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Abstract 
 

The rapid growth in the Internet of Things (IoT) has led to an increased risk of security attacks. 

An increase in network traffic has attracted cyber criminals and hackers to inject more network 

attacks into IoTs. The most common type of RPL-based network attack on an IoT network is a 

wormhole attack, which can have devastating effects on network performance and reliability.  

As traditional security approaches like cryptographic protocols, Distance-based methods, and 

Signal strength-based methods may not be effective against wormhole attacks due to their basic 

level of security and due to the dynamic nature of the IoT network. In this paper, we propose a 

machine-learning approach for detecting wormhole attacks in IoT networks. In our approach, 

we used a new dataset that was generated in the Cooja simulator to train and test a binary 

classifier that can accurately distinguish between normal network traffic and wormhole attack 

traffic. A wormhole is a complex type of network attack that depends on the multiple types of 

features. So instead of using the limited type of features, we have used some additional features 

compared to the ones already used by the researchers. After preprocessing the dataset, we 

trained and tested using different classifiers using hit and trial method, but among of them 

Artificial Neural Network (ANN), Ridge classifier, Deep Belief network, and (RBFN) 

classifier give the best results. Our results demonstrate that the proposed approach achieves 

high accuracy in detecting wormhole attacks, making it a promising solution for enhancing the 

security of IoT networks.  
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Chapter 1 

Introduction 
 
 

1.1 Background 
 

Due to the increasing growth in the wireless industry and rapid technological advancement in 

the Internet, there has been a significant increase in the number of IoT devices that are 

connected to the Internet. Due to the exponential growth in the IoT devices the world become 

smart but we have bigger security threats. The use of IoT devices has rapidly increased in 

various domains such as healthcare [1], smart homes [2], defense, and transportation systems. 

However, preserving the security of IoT networks has always been a significant concern due to 

their vulnerabilities to cyber-attacks. 

The WH attack is one of the routing attacks in IoT networks. The RPL Routing attack such as 

Wormhole has a severe impact on the IoT network as it produces misguiding and creates false 

path for the packets which disrupts the network behavior. In a wormhole attack, the attacking 

nodes make a secret connection between faraway points in the network, which lets them 

interrupt communication and modify the traffic between those points. This attack can lead to 

various security threats, such as data theft, device malfunctioning, and denial of service. 

Detecting and mitigating wormhole attack is crucial to make sure the security and privacy of 

IoT networks. 

Traditional security mechanisms such as cryptographic protocols, Distance-based methods, and 

Signal strength-based methods may not be effective against wormhole attacks due to their basic 

level of security that cannot be effective for sophisticated types of wormhole attacks. Thus, 

there is a requirement for a more effective and advanced solution to detect wormhole attacks in 

IoT networks. Machine learning techniques based techniques provide more accurate and 

effective detection on wormhole attacks 
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1.2 Motivation and Problem Statement 
 

The extensive usage of the IoTs has resulted to the deployment of large-scale wireless 

sensor networks (WSNs) in various domains. RPL is a mostly used protocol for resource-

constrained devices. RPL works with 6LoWPAN [11], a Wireless Sensor Network (WSN) 

that employs the IEEE 802.15.4 protocol for data-link and physical layer communication 

and utilizes a complex version of the IPv6 protocol for networking. When they worked 

together, they create an IoT protocol specifically designed for routing over energy-efficient 

networks with limited connectivity. However, these networks are susceptible to security 

threats due to their low processing power capacity and baseline security features. 

One of the most significant security threats in WSNs is the wormhole attack, which allows 

an attacker to redirect traffic from one node of the network to another node by creating a 

tunnel, causing network disruption, data tampering, network jamming, and unauthorized 

access. The wormhole attack in WSNs is more severe than other attacks due to its high 

impact on the network's functionality and communication reliability. 

 

 

Hence, there is a need for an effective detection scheme. As various detection techniques 

have been proposed in the literature. However, majority of these techniques are either 

based on cryptographic techniques, or signal strength-based methods which are not well 

applicable for low power source-constrained devices. Although, some machine-learning 

based detection schemes also have been used but are based on low features. 

  

To address these limitations, in this research, we propose a machine learning-based 

approach for detecting wormhole attacks in 6LoWPAN IoT networks. We generate a novel 

dataset using the COOJA [8] simulator, which mimics a real-world IoT network 

environment. The dataset contains various attack scenarios with different attack patterns 

and attack intensities. We compare the accuracy and detection rate by using different ML 

algorithms for multiple different features. 

 

 

 
 
 

2 



 
 

1.3 Research Objectives 
 

The primary aims of the thesis are given as under: - 

 

• To detect wormhole attacks using self-generated datasets in the COOJA simulator. 
 

• Data preprocessing and optimal feature selection. 
 

• Apply different machine learning algorithms by using multiple features to get the 

best accuracy and F-1 score against wormhole attack. 

 

1.4 Thesis Contribution 
 
 

This work makes the following main contributions. 
 

• Dataset generation: The research generates a dataset for benign nodes and for 

wormhole-attacking nodes in 6LoWPAN network based on RPL networks using the 

COOJA simulator. The dataset includes different network topologies, traffic 

patterns, and attack intensities, making it a valuable resource for further research on 

IoT security. 

• Data preprocessing and Feature selection: Dataset cleaning has been performed by 

using different statistical techniques and choosing new optimal features which 

contribute to the wormhole attack. 

• Proposal of a machine learning-based approach: The research proposes a novel 

approach for detecting wormhole attacks in 6LoWPAN network based on RPL 

networks using ML algorithms. We performed hit and trial methods by using 

different ML and DL models. The hit and trial aims to provide an efficient and 

accurate solution to detect wormhole attacks in real time. 
 

• Finally, we compare the algorithm‟s efficiency using different performance metrics 

like accuracy, precision, recall and F-1 score etc. 
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1.5 Thesis Organization 
 

 

The thesis is arranged in the following manner. 
 

• Chapter 2 contains the literature reviewed in the thesis which includes the 

comprehensive analysis of the existing literature. This includes the Overview of IoT 

networks and their security challenges, Wormhole attack in IoT networks, existing 

traditional and ML techniques for wormhole attack detection, and a summary of the 

literature review.  

 
 

• Chapter 3 contains the proposed scheme for WHA detection, 6LoWPAN RPL-

based IoT network architecture, the flowchart of the proposed architecture, and 

overview of the proposed scheme. The simulation results representing the working 

of the scheme are covered in Chapter 4. 

 
 

• Chapter 4 covers implementation of the proposed architecture step wise, built of 

experimental steup for analysis, how we collect the dataset, and perform data 

preprocessing.  

 
 

• Chapter 5 contains the algorithms used for the current scenario, pros and cons of the 

algorithms. This chapter also covers the performance metrics used in the research. 

At the end we will cover the discussion on the results and findings. 

 

 
• Chapter 6 will cover the conclusion and future work of the current thesis work. 
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                                                        Chapter 2 

                

Background and Literature Review 

  
2.1 Overview of the 6LoWPAN Network 

 
An IoT network is a system of interconnected devices, objects, and sensors that are designed 

to communicate with each other over the internet. IoT networks can include a wide range of 

devices, such as smart sensors, actuators, wearable devices, and other embedded devices, all 

of which are connected to the internet through various network protocols and technologies. 

 

The IETF workgroup has standardized the 6LoWPAN protocol for the purpose of connecting 

devices in the IoT network. The 6LoWPAN standards allow IPv6 to be used efficiently on 

basic embedded devices connected to low-power, low-rate wireless networks. This is made 

possible by using an adaptation layer and optimizing related protocols [5]. This protocol is 

created specifically for limited-capacity devices in IoT networks, providing a lightweight 

solution for device connectivity [6]. Fig. 1 illustrates the usage of a 6LoWPAN border router 

to connect sensors to the internet. The protocol stack used for IPv6 over Low-power Wireless 

Personal Area Networks is flexible and adaptable, catering to a wide range of applications, 

including but not limited to environmental monitoring, automation, and smart agriculture [9]. 

