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Abstract 

With the extensive development of new technologies and the application of information 

in the manufacturing industry, immense volumes of distinct data are being generated and 

collected daily. However, this data is largely unusable as its not meticulously cleaned and 

processed. The effective utilization of such complex data is the cornerstone of data analytics, 

as successful analysis leads to useful, relevant, and actionable knowledge, which in the long 

run can prove to be revolutionary for any field and open new avenues. Although the application 

of data analytics in areas such as sales & marketing, healthcare, cybersecurity, and climate 

change is largely prevalent, the implementation of data analysis and its tools for efficient 

product & process design is an unexplored opportunity with large volumes of data generated 

by major stakeholders throughout the manufacturing and product-process design activity 

remaining underutilized. This thesis, therefore, defines a novel conceptual framework that 

applies data analysis to integrated product-process design (IPPD) for weighted data driven 

IPPD that amalgamates data generated from multiple streams. Primarily from the user 

perspective, supply chain network, current & upcoming technological processes, and 

competitor process and product designs, will be utilized. The proposed framework can be 

further used to create new products better aligned with customer requirements, enhance the 

overall quality of the product, improve production efficiency through new technological 

advancements, support the supply chain network, and give the applicant industry a competitive 

advantage against its competitors. 
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CHAPTER 1: INTRODUCTION 

The research work in this dissertation has been presented in two parts. First part is 

deliberating upon the need for a data driven manufacturing resource selection framework 

followed by a detailed explanation of the proposed framework. The second part includes 

the application of aforementioned conceptual framework on a case study. 

1.1 Background, Scope and Motivation 

Extensive research and development in new disruptive technologies and the advent 

of data as a resource has led to its greater use in almost every industry. The application of 

this nascent resource has led to a gold rush of the digital age with enterprises all over the 

world scrambling to acquire, store and utilize this new wealth. Although many industries 

have adapted to the age of data science and have been able to successfully capitalize on 

the implementation data for multiple purposes however, the proper utilization of Big Data 

in the field of manufacturing, especially product-process design, has not been fully 

realized. Massive amounts of data are generated by manufacturing processes, users, and 

the distribution networks. Proper analyses of the arising data from these areas could lead 

to a more consumer relevant product, produced by highly optimized manufacturing 

processes and distributed through an efficient supply chain  

Heuristics and data analysis techniques depend on the requirements of the problem 

in question. These techniques are effective in solving problems of manufacturing 

processes, achieve automation, and identify patterns [1,2]. However, they are rarely used 

due to lack of research on overall master data and data analysis solutions which describe 

the actual options for presenting analysis results and their effective use in the actual 

production environment. Various conceptual models have been developed as tools to 

facilitate the introduction of data analysis in manufacturing systems. For instance, 

Lechevalier et al. [3] proposed a domain-specific framework for predictive analytics’ 

applications in production. O'Donovan et al. [4] further suggested a set of data and system 

requirements for implementing equipment maintenance applications and information 

system model in an industrial environment to provide a scalable big data pipeline for the 
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integration, processing and analysis of industrial plant data. Dutta and Bose [5] proposed 

the concept, planning and implementation framework of company big data projects. 

Moreover, Zhang et al. [6] suggested a general framework for big data analysis to make 

better decisions in product lifecycle management and cleaner production. Zhang et al. [7] 

also proposed a big data-based product lifecycle management framework to solve 

challenges such as the lack of reliable data and valuable information that can be used to 

support optimized business management decisions. Further, Tao et al. [8] proposed a data-

driven intelligent manufacturing framework, which consisted of four modules: 

manufacturing module, data controller module, real-time monitoring module and 

troubleshooting module. Jun et al. [9] also provided a cloud-based big data analysis 

platform for the manufacturing industry. In addition to models that focus on the 

manufacturing fields, analytical reference decision making model data called CRISP-DM 

have also been used [10]. The data analysis system can be subdivided according to the 

hierarchical structure proposed in [11] and [12]. The hierarchical structure includes three 

levels viz. a viz. infrastructure layer, IT layer, and application layer. Another example of 

a reference architecture is a technology independent reference architecture, proposed by 

Pääkkönen and Pakkala [13]. The architecture is based on the analysis of different 

implementations of big data analysis systems that aim to promote the architectural design 

and selection of technical or business solutions in the development of data analysis 

systems. Moreover, concepts, characteristics, and uses of big data of Product Lifecycle 

Management (PLM) were developed by Lei et al. [14]. 

With data driven intelligent manufacturing frameworks proposed by various 

researchers along with decision making solutions for manufacturing as discussed above, 

it is imperative to discuss Integrated Product Process Design (IPPD) as well that works on 

the integration of product and process parameters in the design phase for effective material 

and manufacturing process selection [15]. Since material and manufacturing process 

selection is a crucial decision in the Design for Manufacturing (DFM), Lidong and Cheryl 

[16,17] studied cyber-attacks in disruptive technologies such as additive manufacturing 

(AM) and concluded that big data analytics is a valuable tool for maintaining network 

security by controlling and monitoring each process such as observation of physical 

parameters like molten pool temperature. Furthermore, Zaman et al. [18,19] defined an 
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integrated design-oriented framework for resource selection in AM along with the 

showcase of an IPPD system based on multi criteria decision making. Both the 

frameworks aided in effective material and process selection by considering both the 

designer as well as the manufacturer’s perspectives. 

Consequently, it is evident from the literature review above that a great extent of 

research has been conducted on the application of big data analysis in manufacturing with 

a common feature being the use of basic concepts, such as identifying new potentially 

useful data sources and innovatively using data to improve the observational performance 

of the system with the help of decision-making methods. Also, this data comes from the 

Internet and sensor networks in the workplace installed in areas of design, manufacturing, 

and other related departments.  

Moreover, researchers have proposed IPPD frameworks to extract data for 

material and process selection but seldom utilize concepts such as big data analytics for 

effective resource selection. To address the above deficiency, this research defines a new 

conceptual framework that would, with relevance to IPPD, help in the selection of relevant 

data streams for utilization in the IPPD process and through targeted analysis, define key 

performance indices from data streams that would define how the framework would 

impact the overall process. Secondly, processed data sets would also be identified that can 

be utilized in different IPPD stages for optimum results. Thirdly, application of weights 

to the data sets would assist in manipulating a certain stream of data depending on its 

relevance and necessity to the IPPD process. Last but not least, the framework would 

assist in the recollection of data from the process such that it can be reutilized thereby 

making the overall process reiterative leading to continuous product process design 

improvement in the long run.  
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CHAPTER 2: LITERATURE REVIEW 

An incredible degree of work has been done in large information investigation in 

manufacturing. Showing a beginning revenue of scientists. The examination and use of 

enormous information investigation in the assembling business can be predominantly 

isolated into research on the presentation of general models of huge information 

examination in the assembling business, the business status survey and the advancement 

of arrangements, ideas, and Special applications for innovative work arrangement. A 

typical subject of these examinations is the fundamental thought of ideas, for example, 

recognizing new, possibly valuable information sources, coordinating information, and 

creatively utilizing information to work on the observational presentation of the 

framework. The information utilized in such activities and the information utilized for 

improving information examination arrangements come from the assembling climate and 

different spots, for example, from the Internet, sensor networks in the work environment 

and on public occasions. Keen information assortment and examination procedures rely 

upon the prerequisites for speed and mechanization.  

These strategies are typically powerful in settling issues in complex cycles, in 

which non-unimportant models with numerous boundaries portray interaction states [1]. 

Shrewd investigation techniques can accomplish mechanization and recognition. Learning 

has accomplished exceptional outcomes in this field [2]. Be that as it may, by and by, 

these strategies are seldom utilized. The explanation is the absence of examination on 

generally ace information investigation arrangements, which portray the real choices for 

introducing investigation results and their genuine use in the real creation climate, and at 

last, give an adequate degree of safety. Numerous calculated models have been created as 

devices to work with the presentation of information investigation in assembling 

frameworks.  

Lechevalier, Narayanan, and Rachuri [3] proposed an explicit space system for 

prescient investigation underway. The principle commitment of O'Donovan et al. [4] is a 

bunch of information and framework necessities for executing hardware upkeep 

applications in a modern climate, just as a data framework model. It gives a versatile 

enormous information pipeline and accommodates the joining, handling, and investigation 
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of modern plant information Fault resilience. Dutta and Bose [5] proposed arranging and 

executing the structure of large organization information projects. Zhang et al. [6] 

proposed an overall system for huge information examination to settle on better choices 

in item lifecycle the board and cleaner creation dependent on huge information. Zhang et 

al. [7] proposed a major information-based item lifecycle in the board structure to settle 

difficulties, for example, the absence of reliable information and important data that can 

be utilized to help improve business executives' choices. Tao et al. [7] proposed an 

information-driven keen assembling system comprising four modules: producing module, 

information regulator module, ongoing checking module and investigating module.  

