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Abstract 

Background: Software code review is a one of the major and important activity in modern 

software development and evolution. To improve software quality, identify and remove 

defects before integration, code review is considered as efficient and effective practice. Code 

reviewers having right expertise, experience and apt amount of knowledge with the code 

being reviewed leads to successful code processes, fewer bugs and less maintenance cost. 

Aim & Objective: Usually existing studies identify code reviewers based on one or two 

objectives i.e., expertise, availability etc. to review pull requests. With the growing size of 

distributed development teams, picking suitable reviewers is a challenging task. However, 

due to less resources and shorter deadlines, the management of code reviews and appropriate 

recommendation of code reviewers based on three objectives consecutively is an ambitious 

task to be considered as aim of this thesis.  

Methodology: This thesis addresses the formulation for managing and recommending code 

reviewers based on multi conflicting objectives (i.e., availability, expertise and collaboration) 

simultaneously. ‘NSGA-III’ is used as optimization algorithm to find the most suitable 

reviewers while keeping expertise and availability ratio high and less collaboration between 

reviewers and developers.   

Results and Conclusion: The results were implemented and validated on three (medium to 

large size) open-source projects named as LibreOffice, Qt and OpenStack. We calculated 

precision, recall, MRR, accuracy for all 3 projects on average. The results from our proposed 

approach accurately recommended the code reviewers with the precision up to 80%, 86% of 

recall, 82% mean reciprocal rank and 84% average accuracy by improving state-of-the-art. 

We also compared the experimental sets between NSGA-III and NSGA-II in terms of finding 

mean fitness and execution time of both algorithms. As a result, NSGA-III recommended the 

reviewers in less execution time and better fitness values in comparison to NSGA-II in all 

experimental sets. The proposed approach could be practical to MCR in order to help 

developers while recommending suitable code-reviewers in less time and resources to speed 

up the review process. 

Keywords: Code-Reviewer Recommendation, Modern Code Review, Modern Software 

Development, Multi-Objective Algorithm, NSGA-III  
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Chapter 1 : INTRODUCTION 

Software code review is an integral part of software development and has been in practice for 

more than three decades [1]. It involves identifying and fixing the defects i.e., logical errors 

or bugs in a software system, to ensure code quality. The code review process begins when a 

changed source code is submitted for code inspection. Numerous studies claim that the 

quality of software systems can be enhanced by reducing defects during code inspection [2].  

A reviewer is requested to review the change and identify the issues with the change, and 

then recommend further actions to the software developer responsible for the code. A series 

of meetings between the reviewer and the developer are taken place, to ensure a mutual 

understanding of the change made and the review feedback. The drawback of this manual 

process of code review is time-consuming and expensive; as the time, effort and experience 

of the reviewers are not judiciously and efficiently utilized. For example, if a request is 

routed to a reviewer who is already committed or who doesn’t possess the requisite expertise 

required to meet this specific request, the outcome would be a waste of time and effort and a 

‘quality review’ may not be expected [3]. 

Code review is a challenging process because it requires dedicated efforts of a reviewer to 

read, comprehend and provide actionable feedback on a code change. The purpose is to get a 

code check-in the shortest possible time as the author/company needs to release the new 

version of the modified code as early as possible. Thus, a suitable code reviewer is required 

to serve the purpose of code review. Such a reviewer should possess thorough knowledge, 

experience and expertise needed for the job and shouldn’t be overcommitted as well. Only, 

the reviewer with the requisite expertise and appropriate time may contribute toward efficient 

examination of the code changes and defects [2], [3]. This process of selection of appropriate 

reviewers may be simple for smaller software firms dealing with or working on a fewer 

number of projects. However, professionally competent and larger firms with multiple 

ongoing projects face greater difficulties in selecting appropriate reviewers due to the 

inherent issues [4]. 

Over the period, the manual process of assigning a reviewer has evolved into an informal, 

fully automated, structured and documented approach [5]. It has progressed to a lightweight, 

quicker and tool-based process named Modern Code Review (MCR) [3]. MCR is also known 

as change-based code review [4]. MCR is a collaborative, quicker and automated approach 

that ensures that both author and code reviewer follow the standards of code review in a 

literal manner. Here, the reviewer is assigned to review a specific code, based on certain logic 



    

 

3 

and certain credentials, in an automated manner. Some of the benefits of choosing the 

reviewer in an automated manner are: 1) Reviewer is automatically assigned as per certain 

credentials in a much shorter time frame without compromising other projects. 2) Human 

factor / biases which may result in a selection of inappropriate reviewers is eliminated. 3) All 

the reviewers share the optimized load. 4) The Selection of the right reviewer (as-per 

requisite skills, experience and commitment) enhances the quality of the review [6], [7]. 

Most of the previously proposed tools for Code Reviewer Recommendation (CRR) use the 

credential “reviewer expertise” to recommend [8]. Reviewer expertise is the gained 

knowledge of the changes that had been under review or are currently under review. It could 

be explained as the reviewer having high expertise should have reviewed the similar 

files/code changes in the past or lately [4]. But the availability or delay in work (workload) of 

reviewers having high expertise can’t be made sure every time while assigning them. 

This thesis proposes to articulate the selection of peer code reviewers as a multi-objective 

problem to address the challenges discussed above. The multi-objective problem is defined as 

“to balance between more than one conflicting objective/multiple objectives i.e., expertise, 

availability & collaboration” [9]. After performing detailed literature, we adopted one of the 

infrequently or less used multi + many objective search algorithms, NSGA-III, to find the 

balance in context to our 3 objectives. The approach navigates between three different 

proportions by providing multiple non-dominant peer reviewer recommendations instead of 

one solution as explained mostly in literature. Moreover, we validated our approach on 3 

open-source projects to confirm its efficiency and execution time to comparison to the state 

of the art. 

This introduction chapter summarizes that software code review is one of the most 

significant software activities executed for code inception to lessen defects/bugs and to 

improve the quality of software by automated recommendation of the right reviewer for the 

right code file. Automated tools take certain credentials or levels i.e., expertise, availability 

and collaboration to recommend reviewers. We used NSGA-III (multi + many) [10] objective 

search algorithm to provide multiple non-dominant peer reviewers. 

1.1 Motivation 

The research motivation is to recommend/choose the right reviewers for the code review 

process more quickly and accurately to save time and resources. The research is aligned with 

the automated selection of reviewers based on certain credentials for the betterment of 
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software systems. Choosing the appropriate reviewer in an automated manner in terms of a 

multi-objective problem will recommend more than one solution in a much shorter time 

frame without compromising other projects. Human biases that may result in a selection of 

inappropriate reviewers will be eliminated. Also, all the reviewers would share the optimized 

load. Lastly, the selection of the right reviewer (as-per requisite skills, experience and 

collaboration) would enhance the quality of the review.  

1.2 Problem Statement 

Automated code reviewer recommendation contributes a vital role in the Modern code 

review. Researchers have proposed different approaches/tools that recommend the reviewers 

based on some credentials i.e., level of expertise. But these tools recommend multiple 

reviewers based on a single credential usually. To deal with a large number of possible 

reviewers for multiple pull requests in terms of multi-objective context is a management 

problem that is under-studied in the research literature. This management process requires 

handling multiple competing criteria including expertise, availability and previous 

collaborations with the owners and reviewers. To overcome these issues, this thesis presents 

an approach to articulate the selection of peer code reviewers as a multi-objective problem. 

The approach navigates between three different proportions by providing multiple non-

dominant peer reviewer recommendations instead of one solution. Additionally, the purpose 

is not only to recommend reviewers, the idea is to manage code reviews with shorter 

deadlines and limited resources while keeping expertise and availability highlighted. 

1.3 Aims and Objectives 

The major objectives of the research are as follows:  

• To reform and organize 3 different open-source project datasets, that are to be used 

for CRR. 

• To perform a detailed systematic literature review of the recent research on CRR 

• Explore Multi-objective optimization search algorithms. 

• Propose an approach that navigates between three different proportions/credentials by 

providing multiple non-dominant peer reviewer recommendations instead of one 

solution. 

• Analyzing and validating the precision, recall, MRR and accuracy of the proposed 
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approach. 

• Comparison of the results with state-of-the-art. 

1.4 Thesis Outline 

This remaining work is structured as follows: 

Chapter 2 covers the basics and background of the review process, code reviewer 

recommendation and multi-objective optimization. 

Chapter 3 gives a review of the literature in detail and the significant work done by 

researchers in the past few years. The systematic literature review is composed of three main 

sections. The first section is the review protocol which gives details on the methodology 

using which the literature review is carried out. Section two offers’ details on research works 

carried out in this area in form of research questions and tables. Whereas, section three 

highlights the research gaps that were encountered. 

Chapter 4 consists of the proposed approach in detail. It discusses the approach in terms of 

an overview of the algorithm (NSGA-III, fitness functions), main components of the 

approach and solution representation. 

Chapter 5 includes implementation, validation and discussion of results accompanied by 

research question and relevant figures. It also brings detail to the comparison of our work 

with the state of the art. Additionally, it briefly explains the limitations of our work. 

Chapter 6 concludes the thesis and reveals the future scope of this research. 

The thesis outline is shown in Figure 1. 

 

Figure 1. Thesis Outline 
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Chapter 2 : Code Reviewer Recommendation 

In this section, we first describe the necessary background related to the review process, code 

reviewer recommendation (CRR) and multi-objective optimization. 

2.1 Review Process & CRR 

In the last ten years, a wide range of research has been published in renowned databases in 

the context of Code Reviewer Recommendation (CRR). A code review process is an 

interaction between the submitter and reviewer/s. A series of meetings between the reviewer 

and the submitter are taken place, to ensure a mutual understanding of the change made and 

the review feedback. The changes in the code are performed by the programmer that is also 

the owner of the code and then submits it for the review request. The reviewers add 

comments as feedback about the new changes suggested by them [11], [12]. 

 
Figure 2. The MCR Process [5] 

The process of MCR has been enunciated in Figure 2. This process begins when a code file/ 

patch is placed in a certain repository by the code owner and a formal request for review is 

initiated to the committer [13]. Code-level change is assigned to each new file/commit. The 

Committer thereafter selects a suitable reviewer using an automated tool. The reviewers 

review the files and rate them as per the change effort. Rating is done using a standardized 

scale i.e., from -2 ~ +2 [14]. If a reviewer considers the file/patch perfectly fine i.e., if it does 

not require any change, the specific file/ patch is rated as +2 and returned to the committer. 

The committer then merges the file/patch into the main project. If a file/patch is assigned the 

rating of -2, which means that a major change is required in the file/ patch. The committer 

returns it to the owner, who submits it again after the suggested changes as per the review. 

Any other rating within the scale reflects the efforts required. The branch is merged into main 
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branch only if the collaborators accept those changes with +2 ratings [15]. Here, it may be 

safely claimed that the process of MCR (which contributes toward the overall quality of the 

project) solely depends on the appropriate selection of a reviewer. If done in an automated 

manner based upon appropriate logic, surely the outcome would be a quality review. MCR 

process is supported these days by many tools i.e., Gerrit 

(https://www.gerritcodereview.com/about.html). 

 

Figure 3. Example of code review (LibreOffice)  

A detailed example of code review i.e., an open pull request at LibreOffice, 

(https://gerrit.libreoffice.org/c/help/+/135008) where many possible reviewers can be 

assigned to review the one change is shown in Figure 3. It also shows the details such as 

owner name, last updated status, rating marked by the respective reviewer and the topic of the 

code review.  

2.2 Multi-objective Optimization 

Multi-objective optimization is defined as “to find the trade-off balanced optimization 

between more than one objective”. Usually, it is difficult to find such a solution that provides 

multi-objective optimization because the objectives in the problem are mostly conflicting. To 

find and propose such solutions, Genetic Algorithms are used. These algorithms provide 

more than one solution also known as alternate possible solutions. The goal is to produce 

solutions that can optimally satisfy each objective concurrently. These algorithms consider 

certain credentials i.e., reviewer’s profile, experience, workload, expertise and commitment 

status, etc. [16]. These credentials are termed ‘Objectives’ and an algorithm may use a single 

https://www.gerritcodereview.com/about.html
https://gerrit.libreoffice.org/c/help/+/135008
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objective, may incorporate multiple objectives, or may utilize many objectives to suggest a 

reviewer [9], [17].  For example, an algorithm considering only one objective (i.e., 

experience) may be termed a single objective utilization algorithm [18]. The algorithm that 

takes into account two or three objectives is termed a multi-objective optimization algorithm 

[19] and an algorithm taking into account more than three objectives, while deciding on a 

reviewer, is termed a many-objective algorithm [9]. 

A random population of random pop size known as individuals is initiated at the beginning of 

Genetic Algorithms. The target problem is defined and then evaluated by using a fitness 

function (one fitness function for one respective objective) for the population. A random 

selection of 2 chromosomes as parents is selected to perform crossover and mutation 

operators on them. While applying the selection operator, it is ensured to select the 

individuals with the highest fitness values so that the new individuals come up with a higher 

probability to undergo crossover and mutation operators. A new population is created from 

an old population with the purpose to keep producing a better population every next time. 

The stopping criteria are defined to stop the algorithm where the individuals/population 

found is the best and fittest population [20], [21]. The flowchart of a genetic algorithm is 

displayed in Figure 4. 

 

Figure 4. Genetic Algorithm Flowchart 



    

 

10 

                                                                 Chapter 3 

             LITERATURE REVIEW

     
  



    

 

11 

Chapter 3 : LITERATURE REVIEW 

This chapter contains the systematic literature review performed for our research. It includes 

overview and major outcomes of SLR + contributions of SLR, review methodology, research 

questions, category definitions, review protocol of literature review, results and analysis, 

answers to the research questions for literature and conclusion of SLR. 

3.1 Overview and Major outcomes of SLR 

In Literature, there exist several studies (amply highlighted throughout this SLR), where 

various approaches, algorithms, tools/ techniques, and validation of various tools are 

highlighted in bits and pieces. Whereas, comprehensive research covering all the major 

aspects concerning the automated selection of a reviewer, as part of ‘MCR’, is hard to find in 

literature. 