 

2.2 Routing Protocol for Low Power Lossy (RPL) Network 

 
The RPL is one of the communication protocols used for low-constrained IoT devices. The 

Internet Engineering Task Force (IETF) [3] developed this protocol to solve the issue of not 

having a routing standard that works well in IoT networks with limited resources, low power, 

and poor network conditions. It can handle three different types of network structures, 

namely, P2P, MP2P, and P2MP [10]. RPL operates based on distance vector routing 

principles and creates a directed acyclic graph (DAG) or destination-oriented DAG 

(DODAG) to handle the routing tasks among the nodes. Routing function means how the 

traffic is routed from one sensor to another sensor in which there is no direct node 

communication.                                             5 



 
 

There must be a specific protocol using which the communication among nodes establishes 

between the source node and to the destination node. Thus the network topology in the RPL 

network is organized by the (DAG) or (DODAG), a graph where the connections between the 

nodes establish. There is a single node considered to be a root node which serves as the 

gateway. In a DODAG each node will compute its distance to the route in a distributed 

manner. This distance is called „Rank‟. The nodes distant from the root node will have high-

rank values. RPL networks utilize five control messages to establish and maintain the 

DODAG structure and communication routes [4]. These controlled messages are strongly 

affected by the wormhole attack therefore there is a need to be discussed thoroughly. 

 
 DODAG Information Object (DIO) 

 DODAG Information Solicitation (DIS) 

 Destination Advertisement Object (DAO) 

 Destination Advertisement Object Acknowledgment (DAO-ACK) 

 

At bootstrapping, the nodes don‟t know their rank except the root node. Thus, the root of the 

network starts transmitting periodically the DIO control packets with a given rank value. 

Typically, this rank is said to be 256. Any other node has to wait to receive the DIO control 

packet or they may send a DIS control packet to actually request from their neighbors to send 

the DIO packet. When the nodes are within the transmission range of the root node, receive 

its control packet and it will compute its own rank. There are several methods for the node to 

compute its rank value. For instance, it can be based on the distance between the transmitter 

and the root node, in terms of the number of hops or it can be based on the quality of the 

irregular links. The calculated rank of node B is higher than the rank of the root node A. 
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 Source 

      

 

Rank 256 

                  Rank 742 

                                                                                                           Destination 

 

Fig 2.1 RPL Network 

 

Similarly, node B starts periodically transmitting DIO control packets indicating its own 

rank. Nodes C, D, and E will receive these DIO control packets which were sent by the node 

B and will perform a similar operations as performed by node B. These all nodes will now 

compute their own rank values based on node B. This process will continue for the lifetime 

of the network. For the reverse route, from the route to any non-route nodes, there are two 

methods i-e (i) storing and (ii) no storing modes and the usage of another control packet 

(DAO). When a node selects a preferred parent it will send (DAO) to its parent to advertise 

its position in the topology. This position will be stored only in the root node i-e non-storing 

mode or intermediate node i-e storing mode. (DAO) is used for source routing and are sent 

by a node to update its parent node about the status of the path to the destination. 

 

2.3 6LoWPAN RPL-Protocol stack 

 
The 6LoWPAN RPL protocol is used in the IoT network being studied in this research. 

6LoWPAN is a protocol that allows IPv6 packets to be sent over wireless networks with 

low power consumption. The protocol is designed to address the challenges of wireless 

sensor networks, such as limited bandwidth, minimum power consumption, and low 

memory resources. 6LoWPAN achieves this by compressing IPv6 packets to make them 

suitable for transmission over low-power wireless networks. On the other hand, RPL is a  
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Routing protocol used for transmission of data between nodes in a network. It is 

particularly useful for limited resource network, such as sensor network, where nodes 

may have limited resources and power. 

 

 

 

 

 

 

 

      

 

 
Fig 2.2. 6LoWPAN network stack 

 
Fig 2.3. Architecture of 6LoWPAN network 

 

2.4 Attacks on 6LoWPAN RPL-based stack 

 
RPL is a widely used routing protocol in networks that have low power and experience 

signal loss, like 6LoWPAN. However, because of the specific nature of these networks, 

RPL-based networks are susceptible to different types of attacks. These attacks can be 

classified based  
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Application protocols (COAP, HTTP, MQTT) 

 

UDP                                                      ICMP 

 

IPv6, RPL Routing protocol 

 

6LoWPAN 

 

IEEE 802.15.4 MAC 

 

IEEE 802.15.4 PHY 

 

Application Layer         
 

Transmission Layer        
 

Network layer  
 

Adaption layer 
 

MAC Layer 
 

Physical Layer 



 
 

on several factors such as the topology of the network, available resources, and attack 

objectives. 

 

 
Fig 2.4. Different types of RPL-based attacks 

 

2.5 Wormhole attack 
 

Wormhole is actually a topology-based attack in which two or more than two malicious 

nodes create a tunnel within the network which disrupts the normal operation of the DAG 

by creating a shortcut between two points in the network, bypassing intermediate nodes. 

Marianne Azer et al. (2009) provide a detailed description of the wormhole attack in their 

paper [7]. This can result in packets being routed along a path that is not optimal, leading 

to increased latency, reduced throughput, and increased energy consumption. 

 

Detecting and preventing wormhole attacks in RPL-based 6LoWPAN networks can be 

challenging, but several approaches have been proposed. One approach is to use  
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cryptographic techniques to authenticate packets and ensure that they have not been 

tampered with during transmission. Another approach is to use time synchronization to 

detect inconsistencies in packet delivery times, which can be indicative of a wormhole  

attack. But we will use Machine learning techniques based techniques provides more 

accurate and effective detection on wormhole attacks due to resource-constrained nature the 

nodes. 

 
Fig 2.5: Wormhole attack with two malicious nodes 

 

 

2.6 Summary of the Literature 
 

• Prasad, M., Tripathi, S., & Dahal [12] proposed a ML models for wormhole 

attack detection in an adhoc networks creating multiple wormhole tunnels. They used 

three extra features such as multi-rate channel, processing delay, and neighbor 

monitoring in the previous datasets. Although this approach gives improved accuracy, but 

they get the manual feature selection which causes increased overfitting risk. 

 

 

10 



 
 

• Zahra, F., Jhanjhi, N.Z., Brohi, S.N., Khan, N.A., Masud, M. and AlZain, M.A 

[13] proposed a gradient-boosting machine-based algorithm (MC-MLGBM) for a multi-

class attacks like Rank and Wormhole attack detection. The authors gathered both static 

and mobility-based datasets.  

 

• Jhanjhi, N.Z., Brohi, S.N., Malik, N.A. and Humayun [14] proposed a rank and 

wormhole attack detection using the ML approach. In this paper, researchers proposed 

the detection of WH and Rank attacks which are launched at the same time on an IoT 

network.       

 

• Authors in [16] performed two tasks. The First one is to design a Machine 

learning based IDS for 6LoWPAN attacks and secondly, they performed RPL-based 

network attacks in the COOJA simulator and get datasets. After preprocessing the raw 

datasets, they used various machine and deep learning models to detect RPL-based 

attacks in IoT networks. The authors used three classifiers i-e Random Forest (RF), SVM, 

SVM-RBF, and deep neural networks. Out of these classifiers, RFC has the highest 

accuracy and precision of 9.67% and 9.57% respectively. Although they get high 

accuracy, but they have used just six features (Rank, DIS-S, DIS-R, DIO-S, DIO-R and 

DAO-R). There are a few other important parameters like energy and power consumption 

which also critically contribute to the routing attacks as well. Similarly, although the 

author built an IDS for RPL attacks but actually it is specifically for the black hole attack. 

 

• Snehal A. Bhosale and S.S Sonavane [15] used a hybrid approach for the 

Intrusion detection for wormhole attacks. They used the location information of node and 

its neighboring nodes by using Received signal strength (RSSI) values and the number of 

HOP-Counts to detect the malicious node in the IoT network. RSSI is a range-based 

localization method and HOP-Count is a range-free localization method. Whenever any 

node starts sending the request to its neighboring nodes, the distance between these 

neighboring nodes is calculated using the distance method. 

 

If the RSSI value of the received packet exceeds the transmission range of existing nodes, 

an alert is generated. Similarly, as in a WHA, attacking nodes make a tunnel which may  
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may cause a drastic reduction in the HOP-Count. Although given hybrid approach gives 

improved TPR and FPR results but if there is a cluster of IoTs network this approach is 

no longer effective. So, we need to switch to machine and deep learning methods. 

