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ABSTRACT 

 

 
Keeping your computer system safe from all types of viruses, trojans, spyware, Ransomes is 

a daily basis struggle. All around the World people are struck by this problem on a daily 

basis. Using anti-virus is so far the best possible cure found till now. The problem with anti- 

virus is that it is unable to detect any new type of malware; it will traditionally match the 

characteristics of the previously detected malware with the newly detected malware. It can 

easily be fooled by malware with different characteristics and hence your system gets 

infected. To overcome this hurdle artificial learning approach is applied for this thesis work. 

Machine learning has tremendous power to predict based on training done previously. One 

essential for artificial intelligence is large amounts of datasets. One of the goals of this 

research work was to collect enough dataset to apply machine learning. Only static features 

were drawn out from benign and malware PE files for classification. Two datasets were used 

a publicly available dataset and a self-collected dataset of about 21,000 samples. In machine 

learning, unsupervised algorithms using the resultant features given by PCA gave precision 

and recall above 0.8%. Results produced by machine learning supervised and unsupervised 

algorithms resulted in above 80% training and testing accuracy. Best results were given by 

dimensionality reduction approaches. Above 90% accuracy was achieved in proposed 

dimensionality reduction models. This approach was pronounced to be better than the 

traditional signature-based malware detection techniques due to its ability to learn and 

predict. 

Keywords 

Malware, artificial intelligence 
 

. 
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CHAPTER 1 
 

INTRODUCTION 

 
1.1 Malware: A threat across Globe 

‘Malicious software is in short called malware. Malware comprises programming 

designed to gain unauthorized access to system resources, gather the information that 

leads to loss of privacy or exploitation, disrupt or deny operation and other abusive 

behavior’ [1]. Every country is affected by malware. Malware creators create malware 

to perform a specific operation. The extent of malware damage can be determined 

based upon the target of the malware. Being a home user, a virus may not do major 

damage, in case a malware enters a corporate organization or any network it can gain 

access to confidential information and can cause way more damage than that caused 

to a home user. 

Malware can easily enter your computer system if you download executable  files 

from any unauthentic websites it can transfer malware into your computer with the 

executable. Malware can also get into your computer if you click on any dubious link 

or any email from an unknown or unauthentic email address. Any removable device is 

also able to carry malware. 

In February 2020, a management company based in Denmark was struck by a cyber- 

attack of prime importance security attacks. All of the computer systems were shut 

down with many operations on a halt. Later on, many connected computer systems 

were restored, but nearly 43,000 employees were still not able to  access their emails 

or any other online access [2]. 

Nearly one-third of computer systems are globally affected by malware attacks 

annually [3]. For the first time in 2016, lower rates of new malware samples were 

reported to be of 127 million. Surprisingly a malware of entirely new characteristics 

emerged 4.2 seconds in 2017 and in 4.6 seconds in 2016 [4]. 

Pakistan stands at a high risk of malware attacks as reported by Microsoft in 2017. 

According to Microsoft report Pakistan, Bangladesh, Egypt and Indonesia is expected 

to suffer from malware attacks most in the years to come [5]. 
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According to one of the survey every one out of four computer systems in Pakistan is 

infected at some time by malware. Also, it was reported that nearly 84% of the 

computer systems in Pakistan don’t use any security measure against malware attacks 

[6]. 

Malware can be detected using anti-virus, yet malware can by-pass anti-virus and can 

damage your computer system or especially your network to any extent a malware is 

capable of. Preferably one should protect their computer systems to every extent 

possible. The best way to keep your computer systems safe is to keep the anti-virus up 

to date and other software updated. 

The reason why malware can get pass that anti-virus software is that traditionally 

signature-based anti-virus software is used. Signature-based anti-virus software is 

incapable of detecting a malware of slightly different characteristics than the one 

previously detected. 

Signature-based ant-virus keeps track of all the previously encountered malware and 

once a new malware tries to enter the user’s computer system, it matches 

characteristics of the new malware with those previously stored on the anti-virus 

database. Signature-based anti-virus software will match the characteristics, it will 

check upon characteristics of the family of malware and in the end it can check upon 

the suspicious structure of the malware executable. Malware with a few changed 

properties can easily get past signature-based anti-virus. 

 

1.2 Problem Statement 

The basic problem statement around which this thesis work evolves is “to collect 

enough dataset to apply artificial intelligence techniques to overcome traditional 

signature-based techniques”. For the training phase of the model large amount of 

dataset is needed. Therefore one of the basic goals of this thesis work is to collect 

enough samples for training and testing. 

 

1.3 Anti-virus verses Anti-malware 

To protect one’s computer system usually most common searches comprises of ‘best 

anti-virus’ or ‘latest anti-virus’. What’s important here is that there is a difference 

between viruses and malware. A virus is a snippet of code efficient enough to 

duplicate itself once it enters users’ computer systems. A virus can replicate itself to 
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cause harm to your machine or PC. A virus can corrupt your data as well as your 

system [7]. 

On the other hand, malware can be considered an aggregation of all the software 

deliberately created to cause damage to computer systems. Malware includes spyware, 

Trojans, worms, etc. 

Anti-virus will try to check all types of malware including worms, Trojans etc. This is 

the reason why anti-virus is more commonly installed to protect the computer system. 

What makes an anti-malware better than anti-virus software is their job to detect the 

polymorphic nature of viruses. A polymorphic virus is a virus with somewhat 

different characteristics than the usual malware. 

Some of the most updated and latest anti-virus software includes McAfee [8], 

TotalAV [9], Norton [10], and many others are available. One of the anti-malware is 

MalwareBytes [11]. It is better recommended by professionals to use both types of 

software that is anti-virus software and anti-malware software. 

1.4 Justification of research 

As stated in problem identification, traditionally signature-based anti-virus is used. 

Such techniques can be fooled quite easily if the malware is created with some trick. 

The creators of malware can change the signature of the virus being created so that it 

cannot be perceived by the anti-virus. 

A signature-based anti-virus works with already known signatures or byte patterns. A 

hacker can easily just change the byte pattern or perform obfuscation so that 

signature-based anti-virus software doesn’t have that byte pattern stored in its 

database. Malware code can easily be changed and it can bypass anti-virus detection 

mechanisms [12]. 

Another problem that traditional signature-based anti-virus software suffers from is 

the problem of zero-day attacks. ‘A zero-day attack will check for a short-coming of 

the system whether it be logical or time-based, it will attack taking the advantage of 

some shortcoming faced by the system’ [13]. A zero-day attack is one of the most 

different and difficult types of malware’s to be detected and then also removing such 

malware demands a lot of effort and experience in this field. A zero-day attack is one 

of its kinds. It can cause major damage due to its nature of entirely different 



CHAPTER 1: INTRODUCTION 

4 

 

 

characteristics and nature. It may have entirely different characteristics than any 

previous malware attacks. 

How a zero-day work is important. A zero-day attack will be created based upon a 

deficiency in the system or based upon any event that has to take place soon. It is 

called zero-day as it is just created and is about to be deployed or is already deployed 

for the first time on the targeted computer system or computer systems. 

The problem arises here for traditional signature-based anti-virus malware because 

they are unaware of any new type of malware. Zero-day attacks are polymorphic in 

nature and such characteristics are not known by signature-based anti-virus software. 

Once a zero-day attack is deployed it can cause enough damage already before a 

remedy is launched for the attack. 

To overcome such signature-based techniques artificial intelligence-based techniques 

can overcome these problems to some extent. The property of machine learning to 

train and learn from different samples makes it capable to predict in real-time based 

upon training. More the training better the model prediction accuracy. 

Similarly, deep learning holds even more power than machine learning. Both 

techniques are data and training dependent. More the data for training the better the 

malware detection rate in real-time. Deep learning will be able to detect the 

polymorphic nature of the newly detected malware. Therefore,  both the techniques 

are capable of overcoming the problem of signature-based malware detection 

techniques. 

 
 

 

Fig 1. 1: A zero-day attack time line [1]. 
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1.5 Research questions 

 How can artificial intelligence based techniques overcome signature-based 

techniques? 

This above question is divided into sub questions: 

 Which machine learning algorithms to use? 

 Which deep learning techniques to be used? 

 How will malware detection accuracy be increased in real-time? 

 How much dataset to be used for good training results? 

 How to gather dataset to apply the proposed approach? 

 
1.6 Objectives of Research 

The foremost objectives of this research are: 

1. To collect dataset 

2. Validate self-collected dataset 

3. To create a robust model 

4. To propose/improve models for clustering 

5. To compare different feature dimensionality reduction techniques and find out 

which suits best for clustering 

6. To validate the results using quantitative and evaluation metrics. 

 

 
 

1.7 Research Contribution 

1) Self-collected dataset of 21,486 portable executable files. 

2) Robust model using cross validation using two datasets one which was self- 

collected and other one that was accessed from web (publicly available since 

2018) 

3) Utilization of GMM as clustering algorithm (GMM is used as feature selector 

in literature). 

4) Fuzzy c-means introduced for benign-malware clustering. 

5) A model proposed for clustering based upon dimensionality reduction 

techniques crosses results of a similar technique seen in literature with about 

difference of 3-4% in F1- score as well as better precision and recall. 
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6) Better clustering models proposed with resultant precision, recall and F1-score 

between 0.8-0.95. 

1.8 Organization of Thesis 

 Chapter 1, Introduction 

Malware: A threat across Globe, Problem identification, Anti-virus verses 

anti-malware, Zero-day attacks, Justification of research, Objectives 

 Chapter 2, Literature review 

Types of malware analysis, related work, Portable executable 

 Chapter 3, Data acquisition 

Publicly available dataset, self-collected dataset, features used in dataset, 

comparison of benign and malware threshold values 

 Chapter 4, Methodology 

Basic flow: methodology part-1, goal: a robust model, strategy for 

supervised algorithms, strategy for unsupervised algorithms, Basic flow: 

Methodology Part-2, clustering based upon static features, simple 

clustering, clustering with dimensionality reduction, clustering with 

ensemble NN based autoencoder. 

