WER (%) of different acoustic models of system Su on general
Urdu data using general Urdu LM

system was to efficiently recognize street addresses in ”Roman Urdu”. For

this purpose general Urdu LM was replaced by addresses LM prepared using

roman Urdu addresses dataset. This approach works because the acoustic

model is trained on phones and mapping of these phones is in phonetic dic-

tionary, roman counterparts of general Urdu words can also be used with the

acoustic model trained on general Urdu. Therefore, general Urdu language

model was changed to address language model. Moreover, it was noticed that

the street addresses in Pakistan are usually code-mixed i.e. they may include

words from different languages, place’s or person’s names and digits in dif-

ferent languages. After development and testing ASR system Su was hosted

on an TPL Map’s server for real time testing. Real time speech data was

recorded and matched against resulting transcripts generated by the recog-

nition system. The system was capable of recognizing the street addresses

efficiently except the digits spoken in English. To cater this issue, roman

addresses dataset was prepared (mentioned in section 4.1), as it consisted
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only on street addresses and it also contained recordings and transcriptions

of digits spoken in English. ASR System Sm was then developed by training

acoustic models using both mixed data (roman Urdu addresses and general

Urdu). Figure 5.2 shows the results of WER (%) of different acoustic models

of system Sm when it was tested on mixed transcripts using mixed LM (gen-

eral Urdu + roman addresses). It significantly improved the performance of

the system as the WER (%) for mono, tri1, tri2a, tri3b, nnet2 and nnet3

reduced to 49.42, 30.4, 30.29, 28.34, 19.64, 16.54 and 12.29 respectively.

Figure 5.2: WER (%) of different acoustic models of system Sm on mixed
data using mixed LM

Figure 5.3 shows the results of different acoustic models of system Sm

when tested on 900 test addresses using only addresses LM to check how effec-

tively it meets the requirements of street address recognition system. Because

of large training data consisting of both datasets (general Urdu and roman

Urdu addresses), system achieved high performance as WER (%) for mono,

tri1, tri2a, tri3b, nnet2 and nnet3 reduced to 12.12, 7.2, 7.53, 7.8, 6.46, 4.34

and 4.02 respectively. WER of 4.02% for nnet3 LSTM model is as good
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as any state of the art recognition system for large vocabulary continuous

speech.

Figure 5.3: WER (%) of different acoustic models of system Sm on addresses
test data using addresses LM

5.1.1 Additional Testing

Speaker Independent System Testing

So far, all the testing/decoding of system Sm’s models was performed on

the unseen testing data of speakers whom speech data was also included

in the training data. To test the robustness of the system and see how it

performs in case of speaker whose speech data is not included in the training,

models of system Sm were tested on 50 random address transcripts of 4

different speakers not included in the training data. WER (%) for mono,

tri1, tri2a, tri3b, nnet2 and nnet3 for these random speakers came out to be

10.15, 7.08, 8, 10.46, 4.62, 2.46 and 2.13 respectively as shown in figure 5.4.

Results indicate that acoustic models of system Sm are speaker independent



CHAPTER 5. RESULTS AND DISCUSSION 45

and there was no noticeable decrease in performance when tested on new

speakers.

Figure 5.4: WER (%) of different acoustic models of system Sm on addresses
test data from new speakers using addresses LM

Accent Based System Testing

Usually speech recognition systems trained for a language with a specific

accent do not perform well with different accent of the same language. To

show this, Librispeech dataset (for English Language)1 was used for testing

on Pakistani accent models. 50 random transcripts from Librispeech data

were recorded in Pakistani accent from four different speakers. Using Lib-

rispeech language model, acoustic models of developed ASR system Sm and

Librispeech’s acoustic models were tested on Librispeech data in Pakistani

and American accent. Figure 5.5 shows the comparison between WER (%)

of Librispeech’s tri3b2 acoustic model and tri3b acoustic model of system Sm

1http://www.openslr.org/12
2http://kaldi-asr.org/downloads/all/egs/librispeech/s5/exp/tri3b/

http://www.openslr.org/12
http://kaldi-asr.org/downloads/all/egs/librispeech/s5/exp/tri3b/
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that is 24.68 and 49.21 for American accent and 65.19 and 12.46 for Pakistani

accent respectively. Figure 5.6 shows the comparison between WER (%) of

Figure 5.5: WER (%) of Librispeech tri3b vs Sm tri3b on Pakistani and
American accent Librispeech recordings

Librispeech’s nnet23 acoustic model and nnet2 acoustic model of system Sm

that is 8.39 and 47 for American accent and 25.32 and 7.26 for Pakistani

accent respectively.

