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Abstract 

In this thesis, we demonstrate that multi-layer perceptrons (MLPs) are a promising approach 

for detecting PDF-based malware. Malware in the form of PDF files is becoming increasingly 

prevalent, making it crucial to develop effective detection methods. Traditional methods for 

detecting malware, such as signature-based detection, are becoming less effective as attackers 

can easily evade them by modifying the malicious code. To train our MLP, we first collected a 

large dataset of both benign and malicious PDFs. The dataset was pre-processed to extract 

relevant features, such as the presence of certain keywords and the structure of the PDF file. In 

total we used 37 static representative features. We used a combination of supervised learning 

techniques to train the MLP on this dataset. The trained model was then evaluated on a separate 

test dataset and was shown to have high accuracy of about 96% in detecting PDF-based 

malware. We also investigated the effect of different feature selection methods and the impact 

of network architecture on the performance of the model. The results demonstrate that using 

MLPs for detecting PDF-based malware is an effective approach and can achieve high 

accuracy. Moreover, we also proposed an approach to increase the robustness of the model by 

using adversarial machine learning techniques to improve the model’s ability to detect novel 

and evasive malware. In conclusion, this thesis presents a novel approach for training MLPs to 

detect PDF-based malware, and the results demonstrate the effectiveness of this approach. The 

proposed approach could be used to improve the security of systems that handle PDF files and 

provide a new tool for the security community to fight against PDF-based malware. 
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Chapter 1 

Introduction 

1.1 Overview 

PDF, which stands for Portable Document Format, was invented in 1991 by Adobe Systems co-

founder Dr. John Warnock. The first version of the PDF specification, version 1.0, was released 

in 1993. Since then, PDF has become one of the most popular file formats for digital documents, 

as it allows users to share documents across different platforms and devices while preserving the 

original formatting and layout. 

It was made an open standard in 2008, as ISO 32000–1: 2008 [1]. According to this standard 

PDF at its core is an advanced imaging model which is derived from PostScript. PDF allows 

device-independent and resolution-independent viewing of a document. But unlike the 

programming language Postscript, PDF is a structured binary file format that is optimized for 

high performance in interactive viewing. PDF/X (ISO 15930) for printing, PDF/A (ISO 19005) 

for archiving and PDF/E (ISO 24517) for engineering documents are specific standards for PDF 

applications. A basic structure of a PDF can be observed from the tree figure below. 

Figure 1: Tree structure of a PDF 

Apart from Adobe software. PDFs can be modified with the help of Microsoft office which first 

converts it to word document and then edit it. But it's not usually a very convenient conversion. 
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Libre Office Draw is an open-source alternative to Adobe software for editing a PDF. But then 

again it has flaws in it which make it difficult to produce an exact copy of the PDF after editing 

it. Adobe Acrobat Pro has an advantage over other software as it is made by Adobe itself and can 

produce exact PDF with all the exact fonts.  

They invented it because they wanted a format that can be used by any device or software. This 

is the reason why today we can open a PDF file even in our browsers. It has been built to look 

the same in any device or software. PDFs can contain fonts, embedded images, hyperlinks, 

interactive buttons, videos, images and text. A raw PDF when opened with note pad shows 

something like in following figure. It has head, body, xref table and trailer. When updated a new 

body, xref table and trailer is added. 

Figure 2: Raw PDF 

PDFs also allow users to encrypt themselves to protect themselves from unauthorized access. 

The algorithms used by PDFs are RC4 and AES. 

The detection of malware is a critical task in cybersecurity. Malware can cause significant harm, 

including data loss, financial theft, and network downtime. In recent years, machine learning 

algorithms have been increasingly used for malware detection due to their ability to learn from 

patterns in data and detect previously unseen malware. One such algorithm is the Multi-Layer 

Perceptron (MLP), a type of artificial neural network that has shown great promise in detecting 

malware. 
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PDF files have become a popular medium for the distribution of malware due to their ability to 

contain a variety of content such as images, videos, and interactive forms. PDF malware can be 

embedded in a document in various ways, such as using JavaScript, embedded objects, or 

exploiting vulnerabilities in PDF readers. The detection of PDF malware is a challenging task 

due to the complexity and variety of techniques used to hide malicious content. 

In this thesis, we will explore the optimization of MLP for detecting PDF malware. We will begin 

by discussing the features extraction for PDF files, followed by an overview of architecture and 

training of MLPs for PDF files. We will then discuss the steps involved in optimizing the MLP, 

including dataset curation, hyperparameter tuning, and model evaluation. Finally, we will discuss 

some challenges and future directions for optimizing MLP for detecting PDF malware. 

1.2 Motivation and Problem Statement 

 

Malware in the form of PDF files is becoming increasingly prevalent because of their versatility 

as a document type and their robustness as unchangeable. These are the reasons why PDFs have 

become very popular. 

With the increase in PDF files popularity, malwares in the PDF files have also become popular. 

This is why it is crucial to develop effective detection methods for these malwares. 

Traditionally PDF malware just like any other malware was detected through an Antivirus 

program which heavily relies on signature-based detection to detect them [2]. According to this 

method a PDF malware is compared with a list of malware signatures to declare it as malicious 

or benign. [3] 

The problem with signature-based detection is that malware authors are using these signature 

libraries while creating malwares which practically makes these Anti-Virus programs useless for 

detecting PDF malwares and malwares in general.[4] [5] 

Hence, there is a need for an effective detection scheme. After detection of an attacker, the utmost 

requirement is of a mechanism which enables a node to do its effective defense. 

Machine learning can provide a better mathematical framework for analyzing these security 

issues in the network. 

1.3 Objectives 

 

Following are the objectives of this research: 

• To conduct a study of various obfuscation techniques 

• To understand working of windows PDF malwares and their countermeasures 
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• To train an artificial intelligence model to detect PDF malware.  

1.4  Thesis Contribution 

To the best of our knowledge the Multi-Layer Perceptron method proposed in this paper has not 

been used for training over the dataset.  

The main contributions of this work are as follows: 

• We have provided a deep understanding of PDF malware that can be detected using 

different features of a PDF file. 

• We propose a MLP based Artificial Intelligence model for training a dataset of PDF 

malware. 

1.5 Thesis Organization 

 

The thesis is structured as follows: 

 

• Chapter 1 provides an overview of the whole thesis, provides introduction, motivation, 

objectives, contribution, organization and literature review. 

• Chapter 2 contains the features information and details. It discusses features selection, 

general features and structural features. 

• Chapter 3 discusses the evaluation parameters for the proposed algorithms for its 

comparison with rest of the algorithms and results obtained by the experiment. 

• Chapter 4 marks the end of the document. The conclusion, challenges and future work 

areas are revealed in this chapter.

1.6 Literature Review 

The dataset that we are using is a relatively new dataset. It was published in the February of 

2022 [6] therefore there is not a lot of work done on it. [7] Proposed a new technique namely 

Invasive Weed Optimization with Stacked Long Short-Term Memory (IWO-S-LSTM). To test 

the outcomes of this technique, two datasets were used, one of which is CIC-Evaisve-

PDFMal2022. [8] used CIC-Evasive-PDFMal2022 to train a variant of a standard detector and 

found out that predictions of maliciousness had improved.[9] Improved the robustness of 

machine learning based PDF malware detection systems when trained with CIC-Evasive-
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PDFMal2022. The algorithm used by [9] was Random Forest and accuracy obtained was 

99.65% with an F1 score of 99.7%. [10] uses AdaBoost decision tree to train a model over 

CIC-Evasive-PDFMal2022. Accuracy achieved was 98.84% and a prediction interval of 2.174 

microseconds.[11] proposed a new attack called deep reinforcement learning (DRL)—based 

attack framework to make PDF files undetectable. Simultaneously a DRL-based defense 

strategy is proposed to counter this attack. Their results show that both this attack is effective 

as well as its mitigation strategy.[12] used 17 datasets for malware classification to train a 

model based on One Rule which is basically a decision tree with a root nod. Although it has 

been accepted in the paper that this One Rule model is not very effective against so many 

features which are present in CIC-Evaisve-PDFMal2022. 

[13] believes that static analysis of malwares is better then dynamic analysis which is resource 

intensive. They have given an account of research done on PE32 which was first released in 

1992 in windows 3.1. The reason they have taken PE32 and not PE64 is backward integration. 