 

 

Table 2.1: Summary of Literature Review 

 

     

     Paper  

 

Year 

 

Network 

Attacks 

Security 

Mechanism/Results 

Simulator 

Used/Datasets 

 

Future Work 

 

R Mehta et al. [23] 

  

 

 

Wormhole & 

Grayhole Attacks 

Mechanism based on Trust 

computation in terms of 

performance metrics 

throughput and packet loss 

rate  which is based on 1) 

Direct trust   &  2) indirect 

Trust     

 

 

 

Cooja 

 

 

 

- 

 

M Abdan et al. [24] 

2018 Wormhole ML models i-e KNN, SVM, 

DT, LDA and NB 

MATLAB   

 

A Kumar et al. [25] 

2022  

 

Wormhole 

Quantum walk and 

reinforcement learning are 

used for routing stage of ad 

hoc network AND for 

detection they used Round 

trip time and packet delivery 

 

 

 

- 

 

 

 

- 

 

M Ezhilarasi et al. [26] 

2023 Selective 

forwarding, black 

hole, wormhole, 

hello flood and 

identity 

replication attack 

Feed-forward neural network 

and Fuzzy logic 

 

 

Detection rate : 97.8% and 

accuracy is 98.8% 

 

 

 

Cooja 

For future work 

can use 

optimization 

models to detect 

routing attacks 

 

Tahboush et al. [27] 

2022  

 

Wormhole 

Used 20 imp attributes to 

create a dataset and apply 

SVM and Genetic algorithms 

for detec 

 

 

- 

 

 

- 

S Ali, P Nand, et a.l [28] 2023  

 

 

Wormhole 

The collected data is pre-

processed and the k-NN & 

Random Forest algorithms 

are applied to detect WH 

attack. For attack prevention 

they used packet lease and 

cryptographic techniques 

 

 

NS-3.24.1 

simulator 

 

 

 

- 



 
 

 

Accuracy 99.196% and 

98.66% 

 

F Zahra et al. [29] 

2023  

 

 

Rank and 

Wormhole 

Dataset is generated by 

construction different 

network topologies and light 

gradient-boosting algorithm 

optimized for multi-class 

classification  

 

Average accuracy, precision, 

and recall of 99.7%, 99%, 

and 99.7%, respectively, 

 

 

 

 

For the multiclass 

LIoTN-RPL 

dataset 

In the future, we 

can study and 

create more 

attack models to 

simulate and 

generate datasets 

for both types of 

RPL attacks. We 

can use different 

models to 

develop 

detection. 

 

Stoian  [30] 

2020  

Anomaly 

detection and 

attacks in IoT 

networks 

 

RF, NB, MLP, SVM and 

AdaBoost in which 

The RF algorithm has 

obtained the best results with 

99.5% accuracy 

 

 

IoT-23 

 

 

- 

 

Rani and Kaushal,  [31] 

2020  

 

Improve the 

security and 

accuracy of 

intrusion detection 

system 

 

KNN, NB, Decission Tree, 

Logistic Regression, RF 

 

The proposed simulation has 

a 99.0% accuracy with less 

time and energy intrusion 

detection 

 

NSL-KDD and 

KDDCUP99 

 

 

 

- 
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CHAPTER 3 

 

                        Proposed Methodology 

 
 

3.1 Introduction 

 
In this section, we proposed a detailed research methodology for our work and will show 

a description of each portion. In this chapter, we propose a methodology that uses 

machine learning and deep learning techniques to detect WHA in 6LoWPAN RPL-based 

IoT networks. We start our work with the basic building block of an IoT network, the 

architecture of a network, how communication establishes within an IoT network, how a 

network is at risk of various types of attacks across IoT and finally will explain what 

actually a wormhole attack is and how it affects the network. We present our data 

collection and pre-processing techniques, as well as our feature selection and extraction 

methods. Our proposed methodology uses different machine learning models for self-

generated datasets. We evaluate the performance of these models using several metrics 

such as accuracy, precision, recall, F1-score, and area under the ROC curve. 

The proposed methodology has several advantages over existing approaches, including 

its ability to detect wormhole attacks with high accuracy, low false positives, and low 

false negatives. Furthermore, the proposed methodology is scalable and can be applied to 

large-scale IoT networks. 

 

3.2 Flowchart of the Proposed Architecture 

 
From the start to the Data preprocessing phase, it involves the process of dataset 

collection. The proposed methodology begins with begins with the initialization of sensor 

nodes in the 6LoWPAN RPL-based IoT network. This initialization phase involves 

configuring and activating the sensor nodes to establish communication within the 

network. 
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                        Fig 3.1 Flowchart of the proposed architecture 
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3.3 RPL Data Acquisition Step 
 

Once the sensor nodes are initialized, the RPL (Routing Protocol for Low-Power and 

Lossy Networks) is employed to acquire data from the network. This step also involves in 

detail how the RPL protocol collects network-related information, such as routing tables, 

topology, and node connectivity. 

This step also involves the importance of RPL protocol data in detecting potential 

wormhole attacks with the help of RPL control messages. 

 

3.4 Feature Selection Process  

 
Feature extraction is a critical step in the proposed methodology as it involves identifying 

and selecting relevant characteristics from the acquired data that can effectively capture 

the distinguishing patterns between normal network behavior and potential wormhole 

attacks. This step aims to transform the raw data into a more compact and representative 

feature space. 

During feature extraction, various techniques and algorithms can be employed based on 

the nature of the data and the specific requirements of the wormhole attack detection in 

the 6LoWPAN RPL-based IoT network.  

 

3.5 WH Attack Model Simulation 
 

 

  

                                                                                                                        Attacker Node 

 

 Sink Node 

  

                                                                                                                         Benign Node 

 

 

      Fig 3.2: WH Attack within IoT Network 

8 

2 

9 

1 

3 

1 

5 

4 7 

6 

SN 

12 

13 

13 

SN 

      Effected Area 



 
 

In the above scenario, the node 12 and 13 , form a tunnel between each other by probing 

control messages and similarly starts communication via these control messages i-e DIO , 

DIS and Ack. The algorithm 1 demonstrates the simulation of wormhole attack in the 

RPL-based IoT network in the Cooja simulator. 

 

Algorithm 1: Wormhole Attack Scenario 

 

1. Input: wormhole attack building block 

2. Output: attack on RPL network 

3.            Begin 

4.            True: malicious nodes form tunnel via probing using DIS, DIO and DAO  

5.                      If  

6.                      Rank of the nodes abruptly changes, 

7.                      Receive route requests, 

8.                      Misdirection of traffic, 

9.                      Disruption of communication,  

10.                      Exhaustion in power consumption, 

11.                      Neighbor nodes overheads fake credentials, 

12.                      Join the node as child nodes, 

13.                      Drop the child node packets, then 

14.                      Nodes = malicious 

15.                Else 

16.                      False: node = benign 

17.               Until wormhole attack launched 

18.                           Network =  attacked 

19.       End 

 

 

 

 

 

 

 

17 



 
 

3.6 System Architecture 

 
Our proposed mechanism relies on the following stages: network simulation in the Cooja 

simulator to collect datasets for benign and malicious nodes, data preprocessing, features 

engineering, data labeling, deployment of appropriate machine learning algorithm, and 

statistical results. The complete analysis of each step is given in the next chapter. 

 
 

 
Fig 3.3: Overview of the proposed architecture 
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CHAPTER 4 

            Experimental Analysis and Findings 
 

4.1 Experimental setup 
 

Many researchers used online available datasets for Intrusion detection in IoT attacks. In 

our paper, we built an environment where we deployed sensor nodes and performed 

attacks. We configure the nodes and their parameters, such as transmission power, 

channel frequency, and data rate, to represent the real-world network environment as 

closely as possible for this task we used COOJA, a network simulator built in Contiki 

OS. Contiki is an open-source OS primarily designed for systems with limited memory, 

specifically targeting low-power wireless devices. We installed COOJA in VM virtual 

box. We set up an environment with 10 benign nodes, 01 root node and 02 malicious  

nodes with a radio medium of Unit Disk Graph Medium (UGDM). The environment  

consists of 10 yellow UDP-client motes and a green UDP-server mote. We kept a mode 

startup delay of 1000ms and a random seed was 123,456. COJA interacts with simulated 

motes via mote interfaces. We kept mote interfaces settings as default and we don‟t 

change them. 