 

Figure 5. Overview & Major Outcomes of SLR 
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Overview/ major outcomes of this SLR are summarized in Figure 5. 62 landmark studies 

(published from 2011 – to March 2022) in renowned databases were investigated and 

analyzed after filtering them out via selection criteria. For ease of analysis and to explore the 

studies as per the research questions, studies were further categorized into five groups i.e., 

CRR Approaches (11 studies), CRR Tools Availability (11 studies), CRR Validation 

Protocols (10 studies), CRR Optimization Algorithms (20 studies) and a general category (10 

studies). To obtain the required and precise results, a combination of qualitative and 

quantitative analysis is performed on the selected studies. As highlighted in Fig. 5, there are 

four types of approaches found in the literature for code reviewer recommendation i.e., ‘Load 

balancing’ (2 studies), ‘Profile-based’ (3 studies), ‘Reviewer expertise/experience’ (4 studies) 

and ‘Traceability matrix’ (2 studies). 14 tools were identified which are currently being used 

for automated CRR. The availability of tools is also classified into ‘Organizational’ (4 

studies), ‘Open-source’ (2 studies), ‘Commercial’ (3 studies) and ‘Public’ (2 studies). The 

validation of tools is provided based on ‘Datasets’ of different sizes (3 studies), ‘Open-source 

projects’ (4 studies) and projects by ‘GitHub’ and ‘Gerrit’ (3 studies). Furthermore, 

optimization algorithms (in total 25 identified) are divided into 3 subcategories based on their 

type i.e., ‘Single objective’ (3 studies), ‘multi-objective’ (14 studies) and ‘Many-objective’ (3 

studies). Based on a detailed analysis of results, key factors of CRR are identified and 

examined. 

The major contributions of SLR are: 

a) Identifying various approaches to CRR 

b) Reporting various automated CRR tools 

c) Reporting the availability status of the tools 

d) Identifying the leading validation techniques/protocols through which the validity of 

various tools has been demonstrated by worthy researchers 

e) Enunciating various CRR algorithms and categorizing the identified algorithms as 

Single, Multi and Many Objective optimization algorithms based on the number of 

credentials taken into account while recommending a reviewer 

f) Identifying research productivity (frequency of use) of various optimization 

algorithms and tools 

g) Summarizing the external and internal threats to validity 

h) Ranking of CRR tools based on identified factors and accuracy 
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3.2 Review Methodology 

Kitchenham guidelines [15] on SLR methodology are followed in this SLR. The major 

sections of this methodology are planning, conducting and reporting. In this methodology, 

Review Protocol is an integral step and is mainly divided into two categories that are 

Category Definition and Review Protocol Development. Briefly, this section deals with 

‘Category Definition’ and ‘Review Protocol’. Moreover, this section implicates the research 

questions for review that are highlighted in Section 3.2.1. 

3.2.1 Research Questions 

Research questions have been summarized as below: 

RQ1: What are the leading different Code Reviewer Recommendation tools defined from 

2011- to March 2022? 

RQ2: How the leading CRR tools are validated? 

RQ3: What are the (Single, many and multi objectives) optimization algorithms identified 

in previous research? 

RQ4: Which multi-objective optimization algorithm has the better research productivity 

over the years from 2011-March 2022? 

RQ5: How the leading CRR tools may be ranked as per their accuracy? 

RQ6: What are the threats to the validity of the previous finding in context to code reviewer 

recommendation tools? 

3.2.2 Category Definition 

To simplify the data extraction and synthesis process, we have defined five categories as 

shown in Table 1. The reviewed research articles are categorized later on into these 

categories. These categories are CRR Approaches, CRR Tools Availability, CRR Validation 

Protocols, CRR Optimization Algorithms and General category. 

Table 1. Categorization of Review Information 

Sr. # Category Types Extracted Information 

1 
CRR 

Approaches 

4 types of 

Approaches 

Identified CRR Approaches 

Load 

Balancing (2 

studies) 

Reviewer 

Profile-

based (3 

studies) 

Expertise 

and 

Experience 

(4 studies) 

Traceability 

Matrix (2 

Studies) 

2 
CRR Tools 

Availability 

4 types of 

Availability 

Identified CRR Tools Availability 

Organizational 

(4 studies) 

Open Source 

(2 studies) 

Commercial 

(3 studies) 

Publicly 

available (2 

studies) 
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3 

CRR 

Validation 

Protocols 

4 Protocols 

Identified CRR Validation Protocols 

Datasets (3 

studies) 

Open-source 

projects (4 

studies) 

GitHub 

project (2 

studies) 

Gerrit Project 

(1 study) 

4 

CRR 

Optimization 

Algorithms 

3 types of 

Algorithms 

Identified CRR Optimization Algorithms 

Single 

Objective (3 

papers) 

Multi-

Objective 

(14 papers) 

Many Objective (3 papers) 

 

5 General 

It is highlighted that a specific paper may fall into one or more of the 

above-mentioned categories depending upon the availability of concerned 

information. For example, paper [13] falls under ‘CRR Approaches’, ‘CRR 

Optimization Algorithm’ and ‘General’ categories. 

 

a) CRR Approaches: From the reviewed literature, it was identified that four major 

approaches are being followed to recommend a reviewer for a specific piece of code. We 

have categorized the reviewed research articles into these categories which are ‘Load 

Balancing’ (2 studies), ‘Reviewer Profile-based’ (3 studies), ‘Reviewer Expertise and 

Experience’ (4 studies) and ‘Traceability Matrix’ (2 studies). Selecting the right approach 

for CRR is a critical task to perform while doing code reviews. For example, the authors of 

[16] have recommended the reviewers based on their expertise and experience while 

working on cross-project and specialized technologies. Additionally, the authors of [17] 

have presented an approach i.e., named ‘ADCR’ to recommend reviewers based on the 

reviewer’s profile-based historical data.  

b) CRR Tools Availability: From the reviewed literature, 14 tools are identified that are 

used for CRR. The availability of these tools is a critical question. Under this heading, we 

have sub-categorized (4 sub-categories) the studies based on the availability of their 

recommended tools as shown in Fig. 1. Some tools for CRR are ‘Open Source’ with their 

source code available as well. Other types of availability are ‘Public’, ‘Commercial’ and 

‘Organizational’. For example, Tie [18] is a tool based on text mining and a profile 

location-based approach and its availability is organizational.  

c) CRR Validation Protocols: Another important aspect is the protocol that is used for the 

validation of CRR tools. The reviewed literature highlighted that there are various 

techniques used for the validation of CRR tools to claim their accuracy. These protocols 

are used to perform validation on different datasets, GitHub and Gerrit projects and open-

source projects. Under this category, research studies are sub-categorized based on the 

CRR tools validation protocols as shown in Table 7. For example, WhoReview [19] tool 

was validated by authors on four big open-source projects in Microsoft. 



    

 

15 

d) CRR Optimization Algorithms: A review of the selected literature revealed that there 

exist various optimization algorithms. These algorithms are classified as single, multi and 

many objectives optimization algorithms. For example, a single-objective (i.e., availability 

of reviewer) optimization algorithm has been proposed by the authors of [20]. Likewise, 

the authors of [21] presented a multi-objective optimization algorithm that takes into 

account three objectives i.e., availability, expertise and collaboration of reviewers to 

recommend a reviewer. Moreover, some studies have presented many-objective 

algorithms. Collectively, all such studies that provide algorithms for single, multi and 

many-objective algorithms are placed under this CRR Optimization Algorithms. 

e) General: This category contains those research studies that can be a part of more than one 

above-mentioned category. For example, papers [22], and [23] have used the NSGA-II 

optimization algorithm with 2 different tools. They have also mentioned the validation 

techniques via two datasets respectively, so they are placed under the ‘CRR Validation 

Protocols’, ‘CRR Optimization Algorithm’ and ‘General’ category. 

3.2.3 Review Protocol 

Once the categories are defined, the Review Protocol is shaped as per the defined 

methodology of Kitchenham [22]. Review protocol consists of standard six steps. The first 

two steps (background and research questions) are already elaborated while the remaining 

steps are explained in the undermentioned headings: 

I. Acceptance and Rejection Criteria 

Acceptance and rejection criteria primarily contain the set of rules/criteria that form the basis 

of acceptance/rejection or inclusion/exclusion of a specific paper. The criteria consist of some 

steps that need to be followed for deciding whether the study is excluded or included. Studies 

that do not follow or fulfill the following parameters are not considered. Only those studies 

are considered for further scrutiny that passes through the initial filter of acceptance and 

rejection criteria. 

a) Subject: Only those papers should be selected that are completely relevant to code 

reviewer recommendation. Studies dealing with code reviews [3] but discussing code 

reviewer recommendations marginally should be discarded. As this SLR deals solely 

with Code Reviewer Recommendation therefore those papers should be discarded 

that don’t contribute positively towards improvement in the automated CRR.   
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b) Publication Year: This SLR deals with those studies that are published from 

January 2011~ to date. Studies published before 2011 were rejected. Primarily, the 

latest research are based on the findings of previous research. Therefore, a very 

carefully considered research duration is considered for this SLR. This duration not 

only encompasses the latest trends related to the domain of CRR but it also covers 

the previous researches logically as well. For example, paper [8] discusses the latest 

multi-objective optimization algorithm, however, in actuality, the concept of multi-

objective optimization algorithms started back in the early 2000. So, this paper [8] 

amply covers the range from 2000 ~ to 2016.  

c) Publisher: The studies were selected from numerous renowned and well-known 

scientific repositories. The databases of IEEE, ELSEVIER, ACM, SPRINGER and 

Taylor & Francis are utilized to conduct this SLR. These databases are reliable and 

trustworthy and studies that are published in these databases undergo a stringent peer 

review. Therefore, studies considered for this SLR must fall under these databases.  

d) Language: To conduct this SLR, the studies that are published in English are 

considered. Those studies which are written in a language other than English are 

excluded. We found 3-4 relevant papers with an abstract in the English language, but 

the paper content was not in English.  

e) Validation: Only those studies should be included, where validation of CRR tools is 

performed properly either with the help of a dataset, open-source project (Gerrit, 

GitHub & Microsoft), or with the help of a case study. For example, a study [23] 

proposed a code reviewer recommendation tool ‘RSTrace+’ with a complete 

validation via an open-source project and accomplished top-3 recall & precision 

values. Subsequently, studies that have lacked, insufficient or missing validation 

techniques are excluded from this SLR.    

II. Search Process 

After specifying the acceptance and rejection criteria, the search process is initiated by 

exploring the renowned databases of IEEE, ELSEVIER, ACM, T&F and SPRINGER. We 

used different search terms or keywords to perform this process as shown in Table 2. We 

started the search process with the most relevant search words like “Code Reviewer 

Recommendation”. These search terms resulted in hundreds of results, which could not be 

fully examined. For example, the Springer database resulted in 23759 contents for the search 

term “Code reviewer recommendation” in default settings. 
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Table 2. Search Keywords and Results 

Sr. 

# 

Search Keywords Operator 

(AND/OR) 

No. of Search Results 

IEEE ACM T&F Springer Elsevier 

1 
Code reviewer 

recommendation 

AND 33 8 2 7 3 

OR 81 30 9 31 24 

2 
Tools for code reviewer 

recommendation  

AND 24 0 0 8 0 

OR 50 12 4 19 9 

3 Code optimization algorithms 
AND 32 15 7 5 8 

OR 80 52 16 34 43 

4 
Types of optimization 

algorithms 

AND 0 4 1 7 0 

OR 115 14 5 19 10 

5 Genetic algorithms AND 43 32 9 80 20 

6 Threats to validity of CRR 
AND 25 0 2 6 0 

OR 49 23 7 30 19 

7 CRR, Genetic algorithm 

techniques 

N/A 90 39 12 98 4 

8 Validation of CRR tools N/A 21 14 8 13 9 

 

 

Figure 6. Search Process 
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To refine our results, we applied some filters, like we put the range (2011-March 2022) on 

publication years while searching for related research work. Two kinds of operators (AND, 

OR) are used to carry out the search process via keyword searching. Moreover, we tried to 

identify the synonyms and possible substitutes for the terms to make the search process in 

detail. We used the Snowballing search method [25]. The ‘forward snowballing’ (to check 

where that paper was referred/ cited) and backward snowballing (what citations that paper 

used) to identify related additional papers. After applying all these filters and detailed search 

options, we were able to gather the finest and most relevant results that could be easily 

studied and beneficial for this SLR. For example, 114 studies were figured out for further 

study with the search term “Code Reviewer Recommendation” after applying above 

mentioned techniques. Similarly, after applying the same techniques, the search term 

‘Genetic Algorithm’ in the ACM database only resulted in 32 papers. In this manner, after a 

comprehensive search process, we finally obtained 62 research studies to get accurate and 

reliable answers to our research questions. The complete search process is elaborated in Fig. 

6 and the steps are explained below: 

• Initially, 1474 research studies were obtained from all the databases. Firstly, we 

analyzed the titles of research to check the relevance according to inclusion and 

exclusion criteria. We rejected 805 because those studies indicated their irrelevance in 

their title. 

• Then, we studied the abstracts of the remaining 669 papers. It was observed from a 

few studies that their abstract violates the parameters defined in inclusion and 

exclusion criteria. Thus, we discarded 478 studies by examining their abstracts. 

• We investigated the remaining 191 research studies. Until here, the validation criteria 

were not considered and only the first four acceptance and rejection parameters were 

followed. Hereon, the 5th parameter i.e., validation was also considered by studying 

various sections in detail. Therefore, based on this investigation via general study and 

then detailed in-depth study, we excluded 86+46 research studies respectively and 

included 59 studies, which were conforming completely to our selection and rejection 

criteria.  

• Finally, we applied snowballing process. This process ensured the selection of 

relevant studies that have been missed by chance in the search process. We utilized 

both forward and backward snowballing. As result, 3 studies were selected that 

appeared relevant to our research context by the snowballing process. 
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Table 3. Accepted Research Papers Vis a Vis Databases 

Sr. 