Jun, Lee, and Kim [7] displayed a major information investigation stage for the 

assembling business. Bringing extensive information investigation into the assembling 

framework, notwithstanding models that emphasize the assembling field, other broader 

reference models and ideas from different fields, and generally have scientific reference 

model information called Fresh DM [8], KDD (Fayyad, Piatetsky-Shapiro and Smyth 

1996) and SEMMA (created by SAS Institute) can be in every way utilized.  

The worth chain illustrates a benchmark engineering for an information 

investigation arrangement [9] [10]. In the worth chain idea, a run-of-the-mill enormous 

information examination framework dependent on framework  



16 

 

designing strategies is partitioned into four phases: (1) information age, (2) information 

securing, (3) information stockpiling and (4) information investigation. Because of 

utilizing this reference design when fostering an information examination arrangement, 

each stage characterizes the fundamental apparatuses, suitable techniques, and 

information stream inside and between stages. The proposed progressive construction can 

partition the information investigation framework [11]. The progressive design 

incorporates three levels: (1) the foundation layer, (2) the IT layer, and (3) the application 

layer. One more illustration of a reference design is innovation-free reference engineering, 

proposed by Pääkkönen and Pakkala [12]. The reference design depends on the 

investigation of various executions of large information examination frameworks. It 

intends to advance the building plan and determine specialized or business arrangements 

to improve information investigation frameworks.  

Figure 2.1: The designed framework for Big Data driven product lifecycle management 

by Zhang [6] 
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Ideas, attributes and potential employments of enormous information of PLM were 

created by Lei et al. [13]. BDA significantly affects all areas of assembling. Today, it has 

viably advanced its execution in the AM field. As added substance producing is an arising 

innovation, it is still in the planning stage. All created nations work in AM. AM and BDA 

show their relationship with one another, and there is sufficient work to be done in such a 

manner. Lidong and Cheryl Ann [14] contemplated digital assaults in cutting-edge 

assembling. They added substance producing and inferred that BDA is a significant 

apparatus for keeping up with network security by controlling and observing each cycle. 

For AM, he proposed three central issues for further developing the checking framework 

and assault discovery techniques, to be specific, further developing programming control, 

further developing cycle observing, and further developing interaction checking through 

the roundabout perception of actual boundaries like liquid pool temperature from machine 

boundaries (like lasers). Power, assault. They are bound to be found [15]. while Jun et al. 

[16] set up an actual digital framework based on RFID on the assembling shop floor. 

Zhang et al. discussed upon cyber physical system based self-organizing 

intelligent shop floor and a big data analytics architecture for cleaner manufacturing and 

maintenance processes of complex products. [17] [18] 

Wang et al. [19] demonstrated a capability index for repercussions incurred due to 

low quality, addressing a practical challenge of asymmetric tolerances in the quality 

characteristics. Wang et al. propose a data-driven supplier selection model using a Taguchi 

capability index with dissimilar/asymmetric tolerances. To construct fuzzy membership 

functions, mathematical programming utilizes confidence intervals. Gao et al. [20] 

demonstrate a decision tree-based predictive model for the inspection and maintenance of 

a culvert. Gao explains that the current State Department of Transportation utilizes archaic 

and outdated for the planning of culvert inspection, based solely on the size and its 

experimental condition. Therefore, the Synthetic Minority Over Sampling technique is 

utilized to predict the conditions of the given sample size of 12,400 culverts. The given 

system achieved 80% and 75% accuracy for the training and testing set, respectively.  

He et al. [21] exhibited a clever information-digging structure for item plans. The 

exhibited system grandstands a unique way to deal with increment the flexibility of the 

item family and basically increment the precision, effectiveness and by an extensive 
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insight of item the board. A CBA classifier is used to suggest an ideal setup plot. Ng et al. 

[22] Showcase their nitty-gritty writing audit on Intelligent computerization, exhibiting 

how theoretical ideas can be essentially used considering future viewpoints. The audit 

centres around versatile direction (DM), artificial brainpower (AI) and mechanical 

technology process mechanization (RPA) and through the blend of these to accomplish 

ideal functional effectiveness, choice quality and framework dependability. The audit 

endeavors to grandstand ongoing examination interests and applications, further 

developing how in future streamlined execution can be accomplished. 

Shi et al. [23] showed an upgraded client prerequisite arrangement for item 

configuration utilizing colossal information and a further developed Kano model. The 

framework displayed how client audits (CR) are gathered by the utility of an engaged 

creeping strategy, after which item survey remarks are coordinated with applicable CRs 

for various levelled semantic likeness techniques. Finally, the CRS are arranged 

effectively and precisely to direct a more engaged item plan by technique for Curve 

development among CRs and capacity execution. Chen et al. [24] introduced an adaptable 

multi-process between waiter cooperative plan blend in an Internet circulated asset climate 

to assistant planners in planning an appropriated plan asset model and using an info yield 

stream model and calculation-based flexible multi-process bury waiter choice framework. 

An application on the 3-DOF wave power framework is displayed to approve results. 

Jing et al. [25] presented a choice framework for a short set-based span esteemed 

intuitionistic fluffy (IVIFS) theoretical plan for thought with a different client inclination 

appropriation. The framework distinguished a specific interest by tracking its 

establishments in authentic information to shape an extraordinary inclination; the 

intuitionistic fluffy set is shown to help a choice framework that, under vulnerability, can 

use a harsh set to preprocess the intuitionistic fluffy set to frame IVIFS. 

Shu et al. [26] present a Data-driven transport administration plan for a more 

maintainable last mile transportation framework. It features an exploration-based way to 

deal with user information to configure transport administration with improved and 

upgrade proficiency and accommodation of activity for last mile requests. Via an 

improved grouping calculation, directing and booking the bus administration is tended to. 
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A contextual investigation is examined to exhibit the helpful utilization of the interaction 

and confirm its presence. 

Zhou et al. [27] present a novel information diagram-based streamlining approach 

for asset allotment in discrete assembling studios. The paper presents a choice framework 

dependent on an information diagram structure that is generally associated with 

coordination in designing information for a machining studio climate. It exhibits a three-

stage strategy for defining an up-and-comer arrangement using a machining studio 

information to give pertinent information backing the development and assessment of the 

competitor administration pool. 

 

 

 

Figure 2.2: The framework for construction by Zhou [27] 
 

As assembling is not any more developing actual items, changes in buyer requests, 

financial aspects of creation, and nature of items are probably the main choices in the 

assembling business which are made during designing plan [28]. It has been featured that 

the manufacturability of any part straightforwardly affects the expense (70–80%). 

Therefore, an originator ought to cook for it in the beginning phases of the plan and along 

these lines give a simple stage to continue as far as assembling and prompts decreased 

expenses of get together and plan operations [29]. The resulting acknowledgement has 
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prompted the interest in simultaneous designing (CE), which incorporates the item 

advancement process with the members that settle on upstream choices to think about 

downstream and outer necessities [30] [31].  

The simultaneous plan works under the idea of incorporating plan and assembling, 

yet additionally gives an "advancement" process that will cook for all plan compromises 

connected with item execution, i.e. usefulness, use, and backing. It is vital to comprehend 

that the opportunity to change the plan is greatly diminished as the plan develops from the 

primer level to full-scale creation [32].  Hence, it is essential to have the privilege to 

change the item improvement process in the planning stage to diminish creation costs, 

time for item advancement, and imperfections particularly connected with quality. 

The thought explained above is an undertaking toward the blend of thing limits 

and cycle plan limits. The decision of material and collecting processes (i.e., appropriate 

gathering development) is associated with the past point of view. At the same time, the 

last choice worries the Design for Manufacturing (DFM), made by Stoll in 1988 to 

simultaneously consider the arrangement destinations and restrictions somewhat creating 

and is, for the most part, executed considering a particular collecting process. DFM is a 

piece of Design Theory and Methodology (DTM) systems. Here, the arrangement 

speculation interfaces with how to exhibit and plan while the arrangement system explains 

the arrangement communication model melding terrifically significant subtleties [33]. A 

huge route depending upon DFM is, along these lines, the selection of materials and 

collecting processes. 

Likely, more than 80,000 materials exist in the world. Subject matter experts and 

associations are on a consistent post for deciding the "best compromise" for planning 

materials and gathering cycles to satisfy the customer needs and practical conclusions. An 

impressive part of the "standard materials" which have served the collecting region for so 

long are being replaced by "new materials" due to reliable assortments in the arrangement 

targets like execution, size, weight, and topography smoothing out [34] [35].  

Moreover, goals (which can either be limited or cycle express or both) ought to be 

addressed in the arrangement stage to achieve the critical result. The trial-and-error 

approach, or what was used before, was used every so often to pick the material and related 

gathering process. This system cannot be followed today because the surges of collecting 
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propel similarly as the spaces of utilization are effectively changing daily. Additionally, 

generally, there are three surges of gathering progressions: added substance, standard 

(joins subtractive), and cross variety. The degree of this paper is on the underlying two. 

