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Abstract 
 

Hardware based sensing frameworks such as cooperative fuel research (CFR) engines 

are conventionally used to monitor research octane number (RON) in the petroleum 

refining industry. In this work, machine learning techniques are employed to predict 

the RON of two petroleum refining processes: (1) integrated naphtha reforming and 

isomerization process and (2) fluid catalytic cracking process. A dynamic Aspen 

HYSYS model was used to generate data by introducing artificial uncertainties in the 

range of ± 5\% in process conditions such as temperature, pressures, flow rates, etc. 

Generated data was used to train support vector machines, gaussian process regression, 

artificial neural networks, regression trees, and ensemble trees. Hyperparameter tuning 

was performed to enhance the prediction capabilities of gaussian process regression 

(GPR), artificial neural network (ANN), support vector machines (SVM), ensemble 

tree (ET) and regression tree (RT) models. Performance analysis of machine learning 

models indicates that in case of integrated naphtha reforming and isomerization 

process GPR, ANN, and SVM have R2 values of 0.99, 0.978, and 0.979 and RMSE 

values of 0.108, 0.262, and 0.258, respectively. GPR, ANN, and SVM performed 

better than the remaining models and had the prediction capability to capture the RON 

dependence on predictor variables. ET and RT had an R2 value of 0.94 and 0.89. In 

case of fluid catalytic cracking GPR, SVM, and ANN have R2 values of 0.97, 0.969, 

and 0.963 and RMSE values of 0.3908, 0.3934, and 0.4333, respectively. ET and RT 

had an R2 value of 0.941 and 0.88. The GPR model was used as a surrogate model for 

fitness function evaluations in two optimization frameworks based on the genetic 

algorithm and particle swarm method. Particle swarm optimization performed 

marginally better than genetic algorithm. The proposed methodology of surrogate-

based optimization will provide a platform for plant-level implementation to realize 

the concept of industry 4.0 in the refinery. 

Keywords: Machine Learning, Surrogate Modelling, Research Octane Number, 

Genetic Algorithm, Particle Swarm Optimization, Support Vector Machines, Gaussian 

Process Regression, Artificial Neural Networks, Regression Trees, and Ensemble 

Trees 
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Chapter 1  

Introduction 

1.1 Background 

In the recent era, there has been an ever-increasing growth of gasoline demand as a 

transportation fuel. The transport industry is a major contributor to greenhouse gases. 

Hence, research has been focused on the production of high-quality gasoline to achieve 

compliance with stringent ecological standards. According to the international council 

of clean transportation, 23% of global anthropogenic emissions of CO2 are a result of 

the transportation industry. Road transport which utilizes gasoline as a primary fuel 

type is among the top contributors. CO2 emissions can be restrained by designing high 

compression ratio engines which are in turn dependent on the octane rating of the fuels. 

Figure 1 shows the worldwide contribution of the transport sector to global CO2 

emissions [1]. 

  

Figure 1 Contribution of the transport sector to global CO2 emissions 

Naphtha reforming, naphtha isomerization, and fluid catalytic cracking represent 

fundamental processes in petroleum refineries. These units are used to obtain gasoline 

with a higher value of octane number from raw naphtha. The isomerization process 

can maintain an allowable level of aromatics and benzene in gasoline.  

The complete process flow diagram of the petroleum refinery is given in Figure 2 [2]. 

There are two types of reactive units in petroleum refineries: catalytic conversion 

processes and thermal conversion processes [3]. Chemical catalytic conversion 

processes include catalytic cracking, catalytic hydrocracking, catalytic reforming, 
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alkylation, isomerization, and hydro-treating. Thermal conversion processes include 

delayed coking and vis-breaking. 

1.1.1 Catalytic Conversion Processes 

In catalytic reforming low octane hydrocarbon in the naphtha is converted into high-

octane gasoline without changing the boiling point of the component in the presence 

of a catalyst. The commonly used catalyst in the reforming section is platinum metal 

supported on silica or silica-based alumina. The main reaction is the dehydrogenation 

of naphthene to aromatics. The reaction is endothermic and requires a large amount of 

energy [4]. Hydrotreating unit catalytically stabilizes petroleum products by 

converting unsaturated hydrocarbons such as olefins and gum-forming diolefins into 

paraffin. Hydrotreating removes impurities such as sulfur, nitrogen, oxygen, and traces 

of halides from the feedstock. Hydrotreating is performed by reacting feedstock with 

hydrogen in presence of the catalyst. Different catalysts are used depending on the type 

of impurity needed to be removed. Cobalt and molybdenum oxide-based alumina 

catalyst is mostly used because they are easy to regenerate, highly selective, and have 

high resistance against poison [5]. Alkylation converts low molecular weight olefins 

to high molecular weight iso-paraffins by reacting with iso-paraffins. The reaction 

occurs at high temperature and pressure without a catalyst, typically 500 oC. An acid 

catalyst such as sulfuric acid and hydrochloric acid reduce the severity of operating 

conditions to a low-temperature range of 5 to 21oC.  

Isomerization enhances gasoline research octane number (RON) by converting 

straight-chain paraffin into a branch chain and simultaneously decreasing the benzene 

content through benzene saturation [6]. There are two isomerization processes, C4 

isomerization and C5/C6 isomerization. The C4 isomerization process utilizes an 

aluminum chloride catalyst along with hydrogen chloride to produce feedstock for the 

alkylation process. A metal catalyst such as platinum is used in the C5/C6 isomerization 

process. 

Breaking heavy oil into gasoline and a lighter product is called cracking. Cracking can 

be performed thermally or in the presence of a catalyst. The reaction is endothermic 

and takes place at a high temperature. The cracking result in the production of coke on 

the catalyst in case of catalytic cracking. Coke deposition minimizes catalytic activity 

and hence it is burned by using air at high temperatures. The process is classified based 

on fixed or fluidized beds [7]. Hydrocracking breaks heavy oil or vacuum residue into 
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valuable products such as gasoline, kerosene, diesel oil, and other light hydrocarbons 

by decreasing impurities and increasing the hydrogen-to-carbon ratio. The reaction 

occurs in a hydrogen-rich atmosphere at a temperature of 290-400 oC and pressure 

between 8275-13800 kPa [8].  

1.1.2 Thermal Conversion Process: 

Thermal conversion is used to convert residue of a high boiling point range into useful 

products or feedstocks for reactive sections in the refinery. Thermal cracking of 

vacuum distillation residue is achieved by using a delayed coking process. It is a cyclic 

process operating under the semi-batch operation. Coke, light gases, heavy gas oils, 

Figure 2 Petroleum refinery process flow diagram 
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and diesel are the end products of delayed coking. The mixture of feedstock and 

superheated steam is fed into the furnace and residence time is kept minimum to avoid 

coking in the furnace tubes. Cracking reaction takes place in the subsequent section of 

coke drums in which a combination of long residence times and sustained high 

temperatures results in cracking reactions. A coke bed is formed and cracked 

hydrocarbon products move to the fractionation column [9].  

Visbreaking is utilized in the refinery to reduce the viscosity of vacuum distillate 

residue (VDR) and to increase the distillate yield in the petroleum refinery by 

producing light-end products and fuel oil. Visbreaking is a non-catalytic, mild thermal 

process that cracks large hydrocarbons by heating them in a furnace. Thermal severity 

and feed stock properties dictate the conversion of heavy ends to gasoline, light ends, 

and gas. Typically, 10-25 % conversion is achieved while producing the desired 

quality fuel oil. Visbreaking can be performed in two ways depending on the 

schematics of the reactors and where the cracking reaction takes place: coil vis 

breaking and soaker visbreaking. [10].   

1.1.3 Quality Monitoring in the Refinery 

Research octane number is an arbitrary scale defined based on two hydrocarbons 

namely iso-octane and n-heptane. RON of a fuel is defined as the volume percentage 

of iso-octane in a mixture of n-heptane and iso-octane that knocks with the same 

intensity as the fuel being analyzed. Under harsh conditions, iso-octane has high anti-

knocking abilities and hence is assigned a 100-octane number. On the contrary, n-

heptane shows the least resistance to autoignition and knocking and hence is assigned 

0 RON [3]. 

Product quality monitoring and control in the continuous operation of the petroleum 

refining industry poses a challenging issue. Cooperative fuel research engine is 

traditionally used to measure the research octane number [11]. Near-infrared 

spectroscopy (NIRS) technology and gas chromatography are used to analyze the 

sample, measure the compositions, and estimate the research octane number [12, 13]. 

Hardware-based research octane number measuring systems require calibrations and 

have reliability and maintenance issues. Consequently, computational methods are 

being utilized in the recent era to predict the quality of refinery products. 
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Computational methods based on the black box or data-based modeling approach are 

being employed for quality improvement and monitoring. Data-based models are 

developed from input-output datasets and have the ability to predict the quality of 

gasoline while at the same time reducing computational costs. The data-based models 

are developed using statistical and soft computing-based techniques. 