This means that a 64 bit architecture system is made to run as such that it can also run 32 bit 

architecture software. But a 32 bit architecture system cannot run 64 bit software. The paper 

claims that most of the malware is 32 bit because it can be generalized and effect a diverse 

range of systems. The paper also gives an account of machine learning tools like Weka or 

Waikato Environment, Python weka wrapper, LIBSVM, RapidMiner and Dlib which can be 

used to deploy machine learning algorithms. The paper provides a history of different machine 

learning algorithms which are 24 in total from literature published from 2004 onwards but none 

use neural networks for training their models. This paper also provides an account of the 

features selection as observation of ShortInfo_Directories, ShortInfo_Xor, ShortInfo_FileSize, 

ShortInfo_Detected, ShortInfo_Sections, DigitalSignature, Packer, AntiDebug, AntiVM, 

SuspiciousAPI, SuspiciousSections and Url from PE32 header as well as Byte n-Gram, Opcode 

n-gram and API calls from the code. For their experiment, authors have created their own 

dataset of benign files while they have taken malicious files from VXheaven [14] has now been 

renamed vx-underground)and VirusShare [15]. PEFRAME, HEXDUMP and OBJDUMP are 

the tools used for feature extraction. In their own experimental setup they claim to use neural 

networks using fivefold cross validation technique but unfortunately have not provided any 

stats on it. The highest accuracy achived was 95.53 by C4.5 algorithm. 

https://www.vx-underground.org/
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[16] introduced controlled flow graphs, behavioral features like performance metrics, memory 

information and system calls. It is claimed in this paper that todays modern malware 

incorporate polymorphism and change themselves on the go therefore it is static malware 

analysis is of not much use. This paper shows the use of cuckoo sandbox for generating 

dynamic analysis report. 

[17] points out that there are fundamental differences between intrusion detection and other 

applications. There are 6 key differences. First one is that machine learning is generally better 

at finding similarities not differences. Then there is a very high cost of classification error. 

After that there is a semantic gap between detection results and their operational 

interpretability. There is also a huge variability in perceiving what is normal. It is also observed 

that there is difficulty in sound evaluation of the result. And finally operating in an adversarial 

setting is something that differentiates intrusion detection with from other applications. Also, in 

the same paper it is claimed that most organizations keep their malware data proprietary and 

don’t share it. Open-source datasets of malwares are created by combining known malwares in 

the wild that are tagged as malicious by multiple accounts. This means that these datasets are 

not optimal and may not be able to detect even known proprietary malwares [18, 19]. There has 

been some work done to tag even slightly malicious portable executables as malicious to 

increase security and train the models better. [20,21] The datasets mentioned in this paper are 

from VX heaven [14], VirusShare [15], MalImg [22], MS malware Classification[23], EMBER 

[24], MalRec [25], Malware Training Sets [26], Mal-API-2019 [27], the Zoo (malware DB) 

[28], Virus Total [29] and Meraz’18 Kaggle [30]. It is claimed in this paper that most often the 

features used are simple features like metadata which result in high success rate of more then 

98 percent leaving little room for improvement [31]. Resources like MalImg [22] uses deep 

learning to detect maliciousness of a program. How this works is by first extracting the binary 

of the program and then converting that binary of zeros and ones into RGB files. This produces 

an image which is completely not understandable by humans but is understandable computer. 

By using deep learning computers can identify the patterns in the file and when trained over a 

large dataset, might be able to identify new malwares. Though even this technique is not 

completely fool proof but given the fact that malware authors tend to innovate and come up 

with newer malwares every here and there, this type of model is better suited for unknown and 

novel malwares and hence better suited for deploying in IDSs and IPSs. However there is a 

problem with this type of machine learning application and that is high computational resource 
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requirement. Image processing for machine learning algorithms require a lot of computer 

processing power and often require GPUs (Graphical Processing units), IPU (dedicated image 

processing units) and TPUs (Tensor Processing units) [32] Although google does provide these 

resources to be used by general public but image processing is still resource intensive [33]To 

convert a program to binary and then to image is just too much work for a result that can be 

achieved by applying neural networks on the program themselves. This saves computational 

power and provides almost identical results. [34] used whole binary of a PE and directly fed it 

into the neural network. 

 

 

 

 

Figure 3: Training neural network with RGB 

EMBER [2] is a dataset known for 1 percent false positive rate. The features having highest 

impact on EMBER [35] are general file information from the PE header such as virtual size of 

the file, thread local storage, resources, as well as the file size and number of symbols; header 

information from the COFF header providing the timestamp, the target machine, linker 

versions, and major and minor image versions; import functions obtained by parsing the 

address table; exported functions; section information including the name, size, entropy virtual 

size and list of strings representing section characteristics; byte histogram representing the 

counts of each byte value; byte-entropy histogram approximating the joint distribution of 

entropy and a given byte value; simple statistics about printable strings that are at least five 

characters long. Specifically providing information on strings that begin with “C:\", “http://", 

“https://" or “HKEY_". Over all the features represented in this paper are byte counts (BYTE), 

the size of the hexadecimal representation and the address of the first byte sequence 

(MD1),byte entropy (ENT), image representation using Haralick features (IMG1), Local 
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Binary Patterns (IMG2), histogram of the length of strings extracted from the hexadecimal file 

(STR), the size of the number of line in the disassembled file (MD2), the frequency of a set of 

symbols in the disassembled file (-, +, *, ], [, ?, @) (SYM), the frequency of the occurrence of 

a subset of 93 of possible operation codes in the disassembled file (OPC), the frequency of the 

use of registers (REG), the frequency of the use of the top 794 Window API calls, 

characteristics of the sections in the binary (SEC), statistics around using db, dw, and dd 

instructions which are used for setting byte, word, and double word and are used to obfuscate 

API calls (DP), the frequency of 95 manually chosen keywords from the disassembled code 

(MISC) 

[17] claims behavioral or dynamic analysis as active field of research. They have tried to use 

behavioral analysis of malware to detect maliciousness. For this purpose, they have leveraged 

MITRE attack framework. This is a framework that outlines all the steps of an attack. The 

authors have utilized MITRE malware behavior catalog or MBC to try to capture dynamic 

behavior of a malware. The attribute that come under anti-behavioral analysis are debugger 

detection, debugger evasion, dynamic analysis evasion, emulator evasion, memory dump 

evasion, sandbox detection, executable code virtualization, virtual machine detection, 

conditional execution and capture evasion. They have also incorporated Microsoft Malware 

Classification Challenge which has distinguished malware families as Ramnit (worm), Lollipop 

(Adware), Kelihos_ver3 (backdoor),Vundo (Trojan), Simda (backdoor), Tracur (trojan 

downloader), Kelihos_ver1 (backdoor), Obfuscator.ACY (obfuscated malware) and Gatak 

(backdoor). Apart from MBC and Microsoft malware classification challenge, authors have 

also mentioned Semantic Malware Attribute Relevance Tagging or SMART. SMART provides 

a richer set of technical features for malware analysis. On VX Heaven, PE-Miner [68] achieves 

a detection rate greater than 99% only using structural information (PE and section header 

information), DLLs and object files. Such statistics are common in literature where high is 

being achieved but one has to understand this that machine learning task should be to detect 

malware and not just to identify behaviors. 
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Chapter 2 

Features 

2.1 Overview 

Feature selection and extraction from Files is a critical step in optimizing MLPs for detecting 

PDF malware. The goal of feature extraction is to transform the input data into a set of features 

that can be used to train the MLP. In the case of PDF files, feature extraction involves extracting 

information from the document's content, structure, and metadata. There are various feature 

extraction techniques that can be used for PDF files, such as those based on textual analysis, 

image processing, and metadata analysis.[36] 

Text-based features can be extracted by converting the PDF document to plain text and then 

applying techniques such as bag-of-words, n-grams, or term frequency-inverse document 

frequency (TF-IDF). These techniques involve representing the document as a vector of features 

based on the frequency of occurrence of individual words or combinations of words in the text. 