ASTM portrays added substance creating (AM) as the "strategy associated with joining 

materials to make objects from 3D model data normally layer upon layer, rather than 

subtractive collecting headways, for instance, standard machining" [36].  

 

 

Figure 2.3: Proposed AM-enabled design method by Yang [33] 

 

DFM runs well cover the Traditional Manufacturing (TM) processes recorded as 

a hard copy were to have a good arrangement, the components altogether addressed 

consolidate encouraging a deliberate arrangement, using standard parts, arranging the 
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parts to such an extent that they have various uses, avoiding disconnected fasten, 

restricting social affair headings, staying aware of uniform divider thickness, and avoiding 

sharp corners [37].  

 

A critical number of these components and collecting necessities are diminished 

concerning combination manufacturing (HM) and shockingly vanished in the more 

significant part concerning AM, which can make bits of any multifaceted numerical nature 

without TM helps, for instance, tooling [38]. 

Consequently, AM might significantly change how various things are made and 

appropriated. This similarly suggests that AM may genuinely transform into an 

"inconvenient" advancement. To comprehend how risky, it can become, it is significant 

to focus on the connection settings of TM [39]. Distinctive investigations recorded as a 

hard copy have worked on procedures to refine normal DFM with AM just as HM plan 

rules [40].  

For example, plan rules similar to numerical likely results and cost, for instance, 

rethinking the whole assembling toward composed free construction setup, using as 

negligible regular substance as possible to work on the arrangement toward most raised 

strength and least weight, using sabotages and void developments, and arranging the best 

condition of the part according to the helpfulness, have taken the Design for Additive 

Manufacturing (DFAM) to an incomprehensible level [41]. 

Everything considered for both AM and TM parts, Cotteleer et al. [42] and Sharon 

[43] isolated them into seven locales: avionics, motor vehicles, clinical benefits, client 

things/devices and insightful associations, current applications, plan, and 

government/military. These applications have extraordinary "traditional" handiness 

documents and loads concerning various arrangement goals like cost, material strength, 

and energy usage. For example, the customer devices industry zeros in on lessened cost 

than material strength. However, execution and material strength have more conspicuous 

importance for the plane business than cost. 

With various surges of cycles, vast spaces of use, and a high propensity toward the 

possibility of CE, the possibility of the right resource of development and the related 

materials and collecting processes [referred to as the resource decision (RS) issue from 
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now on] transforms into an interdisciplinary effort. The picked material and collecting 

association should satisfy necessities connecting with a thing's lifecycle by thinking about 

components, for instance, plan planning, displaying, constancy, gathering, feel, and 

quality.  

For example, Giachetti [44] depicted some material and cycle decision credits for 

the RS issue. He picked Mechanical or natural properties as the material credit 

fundamental for material decision. In contrast, he picked numerical, imaginative, and 

creation properties for the gathering framework decision as they are associated with 

commonsense requirements. Like this, it is clear from focusing on the decision measures 

that the RS issue requires input from various corners like current planning, material 

science and planning, and mechanical planning [45]. This also suggests that the RS issue 

will incorporate a couple of conflicting targets and will either lie in the window of multi-

objective improvement (MOO) or multi-principles autonomous course (MCDM), or both 

[46]. Wright [47] depicted the cycle stream in a thing headway process by highlighting 

the critical objectives and considerations techniques are restricted [48].  
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Figure 2.4: Classification of material choosing methods by Jahan [45] 

 

In any case, this technique has for a long while been basically and with the 

movement of time and with new emerging development principles, for instance, cloud 

collecting and AM; associations and individuals are on a consistent undertaking to fulfil 

the targets of TQCSEK (i.e., fastest an optimal chance to-promote, best type, lowest cost, 

best help, cleanest environment, and high data) [49]. This similarly infers that the bolts on 

the lower side are fundamental to thing definition, while the bolts on the upper side are 

critical for process plan definition. Farag [50] re-underlined the arrangement stage by 

contemplating three components in arranging a section, creating processes, material 

properties, and limit and client essentials. The ideal arrangement is a trade-off between 
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many conflicting conditions, for instance, monetary factors, practical necessities, 

prosperity concerns, and regular impact. 

Since the beginning of Additive Manufacturing (AM) as Stereolithography (SLA) 

by 3D structures in 1987, AM has taken up an essential and stunning collect yearly 

advancement speed of 26.2% to accomplish a market worth of $5.165 billion each 2015 

[51].  Diminished thing improvement cycles, extended and fixed up rules on acceptability, 

growing revenue for redid and adjusted things, redesigned part-multifaceted nature, 

reduced lead times and collecting cost, extended throughput levels, and the introduction 

of new game plans are a piece of the many market factors that have helped the connected 

advancement of AM to convey complex parts in tiny to medium assessed bunches [52] 

[53].  

Likewise, the sum and collection of End-of-Life (EoL) things have mentioned the 

AM creation systems to be arranged possibly with the ultimate objective that the monetary 

and regular impacts are diminished [54].  This, moreover, consolidates the prerequisite for 

post-taking care of issues, for instance, departure of powder, support plans, stages and 

cleaning, as the surface quality would confine the utilization of the part conveyed [55].  

Consequently, the current colossal field of taking care of advances and opponents 

in the hardware space of AM has all been tracked down, seeking after arranged goals to 

simultaneously design a thing, select a compromised material and pick a sensible creation 

process. This thought further goes under the area of Concurrent Engineering (CE) and 

Integrated Design (ID) which help in not simply diminishing thing progression time, plan 

patch up, and cost, yet moreover in additional creating exchanges between different 

components of the total thing improvement cycle by making upstream decisions to cook 

for downstream and outside necessities [56] [57].  

As CE/ID is an undertaking towards the compromise of things and collaboration 

plan limits, the assurance of the 'best compromise' of materials and gathering processes 

from a pool of more than 80,000 materials to not simply satisfy the customer needs and 

pragmatic points of interest yet furthermore address the cycle express objectives, is a 

mind-boggling task inside itself. A couple of examiners have moreover implied applied 

cycle needs to assess the manufacturability and cost of determining arrangement in the 

early bits of the arrangement stages [58].  
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Nevertheless, since AM can work possibly goals free, it has invited new heights 

of plan opportunity by offering further developed complexities to the extent of shape, 

multi-scale plans, materials and value [59]. It can gather parts in a solo action without 

wasting much raw substance [60]. Moreover, this idea acclimates to CE requirements, 

which helps in extended productivity and quality of things [61]. Furthermore, the standard 

progressive stream or "Course model" is replaced in such a case with a "facilitated 

improvement technique", which follows an iterative framework cyclically by using free 

heading and extraordinary systems [62]. Concerning TM, a composed thing process plan 

(IPPD) was explained by Tichkiewitch and Veron [63] concerning a collaboration chain 

of delivering machining. Thibault et al. [64] elaborate on an expert structure and 

assembling advancement for process coordination in the delivering region. They made the 

thing cycle necessities by describing process plan outlines. 

Furthermore, Skander et al. [65] proposed a data blend procedure which fused 

collecting limits in the thing definition stage by utilizing skin and skeleton features for the 

arrangement part. Earlier, Roucoules and Skander [66] had given a method for managing 

examination and mixing in the headway process. For examination, they pondered DFM 

and collected process assurance while creating prerequisites for the mix was considered.  

Plus, Bernard et al. [67] used the possibility of a "reference" by utilizing a data-based 

planning method for managing coordinated money-related principles in arrangement and 

creation decisions for a projected part. In any case, for the setting of AM in IPPD, there 

are relatively few assessments.  

Klahn et al. [68] suggested two arrangement strategies for AM: "manufacturing 

driven arrangement approach" and "limit driven arrangement technique." The past 

framework can be used to mass adjust a part by keeping a customary arrangement and 

sticking to design rules of other gathering advancements, while the keep going framework 

chipped away at the limit of a thing as done by Klahn et al. [69] for a clinical contraption 

that was used in shockwave treatment 

As the quantity of actual capacities and the related imperatives increment, more 

exertion is contributed by the calculations to look through the arrangement space, i.e., 

seriously registering time is needed for assembly. In addition, as a result, is a bunch of 

practical choices and not a solitary arrangement, the RS issue is all the more differently 
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tended to in writing by the MCDM techniques where leaders recognize the most favored 

arrangement either by positioning or screening or both [70] 

MADM issue implies the assurance of an optimal advancement resource from 

something like two plausible collecting processes/get-together of gathering processes 

dependent on no less than two credits [71]. As RS incorporates various characteristics' and 

necessities' evaluation, it can rely upon MADM systems. Cushioned MCDM, in light of 

everything, was made by Zadeh in 1965 to address questionable, ill-defined, and 

ambiguous issues in etymological terms like extraordinary, sensible, best, poor, etc. [72]. 