1.2 Objectives 

1. Dynamic modeling of reactive units with the help of Aspen HYSYS and 

MATLAB by introducing artificial uncertainties of ± 5% in process conditions. 

2. Development of ANN, GPR, SVM, regression tree, and ensemble trees for 

RON prediction. 

3. Use of the machine learning method as a surrogate in the PSO and GA 

optimization framework for attaining high RON under uncertain process 

conditions. 

1.3 Thesis Outline 

This thesis is arranged as follows. Chapter 1 describes the background of the research 

work, followed by chapter 2 contains a detailed literature review.  Chapter 3 discusses 

processes and applied machine learning models along with detailed research 

methodology to develop the hybrid framework. Chapter 4 contains the results and 

discussions about RON prediction and optimization along with the conclusions of the 

research work. 
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Chapter 2  

2 Literature Review 

 

Researchers have been focusing on the design and operation of reactive units of 

petroleum refining to realize sustainability. Computational methods have been 

employed to optimize the design and operation of the naphtha reforming and 

isomerization process and fluid catalytic cracking process. Studies can be broadly 

categorized into two groups, data based models and first principle models. First 

principle model is based on the knowledge of process. 

Li et al. performed modeling of semi regenerative catalytic reformer by discretizing 

ordinary differential equations using the orthogonal collocation finite elements 

(OCFE) method. Results indicated that by integrating sparse matrix in successive 

quadratic programing (SQP) computational times can be reduced by 10 fold [14]. 

Stijepovic et al. developed a semiempirical mathematical model for catalytic 

reforming by using PONA analysis for kinetic lumping of equations. Simulation 

results were found to be in accordance with plant data [15]. Khosrozadeh et al. 

integrated mass and energy balances into a heterogeneous mathematical model for a 

semi-regenerative naphtha reforming process. Results showed an 0.3 % and 1.23% 

increase in RON and yield, respectively [16]. Kavousi et al. simulated the continuous 

catalytic reforming unit in PETROSIM software. REF-SIM module was utilized to 

perform reaction kinetics in PETROSIM. Sources of errors were identified for yield, 

and RON [17].  

Chekantsev et al. developed a mathematical model to manage diverse feed 

compositions and reaction catalysts in the isomerization process and compared it with 

the experimental results [18]. Chuzlov et al. developed an Aspen HYSYS model for 

the isomerization reactor. An optimization mechanism was applied to increase the 

RON of the product by optimizing the composition of the feedstock [19]. The effect 

of feed composition and inlet temperature on yield and RON was investigated in 

subsequent research by implementing the mathematical models in IDE Delphi 7 [20]. 

Furthermore, efficiency estimation of isomerization processes was performed by 

utilizing chemical-technological system (CTS) modeling in Delphi 7 [21].  
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Said et al. utilized industrial data to perform calibration of isomerization reactors in 

Aspen HYSYS by identifying optimum feed conditions and temperatures, which 

resulted in heater duty reduction by 30% [22]. Buitrago et al. used the DWSIM 

software to simulate C5 isomerization and optimized the cooler and reactor 

temperatures [23]. Ahmed et al. worked on the kinetic parameters of naphtha 

isomerization reactors with industrial data and proposed modifications in the process 

[24]. Jarullah et al. compared the process developed by [24] to other competing 

industrial isomerization processes and found that the proposed isomerization 

configuration was superior in terms of cost, RON, and yield [25]. Mohamed et al. 

further validated the economic and product quality of isomerization process 

configurations. Results indicate that the work presented by [24] and [25] outperformed 

the existing models both in terms of cost and product quality [26]. 

First principle methods face problems like uncertainties, high dimensionality, 

nonlinearity, and time delays. In contrast, data based models offer an alternative 

strategy to achieve better accuracy and capability to deal with nonlinearities [27]. 

Various researchers have done data-based modeling of the naphtha reforming section.  

Zahedi et al. trained two artificial neural network models by employing the radial basis 

function and back propagation methods to simulate a catalytic reforming unit. The 

volumetric flow rate of LPG, gasoline, and hydrogen, along with outlet temperature of 

reactors, Reid vapor pressure, specific gravity, and RON, was the target of the models. 

Results of the study indicated that the performance of the models was relatively high 

with a prediction error of 1.07% [28]. Sadighi et al. used recurrent layer artificial neural 

networks to predict the volume flow rate and RON of fixed bed catalytic naphtha 

reformer. An average absolute deviation of 0.238% and 0.813% for volume flow rate 

and RON of the gasoline, respectively, was observed [29]. Elfghi et al. performed a 

comparative study between artificial neural networks and response surface 

methodology (RSM) to simulate the catalytic naphtha reformer. Space velocity, 

pressure, and reaction temperature were used to predict the RON [30].  

Sadighi et al. developed a hybrid decay function artificial neural network with 

recurrent layers to estimate the activity of Pt-Re/Al2O3 catalyst and predict the 

gasoline’s RON and yield. The inlet temperature of reactors, hydrogen/hydrocarbon 

ratio, and liquid hour space velocity (LHSV) were the inputs of the model. A mean 

square error value of 0.0956 was observed in the prediction of gasoline RON and 
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catalyst activity was lost by 23% at the end of the cycle [31]. Al-Shathr et al. utilized 

a multilayer feedforward neural network (MFFNN) integrated with a mathematical 

model to estimate the functioning of the catalytic naphtha reforming. Performance 

indicators included temperatures, pressures, and weight fractions. ANN model 

performed better with the R2 of 0.9467, 0.9403, and 0.9736 for pressure, mass fraction, 

and temperature, respectively [32]. Ahmad et al. developed a novel framework by 

integrating ANN and ensemble learning methods to estimate RON in the naphtha 

reforming process. Sensitivity analysis using the FAST and Sobol method were 

performed to investigate the individual effect of process parameter uncertainties [33]. 

Data based methods have also been used in the naphtha isomerization process. Herceg 

et al. used experimental data to develop data based models for the isomerization 

section by using SVM and parametric polynomial frameworks based on dynamic 

linear and nonlinear models [34]. Toch et al. estimated the kinetic parameters of the 

isomerization process using systematic kinetic modeling. A nonlinear regression 

model was developed using kinetic parameters to fit the process key performance 

indicators (KPIs). Results show an established correlation between the temperature 

and conversion of C6 [35]. Sadighi et al. trained a hybrid artificial neural network to 

study catalyst deactivation, RON, and Reid vapor pressure (RVP) in an industrial-scale 

naphtha isomerization unit. Average absolute deviations of 0.0769% and 0.118% are 

observed for RON and RVP prediction [36]. Grozdani´c et al. fitted a linear model to 

experimental data to evaluate the isomerization process KPI’s dependence on process 

parameters. One factor at a time (OFAT) and design of experiments (DOE) methods 

were used [37]. 

Various optimization strategies have been applied to naphtha reforming and naphtha 

isomerization processes. Wei et al. proposed a modified differential evolution 

algorithm for the optimization of the catalytic naphtha reforming process. 

Minimization of energy consumption and maximization of aromatics were the targets 

of optimization. The aromatic yield was increased by 2.34 % [38]. Zainullin et al. 

employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) to perform multi-

criterion optimization of catalytic reformer reactors. Benzene content was reduced by 

4 % resulting in RON loss from 92.7 to 91.8 [39]. Babaqi et al. targeted reformate 

composition and RON by optimizing the kinetic and thermodynamic features by using 

particle swarm optimization in a MATLAB environment [40]. Pasandide et al. 
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performed global optimization of the catalytic reforming unit by utilizing the NOMAD 

algorithm to minimize energy costs. Aspen Plus and MATLAB were utilized to 

simulate the plant. An energy cost reduction of 13.5 % was observed [41].  

Mencarelli et al. performed multistage optimization of the isomerization process by 

using a polynomial basis linear model. Linear model complexity was reduced in the 

first stage by using the subset selection method to identify the relevant basis function. 

In the second stage, an iterative optimization algorithm was used to optimize the 

LHSV, mass input, temperature, and pressure [42]. Duchene et al. performed kinetic 

model optimization by using the strategy developed by [42]. A quadratic model was 

used for the reforming reactor, and the numeric simulations of the reforming process 

were performed in Oscar 1.1. NLP derivative-free optimizer (SQL) was used for 

optimization purposes. The data based models reduced the computational time, but at 

the same time, the accuracy of prediction was also reduced [43]. Babaqi et al. coupled 

pinch analysis with particle swarm optimization to maximize yield and energy savings 

by modifying H2/HC ratio, pressure, and temperature values. Energy savings of 16.2 

% were achieved [44]. 