Text-based features can be effective in detecting PDF malware that contains textual content, such 

as phishing attacks or social engineering scams.[37] 

Image-based features can be extracted by converting the PDF document to images and then 

applying techniques such as edge detection, texture analysis, or color analysis. These techniques 

involve representing the document as a vector of features based on the visual characteristics of 

the images in the document. Image-based features can be effective in detecting PDF malware 

that contains images, such as those used in steganography or obfuscation.[37] 

Metadata-based features can be extracted by analyzing the metadata of the PDF document, such 

as the author, title, creation date, and modification date. These features can be used to identify 

patterns in the metadata that are indicative of malicious activity, such as documents with 

suspicious authors or creation dates. Metadata-based features can be effective in detecting PDF 

malware that is designed to exploit vulnerabilities in PDF readers or manipulate the document's 

metadata. 

For the purpose of this thesis, we have selected 12 general features and 25 structural features of 

PDF, details of which are given below. 
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2.2 General Features 

General features are the features of a PDF file which are not generally related to its 

maliciousness directly but can give an idea about the covert maliciousness of a PDF when they 

are not exactly how they are supposed to be. For this thesis, we have decided to use 12 such 

features, details of which are in the following paragraphs. 

2.2.1 Size 

One method for detecting PDF malware is by analyzing the size of the PDF file. PDF files that 

are abnormally large or small may be an indicator of malicious activity. In this part, we will 

explore the use of PDF size for PDF malware detection. 

PDF malware is a type of malware that is embedded within a PDF file. The malware can be 

designed to exploit vulnerabilities in the PDF reader software or to trick the user into 

downloading and executing the malware. PDF malware can be used to steal information, 

compromise systems, and launch further attacks. 

PDF files can contain various types of malwares, such as viruses, trojans, and ransomware. These 

malicious files can be hidden within the PDF file, or they can be disguised as legitimate 

documents.[8] 

PDF files can vary in size depending on the content of the file. A basic PDF file with no images 

or graphics may be only a few kilobytes in size, while a PDF file with high-quality images, 

videos, and other multimedia content can be several megabytes in size. In general, the size of a 

PDF file is determined by the amount of data it contains. 

The size of a PDF file can also be affected by compression. PDF files can be compressed to 

reduce their size, which can make them easier to share and download. However, compression 

can also affect the quality of the images and other content within the file. 

The size of a PDF file can be used as an indicator of potential malware activity. Malware authors 

may use techniques such as obfuscation or encryption to hide the malicious code within the PDF 
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file. However, these techniques can increase the size of the PDF file. Therefore, a PDF file that 

is significantly larger than expected may be an indicator of malicious activity. 

On the other hand, a PDF file that is significantly smaller than expected may also be an indicator 

of malicious activity. Malware authors may use techniques such as compression to reduce the 

size of the PDF file. However, compression can also be used to hide the malicious code within 

the file. Therefore, a PDF file that is smaller than expected may also be an indicator of malicious 

activity. 

It is important to note that the size of a PDF file alone is not a definitive indicator of malware 

activity. A large or small PDF file may be legitimate, depending on the content and purpose of 

the document. However, analyzing the size of a PDF file can be a useful tool for detecting 

potential malware activity. 

2.2.2 Title Characters 

PDF files are commonly used for sharing and exchanging documents due to their flexibility and 

compatibility with almost all devices. However, like any other file format, PDF files can be used 

to deliver malware, making them a popular vector for cybercriminals. One method of detecting 

malware within a PDF file is by analyzing the title characters within the document. In this part, 

we will explore the use of PDF title characters for PDF malware detection. 

PDF malware is a type of malware that is embedded within a PDF file. This malware can be 

designed to exploit vulnerabilities in PDF reader software, trick users into downloading and 

executing the malware, or to steal information, compromise systems, and launch further attacks. 

Malware can be hidden within PDF files, disguised as legitimate documents or scripts. Such 

documents can also be used to download additional malware from the internet or infect the device 

on which they are opened. 

The PDF title characters are the text that appears in the title bar of a PDF reader software when 

a PDF file is opened. This title is often used to provide users with information about the contents 

of the document, such as the name of the document, author, or publisher. 
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PDF files can have a title set within the document properties. The title can be added using a PDF 

authoring tool or software. The title can be set to any string of characters or a blank string. When 

a PDF file is opened in a PDF reader software, the title appears in the title bar of the reader. 

The title of a PDF file can be used as an indicator of potential malware activity. Cybercriminals 

often use social engineering techniques to trick users into opening a malicious PDF file. They 

may use a catchy or intriguing title to lure the user into opening the document. For example, a 

title like "2019 tax return" may entice a user to open the PDF, which may contain malware. 

PDF files that contain no title or have an empty title field can also be an indicator of potential 

malware activity. Cybercriminals may use these methods to try and hide the malicious nature of 

the PDF file. 

Using title characters for malware detection is a quick and easy way to determine if a PDF file is 

suspicious. However, it is important to note that the title of a PDF file alone is not a definitive 

indicator of malware activity. 

2.2.3 Encryption 

PDF encryption is a security feature that is designed to protect PDF files from unauthorized 

access. Encryption involves scrambling the contents of a PDF file using a secret key, which can 

only be accessed by authorized users who have the correct decryption key. While encryption is 

primarily used for security purposes, it can also be a useful tool for detecting malware within 

PDF files. In this part, we will explore the use of PDF encryption for PDF malware detection. 

PDF malware is a type of malware that is embedded within a PDF file. This malware can be 

designed to exploit vulnerabilities in PDF reader software, trick users into downloading and 

executing the malware, or to steal information, compromise systems, and launch further attacks. 

PDF malware can be difficult to detect because it can be hidden within legitimate-looking PDF 

files. Cybercriminals may use social engineering techniques to trick users into opening a 

malicious PDF file, or they may use obfuscation techniques to hide the malware from detection. 

PDF encryption is a security feature that is designed to protect PDF files from unauthorized 

access. Encryption involves scrambling the contents of a PDF file using a secret key, which can 

only be accessed by authorized users who have the correct decryption key. PDF encryption can 
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be used to protect sensitive information, such as financial data, medical records, and personal 

information. 

PDF encryption can be applied to both the contents of the PDF file and the metadata, such as the 

title, author, and creation date. PDF encryption can be applied using a variety of encryption 

algorithms, including AES (Advanced Encryption Standard), RC4 (Rivest Cipher 4), and 3DES 

(Triple Data Encryption Standard). 

PDF encryption can be a useful tool for detecting malware within PDF files. When a PDF file is 

encrypted, the contents of the file are scrambled using a secret key, which makes it difficult for 

cybercriminals to modify the contents of the file without the correct decryption key. 

If a PDF file is encrypted, and it contains malware, the malware will also be encrypted. This 

means that when the PDF file is opened, the PDF reader software will not be able to access the 

malware until the file has been decrypted using the correct decryption key. If the decryption key 

is not available, the malware will remain encrypted and will not be able to execute. 

By using PDF encryption, organizations can protect their sensitive information from 

unauthorized access and detect potential malware activity within their PDF files. PDF encryption 

can be used in conjunction with other security measures, such as antivirus software, firewalls, 

and intrusion detection systems, to provide a comprehensive security solution. 

PDF encryption is a powerful security feature that is designed to protect PDF files from 

unauthorized access. Encryption can also be a useful tool for detecting potential malware activity 

within PDF files. If a PDF file is encrypted and it contains malware, the malware will also be 

encrypted, making it difficult for cybercriminals to modify the contents of the file without the 

correct decryption key. 

While PDF encryption can be a useful tool for detecting malware, it should not be relied upon as 

the sole method of malware detection. Organizations should implement a comprehensive security 

solution that includes antivirus software, firewalls, intrusion detection systems, and user 

education to protect their systems from malware attacks. 

2.2.4 Metadata Size  
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PDF metadata is a set of information that provides additional details about a PDF file, such as 

the file's title, author, creation date, and modification date. While metadata is primarily used to 

help users organize and manage their PDF files, it can also be a useful tool for detecting malware 

within PDF files. In this part, we will explore the use of PDF metadata size for PDF malware 

detection.[38] 

PDF malware is a type of malware that is embedded within a PDF file. This malware can be 

designed to exploit vulnerabilities in PDF reader software, trick users into downloading and 

executing the malware, or to steal information, compromise systems, and launch further attacks. 