Maleque and Dyuti [73] used this procedure to pick the ideal material for the usage of a 

falling bicycle diagram. Ashby's "materials and cooperation assurance graphs" have also 

been used with phenomenal achievement by the Cambridge Engineering Selector (CES) 

for early screening of materials and cycles.  

Ashby [74] proposed a nonexclusive material decision approach: plan essentials' 

understanding, screening of materials with the help of necessities, situating materials 

using the limit targets, and using support information with the help of material and cycle 

decision charts. "Case-based reasoning (CBR)" was used by two or three makers, but it 

bases on the recommended strategies of the past connecting with a case which may 

potentially be evident. For example, CBR was used by Berman et al. [75] for material 

decisions in petro science by using ARAMIS and AIR/CAIR assurance strategies. 

"Material Selection Programs" were used by specific makers to find suitable materials 

[76] [77]. These undertakings/gadgets assist the buyer with showing the necessities and 

engineering in starting periods of material assurance.  

For instance, Kesteren et al. [78] involved three gadgets for the selection of 

materials viz. a viz. picture instrument, test device, and question gadget. Such 

undertakings/instruments are incredible for screening yet cannot perform assessments and 

are, by and large, used as informational indexes. RS issues regularly use such 

informational collections, yet they have their shortcomings. As a matter of first 

importance, very few RS structures have the collecting framework; glancing through the 

limit and utilization of these systems on complex thing enhancements can be a mind-

boggling endeavor. Moreover, the data covered in these gadgets may not be sufficient. At 

last, KBSs were used for screening purposes which rely upon artificial thinking and search 
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in an informational Index of information. Ipek et al. [79] dealt with the reasonability of 

things for the occasion of vehicle region by proposing a KBS to pick appropriate materials. 

Zha [80] further elaborates on soft KBS in concurrent arrangement to the extent of total 

creation cost. It can have many levels as required and can suitably manage impartial and 

enthusiastic qualities by getting relative heaps of the models [81].  

Gupta et al. [82] managed AHP in the plausible gathering by exploring sensible 

collecting rehearses, for instance, process plan, eco plan, and lean practices, for making 

electrical sheets. Desai et al. [83] elaborate AHP connected with DFM to give superior 

versatility to join various principles for decision-making for RS issues. Likewise, 

Armillotta [84] used an adaptable AHP decision model to pick the proper AM process 

from many choices for models created utilizing a picked characterization (applied model, 

particular model, sand anticipating, hypothesis anticipating, and plastic frivolity). The 

credits included speedy structure, incredible precision, low material cost, etc. The 

fundamental burden AHP passes on is that all qualities should be independent [85]. 

In addition, "Strategy of Ranking Preferences by Similarity to Ideal Solution 

(TOPSIS)" was made to pick the best elective given a set number of models. Milani and 

Shanian [86] involved TOPSIS to peruse the material assurance for gears. Chakladar and 

Chakraborty [87] proposed a united TOPSIS-AHP method for managing select the most 

fitting groundbreaking machining process (ultrasonic machining, grinding plane 

machining, laser point of support melting, etc.) for a concerned material and shape 

incorporating a blend ELECTRE, one more MADM procedure, has been used by various 

makers for RS issues, with a more significant focus on the material decision. 

For example, Shanian and Savadogo [88] involved ELECTRE IV for bipolar 

polymer material decision. At the same time, ELECTRE III was used by Shanian et al. for 

picking material in a get-together pondering weighting weakness. At long last, Jahan et 

al. [90] detailed a design considering the "weighting methodology" in evaluating the 

material decision. They further fostered the MADM situating procedures by giving a 

calculated method for managing enthusiastic, objective, and associated loads. Here, 

enthusiastic burdens rely upon an expert evaluation and best practices, objective burdens 

are obtained from the data that had some considerable familiarity with the issue, and 

related burdens are a blend of dynamic and objective burdens. 
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CHAPTER 3: METHODOLOGY 

3.1 Data Driven Integrated Product-Process Design Framework for 

Manufacturing Resource Selection 

The Data Driven Integrated Product-Process Design Framework proposed in this thesis 

follows a step-by-step procedure for Manufacturing Resource Selection (MRS), i.e., 

material and manufacturing process selection. The framework is impacted by data in the 

domains of functionality, economic, sustainability, product design, Data Driven Necessity 

(DDN). It further follows two major steps: screening and ranking with the former 

screening the material process alternatives, and the later ranking them for effective 

decision-making. The framework also considers user-designer requirements, cost, 

functional/technical data, and environment as part of the decision design criterion. Figure 

3.1 shows the decision tree of the proposed framework with respect to MRS. The 

framework shows an interaction with a database that comprises of all relevant datasets 

necessary for data analysis for both, Product Necessity (PN) and Product-Process-

Material-Machine (PPMM). A breakout of the Database and its individual storages 

containing data necessary for PN and PPMM is shown in figure 3.3 and explained in 

subsequent sections. The conceptual design-decision space, in context of IPPD, is 

considered the key stage of design process where the designer explores the fundamental 

scientific principles, constraints, and associated relations. The conceptual design decision 

space is shown in figure 3.2 The text to follow will explore avenues of decision making 

in each of the design stages. 
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Figure 3.1: Proposed Framework 
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3.2 Proposed Framework 

The proposed framework showcases a multistage decision system that 

encompasses all aspects of the design criterion in a simplistic yet complete manner. In the 

first stage, a decision regarding the process to be carried forward using Data Driven 

Necessity (DDN) or ‘Manual Input’ of specification required is taken. In essence either 

the user defines whether the necessity of new product should be generated using data 

analysis or it is preordained that a new product is required, and the specifications of the 

product are manually input into the Product-Process-Material Machine data analysis (DA 

PPMM) process for MRS. If DDN is selected as the modus operandi, the next process i.e., 

Data Analysis Product Necessity (DAPN) is carried out. The data sets present inside the 

database help in the determination whether a new product is required and in generating 

feasibility with respect to an enterprises capability to develop and manufacture said 

product. However as mentioned earlier, if the designer has pre-determined that a new 

product is required, the designer will then manually input the specifications of the required 

product as per their understanding into the DA PPMM process.  

The next phase DA PPMM facilitates the designer in correct MRS with respect to 

materials, processes and machines required to carry out said processes. Furthermore, the 

process helps in determination of KPIs necessary for decision taking and performance 

measurement in the conceptual design decision phase and data driven requirements of the 

product. Following these two data analyses phases the framework then continues with the 

Conceptual Design-Design Space process, in which the product’s design, performance, 

selected materials, manufacturing processes and machine are analyzed and a preliminary 

combination of MRS is decided upon based on a multitude of factors, necessary for a 

complete, efficient, and optimized design. Data regarding the products ideal performance 

is also generated during this phase which helps in the confirmation of the combination 

selected. Following this major process, the resources are screened for discrepancies and 

feasibility issues and a decision is given regarding the applicability of the RS in 

conjunction with the product’s ideal performance criteria. The selected manufacturing 

resources are then ranked and a decision regarding it acceptability is taken from the design 

team. If in case the ranked PPMM combination is not acceptable the defined logic shall 

return the process to the DA PPMM. However, if the ranked combination is acceptable, 
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the framework moves toward the detailed design phase during which a complete design 

of the product, bill of material and process plans are generated. After which the finalized 

design is outputted and rechecked regarding acceptability for production. This decision 

phase is iterative as shown, such that the detailed design can be improved upon if found 

unacceptable. As shown in the framework, the decision system is heavily impacted and 

influenced by two major data analysis phases i.e., PN and PPMM. Which in turn are 

directly influenced by datasets present inside the combined database. A detailed 

explanation of the datasets comprising the database is elaborated upon in the next section, 

with a pictorial reference for better understanding given in Fig. 2. As earlier discussed, 

Fig. 1. showcases the decision tree of the proposed framework with respect to MRS. A 

detailed explanation of each step is given in paragraphs below. 

3.2.1 Decision 1; Data Driven Necessity or Manual Input 

The first step of the decision tree deals with the argument regarding, whether the 

designer wants to go forward with Data Driven Necessity analysis or do they want to 

manually input specifications of the product into the next process block. This decision is 

based on completely on the designer’s discretion. The designer may take this decision 

based on factors other than technical and functional data available to them. For example, 

Executive level decisions regarding specific requirements of the product, specific issues 

with the previous product development that need to be addressed in this iteration etc. It is 

important to note that DDN has its own dataset by which it derives the actual necessity of 

the product development.  

3.2.2 Data Driven Necessity 

Data Driven Necessity process block deals with the data analysis regarding 

whether the development of a new product is necessary. This process block is back by a 

relevant dataset in the database, i.e., DDN Data. This database deals with studies regarding 

current product market relevance, latest manufacturing technologies, economic feasibility 

studies, effectivity and performance of the current product and user reviews of the current 

product. An important as per to note here is that it is not necessary the studies be limited 

to only those mentioned above, rather it is completely up to the discretion of the designer 
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to include or exclude studies, which they deem are necessary for the optimal DDN 

analysis. It is very important to note here that the studies need not be extremely 

complicated, rather they can be dealt with a logic gate concept in mind. That is, if for 

example users are not satisfied with the current product, then there is necessity for a new 

product. The studies do not need to go into detail regarding how much satisfaction is 

present within the end user. However, the feedback from these studies can and will be 

carried forward for consideration in the DA PPMM phase. A few suggested studies are 

detailed in Composition of the Database section. 