Investigation regarding the modeling and optimization of FCC units has been 

performed by various researchers. Sharma et al utilized the Aspen HYSYS process 

simulator and 21 kinetic lump method to simulate an industrial FCC unit using 

industrial operating parameters. The yield of gasoline, LPG, and LCO was the target 

variable of the study [45]. Yuming Zhang et al. used first principle modeling based on 

Aspen One simulation and kinetic lumped modeling to optimize the processing 

capacity and production yield of industrial FCC units. A yield increase of 0.5 % in 

gasoline and diesel was achieved [46]. Ahmed et al. performed dynamic modeling of 

FCC by simulating regeneration and riser section with the help of Simulink and Matlab 

models [47]. Yuhao Zhang et al. explored the ternary liquid equilibrium pathway to 

investigate the sulfolane, olefin, and sulfide interactions. Product composition was 

predicted using the UNIFAC contribution model. Regressive calculations were used 

to obtain the group interaction parameters along with Aspen Plus simulations to 

analyze the high olefin content of FCC components [48]. 

Tian et al. developed a hybrid framework of data driven and knowledge fusion-based 

approach for early warning and prediction of FCC abnormal conditions. The spearman 

ranking coefficient was used for dimension reductions of input data and to improve 
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deep learning model accuracy. The key variable prediction was performed using the 

convolution layer along with a long short-term memory network. The propagation path 

of abnormal conditions was deduced by utilizing a signed directed graph [49]. Chen et 

al. reduced the RON loss in the refining process by proposing random forest-based 

feature selection and a long short-term memory network for nonlinear mapping 

between yield and predictor variables. Furthermore, RON loss minimization was 

performed by using a gray wolf optimizer under the constraints of product sulfur 

content and RON loss reduction [50].  

Santandera et al. employed deep learning frameworks by integrating production 

planning and economic model predictive control to reduce the economic gap between 

realized and planned production [51]. Yang et al. developed prediction frameworks for 

FCC product yields by integrating deep neural networks and kinetic lumped models. 

Hybrid models reduce the prediction error values by 9% by improving the correlations 

[52]. Long et al. proposed a hybrid structure for predictive model construction by 

combining LASSO and output-focused BPNN. LASSO was used for dimension 

reduction of input space. LASSO-BPNN algorithms were trained and tested on 

industrial data of FCC and comparison was performed with principal component 

analysis-BPNN and standalone BPNN models [53].  

Ahmed et al. characterized the spent FCC catalyst by developing regression models 

and performing ANOVA on MS excel. surface area, bulk density, activity, and particle 

size were the regressed variables [54]. Abghari et al. trained a feed-forward ANN on 

industrial data for the prediction of gasoline quality, conversion, and LPG flowrates. 

Input variables of ANN included debutanizer column bottom temperature, feed 

flowrate, main fractionator top temperature, and reactor temperature. Furthermore, the 

firefly evolutionary algorithm was used to optimize the operating parameters. Chen et 

al. selected the relevant process data comprising property data of streams and operation 

parameters of FCC by employing an adaptive immune genetic algorithm (AIGA). 

Random forest was utilized for the development of FCC process models. A 

comparison of AIGA-RF was done with other hybrid modelling techniques [55]. 

Xinhe Chen et al. embedded surrogate models into the equation-oriented real-time 

optimization (RTO) framework of FCC. Trust region filter was employed for the 

selection of surrogate models and the Aspen RTO optimizer was replaced with a 

reduced model for FCC unit [56]. 
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Various research works have been reported regarding naphtha reforming, 

isomerization, and fluid catalytic cracking units. However, a comparative analysis of 

machine learning methods applied to integrated naphtha reforming and isomerization 

units is not performed. Moreover, the application of machine learning methods as 

surrogate models in the evolutionary optimization environment is also not 

investigated.
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 Chapter 3 

3 Process Description 

 

3.1 Process Description: 

3.1.1 Integrated Naphtha reforming and Isomerization Process 

The process has two sections: naphtha reforming and the isomerization section. 

Integrated reforming and isomerization operations have the capability to transform 

naphtha feed mixture into high-quality gasoline with lower benzene content, hydrogen, 

and light hydrocarbon by-products. The naphtha section increases the RON, while the 

isomerization section decreases the benzene content in the end product. The naphtha 

reforming model contains 50 kinetic lumps and 115 reactions, and the isomerization 

model includes 20 kinetic lumps and 20 reactions. Figure 3 shows a schematic 

representation of an integrated naphtha reforming and isomerization process. 

Naphtha Reforming. Naphtha feeds containing alkanes, a few aromatics, and 

cycloalkanes are mixed and fed to a splitter (SP-1) where light hydrocarbons below 

C4 are separated to stabilize the feed mixture. Stabilized feed is preheated in the heat 

exchanger (HX-1) to desired processing conditions and introduced into the distillation 

column (T-1) to separate light and heavy naphtha. Heavy naphtha is heated to the 

required temperature in the heat exchanger (HX-2) and sent to the reformer, while light 

naphtha is sent toward the isomerization section. Catalytic reformers operating at 

elevated temperatures (470-520oC) and medium pressures (3-30atm) containing 

catalyst beds are arranged in series. Several reactions, including hydrocracking, 

hydrogenolysis, dehydrocyclization, and isomerization of alkanes, along with 

dehydrogenation and hydroisomerization of naphthenes and coke formation, occur in 

reformers. Temperature drops along the reactors as reaction is exothermic, so 

interstage heaters are introduced. Hydrogen is separated from the unstable reformer 

product and is sent to the isomerization section and storage. Unstable reformate is 

heated in HX-3 and is fed to the stabilization column (T-2) where light end gases are 

removed. Isomerate from the isomerization unit and stabilized reformate are blended 

into gasoline product.
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Figure 3: Process flow diagram of integrated naphtha reforming and isomerization process 
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Reactions: The reaction mechanism in process units is based on the components given 

in Table 1. Cycloalkanes and linear alkanes are converted to isoalkanes and aromatic 

having high RON. General reactions for components having i carbon atoms are as 

follows: 

nPi ⇄ iPi                                       (1) 

nPi ⇄ Ni + H2                              (2) 

iPi ⇄ Ni + H2                               (3) 

Ni ⇄ Ai + 3H2                             (4) 

Hydrogenolysis and hydrocracking of alkanes are according to the following 

secondary reactions: 

Pi + H2 ⇄ Pj  + Pk                      (5) 

P denotes a linear alkane or iso-alkane. The range of i is between 4 and 11 with i being 

equal to j + k. 

Isomerization Section: The isomerization unit is a crucial process in the production 

of environmentally friendly gasoline. This process enhances the RON of C5/C6 

naphtha by converting it to iso-alkanes while reducing the benzene content. Light 

naphtha from the top of the distillation column (T-1) is mixed with hydrogen from the 

reforming section and heated in the heat exchanger (HX-4). Feed enters lead and lag 

fixed bed isomerization reactors. Due to the exothermic nature of the isomerization 

reaction, le-chatlier principle dictates that increasing temperature decreases the yield 

of isoparaffins; hence reactors are operated at low-temperature values of 100-150oC. 

Off gases, mostly hydrogen, are separated, and unstabilized isomerate is sent to the 

stabilization column, where light hydrocarbons are separated. Unconverted low octane 

number compounds are recycled back and mixed with feed. 

Reactions: Reaction in the isomerization section proceed according to the following 

equation: 

nP6 ⇄ 5P6 ⇄ 4P6                       (6) 

where P presents a linear alkane 
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Table 1:  Compounds involved in Integrated naphtha reforming and isomerization process 

Symbols Compounds Symbols Compounds 

H2 Hydrogen 8P8 n-octane 

A6 Benzene A7 Toluene 

P1 Methane 6P6 n-hexane 

P2 Ethane 8P8 n-octane 

P3 Propane nP9 Nonane 

P4 Butane A8 ethyl-benzene + xylenes 

P5 Pentane iP9 Isononane 

A7 Toluene nP10 Decane 

7P7 n-heptane iP10 Iso-decane 

5P6 
simple branched alkanes 

with 6 C atoms 
N9 cycloalkanes with 9 C atoms 

4P6 
double branched alkanes 

with 6 C atoms 
A9 9 C atom aromatics 

N6 
cycloalkanes with 6 C 

atoms 
N10 cycloalkanes with 10 C atoms 

6P7 
simple branched alkanes 

with 7 C atoms 
A10 aromatics with 10 C atoms 

5P7 
double branched alkanes 

with 7 C atoms 
nP11+ 

hydrocarbons with more than 

10 C atoms 

N7 
cycloalkanes with 7 C 

atoms 
iP11+ 

isotopes with more than 10 C 

atoms 

A11+ 
aromatics with more than 

10 C atoms 
N11+ 

cycloalkanes with more than 

10 C atoms 

8P8 n-octane   
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3.1.2 Fluid Catalytic Cracking 

One of the key processes of petroleum refineries includes fluid catalytic cracking. 