# 

Scientific 

Catalogue 

Sort References for Studies (selected) Total 

Researches 

1 IEEE 

Conference [11], [24], [25], [26], [27], [28], [29], 

[30], [31], [32], [33], [34], [35], [36], 

[37], [38], [39], [40], [41], [42] 28 

Journal [43], [44], [45], [46], [47], [48], [49], 

[50] 

2 Elsevier 

Journal [7], [51], [52], [53], [54], [55], [56], 

[57], [58], [59], [60], [61], [62], [63], 

[64] 

15 

3 Springer 
Conference [65]  

8 Journal [9], [66], [67], [68], [69], [70], [71],  

4 ACM 

Conference [23], [72], [73], [74], [75], [76], [77], 

[78] 

 

9 

Journal [79] 

5 Taylor & Francis Journal  [80], [81] 2 

 

III. Quality Evaluation 

We ensured to select research from well-known and high-impact studies (authentic and 

accepted worldwide) from scientific databases to guarantee the reliable results/ conclusions 

of this SLR. 5 most renowned databases are used for the selection of studies according to 

parameter no 3 (Publisher) as enunciated in the inclusion and exclusion criteria. Table 3 

presents the detailed distribution of selected studies concerning publishing databases. This 

table elaborates the information about the names of the databases, selected studies for 

referencing, their sorting based on publication type (journal or conference) and the total count 

of studies concerning the database. 28 studies are selected from IEEE, 15 from Elsevier, 8 

from Springer, 9 from ACM and 2 are selected from Taylor & Francis.  

 

Figure 7. Distribution of Selected Studies based on Publication Year 
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Furthermore, within a specific database, the distribution of conference and Journal 

publications can also be seen. For example, there are 8 journals and 20 conference papers that 

have been selected from the IEEE database Elsevier database contributed 15 Journals. 1 

conference paper and 7 journals are selected from Springer, and 2 journal papers are 

contributed by Taylor & Francis. Finally, from the ACM database, 8 conferences and 1 

Journal were added to the list of papers that were scrutinized for the sake of this SLR. 

Table 4. Year-wise distribution of Selected Studies 

Sr. 

# 

Year  Studies Contribution 

percentagewise 

Total 

1 2012 [27], [48], [59] 4.84% 3 

2 2013 [29], [34], [37], [41], [63] 8.06% 5 

3 2014 [40], [42], [44], [45], [65], [78] 9.68% 6 

4 2015 [11], [30], [35], [39], [68], [79] 9.68% 6 

5 2016 [7], [24], [25], [28], [36], [46], [61], [75], [76], 

[80] 

16.13% 10 

6 2017 [43], [31], [47], [49], [52], [55] 9.68% 6 

7 2018 [33], [54], [57], [58], [62], [64], [67], [69], [70], 

[71] 

16.13% 10 

8 2019 [23], [32], [38], [50], [56], [60], [72] 11.29% 7 

9 2020 [26], [9], [53], [66], [73], [77], [81] 11.29% 7 

10 2021 [51], [74] 3.23% 2 

 

The horizontal axis of Fig. 7 shows the year of publication and the publication type. Whereas, 

the vertical axis shows the number of publications in a particular year. The tabular form of 

Fig. 7 is shown in Table 4 which presents the year-wise distribution of selected research 

studies. As it can be seen that this SLR encompasses a blend of the latest information from 

the most reliable resources. The last column (Total) gives the total number of publications in 

a particular year. The same table gives the percentage-wise distribution of research studies 

per year. As it may be noticed that the number of studies from 2016~2020 is contributing 

more than in other years. It may be safely concluded that the conclusions of this SLR 

encompass the latest information. Similarly, the databases of IEEE and Elsevier contributed 

to a larger number of studies than other databases. In comparison, lesser studies were 

extracted from T&F, Springer and ACM. Resultantly, the total count of papers (under 

consideration) comes out to be 62 studies. 

The sorting of publication types (journal and conference) is also a very important factor to 

demonstrate the quality of this SLR. We included 33 Journal papers out of 62, which means a 

total of 53% contribution of Journals in this SLR. Likewise, 29 conference studies were 

found to be about 47% contribution. All of these publications fully qualify the inclusion and 

exclusion criteria set for this SLR. 
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IV. Data Extraction and Synthesis 

After selecting studies according to inclusion and exclusion criteria, we have developed a 

template to complete the data extraction and synthesis step as shown in Table 5. The answers 

to research questions are systematically found by doing this step. Moreover, it also helped to 

gather and analyze the concerning fundamentals from chosen studies. The data which was 

extracted from the selected research studies include Bibliographic information, generalized 

overview, proposed methodology, implementation details, outcomes, limitations, 

categorization, tools and validation techniques discussed in a particular study. In this manner, 

answers to all the research questions were categorically found. The template helped 

invaluably in sifting the essentials from the non-essentials. 

Table 5. Template of Data Extraction and Synthesis 

Sr. 

# 

Type  Details 

1 Bibliographic 

information 

It includes title, publication details (year, authors information) and 

type of research paper (Conference or Journal) 

2 Summary The proposal of each selected study is analyzed 

3 Proposed Methodology  It contains the methodology followed by each study 

4 Implementation Details It includes the details of the technology that is used to implement 

the proposed methodology 

5 Outcomes We analyzed the outcomes of each study thoroughly 

6 Limitations Limitations while achieving any objective (if any) 

7 Categorization Selected studies are classified as per defined categories. the results 

are summarized in Table 1 

8 Tools Well-known Tools are analyzed and summarized in tables (Table 6) 

9 Validation Validation methods of each study e.g., datasets, and open-source 

projects (Table 7) 

10 Algorithms Algorithms are proposed by each research study to achieve the 

required objective. Results are summarized in Table 8 

3.3 Results, Analysis & Answers to Research Questions 

The primary aim of this research article is to examine and query the selected literature to 

reliably answer the identified research questions. This section reports the results after careful 

examination of various aspects of extracted data. It is pertinent to mention that the Journals 

generously contributing to our quest for the latest trends in CRR are; ‘Information and 

Software Technology’, ‘Applied Soft Computing’, ‘Journal of Intelligent Information 

Systems’, ‘Journal of Computer Science and Technology’, ‘Information Sciences’, ‘IEEE 

Transactions on Evolutionary Computation’, ‘Natural Computing’, ‘Automated Software 

Engineering’ and ‘IEEE Access’. Likewise, numerous worthy conferences i.e., ‘International 

Conference on Software Engineering Companion’, ‘International Conference on Software 
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Engineering’ (ICSE), ‘International Conference on Software Analysis, Evolution and 

Reengineering’ (SANER) and many others contributed to our SLR. 

1) Leading CRR Tools: 

One of our research questions queries the leading CRR tools. This section presents the latest 

CRR tools and their availability as reported by the worthy researchers in selected research. 14 

of the most acclaimed tools that are used for reviewer recommendation are shown in Table 6. 

These tools are reported in 11 types of research published from the year 2011-March 2022. In 

this table, tools are presented along with their abbreviations (if any), availability and the 

concerned studies. 4 types of availability have been associated with the CRR tools i.e., 

Organizational or Proprietary, publicly available, Open source and Commercial. An 

Organizational or Proprietary tool is the one that legally remains the property of a specific 

organization, group or individual who owns it like, Trello is propriety to ‘Atlassian’. The 

publicly available tool is licensed at no cost or for an optional fee e.g., SQLite and Review 

Bot. The source code for this kind of tool is kept hidden from the public. The tool that is 

freely available and its source code is published freely as well to use or modify falls under the 

Open-source category i.e., CORRECT. Lastly, the commercial tool may be owned (via 

authorized licensing) by anyone who pays for it e.g., RevRec.  

After analysis of the tools, it may be safely claimed that tools i.e., CORRECT and RSTrace+ 

(Reviewer suggestion by Traceability graph) are open sources. Carrot, RevFinder (Review 

finder) and Review Bot are publicly available. The tools that are commercially available for 

reviewer recommendation are WhoDo, Profile-based, WhoReview, Latent Dirichlet 

Allocation and RevRec. Similarly, tools like TIE (Text mining and file location), ADCR 

(Appropriate Developer for Code Review) and CoreDevRec are organizational tools. 

Table 6. Leading Code Reviewer Recommendation Tools 

Sr. 

# 

Tools Abbreviation (if available) Availability  Reference  

1 TIE Text mining and file location  

Organizational 

 

[30] 

2 ADCR Appropriate developer for Code Review [26] 

3 CoreDevRec Core Member Recommendation for 

Evaluation 

[52] 

4 Naïve Bayes  N/A [33] 

5 CORRECT N/A 

Open Source 

[25] 

6 RSTrace+ Reviewer suggestion by Traceability 

graph 

[53] 

7 RevFinder Review Finder 
Publicly Available 

 

[33] 

8 Carrot N/A [26] 

9 Review Bot N/A [29] 

10 RevRec Review recommendation Commercial 

  

[28] 

11 WhoDo N/A [24] 
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12 Profile Based Profile of Individual Recommender [32] 

13 WhoReview N/A [51] 

14 LDA Latent Dirichlet Allocation [23] 

 

2) Leading Validation Techniques: 

Various techniques are in vogue to demonstrate the validity of tools. It has been noticed that 

various researchers have used open-source projects, datasets, Gerrit and GitHub projects for 

validity. For example, Z. Liao et al. [60] proposed validation via dataset. In a research article 

[27], M. M. Rahman et al. presented a validation approach i.e., based on the Gerrit repository 

project. Similarly, C. Yang et al. [63] identified a validation approach based on GitHub 

projects. Therefore, in this section, the effort has been made to figure out the validation 

techniques that are used by worthy researchers to validate the leading CRR Tools. In Table 7, 

validation techniques are mentioned against the leading CRR tools. 

We found 3 studies [12], [16] and [60] where validation of 5 tools is reported via datasets. 

i.e., LDA, Review Bot, TIE, Naïve Bayes and Rev Finder. Similarly, Tools i.e., CORRECT, 

Carrot, Profile-based, Who Review and RSTrace+ are validated via Open-source Projects as 

reported by [67], [68], [69], [70]. Likely, Who Do, CoreDevRec and RevRec are validated 

via GitHub Repository projects [62], [63]. Lastly, ADCR has been validated via the Gerrit 

repository project named ‘Core-Plugins’ [27]. 

For elaboration, we discuss the ‘CORRECT’ tool. It has been validated via 10 open-source 

projects. The data in these open-source projects were about Atomix, Tablesaw, Vavr, Takes, 

Dkpro-core, Pac4j, Open stack, Android and Qt. This tool successfully served 17115 pull 

requests (project files submitted for reviewer recommendation) concerning these open-source 

projects. 

Table 7. Leading CRR Validation Protocols 

Sr. # Tools Validation Techniques Reference  

1 CORRECT 10 open-source projects (17115 pull requests) [76] 

2 WhoDo Five repositories of GitHub [72] 

3 Carrot Open-source Ericsson Project [73] 

4 Review Bot Two Datasets (one large and one small) [60] 

5 TIE Two Android pull requests datasets [12] 

6 ADCR Gerrit code review project [31] 

7 Profile Based Four large open-source projects  

[75] 8 WhoReview Four long-lived open-source projects in a large 

organization 

9 CoreDevRec Five popular projects with 18651 pull requests in GitHub [68] 

10 Naïve Bayes  Dataset of 51 projects 
[16] 

11 RevFinder Dataset of 51 projects having 42,045 reviews  

12 LDA Two Android pull requests datasets [12] 

13 RSTrace+ Evaluated on 40 open-source projects [74] 
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14 RevRec Two popular projects in GitHub [69] 

 

3) Optimization Algorithms: 

Primarily, CRR tools are based on certain optimization algorithms. These algorithms serve as 

the backbone of these tools. A tool works on a specific algorithm to recommend a reviewer. 

A specific optimization algorithm takes into account certain objectives e.g., ‘reviewer 

experience’, ‘reviewer workload’ and ‘reviewer ~ developer collaboration’. A review of the 

selected literature revealed that there exist various optimization algorithms. To answer 

research question 3, We have identified the 25 well-known, recently used and distinguished 

optimization algorithms from 2011-March 2022 as shown in Table 8, which explains the 

algorithm, its abbreviation and its type i.e., single, multi and many. For example, a single-

objective (i.e., availability of reviewer) optimization algorithm has been proposed by the 

authors of [20]. Likewise, the authors of [21] presented a multi objectives optimization 

algorithm that takes into account three objectives i.e., availability, expertise and collaboration 

of reviewers to recommend a reviewer. Moreover, some studies have presented many 

objective (more than three objectives) algorithms as well. 

As noticed, the algorithms such as ‘Strength Pareto Evolutionary Algorithm’, ‘Niched Pareto 

Genetic Algorithm’ and ‘Pareto Archived Evolution Strategy’ are single-objective 

optimization algorithms. Similarly, ‘Non-dominated Sorting Genetic Algorithm’, ‘Multi-

Objective Ant Colony Optimization’ and ‘Multi-Objective Genetic Algorithm’ are multi-

objective optimization algorithms. ‘Decomposition-based Elitist Non-Dominated Sorting 

Algorithm’ (NSGA-III)’, ‘Unified Evolutionary Algorithm for Decomposition based Elitist 

Non-Dominated sorting’ and ‘ϴ-Dominance Sorting Genetic Algorithm’ are many 

objectives’ optimization algorithms. The most used and famous algorithm in researches is 

NSGA-II. Different variants of NSGA-II are introduced by different researchers lately e.g., 

‘Multi-Objective Particle Swarm Optimization’ and ‘Non-dominated sorting and local 

search’ as reported by [59], [71] respectively. 

