
Management & Recommendation of Code Review using

Multi-Objective Optimization Algorithm

Author:

Zaeem Anwaar

MS19-00000320966

Supervisor:

Dr. Wasi Haider Butt

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING,

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING,

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

December 2022

Management & Recommendation of Code Review using

Multi-Objective Optimization Algorithm

Author:

Zaeem Anwaar

00000320966

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Software Engineering

Supervisor:

Dr. Wasi Haider Butt

Thesis Supervisor’s Signature: __________________________________

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING,

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING,

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

December 2022

i

Declaration

I certify that this research work titled “Management & Recommendation of Code Review

using Multi-Objective Optimization Algorithm” is my work. The work has not been presented

elsewhere for assessment. The material that has been used from other sources; has been

properly cited/acknowledged/referred to.

Signature of Student

Zaeem Anwaar

00000320966

ii

PLAGIARISM REPORT (TURNITIN REPORT)

This thesis copy has been checked for Plagiarism. Turnitin report endorsed by Supervisor is

attached.

Signature of Student

Zaeem Anwaar

00000320966

Signature of Supervisor

Dr. Wasi Haider Butt

iii

Language Correctness Certificate

This thesis has been read by an English expert and is free of most typing, syntax, semantic,

grammatical, and spelling mistakes. The thesis is set all according to the format given by the

university.

Signature of Student

Zaeem Anwaar

00000320966

Signature of Supervisor

Dr. Wasi Haider Butt

iv

Copyright Statement

• Copyright in the text of this thesis rests with the student author. Copies (by any

process) either in full or of extracts, may be made only per instructions given by the

author and lodged in the Library of NUST College of E&ME. Details may be

obtained by the Librarian. This page must form part of any such copies made. Further

copies (by any process) may not be made without the permission (in writing) of the

author.

• The ownership of any intellectual property rights which may be described in this

thesis is vested in NUST College of E&ME, subject to any prior agreement to the

contrary, and may not be made available for use by third parties without the written

permission of the College of E&ME, which will prescribe the terms and conditions of

any such agreement.

• Further information on the conditions under which disclosures and exploitation may

take place is available from the Library of NUST College of E&ME, Rawalpindi.

v

Acknowledgments

I am extremely thankful to ALLAH Almighty for his bountiful blessings throughout this

work. It was quite an arduous exercise that could not have been completed without the help

of God Almighty and the strength that he bestowed upon me.

I would like to offer my sincere thanks to my incredible supervisor ‘Dr. Wasi Haider Butt’

and the entire committee: ‘Dr. Arslan Shaukat’ and ‘Dr. Ahsan Shahzad’. Without their

support – in every sense of the word – and constant guidance, this thesis would never have

been conceived or completed. I cannot thank them enough for their role in the completion of

this thesis and report.

I am also eternally grateful to fellows and colleagues, especially my batchmates (M. Usman

Farooq, Mehwish Naz, and Farasat Ullah Khan), who helped me and supported me to

accomplish this herculean task.

vi

Dedicated to my mother, whose tremendous continuous support and

endless prayers led me to this accomplishment

vii

Abstract

Background: Software code review is a one of the major and important activity in modern

software development and evolution. To improve software quality, identify and remove

defects before integration, code review is considered as efficient and effective practice. Code

reviewers having right expertise, experience and apt amount of knowledge with the code

being reviewed leads to successful code processes, fewer bugs and less maintenance cost.

Aim & Objective: Usually existing studies identify code reviewers based on one or two

objectives i.e., expertise, availability etc. to review pull requests. With the growing size of

distributed development teams, picking suitable reviewers is a challenging task. However,

due to less resources and shorter deadlines, the management of code reviews and appropriate

recommendation of code reviewers based on three objectives consecutively is an ambitious

task to be considered as aim of this thesis.

Methodology: This thesis addresses the formulation for managing and recommending code

reviewers based on multi conflicting objectives (i.e., availability, expertise and collaboration)

simultaneously. ‘NSGA-III’ is used as optimization algorithm to find the most suitable

reviewers while keeping expertise and availability ratio high and less collaboration between

reviewers and developers.

Results and Conclusion: The results were implemented and validated on three (medium to

large size) open-source projects named as LibreOffice, Qt and OpenStack. We calculated

precision, recall, MRR, accuracy for all 3 projects on average. The results from our proposed

approach accurately recommended the code reviewers with the precision up to 80%, 86% of

recall, 82% mean reciprocal rank and 84% average accuracy by improving state-of-the-art.

We also compared the experimental sets between NSGA-III and NSGA-II in terms of finding

mean fitness and execution time of both algorithms. As a result, NSGA-III recommended the

reviewers in less execution time and better fitness values in comparison to NSGA-II in all

experimental sets. The proposed approach could be practical to MCR in order to help

developers while recommending suitable code-reviewers in less time and resources to speed

up the review process.

Keywords: Code-Reviewer Recommendation, Modern Code Review, Modern Software

Development, Multi-Objective Algorithm, NSGA-III

viii

Table of Contents

DECLARATION... I

PLAGIARISM REPORT (TURNITIN REPORT) ... II

LANGUAGE CORRECTNESS CERTIFICATE ... III

COPYRIGHT STATEMENT ... IV

ACKNOWLEDGMENTS ... V

ABSTRACT ... VII

LIST OF FIGURES ... X

LIST OF TABLES .. XII

CHAPTER 1 .. 1

CHAPTER 1 : INTRODUCTION ... 2
1.1 MOTIVATION .. 3
1.2 PROBLEM STATEMENT ... 4
1.3 AIMS AND OBJECTIVES .. 4
1.4 THESIS OUTLINE .. 5

CHAPTER 2 .. 6

CHAPTER 2 : CODE REVIEWER RECOMMENDATION .. 7
2.1 REVIEW PROCESS & CRR .. 7
2.2 MULTI-OBJECTIVE OPTIMIZATION ... 8

CHAPTER 3 .. 10

CHAPTER 3 : LITERATURE REVIEW ... 11
3.1 OVERVIEW AND MAJOR OUTCOMES OF SLR ... 11
3.2 REVIEW METHODOLOGY ... 13

3.2.1 Research Questions ... 13
3.2.2 Category Definition ... 13
3.2.3 Review Protocol .. 15

3.3 RESULTS, ANALYSIS & ANSWERS TO RESEARCH QUESTIONS .. 21
3.4 CONCLUSION TO LITERATURE REVIEW ... 29
3.5 SUMMARY TABLE OF LITERATURE REVIEW .. 30
3.6 RESEARCH GAP .. 32

CHAPTER 4 .. 34

CHAPTER 4 : PROPOSED APPROACH ... 35
4.1 DATA PRE-PROCESSING ... 36

4.1.1 Conversion of SQL & JSON to .CSV Format .. 36
4.1.2 Removal of NaN Values... 37
4.1.3 Timestamp Data .. 37
4.1.4 Normalization .. 38

4.2 CODE REVIEWER RECOMMENDATION (CRR) FRAMEWORK ... 39
4.2.1 Major Components of the Approach ... 39
4.2.1.1 Reviewer Expertise Matrix .. 39
4.2.1.2 Reviewer Developer Collaboration Matrix ... 40
4.2.1.3 Reviewer Availability .. 40
4.2.2 Multi-Objective Optimization (NSGA-III) ... 40
4.2.3 Fitness Functions .. 42
4.2.3.1 Availability .. 43
4.2.3.2 Expertise .. 43

ix

4.2.3.3 Collaboration .. 44

CHAPTER 5 .. 45

CHAPTER 5 : IMPLEMENTATION, RESULTS & DISCUSSION ... 46
5.1 DATA COLLECTION/DATASET ... 46

5.1.1 SQL Format ... 47
5.1.2 CSV Format ... 47
5.1.3 Postman API Platform .. 47

5.2 EXPERIMENTAL SETUP AND RESEARCH QUESTIONS ... 48
5.2.1 Research Questions ... 49
5.2.2 Answers to Research Questions .. 54

5.3 COMPARISON OF FRAMEWORK USING LIBREOFFICE DATASET .. 56
5.3.1 Comparison of visualization of ‘Availability’ (NSGA-II vs NSGA-III) 56
5.3.2 Comparison of visualization of ‘Collaboration’ (NSGA-II vs NSGA-III) 59
5.3.3 Comparison of visualization of ‘Expertise’ (NSGA-II vs NSGA-III) 61
5.3.4 Comparison of execution time (NSGA-II vs NSGA-III) ... 63

5.4 COMPARISON OF FRAMEWORK USING QT PROJECT .. 64
5.4.1 Comparison of visualization of ‘Availability’ (NSGA-II vs NSGA-III) 64
5.4.2 Comparison of visualization of ‘Collaboration’ (NSGA-II vs NSGA-III) 66
5.4.3 Comparison of visualization of ‘Expertise’ (NSGA-II vs NSGA-III) 69
5.4.4 Comparison of execution time (NSGA-II vs NSGA-III) ... 71

5.5 COMPARISON OF FRAMEWORK USING OPENSTACK PROJECT ... 71
5.5.1 Comparison of visualization of ‘Availability’ (NSGA-II vs NSGA-III) 71
5.5.2 Comparison of visualization of ‘Collaboration’ (NSGA-II vs NSGA-III) 73
5.5.3 Comparison of visualization of ‘Expertise’ (NSGA-II vs NSGA-III) 76
5.5.4 Comparison of execution time (NSGA-II vs NSGA-III) ... 78
5.5.5 Abnormal / Premature Behavior of Algorithm (NSGA-II vs NSGA-III) for Experiment no

7 (OpenStack Project) .. 78
5.6 LIMITATIONS .. 79

CHAPTER 6 .. 80

CHAPTER 6 : CONCLUSION & FUTURE WORK .. 81
6.1 CONCLUSION.. 81
6.2 FUTURE WORK .. 81

x

List of Figures

Figure 1. Thesis Outline ... 5
Figure 2. The MCR Process [5] ... 7

Figure 3. Example of code review (LibreOffice) ... 8
Figure 4. Genetic Algorithm Flowchart ... 9
Figure 5. Overview & Major Outcomes of SLR.. 11
Figure 6. Search Process .. 17
Figure 7. Distribution of Selected Studies based on Publication Year 19

Figure 8. Research Productivity of Algorithms (2011~2022) ... 28

Figure 9. Overview of multi-objective search-based approach for CRR................................. 35

Figure 10. SQL to .CSV Format .. 36
Figure 11. JSON to .CSV Format .. 36
Figure 12. NaN Value (left) and Removed NaN Values (right) .. 37
Figure 13. Date-Time Data (left) and Timestamp formatted data (right) 38
Figure 14. Un-normalized data (left) and Normalized data (right) .. 39

Figure 15. An example of Postman Data Collection ... 47
Figure 16. Comparison of MRR for Projects ... 54
Figure 17. Average Accuracy of Projects .. 54
Figure 18. LibreOffice Availability Best Solution Experiment-1 ... 57

Figure 19. LibreOffice Availability Best Solution Experiment-2 ... 57
Figure 20. LibreOffice Availability Best Solution Experiment-3 ... 57

Figure 21. LibreOffice Availability Best Solution Experiment-4 ... 58
Figure 22. LibreOffice Availability Best Solution Experiment-5 ... 58

Figure 23. LibreOffice Availability Best Solution Experiment-6 ... 59
Figure 24. LibreOffice Collaboration Best Solution Experiment-1... 59
Figure 25. LibreOffice Collaboration Best Solution Experiment-2... 59

Figure 26. LibreOffice Collaboration Best Solution Experiment-3... 60
Figure 27. LibreOffice Collaboration Best Solution Experiment-4... 60

Figure 28. LibreOffice Collaboration Best Solution Experiment-5... 60
Figure 29. LibreOffice Collaboration Best Solution Experiment-6... 61
Figure 30. LibreOffice Expertise Best Solution Experiment-1 ... 61

Figure 31. LibreOffice Expertise Best Solution Experiment-2 ... 62

Figure 32. LibreOffice Expertise Best Solution Experiment-3 ... 62

Figure 33. LibreOffice Expertise Best Solution Experiment-4 ... 62
Figure 34. LibreOffice Expertise Best Solution Experiment-5 ... 63

Figure 35. LibreOffice Expertise Best Solution Experiment-6 ... 63
Figure 36. Qt Availability Best Solution Experiment-1 .. 64
Figure 37. Qt Availability Best Solution Experiment-2 .. 65
Figure 38. Qt Availability Best Solution Experiment-3 .. 65
Figure 39. Qt Availability Best Solution Experiment-4 .. 65

Figure 40. Qt Availability Best Solution Experiment-5 .. 66
Figure 41. Qt Availability Best Solution Experiment-6 .. 66
Figure 42. Qt Collaboration Best Solution Experiment-1 ... 67
Figure 43. Qt Collaboration Best Solution Experiment-2 ... 67

Figure 44. Qt Collaboration Best Solution Experiment-3 ... 67
Figure 45. Qt Collaboration Best Solution Experiment-4 ... 68
Figure 46. Qt Collaboration Best Solution Experiment-5 ... 68

Figure 47. Qt Collaboration Best Solution Experiment-6 ... 68

xi

Figure 48. Qt Expertise Best Solution Experiment-1 .. 69
Figure 49. Qt Expertise Best Solution Experiment-2 .. 69
Figure 50. Qt Expertise Best Solution Experiment-3 .. 69
Figure 51. Qt Expertise Best Solution Experiment-4 .. 70

Figure 52. Qt Expertise Best Solution Experiment-5 .. 70
Figure 53. Qt Expertise Best Solution Experiment-6 .. 70
Figure 54. OpenStack Availability Best Solution Experiment-1 ... 71
Figure 55. OpenStack Availability Best Solution Experiment-2 ... 72
Figure 56. OpenStack Availability Best Solution Experiment-3 ... 72

Figure 57. OpenStack Availability Best Solution Experiment-4 ... 72
Figure 58. OpenStack Availability Best Solution Experiment-5 ... 73

Figure 59. OpenStack Availability Best Solution Experiment-6 ... 73

Figure 60. OpenStack Collaboration Best Solution Experiment-1 .. 74
Figure 61. OpenStack Collaboration Best Solution Experiment-2 .. 74
Figure 62. OpenStack Collaboration Best Solution Experiment-3 .. 74
Figure 63. OpenStack Collaboration Best Solution Experiment-4 .. 75
Figure 64. OpenStack Collaboration Best Solution Experiment-5 .. 75

Figure 65. OpenStack Collaboration Best Solution Experiment-6 .. 75
Figure 66. OpenStack Expertise Best Solution Experiment-1 ... 76
Figure 67. OpenStack Expertise Best Solution Experiment-2 ... 76

Figure 68. OpenStack Expertise Best Solution Experiment-3 ... 76
Figure 69. OpenStack Expertise Best Solution Experiment-4 ... 77
Figure 70. OpenStack Expertise Best Solution Experiment-5 ... 77

Figure 71. OpenStack Expertise Best Solution Experiment-6 ... 77

Figure 72. LibreOffice Abnormal / Premature Behavior of Algorithm NSGA-II 78
Figure 73. LibreOffice Abnormal / Premature Behavior of Algorithm NSGA-III 78

xii

List of Tables

Table 1. Categorization of Review Information .. 13
Table 2. Search Keywords and Results.. 17

Table 3. Accepted Research Papers Vis a Vis Databases .. 19
Table 4. Year-wise distribution of Selected Studies .. 20
Table 5. Template of Data Extraction and Synthesis ... 21
Table 6. Leading Code Reviewer Recommendation Tools ... 22
Table 7. Leading CRR Validation Protocols ... 23

Table 8. Optimization Algorithms ... 24

Table 9. Threats to Validity for CRR Tools .. 26

Table 10. Ranking of CRR Tools based on Accuracy ... 29
Table 11. Summary Table of Literature Review ... 30
Table 12. Data Normalization .. 39
Table 13. Summary Table of Open-Source Validation Projects.. 48
Table 14. Experimental Genetic Operators .. 49

Table 15. Precision Results .. 52
Table 16. Recall@Exp Results .. 53
Table 17. Mean Fitness of Availability (LibreOffice) ... 59
Table 18. Mean Fitness of Collaboration (LibreOffice) .. 61

Table 19. Mean Fitness of Expertise (LibreOffice) ... 63
Table 20. Comparison of Execution time for LibreOffice Project .. 63

Table 21. Mean Fitness of Availability (Qt) .. 66
Table 22. Mean Fitness of Collaboration (Qt) ... 68

Table 23. Mean Fitness of Expertise (Qt) .. 70
Table 24. Comparison of Execution time for Qt Project ... 71
Table 25. Mean Fitness of Availability (OpenStack) .. 73

Table 26. Mean Fitness of Collaboration (OpenStack) ... 75
Table 27. Mean Fitness of Expertise (OpenStack) .. 77

Table 28. Comparison of Execution time for OpenStack Project .. 78

1

 Chapter 1

 INTRODUCTION

2

Chapter 1 : INTRODUCTION

Software code review is an integral part of software development and has been in practice for

more than three decades [1]. It involves identifying and fixing the defects i.e., logical errors

or bugs in a software system, to ensure code quality. The code review process begins when a

changed source code is submitted for code inspection. Numerous studies claim that the

quality of software systems can be enhanced by reducing defects during code inspection [2].

A reviewer is requested to review the change and identify the issues with the change, and

then recommend further actions to the software developer responsible for the code. A series

of meetings between the reviewer and the developer are taken place, to ensure a mutual

understanding of the change made and the review feedback. The drawback of this manual

process of code review is time-consuming and expensive; as the time, effort and experience

of the reviewers are not judiciously and efficiently utilized. For example, if a request is

routed to a reviewer who is already committed or who doesn’t possess the requisite expertise

required to meet this specific request, the outcome would be a waste of time and effort and a

‘quality review’ may not be expected [3].