 Chapter 5, Results and Discussion 

 

Parameters for supervised algorithms, numerical results for supervised 

machine learning algorithms, graphical results for supervised machine 

learning algorithms, classification reports for supervised algorithms, ROC 

curve for supervised machine learning algorithms, numerical results for un- 

supervised algorithms, result analysis of machine learning algorithms, 

clustering results for static features with dimensionality reduction 

 

 Chapter 6, 
 

Conclusion 

 

 

Summary 

 
The different aspects related to malware and why malware detection is 

important is discussed in this chapter. Several malware attacks have been discussed 

also the situation of Pakistan in terms of malware threats. Why to use anti-malware 
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instead of anti-virus is discussed in this chapter, also the justification for this research 

topic is discussed. Moreover, the research objectives are also stated while at the end, 

thesis organization has been 
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CHAPTER 2 
 

LITERATURE REVIEW 

 
2.1 Types of malware analysis 

‘Malware analysis is the procedure of figuring out how malware functions in different 

scenarios’ [3]. In malware analysis, the analyzer is capable of analyzing and 

understanding the basic characteristics of malware or benign files. There can be many 

features in the portable executable file(PE) ‘The Portable Executable (PE) format is  

a file format for executables, object code, DLLs, FON Font files, and others utilized  

in 32-bit and 64-bit versions of Windows operating systems. The PE format is a data 

structure that epitomizes the information necessary for the Windows OS loader to 

manage the wrapped executable code’ [3]. Passing a PE file through  sandbox or 

parser features can be extracted. There can be two types of malware analysis: 

1. Static malware analysis 

2. Dynamic malware analysis 

 
 

2.1.1 Static malware analysis 

If static malware analysis is done, it means the malware file isn’t running, it’s in static 

mode. Just parsing it through any parser will give the relevant features. This is one of 

the safest malware analysis techniques; one doesn’t need to create a separate isolated 

and safe environment, whereas in other cases a separate environment is needed 

because of the chances that a malware if escaped during analysis might affect the 

whole computer system. Using static analysis will give us features like its signature 

etc. Although static analysis is safe and easy to do, this type of analysis lacks to give 

us enough facts about malware’s behavior. 

 

2.1.2 Dynamic malware analysis 

Using dynamic analysis, we can gain information more than static analysis. In 

dynamic analysis malware file is executed and its behavior is analyzed. Dynamic 

analysis is performed in an isolated controlled environment so that there is not any 

chance a malware may escape from the environment created and infects the rest of the 

computer system. Dynamic malware analysis works better for advanced malware 

types. 

https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Dynamic-link_library
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Operating_system
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2.2 Related work 

Starting from 2017 tremendous amount of work is done on static features. Techniques 

applied typically involved deep learning and machine learning. One of the significant 

problems faced by authors was the limited amount of dataset. 

 
2.2.1 Binary Classification: Machine learning and deep learning 

In a paper “malware classification using machine learning and deep learning” dataset 

included 11,668 malware files collected over a span of 11 months and 2,819 benign 

files While feature extraction few of the malware files were corrupt therefore they 

were discarded and a total of 11,308 malware files were used to generate the feature 

vector. Features were extracted using 1 and 3 layers auto encoders independently. 

Opcode frequency is used as a discriminatory feature. Cross-validation was used to 

form a generalized model (3 fold cross-validation), to overcome the class imbalance 

problem. To have optimal no. of features various alternatives of dimensionality 

reduction were utilized (None, Variance Threshold, Auto-Encoders (1 and 3 layer 

auto-encoder).Models used for classification were random forest, DNN with 2,4, and 

7 hidden layers. Deep learning models use ELU activation, the last layer use sigmoid 

activation ‘Adam’ optimizer, cross-entropy loss function, drop- out rate of 0.1,120 

epochs for training. The evaluation measures used were accuracy, recall, selectivity, 

and precision. Random forest with variance threshold outperforms deep neural 

networks i.e. random forest gives 99.78% accuracy [16]. 

 

“A study on the effect of feature selection on malware analysis using machine 

learning” included 149 samples in total including 68 malicious files. Dynamic and 

static features are used. Feature selection was done using an information gain 

algorithm. Classifiers used were LogitBoost, Decision Table, Random Forest, 

LazyIBK, Multilayer Perceptron (MLP), Bayesian Classifiers, and in unsupervised 

techniques, Estimation-Maximization was used. The algorithms were evaluated 

without and with a feature selection algorithm to evaluate the performance without 

and with feature selection. Evaluation measures included: accuracy, confusion matrix, 

AUC, F1 score, training time. MLP gave the best result with an accuracy of 77.1812% 

[17]. 
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The paper “malware detection approach based on artifacts in-memory image and 

dynamic analysis”. Uses dataset comprises of 1200 PE, with 400 benign samples. 

Two types of features used i.e. memory analysis done using Volatility tool and 

dynamic Analysis done using Cuckoo Sandbox. Classifications done were done upon 

three types of features i.e. features from dynamic analysis features from memory 

analysis. Combining features of dynamic and memory analysis (Reported best  

results). Classification algorithms used included SVM, Naïve Bayes, KNN, random 

forest, decision trees. Evaluation measures included True Positive (TP), True  

Negative (TN), False Positive (FP), and False Negative (FN), detection rate, true 

positive rate, and accuracy. SVM gave the best results with an accuracy of 98.5% and 

a false positives rate of 1.7% [18]. 

 

In the paper “A novel machine learning-based malware detection and classification 

framework” static and dynamic features are extracted using Cuckoo Sandbox. The 

experiments use two types of datasets micro dataset for classification and Macro 

dataset for detection. Dataset is created by gaining malware benign files from Virus 

Total and Virus Share as a dataset in this domain is found in fewer amounts, therefore 

the authors propose to create a new dataset. Due to vulnerabilities that can be caused 

by the malware files Cuckoo sandbox is used within a virtual machine. After the 

features extracted by the Cuckoo Sandbox, for even better results feature selection 

algorithms of Chi-Square and Random Forest. Dataset comprises of 1200 samples 

with 522 benign samples and 678 malicious samples. 70/30 split for training and 

testing. Algorithms used included KNN, Random Forest Decision Tree, Random 

Forest, SVM. Evaluation measures included F-measure, precision-recall, AUC and 

accuracy. For detection and classification decision trees give the best results with 

99.87% accuracy for classification and 99.37% accuracy for detection with 108 

samples selected [19]. 

 

“Static and Dynamic analysis using machine learning” proposed to extract static 

features using PEFILE file parser provided by python. Dynamic Features are extracted 

using Cuckoo Sandbox.6 features were extracted using Dynamic Analysis including 

summary information, Registry key, IP address and DNS queries, access URL, and 

API calls during execution. Above 92 static features were extracted. Static features 

extracted from 39000 malware files and 10,000 benign files. Dynamic features 

extracted from 2200 malware files and 800 benign files. Non-identical dynamic 
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feature combinations are used for training and testing purposes. Algorithms applied on 

both dynamic and static features included decision tree, logistic regression, bagging 

classifier, random forest, bagging classifier, tree classifier, AdaBoost classifier. The 

area under the curve for static features it gave 99.36% accuracy better than 94.64% 

with static features [20]. 

 

The paper named “Applying convolutional neural network for malware detection” 

used a five steps approach at first files are malware samples are collected and labeled. 

In the second step, all the file codes are converted into an image sample for applying 

CNN. In the third step, training takes place, in the fourth step the prediction model is 

built and at the final step, testing takes place as whether the test sample is either 

benign or malware. File package is encoded using ASCII and then converted into 

image samples for CNN training and testing. Inception v3 is used for the final 

detection of malware and benign on the test sample. Dataset comprises of 10,849 

malware samples and 11,153 benign samples collected from Github, GUN open 

source project, honeypot, malware knowledge base, and NCHC. Evaluation measure 

included accuracy, True Positive Rate, and False Positive Rate. One of the research 

gaps was that it detects camouflaged malware embedded in benign files [21]. 

 

In the paper “Malware detection using Opcode Trigram sequence using SVM.” 

samples are collected and the trigram sequences and the PE Headers features are 

extracted after the sample collection, the dataset is compiled and spitted into training 

and testing samples later onwards SVM is applied. Dataset comprises of 399 malware 

samples and 111 benign samples. Malware samples are collected from online 

repositories of GitHub and the benign samples are downloaded from Cnet. Opcodes 

are used instead of n-gram sequence as variable names and arguments change due to 

polymorphism and metamorphic transformation, hence opcodes are more robust to 

these changes. The disassembling of the file and breaking it to form trigram sequences 

forms the basis of this paper. They use a python script to perform this task of forming 

trigram sequences. The experiments use a 70/30 split for training and testing 

respectively. Evaluation measures include confusion matrix and statistics which 

include accuracy, balanced accuracy, etc. Accuracy is found to be 89.47% and a 

confidence of 95% 98% detection rate for malware detection [22]. 
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The paper “feature optimization for run-time analysis of malware in windows 

operating system using a machine learning approach” uses dataset comprising of 236 

samples having 115 benign and 121 malware samples. For feature selection, genetic 

algorithms are used, and furthermore 3 machine learning algorithms are used i.e. 

support vector machines, random forest, and support vector machines. The 

experiments follow a similar pipeline followed previously that is sample collection 

and then dataset generation using the cuckoo sandbox next feature extraction and then 

they perform the genetic algorithm to use only the best features for machine learning 

algorithms to be applied next. For Cuckoo sandbox, a virtual machine is used to 

provide a shielded environment. Cuckoo Sandbox uses a host and multiple guest 

machines. Cuckoo generates the genetic algorithm and raw features extract the 

significant features used for further analysis by machine learning algorithms. Also, a 

10- fold cross-validation is used for better data splitting for testing and training. 

Evaluation Measures included confusion matrix, sensitivity, and specificity; accuracy 

and ROC curves. Highest accuracy of 86.6% was achieved with random [23]. 

 

“Accuracy improved malware detection method using snort sub-signatures and 

machine learning techniques” this paper uses multiple feature selection algorithms and 

works with n-gram sequences. To select the significant n-gram sequences following 

feature selection algorithms are used i.e., CfsSubset, Chi-Square, Principal 

Component Analysis (PCA), GainRatioAttribute(GR), and InfoGainAttribute(IG) 

.Naïve Bayes.J48, Support Vector Machines(SVM), AdaBoost IM, and Instance- 

Based K(IBK) is used for classification. For the training dataset, a total of 3,622 files 

are collected comprising of 1,971 benign files and 1,651 malware files consisting of 

three malware families’ i.e. 550 files of Trojan family, 551 virus files, and 550 worm 

files. For testing, a new dataset is compiled comprising of 257 malware files and 200 

benign files that sums up to be 457 files. On the basis of previous experiments done  

by people, the n-gram sequence of size 4 was selected as it gave the most suitable 

classification results. hexdump utility is used for data normalization. 10-fold cross- 

validation is used. Evaluation measure includes True Negative Rate, False Negative 

Rate True Positive Rate, and False Positive Rate. SVM has produced better results 

than other algorithms used [24]. 