Table 8. Optimization Algorithms 

Sr. # Algorithm Abbreviation (if available) Type Referenc

e 

1 SPEA Strength Pareto Evolutionary Algorithm 
Single 

 

[49] 

2 NPGA Niched Pareto Genetic Algorithm [43] 

3 PAES The Pareto archived evolution strategy [27] 

4 SPEA2 Strength Pareto Evolutionary Algorithm 2 

Multi 

 

[59] 

5 NSGA-II Non-dominated Sorting Genetic Algorithm [77] 

6 IBEA Indicator-Based Selection in Multi-Objective Search [54] 

7 MOPSO Multi-Objective Particle Swarm Optimization [59] 
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8 MOACO Multi-Objective Ant Colony Optimization  [40] 

9 SA Simulated annealing algorithm [58] 

10 MOEA Multi-Objective evolutionary algorithm [55] 

11 ECGA The Extended Compact Genetic Algorithm [51] 

12 SEMO The Simple Evolutionary Multi-Objective Optimizer [70] 

13 EMOA Evolutionary Multi-Objective Algorithm [33] 

14 SMS-EMOA S-metric selection Evolutionary Multi-Objective 

Algorithm 

[79] 

15 €-MOEA The €-Based Multi-Objective Evolutionary Algorithm [36] 

16 PSEA-II The Pareto envelope-based selection Algorithm II [40] 

17 MOGA Multi-Objective Genetic Algorithm [56] 

18 C-MOGA Cellular Multi-Objective Genetic Algorithm [51] 

19 MSOPS-II Multiple single objective Pareto sampling algorithm II [35] 

20 MOEA/IGD-

NS 

A multi-objective evolutionary algorithm based on An 

Enhanced inverted generational distance metric 

[49] 

21 BCE-IBEA Bi-criterion evolution for Indicator-Based 

Evolutionary Algorithm 

[48] 

22 NSLS Non-dominated sorting and local search [71] 

23 NSGA-III Decomposition based Elitist non dominated sorting 

Algorithm 

Multi

+ 

Many 

 

[44] 

24 ϴ-NSGA-III ϴ-Dominance Sorting Genetic Algorithm Many [78] 

25 U-NSGA-III Unified Evolutionary Algorithm for Decomposition 

based Elitist non dominated sorting Algorithm 

Single

+ 

Multi

+ 

Many 

[65] 

 

4) Validity Threats: 

There may be two types of validity threats i.e., ‘Internal’ and ‘External’. Internal validity 

refers to how well the procedures of the study are validated or trustworthy while external 

validity relates to the transfer of results from one situation/event to another with similar 

characteristics. To answer our RQ6, there are some validity threats to the tools as well. To 

answer RQ6, we present Table 9, in which we have summarized the tools along with their 

internal and external threats. 

To elaborate on the validity threats, we may discuss the ‘CORRECT’ tool (Ser 1 of Table 9). 

One of its internal threats is that it is validated only for medium-sized projects and its 

external threat is that it has only experimented with projects developed on Python, Java and 

Ruby specifically. Similarly, ‘ADCR’ (Ser 2 of Table 9) internal threat is that its validation 

gives results on Gerrit repository projects specifically. While its external threat is the Cold 

start problem, i.e., a situation where newly joined users are difficult to recommend as they 

don’t have any profile, experience, etc. So, external threat in the ‘ADCR’ tool is basically for 

newly joined code reviewers. The other external threat is the limitation of their tool result to 5 
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project datasets only. Table 9 shows other tools and their respective Internal and external 

threats respectively. 

Note: Every research study provides mitigation ways/methods to overcome these threats in 

respective studies. 

Table 9. Threats to Validity for CRR Tools 

Sr. # Tools Threats to Validity Reference 

Internal threats External threats 

1 CORRECT Validated on medium-sized 

subject systems only 

Experimented on python, 

Java and Ruby projects 

[76], [25] 

2 ADCR Validation gives results on 

Gerrit repository projects 

Cold start problem for 

newly joined code reviewers 

[26], [31] 

3 WhoReview + 

TIE 

Uses longitudinal data for 

evaluation only 

Validated on provided 

dataset only 

[8], [14] 

4 CoreDevRec Related to errors and bias in 

experimental data 

Results are limited to 5 

project datasets only 

[62] 

5 Naïve Bayes  Related to errors and bias in 

data (collection + 

implementation) 

Results on only those 51 

projects on GitHub 

[17] 

6 RevFinder Involves manual 

examination in reviewing 

process 

Limited to four dataset 

results only 

[16] 

7 LDA Cannot ensure results 

validation in the initial phase 

of any project 

 

 

Results may not be 

generalized on other open-

source projects 

[21] 

8 RSTrace+ Related to data collection 

and implementation + 

Accuracy will be lower at 

the start of the 

recommendation  

[23] 

9 RevRec Related to nonlinear or time-

dependent validation results 

Cannot generalize on other 

code review tools or 

projects 

[24], [25] 

 

5) Answers to Research Questions: 

RQ1: What are the leading different Code Reviewer Recommendation tools defined from 

2011-to March 2022? 

Answer: In this SLR, we have identified 14 most acclaimed tools from selected studies that 

are used for reviewer recommendation as discussed and shown in Table 6. This table presents 

the names of the tools against their availability. It has been analyzed that the tools i.e., 

‘CORRECT’ and ‘RSTrace+’ (Reviewer suggestion by Traceability graph) are open source. 

‘Carrot’, ‘RevFinder’ (Review finder) and ‘Review Bot’ are publicly available. The tools that 

are commercially available for reviewer recommendation are ‘WhoDo’, ‘Profile-based’, 

‘WhoReview’, ‘Latent Dirichlet Allocation’ and ‘RevRec’. Similarly, tools i.e., ‘TIE (Text 
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mining and file location), ‘ADCR’ (Appropriate Developer for Code Review), ‘Naïve Bayes’ 

and ‘CoreDevRec’ are organizational tools. 

RQ2: How the leading CRR tools are validated? 

Answer: Various validation techniques are utilized by the researches to demonstrate the 

validity of their proposed tools. Table 7 presents the validation techniques for the identified 

CRR tools. The techniques are identified as ‘open-source projects’, ‘datasets’, ‘Gerrit’ and 

‘GitHub’ projects. We found 3 studies [12], [16] and [60], where validation of 5 tools is 

demonstrated via ‘datasets’ i.e., ‘LDA’, ‘Review Bot’, ‘TIE’, ‘Naïve Bayes’ and ‘Rev 

Finder’. Similarly, Tools i.e., ‘CORRECT’, ‘Carrot’, ‘Profile based’, ‘Who Review’ and 

‘RSTrace+’ are validated via ‘Open-Source Projects’ as reported by [67], [68], [69] and [70]. 

Likely, ‘Who Do’, ‘CoreDevRec’ and ‘RevRec’ are validated via ‘GitHub Repository 

Projects’ [62] and [63]. Lastly, ‘ADCR’ has been validated via the ‘Gerrit Repository 

Project’ named ‘Core-Plugins’ [27]. As may be noticed that most of the tools were validated 

with the help of ‘Open-Source Projects’. 

RQ3: What are the (Single, many and multi objectives) optimization algorithms identified in 

previous research? 

Answer: This SLR has identified the 25 well-known and distinguished algorithms (2011-

March 2022) that are used by the CRR tools to recommend a suitable reviewer. Table 8 

presents these algorithms. The type column consists of 3 categories: Single, multi and many. 

As noticed, the algorithms such as ‘Strength Pareto Evolutionary algorithm’, ‘Niched Pareto 

Genetic algorithm’ and ‘Pareto Archived Evolution Strategy’ are single-objective 

optimization algorithms. Similarly, ‘Non-dominated Sorting Genetic Algorithm’, ‘Multi-

Objective Ant Colony Optimization and ‘Multi-Objective Genetic Algorithm’ are multi-

objective optimization algorithms. ‘Decomposition-based Elitist Non-dominated Sorting 

Algorithm’ (NSGA-III)’, ‘Unified Evolutionary Algorithm for Decomposition based Elitist 

non-dominated sorting’ and ‘ϴ-Dominance Sorting Genetic Algorithm’ are many objectives’ 

optimization algorithms. 

RQ4: Which multi-objective optimization algorithm has the better research productivity over 

the years from 2011-March 2022? 

Answer: Research productivity is the frequency of use of a specific algorithm. After analysis 

of the selected research studies (2011~2022) and as may be noticed in Fig. 8, it may be safely 

claimed that NSGA-II [8], [9], [34], [55] and [71] has the highest research productivity. 

Similarly, it is the most widely used multi-objective optimization algorithm used for code 

reviewer recommendation lately. NSGA-II has gained popularity because of its non-dominant 



    

 

28 

sorting technique, which is very effective as it provides optimal solutions and also calculates 

each objective fitness function value separately [21] and [32]. Moreover, it provides the most 

reliable and steadfast recommendation in minimal conjunction time. NSGA-III [22], [38], 

[39], [54] and [72] is another type of algorithm from the NSGA family which takes into 

account ‘Many’ objectives. Different other algorithms in related researches are MOGA [58], 

[61], [64] and [75], IBEA [37], [41], [45] and [48], MOEA/D [38], [56], SPEA [44], [53] and 

MOACO [57]. Fig. 8 shows a bar chart between algorithms (vertical axis) and their usage 

frequency (horizontal axis) in research over the last ten years. 

 

Figure 8. Research Productivity of Algorithms (2011~2022) 

RQ5: How the leading CRR tools may be ranked as per their accuracy? 

Answer: While answering this research question, an effort was put in to draw a comparison 

among accuracies of various identified CRR tools. After analyzing all the selected studies, we 

could only find 6 studies, where the accuracy of the reported tools was mentioned. These 

tools are mentioned in Table 10 along with the reported accuracies. It may be noticed that 

only three of the mentioned tools have used the same type of approach. So, in actuality, the 

real comparison can be drawn among these three tools i.e., ‘WhoReview’ (Ser 1 of Table 10), 

‘TIE’ (Ser 2 of Table 10) and ‘Review Finder’ (Ser 3 of Table 10). The accuracy of the rest 

of the three tools along with the identified approach is also mentioned in this table.  

From the review of the selected literature, ‘Who Review’ has been identified as the CRR tool 

with 85-92 % accuracy. Moreover, it takes into account the reviewers’ profiles while 

recommending. The accuracy of ‘TIE’ has been identified as 75-90 %, as it follows the 

reviewer profile and previous work done by reviewers. Likewise, ‘RSTrace+’ (Ser 4 of Table 
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10) recommends reviewers based on a traceability matrix approach with an accuracy of 80-

85%. ‘TIE’ and ‘RSTrace+’ are almost on the same level of accuracy but they both use a 

different approach for a recommendation. The accuracy of the rest of the tools and their 

approach factors may be figured out in Table 10. 

Table 10. Ranking of CRR Tools based on Accuracy 

Sr.# Tools Identified Factor Accuracy  Reference 

1 Who Review Recommend reviewers based on their 

reviewer profile 

85-92% [14] 

2 Text mining and a file 

location-based 

approach (TIE) 

Analyzes the reviewer profile and their 

similarity based on previous work done 

75-90% [8] 

3 Review Finder Recommend via reviewer profile 

similarity with the previously reviewed 

files 

80% [17], [19] 

4 Reviewer Suggestion 

by Traceability Graph 

(RSTrace+) 

Recommend reviewers on basis of 

traceability matrix 

80-85% [23] 

5 Review Bot Recommend reviewer based on 

experience & expertise 

60-85% [6], [7] 

6 WhoDo Suggest reviewer via load balancing 

approach 

68%-72%  [3] 

 

RQ6: What are the threats to the validity of the previous finding in the context of code 

reviewer recommendation tools? 

Answer: We identified 14 tools in total, however, validity threats have been discussed for 

only 9 tools in their concerned studies. To elaborate on the validity threats, we may discuss 

the ‘CORRECT’ tool (Ser 1 of Table 9). One of its internal threats is that it is validated only 

for medium-sized projects and its external threat is that it has only experimented with 

projects that are developed on Python, Java and Ruby specifically. Similarly, ‘ADCR’ (Ser 2 

of Table 9) internal threat is that its validation gives results on Gerrit repository projects 

specifically. While its external threat is in the context of the Cold start problem, i.e., a 

situation where newly joined users are difficult to recommend as they don’t have any detailed 

profile, experience, etc. So, external threat in the ‘ADCR’ tool is basically for newly joined 

code reviewers. The other external threat is the limitation of results of ADCR to 5 project 

datasets only.  Moreover, further details are provided in Table 9. 

3.4 Conclusion to Literature Review 

Our SLR presents a systematic review of the literature concerning the domain of automated 

Code Reviewer Recommendation (CRR). 62 landmark studies (published from 2011 – March 

2022) were investigated and analyzed after filtering them out via a stringent selection 
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criterion. For ease of analysis and to explore the studies as per the research questions, studies 

were further categorized into five groups i.e., CRR approaches, CRR Tool availability, CRR 

Validation Protocols, CRR Optimization Algorithms and a General category. 

After thoroughly analyzing the selected research articles, 4 different CRR approaches were 

identified, 14 tools are found that are currently being used for automated CRR, 4 validation 

protocols are identified in the review and 25 optimization algorithms (single, multi and 

many-objective) have been alienated from the selected research articles. The aspects 

emphasized in this article welcome the researchers and practitioners to select the respective 

approach, tool, algorithm and validation protocol as per their research requirement/demand, 

as it may vary from case to case. However, based on our analysis, it may be safely concluded 

that the ‘Expertise and experience’ based CRR approach is widely used, whereas, 

‘WhoReview’ is the best tool to automate reviewer recommendation due to higher accuracy 

(85-92%). Moreover, in terms of research productivity over the last 10 years, NSGA-II is the 

most frequently / widely used multi-objective optimization algorithm. 

3.5 Summary Table of Literature Review 

Table 11. Summary Table of Literature Review 

S. 

No

. 

Ref. 

No. 

Yea

r 

Author(s) Tools/ 

Framework 

Algorith

m 

Number 

of 

objectiv

es  

Results 

1. [12] 2015 Xia, X., Lo, 

D., Wang, X., 

& Yang, X. 

TIE Text 

Mining 

and 

Similarit

y Model 

1 Prediction 

Accuracy=85

% 

MRR=64% 

2. [31] 2020 Sadman, N., 

Ahsan, M. M., 

& Mahmud, 

M. P. 

ADCR NLP 

Techniqu

es 

1 Training 

Accuracy=95

% 

Validation 

Accuracy= 

94% 

3. [68] 2015 Jiang, J., He, J. 

H., & Chen, X. 

Y. 

CoreDevRec Support 

vector 

machines 

1 Accuracy=80 

% 

MRR=0.63 

4. [16] 2018 Lipcak, J., & 

Rossi, B.  

Source Code 

Reviewer 

Recommendati

on 

Naïve 

Bayes 

1 MRR= 59% 

5. [76] 2016 Rahman, M. 