Table 4.1: Default Mote interface settings for intercommunication 

Mote interfaces for intercommunication 

Rime address  

IP address  

Mote2Mote relations  

Mote attributes  

Cycle clock  

ID  

Button  

M25P80 Flash  

Coffee File system  

IEEE 802.15.4 radio  

Serial Port  
 



 
 

Table 4.1: Cont 

  

Debugging output  

Temperature  

 

The types of mote were sky mote. The detailed environment parameters are highlighted 

in the following table. 

 

Table 4.2: Parameters setup for network under wormhole attack 

 

 

4.2 Dataset Generation 
 

In this section, we present a detailed explanation of how we created a collection of 

harmless datasets. We accomplished this by simulating a benign IoT network scenario 

using the Cooja simulator, as depicted in Figure 2. We captured IoT-specific information, 

such as CPU consumption, from the Contiki plugin called "power trace." Additionally, 

we collected network traffic data using the COOJA tool's "Radio messages" feature. 

These data collections allowed us to generate two datasets: one for power consumption 

and another for network traffic, both representing the simulated benign IoT network 
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 scenario. For the generation of a benign dataset, we deployed 10 nodes at random  

positions within a communication range of 50m and an interference range of 50m. Now 

start the simulation and wait at least 15 minutes so that our network gets stable. The 

stability of the network means that when all the nodes start communicating with each  

Other by the exchange of network packets. Once our network reaches a stable 

condition, now we properly start monitoring the Radio messages by enabling the radio-

log option. For the bulk amount of data, we run the Simulation for one hour and save  

the radiolog file in PCAP format.  

 

 Power Trace Dataset 

 Network Traffic Dataset 

DD 

 

                                             Power Trace Dataset 

 Network Traffic Dataset 

 

Fig 4.3: Dataset generation types 

 

     4.2.1 Benign Dataset Generation 

 

              4.2.1.1 Benign Power-trace Dataset Generation 

 
During the simulation, the power trace will record the energy consumption across the 

nodes and CPU in real time. To obtain the power trace dataset, we configured the benign 

motes through programming in java-based source code. The powertrace.h library was 

used in the source code and simulation time was set to 1 hour or 3,600,000 seconds. The 

power-trace plugin in the Cooja simulator measures energy consumption in ticks. A tick 

is a unit of time that is hardware-dependent and corresponds to the CPU clock cycle. The 

number of ticks consumed by a particular event or operation can be used to estimate the 

energy consumed by the system. In power-trace mode following power metrics states  
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have been collected: (i) CPU (ii) LPM (iii) Transmitt (iv) Listen (v) Idle_transmit and 

(vi) Idle_listen. We used t_CPU_usage, t_LPM_usage, t_trx_usage, and t_listen_usage in 

our dataset to train the models. 

In the COOJA simulator, t_CPU_usage refers to the amount of CPU time used by a  

specific node in the simulation. This metric is typically used to measure the 

computational overhead associated with running a simulation on a particular node, as 

well as to identify potential performance issues or resource constraints. t_CPU_usage is  

measured in microseconds and represents the total CPU time used by a node since the  

start of the simulation. 

In the COOJA simulator, t_LPM_usage refers to the amount of time a specific node in 

the simulation spends in Low-Power Listening (LPL) mode. LPL is a power-saving 

mechanism used in wireless sensor networks to reduce energy consumption by allowing 

nodes to switch their radio transceivers on and off periodically. t_LPM_usage is 

measured in microseconds and represents the total amount of time a node has spent in 

LPL mode since the start of the simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

Figure 4.4: Benign network setup in Contiki Cooja 
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Similarly, t_trx_usage refers to the amount of time a specific node in the simulation 

spends transmitting or receiving data using its radio transceiver. By monitoring 

t_trx_usage for each node in the simulation, we can identify which nodes are consuming  

the most radio resources and potentially causing interference or congestion on the 

network. 

And finally, t_listen_usage refers to the amount of time a specific node in the simulation 

spends in passive listening mode, also known as Carrier Sense Multiple Access with  

Collision Avoidance (CSMA/CA). By monitoring t_listen_usage for each node in the 

simulation, we can identify which nodes are spending the most time listening for 

incoming data, which can be useful for optimizing the performance of the network 

 

 

             4.2.1.2 Benign Network Traffic Dataset Generation 
 

For the dataset of network traffic, we initially run the simulation for 15 minutes. Once 

all the nodes started communication to each other it means that our network is now 

stable. Now start to monitor radio message communication by enabling the 6LoWPAN 

Analyzer with PCAP.  

Similarly, start the simulation and get started to monitor the radio messages by enabling 

the 6LoWPAN Analyzer with PCAP. Captured the raw traffic data in .pcap file format, to 

analyze the file use Wireshark and export data in a .csv file.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23 



 
 

 

Fig 4.3: Traffic Showing using 6loWPaN Analyzer 

 

      4.2.2 Malicious Dataset Generation 
 

              4.2.2.1 Malicious Power-trace Dataset Generation 
 

Now we deploy two malicious nodes also we can say attacking nodes within the network 

at the random position. In this case, node 12 and node 13 are malicious nodes in pink. 

The power trace plugin was similar for collecting power-trace-related features. In this 

case simulation is done for 60 minutes duration after once the network achieved stability. 

In power-trace mode following power metrics states have been collected: (i) CPU (ii) 

LPM (iii) Transmit (iv) Listen (v) Idle_transmit and (vi) Idle_listen. We used 

t_CPU_usage, t_LPM_usage, t_trx_usage, and t_listen_usage in our dataset to train the 

models. 
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in  

Fig 4.6: Malicious network in Contiki Cooja 

 

             4.2.2.2 Malicious Network Traffic Dataset Generation 
 

A Similar strategy has been followed to generate the malicious network traffic dataset as  

initially used for the benign traffic. The raw dataset contains multiple features like hop  

count, RPL-control messages, node information, version number, rank value, and  

instance ID, etc. Wormhole attack has highly impact on mentioned features. The 

generated malicious power trace file contains 10,794 records. 

 

4.3 Network Map after Deploying Attacking Nodes 

 
When deploying attacking nodes in the Cooja simulator, the network map shows the 

specific configuration and placement of the nodes.  
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Fig 4.7: Sensor map after deployment of wormhole attack 

 

4.4 Power Analysis across Nodes 

The power analysis typically represents the energy usage patterns for the simulated 

nodes. The y-axis represents the average power consumption in milliwatts. The x-axis 

represents the type of node in the network. The power consumption of nodes can be a 

relevant feature as it causes increased power consumption, rapid energy drain, and 

abnormal power patterns which may exhibit anomalies in the normal behavior. Average 

power metric represents the average power consumed by a node or the network as a 

whole. It is calculated by dividing the total energy consumption by the simulation 

duration. Average power can provide a measure of the node's power efficiency and help 

compare different network configurations or protocols. 
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Fig 4.8: Average Power metrics across node 

 

After 1 hour of simulation, the average power across each node, where blue portion 

represents CPU power consumption, red represents power consumption in Low Power 

mode , green represents power consumption in radio listen mode, and yellow for power in 

radio transmit mode. 

 

4.5 Data Preprocessing 

     4.5.1 Dataset Cleaning 

First of all we have cleaned our raw dataset. In our dataset, there are some duplicate 

values, so removed all duplicate values. The drop_duplicates( ) function is used in python 

to remove duplicate rows from the DataFrame. The duplicate records in the dataset create 

redundancy and bias in the analysis, so it is essential to remove duplication in data. 

Similarly, some missing values have been handles by imputation technique based on the 

statistical methods (e.g., mean and median). 

Similarly, outliers in the datasets have been removed by using IQR method. 
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     4.5.2 Feature Selection  

Different features have been selected by different researchers, but the wormhole attack  

severely affects the RPL control messages in IoT networks. So we chose the features 

related to the RPL-control messages. The attacker can create a shortcut between two 

distant parts of the network by tunneling messages through a covert channel. When 

applied to RPL control messages, this can result in the attacker intercepting and 

forwarding DODAG (Destination-Oriented Directed Acyclic Graph) information, causing 

the network to reroute traffic through a compromised path. 

The feature selection using the correlation coefficient method is a way to identify which 

features in a dataset are most related to a target variable. The feature selection process is 

done using Python programming in Google Colab. We import common separated file in 

Google Drive. Then load the dataset in Google Colab.  