 

“Malware Detection and Classification based on n-gram similarity sequence”. This 

paper deals with one of different approaches rather than using only static, dynamic 
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features or by the hybrid technique of both dynamic and static features, they propose a 

technique to check the similarity of n-grams sequence of malware samples with 

benign samples. Also they compare their results with multiple machine learning 

algorithms such as Bayesian Networks, C4.5 decision tree, naïve Bayes, and Support 

Vector Machine. The methodology follows two-steps first it withdraws the relevant 

features and then it selects the significant features, the features with distinguishing 

ability between benign and malware samples-gram sequence of training samples are 

gathered with n equals to 3 which means 3-gram sequences of hexadecimal file. For 

similarity measurement, calculate average feature vectors of training sample of 

training and testing samples. After taking the average, for easiness values in average 

feature vector the values greater than 0.5 are set to ‘1’ and below than 0.5 to ‘0’3 

datasets are used for evaluation, first comprises of 88 malware and 84 benign files, 

second comprise of 200 malware and 168 benign samples and the last one comprises 

of 1000 samples each, The first dataset is used for training whereas the other two are 

used for testing. A total of 376,942 3-gram sequences are trained. This approach gave 

more convincing results than other algorithms with 95.4% True Positives and 92.61% 

accuracy on second dataset and 86.69% True Positives and 81.07% accuracy on the 

third dataset [25]. 

 

“Malware-detection model using the learning-based discovery of static features” this 

paper also tries to overcome the problem of signature-based malware detection. This 

paper works with both packed and unpacked executables. Firstly they determine 

whether the sample is packed or not. In the next step, data is split into testing and 

training data. The traditional machine learning pipeline is followed. Feature 

engineering is done for feature extraction from packed and non-packet executables. 

Feature reduction is also done to keep only the most significant and valuable features. 

Feature reduction is done using Principal Component Analysis (PCA), variance 

threshold, univariate selection, and feature importance. This paper uses ensemble 

learning which reduces variance and biasness. Bagging and Boosting methods are 

used in bagging random forest, and extra trees whereas in boosting gradient boosting 

and AdaBoost to reduce bias..In the detection stage 3 steps are followed i.e. noise 

reduction (remove unwanted data), Next packed and un-packed executables are 

separated furthermore in step 2 the un-packed executables are further refined for 

classification of whether they are malicious or not. In the last step, based on the 

learning algorithms of machine learning samples are defined as benign or malware. 
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Also, 10-fold cross-validation is used on each algorithm. The dataset comprises of 

60,000 malware and 40,000 benign samples collected by the authors themselves. 

Evaluation measures used are confusion matrix, ROC curve, and classification 

accuracy. With ensemble learning results for packed executables, best results are 

found using univariate selection and feature importance. For non-packed executables, 

best results are found with the variance threshold. Accuracies obtained were above 

95% for each algorithm in all the scenarios [26]. 

 

One of the papers named “Intelligent Malware Detection using Oblique Random 

Forest Paradigm” The proposed technique comprises of using a combined form of 

SVM based decision tree. It searches for the optimal hyperplane. Nodes of the 

decision trees are split using the hyperplane which makes it easier to split the node 

child. The ensemble size here acts as a hyperparameter. Results are evaluated on 3 

datasets first comprising of 5210 samples with 2722 malware and 2488 benign 

belonging to the ClaMap dataset. The second dataset is from an antivirus dataset with 

7050 benign samples and 5090 malware samples and the last dataset is from Kaggle 

dataset having 10866 malware samples only. A number of decision tree variants are 

tested which are LMT, Hoeffding Tree, random forest, J48, and oblique random 

forest, and REP Tree. Oblique random forest gives the best accuracy with 99.14% 

accuracy on the first dataset, 99.23% accuracy on second dataset and  99.52% 

accuracy on the third dataset. Evaluation measures used are accuracy, sensitivity, f- 

measure, recall, precision, and specificity. One of the contributions of this paper is the 

use of hyperplane to divide data into sub-nodes [27]. 

 

 
2.2.2 Multi-Class Classification: Machine Learning and Deep 

Learning 

One of the papers uses birch clustering named “Malware family identification with 

BIRCH clustering”. This paper uses clustering, most of the papers use labeled datasets 

and supervised algorithm techniques whereas this paper uses the BRICH clustering 

algorithm and tries to work with unlabeled datasets and clusters malware in their 

respective families. Features are extracted using Cuckoo sandbox and all non- unique 

feature values are removed in more than 80% of the samples. Later onwards with 

these samples, the BRICH clustering algorithm is used which clusters malware w.r.t 

their families. Dataset comprises of 5351 samples, the dataset is collected by the 
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authors themselves. The authors also compare the performance of their results with 

the following other clustering algorithms DBSCAN, Hierarchical algorithms, K- 

Means, Mini batch K-means, Expectation-Maximization (EM) and clustering using a 

representative. All these algorithms work w.r.t the specific features, some algorithms 

performed better than others as features were up to mark for them. Evaluation 

measures used included the Adjusted Rand Index (ARI), Adjusted Mutual Information 

(AMI), Fowlkes-Mallows Index (FMI).BIRCH gave the best results for malware 

clustering in their respective families [28]. 

 

In the paper “Towards Efficient Malware Detection and Classification using 

Multilayered Random Forest Ensemble Technique” The authors claim to have 

produced results even better than machine learning and deep learning techniques. 

They used two datasets one is Malimg dataset having 25 families consisting of 9339 

grayscale malware patterns. The second dataset is the dataset of Microsoft Malware 

Classification Challenge (BIG 2015) which contains 21,741 malware samples 

belonging to 9 malware families with 10,873 samples for testing and 10,868 samples 

used for training. The datasets used also use 1043 benign samples. The proposed 

method uses a layered stacked structure which is one of the ideas from deep learning. 

The proposed method uses 2 steps, in the first step depth-wise raw features are 

analyzed using sliding window of different sizes; these features are then forwarded to 

ensemble models. In the second step, multilayer ensemble methods are then used in 

the second step, algorithms used for ensemble modeling are Random Forest, Extra 

Tree Classifier, XgBoost and Logistic Regression. In the stacking phase, the images 

are divided into two sizes, 10 x 10 and 30 x 30. These images are then used by 

ensemble methods. The probability feature vectors calculated at each layer are 

forwarded to the next ensemble stacked layer. In multilayered each layer contains all 4 

ensemble algorithms. Results are combined with the first layer results and fed to the 

next layer. This goes on until the results of the layers start getting the same. In the 

end, the highest probability is checked. Evaluation measures used are accuracy, 

confusion matrix, f1-measure, precision, and recall. In all the scenarios accuracy 

achieved is above 95% [29]. 

 

The paper named “Malware Classification using machine learning algorithms” uses 

the following algorithms multi SVM, multilayer perceptron, and decision tree,. The 

dataset contains features of different types of malware. No. of samples used is 5724. 
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The dataset contains 7 types of attributes. For categorical values, class names are 

represented as numbers. There are 10 classes; each class is a malware of different 

types. Feature importance and confusion matrix is used. SVM gave an accuracy of 

90.2% and the neural network gave an accuracy of 98.94% [30]. 

 

In a paper similar to the paper above named “Malware classification using machine 

learning algorithms and tools”, this paper tried to overcome the problem of 

polymorphic nature of the new malware that are being created. Dataset used is from 5 

different families of malware (Zeus, APT1, crypto, Locker, and shadowbrokers), after 

all the data collection and pre-processing the number of remaining malware samples 

counted to be is of 5800 samples.6 machine learning algorithms are used that are 

decision tree, naïve Bayes, KNN, random forest, neural network, and SVM. 

 

Also, 4 tools are used for more analysis tools used are Weka, RapidMiner, Knime, 

and Orange. Evaluation measures used are accuracy, confusion matrix, and Cohen’s 

Kappa.In terms of algorithms random forest gave the best results and in terms of tools 

used orange gave a better result than knime with an accuracy of 94.2% and Cohen’s 

kappa equal to 93.8% using orange tool and random forest algorithm [31]. 

 

Using convolutional gated neural network the authors use the dataset of Microsoft 

malware classification challenge provided in 2015(Big 2015). Dataset comprises of 

21,741 samples with 10,873 samples for testing and 10,868 samples for training. The 

dataset has 9 classes of malwares and no benign samples. Dataset has .asm and .byte 

file for every sample. Only binary data is used in this paper. One hot vector is used for 

each possible x86 instruction. The proposed technique uses, DNN (Deep Neural 

Network), CNN (Convolutional Neural Network), and GRU (Gated Recurrent 

Network). CNN uses convolutional layer, activation layer, and then the pooling layer. 

CNN layers output a single layer which acts as input to the GRU layer. GRU outputs 

as per no. of inputs received. GRU output serves as input to DNN. DNN layer outputs 

vectors of values. Finally, the sigmoid layer is placed which classifies malware into 

one of the 9 malware families. The proposed model gives 92.66% accuracy. The paper 

is named as “Classifying malware using convolutional gated neural network” [32]. 

 

Using deep learning methods a paper named “Malware classification using deep 

learning methods” this paper uses a shallow deep learning method based upon 

word2vec space model representation for malware representation and later onwards 
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gradient boosting machine (GBM) is used for classification. The dataset used is taken 

from Kaggle, the dataset is provided by Microsoft Named Microsoft Malware 

Classification Challenge (Big2015). To test the model performance in another way 

100,200,300 and 398 files from each class are taken except 5th class as it doesn’t have 

enough samples. This step is taken to prove the performance of the model on a small 

amount of data. Assembly codes are stripped from their arguments so that only 

assembly operation sequence can be acquired separately. Evaluation is done using 

logloss values. The highest error rate was reported by 100 samples and a minimum 

error by 398 samples. GBM is performed upon these 4 sets of samples 

(100,200,300,398). 5-fold cross-validation is also performed [33]. 

 

In the paper “Analysis of ResNet and GoogleNet models for malware detection” 

dataset used is from Microsoft Malware Classification Challenge (BIG-2015). Also, 

3000 clean benign software are downloaded from open source websites. Byte files are 

converted into their equivalent images. Poly Unpack(used for dynamic code), PEID 

(used for static code).The opcode is de-compiled from the assembly codes and is 

grouped in 2-tuple opcode grouping. Binary images are reconstructed from the opcode 

sequence with the help of information gains and their probabilities. Probabilities and 

information gains are calculated based upon the frequencies of opcodes. Images are 

constructed based upon binary opcodes frequency. Normalization, dilation, and 

erosion of histograms are used for better enhancement of opcode sequences. 

Normalization is done through by dividing with the maximum value. The generated 

dataset is split into testing and training, after then GoogleNet and ResNet are utilized 

in comparison. ResNet gave much better results than GoogleNet. ResNet-125gave an 

accuracy of 88.36%, training accuracy of 87.98%, and 11.94 loss [34]. 

 
2.2.3 Image Based Malware Classification 

 
This paper named “Malware Detection with Malware Images using Deep Learning 

Techniques” uses the basic pipeline of data preprocessing, classification, and 

evaluation. Dataset is provided by Korea university from the Andro-dumpsys study. 