Code review is a challenging process because it requires dedicated efforts of a reviewer to

read, comprehend and provide actionable feedback on a code change. The purpose is to get a

code check-in the shortest possible time as the author/company needs to release the new

version of the modified code as early as possible. Thus, a suitable code reviewer is required

to serve the purpose of code review. Such a reviewer should possess thorough knowledge,

experience and expertise needed for the job and shouldn’t be overcommitted as well. Only,

the reviewer with the requisite expertise and appropriate time may contribute toward efficient

examination of the code changes and defects [2], [3]. This process of selection of appropriate

reviewers may be simple for smaller software firms dealing with or working on a fewer

number of projects. However, professionally competent and larger firms with multiple

ongoing projects face greater difficulties in selecting appropriate reviewers due to the

inherent issues [4].

Over the period, the manual process of assigning a reviewer has evolved into an informal,

fully automated, structured and documented approach [5]. It has progressed to a lightweight,

quicker and tool-based process named Modern Code Review (MCR) [3]. MCR is also known

as change-based code review [4]. MCR is a collaborative, quicker and automated approach

that ensures that both author and code reviewer follow the standards of code review in a

literal manner. Here, the reviewer is assigned to review a specific code, based on certain logic

3

and certain credentials, in an automated manner. Some of the benefits of choosing the

reviewer in an automated manner are: 1) Reviewer is automatically assigned as per certain

credentials in a much shorter time frame without compromising other projects. 2) Human

factor / biases which may result in a selection of inappropriate reviewers is eliminated. 3) All

the reviewers share the optimized load. 4) The Selection of the right reviewer (as-per

requisite skills, experience and commitment) enhances the quality of the review [6], [7].

Most of the previously proposed tools for Code Reviewer Recommendation (CRR) use the

credential “reviewer expertise” to recommend [8]. Reviewer expertise is the gained

knowledge of the changes that had been under review or are currently under review. It could

be explained as the reviewer having high expertise should have reviewed the similar

files/code changes in the past or lately [4]. But the availability or delay in work (workload) of

reviewers having high expertise can’t be made sure every time while assigning them.

This thesis proposes to articulate the selection of peer code reviewers as a multi-objective

problem to address the challenges discussed above. The multi-objective problem is defined as

“to balance between more than one conflicting objective/multiple objectives i.e., expertise,

availability & collaboration” [9]. After performing detailed literature, we adopted one of the

infrequently or less used multi + many objective search algorithms, NSGA-III, to find the

balance in context to our 3 objectives. The approach navigates between three different

proportions by providing multiple non-dominant peer reviewer recommendations instead of

one solution as explained mostly in literature. Moreover, we validated our approach on 3

open-source projects to confirm its efficiency and execution time to comparison to the state

of the art.

This introduction chapter summarizes that software code review is one of the most

significant software activities executed for code inception to lessen defects/bugs and to

improve the quality of software by automated recommendation of the right reviewer for the

right code file. Automated tools take certain credentials or levels i.e., expertise, availability

and collaboration to recommend reviewers. We used NSGA-III (multi + many) [10] objective

search algorithm to provide multiple non-dominant peer reviewers.

1.1 Motivation

The research motivation is to recommend/choose the right reviewers for the code review

process more quickly and accurately to save time and resources. The research is aligned with

the automated selection of reviewers based on certain credentials for the betterment of

4

software systems. Choosing the appropriate reviewer in an automated manner in terms of a

multi-objective problem will recommend more than one solution in a much shorter time

frame without compromising other projects. Human biases that may result in a selection of

inappropriate reviewers will be eliminated. Also, all the reviewers would share the optimized

load. Lastly, the selection of the right reviewer (as-per requisite skills, experience and

collaboration) would enhance the quality of the review.

1.2 Problem Statement

Automated code reviewer recommendation contributes a vital role in the Modern code

review. Researchers have proposed different approaches/tools that recommend the reviewers

based on some credentials i.e., level of expertise. But these tools recommend multiple

reviewers based on a single credential usually. To deal with a large number of possible

reviewers for multiple pull requests in terms of multi-objective context is a management

problem that is under-studied in the research literature. This management process requires

handling multiple competing criteria including expertise, availability and previous

collaborations with the owners and reviewers. To overcome these issues, this thesis presents

an approach to articulate the selection of peer code reviewers as a multi-objective problem.

The approach navigates between three different proportions by providing multiple non-

dominant peer reviewer recommendations instead of one solution. Additionally, the purpose

is not only to recommend reviewers, the idea is to manage code reviews with shorter

deadlines and limited resources while keeping expertise and availability highlighted.

1.3 Aims and Objectives

The major objectives of the research are as follows:

• To reform and organize 3 different open-source project datasets, that are to be used

for CRR.

• To perform a detailed systematic literature review of the recent research on CRR

• Explore Multi-objective optimization search algorithms.

• Propose an approach that navigates between three different proportions/credentials by

providing multiple non-dominant peer reviewer recommendations instead of one

solution.

• Analyzing and validating the precision, recall, MRR and accuracy of the proposed

5

approach.

• Comparison of the results with state-of-the-art.

1.4 Thesis Outline

This remaining work is structured as follows:

Chapter 2 covers the basics and background of the review process, code reviewer

recommendation and multi-objective optimization.

Chapter 3 gives a review of the literature in detail and the significant work done by

researchers in the past few years. The systematic literature review is composed of three main

sections. The first section is the review protocol which gives details on the methodology

using which the literature review is carried out. Section two offers’ details on research works

carried out in this area in form of research questions and tables. Whereas, section three

highlights the research gaps that were encountered.

Chapter 4 consists of the proposed approach in detail. It discusses the approach in terms of

an overview of the algorithm (NSGA-III, fitness functions), main components of the

approach and solution representation.

Chapter 5 includes implementation, validation and discussion of results accompanied by

research question and relevant figures. It also brings detail to the comparison of our work

with the state of the art. Additionally, it briefly explains the limitations of our work.

Chapter 6 concludes the thesis and reveals the future scope of this research.

The thesis outline is shown in Figure 1.

Figure 1. Thesis Outline

6

 Chapter 2

 CODE REVIEWER RECOMMENDATION

7

Chapter 2 : Code Reviewer Recommendation

In this section, we first describe the necessary background related to the review process, code

reviewer recommendation (CRR) and multi-objective optimization.

2.1 Review Process & CRR

In the last ten years, a wide range of research has been published in renowned databases in

the context of Code Reviewer Recommendation (CRR). A code review process is an

interaction between the submitter and reviewer/s. A series of meetings between the reviewer

and the submitter are taken place, to ensure a mutual understanding of the change made and

the review feedback. The changes in the code are performed by the programmer that is also

the owner of the code and then submits it for the review request. The reviewers add

comments as feedback about the new changes suggested by them [11], [12].

Figure 2. The MCR Process [5]

The process of MCR has been enunciated in Figure 2. This process begins when a code file/

patch is placed in a certain repository by the code owner and a formal request for review is

initiated to the committer [13]. Code-level change is assigned to each new file/commit. The

Committer thereafter selects a suitable reviewer using an automated tool. The reviewers

review the files and rate them as per the change effort. Rating is done using a standardized

scale i.e., from -2 ~ +2 [14]. If a reviewer considers the file/patch perfectly fine i.e., if it does

not require any change, the specific file/ patch is rated as +2 and returned to the committer.

The committer then merges the file/patch into the main project. If a file/patch is assigned the

rating of -2, which means that a major change is required in the file/ patch. The committer

returns it to the owner, who submits it again after the suggested changes as per the review.

Any other rating within the scale reflects the efforts required. The branch is merged into main

8

branch only if the collaborators accept those changes with +2 ratings [15]. Here, it may be

safely claimed that the process of MCR (which contributes toward the overall quality of the

project) solely depends on the appropriate selection of a reviewer. If done in an automated

manner based upon appropriate logic, surely the outcome would be a quality review. MCR

process is supported these days by many tools i.e., Gerrit

(https://www.gerritcodereview.com/about.html).

Figure 3. Example of code review (LibreOffice)

A detailed example of code review i.e., an open pull request at LibreOffice,

(https://gerrit.libreoffice.org/c/help/+/135008) where many possible reviewers can be

assigned to review the one change is shown in Figure 3. It also shows the details such as

owner name, last updated status, rating marked by the respective reviewer and the topic of the

code review.

2.2 Multi-objective Optimization

Multi-objective optimization is defined as “to find the trade-off balanced optimization

between more than one objective”. Usually, it is difficult to find such a solution that provides

multi-objective optimization because the objectives in the problem are mostly conflicting. To

find and propose such solutions, Genetic Algorithms are used. These algorithms provide

more than one solution also known as alternate possible solutions. The goal is to produce

solutions that can optimally satisfy each objective concurrently. These algorithms consider

certain credentials i.e., reviewer’s profile, experience, workload, expertise and commitment

status, etc. [16]. These credentials are termed ‘Objectives’ and an algorithm may use a single

https://www.gerritcodereview.com/about.html
https://gerrit.libreoffice.org/c/help/+/135008

9

objective, may incorporate multiple objectives, or may utilize many objectives to suggest a

reviewer [9], [17]. For example, an algorithm considering only one objective (i.e.,

experience) may be termed a single objective utilization algorithm [18]. The algorithm that

takes into account two or three objectives is termed a multi-objective optimization algorithm

[19] and an algorithm taking into account more than three objectives, while deciding on a

reviewer, is termed a many-objective algorithm [9].

A random population of random pop size known as individuals is initiated at the beginning of

Genetic Algorithms. The target problem is defined and then evaluated by using a fitness

function (one fitness function for one respective objective) for the population. A random

selection of 2 chromosomes as parents is selected to perform crossover and mutation

operators on them. While applying the selection operator, it is ensured to select the

individuals with the highest fitness values so that the new individuals come up with a higher

probability to undergo crossover and mutation operators. A new population is created from

an old population with the purpose to keep producing a better population every next time.

The stopping criteria are defined to stop the algorithm where the individuals/population

found is the best and fittest population [20], [21]. The flowchart of a genetic algorithm is

displayed in Figure 4.

Figure 4. Genetic Algorithm Flowchart

10

 Chapter 3

 LITERATURE REVIEW

11

Chapter 3 : LITERATURE REVIEW

This chapter contains the systematic literature review performed for our research. It includes

overview and major outcomes of SLR + contributions of SLR, review methodology, research

questions, category definitions, review protocol of literature review, results and analysis,

answers to the research questions for literature and conclusion of SLR.

3.1 Overview and Major outcomes of SLR

In Literature, there exist several studies (amply highlighted throughout this SLR), where

various approaches, algorithms, tools/ techniques, and validation of various tools are

highlighted in bits and pieces. Whereas, comprehensive research covering all the major

aspects concerning the automated selection of a reviewer, as part of ‘MCR’, is hard to find in

literature.

Figure 5. Overview & Major Outcomes of SLR

12

Overview/ major outcomes of this SLR are summarized in Figure 5. 62 landmark studies

(published from 2011 – to March 2022) in renowned databases were investigated and

analyzed after filtering them out via selection criteria. For ease of analysis and to explore the

studies as per the research questions, studies were further categorized into five groups i.e.,

CRR Approaches (11 studies), CRR Tools Availability (11 studies), CRR Validation

Protocols (10 studies), CRR Optimization Algorithms (20 studies) and a general category (10

studies). To obtain the required and precise results, a combination of qualitative and

quantitative analysis is performed on the selected studies. As highlighted in Fig. 5, there are

four types of approaches found in the literature for code reviewer recommendation i.e., ‘Load

balancing’ (2 studies), ‘Profile-based’ (3 studies), ‘Reviewer expertise/experience’ (4 studies)

and ‘Traceability matrix’ (2 studies). 14 tools were identified which are currently being used

for automated CRR. The availability of tools is also classified into ‘Organizational’ (4

studies), ‘Open-source’ (2 studies), ‘Commercial’ (3 studies) and ‘Public’ (2 studies). The

validation of tools is provided based on ‘Datasets’ of different sizes (3 studies), ‘Open-source

projects’ (4 studies) and projects by ‘GitHub’ and ‘Gerrit’ (3 studies). Furthermore,

optimization algorithms (in total 25 identified) are divided into 3 subcategories based on their

type i.e., ‘Single objective’ (3 studies), ‘multi-objective’ (14 studies) and ‘Many-objective’ (3

studies). Based on a detailed analysis of results, key factors of CRR are identified and

examined.

The major contributions of SLR are:

a) Identifying various approaches to CRR

b) Reporting various automated CRR tools

c) Reporting the availability status of the tools

d) Identifying the leading validation techniques/protocols through which the validity of

various tools has been demonstrated by worthy researchers

e) Enunciating various CRR algorithms and categorizing the identified algorithms as

Single, Multi and Many Objective optimization algorithms based on the number of

credentials taken into account while recommending a reviewer

f) Identifying research productivity (frequency of use) of various optimization

algorithms and tools

g) Summarizing the external and internal threats to validity

h) Ranking of CRR tools based on identified factors and accuracy

13

3.2 Review Methodology

Kitchenham guidelines [15] on SLR methodology are followed in this SLR. The major

sections of this methodology are planning, conducting and reporting. In this methodology,

Review Protocol is an integral step and is mainly divided into two categories that are

Category Definition and Review Protocol Development. Briefly, this section deals with

‘Category Definition’ and ‘Review Protocol’. Moreover, this section implicates the research

questions for review that are highlighted in Section 3.2.1.

3.2.1 Research Questions

Research questions have been summarized as below:

RQ1: What are the leading different Code Reviewer Recommendation tools defined from

2011- to March 2022?

RQ2: How the leading CRR tools are validated?

RQ3: What are the (Single, many and multi objectives) optimization algorithms identified

in previous research?

RQ4: Which multi-objective optimization algorithm has the better research productivity

over the years from 2011-March 2022?

RQ5: How the leading CRR tools may be ranked as per their accuracy?

RQ6: What are the threats to the validity of the previous finding in context to code reviewer

recommendation tools?

3.2.2 Category Definition

To simplify the data extraction and synthesis process, we have defined five categories as

shown in Table 1. The reviewed research articles are categorized later on into these

categories. These categories are CRR Approaches, CRR Tools Availability, CRR Validation

Protocols, CRR Optimization Algorithms and General category.

Table 1. Categorization of Review Information

Sr. # Category Types Extracted Information

1
CRR

Approaches

4 types of

Approaches

Identified CRR Approaches

Load

Balancing (2

studies)

Reviewer

Profile-

based (3

studies)

Expertise

and

Experience

(4 studies)

Traceability

Matrix (2

Studies)

2
CRR Tools

Availability

4 types of

Availability

Identified CRR Tools Availability

Organizational

(4 studies)

Open Source

(2 studies)

Commercial

(3 studies)

Publicly

available (2

studies)

14

3

CRR

Validation

Protocols

4 Protocols

Identified CRR Validation Protocols

Datasets (3

studies)

Open-source

projects (4

studies)

GitHub

project (2

studies)

Gerrit Project

(1 study)

4

CRR

Optimization

Algorithms

3 types of

Algorithms

Identified CRR Optimization Algorithms

Single

Objective (3

papers)

Multi-

Objective

(14 papers)

Many Objective (3 papers)

5 General

It is highlighted that a specific paper may fall into one or more of the

above-mentioned categories depending upon the availability of concerned

information. For example, paper [13] falls under ‘CRR Approaches’, ‘CRR

Optimization Algorithm’ and ‘General’ categories.

a) CRR Approaches: From the reviewed literature, it was identified that four major

approaches are being followed to recommend a reviewer for a specific piece of code. We

have categorized the reviewed research articles into these categories which are ‘Load

Balancing’ (2 studies), ‘Reviewer Profile-based’ (3 studies), ‘Reviewer Expertise and

Experience’ (4 studies) and ‘Traceability Matrix’ (2 studies). Selecting the right approach

for CRR is a critical task to perform while doing code reviews. For example, the authors of

[16] have recommended the reviewers based on their expertise and experience while

working on cross-project and specialized technologies. Additionally, the authors of [17]

have presented an approach i.e., named ‘ADCR’ to recommend reviewers based on the

reviewer’s profile-based historical data.

b) CRR Tools Availability: From the reviewed literature, 14 tools are identified that are

used for CRR. The availability of these tools is a critical question. Under this heading, we

have sub-categorized (4 sub-categories) the studies based on the availability of their

recommended tools as shown in Fig. 1. Some tools for CRR are ‘Open Source’ with their

source code available as well. Other types of availability are ‘Public’, ‘Commercial’ and

‘Organizational’. For example, Tie [18] is a tool based on text mining and a profile

location-based approach and its availability is organizational.

c) CRR Validation Protocols: Another important aspect is the protocol that is used for the

validation of CRR tools. The reviewed literature highlighted that there are various

techniques used for the validation of CRR tools to claim their accuracy. These protocols

are used to perform validation on different datasets, GitHub and Gerrit projects and open-

source projects. Under this category, research studies are sub-categorized based on the

CRR tools validation protocols as shown in Table 7. For example, WhoReview [19] tool

was validated by authors on four big open-source projects in Microsoft.

15

d) CRR Optimization Algorithms: A review of the selected literature revealed that there

exist various optimization algorithms. These algorithms are classified as single, multi and

many objectives optimization algorithms. For example, a single-objective (i.e., availability

of reviewer) optimization algorithm has been proposed by the authors of [20]. Likewise,

the authors of [21] presented a multi-objective optimization algorithm that takes into

account three objectives i.e., availability, expertise and collaboration of reviewers to

recommend a reviewer. Moreover, some studies have presented many-objective

algorithms. Collectively, all such studies that provide algorithms for single, multi and

many-objective algorithms are placed under this CRR Optimization Algorithms.

e) General: This category contains those research studies that can be a part of more than one

above-mentioned category. For example, papers [22], and [23] have used the NSGA-II

optimization algorithm with 2 different tools. They have also mentioned the validation

techniques via two datasets respectively, so they are placed under the ‘CRR Validation

Protocols’, ‘CRR Optimization Algorithm’ and ‘General’ category.