1. For each feature in the dataset, calculate its correlation with the target variable. 

Correlation measures how closely two variables are related to each other, and 

ranges from -1 to 1. A correlation coefficient of 1 means that the two variables 

have a perfect positive relationship, 0 means that there is no relationship, and -1 

means that there is a perfect negative relationship. 

2. Take the absolute value of each correlation coefficient, so that we only consider 

the magnitude of the correlation, not the direction. 

3. Rank the features, based on their correlation coefficients, from highest to lowest. 

4. Select the top k features with the highest correlation coefficients as the most 

important features. These features are likely to be most useful for predicting the 

target variable. 

 

In RPL protocol, DIO-S (DODAG Information Object-Solicited) control message is sent 

in response to a DAO (Destination Advertisement Object) message received from a node 

that has no information about the parent in the direction of the DODAG root. In the case  

of DIO-S messages, a wormhole attacker can capture DIO-S messages from a legitimate  

parent node and replay them to a victim child node, which can cause the victim node to 
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 choose the wormhole attacker as its parent. This can create a shortcut in the network that 

bypasses other nodes and can lead to a suboptimal routing path. 

    

DIO-R messages are used to acknowledge the reception of DIO-S messages and to 

provide information about the topology of the network. The reception of the large number 

of DIO-R messages by a node indicates that it is receiving messages from the correct 

upstream neighbor and can communicate with it effectively. However, in a wormhole 

attack, an attacker may replay DIO-R messages from a different part of the network, 

which can cause a node to falsely believe that it has a valid upstream neighbor. This can 

result in the node joining the wrong part of the network or using a suboptimal route, 

which can increase the latency and reduce the overall efficiency of the network. 

Therefore, the effect of a wormhole attack on DIO-R messages is generally negative, as it 

can lead to incorrect network topology information and suboptimal routing decisions. 

Similarly, the wormhole attack may lead to a decrease in DIS-R messages if the attack is 

successful in isolating parts of the network and preventing nodes from communicating 

with each other. DAO (Destination Advertisement Object) control messages are 

responsible for conveying the routing information from the parent node to the child nodes 

in the RPL-based IoT network. The DAO control messages carry information about the 

parent node, which is used by the child nodes to update their routing tables. In a WHA, 

the attacker creates a shortcut between two nodes in the network by relaying packets 

through a high-speed link. When the DAO messages are sent in the network, the attacker 

can intercept the messages and forward those through the wormhole link, making the 

messages appear as if they were sent by a node close to the destination. 

The detailed information about features is given in the table below: 
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Table 4.3: Brief description of the features 

1 Mote IOT nodes 

2 Rank Position or order of a node within a network topology. 

3 Version  

4 Instance ID Unique identifier assigned to each simulated node in the network. 

5 DIO-S DIO-R (DODAG Information Object with RPL Source Option) are used for source routing 

and are sent by intermediate nodes to update the sender about the status of the path to the 

destination 

6 DIO-R DIO-R (DODAG Information Object with RPL Target Option) provide information about a 

specific node in the network in response to a DIS-R message 

7 DIS-S DIS (DODAG Information Solicitation with source option) is a RPL control message used to 

discover the path between two nodes in the network. 

8 DIS-R DIS-R (DODAG Information Solicitation with RPL Target Option) are used to request 

information about a specific node in the network 

9 DAO-S DAO-R (Destination Advertisement Object with RPL Source Option) are used for source 

routing and are sent by a node to update its parent node about the status of the path to the 

destination 

10 DAO-R DAO-R (Destination Advertisement Object with RPL Target Option) contains information 

about the destination node's address, rank etc. 

11 ACK Acknowledge the receipt of a packet 

12 t_CPU_usage CPU usage of a node during traffic generation,/the total CPU time used by a node since the start 

of the simulation. 

12 t_LPM_usage measured in microseconds and represents the total amount of time a node has spent in LPM 

mode since the start of the simulation 

13 t_trx_usage The total amount of time a node has spent transmitting or receiving data since the start of the 

simulation. 

14 t_listen_usage The total amount of time a node has spent in passive listening mode since the start of the 

simulation 

 

 

     4.5.3 Data Chunking 

 

After collecting the benign and malicious data we combine all dataset to make chunks of 

equal time intervals of both malicious and benign traffic separately. For example, for 

benign traffic of one-hour simulation, we divide or data into 60 chunks. Each chunk 

corresponds to 1 minute in duration. 
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Table 4.4: Data chunking with each row represents 60 seconds duration 
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1 256 240 30 14 87 5 10 0 1 13 728396 6548 844898 0 1 

1 256 240 30 32 12 0 0 0 6 16 11725 799683 6548 910434 0 

2 394 265 29 29 3 1 0 1 1 7 57008 0 65066 0 1 

2 409 260 30 29 1 0 0 2 0 12 6463 59153 0 65066 0 

3 
 

390 203 32 0 0 0 1 0 0 0 113813 3274 127300 0 0 

3 
 

557 240 30 29 0 
 
 
 

0 0 0 0 
 
 
 

3 15173 115959 3274 127300 1 

11 593 240 30 29 1 0 0 3 - - - - - - - 

3 557 180 30 0 0 4 1 0 - - - - - - - 

1 256 195 30 0 0 19 31 0 - - - - - - - 

4 514 276 30 0 3 0 0 0 - - - - - - - 

5 522 195 30 0 6 0 0 0 - - - - - - - 

6 384 230 30 0 8 9 3 0 - - - - - - - 

2 409 240 30 0 0 5 2 0 - - - - - - - 

7 518 173 30 0 1 0 1 0 17 10 56565 34555 345345 766645 1 

 

 

minute duration of the interval. Now for each interval, we calculate the data with for 

network traffic features. We chose node-wise the number of RPL control messages 

within the raw network traffic. For example in the case of DIO messages, DIO-S means 

the number of DIO messages sent from the specific nodes. Similarly, DIO-R means the 

number of DIO messages received from the specific node. The number of DIO-S and 

DIO-R messages was calculated corresponding to each node within the network. 

Similarly, the number of the RPL-control messages has been calculated in a similar way. 

Similarly, the rank, instance ID, and version number are calculated within the specific 

interval. There are a total 1100 number of lines in the prepared dataset containing 14 

features containing network traffic and power metrics features. The last column is for  

data labeling i-e the number 1 used is for malicious traffic and 0 is used for normal 

traffic.  
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     4.5.4 Data Scaling and Normalization 

In this section, we will discuss how our proposed algorithms give the best detection rate 

by applying different machine learning algorithms. In the literature, different researchers  

suggested different algorithms for wormhole attack detection. We have used the same 

algorithms and same features that were used by the researchers but the dataset was 

generated by our system. So we will compare our results with the previous results. After 

that, we will use some other features and different machine learning algorithms which 

were not used by the researchers in the literature. Our scheme is then compared with the 

existing scheme to show the effectiveness of the proposed system. 

The generated dataset is not in the normalized form. So there will be the need to 

normalize the dataset before applying any ML/DL algorithm. For each feature, We 

calculated statistical measures such as average, variability, minimum, maximum, and 

quartiles. The statistical description of the dataset is given in the following diagram. 

 

Table 4.5. Statistical description of the features 

 
 

As it is clear from the statistical data analysis, the range of data values of raw data is of 

having different scales. In such cases, the classification models will not perform 

effectively without data normalization. 
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            4.5.4.1 Min-Max Normalization  

Data scaling is the process in which we convert the dataset so that it fits within a specific  

range. Data normalization and scaling are essential preprocessing steps in machine 

learning that help improve the accuracy and effectiveness of the model. These techniques 

transform the features of the dataset to a common scale, which helps in reducing the 

effect of the scale of the features on the performance of the algorithms. 

The data is normalized with the following relation. 

 

But we set the range i-e minimum and maximum between random set of values. 

 

 

 a = minimum value 

 b  = maximum value 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.9. Normalized data after min-max normalization 

 

      4.5.5 NaN values removal 

In a dataset, NaN values represent missing or undefined data points. It's a way of  
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indicating that a value is unknown, unmeasured, or unrecorded for a particular feature in 

a specific observation or sample. NaN values may occur due to multiple reasons such as  

data entry errors, faulty sensors, or simply because the data was not collected or  

recorded for a particular feature in a particular sample. Handling NaN values is important 

in data analysis as they can lead to biased or inaccurate results if not dealt with 

appropriately. We used python code to remove NaN values in our dataset. 
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Chapter 5  

                   Results and Discussion 
 

 

5.1 Proposed Models 

 

We have used various machine learning and deep learning algorithms for classification. 