The dataset comprises of 906 malware samples which comprise of 13 different 

malware families and 1776 benign files downloaded from Google store and parsed 

through Virus Total to check its benign nature. Data is pre-processed by converting 

byte values into an equivalent grayscale image and also they have converted into RGB 
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images. For this, a batch of 3 bytes will represent one pixel. An image of 1920 pixels 

is generated. Before classification, the problem of the image downsampling occurs.  

To overcome this SSP (Spatial Pyramid Pooling) is used which takes into account. For 

classification two types of models are proposed one is a simple 3-layered CNN model 

and the other one is ResNet-50.Before final layer batch normalization and dropout is 

used for both models. For evaluation, a threshold value is taken above which are 

malicious, and below are benign. Also for evaluation, an image is divided into 

subparts and if anyone of those sub-images is classified as malicious, that complete 

image is considered as malware (this approach is taken to .use less memory). Models 

were also tested with unaltered samples and adversary samples. In results ResNet-50 

performs better with RGB and 3-layered CNN performs better with grayscale images. 

Added API codes don’t work well with RGB as it shifts the channels [35]. 

 

A deep convolutional neural network is proposed by the authors of the paper named 

“Malware Classification using Deep Convolutional Neural Networks” for malware 

classification. Malware files are converted into their equivalent grayscale images by 

converting the binaries into an 8-bit vector and then converting those 8-bit vectors are 

converted into decimal values. The resulting matrix is shaped into a 2d- grayscale 

image. The CNN model used is based upon the architecture of VGG-16 and is called 

M-CNN.6 blocks are used with different arrangements and no. of layers in it. Layers 

include Convolutional Layer, Relu that is the activation layer, and max pooling. After 

that flatten layer is used 3 times and for final classification, softmax is used. Datasets 

used are the dataset of the Malimg dataset contains samples for 25 families having 

9,339 malware samples in total. 10% are used for testing and 90% for training. The 

other dataset used is the dataset provided by Microsoft name Microsoft Malware 

Classification Challenge. This dataset comprises of 21,741 samples in total with 

10,868 for training and 10,873 for testing. For each sample, this dataset provides a 

.byte file and a .asm file. Only byte files are used to generate images. Classification  

for Microsoft Malware Classification Challenge is done upon two sets. 1st sets use 

90/10 the ratio for training testing and the other set contains the original distribution 

of training testing given by Microsoft. With both datasets accuracy stated is above 

98% [36]. 

 

A deep convolutional neural network is used in the paper” Malware Classification 

using Deep Convolutional Neural Networks”. Dataset used is the dataset provided by 
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Microsoft. Dataset is further passed through IDA which returns assembly code and 

byte data. Next is the image generation portion, instead of using assembly code byte 

data is used for image conversion. The hexadecimal values in byte data are converted 

into a string of binary values through which hamming distance will be calculated. As  

a result these binary string values are merged into equivalent binary images.  

Hamming distance is used to check the average string length. Here hamming distance 

is used to determine the optimal length for image breakdown for further processing. 

Autocorrelation is calculated based upon the hamming distance between bytes for 600 

instructions. This paper uses VGG16, VGG19, and AlexNet, and they accept RGB 

image input for that the generated greyscale images are replicated across the RGB  

axis to serve the purpose of input. After image creation features are extracted and 

features are inputted to AlexNet, VGG 16, VGG 19 heterogeneous and also inputted 

separately to 3 AlexNet homogeneous. Side by Side transfer learning is also used 

giving its output to a single network and after training of this single network final 

classification layer is removed and new layers are added for new dataset. For final 

classification from both the parallel models SVM is used. In the results transfer 

learning method outperforms the other methods [37]. 

 

Xception based convolutional network is used to overcome the problem of overfitting. 

Dataset used is the dataset of the Malimg dataset. Another dataset is used supplied by 

Microsoft. As Microsoft Malware Classification Challenge uses .asm and .byte files 

for each sample binary stream is read from byte files and for .asm files they are read 

as binary streams. A binary stream can easily be segmented into 8 bit vector; further 8-

bit vector can represent a greyscale pixel value. Transfer learning is used with 

Xception Image Net. Also, an ensemble model is proposed. The ensemble model is 

only 3- layered model.Xception-1 was trained with byte files only and Xception-2 was 

trained with .asm files only. An ensemble model was used.The evaluation measures 

used were logloss and accuracy. Results produced were either equivalent to or better 

than the results mentioned in the literature, but training time was reduced to 

approximately 5 minutes only [38]. 

 

A ResNet-50 based deep neural network is proposed in the paper “Malicious 

Software Classification using Transfer Learning of ResNet-50 Deep Neural Network“. 

The data set is Malimg. Each malware executable is converted into its equivalent 

byteplot greyscale image. Furthermore, these grayscale images are rescaled to 224 x 
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224 for greyscale to RGB conversion. Images are generated on the base of an 8-bit 

vector. The proposed model is based upon ResNet -50, the last 1000 layers are 

replaced with 25 softmax layers. Pre-trained weights of ResNet-50 trained on Image 

Net dataset are used In results an average accuracy of 98% was achieved. Also, better 

accuracy was achieved with those that were stated in the literature [39]. 

 

In the paper “Deep Learning Framework and Visualization for Malware 

Classification”, a hybrid network is used, combining CNN and LSTM. Dataset used is 

the dataset of Malimg. To use this dataset malware samples were transformed into 

equivalent grayscale images. Malware binaries are converted into their equivalent 8- 

bit vectors and those 8-bit vectors are then converted into their equivalent 2D gray 

scale images. A 70/30 split is used for training and testing. In the model, CNN is 

followed by LSTM layer which extracts the features. Mask size for convolution was 

taken to be 3 after experiments. 2 layers of convolution use 64 and 128 filters each 

which are inputted to LSTM. After LSTM a fully connected layer is utilized for 

classification. Evaluation measures used were accuracy, precision, recall, f1-score. 

Accuracy was achieved to be 95%. The paper uses results from another paper in the 

literature that uses CNN with SVM which has reported 84% accuracy, whereas this 

model gave 95% accuracy [40]. 

 

In the paper “Malware detection using malware image and deep learning” the basic 

pipeline of training testing is used. Malware and benign samples are converted into 

their equivalent grayscale images and are trained and tested using deep learning 

models. For image conversion, every 8 bit is converted into a pixel value and results  

in a 2D grayscale image. An image of size 256 x 256 is used which turns needed to be 

downsampled to 32 x 32 size for further processing. A simple convolutional neural 

network is proposed.3 convolutional layers, pooling layers are used and finally,  2 

fully connected layers are used for final classification.10,000 normal files were taken 

from Hauri [41] and 2000 malware files from Kaist Cyber Security Research Center 

[42]. These files are converted into equivalent greyscale images using the technique 

described above. A 90/10 split was used for training and testing. In results, 95.6% 

accuracy was achieved [43]. 

 

Dataset used in the paper “Malicious Classification Based on Deep Learning and 

Visualization“ is the dataset of Microsoft Malware Classification Challenge. The 
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dataset contains .asm and .byte files for each sample. byte files are converted into 

equivalent greyscale images using the 8-bit vector technique. In the model 5 

convolutional layers are used and after that Spatial Pyramid Pooling is used before the 

final fully-connected classification layer. 10 folds cross-validation is used. The final 

average accuracy was reported to be 95.44% [44]. 

 

Summary 

 
Related work is discussed in the chapter, it can be seen that using static features quite 

the amount of work is done. Many researchers use the combination of dynamic and 

static analysis or dynamic analysis with memory analysis. Research done with 

machine learning, the results produced were quite reliable, but cross-validated models 

were not seen in the literature generally single dataset is used for training and testing. 
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CHAPTER 3 
 

DATASET ACQUISITION 

 

This chapter deals with the procedure followed for dataset collection for this thesis 

work. Two sets of datasets are used in this thesis work. 

 
3.1 Publicly available datasets 

There are many different datasets available for malware analysis. Datasets use different 

types for feature including static feature, dynamic features, a hybrid approach of both 

static and dynamic features, API calls, datasets based upon memory analysis etc. For 

this thesis dataset used is based upon static features. 

 

On the pattern of static features some of the datasets publically available are one of the 

dataset includes 73,775 binaries dedicated solely for malware analysis based upon static 

features only. 

 

To work with models provided by deep learning, a decent amount of dataset is used. 

Most authors use dataset of 10,000 samples or above for deep learning classification 

models. 

 

The dataset used in this thesis work is publically available dataset provided by “Chiheb 

Chebbi”.Chiheb Chebbi is an author of two books named “Mastering Machine Learning 

for Penetration Testing” [4] and “Advanced Infrastructure Penetration Testing” [5]. 

Chiheb Chebbi is an InfoSec enthusiast having expertise in many cyber security-related 

researches. His core interests lie in deep learning, penetration testing and malware 

analysis. He is a well know researches his proposal talks were accepted by BlackHat 

Europe 2016, DeepSec 2017 and many other well know information security 

conferences [6]. 

 

Dataset provided by Chiheb Chebbi is used in one of his books and is available to 

everyone for use. Dataset comprises of a total 138,048 binaries having 96,724 malware 

binaries and 41,324 benign binaries. The datasets comprises of 36 static features only. 

https://www.packtpub.com/networking-and-servers/mastering-machine-learning-penetration-testing
https://www.packtpub.com/networking-and-servers/mastering-machine-learning-penetration-testing
https://www.packtpub.com/networking-and-servers/advanced-infrastructure-penetration-testing
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The book authored by Chiheb Chebbi “Machine Learning for Penetration testing”, 

using this dataset Chiheb Chebbi has applied few machine learning algorithms to 

make the readers familiar with the concept of malware classification using machine 

learning. 

 

This dataset became public in the year 2018; so far this dataset is used only in the 

book published by Chiheb Chebbi. 

 

3.2 Self-Collected dataset 

The dataset collection phase was a difficult task. Collecting malware portable 

executable files was a very risky task also collection of benign portable executable 

files was a length process. 

 

For malware portable executable files collection different approaches were used. First 

one was the use of low-interaction and high-interaction honeypots. Low and high 

interaction honeypots were used to gain access to maximum amount of malware 

portable files. Other than that the malware executable files that were being stored by 

Kaspersky anti-virus database were also utilized. After this the files were also cross- 

checked with VirusTotal [7] to insure that they were actually malware files. On the 

other hand the benign files were collected from different machines with licensed and 

updated versions of windows operating systems including windows 7,8 and 10. Also 

the benign files were also cross checked for their labels. 