Atmospheric distillation residues and gas oils from vacuum distillation are the 

feedstock of fluid catalytic cracking. Gasoline is the product of FCC with increased 

research octane number. The main sections of FCC units are the catalyst regenerator, 

riser, and fractionation tower. Feed is preheated to about a temperature of 490 oC and 

is atomized in the bottom section of the riser. The regenerated catalyst from the 

regeneration section is mixed with preheated feed to produce a temperature in the 

range of 530-570℃. Vaporized and preheated feed fluidizes the catalyst and 

pneumatically moves it to the top section of the riser. An endothermic cracking 

reaction takes place and the catalyst, and product are separated in disengaging vessels 

with the help of cyclones and deflector instruments. During cracking, coke deposits on 

the surface of the catalyst, and hence the activity of the catalyst is reduced. To 

regenerate the catalyst, the spent catalyst is moved to the regenerator where coke is 

burnt off by using hot air. Highly exothermic reactions of coke components such as 

hydrogen and carbon occur at about 690 oC in the regenerator section. The hot catalyst 

is then sent back to the bottom of the riser where it supplies heat for the cracking 

reactions. Reaction kinetics in the reactor is 21- lump system. Multiple reactions that 

are occurring in FCC are ring condensation, ring opening, cracking of paraffin, 

cracking of alkyl side chain, and coke formation. The schematics of the fluid catalytic 

process are shown in Figure 4 [57]. 
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Figure 4 Process flow diagram of delayed cocking process 
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Catalyst: FCC catalyst is in the form of fine powder with 60-100 µm particle size, and 

bulk density in the range of 0.80-0.96 g/cm3. Four major elements of FCC catalyst are 

zeolites, matrix, filler, and binder. Spherical particles of the micrometer size range are 

formed by mixing and spray-drying all the components. In addition to the above-

mentioned components, additives can also be added to achieve specific purposes such 

as oil enhancing, NOx and SOx scavenging, poisonous metal trap, and promoter for 

CO combustion. A schematic presentation of the FCC catalyst is given in Figure 5. 

 The key part of the FCC catalyst is the zeolite comprising 25% by weight of the 

catalyst. The zeolite used in the FCC catalyst is Faujasite. Zeolites act as strong solid 

acids by equating to 90 % sulfuric acid potency. The matrix component of the catalyst 

is made up of alumina and it is 40 % by weight of the catalyst. Matrix also contributes 

to the activity of the catalyst. FCC catalyst has a zeolite surface area (ZSA) and matrix 

surface area (MSA) of 150 and 200 m2/gm. Integrity and physical strength are provided 

by the filler and binder part of the catalyst. Filler act as a transfer medium and heat 

sink by acting as the inner part of the matrix. The role of filler in catalyst activity is 

little. Kaolin is used as a filler material and silica solution is used as the binder.  

3.2 Machine Learning Methods 

Machine learning techniques applied in this thesis include gaussian process regression, 

support vector machines, artificial neural networks, regression trees, and ensemble 

trees. 

Figure 5 Fluid catalytic cracking catalyst 



19 

 

3.2.1 Artificial neural networks 

ANN constitutes a set of mathematical algorithms capable of estimating the 

relationship between huge amounts of data by using artificial neurons which imitate 

the biological functioning of the human brain. ANNs can act as surrogate models due 

to their ability to develop nonlinear correlations among data without the need for 

knowledge regarding the functioning of the system. In ANN structure, artificial 

neurons communicate with each other by using synaptic terminals arranged in layer 

form and further enhance the learning patterns of the algorithm by varying the weights. 

Accordingly, the algorithm consists of activity functions, weights, and biases. One of 

the commonly used ANN architectures for process modeling is a multilayer perceptron 

having three layers: input, output, and hidden. The number of variables in input and 

output data dictates the number of neurons in the input and output layer of the ANN 

structure. By increasing the number of hidden layers, the ability of ANN to estimate 

the complex relationship between data increases along with the chances of overfitting. 

A three-layered structure consisting of one hidden layer with sufficient neurons can 

determine the non-linear relationship between input and output pairs of data. ANN 

architecture is given in Figure 6.  

𝑌𝑖 = 𝑓(∑ 𝑋𝑗𝑊𝑖𝑗
𝑁
𝑗=1 )                                (7) 

The activation function is given by: 

𝜎(𝑥) =
1

1+𝑒𝑥
                               (8) 

 

Figure 6 ANN architecture 
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3.2.2 Support Vector Machine 

The SVM is a machine learning algorithm capable of function approximation that is 

employed for classification and regression. Kernel functions are utilized by SVM to 

develop input-output correlations. Kernel functions transform the data in such a way 

that non-linearity associated with the decision surface is linearized by transforming it 

into higher dimensions. Higher performance, simplicity associated with SVMs, and 

the ability to deal with small data sets make SVMs useful [24]. For training data set 

containing N samples of multivariate xn with yn as response value SVM generates 

linear regression function according to eq 3. 

𝑓(𝑥) = 𝑥′𝛽 + 𝑏                                 (9) 

𝑏 presents the bias and 𝛽 is the weight value. Infeasible constraints are dealt with the 

introduction of slack variables for each point. The primal formula is constructed after 

the introduction of slack 

variables [25]. 

𝐽(𝛽) =
1

2
𝛽′𝛽 + 𝐶 ∑ (𝜉𝑛 + 𝜉𝑛

∗)𝑁
𝑛=1                         (10) 

Constraints: 

𝑦𝑛 − (𝑥𝑛
′ + 𝑏) ≤ 𝜀 + 𝜉𝑛                                      (11) 

(𝑥𝑛
′ + 𝑏) − 𝑦𝑛 ≤ 𝜀 + 𝜉𝑛    

𝜉𝑛, 𝜉𝑛
∗  ≥ 0 

Box constraint is presented by C, a positive value that imposes the penalty margin on 

the observation that are outside the ε boundaries. 𝜉𝑛, 𝜉𝑛
∗  are slack variables indicating 

the error limits depending upon which side of ε tu e sample lie. Lagrange dual 

formulation of SVM given in eq 6 results in computational simplicity [26]. 

𝑓(𝑥) = ∑ (𝑎𝑛 − 𝑎𝑛
′ )𝐺(𝑥𝑛, 𝑥) + 𝑏𝑁

𝑛=1                         (12) 

𝑎 presents the Lagrange multiplier and 𝐺(𝑥𝑛, 𝑥) donates the kernel function 
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Figure 7 Support vector machine for regression 

3.2.3 Gaussian process regression 

GPR is a powerful nonparametric, nonlinear multi-dimensional regression tool used 

for classification and regression problems. GPR is based on Bayesian probability 

theory and is capable of interpolating and predicting data points scattered in input 

space. GPR instead of probability distribution calculation over a specific function 

performs calculations over all allowable functions to fit the data. Probability 

distribution functions are decided based on kernel functions [27]. Consider the training 

set (𝑥𝑖, 𝑦𝑖); 𝑖 =  , , … . . , 𝑛, where 𝑥𝑖 ∈ ℝ𝑑 and 𝑦𝑖 ∈ ℝ, taken from an unknown 

distribution. The GPR model gave the new input vector 𝑥newand training data predicts 

the response value 𝑦new. A linear regression model is of the form:  

𝑦 = 𝑥𝑇𝛽 + 𝜀                                                (13) 

where 𝜀 = 𝑁(0, 𝜎) Data is utilized for the estimation of coefficients 𝛽 and variance 

error 𝜎2. The response is elucidated by the GPR model by establishing latent variables, 

𝑓(𝑥𝑖); 𝑖 =  , , … . . , 𝑛, from a Gaussian process, and ℎ as the basis function. The 

smoothness of response is captured by introducing the covariance function given in eq 

8 and inputs x are projected into p-dimensional feature space by basis functions. 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜎𝑓
2( +

√5𝑟

𝜎𝑙
+

5𝑟2

3𝜎𝑙
2)exp (−

√5𝑟

𝜎𝑙
)                                   (14) 

𝑟 = √(𝑥𝑖 − 𝑥𝑗)
𝑇
(𝑥𝑖 − 𝑥𝑗)                                                             (15) 

Where 𝑟 is the Euclidean distance between 𝑥𝑖 and 𝑥𝑗. 
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Figure 8 Gaussian process regression 

3.2.4 Ensemble Trees 

Ensemble tree is a predictive machine learning model that combines many weak 

learners to increase the prediction accuracy of the models. The ensemble of trees can 

be performed either by bagging or by boosting the regression trees. Averaging and 

bootstrapping methodologies are utilized in the bagging of regression trees to estimate 

the mean predicted values computed by all the individual trees. In boosting regression 

trees, data points are continuously updated, and wrong predictions are given extra 

weightage for the next models to correct them and reduce the bias. The model learns 

from the weak learners and develops a strong model [28]. 

 

Figure 9 Ensemble learning architecture 
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3.3 Surrogate Based Evolutionary Optimization 

Evolutionary algorithms solve optimization problems by evaluation candidate 

solutions based on their fitness function values. To obtain a satisfactory solution, many 

fitness function evaluations are required. In the case of real-world problems, the first 

principle model-based fitness function evaluations become computationally expensive 

and time taking. Surrogate based evolutionary optimization is utilized to avoid this 

inherent problem. In the case of surrogate based evolutionary optimization, fitness 

function evaluation is performed by utilizing robust approximations of first principle 

models by developing surrogate models. Surrogate models estimate the fitness 

function required for optimization. 