3.2.3 Review Protocol

Once the categories are defined, the Review Protocol is shaped as per the defined

methodology of Kitchenham [22]. Review protocol consists of standard six steps. The first

two steps (background and research questions) are already elaborated while the remaining

steps are explained in the undermentioned headings:

I. Acceptance and Rejection Criteria

Acceptance and rejection criteria primarily contain the set of rules/criteria that form the basis

of acceptance/rejection or inclusion/exclusion of a specific paper. The criteria consist of some

steps that need to be followed for deciding whether the study is excluded or included. Studies

that do not follow or fulfill the following parameters are not considered. Only those studies

are considered for further scrutiny that passes through the initial filter of acceptance and

rejection criteria.

a) Subject: Only those papers should be selected that are completely relevant to code

reviewer recommendation. Studies dealing with code reviews [3] but discussing code

reviewer recommendations marginally should be discarded. As this SLR deals solely

with Code Reviewer Recommendation therefore those papers should be discarded

that don’t contribute positively towards improvement in the automated CRR.

16

b) Publication Year: This SLR deals with those studies that are published from

January 2011~ to date. Studies published before 2011 were rejected. Primarily, the

latest research are based on the findings of previous research. Therefore, a very

carefully considered research duration is considered for this SLR. This duration not

only encompasses the latest trends related to the domain of CRR but it also covers

the previous researches logically as well. For example, paper [8] discusses the latest

multi-objective optimization algorithm, however, in actuality, the concept of multi-

objective optimization algorithms started back in the early 2000. So, this paper [8]

amply covers the range from 2000 ~ to 2016.

c) Publisher: The studies were selected from numerous renowned and well-known

scientific repositories. The databases of IEEE, ELSEVIER, ACM, SPRINGER and

Taylor & Francis are utilized to conduct this SLR. These databases are reliable and

trustworthy and studies that are published in these databases undergo a stringent peer

review. Therefore, studies considered for this SLR must fall under these databases.

d) Language: To conduct this SLR, the studies that are published in English are

considered. Those studies which are written in a language other than English are

excluded. We found 3-4 relevant papers with an abstract in the English language, but

the paper content was not in English.

e) Validation: Only those studies should be included, where validation of CRR tools is

performed properly either with the help of a dataset, open-source project (Gerrit,

GitHub & Microsoft), or with the help of a case study. For example, a study [23]

proposed a code reviewer recommendation tool ‘RSTrace+’ with a complete

validation via an open-source project and accomplished top-3 recall & precision

values. Subsequently, studies that have lacked, insufficient or missing validation

techniques are excluded from this SLR.

II. Search Process

After specifying the acceptance and rejection criteria, the search process is initiated by

exploring the renowned databases of IEEE, ELSEVIER, ACM, T&F and SPRINGER. We

used different search terms or keywords to perform this process as shown in Table 2. We

started the search process with the most relevant search words like “Code Reviewer

Recommendation”. These search terms resulted in hundreds of results, which could not be

fully examined. For example, the Springer database resulted in 23759 contents for the search

term “Code reviewer recommendation” in default settings.

17

Table 2. Search Keywords and Results

Sr.

Search Keywords Operator

(AND/OR)

No. of Search Results

IEEE ACM T&F Springer Elsevier

1
Code reviewer

recommendation

AND 33 8 2 7 3

OR 81 30 9 31 24

2
Tools for code reviewer

recommendation

AND 24 0 0 8 0

OR 50 12 4 19 9

3 Code optimization algorithms
AND 32 15 7 5 8

OR 80 52 16 34 43

4
Types of optimization

algorithms

AND 0 4 1 7 0

OR 115 14 5 19 10

5 Genetic algorithms AND 43 32 9 80 20

6 Threats to validity of CRR
AND 25 0 2 6 0

OR 49 23 7 30 19

7 CRR, Genetic algorithm

techniques

N/A 90 39 12 98 4

8 Validation of CRR tools N/A 21 14 8 13 9

Figure 6. Search Process

18

To refine our results, we applied some filters, like we put the range (2011-March 2022) on

publication years while searching for related research work. Two kinds of operators (AND,

OR) are used to carry out the search process via keyword searching. Moreover, we tried to

identify the synonyms and possible substitutes for the terms to make the search process in

detail. We used the Snowballing search method [25]. The ‘forward snowballing’ (to check

where that paper was referred/ cited) and backward snowballing (what citations that paper

used) to identify related additional papers. After applying all these filters and detailed search

options, we were able to gather the finest and most relevant results that could be easily

studied and beneficial for this SLR. For example, 114 studies were figured out for further

study with the search term “Code Reviewer Recommendation” after applying above

mentioned techniques. Similarly, after applying the same techniques, the search term

‘Genetic Algorithm’ in the ACM database only resulted in 32 papers. In this manner, after a

comprehensive search process, we finally obtained 62 research studies to get accurate and

reliable answers to our research questions. The complete search process is elaborated in Fig.

6 and the steps are explained below:

• Initially, 1474 research studies were obtained from all the databases. Firstly, we

analyzed the titles of research to check the relevance according to inclusion and

exclusion criteria. We rejected 805 because those studies indicated their irrelevance in

their title.

• Then, we studied the abstracts of the remaining 669 papers. It was observed from a

few studies that their abstract violates the parameters defined in inclusion and

exclusion criteria. Thus, we discarded 478 studies by examining their abstracts.

• We investigated the remaining 191 research studies. Until here, the validation criteria

were not considered and only the first four acceptance and rejection parameters were

followed. Hereon, the 5th parameter i.e., validation was also considered by studying

various sections in detail. Therefore, based on this investigation via general study and

then detailed in-depth study, we excluded 86+46 research studies respectively and

included 59 studies, which were conforming completely to our selection and rejection

criteria.

• Finally, we applied snowballing process. This process ensured the selection of

relevant studies that have been missed by chance in the search process. We utilized

both forward and backward snowballing. As result, 3 studies were selected that

appeared relevant to our research context by the snowballing process.

19

Table 3. Accepted Research Papers Vis a Vis Databases

Sr.

Scientific

Catalogue

Sort References for Studies (selected) Total

Researches

1 IEEE

Conference [11], [24], [25], [26], [27], [28], [29],

[30], [31], [32], [33], [34], [35], [36],

[37], [38], [39], [40], [41], [42] 28

Journal [43], [44], [45], [46], [47], [48], [49],

[50]

2 Elsevier

Journal [7], [51], [52], [53], [54], [55], [56],

[57], [58], [59], [60], [61], [62], [63],

[64]

15

3 Springer
Conference [65]

8 Journal [9], [66], [67], [68], [69], [70], [71],

4 ACM

Conference [23], [72], [73], [74], [75], [76], [77],

[78]

9

Journal [79]

5 Taylor & Francis Journal [80], [81] 2

III. Quality Evaluation

We ensured to select research from well-known and high-impact studies (authentic and

accepted worldwide) from scientific databases to guarantee the reliable results/ conclusions

of this SLR. 5 most renowned databases are used for the selection of studies according to

parameter no 3 (Publisher) as enunciated in the inclusion and exclusion criteria. Table 3

presents the detailed distribution of selected studies concerning publishing databases. This

table elaborates the information about the names of the databases, selected studies for

referencing, their sorting based on publication type (journal or conference) and the total count

of studies concerning the database. 28 studies are selected from IEEE, 15 from Elsevier, 8

from Springer, 9 from ACM and 2 are selected from Taylor & Francis.

Figure 7. Distribution of Selected Studies based on Publication Year

20

Furthermore, within a specific database, the distribution of conference and Journal

publications can also be seen. For example, there are 8 journals and 20 conference papers that

have been selected from the IEEE database Elsevier database contributed 15 Journals. 1

conference paper and 7 journals are selected from Springer, and 2 journal papers are

contributed by Taylor & Francis. Finally, from the ACM database, 8 conferences and 1

Journal were added to the list of papers that were scrutinized for the sake of this SLR.

Table 4. Year-wise distribution of Selected Studies

Sr.

Year Studies Contribution

percentagewise

Total

1 2012 [27], [48], [59] 4.84% 3

2 2013 [29], [34], [37], [41], [63] 8.06% 5

3 2014 [40], [42], [44], [45], [65], [78] 9.68% 6

4 2015 [11], [30], [35], [39], [68], [79] 9.68% 6

5 2016 [7], [24], [25], [28], [36], [46], [61], [75], [76],

[80]

16.13% 10

6 2017 [43], [31], [47], [49], [52], [55] 9.68% 6

7 2018 [33], [54], [57], [58], [62], [64], [67], [69], [70],

[71]

16.13% 10

8 2019 [23], [32], [38], [50], [56], [60], [72] 11.29% 7

9 2020 [26], [9], [53], [66], [73], [77], [81] 11.29% 7

10 2021 [51], [74] 3.23% 2

The horizontal axis of Fig. 7 shows the year of publication and the publication type. Whereas,

the vertical axis shows the number of publications in a particular year. The tabular form of

Fig. 7 is shown in Table 4 which presents the year-wise distribution of selected research

studies. As it can be seen that this SLR encompasses a blend of the latest information from

the most reliable resources. The last column (Total) gives the total number of publications in

a particular year. The same table gives the percentage-wise distribution of research studies

per year. As it may be noticed that the number of studies from 2016~2020 is contributing

more than in other years. It may be safely concluded that the conclusions of this SLR

encompass the latest information. Similarly, the databases of IEEE and Elsevier contributed

to a larger number of studies than other databases. In comparison, lesser studies were

extracted from T&F, Springer and ACM. Resultantly, the total count of papers (under

consideration) comes out to be 62 studies.

The sorting of publication types (journal and conference) is also a very important factor to

demonstrate the quality of this SLR. We included 33 Journal papers out of 62, which means a

total of 53% contribution of Journals in this SLR. Likewise, 29 conference studies were

found to be about 47% contribution. All of these publications fully qualify the inclusion and

exclusion criteria set for this SLR.

21

IV. Data Extraction and Synthesis

After selecting studies according to inclusion and exclusion criteria, we have developed a

template to complete the data extraction and synthesis step as shown in Table 5. The answers

to research questions are systematically found by doing this step. Moreover, it also helped to

gather and analyze the concerning fundamentals from chosen studies. The data which was

extracted from the selected research studies include Bibliographic information, generalized

overview, proposed methodology, implementation details, outcomes, limitations,

categorization, tools and validation techniques discussed in a particular study. In this manner,

answers to all the research questions were categorically found. The template helped

invaluably in sifting the essentials from the non-essentials.

Table 5. Template of Data Extraction and Synthesis

Sr.

Type Details

1 Bibliographic

information

It includes title, publication details (year, authors information) and

type of research paper (Conference or Journal)

2 Summary The proposal of each selected study is analyzed

3 Proposed Methodology It contains the methodology followed by each study

4 Implementation Details It includes the details of the technology that is used to implement

the proposed methodology

5 Outcomes We analyzed the outcomes of each study thoroughly

6 Limitations Limitations while achieving any objective (if any)

7 Categorization Selected studies are classified as per defined categories. the results

are summarized in Table 1

8 Tools Well-known Tools are analyzed and summarized in tables (Table 6)

9 Validation Validation methods of each study e.g., datasets, and open-source

projects (Table 7)

10 Algorithms Algorithms are proposed by each research study to achieve the

required objective. Results are summarized in Table 8

3.3 Results, Analysis & Answers to Research Questions

The primary aim of this research article is to examine and query the selected literature to

reliably answer the identified research questions. This section reports the results after careful

examination of various aspects of extracted data. It is pertinent to mention that the Journals

generously contributing to our quest for the latest trends in CRR are; ‘Information and

Software Technology’, ‘Applied Soft Computing’, ‘Journal of Intelligent Information

Systems’, ‘Journal of Computer Science and Technology’, ‘Information Sciences’, ‘IEEE

Transactions on Evolutionary Computation’, ‘Natural Computing’, ‘Automated Software

Engineering’ and ‘IEEE Access’. Likewise, numerous worthy conferences i.e., ‘International

Conference on Software Engineering Companion’, ‘International Conference on Software

22

Engineering’ (ICSE), ‘International Conference on Software Analysis, Evolution and

Reengineering’ (SANER) and many others contributed to our SLR.

1) Leading CRR Tools:

One of our research questions queries the leading CRR tools. This section presents the latest

CRR tools and their availability as reported by the worthy researchers in selected research. 14

of the most acclaimed tools that are used for reviewer recommendation are shown in Table 6.

These tools are reported in 11 types of research published from the year 2011-March 2022. In

this table, tools are presented along with their abbreviations (if any), availability and the

concerned studies. 4 types of availability have been associated with the CRR tools i.e.,

Organizational or Proprietary, publicly available, Open source and Commercial. An

Organizational or Proprietary tool is the one that legally remains the property of a specific

organization, group or individual who owns it like, Trello is propriety to ‘Atlassian’. The

publicly available tool is licensed at no cost or for an optional fee e.g., SQLite and Review

Bot. The source code for this kind of tool is kept hidden from the public. The tool that is

freely available and its source code is published freely as well to use or modify falls under the

Open-source category i.e., CORRECT. Lastly, the commercial tool may be owned (via

authorized licensing) by anyone who pays for it e.g., RevRec.

After analysis of the tools, it may be safely claimed that tools i.e., CORRECT and RSTrace+

(Reviewer suggestion by Traceability graph) are open sources. Carrot, RevFinder (Review

finder) and Review Bot are publicly available. The tools that are commercially available for

reviewer recommendation are WhoDo, Profile-based, WhoReview, Latent Dirichlet

Allocation and RevRec. Similarly, tools like TIE (Text mining and file location), ADCR

(Appropriate Developer for Code Review) and CoreDevRec are organizational tools.

Table 6. Leading Code Reviewer Recommendation Tools

Sr.

Tools Abbreviation (if available) Availability Reference

1 TIE Text mining and file location

Organizational

[30]

2 ADCR Appropriate developer for Code Review [26]

3 CoreDevRec Core Member Recommendation for

Evaluation

[52]

4 Naïve Bayes N/A [33]

5 CORRECT N/A

Open Source

[25]

6 RSTrace+ Reviewer suggestion by Traceability

graph

[53]

7 RevFinder Review Finder
Publicly Available

[33]

8 Carrot N/A [26]

9 Review Bot N/A [29]

10 RevRec Review recommendation Commercial

[28]

11 WhoDo N/A [24]

23

12 Profile Based Profile of Individual Recommender [32]

13 WhoReview N/A [51]

14 LDA Latent Dirichlet Allocation [23]

2) Leading Validation Techniques:

Various techniques are in vogue to demonstrate the validity of tools. It has been noticed that

various researchers have used open-source projects, datasets, Gerrit and GitHub projects for

validity. For example, Z. Liao et al. [60] proposed validation via dataset. In a research article

[27], M. M. Rahman et al. presented a validation approach i.e., based on the Gerrit repository

project. Similarly, C. Yang et al. [63] identified a validation approach based on GitHub

projects. Therefore, in this section, the effort has been made to figure out the validation

techniques that are used by worthy researchers to validate the leading CRR Tools. In Table 7,

validation techniques are mentioned against the leading CRR tools.

We found 3 studies [12], [16] and [60] where validation of 5 tools is reported via datasets.

i.e., LDA, Review Bot, TIE, Naïve Bayes and Rev Finder. Similarly, Tools i.e., CORRECT,

Carrot, Profile-based, Who Review and RSTrace+ are validated via Open-source Projects as

reported by [67], [68], [69], [70]. Likely, Who Do, CoreDevRec and RevRec are validated

via GitHub Repository projects [62], [63]. Lastly, ADCR has been validated via the Gerrit

repository project named ‘Core-Plugins’ [27].

For elaboration, we discuss the ‘CORRECT’ tool. It has been validated via 10 open-source

projects. The data in these open-source projects were about Atomix, Tablesaw, Vavr, Takes,

Dkpro-core, Pac4j, Open stack, Android and Qt. This tool successfully served 17115 pull

requests (project files submitted for reviewer recommendation) concerning these open-source

projects.

Table 7. Leading CRR Validation Protocols

Sr. # Tools Validation Techniques Reference

1 CORRECT 10 open-source projects (17115 pull requests) [76]

2 WhoDo Five repositories of GitHub [72]

3 Carrot Open-source Ericsson Project [73]

4 Review Bot Two Datasets (one large and one small) [60]

5 TIE Two Android pull requests datasets [12]

6 ADCR Gerrit code review project [31]

7 Profile Based Four large open-source projects

[75] 8 WhoReview Four long-lived open-source projects in a large

organization

9 CoreDevRec Five popular projects with 18651 pull requests in GitHub [68]

10 Naïve Bayes Dataset of 51 projects
[16]

11 RevFinder Dataset of 51 projects having 42,045 reviews

12 LDA Two Android pull requests datasets [12]

13 RSTrace+ Evaluated on 40 open-source projects [74]

24

14 RevRec Two popular projects in GitHub [69]

3) Optimization Algorithms:

Primarily, CRR tools are based on certain optimization algorithms. These algorithms serve as

the backbone of these tools. A tool works on a specific algorithm to recommend a reviewer.

A specific optimization algorithm takes into account certain objectives e.g., ‘reviewer

experience’, ‘reviewer workload’ and ‘reviewer ~ developer collaboration’. A review of the

selected literature revealed that there exist various optimization algorithms. To answer

research question 3, We have identified the 25 well-known, recently used and distinguished

optimization algorithms from 2011-March 2022 as shown in Table 8, which explains the

algorithm, its abbreviation and its type i.e., single, multi and many. For example, a single-

objective (i.e., availability of reviewer) optimization algorithm has been proposed by the

authors of [20]. Likewise, the authors of [21] presented a multi objectives optimization

algorithm that takes into account three objectives i.e., availability, expertise and collaboration

of reviewers to recommend a reviewer. Moreover, some studies have presented many

objective (more than three objectives) algorithms as well.