 

Fig 3. 1: Data Acqusition 
 

The next step was to extract the respective features. Only static features were 

extracted but, due to the malicious nature of malware files a separate virtual machine 

was used. The virtual machine workstation used was VMware workstation 15.0 Pro 

[8], the virtual machine used within this workstation was Linux-Ubunto. 64 - bit 

Ubunto iso image [9] was used for installation on a virtual workstation. Furthermore, 
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Jupyter Notebook [10] was used for static analysis. Using the library ‘pefile’ [11] 

provided by python static features were extracted and stored in an excel file.  

Similarly, static features were extracted from benign files and stored in an excel file. 

 

With data collection, two types of redundancy was seen. While downloading the 

samples redundancy was seen in the names of the files, a lot of repetition was seen in 

the files based upon files with similar names. Secondly, after extraction of malware 

and benign features in a single excel file huge amount of redundancy was seen in the 

feature named ‘md5’.Md5 is a feature that stores unique signature value of the file, 

hence it means there was a lot of redundancy in the files, after using a filter upon the 

feature of md5 a total of 21,486 samples were left with unique md5 values. This 

dataset includes 14,497 malware samples and 6,989 benign samples. In the figure 

below is shown the flow of the dataset collection phase. 

 

 
 

 
Fig 3. 2 : Data cleaning pipeline 

 

3.3 Features used in dataset 

For this thesis work, only static features are used. The following features are extracted 

from Portable Executables (PE) and used in the dataset used for thesis: 

1. MD5 

 
2. Machine 

 
3. Size of optional header 

 
4. Characteristics 

 
5. Major Linker Version 

 
6. Minor Linker Version 

7. Size of Code 

 
8. Size of Initialized data 

 
9. Size of Uninitialized data 

 
10. Address of Entry point 

 
11. Base of Code 
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12. Image Base 

 
13. Section Alignment 

 
14. File Alignment 

 
15. Major Operation System 

Version 

16. Minor Operating System 

Version 

17. Major Image Version 

 
18. Minor Image Version 

 
19. Major Sub System Version 

 
20. Minor Sub System Version 

 
21. Size of Image 

 
22. Size of Headers 

 
23. CheckSum 

 
24. Sub System 

25. Dllcharateristics 

 
26. Size of Stack Reserve 

 
27. Size of Stack Commit 

 
28. Size of Heap Reserve 

 
29. Size of Heap Commit 

 
30. Loader Flags 

 
31. Number of RVA and sizes 

 
32. SectionsNb 

 
33. Load Configuration Size 

 
34. Debug Size 

 
35. Resource Size 

 
36. Export Size 

 
37. Section Minimum Entropy 

 
38. Section Maximum Entropy 

 
39. Section Mean Entropy 

 

Below are discussed the details of these features 

3.3.1 Md5 

Md5 is a cryptographic signature. Md5 is a 32 bit hexadecimal value and each file has 

its unique Md5 value. Md5 value is generated when the file is created. 

 
3.3.2 Machine 

This number represents the target machine. 

 
Table 3. 1: Static feature named “machine” values [12]. 

 

 

Values Decimal Values Description 

0 x 0 0 It   is   assumed that 

contents are applicable 

to any machine type 
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Values Decimal Values Description 

0 x 14c 332 Intel  386  or  later and 

compatible processors. 

0 x 166 358 MIPS® little endian. 

0x184 388 Alpha AXP™ 

0 x 268 616 Motorola 68000 series 

0 x 1F0 496 Power PC, little 

endian. 

0 x 290 656 Precision Architecture 

(PA) RISC processor. 

 

 

 

3.3.3 Size of optional header 

Irrespective of the fact that the feature name says it to be ‘optional’ whereas in reality 

this is a mandatory feature which gives information related to portable executable 

file.Size of the optional header, is included only for executable files and not object 

files. Value of 0 should be here for object file. Size of optional header is for 32 bit 

files is 224 bytes. It has a size of 240 bytes, for 64 bit files [12][13]. 

 
3.3.4 Characteristics 

 

These flags indicate attributes of the file. The table below shows the hexvalues, their 

equivalent decimal value and what information it holds about the attributes of the file. 

Table 3. 2: Characteristics values [13] 
 

 
 

Values 

 

Decimal Values 

 

Description 

 

0 x 0001 
 

1 
 

This flag value 

indicates that file 

hasn’t got base 

relocation therefore it 

should be loaded at its 

preferred base 

addressed. The loader 

reports an error if base 

address is unavailable.. 
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Values 

 

Decimal Values 

 

Description 

 

0 x 0002 
 

2 
 

Linker normally 

indicates an error if 

this flag isn’t set. 

Generally this flag 

means that the image 

file is well-founded 

and can be run. 

0  x 0004 4 COFF line numbers 
have been detached. 

0 x0008 8 Local symbols have 

been detached for 

COFF symbol table 

entries. 

0 x 0010 16 
 

Aggresively trim 

working set. 

0 x 0020 32 Addresses  greater 
than 2 gb can be 

handled by app 

0 x0040 64 Reserved for future use. 

0 x 0080 128 Little endian: LSB 

precedes MSB in 

memory. 

0 x 0100 256 Machine based on 32-bit- 

word architecture. 

0 x 0200 512 From image file 

debugging information 

is detached. 

0 x 0400 1024 
If image is on 

removable  media, 

copy and run from 

swap file. 
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Values 

 

Decimal Values 

 

Description 

 

0 x 1000 
 

4096 
Image file is a system 

file, not a user  

program 

0 x 2000 8192 
The image file is a 

dynamic-link library 

(DLL). These types of 

files are considered 

executable for all types 

of purposes, but cannot 

be directly executed. 

0 x 4000 16384 
Only on a UP machine 

this file should be 

executed. 

0 x 8000 32768 
Big endian: MSB 

precedes LSB in 

memory. 

 

 

3.3.5 Major/Minor Linker Version 

The VERSION option tells the linker to place a version number in the header of the 

.dll or .exe file. The values of major linker version will be significantly different from 

each other in malware and benign files [14]. 

 

3.3.6 Code Size 

Size of the code (text) section, if there are multiple sections then sum of all the code 

sections. 

 
3.3.7 Size of Initialized data 

Size of the initialized data section, in case there are multiple sections, then it is the 

sum of all those. Size of initialized data is noticeably larger in benign files as 

compared to malware files [15]. 

 
 

3.3.8 Size of Uninitialized data 

Size of the uninitialized data section (BSS), in case of BSS sections then sum of all 

these sections. The size of the un-initialized data is 0, generally in most of the cases 

[12][13]. 
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3.3.9 Address of Entry Point 

Entry point address is the address where the PE loader will begin execution; this 

address is relative to image base when in memory the executable is loaded. This is the 

starting address, for the image program; this is the address of the initialization 

function, for device drivers and, this is optional for the DLL [16]. 

 
3.3.10 Base of Code 

This is the pointer to the beginning of the code section, which is relative to the image 

base [16]. 

 
3.3.11 Image Base 

This is the preferred address of the first byte of the executable when it is loaded in 

memory. This value is a multiple of 64K bytes. The default value for applications is 

0x00400000(4194304), except on Windows CE where it is 0x00010000. The default 

value for DLLs is 0x10000000(268435456). [16]. 

 
3.3.12 Section Alignment 

When the executable is assigned some address the sections in the executable also  

need to be loaded. The section alignment is set to 0x2000. This means that the code 

section starts at 0x2000 and the section after that starts at 0x4000 [13][16]. 

 
3.3.13 File Alignment 

Just like the section alignment the data also needs to be loaded present in the 

executable files.The file alignment indicates to the beginning of every section in the 

file. It is set to 512 bytes or 0x200. Therefore, the initial section starts 512 bytes from 

the start; the next section starts at 1024 bytes, and so on. The value should between 

512 and 64K inclusive, also be a power of [12][13]. 

 
3.3.14 Major/Minor Operating System Version 

The major operating system is the version supported by Portable Executable [16]. 

 
 

3.3.15 Minor Operating System Version 

The minor operating system is the version supported by Portable Executable [16]. 
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3.3.16 Major Image Version 

Major image version is the major version number of the image [16]. 

 
 

3.3.17 Minor Image Version 

Minor image version is the minor version number of the image [16]. 

 

3.3.18 Major Sub System Version 

The major version number of sub system [16]. 

 
 

3.3.19 Minor Sub System Version 

The minor version number of sub system [16]. 

 
 

3.3.20 Size of Image 

Size of image is the size of executable after being loaded into memory.Size of image 

must be a multiple of Section Alignment, it is in bytes, of image, including all headers 

[12][13]. 

 

3.3.21 Size of headers 

The size of the headers represents the size of all the headers, i.e. PE header, the 

optional header, DOS header, also, some other sections. The value is a multiple of 

the file alignment, i.e. 512 bytes. 

 

3.3.22 Checksum 
 

Checksum of the image file. These files are validated at load time: any DLL loaded 

into a critical system process all drivers, and any DLL loaded at boot time, [16]. 

The checksum is a notion that is used to confirm whether a file is undamaged or has 

been corrupted. Normally it is never used and value is zero , even when PE file has 

field for it [13]. 

 

3.3.23 Sub System 

This field points to the user interface type needed from Windows; the DLL flags 

field has a zero value because file is not a DLL file. 
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Table 3. 3: Sub System Values [16] 
 

 

Value 

 

Description 

0 Unknown subsystem 

1 Subsystem is not required (native system 

processes and device drivers). 

 

2 
 

Windows graphical user interface (GUI) 

subsystem. 

3 Windows character-mode user interface 

(CUI) subsystem. 

5 OS/2 CUI subsystem. 

7 POSIX CUI subsystem. 

9 Windows CE system. 

10 Extensible Firmware Interface (EFI) 

application. 

11 EFI driver with boot services. 

12 EFI driver with run-time services. 

13 EFI ROM image. 

14 Xbox system. 

16 Boot application. 
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3.3.24 DllCharacteristics 

Usually set to zero for malicious files [15] 

 

 

 
Table 3. 4: DllCharacteristics values [16] 

 

 

Value 

 

Decimal 

 

Description 

0 x 0001 1 Reserved 

0 x 0002 2 Reserved 

0 x 0004 4 Reserved 

0 x 0008 8 Reserved 

0 x 0040 64 
 

The DLL can be relocated at 

load time. 

0 x 0080 128 . If this flag is set by you and a 

section contains  only 

uninitialized data, set  the 

PointerToRawData member 

of 

IMAGE_SECTION_HEADE 

R for that section to zero; 

otherwise, the image will fail 

to load because the digital 

signature cannot be verified. 

0 x 0100 256 The image is well suited with 

data execution prevention 

(DEP). 

 

0 x 0200 
 

512 
 

The image shouldn’t be 

isolated but it is isolation 

aware 

0 x 0400 1042 
 

Handlers can’t be called in 

this image. The image does 

not use structured exception 
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  handling (SEH). 

0 x 0800 2048 Don’t bind the image. 