3.2.3 Manual Input 

The manual input of specification of product design is a process that is usually 

done by the designer. The designer needs to spend a lot of time on this process which 

affects the performance, user experience and designer experience. The manual input of 

specification of product design is an important part in the design process. It can be tedious 

and time consuming for designers, but it is necessary to provide accurate information 

about the product they are designing. In the case of the proposed framework, the manual 

input phase is present to address the situation if the development of the product has been 

deemed necessary by factors other than the DA PN, for example executive level decision. 

This input can also be used in the case that the requirements generated by the DA PN are 

aberrant and need to be manually overridden to create a streamlined product. An important 

aspect to note about the manual input phase is that it needs to be used to input actual 

technical specification of the product, including but not limited to, dimensions, 

performance, efficiency etc. This specification will then be carried into DA PPMM phase 

for generation of the preliminary PPMM combination through the data analysis of the 

specification and the manufacturing resources to successfully manufacture the product on 

a large scale. 

3.2.4 Data Analysis Product-Process-Material-Machine 

After the designer has manually input the specification or they have been generated 

by the DA PN phase, the requirements will need to be aligned with the optimal PPMM 

combination. In this regard the DA PPMM will call upon Economic, Functional, 
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Sustainability, Current and Future Product Data and the temporary data generated from 

the DDN or MMDI phases. A detailed explanation of all the data blocks is explained later 

in the composition of database section. This process deals with the translating the 

specifications and requirements of the user and designer to into KPIs from individual 

datasets and technical requirements for manufacturing of the part. That is, if the part needs 

to be strong/hard and endure forces, then this process will translate these specifications 

into a set of KPIs, for example tensile strength, and data driven requirements for 

machining that level of tensile strength. It is important to note that each dataset will 

generate a separate datasheet of KPIs and technical requirements, examples of these are 

given in the composition of the database section. These datasheets will then be 

amalgamated for consideration during the Conceptual Design Decision Space. A step-by-

step example of this process is given in the case study chapter, for better understanding. 

The generated data from the Data Analysis PPMM is directed into the CDDS for decision 

making. It is in CDDS that all the DA PN and DA PPMM related data is amalgamated 

and reviewed from all aspects of the product design.  The data present in datasets relevant 

to the analysis are highlighted in the composition of database section. It is here that 

material and process are selected in cognizance with each, consequently the equipment 

needed to machine the material with the relevant process. This is done by keeping the 

product specifications in cognizance with process-material and machine combination. A 

final review of the combination is done in CDDS phase is which is detailed below. 

3.2.5 Conceptual Decision Design Space 

Fig. 3 highlights a conceptual decision-design space developed by the author. 

Once the set of requirements are generated, the information is routed to the conceptual 

design decision space. Decision-making in the development of products necessitates 

collaboration between multiple teams, the details outputted must be arranged and managed 

in a way that all parties achieve their goals. With reference to figure 3.2 multiple factors 

affect all stages of the product-process development. 

Starting with DA PPMM, which amalgamates concerns from a multitude data sets 

present in the database since, the DA PPMM determines progress and effectivity of 

product design, its manufacturing process plan (MPP) and resources associated with MPP. 
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DA PN/DDN on the other hand specifically only deals with DDN data, comprising of 

studies that affect determination of the necessity of the product as already elaborated upon 

earlier. Furthermore, user requirements also play a key role in the decision space as, data 

present in this data set affect all stages of the framework since the RS is majorly if not 

completely dependent on data arising from the end user.  

 

The relationship between datasets and processes are highlighted in the figure 

below. It is important to note that, it is here that preliminary process-material-machine 

combination and ideal performance criteria is generated. This is done by step by step for 

each node. i.e., Processes are selected while keeping in mind the user requirements, 

designer decisions, functional decisions, sustainability, and economic requirements. In 

this manner each combination is rationally and step by step made and verified. Therefore, 

the result is a preliminary combination of process-material and machinery that can fulfill 

the requirements of the product. A detailed example of the decision taken for each node 

is given in the case study chapter. 

Figure 3.2: Conceptual Design Decision Space 
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 Screening and Ranking 

The preliminary combination of process, material, machinery i.e. the MRS is 

screened and ranked with respect to the requirements and the ideal performance criteria. 

The MRS is reviewed such that the combination does not contain any aberrant data and 

that the selected combination can successfully manufacture the product, as per the ideal 

performance criteria generated by the DA PPMM phase. This process is critical in 

ratifying the selection and that after this process is completed the framework moves 

toward the actual detail design of the product and consequently towards the production 

phase. 

 Detailed and Finalized Drawing 

After the MRS combination is deemed acceptable, framework moves forward with 

the designing of the product i.e. all detailed drawings are finalized and the framework 

moves towards the production phase. This is the last process in the framework and after 

which the product can be mass produced, as per the requirements of the project.  In the 

production phase, all the finalized drawings are converted into detailed engineering 

specifications, which will be followed when manufacturing the product. The design phase 

will be repeated several times as the product evolves.  

3.2.6 Composition of Database 

A breakout view of the database, the individual storages and the documents 

contained within those storages are shown in figure 3.1. The database provides input to 

both DA PPMM and PN. To elaborate, storages related to economic, functionality, 

sustainability and product data are linked directly to DA PPMM for optimal MRS. 

However, product data also serves DA PN, for DDN study. The database also contains 

Design for Manufacturing (DFM) guidelines and multiple-criteria decision-making 

(MCDM) tools to aid in design and optimized decision making in both DA PN and PPMM. 

Individual storages and their containing documents are further elaborated on as follows: 
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3.2.7 Economic Data (Costing) 

Documents contained within this storage relate to the process, material and 

machinery, and the cost associated with each of them. To further expound:  

 Process 

Documents related to process with reference to economic data contained cost 

models regarding types of processes related to all major manufacturing type. Furthermore, 

data regarding process waste and its economic impact and data regarding output vs. 

average cost for all processes is present in the storage for development of specific cost 

models in cognizance with the product design. This dataset contains information related 

to individual processes and their costs, which are dependent on the volumes of production, 

the material and machinery utilized. The aforementioned data is correlated with Material 

and Machinery datasets present in the Economic Data. An Important decision factor here 

is, if the material for the part is fixed then, the process ability of the material will be taken 

Figure 3.3: Database Design 
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into account for selection of type of process available. An example of the data is given in 

the table below 

Table 3.1 Process Data Sample Table 

 

Process Type Average Cost/Piece Average Overall Efficiency 

Casting     

Forming     

Machining     

Additive Manufacturing     

 

After selection of process type from Table 3.1, we may proceed to secondary 

process selection. If for example Forming is selected as the process type, we will proceed 

to given in the table below 

Table 3.2 Process Data Sample Table (Detailed) 

 

Forming Type Volume Cost/Operation 

Pressing   

Extrusion   

Forging   

Rolling   

 

 Material 

A complete set of documents that highlights cost of all types of common, special 

materials and alloys/composites that used in all manufacturing types. The document also 

displays the material wastage in cognizance with process data to represent the average 

material wastage for specific Processes to aid in selection of materials that reduce overall 

waste and loss of economy. Based off the already selected process type we may proceed 

to selection of materials applicable to the given process type. An important thing to note 

here is that both processes and materials may be selected in cognizance with each other. 

An example is given in the table below. 
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Table 3.3 Material Data Sample Table 
 

Casting Type Material Cost Scrap Cost 

Steel   

Aluminum   

Copper   

Titanium   

 

 Machine 

These documents present the cost of all mainstream and specialized manufacturing 

equipment for all manufacturing type. It also contains the labor cost associated with 

operation of said machinery. This data in cognizance with materials and process data will 

help in optimized selection of manufacturing equipment necessary for specified 

production type e.g., mass production or job shop level. 

 

Table 3.4 Machinery Data Sample Table 

 

Machine  Machine Cost Labor Cost 

Manual Press   

Mechanical   

Hydraulic Press   

Pneumatic Press   

 

3.2.8 Functional Data 

Documents contained within this storage relate to the process, material and 

machinery, and the technical details associated with each of them. Specific documents are 

elaborated as follows: 
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 Process 

Data contained within these documents highlights technical data regarding all 

processes of all major manufacturing types, also current processes being employed for 

production of an existing product, if any. The last section of the document deals with 

research and development data i.e., upcoming processes. The document contains past 

knowledge of existing processes, current process employed and upcoming/future 

technologies. This is done to help in selection of best process type for the product at DA 

PPMM phase. As aforementioned, this dataset contains data related to existing processes 

and upcoming processes. So that the selection of processes in done in cognizance with the 

material and machinery. An example of this will be given in the case study. 