PDF malware can be difficult to detect because it can be hidden within legitimate-looking PDF 

files. Cybercriminals may use social engineering techniques to trick users into opening a 

malicious PDF file, or they may use obfuscation techniques to hide the malware from detection. 

PDF metadata is a set of information that provides additional details about a PDF file. Metadata 

can include information such as the file's title, author, creation date, modification date, and 

keywords. Metadata can be used to help users organize and manage their PDF files, and it can 

also be used by search engines to index and categorize PDF files. 

Metadata is stored within the PDF file itself and can be accessed using PDF reader software or 

other tools that are designed to extract metadata from PDF files. Metadata can be modified using 

a variety of tools, including PDF authoring software, command-line tools, and scripts. 

PDF metadata size can be a useful tool for detecting malware within PDF files. When a PDF file 

is created, metadata is added to the file to provide additional information about the file. The 

metadata size can be measured in bytes, and it can be used to determine whether a PDF file 

contains more information than is necessary. 

If a PDF file contains a large number of metadata, it may indicate that the file has been modified 

or tampered with. Large amounts of metadata can also be an indication of malicious activity 

within the PDF file, such as the addition of malware code. 

By measuring the metadata size of a PDF file, organizations can detect potential malware activity 

within their PDF files. If a PDF file contains a large number of metadata, it may be a sign that 
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the file has been tampered with or contains malware code. Organizations can use this information 

to take appropriate action to protect their systems from potential malware attacks. 

PDF metadata size can be a useful tool for detecting potential malware activity within PDF files. 

If a PDF file contains a large number of metadata, it may be an indication that the file has been 

modified or tampered with, or that it contains malware code. By measuring the metadata size of 

a PDF file, organizations can detect potential malware activity and take appropriate action to 

protect their systems from malware attacks. 

While PDF metadata size can be a useful tool for detecting malware, it should not be relied upon 

as the sole method of malware detection. [39] Organizations should implement a comprehensive 

security solution that includes antivirus software, firewalls, intrusion detection systems, and user 

education to protect their systems from malware attacks. 

2.2.5 Page Number  

PDF files are a common target for malware attacks due to their widespread use in sharing and 

distributing documents. Malware can be hidden in PDF files, which can infect the user's 

computer or steal sensitive information. In this part, we will explore the use of PDF page numbers 

for detecting malware in PDF files. 

PDF malware is a type of malware that is embedded within a PDF file. This malware can be 

designed to exploit vulnerabilities in PDF reader software, trick users into downloading and 

executing the malware, or to steal information, compromise systems, and launch further attacks. 

Malware can be hidden in various parts of the PDF file, such as in embedded links, images, or 

scripts. 

PDF page numbers are used to identify the page number of a specific page in a PDF file. Page 

numbers are usually located in the header or footer of a document, and they are useful for 

navigating and referencing specific pages in a long document. 

PDF page numbers can be a useful tool for detecting malware in PDF files. Malware may be 

hidden on specific pages of a PDF file, such as on the last page, to avoid detection. By analyzing 

the page numbers of a PDF file, it may be possible to identify if the PDF file contains malware. 
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One way to use page numbers for malware detection is to analyze the distribution of page 

numbers in a PDF file. For example, a legitimate PDF file typically has a consistent and 

continuous page numbering system, where the page numbers increase sequentially from the 

beginning to the end of the document. In contrast, a PDF file that contains malware may have 

page numbers that are discontinuous or irregular. 

Another way to use page numbers for malware detection is to analyze the page numbers of 

embedded links or scripts within the PDF file. Malware may be hidden in links or scripts that are 

embedded within a PDF file, and these links or scripts may be associated with a specific page 

number. By analyzing the page numbers of embedded links or scripts, it may be possible to 

identify if the PDF file contains malware. 

PDF page numbers can be a useful tool for detecting malware in PDF files. By analyzing the 

distribution of page numbers and the page numbers of embedded links or scripts, it may be 

possible to identify if a PDF file contains malware. However, PDF page numbers should not be 

relied upon as the sole method of malware detection. Organizations should implement a 

comprehensive security solution that includes antivirus software, firewalls, intrusion detection 

systems, and user education to protect their systems from malware attacks. 

2.2.6 Header  

 PDF files are a popular way of sharing and distributing digital documents. Unfortunately, PDF 

files are also a popular method for distributing malware. Malicious actors can hide malware in 

PDF files and use social engineering tactics to convince users to download and open them. In 

this part, we will discuss how the PDF header can be used for malware detection. 

The PDF header is the first part of a PDF file and contains important information about the file. 

The header is usually the first 1024 bytes of the file and contains metadata that is used by PDF 

readers to interpret and display the file. The PDF header contains information such as the file 

version, the number of pages, and the encryption type. 

Malicious PDF files may contain outdated PDF versions, which could be an indicator of malware. 

For example, older PDF versions may not have the same security features as newer versions, 

making them easier to exploit. PDF readers may also be less likely to detect malware in older 

versions of PDF files. 
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The PDF header contains metadata that can be used to identify potential indicators of malware. 

For example, a PDF file with an unusually large number of metadata fields or metadata fields 

with suspicious names may indicate that the file is malicious. 

Malicious actors may encrypt PDF files to hide malware. However, legitimate PDF files can also 

be encrypted. One way to determine if a PDF file is encrypted is to analyze the PDF header. 

Encrypted PDF files will have a flag in the PDF header that indicates encryption is being used. 

Malicious actors may use JavaScript to hide malware in PDF files. JavaScript can be used to 

create dynamic content and to interact with the user's computer. To detect JavaScript in PDF 

files, the PDF header can be analyzed for the presence of a /Names object. The /Names object is 

used to define named JavaScript actions, which may indicate the presence of malicious 

JavaScript. 

The PDF header can be a useful tool for detecting malware in PDF files. By analyzing the PDF 

version, metadata, encryption, and JavaScript, it may be possible to identify potential indicators 

of malware. However, the PDF header should not be relied upon as the sole method of malware 

detection. Organizations should implement a comprehensive security solution that includes 

antivirus software, firewalls, intrusion detection systems, and user education to protect their 

systems from malware attacks. 

2.2.7 Image Number  

PDF files are commonly used for sharing and distributing digital documents. However, they can 

also be used for malicious purposes, such as distributing malware. Malware can be hidden within 

the images embedded in PDF files. In this part, we will discuss how PDF image numbers can be 

used for malware detection. 

PDF image numbers are used to identify the position of an image within a PDF file. PDF files 

can contain multiple images, and each image is assigned a unique identifier, known as an object 

number. The object number can be used to determine the position of the image within the PDF 

file. 
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PDF image numbers can be a useful tool for detecting malware in PDF files. By analyzing the 

distribution of image numbers in a PDF file, it may be possible to identify if the file contains 

malware. 

One way to use image numbers for malware detection is to analyze the distribution of image 

numbers in a PDF file. Legitimate PDF files typically have a continuous sequence of image 

numbers. In contrast, a PDF file that contains malware may have irregular or discontinuous image 

numbers. Malicious actors may use irregular image numbers to hide malware within the file. 

Another way to use image numbers for malware detection is to analyze the object numbers of 

embedded images within the PDF file. Malware may be hidden in images that are embedded 

within a PDF file, and these images may be associated with a specific object number. By 

analyzing the object numbers of embedded images, it may be possible to identify if the PDF file 

contains malware. 

It is important to note that image numbers should not be relied upon as the sole method of 

malware detection. Malicious actors may use various techniques to hide malware within a PDF 

file, and analyzing image numbers alone may not be sufficient to detect all types of malware. 

PDF image numbers can be a useful tool for detecting malware in PDF files. By analyzing the 

distribution of image numbers and the object numbers of embedded images, it may be possible 

to identify if a PDF file contains malware. However, image numbers should not be relied upon 

as the sole method of malware detection. Organizations should implement a comprehensive 

security solution that includes antivirus software, firewalls, intrusion detection systems, and user 

education to protect their systems from malware attacks. 

2.2.8 Text  

PDF files are commonly used for sharing and distributing digital documents. However, they can 

also be used for malicious purposes, such as distributing malware. Malware can be hidden within 

the text of a PDF file. In this part, we will discuss how PDF text can be used for malware 

detection. 

PDF files can contain different types of text, such as regular text, annotations, and form fields. 