As noticed, the algorithms such as ‘Strength Pareto Evolutionary Algorithm’, ‘Niched Pareto

Genetic Algorithm’ and ‘Pareto Archived Evolution Strategy’ are single-objective

optimization algorithms. Similarly, ‘Non-dominated Sorting Genetic Algorithm’, ‘Multi-

Objective Ant Colony Optimization’ and ‘Multi-Objective Genetic Algorithm’ are multi-

objective optimization algorithms. ‘Decomposition-based Elitist Non-Dominated Sorting

Algorithm’ (NSGA-III)’, ‘Unified Evolutionary Algorithm for Decomposition based Elitist

Non-Dominated sorting’ and ‘ϴ-Dominance Sorting Genetic Algorithm’ are many

objectives’ optimization algorithms. The most used and famous algorithm in researches is

NSGA-II. Different variants of NSGA-II are introduced by different researchers lately e.g.,

‘Multi-Objective Particle Swarm Optimization’ and ‘Non-dominated sorting and local

search’ as reported by [59], [71] respectively.

Table 8. Optimization Algorithms

Sr. # Algorithm Abbreviation (if available) Type Referenc

e

1 SPEA Strength Pareto Evolutionary Algorithm
Single

[49]

2 NPGA Niched Pareto Genetic Algorithm [43]

3 PAES The Pareto archived evolution strategy [27]

4 SPEA2 Strength Pareto Evolutionary Algorithm 2

Multi

[59]

5 NSGA-II Non-dominated Sorting Genetic Algorithm [77]

6 IBEA Indicator-Based Selection in Multi-Objective Search [54]

7 MOPSO Multi-Objective Particle Swarm Optimization [59]

25

8 MOACO Multi-Objective Ant Colony Optimization [40]

9 SA Simulated annealing algorithm [58]

10 MOEA Multi-Objective evolutionary algorithm [55]

11 ECGA The Extended Compact Genetic Algorithm [51]

12 SEMO The Simple Evolutionary Multi-Objective Optimizer [70]

13 EMOA Evolutionary Multi-Objective Algorithm [33]

14 SMS-EMOA S-metric selection Evolutionary Multi-Objective

Algorithm

[79]

15 €-MOEA The €-Based Multi-Objective Evolutionary Algorithm [36]

16 PSEA-II The Pareto envelope-based selection Algorithm II [40]

17 MOGA Multi-Objective Genetic Algorithm [56]

18 C-MOGA Cellular Multi-Objective Genetic Algorithm [51]

19 MSOPS-II Multiple single objective Pareto sampling algorithm II [35]

20 MOEA/IGD-

NS

A multi-objective evolutionary algorithm based on An

Enhanced inverted generational distance metric

[49]

21 BCE-IBEA Bi-criterion evolution for Indicator-Based

Evolutionary Algorithm

[48]

22 NSLS Non-dominated sorting and local search [71]

23 NSGA-III Decomposition based Elitist non dominated sorting

Algorithm

Multi

+

Many

[44]

24 ϴ-NSGA-III ϴ-Dominance Sorting Genetic Algorithm Many [78]

25 U-NSGA-III Unified Evolutionary Algorithm for Decomposition

based Elitist non dominated sorting Algorithm

Single

+

Multi

+

Many

[65]

4) Validity Threats:

There may be two types of validity threats i.e., ‘Internal’ and ‘External’. Internal validity

refers to how well the procedures of the study are validated or trustworthy while external

validity relates to the transfer of results from one situation/event to another with similar

characteristics. To answer our RQ6, there are some validity threats to the tools as well. To

answer RQ6, we present Table 9, in which we have summarized the tools along with their

internal and external threats.

To elaborate on the validity threats, we may discuss the ‘CORRECT’ tool (Ser 1 of Table 9).

One of its internal threats is that it is validated only for medium-sized projects and its

external threat is that it has only experimented with projects developed on Python, Java and

Ruby specifically. Similarly, ‘ADCR’ (Ser 2 of Table 9) internal threat is that its validation

gives results on Gerrit repository projects specifically. While its external threat is the Cold

start problem, i.e., a situation where newly joined users are difficult to recommend as they

don’t have any profile, experience, etc. So, external threat in the ‘ADCR’ tool is basically for

newly joined code reviewers. The other external threat is the limitation of their tool result to 5

26

project datasets only. Table 9 shows other tools and their respective Internal and external

threats respectively.

Note: Every research study provides mitigation ways/methods to overcome these threats in

respective studies.

Table 9. Threats to Validity for CRR Tools

Sr. # Tools Threats to Validity Reference

Internal threats External threats

1 CORRECT Validated on medium-sized

subject systems only

Experimented on python,

Java and Ruby projects

[76], [25]

2 ADCR Validation gives results on

Gerrit repository projects

Cold start problem for

newly joined code reviewers

[26], [31]

3 WhoReview +

TIE

Uses longitudinal data for

evaluation only

Validated on provided

dataset only

[8], [14]

4 CoreDevRec Related to errors and bias in

experimental data

Results are limited to 5

project datasets only

[62]

5 Naïve Bayes Related to errors and bias in

data (collection +

implementation)

Results on only those 51

projects on GitHub

[17]

6 RevFinder Involves manual

examination in reviewing

process

Limited to four dataset

results only

[16]

7 LDA Cannot ensure results

validation in the initial phase

of any project

Results may not be

generalized on other open-

source projects

[21]

8 RSTrace+ Related to data collection

and implementation +

Accuracy will be lower at

the start of the

recommendation

[23]

9 RevRec Related to nonlinear or time-

dependent validation results

Cannot generalize on other

code review tools or

projects

[24], [25]

5) Answers to Research Questions:

RQ1: What are the leading different Code Reviewer Recommendation tools defined from

2011-to March 2022?

Answer: In this SLR, we have identified 14 most acclaimed tools from selected studies that

are used for reviewer recommendation as discussed and shown in Table 6. This table presents

the names of the tools against their availability. It has been analyzed that the tools i.e.,

‘CORRECT’ and ‘RSTrace+’ (Reviewer suggestion by Traceability graph) are open source.

‘Carrot’, ‘RevFinder’ (Review finder) and ‘Review Bot’ are publicly available. The tools that

are commercially available for reviewer recommendation are ‘WhoDo’, ‘Profile-based’,

‘WhoReview’, ‘Latent Dirichlet Allocation’ and ‘RevRec’. Similarly, tools i.e., ‘TIE (Text

27

mining and file location), ‘ADCR’ (Appropriate Developer for Code Review), ‘Naïve Bayes’

and ‘CoreDevRec’ are organizational tools.

RQ2: How the leading CRR tools are validated?

Answer: Various validation techniques are utilized by the researches to demonstrate the

validity of their proposed tools. Table 7 presents the validation techniques for the identified

CRR tools. The techniques are identified as ‘open-source projects’, ‘datasets’, ‘Gerrit’ and

‘GitHub’ projects. We found 3 studies [12], [16] and [60], where validation of 5 tools is

demonstrated via ‘datasets’ i.e., ‘LDA’, ‘Review Bot’, ‘TIE’, ‘Naïve Bayes’ and ‘Rev

Finder’. Similarly, Tools i.e., ‘CORRECT’, ‘Carrot’, ‘Profile based’, ‘Who Review’ and

‘RSTrace+’ are validated via ‘Open-Source Projects’ as reported by [67], [68], [69] and [70].

Likely, ‘Who Do’, ‘CoreDevRec’ and ‘RevRec’ are validated via ‘GitHub Repository

Projects’ [62] and [63]. Lastly, ‘ADCR’ has been validated via the ‘Gerrit Repository

Project’ named ‘Core-Plugins’ [27]. As may be noticed that most of the tools were validated

with the help of ‘Open-Source Projects’.

RQ3: What are the (Single, many and multi objectives) optimization algorithms identified in

previous research?

Answer: This SLR has identified the 25 well-known and distinguished algorithms (2011-

March 2022) that are used by the CRR tools to recommend a suitable reviewer. Table 8

presents these algorithms. The type column consists of 3 categories: Single, multi and many.

As noticed, the algorithms such as ‘Strength Pareto Evolutionary algorithm’, ‘Niched Pareto

Genetic algorithm’ and ‘Pareto Archived Evolution Strategy’ are single-objective

optimization algorithms. Similarly, ‘Non-dominated Sorting Genetic Algorithm’, ‘Multi-

Objective Ant Colony Optimization and ‘Multi-Objective Genetic Algorithm’ are multi-

objective optimization algorithms. ‘Decomposition-based Elitist Non-dominated Sorting

Algorithm’ (NSGA-III)’, ‘Unified Evolutionary Algorithm for Decomposition based Elitist

non-dominated sorting’ and ‘ϴ-Dominance Sorting Genetic Algorithm’ are many objectives’

optimization algorithms.

RQ4: Which multi-objective optimization algorithm has the better research productivity over

the years from 2011-March 2022?

Answer: Research productivity is the frequency of use of a specific algorithm. After analysis

of the selected research studies (2011~2022) and as may be noticed in Fig. 8, it may be safely

claimed that NSGA-II [8], [9], [34], [55] and [71] has the highest research productivity.

Similarly, it is the most widely used multi-objective optimization algorithm used for code

reviewer recommendation lately. NSGA-II has gained popularity because of its non-dominant

28

sorting technique, which is very effective as it provides optimal solutions and also calculates

each objective fitness function value separately [21] and [32]. Moreover, it provides the most

reliable and steadfast recommendation in minimal conjunction time. NSGA-III [22], [38],

[39], [54] and [72] is another type of algorithm from the NSGA family which takes into

account ‘Many’ objectives. Different other algorithms in related researches are MOGA [58],

[61], [64] and [75], IBEA [37], [41], [45] and [48], MOEA/D [38], [56], SPEA [44], [53] and

MOACO [57]. Fig. 8 shows a bar chart between algorithms (vertical axis) and their usage

frequency (horizontal axis) in research over the last ten years.

Figure 8. Research Productivity of Algorithms (2011~2022)

RQ5: How the leading CRR tools may be ranked as per their accuracy?

Answer: While answering this research question, an effort was put in to draw a comparison

among accuracies of various identified CRR tools. After analyzing all the selected studies, we

could only find 6 studies, where the accuracy of the reported tools was mentioned. These

tools are mentioned in Table 10 along with the reported accuracies. It may be noticed that

only three of the mentioned tools have used the same type of approach. So, in actuality, the

real comparison can be drawn among these three tools i.e., ‘WhoReview’ (Ser 1 of Table 10),

‘TIE’ (Ser 2 of Table 10) and ‘Review Finder’ (Ser 3 of Table 10). The accuracy of the rest

of the three tools along with the identified approach is also mentioned in this table.

From the review of the selected literature, ‘Who Review’ has been identified as the CRR tool

with 85-92 % accuracy. Moreover, it takes into account the reviewers’ profiles while

recommending. The accuracy of ‘TIE’ has been identified as 75-90 %, as it follows the

reviewer profile and previous work done by reviewers. Likewise, ‘RSTrace+’ (Ser 4 of Table

29

10) recommends reviewers based on a traceability matrix approach with an accuracy of 80-

85%. ‘TIE’ and ‘RSTrace+’ are almost on the same level of accuracy but they both use a

different approach for a recommendation. The accuracy of the rest of the tools and their

approach factors may be figured out in Table 10.

Table 10. Ranking of CRR Tools based on Accuracy

Sr.# Tools Identified Factor Accuracy Reference

1 Who Review Recommend reviewers based on their

reviewer profile

85-92% [14]

2 Text mining and a file

location-based

approach (TIE)

Analyzes the reviewer profile and their

similarity based on previous work done

75-90% [8]

3 Review Finder Recommend via reviewer profile

similarity with the previously reviewed

files

80% [17], [19]

4 Reviewer Suggestion

by Traceability Graph

(RSTrace+)

Recommend reviewers on basis of

traceability matrix

80-85% [23]

5 Review Bot Recommend reviewer based on

experience & expertise

60-85% [6], [7]

6 WhoDo Suggest reviewer via load balancing

approach

68%-72% [3]

RQ6: What are the threats to the validity of the previous finding in the context of code

reviewer recommendation tools?

Answer: We identified 14 tools in total, however, validity threats have been discussed for

only 9 tools in their concerned studies. To elaborate on the validity threats, we may discuss

the ‘CORRECT’ tool (Ser 1 of Table 9). One of its internal threats is that it is validated only

for medium-sized projects and its external threat is that it has only experimented with

projects that are developed on Python, Java and Ruby specifically. Similarly, ‘ADCR’ (Ser 2

of Table 9) internal threat is that its validation gives results on Gerrit repository projects

specifically. While its external threat is in the context of the Cold start problem, i.e., a

situation where newly joined users are difficult to recommend as they don’t have any detailed

profile, experience, etc. So, external threat in the ‘ADCR’ tool is basically for newly joined

code reviewers. The other external threat is the limitation of results of ADCR to 5 project

datasets only. Moreover, further details are provided in Table 9.

3.4 Conclusion to Literature Review

Our SLR presents a systematic review of the literature concerning the domain of automated

Code Reviewer Recommendation (CRR). 62 landmark studies (published from 2011 – March

2022) were investigated and analyzed after filtering them out via a stringent selection

30

criterion. For ease of analysis and to explore the studies as per the research questions, studies

were further categorized into five groups i.e., CRR approaches, CRR Tool availability, CRR

Validation Protocols, CRR Optimization Algorithms and a General category.

After thoroughly analyzing the selected research articles, 4 different CRR approaches were

identified, 14 tools are found that are currently being used for automated CRR, 4 validation

protocols are identified in the review and 25 optimization algorithms (single, multi and

many-objective) have been alienated from the selected research articles. The aspects

emphasized in this article welcome the researchers and practitioners to select the respective

approach, tool, algorithm and validation protocol as per their research requirement/demand,

as it may vary from case to case. However, based on our analysis, it may be safely concluded

that the ‘Expertise and experience’ based CRR approach is widely used, whereas,

‘WhoReview’ is the best tool to automate reviewer recommendation due to higher accuracy

(85-92%). Moreover, in terms of research productivity over the last 10 years, NSGA-II is the

most frequently / widely used multi-objective optimization algorithm.

3.5 Summary Table of Literature Review

Table 11. Summary Table of Literature Review

S.

No

.

Ref.

No.

Yea

r

Author(s) Tools/

Framework

Algorith

m

Number

of

objectiv

es

Results

1. [12] 2015 Xia, X., Lo,

D., Wang, X.,

& Yang, X.

TIE Text

Mining

and

Similarit

y Model

1 Prediction

Accuracy=85

%

MRR=64%

2. [31] 2020 Sadman, N.,

Ahsan, M. M.,

& Mahmud,

M. P.

ADCR NLP

Techniqu

es

1 Training

Accuracy=95

%

Validation

Accuracy=

94%

3. [68] 2015 Jiang, J., He, J.

H., & Chen, X.

Y.

CoreDevRec Support

vector

machines

1 Accuracy=80

%

MRR=0.63

4. [16] 2018 Lipcak, J., &

Rossi, B.

Source Code

Reviewer

Recommendati

on

Naïve

Bayes

1 MRR= 59%

5. [76] 2016 Rahman, M.

M., Roy, C.

CORRECT Code

Reviewer

2 Precision=86

%

31

K., & Collins,

J. A.

Ranking

Algorith

m

Recall=80%

6. [74] 2019 Sülün, E.,

Tüzün, E., &

Doğrusöz, U.

RSTrace+ Software

Artifact

Traceabil

ity

Graphs

1 Recall=85%

MRR=73%

7. [16] 2015 Thongtanunam

, P.,

Tantithamthav

orn, C., Kula,

R. G.,

Yoshida, N.,

Iida, H., &

Matsumoto, K.

I

RevFinder File path

Similarit

y-Based

1 Accuracy=87

%

MRR=0.55

8. [73] 2020 Strand, A.,

Gunnarson,

M., Britto, R.,

& Usman, M.

Carrot Machine

learning-

based

Algorith

m

1 Accuracy =

78%

9. [60] 2013 Balachandran,

V.

Review Bot Statis

Analyzer

& Auto-

reviewer

Algorith

m

1 Prediction

Accuracy59-

92%

10. [69] 2016 Ouni, A.,

Kula, R. G., &

Inoue, K.

RevRec GA 2 Precision=58

%

Recall=71%

MMR=69%

11. [72] 2019 Asthana, S.,

Kumar, R.,

Bhagwan, R.,

Bird, C.,

Bansal, C.,

Maddila, C., ...

& Ashok, B.

WhoDo Scoring

Function

+ Load

Balancer

2 Precision=51

%

Recall=64%

F1-score=

57%

12. [9] 2020 Rebai, S.,

Amich, A.,

Molaei, S.,

Kessentini, M.,

& Kazman, R.

A

Multi‑Objectiv

e Code

Reviewer

Recommendati

on

Framework

NSGA-II 3 Precision=60

%

Recall=53%

MMR=68%

13. [75] 2021 Chouchen, M.,

Ouni, A.,

Mkaouer, M.

W., Kula, R.

WhoReview Indicator-

Based

Evolution

ary

2 Precision=68

%

Recall=77%

MRR= 66%

32

G., & Inoue,

K.

Algorith

m

14. [12] 2016 Bhutada, S.,

Balaram, V. V.

S. S. S., &

Bulusu, V. V.

Semantic

Latent

Dirichlet

Allocation

(SLDA)

Latent

Dirichlet

Allocatio

n66

1 F-

measure=81

%

Purity=96%

15. [2] 2015 Zanjani, M. B.,

Kagdi, H., &

Bird, C.

cHRev Reviewer

-

Expertise

and File–

Review

Maps

1 Precision=59

%

Recall=48%

F-

Score=53%

16. [16] 2019 Li, H. Y., Shi,

S. T., Thung,

F., Huo, X.,

Xu, B., Li, M.,

& Lo, D.