Thus results suggest that acoustic models of system Sm, as compared to

Librispeech’s own model performs better for Librispeech data recorded in

Pakistani accent.

Testing results presented in figures 5.5 and 5.6 were obtained using

Librispeech dataset for which Librispeech’s acoustic model were training. To

further test both models, a separate dataset of 363 transcripts (duration 29.28

minutes) was prepared using Youtube English recordings in Pakistani accent.

These transcripts were then tested on acoustic models of both systems i.e.

Librispeech’s and system Sm. Figure 5.7 shows the results of WER (%)
3http://kaldi-asr.org/downloads/all/egs/librispeech/s5/exp/nnet2_

online/

http://kaldi-asr.org/downloads/all/egs/librispeech/s5/exp/nnet2_online/
http://kaldi-asr.org/downloads/all/egs/librispeech/s5/exp/nnet2_online/
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Figure 5.6: WER (%) of Librispeech nnet2 vs Sm nnet2 on Pakistani and
American accent Librispeech recordings

Figure 5.7: Average WER (%) of Librispeech models vs Sm models on Pak-
istani accent Youtube English test data

for Librispeech’s acoustic models and Sm acoustic models respectively, that

are 66.62 and 21.17 for tri3b and 38.22 and 20.03 for nnet2 on Pakistani

accent Youtube English test data. Data contained in this test was collected

from various Youtube videos of four different Pakistani speakers. Table 5.1
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shows the detailed per speaker results for all speakers from whom these 363

transcripts were obtained.

Table 5.1: Detailed % WER of Librispeech vs system Sm models on Youtube
English test data in Pakistani accent

Speaker WER (%) WER (%) WER (%) WER (%)
(Librispeech - tri3b) (Our - tri3b) (Librispeech - nnet2) (Our - nnet2)

Speaker 1 65.09 22.86 32.15 19.31
Speaker 2 81.91 9.30 49.61 17.05
Speaker 3 60.91 23.40 40.17 23.83
Speaker 4 58.57 29.15 30.95 19.93
Average 66.62 21.18 38.22 20.03

Results in table 5.1 also indicate that system Sm models performed better

than Librispeech models on English data in Pakistani accent. Which shows

the need of ASR systems based on Pakistani/South Asian accent.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this study automatic speech recognition systems for general Urdu as well as

roman Urdu addresses were successfully developed using Kaldi ASR toolkit.

Two different acoustic modeling techniques, Gaussian mixture model and

deep neural networks used to model the output accuracy of hidden markov

models were compared. It was observed that models trained using deep neu-

ral network out performed conventional Gaussian mixture models in different

testing scenarios. Along with regular testing using different language mod-

els, additional out of training speaker testing was performed on developed

ASR system. Accent testing was also performed to demonstrate the need of

training new models on Pakistani accent and how famous pre-trained models

perform poorly on English in Pakistani accent. Results indicate that efficient

Urdu speech recognition can be performed using Kaldi ASR toolkit and both

GMM-HMM and DNN-HMM models were able to successfully transcribe

general Urdu as well as roman Urdu addresses speech. Results in chapter

5 also show that DNN-HMM models performed better than GMM-HMM

49
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models in all test cases.

6.2 Future Work

This study being first large vocabulary continuous Urdu speech implementa-

tion in Kaldi is a step towards improvements in Urdu speech recognition. To

achieve a better performance from different models, focus should be put on

more data collection to enrich the dataset. Future work of this study includes

training and comparison of various DNN-HMM acoustic models on only gen-

eral Urdu data to develop a best model for large vocabulary general Urdu

speech recognition tasks. Also collection of more data to enrich this dataset

further is one of the objectives of our research group. Another future work

planned in the pipeline is identification of various applications on which Urdu

speech recognition service can be applied like live Urdu speech transcription

and mailing address transcription for automatic mailing address input.



Appendix

A1 - Frequently Asked Questions (FAQs)

• Which toolkit was used for developing Urdu ASR system?

Kaldi a popular ASR toolkit is used to develop Urdu ASR system in

this study.

• Which dataset was used to develope the system and is it pub-

licalty availble?

Dataset used to develope the system is collected by Speech and Lan-

guage Technology Group [81] at School of Electrical Engineering and

Computer Science (SEECS), National University of Sciences and Tech-

nology (NUST). No, it is not a public dataset.
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