 Material 

The document represents a dataset showcasing all material properties necessary 

for optimal RS in relation to process selected. Furthermore, data regarding surface finishes 

are also present within this document so that, selected material satisfies all user and 

designer requirements with respect to aesthetics and ergonomics. Furthermore, this dataset 

contains data related to detailed material properties. These details will help the designer 

in selecting the best possible material for the product. In continuation of above examples, 

Table 3-5 present sample data for sheet metal materials. 
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Table 3.5 Material Detailed Data Sample 

 

Cold Rolled Low Carbon Reduced Steel 

Material 

Name 

Yield 

Strength 

Ultimate 

Tensile 

Stength 

(MPa) 

Elongation 

% 
Hardness 

Density 

(gm/cm^3) 

Youngs 

Modulus 

(GPa) 

CR1/0390 340 390 MIN ~25 75 7.87 200 

CR1/0440 390 440 MIN ~22 80 7.87 200 

CR2/D 240 370 ~31 65 7.87 200 

CR3/DD 220 350 ~35 57 7.87 200 

CR4/EDD 210 350 ~37 50 7.87 200 

 

 Machine Parameters 

The document displays data regarding all machinery related to all major 

manufacturing types. Specifically, volume, accuracy and geometrical complexity that can 

be effectively managed by selected machine. This data in relation to selected process and 

material will aid in accurate selection of machinery equipment necessary for selected 

production type. Furthermore, it contains relevant data regarding machining capability 

with respect to geometrical complexity, accuracy and production capacity of the 

machinery. Such that, machinery selected in cognizance with the cost of investment from 

costing data is ratified with respect to the actual requirements of the part. The main aim 

of this dataset is to find the optimal balance between the cost and capability. An important 

aspect to note here is that this dataset is used in the DA PPMM phase in connection with 

the Economic Data to achieve aforementioned goal of optimal machinery selection. 

3.2.9 Sustainability Data 

These documents contain studies regarding; environment impact related to 

extraction of materials, the reusability of the product post lifecycle completion and a 

complete study of disposability and recyclability of materials. This dataset is crucial for 
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maintaining operations within standards set by Sustainable Development Goals (SDGs) 

and would help the enterprise move toward carbon neutrality and eco-friendly MRS. The 

SDGs are a set of 17 goals that the United Nations has set for the world to achieve by 

2030. These goals are aimed at ending poverty, fighting inequality and injustice, and 

tackling climate change. The SDGs have been broken down into 169 targets that need to 

be achieved to meet the goals. One of these targets is to ensure sustainable production and 

consumption patterns. This dataset is crucial for maintaining operations within standards 

set by SDGs. 

The environmental sustainability data can be collected from a variety of sources, 

including product design, materials used in manufacturing, and disposability. With this 

data, we can better understand how our decisions affect the environment and make eco-

friendlier choices. The data includes information about the materials and resources used 

in production, their recyclability, and their lifecycle. This data can be used to identify 

opportunities for reducing environmental impact, improving sustainability and will be 

helpful in product development as it helps companies create products that are eco-friendly 

by using the least amount of material possible while still meeting the needs of consumers. 

In this regard, review of product development with respect to sustainability is key and will 

result in future proof products that are not only reliable but ecofriendly. Thus, this dataset 

investigates sustainability data related to the processes and materials that are commonly 

used for manufacturing. A keen review of this during the selection of process material and 

machinery would result in the optimal selection of MRS which is closely aligned with the 

SDGs. A few suggested studies linked with the SDGs are: 

1. Raw Material Extraction Impact 

2. Process Environmental Impact 

3. Disposability and Recyclability of Product 

The above-mentioned studies will deal with the complete lifecycle of the product and 

therefore are very important. As the results of these studies may result in change of 

Material, Process or Machinery. The scope and applicability of these studies is dependent 

on the designer’s requirements and may be neglected if the material and processes are 

fixed for the product. 
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3.2.10  Product Data 

This storage comprises of a) DDN Studies b) Current and Future Product Data and 

space for manual entry of specifications/requirements of the new product. To elaborate:  

 DDN 

These documents contain studies related to; relevancy of the existing product in 

the market, user reviews of the existing product, performance of the existing product and 

most importantly the economic feasibility study that would aid in deciding whether the 

enterprise can start and sustaining the new product lifecycle. These studies will aid in the 

DA PN phase and in conjunction with MCDM tools, help in developing a feasibility study 

that would help the designer in deciding if there is a data driven product necessity. A 

detailed explanation of a few suggested studies is given as follows: 

 Economic Feasibility 

This study deals with the financial investment strength of the company or 

organization which seeks to develop a new product. The economic feasibility of product 

development is a key element in the decision-making process. The financial investment 

required for product development can be divided into three categories: 

1) Initial Investment - The initial investment is the cost that needs to be invested 

at the beginning of the project. 

2) Ongoing Investment - The ongoing investment is the cost that needs to be 

invested throughout the product development cycle. 

3) Total Investment - The total investment is calculated by adding up all the initial 

and ongoing investments. 

These three categories are crucial for determining whether a particular product will 

be economically feasible. Based on this understanding it is important to note that this study 

will help determining the optimal Man-Material-Machine combination. As it commonly 

understood that the investment strength and flexibility of the company often determines 

the result of the product development. Product Development is a process that requires a 

lot of investment. It is important to know the economic feasibility of the product before it 
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is launched into the market. The financial investment of the Product Development can be 

broken down into four parts: 

1) Research and Development (R&D) 

2) Designing and Testing 

3) Manufacturing 

4) Marketing and Sales 

As can be clearly understood from the above demarcation of investments, 

Research and Development and Designing and Testing investment is sub part of the Initial 

Investment while Manufacturing and Marketing are part of the Ongoing Investment. An 

important aspect to note here is that the process of DDN enable cross functional teams 

that can investigate each aspect of the above investment segments. That is, marketing and 

sales specialist may investigate last aspect of ongoing investment, while designers and 

manufacturing/industrial engineers may investigate the R&D and manufacturing line 

development of the new product. 

  Latest Cost-Effective Manufacturing Technologies 

Manufacturing is becoming significantly more efficient and affordable thanks to 

the newest cost-effective manufacturing technologies. The latest and cutting edge of 

manufacturing technologies that are cost-effective are sought by businesses to lower costs 

and boost productivity. Based on these reasons it is one of the suggested studies that is 

included in the DDN analysis. An in depth review of the latest progress in cost effective 

manufacturing technologies would help the designer in primarily, deciding if the new 

product development is necessary and secondly, help in designing the product as well. 

The main aim of the review is to figure out if conventional technology would be used for 

the manufacturing or if there are newer technologies available which reduce the cost when 

compared to existing technologies. This in connection with the earlier suggested study of 

economic feasibility would be very important with respect to the financial planning of the 

product and its development.  
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 Effectivity and Performance of the Current Product; Based on User and 

Designer Experience 

The effectiveness of the current product is based on user experience and designer 

experience. There are many factors that affect the performance of a product, such as 

design, usability, and function. All these factors are important to the performance of a 

product. In this regard it is important to take feedback from not only the user but also the 

designer, such that the next iteration of the product is much more refined and is more 

closely aligned with the requirements of the end users. As part of DDN, it is required that 

information from end users be considered, in such a way that the data received is with 

respect to their satisfaction of the current product in use and that whether a new iteration 

or version of the product is necessary. If this is the case, then it would become necessary 

to develop a new product. 

 Current and Future Product 

The documents contain data regarding all performance criteria and design of the 

existing product in production. The dataset al.so contains the future specifications of a 

new product as determined by user wants and reviews of existing product family 

 Manual Mode 

This inputs mode directly inputs the specifications and requirements of a new 

product as decided by the design team per the assumed understanding of the user’s demand 

and the design team’s unique element of design which would aid in development of a 

unique aesthetic design. The manual input of specification of product design is a process 

that is usually done by the designer. The designer needs to spend a lot of time on this 

process which affects the performance, user experience and designer experience. The 

manual input of specification of product design is an important part in the design process. 

It can be tedious and time consuming for designers, but it is necessary to provide accurate 

information about the product they are designing. In the case of the proposed framework, 

the manual input phase is present to address the situation if the development of the product 
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has been deemed necessary by factors other than the DA PN, for example executive level 

decision. Properly inputting technical details about the product at this phase is important.  

An important aspect to note about the manual input phase is that it needs to be 

used to input actual technical specification of the product, including but not limited to, 

dimensions, performance, efficiency etc. This specification will then be carried into DA 

PPMM phase for generation of the preliminary PPMM combination through the data 

analysis of the specification and the manufacturing resources to successfully manufacture 

a product on a large scale. 