M., Roy, C. 

CORRECT Code 

Reviewer 

2 Precision=86

% 
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K., & Collins, 

J. A. 

Ranking 

Algorith

m 

Recall=80% 

6. [74] 2019 Sülün, E., 

Tüzün, E., & 

Doğrusöz, U.  

RSTrace+ Software 

Artifact 

Traceabil

ity 

Graphs 

1 Recall=85% 

MRR=73% 

7. [16] 2015 Thongtanunam

, P., 

Tantithamthav

orn, C., Kula, 

R. G., 

Yoshida, N., 

Iida, H., & 

Matsumoto, K. 

I 

RevFinder File path 

Similarit

y-Based 

1 Accuracy=87

% 

MRR=0.55 

8. [73] 2020 Strand, A., 

Gunnarson, 

M., Britto, R., 

& Usman, M. 

Carrot Machine 

learning-

based 

Algorith

m 

1 Accuracy = 

78% 

9. [60] 2013 Balachandran, 

V. 

Review Bot Statis 

Analyzer 

& Auto-

reviewer 

Algorith

m 

1 Prediction 

Accuracy59-

92% 

10. [69] 2016 Ouni, A., 

Kula, R. G., & 

Inoue, K. 

RevRec GA 2 Precision=58

% 

Recall=71% 

MMR=69% 

11. [72] 2019 Asthana, S., 

Kumar, R., 

Bhagwan, R., 

Bird, C., 

Bansal, C., 

Maddila, C., ... 

& Ashok, B.  

WhoDo Scoring 

Function 

+ Load 

Balancer 

2 Precision=51

% 

Recall=64% 

F1-score= 

57% 

12. [9] 2020 Rebai, S., 

Amich, A., 

Molaei, S., 

Kessentini, M., 

& Kazman, R. 

A 

Multi‑Objectiv

e Code 

Reviewer 

Recommendati

on  

Framework 

NSGA-II 3 Precision=60

% 

Recall=53% 

MMR=68% 

13. [75] 2021 Chouchen, M., 

Ouni, A., 

Mkaouer, M. 

W., Kula, R. 

WhoReview Indicator-

Based 

Evolution

ary 

2 Precision=68

% 

Recall=77% 

MRR= 66% 
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G., & Inoue, 

K.  

Algorith

m 

14. [12] 2016 Bhutada, S., 

Balaram, V. V. 

S. S. S., & 

Bulusu, V. V.  

Semantic 

Latent  

Dirichlet 

Allocation 

(SLDA) 

Latent 

Dirichlet 

Allocatio

n66 

1 F-

measure=81

% 

Purity=96% 

15. [2] 2015 Zanjani, M. B., 

Kagdi, H., & 

Bird, C. 

cHRev Reviewer

-

Expertise 

and File–

Review 

Maps 

1 Precision=59

% 

Recall=48% 

F-

Score=53% 

16. [16] 2019 Li, H. Y., Shi, 

S. T., Thung, 

F., Huo, X., 

Xu, B., Li, M., 

& Lo, D. 

Deep Review Neural 

Network- 

Deep 

Multi-

instance 

Learning 

1 F1 

score=0.49 

Area Under 

the Curve= 

0.87 

17. [77] 2016 Almhana, R., 

Mkaouer, W., 

Kessentini, M., 

& Ouni, A. 

Recommendin

g Relevant 

Classes for 

Bug Reports 

using 

Multi-objective 

Search 

NSGA-II 2 Precision=89

% 

Recall=72% 

Accuracy=68

% 

18. [31] 2017 Rahman, M. 

M., Roy, C. 

K., & Kula, R. 

G. 

RevHelper Random 

Forest 

1 Precision=74

% 

Recall=78% 

F1-

Score=63% 

Accuracy=65

% 

 

Table 11, presents a summary of the literature on different tools/frameworks that are 

proposed by worthy researchers. It also provides crisp and to-the-point knowledge about 

CRR tools/frameworks as the Algorithm used, the number of objectives defined, results, 

author's information, publication year and cited reference number. 

3.6 Research gap 

This section discusses the research gaps and limitations encountered in previous literature. 

Analysis was done on around 62 selected primary studies (in terms of tools/frameworks, 

algorithms, validation protocols, etc.), after an extensive screening process to look for 

research that provides a recommendation for code reviewers for code review. 
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The gap found in our selected studies was that no research focused on using a multi-objective 

algorithm i.e., NSGA-III (an extended form of NSGA-II, proposed in early 2014) to 

recommend code reviewers by taking 3 objectives into account simultaneously in the code 

reviewing process. There was no single fully automated tool/framework proposed to facilitate 

reviewers to do this cumbersome job. Though partially proposed or semiautomated tools i.e., 

models and algorithm’s pseudocode available in literature but no framework is proposed 

using them.  

We found only one study [9], where authors worked on 3 objectives to optimize them using 

NSGA-II. But on contrary, many researchers have found that NSGA-II does not perform well 

on problems with more than two objectives. This is why [65], [82], [44] and [45] have then 

worked on NSGA-III to provide a method for problems with more than two objectives. We 

are adding our effort to that research gap by discussing and validating the potential of NSGA-

III to optimize 3 fitness functions simultaneously using NSGA-III. Also, to estimate and 

compare the execution time of both the algorithm for the same experiments. The goal is to 

use the same 3 objectives as used by [9] and then provide a comparative analysis with this 

research and other state-of-the-art as well to find a better solution to this gap. 
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Chapter 4 : PROPOSED APPROACH 

In this section, the recommendation of a most appropriate set of reviewers is presented for 

pull requests to be reviewed as a framework/approach by using the NSGA-III optimization 

algorithm. The proposed approach consists of data collection, data pre-processing, main 

components of the approach, detailed knowledge about NSGA-III (i.e., high-level 

pseudocode) algorithm, solution representation, fitness functions and change operators. 

The recommendation of reviewers is performed by using the NSGA-III optimization 

algorithm. For validation and visualization in form of graphs, NSGA-II is implemented as 

well in comparison to compare the results of both. Figure 9 shows the fundamental steps of 

the proposed approach. 

The methodology starts with a project’s new pull request to be reviewed is received. The data 

is collected from the project in terms of its previous pull request information (newly opened, 

under-review, closed), reviewers’ and developers’ information, etc. 

         

Figure 9. Overview of multi-objective search-based approach for CRR 
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4.1 Data Pre-Processing 

To clean data and organize it according to the requirement of the framework, pre-processing 

is performed. 

4.1.1 Conversion of SQL & JSON to .CSV Format 

The first step of data preprocessing is to convert the data into .CSV file format as it is faster 

to handle, standard format, and easy to parse. We find some datasets that are in SQL format 

and sometimes we use APIs to fetch data from ongoing live projects. Thus, the conversion of 

data is very important in a standard format to use in the proposed framework. Figure 10 and 

11 shows the code snippet by which SQL and JSON are converted into .CSV file format. 

 

Figure 10. SQL to .CSV Format 

 

Figure 11. JSON to .CSV Format 
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4.1.2 Removal of NaN Values 

NaN is known as the Not-a-Number value. It represents the missing/absence of value in a 

cell. It is a type of special floating-point value that cannot be converted into any other type 

than float. In our framework, NaN values are replaced by zero. The difference between zero 

and NaN is that zero is a value but NaN represents the absence of any value. The purpose of 

removing NaN values is because the optimization algorithm does not perform well or the 

accuracy of the algorithm can’t be made sure on NaN values data. Figure 12 shows the data 

with NaN values (left side) and data when replaced with zero (right side). It may also be 

noticed that we found NaN values only in the ‘Closed’ date and time of pull request data. 

 

Figure 12. NaN Value (left) and Removed NaN Values (right) 

4.1.3 Timestamp Data 

The DateTime data is converted into timestamp data in preprocessing. This is an optional step 

(if required according to the dataset) to perform while pre-processing data. The purpose of 

the step is to follow the required standard format of the data frame i.e., timestamp otherwise 

it shows an error to convert it into a timestamp. Figure 13 shows the data in Date-Time 

format (left) and Timestamp formatted data (right). 
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Figure 13. Date-Time Data (left) and Timestamp formatted data (right) 

4.1.4 Normalization 

In the last step of pre-processing, Data was normalized by doing multiple steps. 

a) Some unwanted columns were dropped from the data that were of no use according to 

the framework. By doing this, the computations got quicker and the load of the 

dataset was reduced.  

b) Normalization of two columns ‘Status’ and ‘Priority’ has been done as they have 

string values (high, low, medium) repetitively in the data. So, to faster the 

computations we marked them with integers as (0, 1, 2). Table 12 shows both 

columns and their normalized values. 

c) Lastly, the data (fitness values) for displaying the results are normalized between the 

values ranging from 0 to 1. This type of normalization is called Min-Max scaling. In 

our proposed framework, the NumPy Python library is used to implement its scaling 

function. The purpose of Min-Max scaling is to remove any outlier from the dataset. 
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After performing normalization, fitness values would not be less than 0 and the 

maximum value wouldn’t be greater than 1. Figure 14 displays the (left) un-

normalized data where the values of fitness are very less. On the right side, the fitness 

values are normalized between zero to one. 

Table 12. Data Normalization 

Status Priority 

Value in Dataset Value Normalized Value in Dataset Value Normalized 

In progress 0 Urgent 0 

Feedback 1 High 1 

Rejected 2 Intermediate 2 

Resolved 3 Normal 3 

Closed 4 Low 4 

 

 

Figure 14. Un-normalized data (left) and Normalized data (right) 

4.2 Code Reviewer Recommendation (CRR) Framework 

This section presents the framework in two steps. Step 1 explains the data extraction or major 

components of the approach while step 2 explains the optimization algorithm i.e., NSGA-III 

and fitness functions, etc. 

4.2.1 Major Components of the Approach 

There are 3 major components of the approach as shown in the methodology figure. The 

purpose is to extract the data from the dataset by making the respective matrix as required by 

the framework. Collectively there are major three components of our approach that are 

defined below: 

4.2.1.1    Reviewer Expertise Matrix 
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This component helps the framework in identifying the reviewer and file connections. This 

matrix can represent the expertise of a reviewer with the help of previous commits and those 

pull requests that have been closed. Expertise is defined as the number of times a reviewer 

reviewed/is familiar with the same file. Matrix keeps the track record of every reviewer that 

worked on a specific file and the number of times reviewed that particular time. 

𝐹𝑅 (File-Reviewer) is a P x M matrix where each entry is stored as 𝑓𝑟(𝑘,𝑖) (number of times 

reviewer ri reviewed the file fk. P is the total number of files requested to be reviewed and M 

is the total number of reviewers working on a project, where i € {1, 2…M} and k € {1, 2... 

P}. 

𝑭𝑹 = (𝒇𝒓(𝒌,𝒊)) ∈𝑷×𝑴   Equation 1 [9] 

4.2.1.2    Reviewer Developer Collaboration Matrix 

The collaboration between a reviewer and developer is presented in this component of the 

approach. The history of closed pull requests is used to present this matrix. For every 

reviewer, the number of times they collaborated with the developers together and the number 

of files reviewed are extracted. The collaboration matrix (DR) is defined as N x M where 

each entry  𝑑𝑟(𝑗,𝑖) represents the number of times reviewer ri reviewed a file, changed by a 

developer dj where i € {1,2, …, M} and j € {1,2, …., N}, M is the total number of reviewers 

and N is the total number of developers.  

𝑫𝑹 = (𝒅𝒓(𝒋,𝒊)) ∈𝑵×𝑴   Equation 2 [9] 

4.2.1.3    Reviewer Availability 

The availability of a reviewer is defined as the workload/number of files per open pull 

request where they are currently involved. Availability is a vector A = [a1, a2, ….am] where ai 

represents the total number of files of the open pull of a reviewer.  

4.2.2 Multi-Objective Optimization (NSGA-III) 

Multi-objective search is defined as ‘the optimization of more than one objective 

simultaneously’. But it is difficult to find a solution that results in an optimal one as the 

objectives are conflicting. As result, a multi-objective search algorithm is a solution that 

could provide a set of different solutions. Since in our framework we are proposing multi 

objectives to be optimized and provide more than one solution, non-dominated sorting 

genetic algorithm-III (NSGA-III) is an algorithm that has demonstrated its usefulness in three 

or more objectives. 
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The pseudocode of NSGA-III is explained in Algorithm 1 [83].  

NSGA-III starts with an input, randomly initialized population with size N, a set of H well-

distributed reference points that are chosen on a unit hyperplane using Das and Dennis’s 

method [83]. At a generation St, complete population Pt produces new offspring population 

Qt with the help of mutations and recombination operators in which everyone population 

member is associated with each reference point and any selection operator will allow 

competition to be set among different reference points. A combined population Rt = Pt ∪ Qt 

 is then formed. So, we have got the first non-dominated solution Pt+1 until every solution 

cannot be included from the whole front. All members of the merged population, at every 

generation, are normalized using a systematic extreme point update strategy mainly by using 

population-minimum and population-maximum objective values. Each member is then 

associated with a particular reference direction using the orthogonal distance of a member to 

a reference direction. Thereafter, a niching methodology is used to choose a diverse set of 

solutions by providing equal emphasis to each reference direction. The algorithm is repeated 

until the stopping criteria are matched. 

Key Points:  

❖ NSGA-III performs selection if and only if at least one of the two individuals being 

compared is infeasible. In that case, NSGA-III prefers feasible over infeasible and 

less violating over more violating individuals. 

❖ To maintain better Coverage of solutions NSGA-III uses a reference point mechanism 

while NSGA-II uses crowding distance calculation. 

❖ NSGA-III (Deb & Jain, 2014; Jain & Deb, 2014) uses to pre-allocated reference set 

mechanism to choose better diverse solutions in the size of the population in free 

space, whereas the NSGA-II algorithm does not require any pre-allocated methods on 

the objective space. So, with more time taken to generate the first solution in spaces, 

NSGA-III has easily generated the first solution so NSGA-III is better than the 

NSGA-II algorithm. 