0 x 1000 4096 Reserved 

0 x 2000 8192 A WDM driver. 

0 x 4000 16384 Reserved 

0 x 8000 32768 The image is terminal server 

aware. 

 
 

3.3.25 Size of Stack Reserve 

Sizes of stack reserve are number of bytes to reserve for the stack. Just the memory 

determined by the SizeOfStackCommit part is submitted at load time; the rest is 

made accessible one page in turn until this reserve size is reached [16]. The Stack 

reserve size field decides the stack region that the thread can utilize. Typically, the 

size is 1 MB [13]. 

 
3.3.26 Size of Stack Commit 

The Stack Commit is the amount of memory that the stack is relegated at startup 

[13]. 

 
3.3.27 Size of Heap Reserve 

Size of local heap load space to reserve. Just the Heap Commit Size is committed; 

the rest is made accessible one page in turn, until reserve size is reached [12]. 

 
3.3.28 Size of Heap Commit 

Size of local heap space to commit [12]. 

 

3.3.29 Loader Flags 

This flag informs upon loading whether to break upon loading, debug on loading or 

to set to default [17]. 
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3.3.30 Number of RVA and sizes 

The number of relative virtual addresses in the rest of the optional header. Each 

entry describes a location and size [16]. The structures contain critical information 

about specific regions of the PE file. The 8-bytes in the structure involve two ints, 

one known as the Relative Virtual Address (RVA) and the second as size[13]. 

 
3.3.31 Load Configuration size 

This configuration is usually used for exceptions. The Load Configuration is only 

utilized in Windows NT, Windows 2000 and Windows XP [13]. 

 
3.3.32 Section Minimum/Maximum/Mean Entropy 

Entropy value of specific file is represented by using the digital values of 0 to 8. 

Entropy is used to check whether a file is packed or not. The outcome is either near 

to 0 or 8 as well as in-between these two numeric values. An entropy value greater 

than 5 usually means that the file is malicious [11]. 

 
3.4 A Comparison of benign and malware threshold values 

After the feature details of static features discussed above, it is also important to know 

the threshold values, i.e. for which value a file is a benign file or a malware file. 

Below in the table 2.5 these threshold values are given 

Table 3. 5: Portable Executable discriminative features 
 

 
Features Benign Malware 

Data raw size High Low 

Debug size Has value Usually 0 

Check sum Has value Mostly 0 

Number of symbols 384.2 0.002 

Major image version Has some value Usually 0 

Major linker version 8.334 4.419 

 
Summary 

 
In this chapter, the availability of publicly available datasets is discussed as well as 

the pipeline to gain access to portable executable malware and the benign file is 
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discussed. Furthermore, the process of static feature extraction is explained. In the 

end, the details of the features extracted are discussed. 
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CHAPTER 4 
 

METHODOLOGY 

This chapter deals with the methodology used for machine learning algorithms on 

both the datasets described in the previous chapter. Data used is  directly exported 

from CSV file created earlier. 

 

4.1 Basic Flow: Methodology Part-1 

After downloading the dataset and pre-processing two types of pipelines are followed. 

In phase-1 data is directly imported from the CSV file created previously and after 

normalization machine learning algorithms are applied. In machine learning phase for 

training and testing datasets are used interchcangeably as the model is cross-validated. 

Both datasets are used for training and testing vice-versa for cross-validation. 

 

A second phase is adopted which deals with clustering. Using the same dataset from 

CSV file feature dimensionality is done and these features are then fed to clustering 

algorithms, after that a comparison is done between results deduced from different 

clustering algorithms. 3 different clustering models are proposed using different 

dimensionality reduction techniques. 

 

In both phases normalized dataset is used. Normalization is done through min-max 

scaling 

 

The first half of chapter deals with machine learning algorithms named as 

methodology phase-1 and the remaining half chapter deals with different 

dimensionality reduction techniques used for clustering named as methodology phase- 

2 

 

On the next page is shown the proposed pipeline for this thesis work. 
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Fig 4. 1: Methodology pipeline 

 

 

4.2 Goal: A robust model 

 
The goal of using machine learning on two different datasets is to generate a robust 

model. Model is trained self-collected dataset, testing is done on a different dataset 

both uses similar static features which make this model more robust. 

 
4.3 Strategy for Supervised Algorithms 

Moving towards the pipeline followed for machine learning algorithms, the initial step 

is to load dataset, after that the dataset is normalized because some features have 
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binary values; some features have continuous values whereas some features have 

discrete values. To overcome this problem, all data is normalized in  between 0-1 

range using Min-Max scaling. Below is shown the flow for phase-1. 

 

 
 

Fig 4. 2: Flow for Supervised Machine Learning Algorithms 

 

The normalized dataset is then fed to following six machine learning algorithms for 

training 

 

1- Random forest 

 
2- Support Vector Machine (SVM) 

3- K- Nearest Neighbors (KNN) 

4- Gradient Boosting 

 
5- AdaBoost 

 
6- Naïve Bayes 

 
After training, the test dataset is normalized on the same pattern, after that this dataset 

is tested on the above given algorithms. Following evaluation measures are used for 

evaluation 

 

1- Accuracy 
 

2- Confusion matrix 
 

3- Classification report 
 

4- ROC for comparison of all algorithms 
 

Both datasets are used vice versa for training and testing. In step one training is done 

upon self-collected dataset and testing is done upon publicly available dataset in the 
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second step datasets are interchanged for training and testing. 

 

 
4.4 Strategy for Un-Supervised Algorithms 

Just like unsupervised algorithms, dataset is loaded for unsupervised algorithms. In 

this strategy two things are done, one clustering is performed using all the features 

present in the dataset on the other hand clustering is done after passing it through 

Principal Component Analysis(PCA) feature reduction algorithm. Models are trained 

upon publicly available dataset and tested upon self-collected dataset. 

 

Similarly dataset is first normalized and in reformed in the range of 0-1 to be used for 

clustering algorithms. Also, the feature named “md5” is a 16-bit hexadecimal number 

which is first converted into its equivalent decimal value and then is brought into the 

range of 0-1 like all other features. Similar action was taken for supervised algorithms 

as well. 

 

The following algorithms were used for clustering with all features and after feature 

reduction done using PCA 

 

1- K-Means 

 
2- K- Means mini 

 
3- Gaussian Mixture Model (GMM) 

4- Fuzzy c-means 

Below are listed the evaluation measures used 

1- Accuracy 

2- Area Under Curve (AUC) 

3- F1- Score 

4- Precision 

 
5- Recall 

Training is done upon publicly available dataset and testing is done upon self- 

collected dataset. 
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Below is    shown  the   pipeline followed for   un-supervised machine learning 

classification models. 

 

 

 

 

 

 

 

 

 

 

 

 

Clustering Algorithms 

K-Means 

GMM 

Fuzzy c-means 

 

 

 

Fig 4. 3: Pipeline for Un-Supervised Machine Learning Algorithms 

 

 

4.5 Basic Flow: Methodology Part-2 

In this part, the dataset is used in two different ways. First, the dataset stored in CSV 

file is used and clustering is performed with and without dimensionality reduction. 

Three experiments are done, clustering without dimensionality reduction, clustering 

with dimensionality reduction using Principal Component Analysis(PCA), and 

dimensionality reduction using autoencoder. Second instead of using the extracted 

static features, the downloaded portable executable malware and benign files are 

converted into their equivalent grayscale images to be fed to deep learning 

classification models. 

 

4.6 Clustering using Static Features 

The self-collected static features dataset is used in this part. Using the approach of 

dimensionality reduction comparison is done. Below are the three experiments done 

and later used for comparisons 

 

1. K-Means clustering with all 36 features, PCA and auto encoder 

 
2. K-Means, Gaussian Mixture Model and fuzzy c-means with all 36 features, PCA and 
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auto encoder(using only encoder part) 

 
3. Same experiment as above with ensemble NN blocks in auto encoder. 

 
The following clustering algorithms were used 

 
1. K-Means 

 
2. Gaussian Mixture Model 

 
3. Fuzzy c-means 

 
4.6.1. Simple Clustering 

In this experiment, clustering is done upon k-means only. The dataset is loaded and is 

normalized in the same manner as before. The first result is produced by clustering 

using all thirty-six features. Second the dataset is passed through Principal Component 

Analysis (PCA) and a resultant of three features is used only. The last experiment of 

this set was to clustering using output from autoencoder. Simple auto encoder 

architecture was proposed. In figure 4.4 is shown the overview of this step 

 

 

Fig 4. 4: K-Means clustering with all feature, PCA and autoencoder 
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In figure 4.5 is shown the architecture of the autoencoder used 
 
 

 

Fig 4. 5: Autoencoder architeture for K-Means clustering 

 

4.6.2. Clustering with Autoencoder 

In this experiment, the same autoencoder which was used in the previous step was 

used, with only one difference that decoder portion was discarded and only encoder 

portion was used in order to obtain results from the summarized features from all the 

thirty-six features. This model highly highlights the importance of latent space. 

Therefor latent space is used directly for clustering. Instead of using only the k-means 

clustering Gaussian Mixture Model (GMM) and fuzzy c-means are also used for 

clustering. Evaluation measures used were: 

 

1) Accuracy 

 
2) Precision 

 
3) Recall 

 
4) F1- Score 

 
5) Rand Index 

 
6) Jaccard Score 

Similar approach was used in a paper where they have used only k-means and used  
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only the encoder portion. Results of the paper “Static malware clustering using 

enhanced deep embedding method”[2] were crossed using the model described in this 

section. In the figure 4.6 below is shown the architecture followed for this step 

Fig 4. 6: Clustering results with encoder only 

Publicly available dataset is used. 

4.6.3. Clustering with Ensemble Neural Network Based 

Autoencoder 

 
The final feature selection technique used is the technique of autoencoder with 

bagging based ensemble block. Dataset is loaded and is normalized all thirty-six 

features are fed to the encoder, after that the last layer of encoder is fed to three 

different neural networks, each of that the layer contains 4 nodes, the results from 

these three neural networks are averaged to be fed to final output layer. Bagging 

ensemble model is used instead of sequential execution bagging approach that means 

parallel execution is used for even more efficient classification results. The purpose of 

doing this was to average the most important feature in order to make the model more 

efficient for final classification. Publicly available dataset is used. Also, ensemble 

based model is used to refine the stored features in the latent space even more than as 

it was refined using encoder only. The parameters used for this model are shared  in 

the next chapter. Evaluation measures used are similar to that of model-2 
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Below is shown the final autoencoder architecture used in this experiment 
 

 

 

 

Fig 4. 7: Pipeline for ensemble Neural Network based autoencoder 
 

Summary 

Methodology is divided into two parts first part deals with classification using 

machine learning algorithms based upon static features, where as in the second  

portion of methodology clustering is done after dimensionality reduction using PCA 

and autoencoder. Algorithms used after dimensionality reduction were K-means, 

GMM and fuzzy c-means. 
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CHAPTER 5 

 
RESULTS AND DISCUSSION 

 
5.1. Parameters for Supervised Algorithms 

Parameter tuning is an important step for obtaining accurate and best results. 