Regular text is the text that is visible in the PDF file. Annotations are used to provide additional 
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information about the content in the PDF file. Form fields are used to collect information from 

the user. 

PDF text can be a useful tool for detecting malware in PDF files. By analyzing the distribution 

of text within a PDF file, it may be possible to identify if the file contains malware. 

One way to use PDF text for malware detection is to analyze the number of text objects in a PDF 

file. Legitimate PDF files typically have a low number of text objects, while PDF files that 

contain malware may have a large number of text objects. Malicious actors may use a high 

number of text objects to hide malware within the file. 

Another way to use PDF text for malware detection is to analyze the content of the text within a 

PDF file. Malware may be hidden within the text of a PDF file, and this text may contain 

suspicious or malicious content. By analyzing the content of the text within a PDF file, it may be 

possible to identify if the file contains malware. 

It is important to note that analyzing PDF text alone may not be sufficient to detect all types of 

malware. Malicious actors may use various techniques to hide malware within a PDF file, and 

analyzing text alone may not be enough to detect all types of malware. 

PDF text can be a useful tool for detecting malware in PDF files. By analyzing the number of 

text objects and the content of the text within a PDF file, it may be possible to identify if the file 

contains malware. However, text analysis should not be relied upon as the sole method of 

malware detection.  

2.2.9 Object Number  

PDF is a widely used file format for documents and other types of content that need to be viewed 

or printed in a consistent manner regardless of the operating system or software used. However, 

PDF files can also be used to deliver malware or other malicious content to unsuspecting users. 

PDF object numbers are a key element in detecting PDF malware. 

PDF files are made up of a series of objects, which are identified by a unique object number. 

These objects can be of different types, such as text, images, and annotations. Each object has a 

specific structure that includes a dictionary of properties and a stream of data. 
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PDF object numbers can be used to detect PDF malware in a number of ways. One approach is 

to analyze the structure of the PDF file and look for anomalies in the object numbering scheme. 

For example, some malware may use non-standard or random object numbers, which can indicate 

that the file is suspicious. 

Another approach is to look for patterns in the object numbering scheme that are commonly used 

by malware. For example, some malware may use object numbers that are sequential or have a 

specific pattern, such as 1, 2, 3, 4, or 10, 20, 30, 40. By identifying these patterns, it may be 

possible to detect and prevent the spread of malware. 

Anti-malware tools can use PDF object numbers to detect and prevent the spread of malware. 

These tools can analyze PDF files for anomalies in the object numbering scheme and other 

indicators of malware. For example, some anti-malware tools can detect PDF files that have been 

obfuscated or encrypted to hide their true contents. 

In addition, anti-malware tools can use machine learning algorithms to analyze patterns in the 

object numbering scheme and other features of PDF files to identify new and emerging types of 

malware. These tools can also use heuristics to detect potentially malicious behavior, such as 

attempts to download additional files or execute commands on the user's system. 

PDF object numbers are an important element in detecting PDF malware. By analyzing the 

structure of PDF files and looking for anomalies in the object numbering scheme, it may be 

possible to detect and prevent the spread of malware. Anti-malware tools can use PDF object 

numbers to identify new and emerging types of malware, and to detect potentially malicious 

behavior. As PDF files continue to be a popular means of delivering content, it is important to 

stay vigilant and use the latest security measures to protect against malware. 

2.2.10 Font Objects  

PDF files are commonly used for sharing and storing documents across various platforms. 

However, they can also be used to deliver malware to unsuspecting users. PDF font objects are 

a critical component in detecting PDF malware. In this part, we will explore how PDF font 

objects are used for malware detection. 
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PDF files can contain various types of objects, such as text, images, and fonts. Fonts are used to 

display text in PDF files and are usually embedded within the document itself. A font object in 

a PDF file includes information about the font type, size, and style. 

PDF font objects can be used to detect malware in several ways. One approach is to analyze the 

font objects within a PDF file and look for anomalies in the font information. For example, 

malware can use non-standard or unusual fonts that are not commonly used in legitimate 

documents. By analyzing the font objects, it is possible to detect suspicious files. 

Another approach is to look for patterns in the font objects that are commonly used by malware. 

For example, some malware may use a specific font type or size consistently across different 

PDF files. By identifying these patterns, it may be possible to detect and prevent the spread of 

malware. 

Anti-malware tools can use PDF font objects to detect and prevent the spread of malware. These 

tools can analyze PDF files for anomalies in the font information and other indicators of malware. 

For example, some anti-malware tools can detect PDF files that contain encrypted or obfuscated 

font data. 

In addition, anti-malware tools can use machine learning algorithms to analyze patterns in the 

font objects and other features of PDF files to identify new and emerging types of malware. 

These tools can also use heuristics to detect potentially malicious behavior, such as attempts to 

download additional files or execute commands on the user's system. 

PDF font objects are an essential component in detecting PDF malware. By analyzing the font 

information within a PDF file, it is possible to detect suspicious files and prevent the spread of 

malware. Anti-malware tools can use PDF font objects to identify new and emerging types of 

malware, as well as to detect potentially malicious behavior. As PDF files continue to be a 

popular means of delivering content, it is crucial to stay vigilant and use the latest security 

measures to protect against malware. 

2.2.11 No. of Embedded Files  

PDF files are widely used for sharing documents and other types of content. However, PDF files 

can also be used to deliver malware to unsuspecting users. The number of embedded files in a 
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PDF file is a critical component in detecting PDF malware. In this part, we will explore how the 

number of embedded files in a PDF file is used for malware detection. 

PDF files can contain embedded files such as images, videos, and other documents. These 

embedded files can be used to enhance the functionality and visual appeal of the PDF document. 

Embedded files are typically compressed within the PDF file and can be accessed by users when 

they interact with the PDF file. 

The number of embedded files in a PDF file can be used to detect malware in several ways. One 

approach is to analyze the number of embedded files in a PDF file and look for unusual patterns. 

For example, malware may contain many embedded files or a small number of files that are 

unusually large. By analyzing the number of embedded files, it is possible to detect suspicious 

files. 

Another approach is to look for patterns in the types of embedded files that are commonly used 

by malware. For example, some malware may use a specific type of embedded file or a specific 

file format consistently across different PDF files. By identifying these patterns, it may be 

possible to detect and prevent the spread of malware. 

Anti-malware tools can use the number of embedded files in a PDF file to detect and prevent the 

spread of malware. These tools can analyze PDF files for anomalies in the number and type of 

embedded files and other indicators of malware. For example, some anti-malware tools can 

detect PDF files that contain encrypted or obfuscated embedded files. 

In addition, anti-malware tools can use machine learning algorithms to analyze patterns in the 

number and type of embedded files and other features of PDF files to identify new and emerging 

types of malwares. These tools can also use heuristics to detect potentially malicious behavior, 

such as attempts to download additional files or execute commands on the user's system. 

The number of embedded files in a PDF file is an essential component in detecting PDF malware. 

By analyzing the number and type of embedded files, it is possible to detect suspicious files and 

prevent the spread of malware. Anti-malware tools can use the number of embedded files to 

identify new and emerging types of malwares, as well as to detect potentially malicious behavior. 

As PDF files continue to be a popular means of delivering content, it is crucial to stay vigilant 

and use the latest security measures to protect against malware. 
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2.2.12 Average Size of all the Embedded Data  

PDF files are commonly used for sharing documents and other types of content. However, PDF 

files can also be used to deliver malware to unsuspecting users. The average size of all the 

embedded files in a PDF file is a critical component in detecting PDF malware. In this part, we 

will explore how the average size of all the embedded files in a PDF file is used for malware 

detection. 

PDF files can contain embedded files such as images, videos, and other documents. These 

embedded files can be used to enhance the functionality and visual appeal of the PDF document. 

Embedded files are typically compressed within the PDF file and can be accessed by users when 

they interact with the PDF file. 

The average size of all the embedded files in a PDF file can be used to detect malware in several 

ways. One approach is to analyze the average size of all the embedded files in a PDF file and 

look for unusual patterns. For example, malware may contain a large number of embedded files 

that are unusually small or large. By analyzing the average size of all the embedded files, it is 

possible to detect suspicious files. 