3.2.11 DFM and MCDM 

Design for Manufacturing is the process of designing products with an emphasis 

on how they will be manufactured. The goal is to create a product that can be easily and 

efficiently manufactured at an affordable cost. Multiple-Criteria Decision Analysis Tools 

are tools that help users make better decisions with the help of data analysis. They are 

used to evaluate alternatives and rank them based on their merits, which can then be used 

to make a decision. DFM and MCDM have been used in various industries to make 

decisions such as product design and development, production planning and control, 

quality management, supply chain management. DFM is an important part of the product 

development process. It helps companies to make more informed decisions about their 

design and production process, and it can help reduce costs. This dataset discusses the use 

of MCDM tools in DFM and how these tools and guidelines are integrated into CDDS for 

the decision-making process. These storages contain data regarding Design for 

Manufacturing (DFM) and multiple-criteria decision analysis tools (MCDM) that would 

impact the decision making and design development within DA PPMM and PN. The 

addition of these guidelines helps in the optimal operation and decision making within 

CDDS as well. 
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CHAPTER 4: CASE STUDY 

4.1 Application of Framework on an Automotive Product 

Development Project 

The automotive industry is a highly competitive market, and manufacturers are 

constantly looking for ways to reduce costs and enhance quality. The application of data 

analysis has given rise to new opportunities in design, production, and cost savings. Data 

analytics are applied to all aspects of the automotive industry, including, but not limited 

to, research and development for designing new products and parts, customer satisfaction 

with product quality and design, market research, logistics and supply chain management.  

 As discussed in the previous chapter, the application of Data Driven Integrated 

Product Process Design will result in optimal selection of Manufacturing Resources. In 

regard to this, the case study chapter deals with the application of the proposed framework 

on an automotive part. The motivation behind this case study is to examine how data 

analytics in connection with IPPD can be applied to enhance decision-making process in 

manufacturing and to validate the framework on a real-world product development 

project. Therefore, we will examine the step-by-step application of the framework and 

then discuss the output in the form of manufacturing resources in the results chapter.  

The part in question for this case study is a complex sheet metal part for a 

hatchback vehicle from a global car manufacturer. The part has been selected for 

localization i.e., indigenous manufacturing for cost saving against labor and freight 

factors. In regard to this, some elements of the product development are aided by the 

International OEM for e.g. drawings, CAD designs and set of quality standards. However, 

other than the aforementioned resources, the product development is free to develop and 

manufacture the part as necessary, as long as the dimensions and quality standards 

provided by the OEM are met. Due to this influx of data early in the framework life cycle, 

the generation of MRS is streamlined and optimal. The details and parameters of quality 

of the part will be defined step by step with the application of the framework. The 

application section of this chapter will elaborate upon each process in consummate 

manner. 
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4.2 Application of Framework 

As mentioned above in the introduction section, the part in question is a complex, 

load bearing and safety related sheet metal component for vehicle which needs to be 

developed locally. In the part is developed through a technical agreement, therefore, the 

drawing, CAD designs and set of quality standards are provided by the international OEM. 

Based on the last, during the application of this framework, some processes will be 

skipped, as the data being generated by these processes has already been provided by the 

OEM. The processes skipped will be mentioned and the data that has been received in lieu 

will be highlighted. The environment selected for this case study in Microsoft Excel as it 

provides ease of mathematical calculation and data analysis. The framework application 

can be done in different environments as well however, for this case study we will use MS 

Excel. 

4.2.1 Decision 1; Data Driven Necessity/Manual Input 

In the first step we will investigate the question of whether the process should 

follow Data Driven Necessity (DDN) or Manual input, i.e., should the designer manually 

input the specification/ requirements of the part. As mentioned in earlier section, the part 

is developed through a technical agreement, therefore, the drawing, CAD designs and set 

of quality standards are provided by the international OEM. Therefore, we take the 

decision of manually inputting the specifications of the part. 

4.2.2 Manual Mode Designer Input 

The design related data provided by the OEM is inputted in this step. The provided 

relates to: 

AA. Part Design/Dimensions 

BB.             Material Specifications 

CC.             Subcomponent/Purchased Parts Specification 
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BB and CC are shown here for reference as follows: 

 

Table 4.1 BB Material Specifications 

 

S.No 
Part Name 

(a) 

Part Dimensions 

(b) 

Material Specs 

(c) 
Qty 

1 
Rear Seat Support 

Main 
300 x 1360 x 0.65 SPCD 270 (t=0.65) 1 

2 

Rear Seat Support 

Reinforcement 

LH 

360 x 125 x 1.2 SPFC590P (t=1.2)  1 

3 

Rear Seat Support 

Reinforcement 

RH 

360 x 125 x 1.2 SPFC590P (t=1.2)  1 

 

Table 4.2 CC Material Specifications 

 

S.No Part Name  

(a) 

Part Dimensions 

(b) 

Material Specs 

(c) 

Qty 

1 
Projection Nut 

Weld 
M10x1.2 Std 4 

 

Furthermore, part design is also inputted into the MMDI phase.  

4.2.3 DA Product (OEM Data) 

As mentioned in project initialization phase i.e. MMDI, specification related to 

design and material details have already been provided by international technical partner 

through technical agreement (TA). That is, the DA Product phase may be skipped since 

design of the product has been provided. Therefore, we may move towards DA Process 

as per the material specification provided. 
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4.2.4 DA Process (Functional and Costing) 

As per data given in MMDI Table 4.1, We see that the material specification has 

been provided, therefore we may move from there and work towards process selection 

that is appropriate and applicable to the material selected. For sake of ease, we will 

combine process selection through functional data and costing. Table 4.3 shows functional 

data taken from selected processes for the part in question while Table 4.4 shows data 

from the costing database. Manufacturing of part through machining seems viable due to 

dimensional accuracy, operational efficiency, and multiple cost factors. Also, since the 

cost of tooling for machining is low (cost does not include machinery, only the tools 

applicable for machining the part) when compared to forming. However, since this is a 

mass manufacturing project, average part manufacturing rate per hour is a critical factor 

to note. Nexus to last, forming may be selected for further data analysis. 

 

Table 4.3 Process Data Analysis 

 

Process Type 

Capability to 

Process 

Material 

(CRC270 

&590Process 

Type 

Avg 

Pc/Hr 

Dim. 

Acc. 

Op. 

Eff. 

Surf. 

Finish 
Tolerance Wastage 

Forming ✓ 30 95% 90% ↑ High Medium 

Machining ✓ <1 99% 99% ↑↑ Very High High 

Casting ✖ - - - - - - 

Additive 

Manufacturing 
✖ - - - - - - 
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Table 4.4 Process Costing Data Analysis 

 

Process Type 

Cost for 

Tooling 

(PKR) 

(A) 

Maintenance 

Cost 

(PKR) 

(B) 

Other 

Cost 

(PKR) 

(C) 

Volume 

(V) 

Cost/Piece 

(A+B+C)/V 

Forming 11,300,000 3,600,000 2,160,000 

100,000 

118 

Machining 10,000,000 1,800,000 1,080,000 59 

Casting - - - - 

Additive 

Manufacturing 
- - - - 

 

As per the data shown above, it is decided that forming is the most feasible manufacturing 

process. Based off the DA Machine/Tooling analysis that is done alter in this chapter, we 

may calculate the cost of the part, based oof the tooling and volume. 

 

Table 4.5  Forming Costing Analysis 

 

Forming Type 

Cost for Tooling in 

PKR 

(A) 

No. of Dies 
Cost/Piece in PKR 

(A/V) 

Blanking 3,000,000   2 30 

Forming   2,850,000  3 28.5 

Trimming 4,500,000  2 45 

Restrike Bending  700,000  1 7 

Piercing 250,000  1 2.5 

Total (Tooling only) 11,300,000 9 113 

 

Nexus to above analysis-based decision, the total associated costs of this process, as per 

the design requirements of the part are given in the below table. The breakup of cost of 

tooling is given in the above section. 
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Table 4.6 Forming Total Tooling Cost Analysis 

 

Cost Type 
Value (PKR)  

(B) 

Cost/Piece 

B/V 

Tooling Cost 6,000,000 113 

Maintenance Cost 3,600,000 36  

Other Costs 2,160,000 22  

Total Cost 11,760,000 170 

 

As per the combined analysis of process functional and costing data done in DA Process, 

we see that forming is the best possible manufacturing process with high manufacturing 

speed, dimensional accuracy, and other functional factors. Furthermore, as per the costing 

analysis it is derived from the data that even though machining cost (tooling only) seems 

viable in comparison to forming however, when seen in cognizance with the functional 

data, it is noted that due to the requirement of mass manufacturing, forming is best option. 

Therefore, considering the high manufacturing speed requirement, forming is selected as 

the manufacturing process. This decision will lead into DA Machinery selection. 