Parameter tuning is a technique in which different parameter values are used, the 

values which give best results are kept. Sometimes setting the values to default also 

gives convincible results. In the table 5.1 are shown the tuned parameter values used 

for supervised machine learning algorithms 

Table 5. 1: Supervised algorithms tuned parameters values 
 

 

Algorithms 

 

Parameters values after tuning 

Random forest n_estimators=500 

max_depth=10 

random_state=0 

SVM gamma='auto' 

 
probability=True 

KNN No. of neighbors: 200 

Gradient Boosting Default values 

AdaBoost n_estimators=500 

 
random_state=64 

Naïve Bayes Default values 
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5.2. Quantitative Results for Supervised Machine Learning Algorithms 

Different evaluation measures are used to evaluate results produced by supervised 

and un-supervised algorithms. Accuracy is one of the most important evaluation 

measure used almost by everyone to check reliability of their results. In data science 

accuracy means how well the data points are predicted correctly [18]. Below is 

given the general formula that is followed for accuracy calculation 

Accuracy = No. of correct predictions made 

Total Prediction made 

In the table 5.2 are shown the accuracy results of supervised machine learning 

algorithms 

Table 5. 2: Supervised algorithms accuracy results – Cross Validation - 1 
 

 

Supervised Algorithms 

 

Training data: Self- collected Testing data: Publicly available 

 

Algorithms 

 

Training Accuracy 

 

Testing Accuracy 

 

Random Forest 99.12 91.69 

 

SVM 92.59 78.67 

 

KNN 92.14 87.95 

 

GradientBoost 98.6 85.99 

 

AdaBoost 98.87 84.19 

 

Naïve Bayes 82.14 81.65 

 
Best accuracy results are given by random forest giving 99% training accuracy and 

91% testing accuracy. 
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Table 5. 3 : Supervised algorithms accuracy results – Cross Validation - 2 
 

 

Supervised Algorithms 

 

Training data: Publicly available Testing data: Self Collected 

 

Algorithms 

 

Training Accuracy 

 

Testing Accuracy 

 

Random Forest 

 

99.18 
 

83.8 

 

SVM 96.2 89.5 

 

KNN 96.95 80.94 

 

GradientBoost 

 

99.98 
 

77.05 

 

AdaBoost 98.82 80.94 

 

Naïve Bayes 81.64 84.13 

 
In this case also, premier results are given by random forest. 

5.3. Graphical Results for Supervised Machine Learning Algorithms 

One of the important classification evaluation techniques is the confusion matrix. A 

confusion matrix is used over test data to check the number of false and correct 

predictions done by the model. A Confusion matrix calculates the following 

 
True Positive (TP) 

A true positive shows the correct number of predictions of the positive class. For 

example in this case, if a benign is classified as benign it will be considered as true 

positive. 

 
True Negative (TN) 

A true negative shows the correct no. of predictions of the negative class. For example 

in this case, if a malware sample is classified as malware it will be considered as true 

negative. 
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False Positive (FP) 

False-positive shows a negative class sample classified as positive. For example in 

this case, if a malware sample is classified as benign it will be considered as false 

positive. 

 
False Negative (FN) 

False-negative shows a positive classified as negative. For example in this case, if a 

benign sample is classified as malware it will be considered as true positive. 

Below are shown the confusion matrixes for each of the applied machine learning 

algorithms using self-collected dataset as training dataset and publicly available 

dataset as test data: 

 
Fig 5. 1: Confusion matrix: Random forest – Cross Validation-1 

Large number of samples termed as true positive and slightly better true negative 

samples can be seen for the random forest; a very little number of samples are 

classified as true negative. 

Fig 5. 2: Confusion matrix: SVM – Cross Validation -1 

 

 
In SVM true positives are even better than random forest performance, but true 

negatives samples are less in count than random forest 
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Fig 5. 3: Confusion matrix: KNN – Cross Validation - 1 

Both true negative and true positive results are moderate using k-Nearest Neighbours. 

 

Fig 5. 4: Confusion matrix: Gradient Boosting – Cross Validation -1 

Gradient boosting gives better results than KNN.Better true positive and true negative 

samples are seen than gradient boosting. 

Fig 5. 5: Confusion matrix Adaboost – Cross Validation -1 

Much poor results than random forest are given by AdaBoost, given a lower true 

negative rate than all other models seen before 

 

Fig 5. 6: Confusion matrix:Naïve Bayes – Cross Validation-1 
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Exceptionally good results are given by naïve Bayes in terms of true negatives. 

Below are shown the confusion matrices while using publicly available dataset for 

training and self-collected dataset as testing dataset: 

 

Fig 5. 7: Confusion matrix: Random forest – Cross Validation – 2 

Similar results are given by random forest when self-collected data was used as 

training data. 

 

 
Fig 5. 8: Confusion matrix: SVM – Cross Validation -2 

High true negatives seen as well as finest true positive values are given by this model. 

Much better performance is noticed than using self-collected data as training dataset. 

 
 

Fig 5. 9: Confusion matrix: KNN – Cross Validation -2 

 

Lower true positives and true negatives as compared to SVM, for KNN using publicly 

available dataset for testing gave better results than self-collected data as testing 
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dataset. 
 

 
Fig 5. 10: Confusion matrix: Gradiant Boost – Cross Validation -2 

High number of false positives and false negative as compared to previous models is given by 

model of gradient boosting. 

Fig 5. 11: Confusion matrix: AdaBoost – Cross Validation -2 

Among all the models previously in via using both types of datasets for training and 

testing, lowest number of false positives is given by Adaboost. 

Fig 5. 12: Confusion matrix: Naïve Bayes – Cross Validation - 2 

High true positive and true negatives are given by Naïve Bayes 

 
5.4. Classification Reports for Supervised Machine Learning 

A classification report shows precision, recall and f1-score. Precision provides 

information about how much of the predications were correct, its value ranges 

between 0-1, worst results give 0 precision whereas best results give 1.0 precision 
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value. Similarly recall tells how much of the positive class predictions were matched, 

this also ranges from 0-1 and F1-score tells how many correct positive predictions 

were done(value range from 0-1)[19] . 

 
Precison = True Positive 

True Positive +False Positive 

 
 

Recall = True Positive 

True Positive +False Negative 

 
 

F1-score = 2*(Recall* Precision) 

Recall + Precision 

 
 

In the figures below are shown the classification reports for the experiments using 

self-collected dataset as training set and publicly available dataset as test set. 

 

 

 

Fig 5. 13: Classification Report:Random Forest – Cross Validation -1 

Best results by random forest as very high f1-score,recall, and precision, can be seen 

for both benign and malware class. 

 
Fig 5. 14: Classification Report:SVM – Cross Validation -1 

In the case of SVM, poor recall and f1-score is found for the benign class, whereas 

good results can be seen for malware class 
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Fig 5. 15: Classification Report:KNN – Cross Validation - 1 

Reasonable results can be seen for malware class, where moderate recall and f1-score 

are found for the benign class using KNN 

 

 
 

Fig 5. 16: Classification Report: Gradient Boosting – Cross Validation - 1 

Very good precision is seen for both malware and benign classes recall and F1-score is 

reasonable for, benign class, using gradient boosting. 

 

 
Fig 5. 17: Classification Report: AdaBoost – Cross Validation -1 

Pretty poor results are given by AdaBoost for benign, looking at recall and precision, 

near to average results are seen whereas good results are achieved for malware class. 

 
Fig 5. 18: Classification Report: Naïve Bayes – Cross Validation -1 

Below average results can be seen for recall and f1-score for benign class. 

In the figures below are shown the classification reports for the experiments using 

publicly available dataset as training set and self-collected dataset as test set. 
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Fig 5. 19: Classification Report:Random Forest – Cross Validation -2 

Very high precision and above average f1-score also for malware class. 

 

Fig 5. 20: Classification Report:SVM – Cross Validation -2 

Much better scores are given by SVM while using self-collected data as test dataset as 

compared to using publicly available dataset for testing. 

 

 

Fig 5. 21: Classification Report:KNN – Cross Validation -2 

For malware class F1-score as well as other scores are very reliable as compared to 

previous models utilized. 

Fig 5. 22: Classification Report:Gradient Boosting – Cross Validation -2 

High precision score for malware class and average F1- scores for both the classes. 
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Fig 5. 23: Classification Report:AdaBoost – Cross Validation -2 

For both classes fine recall and f1-score whereas very high recall for benign class. 
 
 

Fig 5. 24: Classification Report:Naïve Bayes – Cross Validation -2 

 

5.5. ROC curve for Supervised Machine Learning Algorithms 
 

In ROC curve, this explains how much good the model distinguishes between both 

classes. If the curve is closer to top left corner, the model has performed very well. In 

the figure shown below the ROC curve for supervised algorithms 

 

Fig 5. 25: ROC curve for supervised algorithms- Cross Validation -1 

In the figure shown above it can be seen that random forest gives the best result, 

whereas SVM gives the worst results. 



CHAPTER 5: RESULTS AND DISCUSSION 

56 

 

 

 

 
 

Fig 5. 26: ROC curve for supervised algorithms- Cross Validation -2 

Similar results as in previous cross validation phase are seen in this ROC curve as 

well. 

 
5.6. Quantitative Results for Un-Supervised Machine Learning 

Algorithms 

 
ACC in the results is the short term used for accuracy.F1-score; precision and recall 

are already explained. AUC means the area under the curve, it shows how much the 

model is capable of distinguishing between the two classes. AUC having a score of 

0.5 means no discrimination ability seen by the model. A score of 0.6-0.7 is termed as 

poor discrimination more the value is closer to 1.0; the better is the discrimination 

ability of the model [20]. 

In the tables below are the results of training and testing using all the features 

Table 5. 4: K-Means results, using all 36 features 

 

 

 

 

 

 

 

 

 

 

Average values for AUC, f1-score, precision and recall can be seen on test data with 

k-means using all features whereas very good training results are seen. 