Another approach is to look for patterns in the types of embedded files that are commonly used 

by malware. For example, some malware may use a specific type of embedded file or a specific 

file format consistently across different PDF files. By identifying these patterns, it may be 

possible to detect and prevent the spread of malware. 

Anti-malware tools can use the average size of all the embedded files in a PDF file to detect and 

prevent the spread of malware. These tools can analyze PDF files for anomalies in the average 

size and type of embedded files and other indicators of malware. For example, some anti-

malware tools can detect PDF files that contain encrypted or obfuscated embedded files. 

In addition, anti-malware tools can use machine learning algorithms to analyze patterns in the 

average size and type of embedded files and other features of PDF files to identify new and 

emerging types of malwares. These tools can also use heuristics to detect potentially malicious 

behavior, such as attempts to download additional files or execute commands on the user's 

system. 
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The average size of all the embedded files in a PDF file is an essential component in detecting 

PDF malware. By analyzing the average size and type of embedded files, it is possible to detect 

suspicious files and prevent the spread of malware. Anti-malware tools can use the average size 

of all the embedded files to identify new and emerging types of malwares, as well as to detect 

potentially malicious behavior. As PDF files continue to be a popular means of delivering 

content, it is crucial to stay vigilant and use the latest security measures to protect against 

malware. 

2.3 Structural Features 

 

Structural features are the features of a PDF that are directly related to the maliciousness of the 

malware. These include a variety of keywords and parameters. We have used 25 structural 

features here under 16 headings for simplicity purposes because some features are identical to 

other features. Details of these structural features are given below. 

2.3.1 No. of Keywords “Streams”  

PDF files are widely used for sharing documents, but they can also be used to distribute malware. 

To detect and prevent malware in PDF files, security researchers use a range of techniques, 

including analyzing the number of "streams" in a PDF file. In this part, we will explore the use 

of the number of "streams" as a technique for detecting PDF malware. 

Streams are a fundamental component of PDF files, and they are used to store binary data, such 

as images, videos, and fonts, as well as other types of data, including JavaScript and metadata. 

Streams are usually compressed, which helps to reduce the size of the PDF file. 

PDF files can have many streams, depending on the complexity of the document and the number 

of images, videos, and other types of data that are included in the file. Each stream in a PDF file 

has a unique identifier known as a stream ID. 

The number of streams in a PDF file can be used to detect malware in several ways. One approach 

is to compare the number of streams in a PDF file to the expected number of streams for a file of 

similar complexity. If the number of streams in a PDF file is significantly higher or lower than 

the expected number, it may be an indication that the file contains malware. 
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Another approach is to look for patterns in the number of streams in PDF files that are known to 

contain malware. For example, malware may use a specific number of streams consistently 

across different PDF files. By identifying these patterns, it may be possible to detect and prevent 

the spread of malware. 

In addition, some anti-malware tools can use heuristics to detect potentially malicious behavior 

based on the number of streams in a PDF file. For example, a tool may flag a PDF file as 

suspicious if it has an unusually large number of streams or if the number of streams increases 

significantly during the file's execution. 

Malware authors may use multiple streams in a PDF file to evade detection by anti-malware 

tools. By splitting the malware into multiple streams, it can be more difficult for anti-malware 

tools to detect and remove the malware from the PDF file. 

In addition, malware authors may use streams to hide malicious code within a PDF file. For 

example, malware may use JavaScript code embedded in a stream to execute commands on the 

user's system or to download additional malware. 

The number of "streams" in a PDF file is an essential component in detecting PDF malware. By 

analyzing the number of streams and looking for unusual patterns, it is possible to detect 

suspicious files and prevent the spread of malware. Anti-malware tools can use the number of 

streams to identify new and emerging types of malware, as well as to detect potentially malicious 

behavior. As PDF files continue to be a popular means of delivering content, it is crucial to stay 

vigilant and use the latest security measures to protect against malware. 

2.3.2 No. of Keywords “endstreams”  

PDF files are widely used for sharing documents, but they can also be used to distribute 

malware. To detect and prevent malware in PDF files, security researchers use a range of 

techniques, including analyzing the number of "endstreams" keywords in a PDF file. In this 

part, we will explore the use of the number of "endstreams" keywords as a technique for 

detecting PDF malware. 

In a PDF file, streams are typically compressed to reduce the size of the file. To correctly 

decompress a stream, a PDF reader must first locate the end of the stream. The end of a stream 

is indicated by the keyword "endstream" followed by a line break. 
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The number of "endstream" keywords in a PDF file indicates the number of compressed 

streams in the file. This information can be useful for detecting malware in PDF files. 

The number of "endstream" keywords in a PDF file can be used to detect malware in several 

ways. One approach is to compare the number of "endstream" keywords in a PDF file to the 

expected number of "endstream" keywords for a file of similar complexity. If the number of 

"endstream" keywords in a PDF file is significantly higher or lower than the expected number, 

it may be an indication that the file contains malware. 

Another approach is to look for patterns in the number of "endstream" keywords in PDF files 

that are known to contain malware. For example, malware may use a specific number of 

"endstream" keywords consistently across different PDF files. By identifying these patterns, it 

may be possible to detect and prevent the spread of malware. 

In addition, some anti-malware tools can use heuristics to detect potentially malicious behavior 

based on the number of "endstream" keywords in a PDF file. For example, a tool may flag a 

PDF file as suspicious if it has an unusually large number of "endstream" keywords or if the 

number of "endstream" keywords increases significantly during the file's execution. 

Malware authors may use multiple streams and "endstreams" keywords in a PDF file to evade 

detection by anti-malware tools. By splitting the malware into multiple streams, it can be more 

difficult for anti-malware tools to detect and remove the malware from the PDF file. Similarly, 

by using an unusual number of "endstream" keywords, malware authors can make it more 

difficult for anti-malware tools to detect and analyze the contents of a PDF file. 

In addition, malware authors may use streams and "endstreams" keywords to hide malicious 

code within a PDF file. For example, malware may use JavaScript code embedded in a stream 

to execute commands on the user's system or to download additional malware. 

The number of "endstreams" keywords in a PDF file is an essential component in detecting 

PDF malware. By analyzing the number of "endstreams" keywords and looking for unusual 

patterns, it is possible to detect suspicious files and prevent the spread of malware. Anti-

malware tools can use the number of "endstreams" keywords to identify new and emerging 

types of malware, as well as to detect potentially malicious behavior. As PDF files continue to 
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be a popular means of delivering content, it is crucial to stay vigilant and use the latest security 

measures to protect against malware. 

2.3.3 Average Stream Size  

PDF files are widely used for sharing documents, but they can also be used to distribute 

malware. To detect and prevent malware in PDF files, security researchers use a range of 

techniques, including analyzing the average stream size in a PDF file. In this part, we will 

explore the use of the average stream size as a technique for detecting PDF malware. 

Streams are a type of object in PDF files that contain compressed or uncompressed data, such 

as text or images. Streams are often used to reduce the size of a PDF file, as they can be 

compressed using algorithms like Flate, LZW, or RunLength. Streams are identified in a PDF 

file using the "stream" keyword and are ended using the "endstream" keyword. 

The average stream size in a PDF file can be used to detect malware in several ways. One 

approach is to compare the average stream size in a PDF file to the expected average stream 

size for a file of similar complexity. If the average stream size in a PDF file is significantly 

higher or lower than the expected average, it may be an indication that the file contains 

malware. 

Another approach is to look for patterns in the average stream size in PDF files that are known 

to contain malware. For example, malware may consistently use streams of a specific size 

across different PDF files. By identifying these patterns, it may be possible to detect and 

prevent the spread of malware. 

In addition, some anti-malware tools can use heuristics to detect potentially malicious behavior 

based on the average stream size in a PDF file. For example, a tool may flag a PDF file as 

suspicious if it has an unusually large average stream size or if the average stream size 

increases significantly during the file's execution. 

Malware authors may use different stream sizes in a PDF file to evade detection by anti-

malware tools. By using varying stream sizes, it can be more difficult for anti-malware tools to 

detect and remove the malware from the PDF file. Similarly, by using streams of an unusual 
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size, malware authors can make it more difficult for anti-malware tools to detect and analyze 

the contents of a PDF file. 

In addition, malware authors may use different stream sizes to hide malicious code within a 

PDF file. For example, malware may use JavaScript code embedded in a stream to execute 

commands on the user's system or to download additional malware. 