Deep Review Neural

Network-

Deep

Multi-

instance

Learning

1 F1

score=0.49

Area Under

the Curve=

0.87

17. [77] 2016 Almhana, R.,

Mkaouer, W.,

Kessentini, M.,

& Ouni, A.

Recommendin

g Relevant

Classes for

Bug Reports

using

Multi-objective

Search

NSGA-II 2 Precision=89

%

Recall=72%

Accuracy=68

%

18. [31] 2017 Rahman, M.

M., Roy, C.

K., & Kula, R.

G.

RevHelper Random

Forest

1 Precision=74

%

Recall=78%

F1-

Score=63%

Accuracy=65

%

Table 11, presents a summary of the literature on different tools/frameworks that are

proposed by worthy researchers. It also provides crisp and to-the-point knowledge about

CRR tools/frameworks as the Algorithm used, the number of objectives defined, results,

author's information, publication year and cited reference number.

3.6 Research gap

This section discusses the research gaps and limitations encountered in previous literature.

Analysis was done on around 62 selected primary studies (in terms of tools/frameworks,

algorithms, validation protocols, etc.), after an extensive screening process to look for

research that provides a recommendation for code reviewers for code review.

33

The gap found in our selected studies was that no research focused on using a multi-objective

algorithm i.e., NSGA-III (an extended form of NSGA-II, proposed in early 2014) to

recommend code reviewers by taking 3 objectives into account simultaneously in the code

reviewing process. There was no single fully automated tool/framework proposed to facilitate

reviewers to do this cumbersome job. Though partially proposed or semiautomated tools i.e.,

models and algorithm’s pseudocode available in literature but no framework is proposed

using them.

We found only one study [9], where authors worked on 3 objectives to optimize them using

NSGA-II. But on contrary, many researchers have found that NSGA-II does not perform well

on problems with more than two objectives. This is why [65], [82], [44] and [45] have then

worked on NSGA-III to provide a method for problems with more than two objectives. We

are adding our effort to that research gap by discussing and validating the potential of NSGA-

III to optimize 3 fitness functions simultaneously using NSGA-III. Also, to estimate and

compare the execution time of both the algorithm for the same experiments. The goal is to

use the same 3 objectives as used by [9] and then provide a comparative analysis with this

research and other state-of-the-art as well to find a better solution to this gap.

34

 Chapter 4

 PROPOSED APPROACH

35

Chapter 4 : PROPOSED APPROACH

In this section, the recommendation of a most appropriate set of reviewers is presented for

pull requests to be reviewed as a framework/approach by using the NSGA-III optimization

algorithm. The proposed approach consists of data collection, data pre-processing, main

components of the approach, detailed knowledge about NSGA-III (i.e., high-level

pseudocode) algorithm, solution representation, fitness functions and change operators.

The recommendation of reviewers is performed by using the NSGA-III optimization

algorithm. For validation and visualization in form of graphs, NSGA-II is implemented as

well in comparison to compare the results of both. Figure 9 shows the fundamental steps of

the proposed approach.

The methodology starts with a project’s new pull request to be reviewed is received. The data

is collected from the project in terms of its previous pull request information (newly opened,

under-review, closed), reviewers’ and developers’ information, etc.

Figure 9. Overview of multi-objective search-based approach for CRR

36

4.1 Data Pre-Processing

To clean data and organize it according to the requirement of the framework, pre-processing

is performed.

4.1.1 Conversion of SQL & JSON to .CSV Format

The first step of data preprocessing is to convert the data into .CSV file format as it is faster

to handle, standard format, and easy to parse. We find some datasets that are in SQL format

and sometimes we use APIs to fetch data from ongoing live projects. Thus, the conversion of

data is very important in a standard format to use in the proposed framework. Figure 10 and

11 shows the code snippet by which SQL and JSON are converted into .CSV file format.

Figure 10. SQL to .CSV Format

Figure 11. JSON to .CSV Format

37

4.1.2 Removal of NaN Values

NaN is known as the Not-a-Number value. It represents the missing/absence of value in a

cell. It is a type of special floating-point value that cannot be converted into any other type

than float. In our framework, NaN values are replaced by zero. The difference between zero

and NaN is that zero is a value but NaN represents the absence of any value. The purpose of

removing NaN values is because the optimization algorithm does not perform well or the

accuracy of the algorithm can’t be made sure on NaN values data. Figure 12 shows the data

with NaN values (left side) and data when replaced with zero (right side). It may also be

noticed that we found NaN values only in the ‘Closed’ date and time of pull request data.

Figure 12. NaN Value (left) and Removed NaN Values (right)

4.1.3 Timestamp Data

The DateTime data is converted into timestamp data in preprocessing. This is an optional step

(if required according to the dataset) to perform while pre-processing data. The purpose of

the step is to follow the required standard format of the data frame i.e., timestamp otherwise

it shows an error to convert it into a timestamp. Figure 13 shows the data in Date-Time

format (left) and Timestamp formatted data (right).

38

Figure 13. Date-Time Data (left) and Timestamp formatted data (right)

4.1.4 Normalization

In the last step of pre-processing, Data was normalized by doing multiple steps.

a) Some unwanted columns were dropped from the data that were of no use according to

the framework. By doing this, the computations got quicker and the load of the

dataset was reduced.

b) Normalization of two columns ‘Status’ and ‘Priority’ has been done as they have

string values (high, low, medium) repetitively in the data. So, to faster the

computations we marked them with integers as (0, 1, 2). Table 12 shows both

columns and their normalized values.

c) Lastly, the data (fitness values) for displaying the results are normalized between the

values ranging from 0 to 1. This type of normalization is called Min-Max scaling. In

our proposed framework, the NumPy Python library is used to implement its scaling

function. The purpose of Min-Max scaling is to remove any outlier from the dataset.

39

After performing normalization, fitness values would not be less than 0 and the

maximum value wouldn’t be greater than 1. Figure 14 displays the (left) un-

normalized data where the values of fitness are very less. On the right side, the fitness

values are normalized between zero to one.

Table 12. Data Normalization

Status Priority

Value in Dataset Value Normalized Value in Dataset Value Normalized

In progress 0 Urgent 0

Feedback 1 High 1

Rejected 2 Intermediate 2

Resolved 3 Normal 3

Closed 4 Low 4

Figure 14. Un-normalized data (left) and Normalized data (right)

4.2 Code Reviewer Recommendation (CRR) Framework

This section presents the framework in two steps. Step 1 explains the data extraction or major

components of the approach while step 2 explains the optimization algorithm i.e., NSGA-III

and fitness functions, etc.

4.2.1 Major Components of the Approach

There are 3 major components of the approach as shown in the methodology figure. The

purpose is to extract the data from the dataset by making the respective matrix as required by

the framework. Collectively there are major three components of our approach that are

defined below:

4.2.1.1 Reviewer Expertise Matrix

40

This component helps the framework in identifying the reviewer and file connections. This

matrix can represent the expertise of a reviewer with the help of previous commits and those

pull requests that have been closed. Expertise is defined as the number of times a reviewer

reviewed/is familiar with the same file. Matrix keeps the track record of every reviewer that

worked on a specific file and the number of times reviewed that particular time.

𝐹𝑅 (File-Reviewer) is a P x M matrix where each entry is stored as 𝑓𝑟(𝑘,𝑖) (number of times

reviewer ri reviewed the file fk. P is the total number of files requested to be reviewed and M

is the total number of reviewers working on a project, where i € {1, 2…M} and k € {1, 2...

P}.

𝑭𝑹 = (𝒇𝒓(𝒌,𝒊)) ∈𝑷×𝑴 Equation 1 [9]

4.2.1.2 Reviewer Developer Collaboration Matrix

The collaboration between a reviewer and developer is presented in this component of the

approach. The history of closed pull requests is used to present this matrix. For every

reviewer, the number of times they collaborated with the developers together and the number

of files reviewed are extracted. The collaboration matrix (DR) is defined as N x M where

each entry 𝑑𝑟(𝑗,𝑖) represents the number of times reviewer ri reviewed a file, changed by a

developer dj where i € {1,2, …, M} and j € {1,2, …., N}, M is the total number of reviewers

and N is the total number of developers.

𝑫𝑹 = (𝒅𝒓(𝒋,𝒊)) ∈𝑵×𝑴 Equation 2 [9]

4.2.1.3 Reviewer Availability

The availability of a reviewer is defined as the workload/number of files per open pull

request where they are currently involved. Availability is a vector A = [a1, a2, ….am] where ai

represents the total number of files of the open pull of a reviewer.

4.2.2 Multi-Objective Optimization (NSGA-III)

Multi-objective search is defined as ‘the optimization of more than one objective

simultaneously’. But it is difficult to find a solution that results in an optimal one as the

objectives are conflicting. As result, a multi-objective search algorithm is a solution that

could provide a set of different solutions. Since in our framework we are proposing multi

objectives to be optimized and provide more than one solution, non-dominated sorting

genetic algorithm-III (NSGA-III) is an algorithm that has demonstrated its usefulness in three

or more objectives.

41

The pseudocode of NSGA-III is explained in Algorithm 1 [83].

NSGA-III starts with an input, randomly initialized population with size N, a set of H well-

distributed reference points that are chosen on a unit hyperplane using Das and Dennis’s

method [83]. At a generation St, complete population Pt produces new offspring population

Qt with the help of mutations and recombination operators in which everyone population

member is associated with each reference point and any selection operator will allow

competition to be set among different reference points. A combined population Rt = Pt ∪ Qt

 is then formed. So, we have got the first non-dominated solution Pt+1 until every solution

cannot be included from the whole front. All members of the merged population, at every

generation, are normalized using a systematic extreme point update strategy mainly by using

population-minimum and population-maximum objective values. Each member is then

associated with a particular reference direction using the orthogonal distance of a member to

a reference direction. Thereafter, a niching methodology is used to choose a diverse set of

solutions by providing equal emphasis to each reference direction. The algorithm is repeated

until the stopping criteria are matched.

Key Points:

❖ NSGA-III performs selection if and only if at least one of the two individuals being

compared is infeasible. In that case, NSGA-III prefers feasible over infeasible and

less violating over more violating individuals.

❖ To maintain better Coverage of solutions NSGA-III uses a reference point mechanism

while NSGA-II uses crowding distance calculation.

❖ NSGA-III (Deb & Jain, 2014; Jain & Deb, 2014) uses to pre-allocated reference set

mechanism to choose better diverse solutions in the size of the population in free

space, whereas the NSGA-II algorithm does not require any pre-allocated methods on

the objective space. So, with more time taken to generate the first solution in spaces,

NSGA-III has easily generated the first solution so NSGA-III is better than the

NSGA-II algorithm.

Algorithm 1: High-level Pseudocode for NSGA-III [83]

Input: H structured reference point Zs and parent population Pt (total population)

Output: Pt+1 (non-dominated solution)/Population P

1: St = Ø, i=1

2: Qt = Recombination + Mutation (Pt)

42

3: Rt = Pt ∪ Qt

4: (F1, F2, ….) = Non-dominant-sort (Rt)

5: repeat

6: St = St ∪ Fi and i = i + 1

7: until |St| ≥ N

8: The last front to be included: Fl = Fi

9: if |St| = N then

10: Pt+1 = St, break

11: else

12: Pt+1 = 𝑈𝑗=1
𝑙−1Fj

13: Points to be chosen from Fl: K = N - |Pt+1|

14: Normalize fitness objectives and create a reference set Zr : Normalize (fn, St, Z
s)

15: Associate each member s of St with a reference point [closed reference point, the

distance between s and closed reference point]

16: Compute niche count of reference point and then Qt+1 = create new pop (Pt+1)

17: t=t+1

18: end if

4.2.3 Fitness Functions

Since we are working on a multi-objective optimization so in our approach, we intend to

provide optimization on three fitness functions. These three objective functions are Expertise,

Availability, and Collaboration. We aim to maximize the formulation of expertise and

availability of the reviewers while minimizing the fitness function of collaboration due to

socio-technical aspects of reviewers and developers in the hope to reduce human biases.

The approach in this thesis presents the output of a set of non-dominated solutions. The

motivation behind using multi-objective functions is a recent observation that was studied at

Microsoft [51], that highlights promoting a variety of norms of the team. For example; some

teams prefer to be diverse and some prefer to have close connections. Sometimes the better

connection leads to a more valuable result in less time and on some occasions, it leads to

human biases or quick code approval due to shorter deadlines (if allied with low expertise).

It is up to the team member to make a change in collaboration function if needed according to

their preferences. The goal is to provide a varied range of good reviewers as output rather

43

than one solution so that a user could select the reviewer according to his/her needs. The

details of fitness functions are explained in the below sub-sections:

4.2.3.1 Availability

Availability is defined as the inverse of approximated wait until reviewers from their

workload (already working on a set of file S) become available. In our approach, the

workload is considered as the collection of the number of commits submitted lately within

the last seven days and the total amount of all open pull requests.

𝑨𝒗𝒂𝒊𝒍𝒂𝒃𝒊𝒍𝒊𝒕𝒚 =
𝟏

𝚺𝒌=𝟏
𝑷 𝚺𝒊=𝟏

𝑴 𝒂𝒊∗𝑺[𝒌,𝒊]
, 𝒔𝒌,𝒊 > 𝟎 Equation 3 [9]

In the equation, a = {a1, a2….am} for contains the task that are in queue for a reviewer. The

tasks queued for a reviewer ri are represented by ai.

P= total number of files requested to be reviewed

M= total number of reviewers

4.2.3.2 Expertise

File urgency is an important column in the dataset that defines the status of priority a feel

needs to be reviewed. The file would take a score of urgency/priority from the pull request as

defined in Table no 12. FR (File reviewer) and PR (File priority) would both be used to

define the expertise function.

𝑬𝒙𝒑𝒆𝒓𝒕𝒊𝒔𝒆 = 𝚺𝒌=𝟏
𝑷 𝚺𝒊=𝟏

𝑴 𝑭𝑹[𝒌,𝒊]+𝑷𝑹[𝒌]

𝑺[𝒌,𝒊]
, 𝒔𝒌,𝒊 > 𝟎 Equation 4 [9]

Where M= total number of reviewers

P= total number of developers

FR= File-Reviewer matrix

S [k, i] = rank of the reviewers

Note: A reviewer having a rank of 2 would be more appropriate/expert for reviewing in

comparison to a reviewer having a rank of 6 or 7. The lesser the rank, the more appropriate

the reviewer, and the more the availability and expertise both, as the rank is in the

denominator of the formula in both functions. Rank is inversely proportional to the expertise

and availability of the reviewer. Reviewers with maximum expertise and availability would

have more chances to sustain in the next generation of the algorithm to produce more and

better results. And the final output of set of peer reviewers would definitely be the reviewers

having best expertise.

44

4.2.3.3 Collaboration

This is the only objective which we aim to minimize, for the factor of biasness to avoid. It is

the summation of all associates between the recommended reviewers chosen to work with a

selected set of developers.

𝑪𝒐𝒍𝒍𝒂𝒃𝒐𝒓𝒂𝒕𝒊𝒐𝒏 = 𝚺𝒌=𝟏
𝑵 𝚺𝒋=𝟏

𝑷 𝚺𝒊=𝟏
𝑴 𝑫𝑹[𝒋, 𝒊] ∗ 𝑭𝑫[𝒌, 𝒋] ∗ (𝑺[𝒌, 𝒋] > 𝟎) Equation 5 [9]

In the equation above,

P=total number of files requested to be reviewed

M=total number of reviewers

N=total number of developers

S [k, j] = rank of reviewer

DR=Developer-Reviewer Matrix

FD=File-Developer Matrix

Both the matrix FD and DR are extracted during the data extraction step as defined in the

approach diagram.

45

 Chapter 5

 IMPLEMENTATION, RESULTS & DISCUSSION

46

Chapter 5 : IMPLEMENTATION, RESULTS & DISCUSSION

This section provides details about the implementation, results of the different projects, and

their discussion. The implementation consists of data gathering of different ongoing

opensource projects for validation and results formulation. It also consists of basic

information relevant to implementation/experimental setup i.e. (language, tool, projects, and

framework used). The framework has been analyzed and discussed in this section.

The results were compared to the state-of-the-art where the worthy researchers have used the

same datasets in mono, bi and triple objectives with other algorithms. We only

reimplemented NSGA-II to compare the results with our NSGA-III triple objectives, as

authors [9] didn’t provide their code, fitness values, population and generation values and

graphical representations to compare.

5.1 Data Collection/Dataset

We evaluated our approach on 3 different ongoing open-source projects as LibreOffice, Qt,

and OpenStack. Two datasets (LibreOffice and Qt) were last updated till 2016 and one was

last updated till 2018 in SQL format only. To bring versatility and add novelty to datasets, we

collected the updated data about the closed pull request till December 2021. Table 13 show

the summary for open-source validation projects that includes number of reviewers, number

of pull requests (closed and newly opened), duration and repository link. LibreOffice is an

opensource software used for formal documentation (word, spreadsheets, slides and

diagrams). Qt is a multi-platform software used for creating different user interfaces. Lastly,

OpenStack is a cloud computing-based software used for virtual servers and other resources

to made available for end-users. We selected these 3 projects as they have been a part of

literature frequently [9], [29], [11], [51], [69] and our comparison would be a strong result.

Also, these projects contain large number of code reviews.

Pre-Cap of Data Collection: For expertise and collaborations fitness function explained in

methodology, we considered all the data since the start of the project because we accept as

truth that more information about the expertise and collaborations of the developers is useful

in assigning the appropriate reviewer set in the end.

Regarding the reviewer availability and to approximate the current workload of them, we

considered the last 7 days of open pull requests.

The collection of data was gathered by three different ways.