In this section, I will explain the reasoning behind the selection and provide a detailed 

description of each proposed machine learning model. Some commonly used machine 

learning models for intrusion detection in IoT networks include decision trees, neural 

networks, SVM, and RF. We have also used some different algorithms according to our 

dataset. 

 

       5.1.1 Ridge Classifier 

The Ridge classifier is a type of linear classifier for binary classification tasks. It is a 

modification of the logistic regression algorithm that includes a regularization parameter 

called the Ridge parameter. 

The ridge classifier works by finding the hyper-plane that maximizes the margin between 

the two classes while also minimizing the sum of squared weights. The squared weights 

penalty term is known as the L2 regularization, which helps in mitigating overfitting by 

reducing the model coefficients towards zero. This regularization term is particularly 

useful when dealing with high-dimensional data with a large number of features. 

It is particularly effective in cases where the data is noisy or where there exist a large 

number of correlated features. 

Let's assume we have a dataset with n samples and d features. We represent the features 

of each sample as a d-dimensional vector x_i, and the corresponding target class as y_i. 

The Ridge Classifier aims to find the optimal weight vector b that minimizes the 

following objective function. 
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Alpha is regularization parameter. Larger values of alpha give greater shrinkage, making 

the coefficients more robust to collinearity. The first term ||yi – y||^2 measures the 

squared error between the predicted classes (Xw) and the actual classes (y). 

 

     5.1.2 Artificial Neural Network 

(ANN) can be used for wormhole attack detection in IoT networks. ANNs are capable of 

capturing non-linear relationships between the input data and the output, which can be 

useful for detecting subtle patterns that are not easily discernible through traditional 

methods. This aspect holds significant importance, especially when dealing with 

wormhole attacks, which can be difficult to detect using conventional methods. 

ANNs are generally robust to noise and can handle missing or incomplete data.  

The architecture of ANN consists of three types i-e Single-Layer Feed Forward, 

Multilayer Feed Forward, Recurrent networks, etc. based on the number of hidden layers 

and feedback mechanisms. ANN typically contains multiple layers of perceptrons, with 

each layer passing its output to the next layer until a final output is produced. The process 

of passing the output of one layer to the input of the next layer is known as forward 

propagation. The input is received by the perceptrons, apply the set of weights and bias 

then output is calculated. These all passed through the activation function terms of the 

perceptron are adjusted during the training process to minimize the difference between 

the predicted output and the actual output. In the process of backpropagation, there 

involves the calculation of the gradient of the error function with respect to the weights 

and bias terms and updating them accordingly. The architecture of basic ANN is shown 

in given figure. 
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 Output1 

 

                                                                                                     Output2 

 

 

 

 

    Input Layer                    Hidden layer                                     Output 

 

                                     Fig 5.1: ANN architecture 

 

An artificial neural network basically takes up inputs and calculates the weighted sum of 

these inputs. In addition, a bias term is added to this. This weighted sum with bias is 

passed to an activation function like sigmoid, RElu, tanh, etc. And the output from one 

neuron act as input to the next layer in neural networks. A neural network when having 

more than one hidden layer is called a Deep Neural Network.  

 

Fig 5.2: Weight, bias, and activation function in ANN 
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      5.1.3 Deep Belief Network 

A Deep Belief Network (DBN) is a way to build a complex network by combining 

smaller networks that learn without being told what the right answer is. We call these 

smaller networks Restricted Boltzmann Machines (RBMs) or Autoencoders [17]. The 

idea is to train each small network to get better at recognizing patterns by using the 

previous network's output as input. By doing this, we can teach the DBN to recognize 

more complex patterns. The training method used is called contrastive divergence, which 

helps each small network learn more efficiently. A DBN is a group of RBMs stacked on 

top of each other to form a bigger network. 

In DBN, learns a set of features from the data, and the learned features from one layer are 

used as input to the next layer [18]. After all the RBM layers have been trained, a process 

known as fine-tuning is used to further improve the network's performance. Fine-tuning 

involves training the entire network using supervised learning to optimize the weights 

and biases of the network for the specific task at hand, such as classification. This helps 

to improve the accuracy of the network in making predictions on new data [19]. 

 

      5.1.4 Radial Basis Function Network  

The Radial Basis Function (RBF) neural network helps estimate a function using a 

limited number of features. The program has three layers: the input layer, the hidden 

layer, and the output layer. The input layer assigns a neuron for each feature and passes 

them to the hidden layer without any changes. The hidden layer then creates a connection 

between the input space and a larger space using RBF transfer functions. In the end, the 

output layer produces a linear output by calculating a weighted sum. For classification 

tasks, like in our work, the activation function for the output layer is then switched to the 

sigmoid activation function. [20] 

During the training process, the RBF network assigns a neuron to each input feature and 

directly passes the input layer features to the hidden layer. The hidden layer then creates a 

non-linear relationship between the input space and a typically higher-dimensional space 

using RBF transfer functions. In the end, the output layer computes a weighted sum to 

produce a linear output. For classification tasks like wormhole attack detection,  
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the activation function of the output layer is changed to the sigmoid activation function31 

weighted sum with a linear output. In the case of classification such as wormhole attack 

detection, the activation function of the output layer becomes the sigmoid activation 

function.  

 

 

Fig 5.3: RBF Network architecture 

 

h(x) is the Gaussian activation function with the parameters r (the radius or standard 

deviation) and c (the center or average taken from the input space) [22]. 
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Table 5.1: Summary of the main models used in wormhole attack detection 
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Sr. 

No 

 

Model 
 

Pros 

 

Cons 

1 ANN 

 

 

 

 

   Scalability 

 

 

 

  Reduced- False       

      Positives 

 

 

 

Adaptability 

 

 

 

Low-False 

Negative rates 

- Requires a large amount of 

labeled training data for 

optimal performance. 

- May be prone to overfitting 

if not properly regularized 

 

2 RBFN 

 

 

Localized 

Learning 

 

Non-linear Dataset 

 

Work well on 

Noisy Dataset 

 

Few 

Hyperparameters 

Prone to overfitting if the 

number of centers is too large 

3 Ridge 

Classifier 

 

 

Reduced Over 

fitting 

 

Regularization 

Control 

 

Multi co 

linearity 

 

High-

dimensionality 

- Limited capacity to capture  

  complex nonlinear patterns 

- May struggle with   

   imbalanced datasets without   

   proper class weighting. 

4 DBN 

 

 

Robustness to 

Noise and 

Variability 

 

Deep Architectural 

Depth 

 

Unsupervised 

Pre-training 

 - Sensitive to hyperparameter 

selection and network 

architecture design. 

- Computationaly expensive 

training 



 
 

5.2 Simulation Setup 

The work is carried out using DELL (inspiron i3-3110M) laptop, with Windows 10  

Pro 64-bit operating system installed, Intel® Core ™ CPU @ 2.4GHz 6.00GB RAM. 

The datasets have been generated in the COOJA simulator which is installed in the 

Oracle virtual box. The proposed algorithms have been simulated using Google Colab 

and Jupyter Notebook. 

 

5.3 Hit and Trail Methods Using Different Classifiers 

We have tested multiple classifiers to check the different parameters. We have used 

classifiers i-e Logistics regression, Gaussian naïve Bayes, Random forest, SVM and ada-

boost. The overall performance metrics are given in the table. 