4.2.5 DA Material (Functional and Costing) 

This section looks into the selection of material based on functional and costing 

data. As has been mentioned in the MMDI section, the OEM has already provided material 

specifications required for the part. Therefore, we may skip this section, as the material 

type has already been specified and the cost of the material associated is now dependent 

on the sourcing. Which is not in the scope of this framework. However, for the sake of 

continuation of the framework, latest quote from existing material source is taken and 

show in below table. 

 

 

 

 



53 

Table 4.7 Material Data Weight and Cost Analysis 

 

Material Spec Blank Size 

Consumption 

Price 

(Rs/KG) 

Total Cost 

(Rs/KG) Source 

Weight in 

KG  

(With 

Wastage) 

Finished 

Weight 

(a) (b) (d) (c) (e) (f = d x e) 

SPCD 270 

(t=0.65) 

292 x 1360 x 

0.7 
2.03 

2.25 

215.00 435.66 Local 

SPFC590P 

(t=1.2) 

365 x 125 x 

1.2 
0.43 324.50 139.47 Imported 

SPFC590P 

(t=1.2) 

365 x 125 x 

1.2 
0.43 324.50 139.47 Imported 

 

4.2.6 DA Machine 

This section investigates the selection of machinery based off data analysis of part 

requirements. As decided in the DA Process, the part will be manufactured by forming 

process. Furthermore, there will eleven distinct operations that need to be done before the 

part can completed. Therefore, for optimal speed of manufacturing all processes need to 

run in parallel. i.e., eleven presses need to select for the complete manufacturing process. 

Keeping this important variable in mind we may perform our analysis. An important 

aspect to note is that, forming process is dependent on machinery and tooling therefore, 

this analysis will delve deeper and select press tools, i.e. Dies and machinery needed to 

operate the aforementioned dies. In this regard the DA Machine section is divided into 

Tooling functional and costing analysis and Machinery functional and costing analysis 
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4.2.7 DA Machinery/Tooling Functional and Costing Analysis 

This section investigates the analysis of functional data for tooling selection. Based of DA 

Process, we understand that the process needed for manufacturing this part is forming. 

Therefore, we need to conduct our analysis based off this output from DA Process Phase. 

As mentioned in the above section, we need to select tooling for processing the material 

before we select the machinery. In this regard, a calculator for quick and easy deductions 

of tooling has been made in our environment. 

 

Based off the design inputted in the MMDI phase, a questionnaire system helps the 

designer in calculating approximate no of dies needed to form the part. The output of the 

questionnaire is given below. 

 

Figure 4.1: Forming Questionnaire System 

 

Based off this system we see that we will require a total of 9 dies. However, for 

further analysis of the dies required, another datasheet for analysis has been made. This 

datasheet investigates the exact calculation of dies based off the blank output generated 

from forming suite. 
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The output of the data sheet correlates the results of the questionnaire and proves 

the need for 9 dies for complete manufacturing of the part. The output of the data sheet is 

show below. 

 

 

Figure 4.2: Forming Blank Calculator 
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This data sheet helps in the analysis of the blank and guides in the calculation of 

number of dies. This datasheet utilizes the length and width of the blank along with the 

density of sheet metal for formulation of no of dies needed, calculated no of blanks that 

can be extracted from the standard sheet metal size of 1220 x 2440mm, calculation of 

scrap and overall material cost per part. Based off this data sheet we see that no of dies 

needed is in total 9. Other data is also show which will help in the following sections. 

For calculation of the die cost, we must calculate the amount of force needed to 

form the part and punch standard size holes into it. This is important because, based off 

the force calculation the size of the die needed to withstand the forces involved. In this 

regard another datasheet for force calculation has been formulated for this application. 

The output of the datasheet is given below. 

 

Figure 4.3: Die Size Calculator 
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As can be seen from the output, this analysis tells us the size of the dies needed based off 

the Blanking Force. The formula of the Blanking Force is given below 

 

𝐵𝑙𝑎𝑛𝑘𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒 = 𝐾 𝑥 𝐹𝑜𝑟𝑚𝑖𝑛𝑔 𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑥 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑥 𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ      (3.1) 

  

Where K is the Shear Resistance but since it is difficult to know shear resistance, it is 

substituted by a value equal to 80% of the Tensile Strength [91]. This equation gives us 

the tonnage of the press needed to blank the sheet metal. This tonnage is then multiplied 

by 0.8 to give the thickness of the die needed to withstand the forces involved. The sheet 

also shows the tonnage required for punching holes in the sheet metal. This calculation is 

given by the formula: 

 

𝑃𝑢𝑛𝑐ℎ𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒 = 𝐻𝑜𝑙𝑒 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑥  𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑥  𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝐶𝑜 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡      (3.2)

  

Based off these two tonnages we may calculate the cost of the dies. We will also select 

the machinery based off these tonnage calculations as, the machinery required must be 

able to press the part with equivalent force. For calculation of the die material, a separate 

analysis sheet has been generated. The output of this sheet will help us in the cost 

calculation of the dies. 

 

This data sheet tells us the cost of the dies based off the volume and density of the material 

best selected for each individual die. This results in total cost of dies being generated 

through this analysis. Furthermore, for the calculation of the machinery required, As the 

cost of machinery is largely dependent on the sourcing of the machinery, i.e., Korea, 

China, Taiwan etc. Therefore, a function of the machinery cost has been generated. For 

example, the machinery required for the Rear Seat Support is defined as 2a+2b, since two 

600-Ton Presses and two 200-Ton Presses are needed. In connection with the last, the 

total sum of the machinery cost and the calculated die cost is given as follows. 
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2(𝐴 + 𝑋 + 𝑌) + 3(𝐵)                   (3.3) 

    

4.2.8 Decision 2, 3, 4 Requirements/Acceptability/Production 

Based off the study done post analysis, it is decided that the part is Go for 

Production. Therefore, Decisions 2 through 4 are greenlighted.  The output of all phases 

is shown in the next chapter with actual pictures of Manufacturing Resources selected. 
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CHAPTER 5: RESULTS 

5.1 Manufacturing Resource Combination   

After application of the novel framework, an optimized manufacturing resource 

combination was generated, as per the output of all data analysis phases. This 

manufacturing resource selection was then applied to manufacture the product. The result 

of the product development is shown below. Furthermore, the combined result of all the 

stages data analysis phases is also given. The complete MRS that has been output is shown 

in figure 5.1. The generated MRS given below shows the number of presses and dies 

needed and the cost associated with the aforementioned tooling.  

 

Figure 5.1: Complete MRS with Costing 
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After the application of the framework the tooling was designed and manufactured. The 

tooling was developed over the course 5 months and the corresponding development plan 

is shown in figure 5.3. As can be seen from the development schedule, project face delays 

in the last phase of die development. This was due to economic restriction on import of 

tooling and machinery. However, after the economic restrictions were lifted, the tools 

needed to process the dies was received after which the dies were completed. The part was 

successfully manufactured as per the generated MRS combination given by the 

framework. The manufactured tooling is shown below. 

 

 

              Figure 5.2: An overview of the dies after processing 
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Figure 5.3: Development Plan 
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As show in the development plan, the first off tool sample was produced in the month of 

September. The produced part had some dimensional inaccuracies, which is common with 

1st samples of sheet metal parts. The dies were later on improved so that the dimensional 

and fitment accuracy of the part could be enhanced. The improved and final part is shown 

below. 

 

 

 

5.2 Future Work 

Suggested future work of this framework is the addition of AI for data collection and 

automated actualization of Framework. This would enable faster, relevant, and accurate 

data collection. Furthermore, AI actualized framework would result in much better results 

of MRS. In future, the designer would be able to enter the basic parameters of the product 

that is required, and AI coupled with the suggested framework would enable the designer 

to get a completely new product, relevant to the requirements of the designer, with a 

complete MRS. This would enable a much faster product development cycle. 

  

Figure 5.4. Developed Part 
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CONCLUSION 

Application of data analytics in areas such as sales & marketing and cybersecurity 

is prevalent however, the implementation of data analysis for product & process design is 

an unexplored opportunity with large volumes of data generated throughout the 

manufacturing process. This thesis proposes a novel conceptual framework that applies 

data analysis to integrated product-process design (IPPD). The proposed framework can 

be used to new products aligned with customer requirements, enhance the overall quality, 

improve production efficiency, support the supply chain network, and give applicant 

industry a competitive advantage against its competitors. The proposed framework was 

validated through product development of an automotive part in case study the chapter. It 

was observed that through the application of the functional and costing data analysis 

during various stages of the case study, decision based on technical results were taken 

which resulted in a highly optimized manufacturing resource selection. 

 In future, addition of AI for data collection and automated actualization of framework 

would enable faster, relevant, and accurate data collection. The designer would be able to 

enter the basic parameters of the product that is required, and AI coupled with the 

suggested framework would enable the designer to get a new product, relevant to the 

requirements of the designer, with a complete MRS. This could prove revolutionary, as 

product development through artificial intelligence powered by big data would generate 

products much better aligned with consumer needs and the corresponding manufacturing 

resource selection would be highly optimized. 
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