47

The complete Dataset shared in .CSV format is now shared and available in dataset.rar file

https://drive.google.com/file/d/1CiZWHc0z_JFZ_Tg7pewTfNZb91o9XzIg/view?usp=sharin

g

5.1.1 SQL Format

First the SQL format files that were shared by previous authors [9], [11], [29], [51], [69] were

downloaded from the link https://kin-y.github.io/miningReviewRepo/. The SQL files were

converted into .CSV as explained in Data preprocessing step and then used.

5.1.2 CSV Format

The closed pull request after 2016 and 2018 were downloaded from the accounts of projects

by registering with them as reviewer/developer. The .csv format files were accessed or

download (closed pull request only). The downloaded files were merged with the CSV’s that

were gathered after conversion from SQL files (Section 5.1.1).

5.1.3 Postman API Platform

The newly opened pull request was not available in .CSV format on accounts of projects. We

collected data in JSON format of past 7 days using an HTTP request of Postman API

Platform via an HTTP request as shown in Example pull request (Figure 15). The JSON files

were converted into .CSV as well in part of preprocessing of data.

Figure 15. An example of Postman Data Collection

https://drive.google.com/file/d/1CiZWHc0z_JFZ_Tg7pewTfNZb91o9XzIg/view?usp=sharing
https://drive.google.com/file/d/1CiZWHc0z_JFZ_Tg7pewTfNZb91o9XzIg/view?usp=sharing
https://kin-y.github.io/miningReviewRepo/

48

Table 13. Summary Table of Open-Source Validation Projects

Project

name

Repository link Project

Duration

Num

of pull

request

(Close

d)

Num of

pull

request

(New-Past

7 days)

Num

of

review

ers

LibreOffice https://git.libreoffice.org/core 07/2014~

12/2021

28030 12 934

Qt https://code.qt.io/cgit/qt/qtbase

.git/

05/2011~

11/2021

115888 25 1437

OpenStack https://opendev.org/openstack 07/2011~

12/2021

173749 52 5091

5.2 Experimental Setup and Research Questions

The proposed approach is implemented in Python Language on Jupiter Lab (3.0) using

Pymoo library [84] for algorithm working and visualization. The overview of algorithm is

provided in methodology (Section 4.2.2). While defining problem and Pymoo algorithm

library, the change or genetic operators are used. We applied Das-Dennis [83] approach to

define reference points. The rest of the genetic operator used in results are explained in table

14. The literature results are computed using random selection (to compare with state of the

art), we have used tournament selection in one experiment (to give a new horizon for future

comparison). Total 7 experimental sets are made in which first 5 are with random selection,

other two with tournament selection. Experiment 7 is a try and check set for abnormal

behavior of algorithms.

We used ‘Uniform (‘real_ux’, ‘bin_ux’, ‘int_ux’) Crossover’ and ‘Polynomial (‘real_pm’,

‘int_pm’) Mutation’ to explore and exploit the search space. Mutation prevents all solutions

in the population falling into a local optimum. Also, it helped to make us sure with the results

as search algorithms are stochastic/probabilistic in nature.

The final output of the algorithm is a set of solutions representing trade-offs between the

three objectives. It is up to the manager to select the reviewer’s assignment (choose a

solution) based on their preferences. In general, the preferences are defined based on the

current context: urgency to release code quickly, available resources, speedy growth phase of

https://git.libreoffice.org/core
https://code.qt.io/cgit/qt/qtbase.git/
https://code.qt.io/cgit/qt/qtbase.git/
https://opendev.org/openstack

49

the project, etc. These different contexts are not changing daily and they are not related to

only one or few pull-requests.

Table 14. Experimental Genetic Operators

Experiment

Number

Pop

Size

Selection

Operator

Crossover

Operator

Crossover

Probability

Mutation

Operator

Mutation

rate

Number

of

Generatio

n

Exp. 1 50 Random Uniform 0.5 Polynomial 0.01 100

Exp. 2 50 Random Uniform 0.6 Swap 0.1 80

Exp. 3 100 Random Uniform 0.8 Polynomial 0.2 100

Exp. 4 200 Random Uniform 0.5 Polynomial 0.1 230

Exp. 5 150 Random Uniform 0.8 Swap 0.05 200

Exp. 6 80 Tournament

(Selection

pressure = 2)

Uniform 0.85 Polynomial 0.5 120

Exp. 7 100 Random /

Tournament

Uniform 0.5 Polynomial 0.5 50

5.2.1 Research Questions

The research questions are presented for this thesis to represent results in a classical way to

estimate the effectiveness of our approach.

RQ1- Does the proposed approach efficiently and precisely identify the relevant code

reviewers?

RQ2- Compare the proposed approach performance, if it is significantly better than the

existing tools or frameworks (mono-objective approach of all objectives, search algorithms

and other variants of GA)? Also compare the execution time for finding best solutions by

NSGA-II and NSGA-III on the same experiments?

To answer research question 1, the validation is performed on 3 medium sizes to large size

open source project to evaluate the efficiency of our CRR approach. To follow the fair

comparison with previous work, we took recently closed reviews and their reviewers

assigned to these pull request. Every fitness function was run by setting them together in a

defined problem. The efficiency is validated in result of Precision@Exp., Recall@Exp.,

MRR and Average Accuracy.

We calculate the precision and recall as follows.

50

𝑷𝒓𝒊𝒄𝒊𝒔𝒊𝒐𝒏@𝑬𝒙𝒑 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
 Equation 6 [11]

𝑹𝒆𝒄𝒂𝒍𝒍@𝑬𝒙𝒑 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
 Equation 7 [11]

where TP (True Positive) corresponds to the number of top-k reviewers recommended by the

approach and also actual reviewers;

FP (False Positive) corresponds to the number of top-k reviewers recommended by the

approach, but not actual reviewers;

FN (False Negative) corresponds to the number of actual reviewers, that are not among the

top-k reviewers recommended by the approach.

TN (True Negative) corresponds to the number of not actual reviewers, that are also not

among the top-k reviewers recommended by the approach.

MRR (Mean Reciprocal Rank): The average rank of correct reviewers in the recommendation

list. The higher the MRR, the better the rank recommendation. The mean reciprocal rank is

the average of the reciprocal ranks of results for a sample of recommendation list.

Given a reviewers recommendation lists R, the score MRR is calculated as follows:

𝑴𝑹𝑹 =
|𝚺∀𝒓𝝐𝑹|𝒓𝒂𝒏𝒌(𝒓)

|𝑹|
 Equation 8 [9]

where rank(r) is the rank score of the first reviewer in the recommendation list r. The higher

is the MRR score, the better is the recommendation approach.

Average Accuracy of Projects: The projects accuracy is determined as average accuracy in

terms of number of experiments performed in that project. The average accuracy is

determined as:

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝜮𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚(𝑬𝟏+𝑬𝟐…𝑬𝑵)

𝑵
 Equation 9 [51]

Where E1 is the accuracy of experiment 1, E2 is the accuracy of experiment 2 till last

Experiment. The N is the total number of Experiments used in a project.

The Accuracy of each experiment is calculated as:

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑵+𝑭𝑷
 Equation 10 [51]

To answer research question 2, we compared our above metrics with the state-of-the-art.

We compare our results with WhoReview (IBEA Algorithm), REVFINDER, ReviewBot and

some other variants of GA were compared as well (GA, NSGA-II AEC). The Comparison of

our approach with NSGA-II was done using execution time calculation and graphical

visualization for showing maximize, minimize and premature convergence rate of fitness

function with different genetic operators.

51

We also calculated the Mean fitness for all the experiments for NSGA-III and NSGA-II. For

expertise and availability fitness functions: the greater the value (nearer to 1), better the

fitness. And for collaboration (since we are minimizing it), the lesser the value, the better the

fitness. Also, we measured and compared the execution times for both NSGA-II and NSGA-

III to compute the comparison of time factor as well.

𝑴𝒆𝒂𝒏 𝑭𝒊𝒕𝒏𝒆𝒔𝒔 =
𝚺𝐅𝐢𝐭𝐧𝐞𝐬𝐬_𝐯𝐚𝐥𝐮𝐞𝐬

𝑷𝒐𝒑𝒔𝒊𝒛𝒆
 Equation 11 [69]

Where Σ is the sum of all fitness values against every pop size divided by total pop-size.

Confusion matrix for LibreOffice Experiment no 6:

LibreOffice Confusion Matrix
Actual Values

Recommended Not Recommended Total

Predicted

Values

Recommended TP=210 FP=99 309

Not Recommended FN=68 TN=123 191

Total 278 222 500

Precision Calculation: TP/(TP+FP) → 210/(210+99) → 0.679 → 67%

Recall Calculation: TP/(TP+FN) → 210/(210+68) → 0.755 → 75%

Accuracy Calculation: TP+TN/(TP+TN+FP+FN) → 210+123/(210+123+99+68) → 0.66 →

66%

Confusion matrix for Qt Experiment no 6:

Qt Confusion Matrix
Actual Values

Recommended Not Recommended Total

Predicted

Values

Recommended TP=194 FP=87 281

Not Recommended FN=93 TN=126 219

Total 287 213 500

Precision Calculation: TP/(TP+FP) → 194/(194+87) → 0.690 → 69%

Recall Calculation: TP/(TP+FN) → 194/(194+90) → 0.675 → 67%

Accuracy Calculation: TP+TN/(TP+TN+FP+FN) → 194+126/(197+126+87+93) → 0.64 →

64%

Confusion matrix for OpenStack Experiment no 6:

OpenStack Confusion Matrix
Actual Values

Recommended Not Recommended Total

52

Predicted

Values

Recommended TP=246 FP=61 307

Not Recommended FN=37 TN=156 193

Total 283 217 500

Precision Calculation: TP/(TP+FP) → 246/(246+61) → 0.803 → 80%

Recall Calculation: TP/(TP+FN) → 246/(246+37) → 0.869 → 86%

Accuracy Calculation: TP+TN/(TP+TN+FP+FN) → 246+156/(246+156+61+37) → 0.804 →

80%

Similarly, all other confusion matrix for other experiments is made and precision, recall and

accuracy values are calculated as shown in Table 15 and 16. The highlighted/bold values in

both the tables are the best precision and recall values found in all three projects.

Table 15. Precision Results

Project

Name

Experiment

number

Precision@Exp.

Proposed

Approach

(NSGA-

III)

AEC

(NSGA-

II) [9]

RevRec

(GA)

[69]

Who

Review

(IBEA)

[51]

RevFinder

[11]

ReviewBot

[29]

LibreOffice

Exp. 1 0.64 N/A 0.52 0.61 0.48 0.38

Exp. 2 0.59 N/A 0.45 0.54 0.4 0.36

Exp. 3 0.57 N/A 0.50 0.56 0.42 0.40

Exp. 4 0.52 N/A 0.41 0.53 0.32 0.32

Exp. 5 0.51 N/A 0.39 0.46 0.3 0.23

Exp. 6 0.67 N/A N/A N/A N/A N/A

Qt

Exp. 1 0.66 0.58 0.49 0.58 0.3 0.22

Exp. 2 0.62 0.51 0.42 0.53 0.27 0.19

Exp. 3 0.57 0.54 0.45 0.55 0.29 0.13

Exp. 4 0.55 0.52 0.41 0.43 0.21 0.10

Exp. 5 0.50 0.46 0.34 0.48 0.16 0.09

Exp. 6 0.69 N/A N/A N/A N/A N/A

OpenStack

Exp. 1 0.74 0.70 0.59 0.62 0.32 0.24

Exp. 2 0.69 0.64 0.57 0.55 0.27 0.2

Exp. 3 0.67 0.65 0.51 0.59 0.30 0.22

Exp. 4 0.63 0.63 0.43 0.54 0.25 0.16

Exp. 5 0.57 0.54 0.46 0.48 0.21 0.11

53

Exp. 6 0.80 N/A N/A N/A N/A N/A

Table 16. Recall@Exp Results

Project

Name

Experiment

number

Recall@Exp.

Proposed

Approach

(NSGA-

III)

AEC

(NSGA-

II) [9]

RevRec

(GA)

[69]

Who

Review

(IBEA)

[51]

RevFinder

[11]

ReviewBot

[29]

LibreOffice

Exp. 1 0.67 N/A 0.34 0.48 0.32 0.18

Exp. 2 0.62 N/A 0.48 0.52 0.38 0.22

Exp. 3 0.59 N/A 0.57 0.56 0.42 0.20

Exp. 4 0.59 N/A 0.58 0.61 0.45 0.31

Exp. 5 0.69 N/A 0.59 0.68 0.49 0.38

Exp. 6 0.75 N/A N/A N/A N/A N/A

Qt

Exp. 1 0.58 0.56 0.41 0.44 0.14 0.09

Exp. 2 0.62 0.60 0.50 0.45 0.27 0.16

Exp. 3 0.68 0.66 0.55 0.58 0.30 0.20

Exp. 4 0.72 0.68 0.59 0.60 0.35 0.24

Exp. 5 0.73 0.70 0.65 0.64 0.43 0.30

Exp. 6 0.67 N/A N/A N/A N/A N/A

OpenStack

Exp. 1 0.69 0.59 0.31 0.46 0.15 0.12

Exp. 2 0.70 0.68 0.39 0.49 0.29 0.2

Exp. 3 0.78 0.76 0.52 0.59 0.37 0.32

Exp. 4 0.80 0.75 0.54 0.60 0.46 0.39

Exp. 5 0.82 0.80 0.66 0.63 0.50 0.41

Exp. 6 0.86 N/A N/A N/A N/A N/A

54

Figure 16. Comparison of MRR for Projects

Figure 17. Average Accuracy of Projects

5.2.2 Answers to Research Questions

Answer for Question 1: The efficiency and precision to identify relevant code reviewers by

using of our proposed approach i.e., NSGA-III is confirmed on pull requests from 3 different

projects are resulted in table 15 & 16 and figure no 16 & 17. Table 15 and 16 shows the

precision and recall in context to every experiment result separately. For example,

LibreOffice has a precision ranging from 51% to 67% for all experiments. It has a recall

range from 52% to 75%. Qt project has precision range of 50% to 69% and recall rate

ranging from 58% to 73%. Whereas OpenStack project has the highest precision value of

80% and recall ranging from 69-86%. Due to large number of reviewers in the projects (i.e.,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LibreOffice Qt OpenStack

M
R

R

Project

MRR Chart

Proposed Approach (NSGA-III) AEC (NSGA-II) RevRec

WhoReview REVFINDER ReviewBot

LibreOffice Qt OpenStack

Proposed Approach (NSGA-III) 0.72 0.71 0.84

AEC (NSGA-II) 0 0.64 0.78

RevRec 0.52 0.54 0.65

WhoReview 0.61 0.63 0.69

REVFINDER 0.47 0.31 0.53

ReviewBot 0.42 0.62 0.42

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
V

E
R

A
G

E
 A

C
C

U
R

A
C

Y

AVERAGE ACCURACY CHART

55

Qt, LibreOffice) the precision rate of 50% or 51% in projects could also be considered

acceptable. Also, some of the highest recall scores are obtained in OpenStack as some pull

request require more than one code reviewer.

Figure 16 shows the MRR values that NSGA-III was able to efficiently rate the

recommended code reviewers. The best resulted solution of the last population obtained in

the last iteration of GA are copied in a single pool. Then, the rank of each reviewer

corresponds to his frequency count in the pool. That is, reviewers that are recommended in

many solutions are ranked first. The proposed approach shows the MRR values better than

the all other presented in literature. LibreOffice came up with 70%, Qt with 69% and

OpenStack with highest 82% MRR scores. The efficiency for ranking the reviewers is

measured by this parameter so the outcomes of MRR are very important. Additionally, it is

one of the main motivations of this proposed approach as ranking is directly related to

availability and collaboration of code reviewers.

Figure 17 presents the average accuracy of our approach on experiments. The accuracy of

each experiment is calculated separately and then average of accuracies is calculated as

discussed in equations 9 and 10. LibreOffice came up with 72%, Qt with 71% and OpenStack

with highest 84% Average Accuracy scores which are better than all others approach.

Most importantly our proposed technique doesn’t have a bias towards the projects that are

used for validation as we used average values of mean reciprocal rank and accuracy.

Out of 3 opensource projects, our proposed approach performed well on OpenStack pull

requests. The accuracy, MRR, precision and recall of the project was good in comparison to

other projects.

Answer for Question 2: While comparing the proposed approach performance, it is

observed that the results, on average, are significantly better than the existing tools or

frameworks (mono-objective approach of all objectives, search algorithms and other variants

of GA) in terms Accuracy, Mean fitness and Execution time of algorithms. Figure 17 shows

the comparison related to accuracy of our proposed approach with other approaches. The

proposed approach clearly shows the highest accuracy in all 3 projects.

In context to comparison of the mean fitness and execution time with our proposed approach,

we have selected NSGA-II [43] since this research was foremost and primarily relevant to

our approach in terms of experimental sets and number of objectives. The authors [9] didn’t

provided any graphical representation of their approach, neither they provided any

56

comparison of execution time, thus we had to implement both approaches i.e., NSGA-II and

NSGA-III to gather results.

Section 5.3 Provides graphical representation of framework using LibreOffice project from

figure 18-35. Table 17, 18 and 19 gives mean fitness value comparison on the basis of each

objective separately. Table 20 gives average execution time taken by both algorithms, and it

can be clearly seen that NSGA-III takes less time as it does not require any additional

adjustable parameters compare to NSGA-II [9].

Section 5.4 Provides graphical representation of framework using Qt project from figure 36-

53. Table 21, 22 and 23 gives mean fitness value comparison on the basis of each objective

separately. Table 24 gives average execution time taken by both algorithms, and it can be

clearly seen that NSGA-III takes less time.

Section 5.5 Provides graphical representation of framework using OpenStack project from

figure 54-71. Table 25, 26 and 27 gives mean fitness value comparison on the basis of each

objective separately. Table 28 gives average execution time taken by both algorithms.