3.3.1 Genetic Algorithm 

The natural evolution of species based on the survival of the fittest is the guiding 

principle used in the formulation of genetic algorithms. The genetic algorithm 

investigates the response surface by using crossover and mutation operators in each 

iteration by utilizing a multi- point and parallel strategy. GA can optimize the process 

without the need for derivative information and initial guessing. GA uses a population-

based strategy by indicating each parameter of the process by a gene and each solution 

by a chromosome. The objective function along with the decision variable range is 

defined. An iterative loop controlled by constraints and termination criterion is used 

to create a new population based on the favorable fitness function values. Offspring 

are created by the crossover operator by merging the chosen parents. Mutation 

operators change the fitness value of elements and if improved it is then passed on to 

the next generation. This process continues until the termination criterion is satisfied 

and an optimal solution is reached. The flowchart of the genetic algorithm is given in 

Figure 10. 
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Figure 10 GA flowchart 

3.3.2 Particle swarm optimization 

Particle swarm optimization first developed by Eberhart and Kennedy is a       

stochastic, population-based evolutionary optimization technique [29]. The key idea 

behind the PSO algorithm is to reach the optimal position by guiding the swarm with 

the help of information sharing between the particles. In the search space, each particle 

or bird has its unique position and velocity. The best position of a particle (Pbest) is 

calculated from the previous velocity of the particle and the best position discovered 

by the neighbors and the particle itself is known as Gbest. Pbest is based upon the best 

experience of a single particle while Gbest is influenced by the neighbors in the swarm 

The algorithm keeps on calculating the new velocities and positions of the particles by 

changing the velocity location and neighbors until a specified stopping criterion is 

reached. Each particle has its velocity and position values in form of a vector in n-

dimensional space. The movement of particles and swarm is dictated by the 

relationship between the range of the movement and the particle's position [30]. The 

velocity and position of any particle can be calculated by using equations 16 and 17. 

𝑉𝑖+1 = 𝑊𝑉𝑖 + 𝐶1𝑟1(𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖) + 𝐶2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖)                         (16) 
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𝑋𝑖+1 = 𝑋𝑖 + 𝑉𝑖+1                                                                                (17) 

where 𝑃𝑏𝑒𝑠𝑡 is the best position of 𝑖𝑡ℎ particle, 𝐺𝑏𝑒𝑠𝑡 is the best position among all 

particles. 𝑉𝑖 is the velocity of 𝑖𝑡ℎ particle, 𝑋𝑖 is the position of the particle, 𝑊 presents 

the inertial weight; 𝐶1 and 𝐶2 are acceleration coefficients, affecting the convergence 

of optimization. 𝑟1  and 𝑟2 are random numbers in the range of [0,1]. The flowchart of 

particle swarm optimization is given in Figure 11. 

 

Figure 11 Particle swarm optimization flowchart



26 

 

3.4 Methodology 

Details of the multiple sections of the surrogate model-based evolutionary 

optimization approach are presented in Figure 12. Each of these sections is briefly 

discussed in the following paragraphs. 

 

Figure 12 Methodology 

Phase-I: First principle model and Decision variables 

The first principle models of refining processes were developed from the Aspen 

HYSYS V10 and re-calibrated according to the data from the literature [58]. Predictor 

variables for the estimation and optimization of RON were selected by taking guidance 

from already published material on the individual sections of isomerization, reforming, 

and catalytic cracking [59]. 

Phase-II: Data Generation 

The surrogate model requires accurate process data for training, validation, and testing 

purposes. In this study, MATLAB and Aspen HYSYS integration was used to generate 

data sets by introducing uncertainties in data in the range of ± 5%. To cover the 

response surface fully and effectively, data was generated randomly by creating an 

automated MATLAB script file interfaced with Aspen HYSYS using the COM server. 

Using this method, 360 input-output data sets were generated for the integrated 

naphtha reforming and isomerization process while 540 datasets were generated for 

the fluid catalytic cracking process. 
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Figure 13 Data generation under uncertainty 

Phase-III: Hyperparameter Tuning 

Hyperparameter tuning is vital in increasing the prediction performance of machine 

learning models. A comparison of various combinations of hyperparameters was 

performed based on the robust K-fold cross-validation procedure. Overall datasets are 

split into training and testing sets of 80% and 20%, respectively. The data split was 

performed randomly by randomizing the indices of data sets. Hyperparameter 

optimization of each model was performed by splitting the training data sets into K 

folds. K-1 models were retained for training, while the remaining fold was used for 

validation. The process was done K times to ensure every fold was used once. Bayesian 

optimization was used for tuning hyperparameters along with the acquisition function 

expected improvement per second plus given by equation. 

𝐸𝐼(𝑥, 𝑄) = 𝐸𝑄[max(0, 𝜇𝑄(𝑥𝑏𝑒𝑠𝑡) − 𝑓(𝑥))]                              (18) 

100 iterations were performed to check the different combinations of hyperparameters. 

Mean Square Error (MSE) was used as a performance measuring criterion of different 

hyperparameter combinations. Hyperparameters resulting in the lowest MSE value are 

chosen for further model development. 

Phase-IV: Machine Learning Model Development  

The data sets from Aspen HYSYS's first principle model were normalized, and outliers 

were removed. 80% of the data sets were used for training and validation purposes, 

while the remaining were used for testing. Best hyperparameter combinations were 

used to develop GPR, SVM, ANN, ET, and RT using the training data sets. Then, 

models are applied to the test data to estimate the response variable value over unseen 

data. The prediction performance of machine learning models was evaluated based on 

R2, MSE, and RMSE values calculated from equations: 
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𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖

𝑒𝑥𝑝
− 𝑌𝑖)

2𝑛
𝑖                                                         (19) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖

𝑒𝑥𝑝 − 𝑌𝑖)2
𝑛
𝑖                                                    (20) 

𝑅2 =  −
∑ (𝑌𝑖

𝑒𝑥𝑝
−𝑌𝑖)

2𝑛
𝑖=0

∑ (𝑌
𝑖
𝑒𝑥𝑝

−𝑌𝑎𝑣𝑔
𝑒𝑥𝑝

)2𝑛
𝑖

                                                           (21)  

Phase-V: PSO and GA Optimization 

PSO and GA-based evolutionary optimization of the surrogate machine learning 

models was carried out using   T   ’s glo al optimization tool ox. The critical 

step in this strategy is that the fitness function in the case of genetic algorithm and 

particle swarm optimization was dictated by the trained surrogate machine learning 

models. The algorithm adopted for GA is as follows: 

1. Constant parameters of GA were determined, such as the population of initial 

generation, the number of decision variables, the probability of crossover, and 

mutation. 

2. Initial population creation using normalized responses, each response, or the 

”chromosome”, contains eleven normalized values or ”genes” corresponding 

to each of the eleven decision variables 

3. Trained surrogate models were used to determine the fitness values of 

responses. The fitness value is then used to evaluate and rank different 

responses, and parents for the next generation are selected. 

4. Mutation and crossover operators of the GA algorithm were used to create new 

responses. 

5. Newly generated responses were evaluated based on their ranked fitness 

function value. Best responses formed the next generation. 

6. Steps 4-6 are repeated until the termination criterion is satisfied. The highest-

ranking response after the optimization termination was RON’s  est value. 

The algorithm steps for PSO are as follows: 

1. The initial population of particles was generated containing velocity and 

position vectors.  

2. The surrogate model was used to evaluate the particle’s position.  
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3. If a particle’s present position is  etter than its previous best position, update 

it. 

4.  ind the  est particle  according to the particle’s last  est places . 

5. Update the velocities and positions of the particles. 

6. Repeat steps 2-5 until the stopping criterion is satisfied. 

Phase-VI: Results Validation 

Values predicted and optimized by GPR, SVM, ANN, ET, and RT were then fed into 

the Aspen HYSYS first principle model to validate the results. 
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Chapter 4   

4 Results and Discussion 

 

4.1 Quality Prediction of Integrated Naphtha Reforming and 

Isomerization Section 

Table 7 contains the steady state values and sample datasets containing the artificial 

uncertainties of ± 5\% introduced in the input parameters. 

Section 4.1.1 summarizes the results regarding the hyperparameter optimization of 

GPR, SVM, ANN, RT, and ET. Section 4.1.2 focuses on the comparative analysis of 

ML models used to predict the RON of integrated naphtha reforming and isomerization 

processes. In section 4.1.3, SHAP analysis, along with partial dependence plots, are 

discussed. Surrogate modeling coupled with optimization strategies is given, and 

optimization techniques are compared in section 4.1.4. 