 

Table 5.2:  Hit and Trail analysis using multiple classifiers 

 

Sr. No 

 

Algorithm 

 

Confusion 

Matrix Values 

 

Precision 

 

F- Score 

 

Accuracy 

 

Simulator 

 

Remarks 

1. Logistic 

Regression 

FP=42 
FN= 17 
TP=117 
TN=26 

73% 80% 70% Cooja - 

2. Gaussian Naïve 

Bayes 

FP=67 
FN= 2 

TP= 132 
TN=1 

67% 79% 66% - - 

3. Random Forest FP=25, FN=12 
TN=43,TP=122 

82% 86% 82% - - 

4. SVM FP=53,FN=2 
TP=132,TN=14 

72% 82% 72% - - 

5. Ada-Boost FP=6,FN=18 
TP=93,TN=83 

93% 89% 88% - - 
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5.4 Implementation of Ridge Classifier 

The above machine learning classifiers didn‟t provide satisfying results; therefore we 

have some complex models. For the proposed model to detect wormhole attacks in the 

RPL-based IoT, we have performed the analysis in Python language. The model is 

trained on 80% of the training dataset and remaining 20% of the testing dataset. The 

simulation is performed on the Google Colab, and Jupyter Notebook. Furthermore, we 

have performed data preprocessing, feature engineering, and hyper parameters tuning to 

improve the accuracy of the models. We have tested different machine learning and deep 

learning models on the hit and trials method to check the performance of each model. 

Additionally, before testing the new models, we also performed analysis on the same 

models which were used in the literature to check how much the models perform well on 

our dataset. 

 

For the Ridge classifier, the model achieved an accuracy of 0.97 for the training dataset 

and an accuracy of 0.96 on the testing dataset for the detection of wormhole attacks. 

The model achieved a precision of 0.94 and the recall value is 0.99. Similarly, the F-1 

score of the proposed model tends to be 0.9710. 

To plot the confusion matrix, we have calculated the FN, FP, TN, and TP values. We 

have obtained,  False Negative value = 0, False Positive = 8, True Positive = 134 and 

True Negative =  60 

The confusion matrix of the Ridge classifier is shown in Fig 5.3  
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Fig 5.3: Confusion matrix for Ridge Classifier 

 

 

 

Fig 5.4: ROC curve of Ridge Classifier 
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5.5 Implementation of ANN 

 

Similarly, for the For ANN classifier, we have used Relu as an activation function. The 

optimizer was „Adam‟ and the maximum iteration was 500.  The model achieved an 

accuracy of 0.93 for the training dataset and an accuracy of 0.92 on the testing dataset for 

the detection of wormhole attacks. 

The model achieved a precision of 0.90 and the recall value is 0.97. Similarly, the F-1 

score of the proposed model tends to be 0.94. 

To plot the confusion matrix, we have calculated the FN, FP, TN, and TP values. We 

have obtained, False Negative value = 1, False Positive = 10, True Positive = 134 and 

True Negative = 68 

The CM and ROC operating point of the ANN is shown Fig 5.5 and Fig 5.6: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Fig 5.5: Confusion matrix using ANN 
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Fig 5.6: ROC operating point of ANN 

 
 
 
5.6 Implementation of DBN 

 
To build a DBN, we created a sequential model and set the different parameters. We have 

used „Relu‟ as an activation function. The batch size = 32, the number of epochs = 32, 

verbose = 1, and used Root mean square propagation (RMS prop) optimizer.  

After running the training of the model, we have decreasing loss as the number of epochs 

increases which means the model is training well as shown in the figure. 
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Fig 5.7: Training of DBN 

The model achieved a precision of 0.835 and the recall value is 0.84. Similarly, the F-1 

score of the proposed model is 0.85. The ROC AUC score is 0.83. 

To plot the confusion matrix, we have calculated the FN, FP, TN, and TP values. We 

have obtained, False Negative value = 19, False Positive = 14, True Positive = 92 and 

True Negative = 75 

. 

Fig 5.8: Confusion matrix using DBN 

46 



 
 

 

Fig 5.9: ROC operating point of DBN 

 

5.7 Implementation of (RBFN) for Binary Classification 

To train the RBFN, Use K-Means clustering to determine the centers of the radial basis 

functions. Then Calculate the distance between each training example and the RBF 

centers. Train a linear classifier i-e Logistic Regression based on RBF features. After the 

training, we got an accuracy of 0.775 and the precision of the model was 0.88. Similarly, 

the recall value and F-1 score value were 0.88 and 0.77 respectively. 

The AUC-ROC curve is a way to assess the performance of classification tasks by 

examining different threshold settings. The ROC curve is a graphical representation of 

probabilities, and the AUC indicates how well the classes can be distinguished from each 

other. The ROC-AUC value in the case of RBFN is 0.785. 

To plot the confusion matrix, we have calculated the FN, FP, TN, and TP values. We 

have obtained, False Negative value = 34, False Positive = 11, True Positive = 77 and 

True Negative = 78 

The confusion matrix curve and ROC operating point of the RBFN classifier is shown in 

Fig 5.10 and Fig 5.11 respectively: 
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Fig 5.10: Confusion matrix of RBFN 

 

 

Fig 5.11: ROC operating point of RBFN 
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5.8 Performance Metrics 

 To evaluate the effectiveness of the performance of the proposed algorithms, we have 

chosen some statistical parameters. The results of the proposed algorithms are compared 

with the algorithms that were used in the literature. When testing a multi-class classifier, 

there are performance metrics that can be used to measure its performance [21] 

      5.8.1 Accuracy 

Accuracy is a performance metric that measures how well a classification model correctly 

predicts the class labels of the samples in the dataset. In terms of the confusion matrix, 

accuracy can be written as: 

 

 

Accuracy is a commonly used metric for evaluating classification models, but it can be 

misleading in certain situations. For instance, if our dataset is not balanced, i.e., one class 

has significantly more samples than the other, then a high accuracy score may not 

necessarily indicate a good model. In such cases, it is recommended to use other 

performance metrics, such as precision, recall, and F1-score, to evaluate the model's 

performance more comprehensively and accurately. 

 

      5.8.2 Confusion Matrix  

A confusion matrix is a table used to evaluate the performance of a classification model. 

The matrix compares the predicted class labels of the model to the actual or true class 

labels of the samples in a dataset. 

The entries of confusion matrix consist of four entries: 

 True positives (TP): The count of samples that the model accurately identifies as 

positive. 

 False positives (FP): The count of samples that the model incorrectly labels as 

positive. FP is also called a Type-I error. 

 

49 



 
 

 True negatives (TN): The count of samples that the model accurately identifies as 

negative. 

 False negatives (FN): The number of samples that are wrongly classified as 

negative by the model. FN is also called type-II error. 

 

For the binary classifier, the confusion matrix can be sketched in table form. 

 

Fig 5.12: Binary Class Confusion matrix 

      5.8.3 Precision  

Precision is a performance metric in machine learning that measures the proportion of 

true positives (TP) among all the samples that are predicted to be positive by the model. 

In other words, precision tells us how often the model's positive predictions are correct. 

Actually, it is the fraction of true positive predictions among all positive predictions. A 

higher precision means fewer FP, thus lower chance of making a Type-I error. 

                       

     5.8.4 Recall  

The Recall is the fraction of true positive predictions among all actual positive examples.  
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A higher recall means fewer FN but may increase the risk of type-1 error and lower the 

type-II error. 

                                  

     5.8.5 ROC Curve and operating point 

The ROC (Receiver Operating Characteristic) curve is a graphical representation of the 

performance of a binary classification model. It illustrates the trade-off between the true 

positive rate (TPR) and the false positive rate (FPR) at various classification thresholds. 

The ROC curve is created by plotting the TPR (also known as sensitivity or recall) on the 

y-axis against the FPR (specificity) on the x-axis, as the classification threshold is varied. 

Each point on the curve represents a different threshold, and the curve provides a 

comprehensive view of the model's performance across all possible thresholds. 

 

The ROC curve is useful for evaluating and comparing different models. A better-

performing model will have an ROC curve that is closer to the top-left corner of the plot, 

indicating a higher TPR and a lower FPR across a range of thresholds. 

 

Similarly, the operating point on ROC determines the balance between the true positive 

rate and the false positive rate for a particular threshold setting. 