Algorithm 1: High-level Pseudocode for NSGA-III [83] 

Input: H structured reference point Zs and parent population Pt (total population) 

Output: Pt+1 (non-dominated solution)/Population P 

1: St = Ø, i=1 

2: Qt = Recombination + Mutation (Pt) 
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3: Rt = Pt ∪ Qt 

4: (F1, F2, ….) = Non-dominant-sort (Rt) 

5: repeat 

6: St = St ∪ Fi and i = i + 1 

7: until |St| ≥ N 

8: The last front to be included: Fl = Fi 

9: if |St| = N then  

10: Pt+1 = St, break 

11: else 

12: Pt+1 = 𝑈𝑗=1
𝑙−1Fj 

13: Points to be chosen from Fl: K = N - |Pt+1| 

14: Normalize fitness objectives and create a reference set Zr : Normalize (fn, St, Z
s) 

15: Associate each member s of St with a reference point [closed reference point, the 

distance between s and closed reference point] 

16: Compute niche count of reference point and then Qt+1 = create new pop (Pt+1) 

17: t=t+1 

18: end if 

4.2.3 Fitness Functions 

Since we are working on a multi-objective optimization so in our approach, we intend to 

provide optimization on three fitness functions. These three objective functions are Expertise, 

Availability, and Collaboration. We aim to maximize the formulation of expertise and 

availability of the reviewers while minimizing the fitness function of collaboration due to 

socio-technical aspects of reviewers and developers in the hope to reduce human biases. 

The approach in this thesis presents the output of a set of non-dominated solutions. The 

motivation behind using multi-objective functions is a recent observation that was studied at 

Microsoft [51], that highlights promoting a variety of norms of the team. For example; some 

teams prefer to be diverse and some prefer to have close connections. Sometimes the better 

connection leads to a more valuable result in less time and on some occasions, it leads to 

human biases or quick code approval due to shorter deadlines (if allied with low expertise).  

It is up to the team member to make a change in collaboration function if needed according to 

their preferences. The goal is to provide a varied range of good reviewers as output rather 
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than one solution so that a user could select the reviewer according to his/her needs. The 

details of fitness functions are explained in the below sub-sections: 

4.2.3.1    Availability 

Availability is defined as the inverse of approximated wait until reviewers from their 

workload (already working on a set of file S) become available. In our approach, the 

workload is considered as the collection of the number of commits submitted lately within 

the last seven days and the total amount of all open pull requests. 

𝑨𝒗𝒂𝒊𝒍𝒂𝒃𝒊𝒍𝒊𝒕𝒚 =
𝟏

𝚺𝒌=𝟏
𝑷 𝚺𝒊=𝟏

𝑴 𝒂𝒊∗𝑺[𝒌,𝒊]
, 𝒔𝒌,𝒊 > 𝟎   Equation 3 [9] 

In the equation, a = {a1, a2….am} for contains the task that are in queue for a reviewer. The 

tasks queued for a reviewer ri are represented by ai.  

P= total number of files requested to be reviewed 

M= total number of reviewers 

4.2.3.2    Expertise 

File urgency is an important column in the dataset that defines the status of priority a feel 

needs to be reviewed. The file would take a score of urgency/priority from the pull request as 

defined in Table no 12. FR (File reviewer) and PR (File priority) would both be used to 

define the expertise function. 

𝑬𝒙𝒑𝒆𝒓𝒕𝒊𝒔𝒆 = 𝚺𝒌=𝟏
𝑷 𝚺𝒊=𝟏

𝑴 𝑭𝑹[𝒌,𝒊]+𝑷𝑹[𝒌]

𝑺[𝒌,𝒊]
, 𝒔𝒌,𝒊 > 𝟎   Equation 4 [9] 

Where M= total number of reviewers 

P= total number of developers 

FR= File-Reviewer matrix 

S [k, i] = rank of the reviewers 

Note: A reviewer having a rank of 2 would be more appropriate/expert for reviewing in 

comparison to a reviewer having a rank of 6 or 7. The lesser the rank, the more appropriate 

the reviewer, and the more the availability and expertise both, as the rank is in the 

denominator of the formula in both functions. Rank is inversely proportional to the expertise 

and availability of the reviewer. Reviewers with maximum expertise and availability would 

have more chances to sustain in the next generation of the algorithm to produce more and 

better results. And the final output of set of peer reviewers would definitely be the reviewers 

having best expertise. 
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4.2.3.3    Collaboration 

This is the only objective which we aim to minimize, for the factor of biasness to avoid. It is 

the summation of all associates between the recommended reviewers chosen to work with a 

selected set of developers. 

𝑪𝒐𝒍𝒍𝒂𝒃𝒐𝒓𝒂𝒕𝒊𝒐𝒏 = 𝚺𝒌=𝟏
𝑵 𝚺𝒋=𝟏

𝑷 𝚺𝒊=𝟏
𝑴 𝑫𝑹[𝒋, 𝒊] ∗ 𝑭𝑫[𝒌, 𝒋] ∗ (𝑺[𝒌, 𝒋] > 𝟎) Equation 5 [9] 

In the equation above, 

P=total number of files requested to be reviewed 

M=total number of reviewers 

N=total number of developers 

S [k, j] = rank of reviewer 

DR=Developer-Reviewer Matrix 

FD=File-Developer Matrix 

Both the matrix FD and DR are extracted during the data extraction step as defined in the 

approach diagram. 
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Chapter 5 : IMPLEMENTATION, RESULTS & DISCUSSION 

This section provides details about the implementation, results of the different projects, and 

their discussion. The implementation consists of data gathering of different ongoing 

opensource projects for validation and results formulation. It also consists of basic 

information relevant to implementation/experimental setup i.e. (language, tool, projects, and 

framework used). The framework has been analyzed and discussed in this section. 

The results were compared to the state-of-the-art where the worthy researchers have used the 

same datasets in mono, bi and triple objectives with other algorithms. We only 

reimplemented NSGA-II to compare the results with our NSGA-III triple objectives, as 

authors [9] didn’t provide their code, fitness values, population and generation values and 

graphical representations to compare.  

5.1 Data Collection/Dataset 

We evaluated our approach on 3 different ongoing open-source projects as LibreOffice, Qt, 

and OpenStack. Two datasets (LibreOffice and Qt) were last updated till 2016 and one was 

last updated till 2018 in SQL format only. To bring versatility and add novelty to datasets, we 

collected the updated data about the closed pull request till December 2021. Table 13 show 

the summary for open-source validation projects that includes number of reviewers, number 

of pull requests (closed and newly opened), duration and repository link. LibreOffice is an 

opensource software used for formal documentation (word, spreadsheets, slides and 

diagrams). Qt is a multi-platform software used for creating different user interfaces. Lastly, 

OpenStack is a cloud computing-based software used for virtual servers and other resources 

to made available for end-users. We selected these 3 projects as they have been a part of 

literature frequently [9], [29], [11], [51], [69] and our comparison would be a strong result. 

Also, these projects contain large number of code reviews. 

Pre-Cap of Data Collection: For expertise and collaborations fitness function explained in 

methodology, we considered all the data since the start of the project because we accept as 

truth that more information about the expertise and collaborations of the developers is useful 

in assigning the appropriate reviewer set in the end. 

Regarding the reviewer availability and to approximate the current workload of them, we 

considered the last 7 days of open pull requests. 

The collection of data was gathered by three different ways.  
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The complete Dataset shared in .CSV format is now shared and available in dataset.rar file 

https://drive.google.com/file/d/1CiZWHc0z_JFZ_Tg7pewTfNZb91o9XzIg/view?usp=sharin

g  

5.1.1 SQL Format 

First the SQL format files that were shared by previous authors [9], [11], [29], [51], [69] were 

downloaded from the link https://kin-y.github.io/miningReviewRepo/. The SQL files were 

converted into .CSV as explained in Data preprocessing step and then used. 

5.1.2 CSV Format 

The closed pull request after 2016 and 2018 were downloaded from the accounts of projects 

by registering with them as reviewer/developer. The .csv format files were accessed or 

download (closed pull request only). The downloaded files were merged with the CSV’s that 

were gathered after conversion from SQL files (Section 5.1.1). 

5.1.3 Postman API Platform 

The newly opened pull request was not available in .CSV format on accounts of projects. We 

collected data in JSON format of past 7 days using an HTTP request of Postman API 

Platform via an HTTP request as shown in Example pull request (Figure 15). The JSON files 

were converted into .CSV as well in part of preprocessing of data. 

 

Figure 15. An example of Postman Data Collection 

https://drive.google.com/file/d/1CiZWHc0z_JFZ_Tg7pewTfNZb91o9XzIg/view?usp=sharing
https://drive.google.com/file/d/1CiZWHc0z_JFZ_Tg7pewTfNZb91o9XzIg/view?usp=sharing
https://kin-y.github.io/miningReviewRepo/


    

 

48 

Table 13. Summary Table of Open-Source Validation Projects 

Project 

name 

Repository link Project 

Duration 

Num 

of pull 

request 

(Close

d) 

Num of 

pull 

request 

(New-Past 

7 days) 

Num 

of 

review

ers 

LibreOffice https://git.libreoffice.org/core  07/2014~

12/2021 

28030 12 934 

Qt https://code.qt.io/cgit/qt/qtbase

.git/  

05/2011~

11/2021 

115888 25 1437 

OpenStack https://opendev.org/openstack  07/2011~

12/2021 

173749 52 5091 

5.2 Experimental Setup and Research Questions 

The proposed approach is implemented in Python Language on Jupiter Lab (3.0) using 

Pymoo library [84] for algorithm working and visualization. The overview of algorithm is 

provided in methodology (Section 4.2.2). While defining problem and Pymoo algorithm 

library, the change or genetic operators are used. We applied Das-Dennis [83] approach to 

define reference points. The rest of the genetic operator used in results are explained in table 

14. The literature results are computed using random selection (to compare with state of the 

art), we have used tournament selection in one experiment (to give a new horizon for future 

comparison). Total 7 experimental sets are made in which first 5 are with random selection, 

other two with tournament selection. Experiment 7 is a try and check set for abnormal 

behavior of algorithms. 

We used ‘Uniform (‘real_ux’, ‘bin_ux’, ‘int_ux’) Crossover’ and ‘Polynomial (‘real_pm’, 

‘int_pm’) Mutation’ to explore and exploit the search space. Mutation prevents all solutions 

in the population falling into a local optimum. Also, it helped to make us sure with the results 

as search algorithms are stochastic/probabilistic in nature. 

The final output of the algorithm is a set of solutions representing trade-offs between the 

three objectives. It is up to the manager to select the reviewer’s assignment (choose a 

solution) based on their preferences. In general, the preferences are defined based on the 

current context: urgency to release code quickly, available resources, speedy growth phase of 

https://git.libreoffice.org/core
https://code.qt.io/cgit/qt/qtbase.git/
https://code.qt.io/cgit/qt/qtbase.git/
https://opendev.org/openstack
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the project, etc. These different contexts are not changing daily and they are not related to 

only one or few pull-requests.  

Table 14. Experimental Genetic Operators 

Experiment 

Number 

Pop 

Size 

Selection 

Operator 

Crossover 

Operator 

Crossover 

Probability 

Mutation 

Operator 

Mutation 

rate 

Number 

of 

Generatio

n 

Exp. 1 50 Random Uniform 0.5 Polynomial 0.01 100 

Exp. 2 50 Random Uniform 0.6 Swap 0.1 80 

Exp. 3 100 Random Uniform 0.8 Polynomial 0.2 100 

Exp. 4 200 Random Uniform 0.5 Polynomial 0.1 230 

Exp. 5 150 Random Uniform 0.8 Swap 0.05 200 

Exp. 6 80 Tournament 

(Selection 

pressure = 2) 

Uniform 0.85 Polynomial 0.5 120 

Exp. 7 100 Random / 

Tournament 

Uniform  0.5 Polynomial 0.5 50 

5.2.1 Research Questions 

The research questions are presented for this thesis to represent results in a classical way to 

estimate the effectiveness of our approach.  

RQ1- Does the proposed approach efficiently and precisely identify the relevant code 

reviewers? 

RQ2- Compare the proposed approach performance, if it is significantly better than the 

existing tools or frameworks (mono-objective approach of all objectives, search algorithms 

and other variants of GA)? Also compare the execution time for finding best solutions by 

NSGA-II and NSGA-III on the same experiments? 

To answer research question 1, the validation is performed on 3 medium sizes to large size 

open source project to evaluate the efficiency of our CRR approach. To follow the fair 

comparison with previous work, we took recently closed reviews and their reviewers 

assigned to these pull request. Every fitness function was run by setting them together in a 

defined problem. The efficiency is validated in result of Precision@Exp., Recall@Exp., 

MRR and Average Accuracy. 

We calculate the precision and recall as follows. 
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𝑷𝒓𝒊𝒄𝒊𝒔𝒊𝒐𝒏@𝑬𝒙𝒑 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
   Equation 6 [11] 

𝑹𝒆𝒄𝒂𝒍𝒍@𝑬𝒙𝒑 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
   Equation 7 [11] 

where TP (True Positive) corresponds to the number of top-k reviewers recommended by the 

approach and also actual reviewers;  

FP (False Positive) corresponds to the number of top-k reviewers recommended by the 

approach, but not actual reviewers;  

FN (False Negative) corresponds to the number of actual reviewers, that are not among the 

top-k reviewers recommended by the approach. 

TN (True Negative) corresponds to the number of not actual reviewers, that are also not 

among the top-k reviewers recommended by the approach. 

MRR (Mean Reciprocal Rank): The average rank of correct reviewers in the recommendation 

list. The higher the MRR, the better the rank recommendation. The mean reciprocal rank is 

the average of the reciprocal ranks of results for a sample of recommendation list. 

Given a reviewers recommendation lists R, the score MRR is calculated as follows: 

𝑴𝑹𝑹 =
|𝚺∀𝒓𝝐𝑹|𝒓𝒂𝒏𝒌(𝒓)

|𝑹|
          Equation 8 [9] 

where rank(r) is the rank score of the first reviewer in the recommendation list r. The higher 

is the MRR score, the better is the recommendation approach. 