The average stream size in a PDF file is an essential component in detecting PDF malware. By 

analyzing the average stream size and looking for unusual patterns, it is possible to detect 

suspicious files and prevent the spread of malware. Anti-malware tools can use the average 

stream size to identify new and emerging types of malware, as well as to detect potentially 

malicious behavior. As PDF files continue to be a popular means of delivering content, it is 

crucial to stay vigilant and use the latest security measures to protect against malware. 

2.3.4 No. of Xref Entries  

PDF files are a popular way of sharing documents. However, they can also be used to distribute 

malware. To detect and prevent malware in PDF files, security researchers use a range of 

techniques, including analyzing the number of Xref entries in a PDF file. In this part, we will 

explore the use of the number of Xref entries as a technique for detecting PDF malware. 

Xref (cross-reference) entries are a fundamental component of a PDF file's internal structure. 

They provide information about the location of objects within the PDF file, including the 

pages, fonts, images, and other resources. The Xref table is a critical part of a PDF file and 

allows it to be rendered correctly. 

The number of Xref entries in a PDF file can be used to detect malware in several ways. One 

approach is to compare the number of Xref entries in a PDF file to the expected number for a 

file of similar complexity. If the number of Xref entries in a PDF file is significantly higher or 

lower than the expected number, it may be an indication that the file contains malware. 

Another approach is to look for patterns in the number of Xref entries in PDF files that are 

known to contain malware. For example, malware may consistently use a specific number of 

Xref entries across different PDF files. By identifying these patterns, it may be possible to 

detect and prevent the spread of malware. 
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In addition, some anti-malware tools can use heuristics to detect potentially malicious behavior 

based on the number of Xref entries in a PDF file. For example, a tool may flag a PDF file as 

suspicious if it has an unusually high number of Xref entries or if the number of Xref entries 

increases significantly during the file's execution. 

Malware authors may use different numbers of Xref entries in a PDF file to evade detection by 

anti-malware tools. By using varying numbers of Xref entries, it can be more difficult for anti-

malware tools to detect and remove the malware from the PDF file. Similarly, by using an 

unusual number of Xref entries, malware authors can make it more difficult for anti-malware 

tools to detect and analyze the contents of a PDF file. 

In addition, malware authors may use different numbers of Xref entries to hide malicious code 

within a PDF file. For example, malware may use JavaScript code embedded in the Xref table 

to execute commands on the user's system or to download additional malware. 

The number of Xref entries in a PDF file is an essential component in detecting PDF malware. 

By analyzing the number of Xref entries and looking for unusual patterns, it is possible to 

detect suspicious files and prevent the spread of malware. Anti-malware tools can use the 

number of Xref entries to identify new and emerging types of malware, as well as to detect 

potentially malicious behavior. As PDF files continue to be a popular means of delivering 

content, it is crucial to stay vigilant and use the latest security measures to protect against 

malware. 

2.3.5 No. of Name Obfuscations  

PDFs are widely used for sharing and storing digital documents. However, they can also be 

used to distribute malware. Malicious actors can embed malware into PDFs, which can then 

infect a computer system or network when the PDF is opened. In order to combat this threat, 

researchers and cybersecurity professionals have developed various methods for detecting PDF 

malware. One of these methods is the use of PDF number of name obfuscations. 

PDF obfuscation is the practice of making code or data difficult to understand or analyze. This 

can be done in a variety of ways, including through the use of encryption, compression, and 

obfuscation techniques. One common technique is to obfuscate the names and numbers used in 
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the code. This can make it more difficult for malware detection tools to identify malicious 

code. 

PDF number and name obfuscation is a technique used to obfuscate the names and numbers in 

a PDF document. This can be done in a variety of ways, such as by replacing the names and 

numbers with random characters or by using an encoding algorithm to transform the names and 

numbers into a different format. The goal of this technique is to make it more difficult for 

malware detection tools to identify the code in the PDF as malicious. 

One way that PDF number and name obfuscation can be used for PDF malware detection is by 

analyzing the structure of the PDF document. Malware detection tools can examine the 

structure of the PDF and look for patterns that are indicative of obfuscation. For example, if the 

PDF contains a large number of randomly generated names or numbers, this may indicate that 

obfuscation is being used to conceal malicious code. 

Another way that PDF number and name obfuscation can be used for PDF malware detection is 

by analyzing the code itself. Malware detection tools can deobfuscate the code and analyze it to 

determine whether it is malicious. This can be done by using reverse engineering techniques to 

analyze the obfuscated code and identify its purpose. 

There are several tools and techniques that can be used to detect PDF number and name 

obfuscations. One commonly used tool is PDFid, which can be used to identify suspicious 

patterns in PDF documents. Other tools, such as PDF Stream Dumper and PDF Parser, can be 

used to extract and analyze the contents of a PDF document. 

In conclusion, PDF number and name obfuscation is a technique used to obfuscate the names 

and numbers in a PDF document. This technique can be used to conceal malicious code and 

make it more difficult for malware detection tools to identify the code as malicious. However, 

there are several tools and techniques that can be used to detect PDF number and name 

obfuscations, making it possible to identify and neutralize PDF malware. 

2.3.6 Total Number of Filters 

PDFs are commonly used for sharing and storing digital documents. However, they can also be 

used to distribute malware. Malicious actors can embed malware into PDFs, which can then 
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infect a computer system or network when the PDF is opened. In order to combat this threat, 

researchers and cybersecurity professionals have developed various methods for detecting PDF 

malware. One of these methods is the use of PDF filters. 

PDF filters are used to compress or decompress data within a PDF document. They can also be 

used to encode or decode data, or to transform data from one format to another. Malicious 

actors can use filters to hide malicious code within a PDF document. However, by analyzing 

the filters used in a PDF document, cybersecurity professionals can detect and neutralize PDF 

malware. 

PDF filters are typically identified by their filter names, which are used to indicate the type of 

filter being used. Some examples of filter names include FlateDecode, ASCIIHexDecode, and 

RunLengthDecode. By analyzing the filter names used in a PDF document, cybersecurity 

professionals can identify suspicious patterns and detect potential malware. 

One way that PDF filters can be used for PDF malware detection is by examining the filter 

order within a PDF document. Malicious actors may attempt to hide malicious code by using 

multiple filters in a specific order. By examining the filter order, cybersecurity professionals 

can detect suspicious patterns and identify potential malware. 

Another way that PDF filters can be used for PDF malware detection is by analyzing the 

contents of the filters themselves. Malicious actors may attempt to use custom filters to hide 

malicious code within a PDF document. By analyzing the contents of the filters, cybersecurity 

professionals can detect suspicious patterns and identify potential malware. 

There are several tools and techniques that can be used to detect PDF filters. One commonly 

used tool is PDFid, which can be used to identify suspicious patterns in PDF documents. Other 

tools, such as PDF Stream Dumper and PDF Parser, can be used to extract and analyze the 

contents of a PDF document. 

In conclusion, PDF filters are commonly used to compress or decompress data within a PDF 

document. They can also be used to encode or decode data, or to transform data from one 

format to another. Malicious actors can use filters to hide malicious code within a PDF 

document. However, by analyzing the filters used in a PDF document, cybersecurity 

professionals can detect and neutralize PDF malware. There are several tools and techniques 



 

32 

 

that can be used to detect PDF filters, making it possible to identify and neutralize PDF 

malware. 

2.3.7 No. of Objects with Nested Filters  

PDFs are a widely used format for sharing digital documents, but they can also be used for 

malicious purposes. Cybercriminals can use PDFs to embed malware and infect computer 

systems or networks when the document is opened. To combat this threat, cybersecurity 

professionals and researchers have developed various techniques for detecting PDF malware, 

including analyzing the number of objects and nested filters within a PDF. 

PDF objects are the building blocks of a PDF document. Each object can contain different 

types of data, including text, images, and metadata. Objects are typically identified by their 

object number and generation number. Objects in a PDF document can also be nested, meaning 

that one object can contain other objects within it. 

PDF filters, as mentioned before, are used to compress, or decompress data within a PDF 

document. They can also be used to encode or decode data, or to transform data from one 

format to another. Malicious actors can use filters to hide malicious code within a PDF 

document, and one of the ways they can achieve this is by nesting filters within objects. 