Figure 72 and 73 are a result to an additional check we did on this project by adding a new

experimental set as Experiment no 7 in Table 14. Both the algorithms showed an abnormal

behavior in terms of maximizing and minimizing the objectives resulting in premature

convergence. The premature convergence of a genetic algorithm arises when the genes of

some high rated individuals quickly attain to dominate the population, constraining it to

converge to a local optimum. Also, when the generation size / termination criteria are very

less than the pop size. The premature convergence is generally due to the loss of diversity

within the population. Rest details of each graph and table is presented with them in

description.

5.3 Comparison of Framework using LibreOffice Dataset

5.3.1 Comparison of visualization of ‘Availability’ (NSGA-II vs NSGA-III)

57

Figure 18. LibreOffice Availability Best Solution Experiment-1

The figure shows the fitness value against each chromosome in the population and the mean

of all the fitness values. The mean fitness value for ‘Availability’ objective for experiment 1

in NSGA-II is 0.338605 and NSGA-III is 0.386167 as shown in Figure 18.

Figure 19. LibreOffice Availability Best Solution Experiment-2

The figure 19 shows the fitness value against each chromosome in the population and the

mean of all the fitness values. The mean fitness value for ‘Availability’ objective for

experiment 2 in NSGA-II is 0.195698 and NSGA-III is 0.280518.

Figure 20. LibreOffice Availability Best Solution Experiment-3

58

The figure 20 shows the fitness value against each chromosome in the population and the

mean of all the fitness values. The mean fitness value for ‘Availability’ objective for

experiment 3 in NSGA-II is 0.476529 and NSGA-III is 0.526234.

Similarly, 21, 22 and 23 shows the fitness values against each chromosome in the population

and the mean of all the fitness values. Their mean fitness values for ‘Availability’ objective

are shared in table 17.

Figure 21. LibreOffice Availability Best Solution Experiment-4

Figure 22. LibreOffice Availability Best Solution Experiment-5

59

Figure 23. LibreOffice Availability Best Solution Experiment-6

Table 17. Mean Fitness of Availability (LibreOffice)

Mean Fitness:

Experiment Number NSGA-II NSGA-III

Exp. 1 0.338605 0.386167

Exp. 2 0.195698 0.280518

Exp. 3 0.476529 0.526234

Exp. 4 0.524646 0.593025

Exp. 5 0.506748 0.580662

Exp. 6 0.488974 0.548757

5.3.2 Comparison of visualization of ‘Collaboration’ (NSGA-II vs NSGA-III)

Figures 24-29 shows the fitness values against each chromosome in the population and the

mean of all the fitness values for ‘Collaboration’ objective in LibreOffice project. Their mean

fitness values are shared in table 18.

Figure 24. LibreOffice Collaboration Best Solution Experiment-1

Figure 25. LibreOffice Collaboration Best Solution Experiment-2

60

Figure 26. LibreOffice Collaboration Best Solution Experiment-3

Figure 27. LibreOffice Collaboration Best Solution Experiment-4

Figure 28. LibreOffice Collaboration Best Solution Experiment-5

61

Figure 29. LibreOffice Collaboration Best Solution Experiment-6

Table 18. Mean Fitness of Collaboration (LibreOffice)

Mean Fitness:

Experiment Number NSGA-II NSGA-III

Exp. 1 0.393635 0.272019

Exp. 2 0.255101 0.215886

Exp. 3 0.490449 0.402135

Exp. 4 0.593836 0.492255

Exp. 5 0.590047 0.511345

Exp. 6 0.525513 0.476423

5.3.3 Comparison of visualization of ‘Expertise’ (NSGA-II vs NSGA-III)

Figures 30-36 shows the fitness values against each chromosome in the population and the

mean of all the fitness values for ‘Expertise’ objective in LibreOffice project. Their mean

fitness values are shared in table 19.

Figure 30. LibreOffice Expertise Best Solution Experiment-1

62

Figure 31. LibreOffice Expertise Best Solution Experiment-2

Figure 32. LibreOffice Expertise Best Solution Experiment-3

Figure 33. LibreOffice Expertise Best Solution Experiment-4

63

Figure 34. LibreOffice Expertise Best Solution Experiment-5

Figure 35. LibreOffice Expertise Best Solution Experiment-6

Table 19. Mean Fitness of Expertise (LibreOffice)

Mean Fitness:

Experiment Number NSGA-II NSGA-III

Exp. 1 0.383908 0.393141

Exp. 2 0.144642 0.187551

Exp. 3 0.421726 0.521721

Exp. 4 0.491682 0.593504

Exp. 5 0.511586 0.591058

Exp. 6 0.474786 0.525513

5.3.4 Comparison of execution time (NSGA-II vs NSGA-III)

Table 20. Comparison of Execution time for LibreOffice Project

Project

Name

Experiment

number

Execution Time

Proposed Approach (NSGA-III) AEC (NSGA-II)

LibreOffice

Exp. 1 47 seconds 60 seconds

Exp. 2 57 seconds 74 seconds

Exp. 3 120 seconds 153 seconds

64

Exp. 4 327 seconds 400 seconds

Exp. 5 234 seconds 278 seconds

Exp. 6 127 seconds 195 seconds

Table 20 shows the execution time comparison for all the objectives collectively for

LibreOffice project. It can be clearly seen that NSGA-III takes less time to present the best

solution in either objective.

5.4 Comparison of Framework using Qt Project

5.4.1 Comparison of visualization of ‘Availability’ (NSGA-II vs NSGA-III)

Figure 36. Qt Availability Best Solution Experiment-1

Figures 36-41 shows the fitness values against each chromosome in the population and the

mean of all the fitness values for ‘Availability’ objective in Qt project. Their mean fitness

values are shared in table 21. Figures 42-47 shows the fitness values against each

chromosome in the population and the mean of all the fitness values for ‘Collaboration’

objective in Qt project. Their mean fitness values are shared in table 22. Figures 48-53 shows

the fitness values against each chromosome in the population and the mean of all the fitness

values for ‘Expertise’ objective in Qt project. Their mean fitness values are shared in table

23. Table 24 shows the execution time comparison for all the objectives collectively for Qt

project. It can be clearly seen that NSGA-III takes less time to present the best solution in

either objective.

65

Figure 37. Qt Availability Best Solution Experiment-2

Figure 38. Qt Availability Best Solution Experiment-3

Figure 39. Qt Availability Best Solution Experiment-4

66

Figure 40. Qt Availability Best Solution Experiment-5

Figure 41. Qt Availability Best Solution Experiment-6

Table 21. Mean Fitness of Availability (Qt)

Mean Fitness:

Experiment Number NSGA-II NSGA-III

Exp. 1 0.317225 0.392775

Exp. 2 0.176078 0.265095

Exp. 3 0.474959 0.527416

Exp. 4 0.492255 0.593868

Exp. 5 0.471061 0.546245

Exp. 6 0.477343 0.519724

5.4.2 Comparison of visualization of ‘Collaboration’ (NSGA-II vs NSGA-III)

67

Figure 42. Qt Collaboration Best Solution Experiment-1

Figure 43. Qt Collaboration Best Solution Experiment-2

Figure 44. Qt Collaboration Best Solution Experiment-3

68

Figure 45. Qt Collaboration Best Solution Experiment-4

Figure 46. Qt Collaboration Best Solution Experiment-5

Figure 47. Qt Collaboration Best Solution Experiment-6

Table 22. Mean Fitness of Collaboration (Qt)

Mean Fitness:

Experiment Number NSGA-II NSGA-III

Exp. 1 0.503183 0.416552

Exp. 2 0.345868 0.332376

Exp. 3 0.490449 0.402135

Exp. 4 0.592985 0.524646

69

Exp. 5 0.590662 0.506748

Exp. 6 0.524423 0.462726

5.4.3 Comparison of visualization of ‘Expertise’ (NSGA-II vs NSGA-III)

Figure 48. Qt Expertise Best Solution Experiment-1

Figure 49. Qt Expertise Best Solution Experiment-2

Figure 50. Qt Expertise Best Solution Experiment-3

70

Figure 51. Qt Expertise Best Solution Experiment-4

Figure 52. Qt Expertise Best Solution Experiment-5

Figure 53. Qt Expertise Best Solution Experiment-6

Table 23. Mean Fitness of Expertise (Qt)

Mean Fitness:

Experiment Number NSGA-II NSGA-III

Exp. 1 0.264076 0.393145

Exp. 2 0.152442 0.232004

Exp. 3 0.412261 0.476169

Exp. 4 0.488958 0.591406

71

Exp. 5 0.511318 0.599904

Exp. 6 0.462726 0.524423

5.4.4 Comparison of execution time (NSGA-II vs NSGA-III)

Table 24. Comparison of Execution time for Qt Project

Project

Name

Experiment

number

Execution Time

Proposed Approach (NSGA-III) AEC (NSGA-II)

Qt

Exp. 1 21 seconds 34 seconds

Exp. 2 16 seconds 22 seconds

Exp. 3 104 seconds 112 seconds

Exp. 4 235 seconds 249 seconds

Exp. 5 304 seconds 320 seconds

Exp. 6 120 seconds 148 seconds

5.5 Comparison of Framework using OpenStack Project

5.5.1 Comparison of visualization of ‘Availability’ (NSGA-II vs NSGA-III)

Figure 54. OpenStack Availability Best Solution Experiment-1

Figures 54-59 shows the fitness values against each chromosome in the population and the

mean of all the fitness values for ‘Availability’ objective in OpenStack project. Their mean

fitness values are shared in table 25. Figures 60-65 shows the fitness values against each

chromosome in the population and the mean of all the fitness values for ‘Collaboration’

objective. Their mean fitness values are shared in table 26. Figures 66-71 shows the fitness

values against each chromosome in the population and the mean of all the fitness values for

‘Expertise’ objective. Their mean fitness values are shared in table 27. Table 28 shows the

execution time comparison for all the objectives collectively for Qt project. It can be clearly

seen that NSGA-III takes less time to present the best solution in either objective.

72

Figure 55. OpenStack Availability Best Solution Experiment-2

Figure 56. OpenStack Availability Best Solution Experiment-3

Figure 57. OpenStack Availability Best Solution Experiment-4

73

Figure 58. OpenStack Availability Best Solution Experiment-5

Figure 59. OpenStack Availability Best Solution Experiment-6

Table 25. Mean Fitness of Availability (OpenStack)

Mean Fitness:

Experiment Number NSGA-II NSGA-III

Exp. 1 0.470803 0.510869

Exp. 2 0.173214 0.229236

Exp. 3 0.471429 0.521721

Exp. 4 0.521591 0.593878

Exp. 5 0.506748 0.555093

Exp. 6 0.462262 0.525513

5.5.2 Comparison of visualization of ‘Collaboration’ (NSGA-II vs NSGA-III)

74

Figure 60. OpenStack Collaboration Best Solution Experiment-1

Figure 61. OpenStack Collaboration Best Solution Experiment-2

Figure 62. OpenStack Collaboration Best Solution Experiment-3

75

Figure 63. OpenStack Collaboration Best Solution Experiment-4

Figure 64. OpenStack Collaboration Best Solution Experiment-5

Figure 65. OpenStack Collaboration Best Solution Experiment-6

Table 26. Mean Fitness of Collaboration (OpenStack)

Mean Fitness:

Experiment Number NSGA-II NSGA-III

Exp. 1 0.255101 0.215886

Exp. 2 0.291583 0.249566

Exp. 3 0.521721 0.427924

Exp. 4 0.620451 0.495459

76

Exp. 5 0.555093 0.516667

Exp. 6 0.525513 0.452054

5.5.3 Comparison of visualization of ‘Expertise’ (NSGA-II vs NSGA-III)

Figure 66. OpenStack Expertise Best Solution Experiment-1

Figure 67. OpenStack Expertise Best Solution Experiment-2

Figure 68. OpenStack Expertise Best Solution Experiment-3

77

Figure 69. OpenStack Expertise Best Solution Experiment-4

Figure 70. OpenStack Expertise Best Solution Experiment-5

Figure 71. OpenStack Expertise Best Solution Experiment-6

Table 27. Mean Fitness of Expertise (OpenStack)

Mean Fitness:

Experiment Number NSGA-II NSGA-III

Exp. 1 0.415962 0.503183

Exp. 2 0.183926 0.213556

Exp. 3 0.402135 0.490449

Exp. 4 0.489821 0.600051

78

Exp. 5 0.471376 0.546245

Exp. 6 0.476325 0.525513

5.5.4 Comparison of execution time (NSGA-II vs NSGA-III)

Table 28. Comparison of Execution time for OpenStack Project

Project

Name

Experiment

number

Execution Time

Proposed Approach (NSGA-III) AEC (NSGA-II)

OpenStack

Exp. 1 18 seconds 26 seconds

Exp. 2 24 seconds 32 seconds

Exp. 3 152 seconds 159 seconds

Exp. 4 234 seconds 249 seconds

Exp. 5 246 seconds 282 seconds

Exp. 6 119 seconds 129 seconds

5.5.5 Abnormal / Premature Behavior of Algorithm (NSGA-II vs NSGA-III) for

Experiment no 7 (OpenStack Project)

Figure 72. LibreOffice Abnormal / Premature Behavior of Algorithm NSGA-II

Figure 73. LibreOffice Abnormal / Premature Behavior of Algorithm NSGA-III

79

Figure 72 and 73 are a result to Experiment no 7 in Table 14. Both the algorithms NSGA-II

and NSGA-III showed an abnormal behavior in terms of maximizing and minimizing the

objectives resulting in premature convergence. The premature convergence of a genetic

algorithm arises when the genes of some high rated individuals quickly attain to dominate the

population, constraining it to converge to a local optimum [44]. Also, when the generation

size / termination criteria are very less than the pop size. The premature convergence is

generally due to the loss of diversity within the population [45].

5.6 Limitations

The results i.e., graphical representations, precision, recall, accuracy and MRR all are

calculated on the basis of number of generations i.e., 500, as we have to compare our results

with the literature [9], [11], [51], [69]. Moreover, we only added one new experiment set and

remaining were used from the same literature experimental set-in change operators’

parameters for comparison purposes. All the experimental set values used were selected by

trial-and-error method.

The definition of expertise and collaborations can be subjective and hard to formalize thus

further empirical studies are required to validate the different metrics used in our work. We

are planning to consider other possible formations as part of our future work and compare

between them. For example: our current definition of the availability needs further

improvement. Like, reviewers can be assigned other types of development activities than

coding (e.g., testing, design/architecture, requirements analysis, etc.). The data about these

activities are not always available. However, the formulation of our fitness function is easy to

modify in a way that enables managers to enter the number of tasks per reviewer, especially

the ones that they are beyond code reviews.

80

 Chapter 6

 CONCLUSION & FUTURE WORK

81

Chapter 6 : CONCLUSION & FUTURE WORK

6.1 Conclusion

In this research, we have proposed a multi objectives problem to manage and recommend

code reviewers by adopting an optimization algorithm that is NSGA-III. The purpose is to

recommend the best trade-off reviewers between three conflicting objectives i.e., maximizing

the availability and expertise of reviewers and minimizing the collaboration between

developers and reviewers to lessen the human biasness factor. We implemented and

evaluated our approach on three (medium to large size) open-source projects named as

LibreOffice, Qt and OpenStack. We calculated efficiency on our approach by finding

precision, recall, MRR, accuracy for all 3 projects on average. The results from our proposed

approach accurately recommended the code reviewers with the precision up to 80%, 86% of

recall, 82% mean reciprocal rank and 84% average accuracy by improving state-of-the-art.

Then we implemented NSGA-III and NSGA-II in terms of finding and comparing mean

fitness and execution time of both algorithms while keeping the objective and experimental

sets same. As a result, NSGA-III recommended the reviewers in less execution time and

better mean fitness values in comparison to NSGA-II in all experimental sets. NSGA-III

algorithm was able to find a well-converged and well-distributed set of solutions. The

proposed approach could be practical to MCR in order to help developers while

recommending suitable code-reviewers in less time and resources to speed up the review

process. This research highlighted the importance of managing code reviews to reduce delays

in review process in less time and resources while confirming high expertise and availability

as much as possible

6.2 Future Work

As future work, the proposed approach can be extended to implement by increasing the

number of objectives i.e., the size of code change, reviews recency and quality in the past etc.

Also, the use of more projects can be added to test the approach.

82

REFERENCES

[1] H. A. Çetin, E. Doğan, and E. J. S. o. C. P. Tüzün, "A review of code reviewer

recommendation studies: Challenges and future directions," vol. 208, p. 102652,

2021.

[2] M. B. Zanjani, H. Kagdi, and C. J. I. T. o. S. E. Bird, "Automatically recommending

peer reviewers in modern code review," vol. 42, no. 6, pp. 530-543, 2015.

[3] A. Wahid, X. Gao, and P. Andreae, "Multi-view clustering of web documents using

multi-objective genetic algorithm," in 2014 IEEE Congress on Evolutionary

Computation (CEC), 2014, pp. 2625-2632: IEEE.

[4] C. Thompson and D. Wagner, "A large-scale study of modern code review and

security in open source projects," in Proceedings of the 13th International Conference

on Predictive Models and Data Analytics in Software Engineering, 2017, pp. 83-92.

[5] A. Ouni et al., "Search-based software library recommendation using multi-objective

optimization," vol. 83, pp. 55-75, 2017.

[6] K. Hamasaki, R. G. Kula, N. Yoshida, A. C. Cruz, K. Fujiwara, and H. Iida, "Who

does what during a code review? datasets of oss peer review repositories," in 2013

10th Working Conference on Mining Software Repositories (MSR), 2013, pp. 49-52:

IEEE.

[7] Y. Yu, H. Wang, G. Yin, T. J. I. Wang, and S. Technology, "Reviewer

recommendation for pull-requests in GitHub: What can we learn from code review

and bug assignment?," vol. 74, pp. 204-218, 2016.

[8] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, "The impact of code review

coverage and code review participation on software quality: A case study of the qt,

vtk, and itk projects," in Proceedings of the 11th working conference on mining

software repositories, 2014, pp. 192-201.