Average Accuracy of Projects: The projects accuracy is determined as average accuracy in 

terms of number of experiments performed in that project. The average accuracy is 

determined as: 

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝜮𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚(𝑬𝟏+𝑬𝟐…𝑬𝑵)

𝑵
   Equation 9 [51] 

Where E1 is the accuracy of experiment 1, E2 is the accuracy of experiment 2 till last 

Experiment. The N is the total number of Experiments used in a project. 

The Accuracy of each experiment is calculated as: 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑵+𝑭𝑷
     Equation 10 [51] 

To answer research question 2, we compared our above metrics with the state-of-the-art. 

We compare our results with WhoReview (IBEA Algorithm), REVFINDER, ReviewBot and 

some other variants of GA were compared as well (GA, NSGA-II AEC). The Comparison of 

our approach with NSGA-II was done using execution time calculation and graphical 

visualization for showing maximize, minimize and premature convergence rate of fitness 

function with different genetic operators. 



    

 

51 

We also calculated the Mean fitness for all the experiments for NSGA-III and NSGA-II. For 

expertise and availability fitness functions: the greater the value (nearer to 1), better the 

fitness. And for collaboration (since we are minimizing it), the lesser the value, the better the 

fitness. Also, we measured and compared the execution times for both NSGA-II and NSGA-

III to compute the comparison of time factor as well. 

𝑴𝒆𝒂𝒏 𝑭𝒊𝒕𝒏𝒆𝒔𝒔 =
𝚺𝐅𝐢𝐭𝐧𝐞𝐬𝐬_𝐯𝐚𝐥𝐮𝐞𝐬

𝑷𝒐𝒑𝒔𝒊𝒛𝒆
   Equation 11 [69] 

Where Σ is the sum of all fitness values against every pop size divided by total pop-size. 

Confusion matrix for LibreOffice Experiment no 6: 

LibreOffice Confusion Matrix 
Actual Values 

Recommended Not Recommended Total 

Predicted 

Values 

Recommended TP=210 FP=99 309 

Not Recommended FN=68 TN=123 191 

Total 278 222 500 

 

Precision Calculation: TP/(TP+FP) → 210/(210+99) → 0.679 → 67% 

Recall Calculation: TP/(TP+FN) → 210/(210+68) → 0.755 → 75% 

Accuracy Calculation: TP+TN/(TP+TN+FP+FN) → 210+123/(210+123+99+68) → 0.66 → 

66% 

Confusion matrix for Qt Experiment no 6: 

Qt Confusion Matrix 
Actual Values 

Recommended Not Recommended Total 

Predicted 

Values 

Recommended TP=194 FP=87 281 

Not Recommended FN=93 TN=126 219 

Total 287 213 500 

 

Precision Calculation: TP/(TP+FP) → 194/(194+87) → 0.690 → 69% 

Recall Calculation: TP/(TP+FN) → 194/(194+90) → 0.675 → 67% 

Accuracy Calculation: TP+TN/(TP+TN+FP+FN) → 194+126/(197+126+87+93) → 0.64 → 

64% 

Confusion matrix for OpenStack Experiment no 6: 

OpenStack Confusion Matrix 
Actual Values 

Recommended Not Recommended Total 
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Predicted 

Values 

Recommended TP=246 FP=61 307 

Not Recommended FN=37 TN=156 193 

Total 283 217 500 

 

Precision Calculation: TP/(TP+FP) → 246/(246+61) → 0.803 → 80% 

Recall Calculation: TP/(TP+FN) → 246/(246+37) → 0.869 → 86% 

Accuracy Calculation: TP+TN/(TP+TN+FP+FN) → 246+156/(246+156+61+37) → 0.804 → 

80% 

Similarly, all other confusion matrix for other experiments is made and precision, recall and 

accuracy values are calculated as shown in Table 15 and 16. The highlighted/bold values in 

both the tables are the best precision and recall values found in all three projects. 

Table 15. Precision Results 

Project 

Name 

Experiment 

number 

Precision@Exp. 

Proposed 

Approach 

(NSGA-

III) 

AEC 

(NSGA-

II) [9] 

RevRec 

(GA) 

[69] 

Who 

Review 

(IBEA) 

[51] 

RevFinder 

[11] 

ReviewBot 

[29] 

LibreOffice 

Exp. 1 0.64 N/A 0.52 0.61 0.48 0.38 

Exp. 2 0.59 N/A 0.45 0.54 0.4 0.36 

Exp. 3 0.57 N/A 0.50 0.56 0.42 0.40 

Exp. 4 0.52 N/A 0.41 0.53 0.32 0.32 

Exp. 5 0.51 N/A 0.39 0.46 0.3 0.23 

Exp. 6 0.67 N/A N/A N/A N/A N/A 

Qt 

Exp. 1 0.66 0.58 0.49 0.58 0.3 0.22 

Exp. 2 0.62 0.51 0.42 0.53 0.27 0.19 

Exp. 3 0.57 0.54 0.45 0.55 0.29 0.13 

Exp. 4 0.55 0.52 0.41 0.43 0.21 0.10 

Exp. 5 0.50 0.46 0.34 0.48 0.16 0.09 

Exp. 6 0.69 N/A N/A N/A N/A N/A 

OpenStack 

Exp. 1 0.74 0.70 0.59 0.62 0.32 0.24 

Exp. 2 0.69 0.64 0.57 0.55 0.27 0.2 

Exp. 3 0.67 0.65 0.51 0.59 0.30 0.22 

Exp. 4 0.63 0.63 0.43 0.54 0.25 0.16 

Exp. 5 0.57 0.54 0.46 0.48 0.21 0.11 
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Exp. 6 0.80 N/A N/A N/A N/A N/A 

 

Table 16. Recall@Exp Results 

Project 

Name 

Experiment 

number 

Recall@Exp. 

Proposed 

Approach 

(NSGA-

III) 

AEC 

(NSGA-

II) [9] 

RevRec 

(GA) 

[69] 

Who 

Review 

(IBEA) 

[51] 

RevFinder 

[11] 

ReviewBot 

[29] 

LibreOffice 

Exp. 1 0.67 N/A 0.34 0.48 0.32 0.18 

Exp. 2 0.62 N/A 0.48 0.52 0.38 0.22 

Exp. 3 0.59 N/A 0.57 0.56 0.42 0.20 

Exp. 4 0.59 N/A 0.58 0.61 0.45 0.31 

Exp. 5 0.69 N/A 0.59 0.68 0.49 0.38 

Exp. 6 0.75 N/A N/A N/A N/A N/A 

Qt 

Exp. 1 0.58 0.56 0.41 0.44 0.14 0.09 

Exp. 2 0.62 0.60 0.50 0.45 0.27 0.16 

Exp. 3 0.68 0.66 0.55 0.58 0.30 0.20 

Exp. 4 0.72 0.68 0.59 0.60 0.35 0.24 

Exp. 5 0.73 0.70 0.65 0.64 0.43 0.30 

Exp. 6 0.67 N/A N/A N/A N/A N/A 

OpenStack 

Exp. 1 0.69 0.59 0.31 0.46 0.15 0.12 

Exp. 2 0.70 0.68 0.39 0.49 0.29 0.2 

Exp. 3 0.78 0.76 0.52 0.59 0.37 0.32 

Exp. 4 0.80 0.75 0.54 0.60 0.46 0.39 

Exp. 5 0.82 0.80 0.66 0.63 0.50 0.41 

Exp. 6 0.86 N/A N/A N/A N/A N/A 
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Figure 16. Comparison of MRR for Projects 

 
Figure 17. Average Accuracy of Projects 

5.2.2 Answers to Research Questions 

Answer for Question 1: The efficiency and precision to identify relevant code reviewers by 

using of our proposed approach i.e., NSGA-III is confirmed on pull requests from 3 different 

projects are resulted in table 15 & 16 and figure no 16 & 17. Table 15 and 16 shows the 

precision and recall in context to every experiment result separately. For example, 

LibreOffice has a precision ranging from 51% to 67% for all experiments. It has a recall 

range from 52% to 75%. Qt project has precision range of 50% to 69% and recall rate 

ranging from 58% to 73%. Whereas OpenStack project has the highest precision value of 

80% and recall ranging from 69-86%. Due to large number of reviewers in the projects (i.e., 
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Qt, LibreOffice) the precision rate of 50% or 51% in projects could also be considered 

acceptable. Also, some of the highest recall scores are obtained in OpenStack as some pull 

request require more than one code reviewer. 

Figure 16 shows the MRR values that NSGA-III was able to efficiently rate the 

recommended code reviewers. The best resulted solution of the last population obtained in 

the last iteration of GA are copied in a single pool. Then, the rank of each reviewer 

corresponds to his frequency count in the pool. That is, reviewers that are recommended in 

many solutions are ranked first.  The proposed approach shows the MRR values better than 

the all other presented in literature. LibreOffice came up with 70%, Qt with 69% and 

OpenStack with highest 82% MRR scores. The efficiency for ranking the reviewers is 

measured by this parameter so the outcomes of MRR are very important. Additionally, it is 

one of the main motivations of this proposed approach as ranking is directly related to 

availability and collaboration of code reviewers.   

Figure 17 presents the average accuracy of our approach on experiments. The accuracy of 

each experiment is calculated separately and then average of accuracies is calculated as 

discussed in equations 9 and 10. LibreOffice came up with 72%, Qt with 71% and OpenStack 

with highest 84% Average Accuracy scores which are better than all others approach. 

Most importantly our proposed technique doesn’t have a bias towards the projects that are 

used for validation as we used average values of mean reciprocal rank and accuracy. 

Out of 3 opensource projects, our proposed approach performed well on OpenStack pull 

requests. The accuracy, MRR, precision and recall of the project was good in comparison to 

other projects. 

Answer for Question 2: While comparing the proposed approach performance, it is 

observed that the results, on average, are significantly better than the existing tools or 

frameworks (mono-objective approach of all objectives, search algorithms and other variants 

of GA) in terms Accuracy, Mean fitness and Execution time of algorithms. Figure 17 shows 

the comparison related to accuracy of our proposed approach with other approaches. The 

proposed approach clearly shows the highest accuracy in all 3 projects. 

In context to comparison of the mean fitness and execution time with our proposed approach, 

we have selected NSGA-II [43] since this research was foremost and primarily relevant to 

our approach in terms of experimental sets and number of objectives. The authors [9] didn’t 

provided any graphical representation of their approach, neither they provided any 
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comparison of execution time, thus we had to implement both approaches i.e., NSGA-II and 

NSGA-III to gather results.  

Section 5.3 Provides graphical representation of framework using LibreOffice project from 

figure 18-35. Table 17, 18 and 19 gives mean fitness value comparison on the basis of each 

objective separately. Table 20 gives average execution time taken by both algorithms, and it 

can be clearly seen that NSGA-III takes less time as it does not require any additional 

adjustable parameters compare to NSGA-II [9]. 

Section 5.4 Provides graphical representation of framework using Qt project from figure 36-

53. Table 21, 22 and 23 gives mean fitness value comparison on the basis of each objective 

separately. Table 24 gives average execution time taken by both algorithms, and it can be 

clearly seen that NSGA-III takes less time. 

Section 5.5 Provides graphical representation of framework using OpenStack project from 

figure 54-71. Table 25, 26 and 27 gives mean fitness value comparison on the basis of each 

objective separately. Table 28 gives average execution time taken by both algorithms. 

Figure 72 and 73 are a result to an additional check we did on this project by adding a new 

experimental set as Experiment no 7 in Table 14. Both the algorithms showed an abnormal 

behavior in terms of maximizing and minimizing the objectives resulting in premature 

convergence. The premature convergence of a genetic algorithm arises when the genes of 

some high rated individuals quickly attain to dominate the population, constraining it to 

converge to a local optimum. Also, when the generation size / termination criteria are very 

less than the pop size. The premature convergence is generally due to the loss of diversity 

within the population. Rest details of each graph and table is presented with them in 

description. 

5.3 Comparison of Framework using LibreOffice Dataset 

5.3.1 Comparison of visualization of ‘Availability’ (NSGA-II vs NSGA-III)  
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Figure 18. LibreOffice Availability Best Solution Experiment-1 

The figure shows the fitness value against each chromosome in the population and the mean 

of all the fitness values. The mean fitness value for ‘Availability’ objective for experiment 1 

in NSGA-II is 0.338605 and NSGA-III is 0.386167 as shown in Figure 18. 

 
Figure 19. LibreOffice Availability Best Solution Experiment-2 

The figure 19 shows the fitness value against each chromosome in the population and the 

mean of all the fitness values. The mean fitness value for ‘Availability’ objective for 

experiment 2 in NSGA-II is 0.195698 and NSGA-III is 0.280518. 

 
Figure 20. LibreOffice Availability Best Solution Experiment-3 
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The figure 20 shows the fitness value against each chromosome in the population and the 

mean of all the fitness values. The mean fitness value for ‘Availability’ objective for 

experiment 3 in NSGA-II is 0.476529 and NSGA-III is 0.526234. 

Similarly, 21, 22 and 23 shows the fitness values against each chromosome in the population 

and the mean of all the fitness values. Their mean fitness values for ‘Availability’ objective 

are shared in table 17. 

 
Figure 21. LibreOffice Availability Best Solution Experiment-4 

 
Figure 22. LibreOffice Availability Best Solution Experiment-5 
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Figure 23. LibreOffice Availability Best Solution Experiment-6 

Table 17. Mean Fitness of Availability (LibreOffice) 

Mean Fitness: 

Experiment Number NSGA-II NSGA-III 

Exp. 1 0.338605 0.386167 

Exp. 2 0.195698 0.280518 

Exp. 3 0.476529 0.526234 

Exp. 4 0.524646 0.593025 

Exp. 5 0.506748 0.580662 

Exp. 6 0.488974 0.548757 

5.3.2 Comparison of visualization of ‘Collaboration’ (NSGA-II vs NSGA-III) 

Figures 24-29 shows the fitness values against each chromosome in the population and the 

mean of all the fitness values for ‘Collaboration’ objective in LibreOffice project. Their mean 

fitness values are shared in table 18. 