4.1.1 Hyperparameter Optimization of Prediction Methods 

The performance of ML methods is strongly dependent on the internal or 

hyperparameters of the models. Several hyperparameters of the models are selected 

and optimized to cater to the demands of specific prediction problems. Instead of 

manually selecting the hyperparameters, the regression toolbox of MATLAB v2022a 

was used. Bayesian optimization was employed to optimize and select specific 

hyperparameters of each model. 10-fold cross-validation was used to train and validate 

the performance of models for a specific set of hyperparameters. MSE was used as the 

selection criteria for hyperparameters, and optimization was performed, then, the 

hyperparameters giving the lowest MSE value were selected for further model 

development. Table 2 contains the hyperparameter search space along with optimized 

values for all models. Hyperparameter values of GPR were Isotropic Matern 3/2 kernel 

function with kernel scale of 188.1225 and sigma value of 4.1997. Hyperparameters 

of ANN included 3 hidden layers, a sigmoid activation function, and a lambda value 

of 3.76 e-08. Linear kernel function with box constraint value of 5.066 and epsilon 

value of 0.0243 was the hyperparameters of SVM. Bagging of regression trees, 

minimum leaf size of 2 and 12 number of learners were the optimized hyperparameters 

of the ensemble tree model. 
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Table 2 Tuned hyperparameter values of ML methods 

Methods  Hyperparameters 
Optimized 

Values 
Hyperparameter Search Space 

GPR 

Basis function 

Kernel function 

 

 

 

Sigma 

Linear 

Matern 5/2 

 

 

 

0.052159 

Constant, Zero, Linear 

Non/iso-tropic Matern 3/2. 

Rational Quadratic 

iso-tropic Exponential, , Non/iso-

tropic Matern 5/2  

0.0001-20.1131 

SVM 

Kernel function 

Box constraint 

Epsilon 

Linear 

433.7886 

0.098674 

Gaussian, Linear, Quadratic, Cubic 

0.001-1000 

0.0015295-152.9515 

ET 

Ensemble method 

Minimum leaf size  

Number of learners 

Number of predictors 

to sample  

Bag 

1 

500 

9 

Bag, LSBoost 

1-146 

10-500 

1-11 

RT Minimum leaf size 3 1-146 

ANN 

Layers 

Neurons in layers 

Activation Function 

In hidden layer 

1 

10 

Sigmoid 

1-3 

1-100 

Sigmoid, Tanh, None 

 

4.1.2 Prediction Performance Evaluation 

The research octane number of combined reforming and isomerization process was 

predicted by training machine learning algorithms such as ANN, GPR, SVM, ET, and 

RT. Optimized hyperparameters were used to train the models. MSE, RMSE, and R2 

parameters were employed to compare the estimation capabilities of the above-

mentioned methods. 

Values of training and testing RMSE, MSE, and R2 are given in Table 3. RMSE has a 

non-negative value, and a lower value is an indication of better model prediction 



32 

 

performance. The coefficient of determination value ranges from 0 to 1, 0 being the 

value at which the output variable cannot be predicted from the regressor variable, and 

1 means that the response variable is fully predictable from regressor variables. Results 

point out that GPR, SVM, and ANN with R2 values of 0.99637, 0.97925, 0.97865, 

MSE values of 0.01168, 0.06679, 0.06871, and RMSE values of 0.10807, 0.25845, 

0.26212 respectively indicate high performance for prediction of RON. 

Table 3 Prediction performance of ML methods 

 R2 MSE RMSE 

Model Training  Testing  Training  Testing  Training Testing 

GPR 0.99856 0.99637 0.00555 0.01168 0.07452 0.10807 

ANN 0.99675 0.97865 0.01251 0.06871 0.11186 0.26212 

SVM 0.98852 0.97925 0.04422 0.06679 0.21029 0.25845 

ET 0.93399 0.94160 0.25424 0.18797 0.50422 0.43355 

RT 0.86469 0.89068 0.52113 0.35183 0.72189 0.59315 

 

The performance of regression and ensemble trees is on the lower end of the spectrum 

with R2 values of 0.94160 and 0.89068, respectively. Regression and ensemble trees 

performed poorly and could not capture the nonlinearity associated with the RON 

prediction. RMSE of the regression tree and ensemble of trees was 0.59315 and 

0.43355, respectively. The performance of the individual regression trees is lower as 

compared to the ensemble of trees. Bagging the trees increases the performance by 

averaging out the individual performance of the trees. Figure 14 shows the plots 

between actual and predicted values of RON for ANN, GPR, SVM, regression trees, 

and ensemble trees in terms of training and testing data. Scatter plots further solidify 

that GPR, SVM, and ANN are the better surrogate model for capturing the nonlinearity 

associated with the dependence of RON on the predictor variables. 
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4.1.3 Partial Dependence Plots 

SHapley Additive exPlanations (SHAP) is used to comprehend the effect of different 

predictor variables on the output performance of machine learning models. By 

analyzing the prediction performance and RMSE values of all the trained machine 

learning models it was concluded in the last section that GPR outperformed the other 

methods in handling the intricate relationship between RON and predictor variables. 

The impact of predictor variables on the RON value of the GPR model was interpreted 

by using shapley analysis. The shapley explanation chart given in Figure 15 shows the 

top 6 contributing variables to the output prediction of RON. The weighted average 

inlet temperature of the reformer and reformer feed flow rate are the positive 

contributing factors, while the isomerization feed flow rate was a negative contributing 

factor. The sequence and amount of impact of predictor variables on RON value are 

validated from the literature [33]. 
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Figure 14 Actual vs predicted value of RON for (a) GPR, (b) SVM, (c) ANN, (d) ET and 

(e) RT 
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Figure 15 Shapley values of top six contributing predictor variables for RON prediction 

 

Figure 16 Partial Dependence Plots of predictors to RON prediction 
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Shapley analysis can give us the overview of the main contributing predictor variables, 

but to fully understand the trends between RON and predictor variables, partial 

dependency charts can give us better insights. Figure 16 shows the partial dependency 

charts of the five top contributing factors. The reformer's weighted average inlet 

temperature has the most impact on RON. This trend is in accordance with work 

related to RON dependence on reformer temperature [60]. Equilibrium calculations 

imply that hydrogen formation and aromatic reactions are favored at elevated 

temperatures. Furthermore, naphthenes and paraffin or consumed at a more significant 

rate at higher temperatures. Elevated temperature values higher than 520 oC result in 

aromatic forming reactions like hydroacylation reactions of paraffin to naphthene, 

paraffin conversion to isoparaffins, and naphthene dehydrogenation rates highly 

increased resulting in increased aromatic content which in turn increases RON [61]. 

4.1.4  SR comparison with GA and PSO based Optimization 

Table 4 provides a comparison between straight run (SR), surrogate-based GA 

optimization, and particle swarm optimization (PSO). It is evident from the results that 

in all cases, GA and PSO optimize and increase the research octane number value as 

compared to the straight run conditions. In dataset 1, the SR value of 96.79 was 

increased to 101.72 and 101.90 by ANN-GA and ANN-PSO methodologies. The 

second observation that can be made from this table is that PSO-optimized values are 

higher as compared to the genetic algorithm in all cases for all surrogate models; 

however, this difference is not significantly high. The second section of the table 

contains the absolute error values of PSO and GA-based optimization of all the models. 

To check the closeness of optimized values to actual plant behavior, the results were 

validated by inserting the optimized parameters into the Aspen HYSYS software and 

then noting the RON values. Error value was calculated between the surrogate model-

based optimization value and the Aspen HYSYS value. A comparison of error values 

indicates that ET and RT models show higher errors as compared to GPR, SVM, and 

ANN. This observation is in accordance with the prediction performance of the 

surrogate machine learning models. R2 and RMSE values of GPR, SVM, and ANN 

are better compared to ET and RT, which results in superior fitness function 
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evaluations in evolutionary algorithms compared to ET and RT.

 

Figure 17 Comparison of straight run, GPR-GA, and GPR-PSO for RON prediction
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Table 4 Comparison of SR, surrogate based GA optimization and PSO optimization 

Datasets SR 
GA PSO 

GPR SVM ANN ET RT GPR SVM ANN ET RT 

1 96.795 101.662 101.656 101.726 99.643 98.927 101.792 101.849 101.902 99.643 98.927 

2 95.579 99.926 99.978 100.670 100.928 100.074 99.982 100.022 101.594 100.952 100.074 

3 98.665 103.177 99.957 99.966 101.104 100.074 103.236 100.022 100.031 101.122 100.074 

4 98.498 102.990 102.989 102.876 101.861 101.454 103.039 103.076 102.943 101.877 101.634 

5 96.943 101.315 101.430 101.231 101.514 101.454 101.358 101.522 101.333 101.514 101.454 

6 98.666 103.136 103.198 102.842 101.899 101.454 103.236 103.230 103.004 101.919 101.454 

Absolute Error Values 

1 0.216 0.546 0.436 0.572 0.309 0.416 1.349 1.432 0.457 1.203 

2 0.046 0.090 0.227 0.252 0.825 1.640 1.419 1.066 1.324 1.399 

3 0.351 0.378 0.229 0.249 0.095 0.110 1.402 1.386 0.629 0.692 

4 0.437 0.262 0.445 0.463 0.124 0.130 0.610 0.853 0.356 1.001 

5 0.158 0.147 0.449 0.479 0.051 0.072 0.389 0.325 2.148 1.195 

6 0.364 0.364 0.539 0.555 0.126 0.136 0.599 0.672 0.739 0.123 
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4.1.5 Optimization Results of Integrated Naphtha Reforming and 

Isomerization Section 

The global optimization toolbox of MATLAB 2022a was utilized to optimize the 

Integrated naphtha reforming and isomerization process by using the machine learning 

method as a surrogate model. Table 5 contains the parameters of GA and PSO that 

were employed to optimize the RON value. Optimized parameters of the integrated 

naphtha reforming and isomerization process are provided in table 6. 