 

5.9 Comparative Analysis 

We have performed analysis by using different algorithms. Initially, used those 

algorithms which were already implemented by the researchers, then after that we have 

performed analysis on few new algorithms. 
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Table 5.1: Comparative Analysis of different algorithms 

Algorithm Confusion Matrix Precision F-score Accuracy Simulator ROC 

AUC 

Logistic Regression FP=42 
FN= 17 
TP=117 
TN=26 

73% 80% 70% Cooja - 

Gaussian Naïve Bayes FP=67 
FN= 2 

TP= 132 
TN=1 

67% 79% 66% Cooja - 

RF FP=25, FN=12 
TN=43,TP=122 

82% 86% 82% Cooja - 

SVM FP=53,FN=2 
TP=132,TN=14 

72% 82% 72% Cooja - 

Ada-Boost FP=6,FN=18 
TP=93,TN=83 

93% 89% 88% Cooja - 

Ridge Classifier FP=8, 
FN=0,TP=134,TN=60 

94% 97% 96% Cooja - 

DBN FP=14,FN=19 
TP=92,TN=75 

83% 85%  Cooja 84% 

ANN FP=10,FN=1 
TP=134,TN=68 

90% 94% 92% Cooja - 

RBFN FP=11,FN=78 
TP=77,TN=34 

88% 88% 77% Cooja 78% 

 

5.10 Analysis and Recommendations  

Above table performs the comparison analysis of different algorithms. Analysis has been 

performed based on the few technical parameters related to dataset.  

RF, SVM, Logistic Regression and Ada-Boost perform well on the low amount of 

dataset. If we increase the dataset and ultimately the features as well then these models 

not give us optimal results, as highlighted in the table. 

Ridge Classifier is a linear model with ridge regularization, which helps to handle 

multicollinearity and can prevent overfitting. It can work well with high-dimensional data 

and is computationally efficient. The training of Ridge classifier is computationally easy  
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and efficient. Also this model has built-in feature selection capability by applying 

regulization. 

As our dataset is non-linear in nature. The distribution of our dataset was log distribution. 

So, for the non-linear distribution datasets, ANN and RBFN performs well and gives 

better results. DBNs use unsupervised pre-training to initialize their parameters, allowing 

them to learn useful representations without the need for labeled wormhole attack 

instances. From the above table it is clear that our main models perform very well as 

compared to simple machine learning algorithms like RF, SVM, Logistic Regression and 

Ada-Boost etc. The accuracy and precision values are much better in our case. 

 

To improve the results of ANN, DBN, RBFN, and Ridge Classifier for wormhole attack 

detection in IoT networks, consider the following recommendations: 

1- As ANN and DBN need more dataset for the optimal performance, so gather a 

diverse dataset that includes a sufficient number of wormhole attack instances. 

Ensure that the dataset captures various network conditions, device 

configurations, and attack scenarios encountered in IoT network environment. So 

if we increase the dataset then our models definitely will give us much better 

results.  

2- Conduct in-depth feature engineering 

3- Model Selection and Hyperparameter Tuning 

 

5.11 Discussion  

 
The results obtained from the experiment show that the proposed models perform well in 

terms of accuracy, precision, and recall on the dataset generated in the Cooja simulator. 

Based on the given results, the Ridge classifier model achieved a high accuracy score of 

0.97 for the training dataset and an accuracy of 0.96 for the testing dataset, indicating that 

the model is performing well and is not overfitting the training data. 

The precision value of 0.94 indicates that when the model predicts the wormhole attack, 

it is correct 94% of the time. The recall value of 0.99 indicates that the model can identify 

99% of all wormhole attacks in the testing dataset. The high F1 score of 0.9710 indicates 
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that the model has a good balance between precision and recall. 

To further analyze the model's performance, we can look at the confusion metrix. The 

confusion matrix provides the counts of true positives (TP), false positives (FP), true 

negatives (TN), and false negatives (FN) predicted by the model. In this case, the model 

correctly predicted 134 wormhole attacks (TP) and correctly predicted 60 non-wormhole 

attacks (TN). However, it incorrectly classified 8 non-wormhole attacks as wormhole 

attacks (FP). Importantly, there were no false negatives (FN), which means the model did 

not miss any wormhole attacks in the testing dataset. 

 

The ANN classifier model with ReLU activation function and 'Adam' optimizer achieved 

an accuracy score of 0.93 for the training dataset and an accuracy of 0.92 for the testing 

dataset in detecting wormhole attacks. The precision value of 0.90 indicates that when the 

model predicts the wormhole attack, it is correct 90% of the time. The recall value of 

0.97 indicates that the model can identify 97% of all wormhole attacks in the testing 

dataset. The F1 score of 0.94 indicates that the model has a good balance between 

precision and recall. 

Looking at the confusion matrix, the model correctly predicted 134 wormhole attacks 

(TP) and correctly predicted 68 non-wormhole attacks (TN). However, it incorrectly 

classified 10 non-wormhole attacks as wormhole attacks (FP), and it missed one  

Wormhole attack (FN). 

Overall, these results suggest that the ANN classifier model with ReLU activation 

function and 'Adam' optimizer is effective in detecting wormhole attacks, with high 

accuracy, precision, recall, and F1 score. However, there is still room for improvement, 

particularly in reducing the number of false positives and false negatives. 

 
 
For the DBN, the model achieved a precision value of 0.835 and the recall value of 0.84, 

indicating that can correctly identify 83.5% of true wormhole attacks and correctly 

exclude 84% of non-wormhole attacks. The F1 score of 0.85 that the model maintains a 

favorable balance between precision and recall. The ROC AUC score of 0.83 indicates 

that the model has moderate discriminatory ability. 
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Looking at the confusion matrix, the model correctly identified 92 wormhole attacks (TP) 

and 75 non-wormhole attacks (TN), but it incorrectly classified 19 wormhole attacks as 

non-wormhole attacks (FN) and 14 non-wormhole attacks as wormhole attacks (FP). 

 
The model achieved an accuracy score of 0.775, indicating that it correctly classified 

77.5% of the data points. The precision value of 0.88 indicates that when the model 

predicts a wormhole attack, it is correct 88% of the time. The recall value and F1 score of 

0.88 and 0.77, respectively, suggest that the model can identify 88% of all wormhole 

attacks, but there is room for improvement in terms of precision and the balance between 

precision and recall. 

The ROC-AUC score of 0.785 indicates that the model exhibits a moderate capability to 

differentiate between wormhole and non-wormhole attacks. 

Upon analyzing the confusion matrix, the model correctly identified 77 wormhole attacks 

(TP) and 78 non-wormhole attacks (TN), but it incorrectly classified 34 wormhole attacks 

as non-wormhole attacks (FN) and 11 non-wormhole attacks as wormhole attacks (FP). 
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Chapter 6 
 

 

Conclusion and Future Work 
 

6.1 Conclusion  

 

In this paper machine learning and deep-learning based RPL-based wormhole attack 

detection have been proposed in IoTs. We have tested multiple machine learning 

algorithms by hit and trial methods, but among them, few algorithms provide the best 

accuracy and detection rate. These algorithms include Ridge classifier, artificial neural 

network (ANN), deep belief network (DBN), and radial basis function network (RBFN). 

Our proposed strategy employs the Cooja simulator for complex dataset generation in 

real environment. We have deployed 11 normal nodes to generate normal traffic datasets 

and 2 attacking nodes which are wormhole attack nodes, to generate malicious datasets in 

RPL network. Further, we have preprocessed the dataset using different statistical 

techniques to reduce the features and to select the most important features. We have used 

additional features i-e (i) C.P.U (ii) LPM (iii) Transmitt (iv) Listen (v) Idle-transmit and, 

and Idle-listen which were not used by the researchers in their analysis. Additionally, 

some more data preprocessing techniques have been used to clean the dataset. Finally, the 

simulation results depict the effectiveness of the proposed algorithms in terms of various 

performance metrics. The proposed algorithms Ridge classifier, ANN, DBN, and RBFN 

achieved accuracy of 97, 93%, 84% and 77% respectively. Our results shows that our 

approach achieves high accuracy on complex datasets in detecting wormhole attacks, making 

it a promising solution for enhancing the security of IoT networks. 
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6.2 Future Work  

In the future, we can perform analysis on the other IoT attacks. For multiple attacks, we 

will have a huge amount of dataset therefore our intrusion detection system (IDS) can 

have the ability to detect multiple attacks. 

            Since the proposed analysis has been performed in the simulator, there will be a clear 

difference between the simulated environment and real-time environment. Therefore, the 

same analysis can be performed on the real time IoT network for improved results. 

As in our analysis, we have a limited amount of data but Deep learning and deep 

reinforcement learning models are efficiently trained on a huge of amount of data. 

Therefore, if we import big data to deep learning models then our accuracy will be much 

improved. 

Due to the limited resources nature of IoT devices, there should be lightweight 

cryptographic protocols for secure communication in the IoT network. 
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