 
Figure 24. LibreOffice Collaboration Best Solution Experiment-1 

 
Figure 25. LibreOffice Collaboration Best Solution Experiment-2 
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Figure 26. LibreOffice Collaboration Best Solution Experiment-3 

 
Figure 27. LibreOffice Collaboration Best Solution Experiment-4 

 
Figure 28. LibreOffice Collaboration Best Solution Experiment-5 



    

 

61 

 

Figure 29. LibreOffice Collaboration Best Solution Experiment-6 

Table 18. Mean Fitness of Collaboration (LibreOffice) 

Mean Fitness: 

Experiment Number NSGA-II NSGA-III 

Exp. 1 0.393635 0.272019 

Exp. 2 0.255101 0.215886 

Exp. 3 0.490449 0.402135 

Exp. 4 0.593836 0.492255 

Exp. 5 0.590047 0.511345 

Exp. 6 0.525513 0.476423 

5.3.3 Comparison of visualization of ‘Expertise’ (NSGA-II vs NSGA-III) 

Figures 30-36 shows the fitness values against each chromosome in the population and the 

mean of all the fitness values for ‘Expertise’ objective in LibreOffice project. Their mean 

fitness values are shared in table 19. 

 
Figure 30. LibreOffice Expertise Best Solution Experiment-1 
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Figure 31. LibreOffice Expertise Best Solution Experiment-2 

 
Figure 32. LibreOffice Expertise Best Solution Experiment-3 

 
Figure 33. LibreOffice Expertise Best Solution Experiment-4 
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Figure 34. LibreOffice Expertise Best Solution Experiment-5 

 

Figure 35. LibreOffice Expertise Best Solution Experiment-6 

Table 19. Mean Fitness of Expertise (LibreOffice) 

Mean Fitness: 

Experiment Number NSGA-II NSGA-III 

Exp. 1 0.383908 0.393141 

Exp. 2 0.144642 0.187551 

Exp. 3 0.421726 0.521721 

Exp. 4 0.491682 0.593504 

Exp. 5 0.511586 0.591058 

Exp. 6 0.474786 0.525513 

5.3.4 Comparison of execution time (NSGA-II vs NSGA-III) 

Table 20. Comparison of Execution time for LibreOffice Project 

Project 

Name 

Experiment 

number 

Execution Time 

Proposed Approach (NSGA-III) AEC (NSGA-II) 

LibreOffice 

Exp. 1 47 seconds 60 seconds 

Exp. 2 57 seconds 74 seconds 

Exp. 3 120 seconds 153 seconds 
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Exp. 4 327 seconds 400 seconds 

Exp. 5 234 seconds 278 seconds 

Exp. 6 127 seconds 195 seconds 

Table 20 shows the execution time comparison for all the objectives collectively for 

LibreOffice project. It can be clearly seen that NSGA-III takes less time to present the best 

solution in either objective. 

5.4 Comparison of Framework using Qt Project   

5.4.1 Comparison of visualization of ‘Availability’ (NSGA-II vs NSGA-III)  

 
Figure 36. Qt Availability Best Solution Experiment-1 

Figures 36-41 shows the fitness values against each chromosome in the population and the 

mean of all the fitness values for ‘Availability’ objective in Qt project. Their mean fitness 

values are shared in table 21. Figures 42-47 shows the fitness values against each 

chromosome in the population and the mean of all the fitness values for ‘Collaboration’ 

objective in Qt project. Their mean fitness values are shared in table 22. Figures 48-53 shows 

the fitness values against each chromosome in the population and the mean of all the fitness 

values for ‘Expertise’ objective in Qt project. Their mean fitness values are shared in table 

23. Table 24 shows the execution time comparison for all the objectives collectively for Qt 

project. It can be clearly seen that NSGA-III takes less time to present the best solution in 

either objective. 
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Figure 37. Qt Availability Best Solution Experiment-2 

 
Figure 38. Qt Availability Best Solution Experiment-3 

 
Figure 39. Qt Availability Best Solution Experiment-4 
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Figure 40. Qt Availability Best Solution Experiment-5 

 

Figure 41. Qt Availability Best Solution Experiment-6 

Table 21. Mean Fitness of Availability (Qt) 

Mean Fitness: 

Experiment Number NSGA-II NSGA-III 

Exp. 1 0.317225 0.392775 

Exp. 2 0.176078 0.265095 

Exp. 3 0.474959 0.527416 

Exp. 4 0.492255 0.593868 

Exp. 5 0.471061 0.546245 

Exp. 6 0.477343 0.519724 

5.4.2 Comparison of visualization of ‘Collaboration’ (NSGA-II vs NSGA-III) 
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Figure 42. Qt Collaboration Best Solution Experiment-1 

 
Figure 43. Qt Collaboration Best Solution Experiment-2 

 
Figure 44. Qt Collaboration Best Solution Experiment-3 
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Figure 45. Qt Collaboration Best Solution Experiment-4 

 
Figure 46. Qt Collaboration Best Solution Experiment-5 

 

Figure 47. Qt Collaboration Best Solution Experiment-6 

Table 22. Mean Fitness of Collaboration (Qt) 

Mean Fitness: 

Experiment Number NSGA-II NSGA-III 

Exp. 1 0.503183 0.416552 

Exp. 2 0.345868 0.332376 

Exp. 3 0.490449 0.402135 

Exp. 4 0.592985 0.524646 
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Exp. 5 0.590662 0.506748 

Exp. 6 0.524423 0.462726 

5.4.3 Comparison of visualization of ‘Expertise’ (NSGA-II vs NSGA-III)  

 
Figure 48. Qt Expertise Best Solution Experiment-1 

 
Figure 49. Qt Expertise Best Solution Experiment-2 

 
Figure 50. Qt Expertise Best Solution Experiment-3 
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Figure 51. Qt Expertise Best Solution Experiment-4 

 
Figure 52. Qt Expertise Best Solution Experiment-5 

 

Figure 53. Qt Expertise Best Solution Experiment-6 

Table 23. Mean Fitness of Expertise (Qt) 

Mean Fitness: 

Experiment Number NSGA-II NSGA-III 

Exp. 1 0.264076 0.393145 

Exp. 2 0.152442 0.232004 

Exp. 3 0.412261 0.476169 

Exp. 4 0.488958 0.591406 
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Exp. 5 0.511318 0.599904 

Exp. 6 0.462726 0.524423 

5.4.4 Comparison of execution time (NSGA-II vs NSGA-III) 

Table 24. Comparison of Execution time for Qt Project 

Project 

Name 

Experiment 

number 

Execution Time 

Proposed Approach (NSGA-III) AEC (NSGA-II) 

Qt 

Exp. 1 21 seconds 34 seconds 

Exp. 2 16 seconds 22 seconds 

Exp. 3 104 seconds 112 seconds 

Exp. 4 235 seconds 249 seconds 

Exp. 5 304 seconds 320 seconds 

Exp. 6 120 seconds 148 seconds 

5.5 Comparison of Framework using OpenStack Project   

5.5.1 Comparison of visualization of ‘Availability’ (NSGA-II vs NSGA-III) 

 
Figure 54. OpenStack Availability Best Solution Experiment-1 

Figures 54-59 shows the fitness values against each chromosome in the population and the 

mean of all the fitness values for ‘Availability’ objective in OpenStack project. Their mean 

fitness values are shared in table 25. Figures 60-65 shows the fitness values against each 

chromosome in the population and the mean of all the fitness values for ‘Collaboration’ 

objective. Their mean fitness values are shared in table 26. Figures 66-71 shows the fitness 

values against each chromosome in the population and the mean of all the fitness values for 

‘Expertise’ objective. Their mean fitness values are shared in table 27. Table 28 shows the 

execution time comparison for all the objectives collectively for Qt project. It can be clearly 

seen that NSGA-III takes less time to present the best solution in either objective. 
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Figure 55. OpenStack Availability Best Solution Experiment-2 

 
Figure 56. OpenStack Availability Best Solution Experiment-3 

 
Figure 57. OpenStack Availability Best Solution Experiment-4 
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Figure 58. OpenStack Availability Best Solution Experiment-5 

 

Figure 59. OpenStack Availability Best Solution Experiment-6 

Table 25. Mean Fitness of Availability (OpenStack) 

Mean Fitness: 

Experiment Number NSGA-II NSGA-III 

Exp. 1 0.470803 0.510869 

Exp. 2 0.173214 0.229236 

Exp. 3 0.471429 0.521721 

Exp. 4 0.521591 0.593878 

Exp. 5 0.506748 0.555093 

Exp. 6 0.462262 0.525513 

5.5.2 Comparison of visualization of ‘Collaboration’ (NSGA-II vs NSGA-III)  
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Figure 60. OpenStack Collaboration Best Solution Experiment-1 

 
Figure 61. OpenStack Collaboration Best Solution Experiment-2 

 
Figure 62. OpenStack Collaboration Best Solution Experiment-3 
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Figure 63. OpenStack Collaboration Best Solution Experiment-4 

 
Figure 64. OpenStack Collaboration Best Solution Experiment-5 

 

Figure 65. OpenStack Collaboration Best Solution Experiment-6 

Table 26. Mean Fitness of Collaboration (OpenStack) 

Mean Fitness: 

Experiment Number NSGA-II NSGA-III 

Exp. 1 0.255101 0.215886 

Exp. 2 0.291583 0.249566 

Exp. 3 0.521721 0.427924 

Exp. 4 0.620451 0.495459 
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Exp. 5 0.555093 0.516667 

Exp. 6 0.525513 0.452054 

5.5.3 Comparison of visualization of ‘Expertise’ (NSGA-II vs NSGA-III) 

 
Figure 66. OpenStack Expertise Best Solution Experiment-1 

 
Figure 67. OpenStack Expertise Best Solution Experiment-2 

 
Figure 68. OpenStack Expertise Best Solution Experiment-3 
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Figure 69. OpenStack Expertise Best Solution Experiment-4 

 
Figure 70. OpenStack Expertise Best Solution Experiment-5 

 

Figure 71. OpenStack Expertise Best Solution Experiment-6 

Table 27. Mean Fitness of Expertise (OpenStack) 

Mean Fitness: 

Experiment Number NSGA-II NSGA-III 

Exp. 1 0.415962 0.503183 

Exp. 2 0.183926 0.213556 

Exp. 3 0.402135 0.490449 

Exp. 4 0.489821 0.600051 
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Exp. 5 0.471376 0.546245 

Exp. 6 0.476325 0.525513 

5.5.4 Comparison of execution time (NSGA-II vs NSGA-III) 

Table 28. Comparison of Execution time for OpenStack Project 

Project 

Name 

Experiment 

number 

Execution Time 

Proposed Approach (NSGA-III) AEC (NSGA-II) 

OpenStack 

Exp. 1 18 seconds 26 seconds 

Exp. 2 24 seconds 32 seconds 

Exp. 3 152 seconds 159 seconds 

Exp. 4 234 seconds 249 seconds 

Exp. 5 246 seconds 282 seconds 

Exp. 6 119 seconds 129 seconds 

5.5.5 Abnormal / Premature Behavior of Algorithm (NSGA-II vs NSGA-III) for 

Experiment no 7 (OpenStack Project) 

 
Figure 72. LibreOffice Abnormal / Premature Behavior of Algorithm NSGA-II 

 

 
Figure 73. LibreOffice Abnormal / Premature Behavior of Algorithm NSGA-III 
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Figure 72 and 73 are a result to Experiment no 7 in Table 14. Both the algorithms NSGA-II 

and NSGA-III showed an abnormal behavior in terms of maximizing and minimizing the 

objectives resulting in premature convergence. The premature convergence of a genetic 

algorithm arises when the genes of some high rated individuals quickly attain to dominate the 

population, constraining it to converge to a local optimum [44]. Also, when the generation 

size / termination criteria are very less than the pop size. The premature convergence is 

generally due to the loss of diversity within the population [45]. 

5.6 Limitations 

The results i.e., graphical representations, precision, recall, accuracy and MRR all are 

calculated on the basis of number of generations i.e., 500, as we have to compare our results 

with the literature [9], [11], [51], [69]. Moreover, we only added one new experiment set and 

remaining were used from the same literature experimental set-in change operators’ 

parameters for comparison purposes. All the experimental set values used were selected by 

trial-and-error method. 

The definition of expertise and collaborations can be subjective and hard to formalize thus 

further empirical studies are required to validate the different metrics used in our work. We 

are planning to consider other possible formations as part of our future work and compare 

between them. For example: our current definition of the availability needs further 

improvement. Like, reviewers can be assigned other types of development activities than 

coding (e.g., testing, design/architecture, requirements analysis, etc.). The data about these 

activities are not always available. However, the formulation of our fitness function is easy to 

modify in a way that enables managers to enter the number of tasks per reviewer, especially 

the ones that they are beyond code reviews. 
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Chapter 6 : CONCLUSION & FUTURE WORK 

6.1 Conclusion  

In this research, we have proposed a multi objectives problem to manage and recommend 

code reviewers by adopting an optimization algorithm that is NSGA-III. The purpose is to 

recommend the best trade-off reviewers between three conflicting objectives i.e., maximizing 

the availability and expertise of reviewers and minimizing the collaboration between 

developers and reviewers to lessen the human biasness factor. We implemented and 

evaluated our approach on three (medium to large size) open-source projects named as 

LibreOffice, Qt and OpenStack. We calculated efficiency on our approach by finding 

precision, recall, MRR, accuracy for all 3 projects on average. The results from our proposed 

approach accurately recommended the code reviewers with the precision up to 80%, 86% of 

recall, 82% mean reciprocal rank and 84% average accuracy by improving state-of-the-art. 

Then we implemented NSGA-III and NSGA-II in terms of finding and comparing mean 

fitness and execution time of both algorithms while keeping the objective and experimental 

sets same. As a result, NSGA-III recommended the reviewers in less execution time and 

better mean fitness values in comparison to NSGA-II in all experimental sets. NSGA-III 

algorithm was able to find a well-converged and well-distributed set of solutions. The 

proposed approach could be practical to MCR in order to help developers while 

recommending suitable code-reviewers in less time and resources to speed up the review 

process. This research highlighted the importance of managing code reviews to reduce delays 

in review process in less time and resources while confirming high expertise and availability 

as much as possible 

6.2 Future Work 

As future work, the proposed approach can be extended to implement by increasing the 

number of objectives i.e., the size of code change, reviews recency and quality in the past etc. 

Also, the use of more projects can be added to test the approach. 
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