Table 5 Optimization parameters of GA and PSO for integrated naphtha reforming 

and isomerization process 

GA 

parameters 

PSO 

parameters 

Initial population 200 Swarm size 200 

Crossover Over scatter Min Neighbors Fraction 0.25 

Crossover probability 0.8 Self-Adjustment Weight 1.49 

Mutation Adapt feasible Social Adjustment Weight 1.49 

Selection Tournament Initial Swarm Span 2000 

 

Table 6 GA and PSO based optimization of integrated naphtha reforming and 

isomerization reaction 

Variables GPR-GA GPR-PSO 

Flowrate 

Isom Feed 28235.456 28224.500 

Reformer Feed 54511.873 54600.000 

Isom Unit Recycle 2996.544 3024.000 

Temperature 

Reformer Feed 20.483 20.745 

Isom Feed 20.941 21.000 

Product Heater 28.735 28.500 

WAIT Reformer 535.464 535.500 

Lead Reactor 127.893 128.100 

Lag reactor 138.129 137.750 

H2HC Ratio 
Reforming Unit 2.012 2.053 

Isom  Unit 0.381 0.386 

 RON 103.325 103.419 
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Table 7 Straight run conditions and sample datasets for integrated naphtha reforming and isomerization process 

 
Predictor Variables Response 

 
Flowrates (kg/hr) Temperature (oC) H2HC-Ratio 

 

Data 

sets 

Isom 

Feed   

Reformer 

Feed  

Recycle 

Isom 

Unit    

Reformer 

Feed  

Isom 

Feed  

Product 

Heater  

WAIT 

Reformer  

Lead 

Reactor  

Lag 

reactor  

Reforming 

Unit 

Isom  

Unit 

RON 

SR 29708.25 52002.00 3081.90 20.00 20.00 30.00 510.00 122.00 145.00 2.00 0.37 99.14 

1.00 30078.08 57730.24 3115.46 19.03 22.07 30.54 503.98 123.74 156.72 2.08 0.38 99.66 

2.00 30568.27 53552.61 3146.26 20.92 19.89 30.43 500.15 122.47 146.19 2.06 0.36 98.06 

3.00 30705.95 56605.22 3012.37 20.09 22.76 30.28 501.09 122.75 153.56 2.01 0.36 98.80 

4.00 29708.31 51897.59 3113.46 20.81 20.22 31.08 517.79 122.47 142.70 2.02 0.36 100.04 

5.00 27586.16 54225.77 3114.33 20.70 18.65 29.00 517.64 117.55 146.14 2.22 0.38 101.27 

6.00 29314.43 54539.60 3011.47 19.08 20.77 30.89 499.77 120.55 143.81 2.08 0.38 98.58 

7.00 28588.50 50470.51 3101.11 19.29 19.38 30.41 504.44 122.24 146.41 1.91 0.39 98.28 

8.00 30367.05 51864.12 3157.32 19.31 19.68 29.08 516.08 120.43 148.03 2.02 0.35 99.55 

9.00 30618.73 50987.52 3052.29 19.25 21.87 28.88 506.09 121.27 141.27 2.09 0.37 98.08 

10.00 30270.72 57520.56 2969.73 21.14 21.37 30.33 531.70 123.74 139.32 2.19 0.35 102.56 
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4.2 Quality Prediction of Fluid catalytic Cracker 

Table 13 contains the steady state values and sample datasets with the artificial 

uncertainties of ± 5 % in the input parameters of the fluid catalytic cracking unit. 

4.2.1 Hyperparameter Optimization of Prediction Methods 

Bayesian optimization was employed to optimize and select specific hyperparameters 

of each model by using the regression toolbox of MATLAB v2022a. 10-fold cross-

validation was used to train and validate the performance of models for a specific set 

of hyperparameters. MSE was used as the selection criteria for hyperparameters, and 

optimization was performed, then, the hyperparameters giving the lowest MSE value 

were selected for further model development. Table 8 contains the hyperparameter 

search space along with optimized values for all models. Tuned hyperparameters of 

GPR were linear basis functions with isotropic Matern 5/2 kernel function and sigma 

value of 0.00102. SVM hyperparameters giving the best performance were the linear 

kernel function with a box constraint of 3.2310 and an epsilon value of 0.3231. ANN 

hyperparameters were 3 layers with 10 neurons each and ReLU as activation function. 

The leaf size of 20, the number of learners was 495, and the number of predictors to 

the sample value of 20 was hyperparameters of ensemble learning. LSBoost was used 

as the ensemble method. 

Table 8 Hyperparameter tuning of ML methods for FCC 

Methods  Hyperparameters 
Optimized 

Values 
Hyperparameter Search Space 

GPR 

Basis function 

Kernel function 

 

 

 

Sigma 

Linear 

Isotropic 

Matern 5/2 

 

 

0.00102 

Constant, Zero, Linear 

Rational Quadratic 

Non/iso-tropic Exponential, 

Non/iso-tropic Matern 3/2, 

Non/iso-tropic Matern 5/2 

0.0001-20.1131 

SVM 

Kernel function 

Box constraint 

Epsilon 

Linear 

3.2310 

0.3231 

Gaussian, Linear, Quadratic, Cubic 

0.001-1000 

0.0015295-152.9515 

ET 
Ensemble method 

Minimum leaf size  

LSBoost 

20 

Bag, LSBoost 

1-146 



41 

 

Number of learners 

Number of predictors 

to sample  

495 

20 

10-500 

1-11 

RT Minimum leaf size 14 1-146 

ANN 

Layers 

Neurons in layers 

Activation Function 

In hidden layer 

3 

10 

ReLU 

1-3 

1-100 

ReLU, Sigmoid, Tanh, None 

 

4.2.2 Prediction Performance Evaluation 

The research octane number of high naphtha in FCC was predicted by training machine 

learning algorithms such as ANN, GPR, SVM, ET, and RT. Optimized 

hyperparameters were used to train the models. MSE, RMSE, and R2 parameters were 

employed to compare the estimation capabilities of the above-mentioned methods. 

Values of training and testing RMSE, MSE, and R2 are given in Table 9. Results point 

out that GPR, SVM, and ANN with R2 values of 0.99637, 0.97925, 0.97865, MSE 

values of 0.01168, 0.06679, 0.06871, and RMSE values of 0.10807, 0.25845, 0.26212 

respectively indicate high performance for prediction of RON. 

The performance of regression and ensemble trees is on the lower end of the spectrum 

with R2 values of 0.94160 and 0.89068, respectively. Regression and ensemble trees 

performed poorly and could not capture the nonlinearity associated with the RON 

prediction. RMSE of the regression tree and ensemble of trees was 0.59315 and 

0.43355, respectively. The performance of the individual regression trees is lower as 

compared to the ensemble of trees. Bagging the trees increases the performance by 

averaging out the individual performance of the trees. Figure 18 shows the plots 

between actual and predicted values of RON for ANN, GPR, SVM, regression trees, 

and ensemble trees in terms of training and testing data. Scatter plots further solidify 

that GPR, SVM, and ANN are the better surrogate model for capturing the nonlinearity 

associated with the dependence of RON on the predictor variables. 
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Table 9 Prediction performance of ML methods for FCC 

 R2 MSE RMSE 

Model Training  Testing  Training  Testing  Training Testing 

GPR 0.9725 0.9701 0.1596 0.1527 0.3995 0.3908 

SVM 0.9528 0.9697 0.2743 0.1547 0.5237 0.3934 

ANN 0.9446 0.9632 0.3218 0.1878 0.5673 0.4333 

ET 0.9360 0.9413 0.3719 0.2998 0.6098 0.5476 

RT 0.8935 0.8802 0.6186 0.6117 0.7865 0.7821 

 

4.2.3 Partial Dependence Plots 

To make machine learning models more intuitive and easier to comprehend SHapley 

Additive exPlanations (SHAP) tool was developed [62]. SHAP is based on the concept 

of shapley values which help in identifying the contribution of players and identifies 

the payout of the game accordingly. SHAP is used to comprehend the effect of 

different predictor variables on the output performance of machine learning models. 