K-Means Training Results – using all 36 features 

ACC AUC F1 - Score Precision Recall 

86.25 0.861 0.788 0.862 0.862 

K-Means Testing Results – using all 36 features 

ACC AUC F1 - Score Precision Recall 

72.13 0.763 0.673 0.721 0.797 
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Table 5. 5: K-Means-Mini results, using all 36 features 
 

K-Means-Mini Training Results – using all 36 features 

ACC AUC F1 - Score Precision Recall 

86.25 0.861 0.788 0.873 0.862 

K-Means-Mini Testing Results – using all 36 features 

ACC AUC F1 - Score Precision Recall 

72.14 0.763 0.673 0.798 0.721 

 

Results similar to k-means are seen with k-means–mini with better precision value 

upon testing dataset as well as the training dataset. Whereas recall value dropped over 

the testing dataset 

 
Table 5. 6: GMM results, using all 36 features 

 

GMM Training Results – using all 36 features 

ACC AUC F1 – Score Precision Recall 

84.47 0.831 0.755 0.851 0.844 

GMM Testing Results – using all 36 features 

ACC AUC F1 – Score Precision Recall 

72.71 0.728 0.635 0.755 0.727 

 

Similar results as given by k-means and k-means-mini as given by GMM using all 36 

features. 

 

Table 5. 7: Fuzzy c-menas, using all 36 features 
 

Fuzzy c-means Training Results – using all 36 features 

ACC AUC F1 – Score Precision Recall 

84.99 0.147 0.090 0.226 0.150 

Fuzzy c-means Testing Results – using all 36 features 

ACC AUC F1 – Score Precision Recall 

84.01 0.765 0.692 0.840 0.854 

 
Very good precision and recall values are given by fuzzy c-means using all 36 

features, much better than the other models used before. 
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Table 5. 8: K-Means results, with PCA features 
 

 

K-Means Training Results – with PCA features 

ACC AUC F1 – Score Precision Recall 

84.021 0.86 0.789 0.873 0.864 

K-Means Testing Results – with PCA features 

ACC AUC F1 – Score Precision Recall 

84.02 0.765 0.692 0.854 0.840 

 

Instead of using all the features, using the approach of dimensionality reduction and 

using only 3 features reduced using PCA, much better results are given by k-means, 

precision and recall has increased from 0.7 to 0.8 only by using dimensionality 

reduction. 

Table 5. 9: K-Means-Mini results, with PCA features 
 
 

K-Means-Mini Training Results – with PCA features 

ACC AUC F1 – Score Precision Recall 

81.49 0.691 0.553 0.814 1.0 

K-Means-Mini Testing Results – with PCA features 

ACC AUC F1 – Score Precision Recall 

83.21 0.753 0.671 0.832 0.847 

 

Just like k-means using PCA results for k-means-mini clustering better results are 

seen than using k-means-mini with all the features. Precision and Recall values 

have been improved using PCA. 

Table 5. 10: GMM results, with PCA features 
 
 

GMM Training Results – with PCA features 

ACC AUC F1 – Score Precision Recall 

84.54 0.841 0.762 0.845 0.856 

GMM Testing Results – with PCA features 

ACC AUC F1 – Score Precision Recall 

84.02 0.765 0.629 0.840 0.854 

 
Better testing and training results are given by the gaussian mixture model using PCA 
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features in terms of precision and recall. 

Table 5. 11: Fuzzy c-means results, with PCA features 
 

Fuzzy c-means Training Results – with PCA features 

ACC AUC F1 – Score Precision Recall 

85.09 0.147 0.090 0.149 0.225 

Fuzzy c-means Testing Results – with PCA features 

ACC AUC F1 – Score Precision Recall 

84.02 0.765 0.692 0.840 0.854 

 

Best results were given by the gaussian mixture model either with all the features or 

using PCA specific features. Results were improved after using dimensionality 

reduction. 

 
5.7. Result Analysis of Machine Learning Algorithms 

Moving towards the result analysis of supervised algorithms, it is observed that 

random-forest gives most reliable results, using roc random forest is the closest to top 

left corner proving its distinguishing ability between malware and benign samples. On 

the other hand, SVM shows most unreliable prediction upon the dataset of malware 

and benign samples whereas gradient boosting doesn’t performs well on self-collected 

dataset upon testing. 

 

In un-supervised algorithms, better results were deduced after doing dimensionality 

reduction using PCA. Reliable clustering results were produced by all the 

unsupervised algorithms. Only fuzzy c-means didn’t perform as expected. In both 

supervised and unsupervised algorithms, models were well generalized and no 

overfitting could be seen any of the models 

 

5.8. AutoEncoders Parameters 

In the table next are summarized the parameters of autoencoder for first models which 

clusters using k-means only. 
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Table 5. 12: Parameters for Model-1 
 
 

Parameters – Model 1 

Batch Size 32 

Epochs 100 

Learning Rate Default 

Loss Function Binary cross entropy 

Momentum weight Default 

Optimizer Adam 

 
In the table 5.13 below are shown the parameters used for model-2 with publicly available 

dataset: 

Table 5. 13:Parameters for model-2 
 

Parameters autoencoder 

Model-2 Model-3 

Batch Size 32 Batch Size 32 

Epochs 100 Epochs 50 

Learning Rate Default Learning Rate Default 

Loss Function Binary Cross entropy Loss Function Binary Cross entropy 

Momentum weight Default Momentum weight Default 

Optimizer Adam Optimizer Adam 

 

 

 
5.9.  Clustering results for Static features with Dimensionality reduction 

Below in table 5.14 are shown the results of k-Means clustering using all features, k- 

means after passing dataset through PCA and k-means clustering results with 

autoencoder 

Table 5. 14: K-Means clustering results 
 

Accuracy K-Means K-Means+PCA K-Means+ AE 

86.4% 86.7% 90.3% 

 
ACC, recall, precision, and f1-score are explained previously. Rand Index measures 

the resemblance between the two clusters. A value closer to 1.0 means a good rand 
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index [66]. Jaccard Index is similar to the rand index with few differences in the 

approach used for measuring similarity between clusters. 

Below in table 5.15 are shown the results of k-Means, GMM, fuzzy c-means results 

after clustering from data passed through autoencoder. 

 
Table 5. 15: K-Means, GMM, fuzzy c-means clustering results with encoder only 

 
 

Algorithm ACC Precision Recall F1-score Rand 
Index 

Jaccard 

K-Means 86.0 0.875 0.857 0.892 0.505 0.806 

GMM 88.6 0.887 0.886 0.919 0.586 0.849 

FCM 85.1 0.871 0.851 0.888 0.489 0.798 

 
Best results are given by Gaussian mixture model, in terms of all the evaluation 

metrics used, f1-score of 0.9 shows that the model has performed  very well in terms 

of clustering even precision and recall values have escalated using this approach. 

 
Below in table 5.16 are shown the results of k-Means, GMM, fuzzy c-means results 

after clustering from data passed through ensemble based autoencoder. 

 
Table 5. 16: Ensemble based autoncoder : K-Means, GMM, fuzzy c-means 

clustering results 

 
Algorithm ACC Precision Recall F1-score Rand 

Index 

Jaccard 

K-Means 95.0 0.946 0.947 0.962 0.792 0.927 

GMM 95.39 0.954 0.954 0.967 0.82 0.936 

FCM 94.8 0.948 0.948 0.963 0.798 0.929 

 
Even better results are given by the Gaussian mixture model by using only the 

encoder portion of the autoencoder, as the latent space of the autoencoder is used it 

contains the most important features information, after that this information is 

parsed through ensemble block which refine the features even more, hence best 

results are produced using this approach. 
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5.9. Confusion matrix for clustering with Encoder only and ensemble 

based Autoencoder 

In the below given confusion matrices a comparison is done between results of 

clustering using encoder portion only and clustering with ensemble based 

autoencoder. 

Fig 5. 27: Confusion matrix: K-Means clustering with encoder only 
 

 

Fig 5. 28: Confusion matrix: K-Means with ensemble based autoencoder 

Looking at the above two confusion matrix the true positives and true negatives given 

by ensemble NN based autoencoder are very much more reliable from the true 

positives and true negatives given by using encoder portion only. 
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Fig 5. 29: Confusion matrix: GMM clustering with encoder only 
 

 

Fig 5. 30 : Confusion matrix: GMM with ensemble NN based autoencoder 

 

As, expected results given by Gaussian mixture model are better than those given by 

k-means, also the results of ensemble NN based autoencoder are much better than 

those given by only encoder. 

Fig 5. 31: Confusion matrix: Fuzzy c-means clustering with encoder only 
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Fig 5. 32: Confusion matrix: Fuzzy c-means with ensemble NN based autoencoder 

So far, fuzzy c-means gives lowest results as compared to k-means and Gaussian 

mixture model, but also in this case ensemble based autoencoder gave much better 

true positives and true negatives. 

5.10. ROC curve : Autoencoders 

Below is shown the ROC curve for clustering with encoder only and ROC curve for 

ensemble NN based autoencoder. 

 

Fig 5. 33: ROC curve for clustering based upon encoder 
 

Fig 5. 34 : ROC curve for clustering based upon ensemble NN based autoencoder 
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In both the cases, best performance is given by Gaussian mixture model. 

 
Summary 

The results of methodologies demonstrated in the previous chapter are discussed. 

Quantitative results are shared as well as evaluation metrics of the confusion matrix 

and for comparison of multiple algorithms ROC curve is used. 
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CHAPTER 6 

 
CONCLUSION AND RECOMMENDATIONS 

6.1. Conclusion 

In this study usage of static features for classification is demonstrated briefly. Using 

this technique machine learning algorithms yielded good results but very convincing 

results were given by deep learning especially when the classification was done with 

an ensemble-based autoencoder for dimensionality reduction. All six algorithms gave 

training and testing accuracy above 80% but outstanding results were given by 

dimensionality reduction approaches. After performing clustering with PCA and 

autoencoder the f1-score in most of the cases sored up to nearly 0.8-0.9, which is 

termed as outstanding results. Even with machine learning, using the approach of 

cross-validation across a self-collected dataset and publicly available dataset a robust 

model was created. Moreover, the authenticity of the self-collected dataset can be seen 

after training machine learning algorithms on this dataset and testing the models with 

the publicly available datasets. On the other hand for unsupervised results using a self- 

collected dataset for testing again proved its authenticity. 

 

6.2. Recommendations 

1) Collecting more dataset will give the models more strength for training. 

2) Time efficient data collection techniques to be used. 

3) Dynamic analysis, memory analysis, polymorphic behavior of malwares should be 

incorporated in order to make it a real time application to detect malwares. 

4) GAN’s should be used over static, dynamic and memory analysis datasets. 

 

 

6.3. Future Work 

First thing in future work is to collect more data and not only static features but also 

heterogeneous features including dynamic and memory analysis based data. More un- 

supervised algorithms to be incorporated such as agglomerative clustering etc. One of 

the tasks to be included in future work would be to train generative adversarial 

networks upon the collected dataset of static, dynamic, and memory analysis. Goals 
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would be to create a zero-day attack detector based upon GAN’s. Other than that in 

case of unsupervised dimensionality reduction based clustering, fuzzy c-means to be 

extended to fuzzy hashing, etc. 
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