[9] S. Rebai, A. Amich, S. Molaei, M. Kessentini, and R. J. A. S. E. Kazman, "Multi-

objective code reviewer recommendations: balancing expertise, availability and

collaborations," vol. 27, no. 3, pp. 301-328, 2020.

[10] R. H. Bhesdadiya, I. N. Trivedi, P. Jangir, N. Jangir, and A. J. C. E. Kumar, "An

NSGA-III algorithm for solving multi-objective economic/environmental dispatch

problem," vol. 3, no. 1, p. 1269383, 2016.

[11] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida, and K.-i.

Matsumoto, "Who should review my code? a file location-based code-reviewer

83

recommendation approach for modern code review," in 2015 IEEE 22nd

International Conference on Software Analysis, Evolution, and Reengineering

(SANER), 2015, pp. 141-150: IEEE.

[12] R. Almhana, W. Mkaouer, M. Kessentini, and A. Ouni, "Recommending relevant

classes for bug reports using multi-objective search," in 2016 31st IEEE/ACM

International Conference on Automated Software Engineering (ASE), 2016, pp. 286-

295: IEEE.

[13] X. Zhang et al., "How do multiple pull requests change the same code: A study of

competing pull requests in github," in 2018 IEEE International Conference on

Software Maintenance and Evolution (ICSME), 2018, pp. 228-239: IEEE.

[14] J. Jiang, A. Mohamed, and L. J. I. A. Zhang, "What are the characteristics of reopened

pull requests? a case study on open source projects in github," vol. 7, pp. 102751-

102761, 2019.

[15] Z. Xia, H. Sun, J. Jiang, X. Wang, and X. Liu, "A hybrid approach to code reviewer

recommendation with collaborative filtering," in 2017 6th International Workshop on

Software Mining (SoftwareMining), 2017, pp. 24-31: IEEE.

[16] Y. Hu, J. Wang, J. Hou, S. Li, and Q. Wang, "Is There A" Golden" Rule for Code

Reviewer Recommendation?:—An Experimental Evaluation," in 2020 IEEE 20th

International Conference on Software Quality, Reliability and Security (QRS), 2020,

pp. 497-508: IEEE.

[17] P. Thongtanunam, R. G. Kula, A. E. C. Cruz, N. Yoshida, and H. Iida, "Improving

code review effectiveness through reviewer recommendations," in Proceedings of the

7th International Workshop on Cooperative and Human Aspects of Software

Engineering, 2014, pp. 119-122.

[18] J. K. Siow, C. Gao, L. Fan, S. Chen, and Y. Liu, "Core: Automating review

recommendation for code changes," in 2020 IEEE 27th International Conference on

Software Analysis, Evolution and Reengineering (SANER), 2020, pp. 284-295: IEEE.

[19] K. Deb, "Multi-objective optimization," in Search methodologies: Springer, 2014, pp.

403-449.

[20] S. Mirjalili, "Genetic algorithm," in Evolutionary algorithms and neural networks:

Springer, 2019, pp. 43-55.

[21] S. Katoch, S. S. Chauhan, V. J. M. T. Kumar, and Applications, "A review on genetic

algorithm: past, present, and future," vol. 80, no. 5, pp. 8091-8126, 2021.

84

[22] B. Kitchenham et al., "Systematic literature reviews in software engineering–a

systematic literature review," vol. 51, no. 1, pp. 7-15, 2009.

[23] E. Sülün, E. Tüzün, and U. Doğrusöz, "Reviewer recommendation using software

artifact traceability graphs," in Proceedings of the Fifteenth International Conference

on Predictive Models and Data Analytics in Software Engineering, 2019, pp. 66-75.

[24] A. Ouni, R. G. Kula, and K. Inoue, "Search-based peer reviewers recommendation in

modern code review," in 2016 IEEE International Conference on Software

Maintenance and Evolution (ICSME), 2016, pp. 367-377: IEEE.

[25] M. M. Rahman, C. K. Roy, and J. A. Collins, "Correct: code reviewer

recommendation in github based on cross-project and technology experience," in

Proceedings of the 38th international conference on software engineering companion,

2016, pp. 222-231.

[26] N. Sadman, M. M. Ahsan, and M. P. Mahmud, "ADCR: An Adaptive Tool to select”

Appropriate Developer for Code Review” based on Code Context," in 2020 11th

IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication

Conference (UEMCON), 2020, pp. 0583-0591: IEEE.

[27] S. Rostami and A. Shenfield, "Cma-paes: Pareto archived evolution strategy using

covariance matrix adaptation for multi-objective optimisation," in 2012 12th UK

Workshop on Computational Intelligence (UKCI), 2012, pp. 1-8: IEEE.

[28] H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, "Performance comparison of

NSGA-II and NSGA-III on various many-objective test problems," in 2016 IEEE

Congress on Evolutionary Computation (CEC), 2016, pp. 3045-3052: IEEE.

[29] V. Balachandran, "Reducing human effort and improving quality in peer code reviews

using automatic static analysis and reviewer recommendation," in 2013 35th

International Conference on Software Engineering (ICSE), 2013, pp. 931-940: IEEE.

[30] X. Xia, D. Lo, X. Wang, and X. Yang, "Who should review this change?: Putting text

and file location analyses together for more accurate recommendations," in 2015

IEEE International Conference on Software Maintenance and Evolution (ICSME),

2015, pp. 261-270: IEEE.

[31] M. M. Rahman, C. K. Roy, and R. G. Kula, "Predicting usefulness of code review

comments using textual features and developer experience," in 2017 IEEE/ACM 14th

International Conference on Mining Software Repositories (MSR), 2017, pp. 215-226:

IEEE.

85

[32] E. Doğan, E. Tüzün, K. A. Tecimer, and H. A. Güvenir, "Investigating the validity of

ground truth in code reviewer recommendation studies," in 2019 ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement

(ESEM), 2019, pp. 1-6: IEEE.

[33] J. Lipcak and B. Rossi, "A large-scale study on source code reviewer

recommendation," in 2018 44th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), 2018, pp. 378-387: IEEE.

[34] M. Mukadam, C. Bird, and P. C. Rigby, "Gerrit software code review data from

android," in 2013 10th Working Conference on Mining Software Repositories (MSR),

2013, pp. 45-48: IEEE.

[35] R. Geng, J. Zhou, and S. Yang, "MSOPS-IIA: An Accelerated Version of MSOPS-

II," in 2015 8th International Symposium on Computational Intelligence and Design

(ISCID), 2015, vol. 2, pp. 327-331: IEEE.

[36] Y. Tian, X. Zhang, R. Cheng, and Y. Jin, "A multi-objective evolutionary algorithm

based on an enhanced inverted generational distance metric," in 2016 IEEE congress

on evolutionary computation (CEC), 2016, pp. 5222-5229: IEEE.

[37] A. S. Akopov and M. A. Hevencev, "A multi-agent genetic algorithm for multi-

objective optimization," in 2013 IEEE International Conference on Systems, Man,

and Cybernetics, 2013, pp. 1391-1395: IEEE.

[38] M. Z. Rafique, K. A. Alam, and U. Iqbal, "Multi-Objective Optimization Techniques

for Software Refactoring: A Systematic Literature Review," in 2019 13th

International Conference on Mathematics, Actuarial Science, Computer Science and

Statistics (MACS), 2019, pp. 1-7: IEEE.

[39] S. Zhang, H. Wang, D. Yang, and M. Huang, "Hybrid multi-objective genetic

algorithm for multi-objective optimization problems," in The 27th Chinese Control

and Decision Conference (2015 CCDC), 2015, pp. 1970-1974: IEEE.

[40] S. Fuquan, W. Hongfeng, and L. Fuqiang, "A species-based multi-objective genetic

algorithm for multi-objective optimization problems," in Proceeding of the 11th

World Congress on Intelligent Control and Automation, 2014, pp. 5063-5066: IEEE.

[41] D. H. Phan and J. Suzuki, "R2-IBEA: R2 indicator based evolutionary algorithm for

multiobjective optimization," in 2013 IEEE Congress on Evolutionary Computation,

2013, pp. 1836-1845: IEEE.

[42] Z. He and G. G. Yen, "Diversity improvement in decomposition-based multi-

objective evolutionary algorithm for many-objective optimization problems," in 2014

86

IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2014, pp.

2409-2414: IEEE.

[43] Y. Tian, R. Cheng, X. Zhang, and Y. J. I. C. I. M. Jin, "PlatEMO: A MATLAB

platform for evolutionary multi-objective optimization [educational forum]," vol. 12,

no. 4, pp. 73-87, 2017.

[44] K. Deb and H. J. I. t. o. e. c. Jain, "An evolutionary many-objective optimization

algorithm using reference-point-based nondominated sorting approach, part I: solving

problems with box constraints," vol. 18, no. 4, pp. 577-601, 2013.

[45] H. Jain and K. J. I. T. o. e. c. Deb, "An evolutionary many-objective optimization

algorithm using reference-point based nondominated sorting approach, part II:

Handling constraints and extending to an adaptive approach," vol. 18, no. 4, pp. 602-

622, 2013.

[46] R. Cheng, Y. Jin, M. Olhofer, and B. J. I. T. o. E. C. Sendhoff, "A reference vector

guided evolutionary algorithm for many-objective optimization," vol. 20, no. 5, pp.

773-791, 2016.

[47] Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. J. I. T. o. E. C. Jin, "An indicator-

based multiobjective evolutionary algorithm with reference point adaptation for better

versatility," vol. 22, no. 4, pp. 609-622, 2017.

[48] K. Sindhya, K. Miettinen, and K. J. I. T. o. E. C. Deb, "A hybrid framework for

evolutionary multi-objective optimization," vol. 17, no. 4, pp. 495-511, 2012.

[49] S. Jiang and S. J. I. T. o. E. C. Yang, "A strength Pareto evolutionary algorithm based

on reference direction for multiobjective and many-objective optimization," vol. 21,

no. 3, pp. 329-346, 2017.

[50] Y. Sun, G. G. Yen, and Z. J. I. T. o. E. C. Yi, "IGD indicator-based evolutionary

algorithm for many-objective optimization problems," vol. 23, no. 2, pp. 173-187,

2018.

[51] M. Chouchen, A. Ouni, M. W. Mkaouer, R. G. Kula, and K. J. A. S. C. Inoue,

"WhoReview: A multi-objective search-based approach for code reviewers

recommendation in modern code review," vol. 100, p. 106908, 2021.

[52] J. Jiang, Y. Yang, J. He, X. Blanc, L. J. I. Zhang, and S. Technology, "Who should

comment on this pull request? analyzing attributes for more accurate commenter

recommendation in pull-based development," vol. 84, pp. 48-62, 2017.

[53] E. Sülün, E. Tüzün, U. J. I. Doğrusöz, and S. Technology, "RSTrace+: Reviewer

suggestion using software artifact traceability graphs," vol. 130, p. 106455, 2021.

87

[54] F. Li, R. Cheng, J. Liu, and Y. J. A. S. C. Jin, "A two-stage R2 indicator based

evolutionary algorithm for many-objective optimization," vol. 67, pp. 245-260, 2018.

[55] L. Cui, P. Ou, X. Fu, Z. Wen, N. J. J. o. P. Lu, and D. Computing, "A novel multi-

objective evolutionary algorithm for recommendation systems," vol. 103, pp. 53-63,

2017.

[56] H. Afshari, W. Hare, and S. J. A. S. C. Tesfamariam, "Constrained multi-objective

optimization algorithms: Review and comparison with application in reinforced

concrete structures," vol. 83, p. 105631, 2019.

[57] X. Zhang, X. Zheng, R. Cheng, J. Qiu, and Y. J. I. S. Jin, "A competitive mechanism

based multi-objective particle swarm optimizer with fast convergence," vol. 427, pp.

63-76, 2018.

[58] A. Assad and K. J. I. S. Deep, "A hybrid harmony search and simulated annealing

algorithm for continuous optimization," vol. 450, pp. 246-266, 2018.

[59] W. Sheng, Y. Liu, X. Meng, T. J. C. Zhang, and M. w. Applications, "An Improved

Strength Pareto Evolutionary Algorithm 2 with application to the optimization of

distributed generations," vol. 64, no. 5, pp. 944-955, 2012.

[60] Z. Cui, Y. Chang, J. Zhang, X. Cai, W. J. S. Zhang, and E. Computation, "Improved

NSGA-III with selection-and-elimination operator," vol. 49, pp. 23-33, 2019.

[61] M. Hamdy, A.-T. Nguyen, J. L. J. E. Hensen, and Buildings, "A performance

comparison of multi-objective optimization algorithms for solving nearly-zero-

energy-building design problems," vol. 121, pp. 57-71, 2016.

[62] J. Luo et al., "A decomposition-based multi-objective evolutionary algorithm with

quality indicator," vol. 39, pp. 339-355, 2018.

[63] J. Rada-Vilela, M. Chica, Ó. Cordón, and S. J. A. S. C. Damas, "A comparative study

of multi-objective ant colony optimization algorithms for the time and space assembly

line balancing problem," vol. 13, no. 11, pp. 4370-4382, 2013.

[64] S. Selvakumar and R. J. M. T. P. Ravikumar, "A novel approach for optimization to

verify RSM model by using multi-objective genetic algorithm (MOGA)," vol. 5, no.

5, pp. 11386-11394, 2018.

[65] H. Seada and K. J. C. r. Deb, "U-NSGA-III: A unified evolutionary algorithm for

single, multiple, and many-objective optimization," vol. 2014022, 2014.

[66] Z. Liao, Z. Wu, Y. Li, Y. Zhang, X. Fan, and J. J. S. C. Wu, "Core-reviewer

recommendation based on Pull Request topic model and collaborator social network,"

vol. 24, no. 8, pp. 5683-5693, 2020.

88

[67] M. Fejzer, P. Przymus, and K. J. J. o. I. I. S. Stencel, "Profile based recommendation

of code reviewers," vol. 50, no. 3, pp. 597-619, 2018.

[68] J. Jiang, J.-H. He, X.-Y. J. J. o. C. S. Chen, and Technology, "Coredevrec: Automatic

core member recommendation for contribution evaluation," vol. 30, no. 5, pp. 998-

1016, 2015.

[69] C. Yang et al., "RevRec: A two-layer reviewer recommendation algorithm in pull-

based development model," vol. 25, no. 5, pp. 1129-1143, 2018.

[70] M. T. Emmerich and A. H. J. N. c. Deutz, "A tutorial on multiobjective optimization:

fundamentals and evolutionary methods," vol. 17, no. 3, pp. 585-609, 2018.

[71] J. Liang, Q. Guo, C. Yue, B. Qu, and K. Yu, "A self-organizing multi-objective

particle swarm optimization algorithm for multimodal multi-objective problems," in

International Conference on Swarm Intelligence, 2018, pp. 550-560: Springer.

[72] S. Asthana et al., "WhoDo: automating reviewer suggestions at scale," in Proceedings

of the 2019 27th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, 2019, pp. 937-945.

[73] A. Strand, M. Gunnarson, R. Britto, and M. Usman, "Using a context-aware approach

to recommend code reviewers: findings from an industrial case study," in Proceedings

of the ACM/IEEE 42nd International Conference on Software Engineering: Software

Engineering in Practice, 2020, pp. 1-10.

[74] K. A. Tecimer, E. Tüzün, H. Dibeklioglu, and H. Erdogmus, "Detection and

Elimination of Systematic Labeling Bias in Code Reviewer Recommendation

Systems," in Evaluation and Assessment in Software Engineering, 2021, pp. 181-190.

[75] C. Hannebauer, M. Patalas, S. Stünkel, and V. Gruhn, "Automatically recommending

code reviewers based on their expertise: An empirical comparison," in Proceedings of

the 31st IEEE/ACM International Conference on Automated Software Engineering,

2016, pp. 99-110.

[76] M. M. Rahman, C. K. Roy, J. Redl, and J. A. Collins, "Correct: Code reviewer

recommendation at github for vendasta technologies," in Proceedings of the 31st

IEEE/ACM International Conference on Automated Software Engineering, 2016, pp.

792-797.

[77] M. Chouchen, A. Ouni, M. W. Mkaouer, R. G. Kula, and K. Inoue, "Recommending

peer reviewers in modern code review: a multi-objective search-based approach," in

Proceedings of the 2020 Genetic and Evolutionary Computation Conference

Companion, 2020, pp. 307-308.

89

[78] Y. Yuan, H. Xu, and B. Wang, "An improved NSGA-III procedure for evolutionary

many-objective optimization," in Proceedings of the 2014 annual conference on

genetic and evolutionary computation, 2014, pp. 661-668.

[79] B. Li, J. Li, K. Tang, and X. J. A. C. S. Yao, "Many-objective evolutionary

algorithms: A survey," vol. 48, no. 1, pp. 1-35, 2015.

[80] S. Bhutada, V. Balaram, V. V. J. J. o. I. Bulusu, and O. Sciences, "Semantic latent

dirichlet allocation for automatic topic extraction," vol. 37, no. 3, pp. 449-469, 2016.

[81] S. O. J. C. E. Sada, "The use of multi-objective genetic algorithm (MOGA) in

optimizing and predicting weld quality," vol. 7, no. 1, p. 1741310, 2020.

[82] K. Deb, A. Pratap, S. Agarwal, and T. J. I. t. o. e. c. Meyarivan, "A fast and elitist

multiobjective genetic algorithm: NSGA-II," vol. 6, no. 2, pp. 182-197, 2002.

[83] K. Li, R. Chen, D. Savić, and X. J. I. T. o. F. S. Yao, "Interactive decomposition

multiobjective optimization via progressively learned value functions," vol. 27, no. 5,

pp. 849-860, 2018.

[84] J. Blank and K. J. I. A. Deb, "Pymoo: Multi-objective optimization in python," vol. 8,

pp. 89497-89509, 2020.