As discussed in the previous section GPR outperformed as compared to other trained 

ML methods based on the R2, RMSE, and MSE values. Hence for the GPR model, 

shapley explanation chart was created. Figure 19 contains the top 10 contributing 
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Figure 18 Prediction performance for (a) GPR, (b) SVM, (c) ANN, (d) ET and (e) RT 
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parameters in the prediction of RON. The reactor temperature of FCC has an obvious 

effect on the RON prediction as evident from Figure 19. Micro activity test (MAT) 

was found to be the second contributing factor and has a major effect on the RON 

prediction. Catalyst activity can have a tremendous effect on the quality of FCC 

products hence increased MAT means increased activity which results in better 

reaction rates, conversion, and selectivity which in turn increases RON [63]. 

Shapley analysis identifies the contributing factors but to comprehend the dependence 

of prediction on input parameters, partial dependence charts provide a clearer picture. 

Figure 19 shows the partial dependency charts of the top contributing factors. As 

Figure 20 Shapley explanation chart of RON prediction in FCC 
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Figure 19 Partial dependance plots of top contributing factors in FCC 
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observed from shapley chart, reactor temperature and MAT have the most effect on 

the RON prediction. Increasing reaction temperature results in increasing reaction 

rates of cracking reactions resulting in enhancement of RON. PDP indicates that 

increasing the feed flow rate has a diverse effect on the RON of the product. This can 

be explained by low residence time due to an increase in feed flowrate which will lead 

to lower chances of reaction rate completion [64]. 

4.2.4 SR comparison with GA and PSO based Optimization 

Table 10 provides a comparison between straight run (SR), surrogate-based GA 

optimization, and particle swarm optimization (PSO). It is evident from the results that 

in all cases, GA and PSO optimize and increase the research octane number value as 

compared to the straight run conditions. In dataset 1, the SR value of 92.7684 was 

increased to 98.336 and 98.576 by GPR-GA and GPR-PSO methodologies. The 

second observation that can be made from this table is that PSO-optimized values are 

higher as compared to the genetic algorithm in all cases; however, this difference is 

not significantly high. The table also contains the absolute error values of PSO and 

GA-based optimization of the GPR model. To check the closeness of optimized values 

to actual plant behavior, the results were validated by inserting the optimized 

parameters into the Aspen HYSYS software and then noting the RON values. Error 

value was calculated between the GPR model-based optimization value and the Aspen 

HYSYS value. Lower error values indicate that GPR-based GA and PSO optimization 

frameworks are capable of predicting and optimizing the RON value with high 

accuracy. PSO-based optimization results in a high percentage error as compared to 

GA-based optimization. Hence GPR-GA was found to be the best surrogate-based 

evolutionary optimization framework for RON prediction and optimization of the high 

naphtha product of FCC. 

 

 

 

 

 



45 

 

Table 10 Comparison of SR, GPR-GA and GPR-PSO frameworks 

  SR GPRGA Hysys 
Error 

(%) 
GPRPSO Hysys 

Error 

(%) 

1 92.7684 98.336 98.131 0.209 98.576 98.081 0.504 

2 90.7066 96.834 96.657 0.184 97.041 96.674 0.379 

3 90.3291 96.188 95.978 0.219 96.441 95.873 0.593 

4 91.444 98.042 97.891 0.155 98.221 97.751 0.481 

5 90.7554 96.830 96.415 0.430 97.013 96.579 0.449 

6 90.5572 96.437 96.131 0.318 96.770 96.253 0.537 

7 89.4775 95.602 95.245 0.375 95.770 95.000 0.811 

 

 

 

Figure 21 Straight run, GPR-PSO-GR-GA comparison
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4.2.5 Optimization Results 

GA and PSO are used to optimize the fluid catalytic process by using GPR as a 

surrogate model for fitness function evaluations. Table 11 contains the GA and PSO 

parameters that were used in optimization frameworks. 

Table 11 GA and PSO parameters for RON optimization 

GA 

parameters 

PSO 

parameters 

Initial population 200 Swarm size 200 

Crossover Over scatter Min Neighbors Fraction 0.25 

Crossover probability 0.8 Self-Adjustment Weight 1.49 

Mutation Adapt feasible Social Adjustment Weight 1.49 

Selection Tournament Initial Swarm Span 2000 

 

Table 12 contains the optimized values of input parameters of the fluid catalytic 

cracking unit. 

Table 12 GPR based GA and PSO optimized parameters of FCC 

Variables GPRGA GPRPSO 

Temperature (oC) 

Feed 59.39 59.85 

Reactor 567.19 567.58 

Air Discharge 103.37 104.16 

Stripping Steam 345.34 346.29 

Dispersion Steam 345.87 346.29 

Ambient Air 24.00 23.75 

Pressure 

Feed 11461.04 11618.42 

Reactor 203.71 204.21 

Regenerator 143.40 143.46 

Stripping Steam 1424.10 1424.41 

Dispersion Steam 1315.32 1288.75 

Flowrate Feed 0.09 0.09 
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Stripping Steam 1.09 1.09 

Dispersion Steam 1.54 1.55 

Catalyst 

Reactor Inventory 381348.36 380000.00 

Regenerator Inventory 278039.80 278250.00 

MAT 73.37 73.50 

Heat Duty Catalyst Cooler 6106.07 6154.49 

HC Ratio Coke 0.82 0.82 

  RON HN 98.40 98.63 
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Table 13 Sample datasets for FCC 

 
Datasets 

1 2 3 4 5 6 7 

Temperature  

(oC) 

Feed 59.64 54.67 55.15 55.55 57.08 56.15 57.34 

Reactor 542.23 526.25 525.48 540.56 535.53 528.98 523.10 

Air Discharge 102.19 102.54 95.96 99.20 95.35 99.51 101.25 

Stripping Steam 327.56 315.34 330.58 329.80 339.36 325.86 342.94 

Dispersion Steam 318.90 321.12 313.55 323.26 318.18 313.70 340.29 

Ambient Air 24.95 25.87 26.14 25.00 25.45 26.09 24.47 

Pressure 

Feed 10639.85 11192.00 10665.32 10891.12 11490.38 11431.23 11456.98 

Reactor 190.68 195.91 202.29 195.39 187.77 195.46 193.44 

Regenerator 137.72 140.59 142.63 137.47 132.53 142.33 130.54 

Stripping Steam 1362.08 1365.99 1339.76 1356.58 1400.74 1391.00 1333.63 

Dispersion Steam 1378.52 1390.03 1392.17 1332.73 1355.90 1352.42 1392.38 

Flowrate 

Feed 0.09 0.09 0.09 0.09 0.09 0.09 0.09 

Stripping Steam 1.20 1.14 1.15 1.15 1.18 1.18 1.17 

Dispersion Steam 1.45 1.44 1.54 1.42 1.43 1.48 1.47 

Catalyst 

Reactor Inventory 401706.68 399851.56 390594.90 400000.00 392740.97 402712.87 384726.21 

Regenerator Inventory 252191.88 257613.54 263312.67 265000.00 254133.69 253179.68 266059.53 

MAT 68.45 73.20 71.26 66.58 66.88 68.86 67.20 

Heat Duty Catalyst Cooler 5651.88 6137.54 5583.65 5861.42 5648.24 6025.05 6154.20 

HC Ratio Coke 0.80 0.80 0.75 0.78 0.79 0.75 0.82 

  RON HN 92.77 90.71 90.33 91.44 90.76 90.56 89.48 
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5 Conclusions 

In this study, the effect of process variables like temperature, H2HC ratios, flow rates, 

catalyst properties, pressures, utility temperature, utility pressure, ambient conditions, 

etc. on the research octane number was studied for two refinery processes, i.e. 

integrated naphtha isomerization and reforming process and fluid catalytic cracking. 

Uncertainty of ± 5\% was introduced in input data by using MATLAB and the Aspen 

HYSYS spreadsheet. Machine learning models such as GPR, ANN, SVM, ET, and RT 

were developed by using the uncertain inputs and the corresponding output values of 

RON. To enhance the performance of the machine learning methods, hyperparameter 

tuning was performed by utilizing Bayesian optimization in the regression learner app 

of MATLAB. Based on the performance of the machine learning models, the hierarchy 

of models for integrated naphtha reforming and isomerization process in descending 

order is as follows: GPR>ANN>SVM>ET>RT. The hierarchy of model performance 

in the case of fluid catalytic cracking in descending order is as follows: GPR>SVM 

>ANN >ET>RT. The top contributing factors in RON prediction were determined by 

using shapley values and partial dependence plots. The top machine learning model 

was then used as a surrogate model in PSO and GA optimization frameworks for 

fitness function evaluations. A comparison of optimization frameworks indicates that 

PSO  performance is higher than GA. 
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