By analyzing the number of objects and nested filters within a PDF document, cybersecurity 

professionals can identify suspicious patterns and detect potential malware. Malicious actors 

may use a large number of objects and nested filters in an attempt to conceal malicious code. 

They may also use specific filter combinations or orders to bypass detection. 

One technique for detecting PDF malware through object and filter analysis is to use a tool like 

PDFiD or PDF Stream Dumper. These tools can be used to extract the contents of a PDF 

document and analyze the number of objects and nested filters within it. By identifying 

suspicious patterns, these tools can alert cybersecurity professionals to potential malware. 

Another technique for detecting PDF malware through object and filter analysis is to use a tool 

like PDF Parser. This tool can be used to extract and deobfuscate the contents of a PDF 

document. By analyzing the deobfuscated code, cybersecurity professionals can identify the 
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purpose of each object and filter within the document. This can help them to identify any 

suspicious or malicious code and take action to neutralize the threat. 

In conclusion, PDFs can be used to distribute malware, and malicious actors can use nested 

filters within objects to conceal malicious code. By analyzing the number of objects and nested 

filters within a PDF document, cybersecurity professionals can detect potential malware and 

take action to neutralize the threat. There are several tools and techniques that can be used for 

this analysis, including PDFiD, PDF Stream Dumper, and PDF Parser. By using these tools and 

techniques, cybersecurity professionals can keep computer systems and networks safe from 

PDF malware. 

2.3.8 No. of Stream Object (ObjStm)  

PDFs are a popular file format used for sharing digital documents, but they can also be used to 

distribute malware. Malicious actors can embed malware within a PDF document using various 

techniques, including the use of stream objects (ObjStm). ObjStm is a PDF object type used to 

store multiple objects within a compressed stream. 

By analyzing the number of ObjStm objects within a PDF document, cybersecurity 

professionals can detect potential malware and take action to neutralize the threat. Malicious 

actors may use ObjStm to hide malicious code within a PDF document, making it difficult to 

detect. 

One way to detect PDF malware using ObjStm is to use a tool like PDFiD or PDF Stream 

Dumper. These tools can extract the contents of a PDF document and analyze the number of 

ObjStm objects within it. If the number of ObjStm objects is unusually high or if there are 

many nested ObjStm objects, it could be an indication of potential malware. 

Another way to detect PDF malware using ObjStm is to examine the contents of the ObjStm 

object itself. Malicious actors may use ObjStm to store encrypted or obfuscated code, making it 

difficult to detect. However, by analyzing the contents of the ObjStm object, cybersecurity 

professionals can identify suspicious patterns and detect potential malware. 

In addition to analyzing the number of ObjStm objects within a PDF document, cybersecurity 

professionals can also analyze the contents of the PDF document itself. By examining the 
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JavaScript code within the PDF, they can identify suspicious patterns and detect potential 

malware. JavaScript is a commonly used programming language within PDFs, and it can be 

used to execute malicious code. 

Another way to detect PDF malware is by examining the metadata within the PDF document. 

Malicious actors may attempt to hide metadata that contains information about the PDF’s 

origin or author. By examining the metadata, cybersecurity professionals can identify 

suspicious patterns and detect potential malware. 

In conclusion, ObjStm is a PDF object type used to store multiple objects within a compressed 

stream, and it can be used to hide malicious code within a PDF document. By analyzing the 

number of ObjStm objects within a PDF document and examining the contents of those 

objects, cybersecurity professionals can detect potential malware and take action to neutralize 

the threat. There are several tools and techniques that can be used for this analysis, including 

PDFiD, PDF Stream Dumper, and examining the PDF’s metadata and JavaScript code. By 

using these tools and techniques, cybersecurity professionals can keep computer systems and 

networks safe from PDF malware. 

2.3.9 No. of Keywords “/JS”, No. of Keywords “/JavaScript” 

PDFs are a popular file format used for sharing digital documents, but they can also be used to 

distribute malware. Malicious actors can embed malware within a PDF document using various 

techniques, including the use of JavaScript code. JavaScript is a commonly used programming 

language within PDFs, and it can be used to execute malicious code [40]. Cybersecurity 

professionals can detect potential malware in a PDF document by analyzing the number of 

keywords "/JS" and "/JavaScript."[41] 

The keyword "/JS" is used within a PDF document to indicate the presence of JavaScript code. 

When this keyword is detected, it may indicate the presence of malicious code. The keyword 

"/JavaScript" is also used within a PDF document to indicate the presence of JavaScript code. 

By analyzing the number of occurrences of these keywords within a PDF document, 

cybersecurity professionals can detect potential malware. 

One way to detect PDF malware using these keywords is to use a tool like PDFiD or PDF 

Stream Dumper. These tools can extract the contents of a PDF document and analyze the 
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number of occurrences of "/JS" and "/JavaScript" keywords within it. If the number of 

occurrences of these keywords is unusually high or if they are located within an unusual object, 

it could be an indication of potential malware. 

 

Figure 4: JavaScript in PDF raw 

Another way to detect PDF malware using these keywords is to examine the contents of the 

JavaScript code itself. Malicious actors may use obfuscated or encrypted JavaScript code to 

conceal their malicious intentions. By examining the JavaScript code, cybersecurity 

professionals can identify suspicious patterns and detect potential malware. 

In addition to analyzing the number of occurrences of these keywords within a PDF document, 

cybersecurity professionals can also analyze the metadata within the PDF document. By 

examining the metadata, they can identify suspicious patterns and detect potential malware. 

Another way to detect PDF malware is to use a tool like PDF Parser. This tool can be used to 

extract and deobfuscate the contents of a PDF document. By analyzing the deobfuscated code, 

cybersecurity professionals can identify the purpose of each object and filter within the 

document. This can help them to identify any suspicious or malicious code and take action to 

neutralize the threat. 



 

36 

 

In conclusion, the keywords "/JS" and "/JavaScript" are used within a PDF document to 

indicate the presence of JavaScript code, which can be used to execute malicious code. By 

analyzing the number of occurrences of these keywords within a PDF document and examining 

the contents of the JavaScript code, cybersecurity professionals can detect potential malware. 

There are several tools and techniques that can be used for this analysis, including PDFiD, PDF 

Stream Dumper, PDF Parser, and examining the PDF’s metadata. By using these tools and 

techniques, cybersecurity professionals can keep computer systems and networks safe from 

PDF malware. 

2.3.10 No. of Keywords “/URL”, No. of Keywords “/Action”  

PDFs are a popular file format used for sharing digital documents. However, malicious actors 

can exploit PDFs to distribute malware by embedding malicious links or actions within the 

document. Cybersecurity professionals can detect potential malware in a PDF document by 

analyzing the number of occurrences of the keywords "/URL" and "/Action." 

The keyword "/URL" is used within a PDF document to indicate the presence of a URL or 

hyperlink. When this keyword is detected, it may indicate the presence of a malicious link. The 

keyword "/Action" is used within a PDF document to indicate the presence of an action. 

Actions are events triggered by user interaction, such as clicking on a link or button. By 

analyzing the number of occurrences of these keywords within a PDF document, cybersecurity 

professionals can detect potential malware. 

One way to detect PDF malware using these keywords is to use a tool like PDFiD or PDF 

Stream Dumper. These tools can extract the contents of a PDF document and analyze the 

number of occurrences of "/URL" and "/Action" keywords within it. If the number of 

occurrences of these keywords is unusually high or if they are located within an unusual object, 

it could be an indication of potential malware. 

Another way to detect PDF malware using these keywords is to examine the contents of the 

URLs or actions themselves. Malicious actors may use obfuscated or encrypted URLs or 

actions to conceal their malicious intentions. By examining the URLs or actions, cybersecurity 

professionals can identify suspicious patterns and detect potential malware. 
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In addition to analyzing the number of occurrences of these keywords within a PDF document, 

cybersecurity professionals can also analyze the metadata within the PDF document. By 

examining the metadata, they can identify suspicious patterns and detect potential malware. 

Another way to detect PDF malware is to use a tool like PDF Parser. This tool can be used to 

extract and deobfuscate the contents of a PDF document. By analyzing the deobfuscated code, 

cybersecurity professionals can identify the purpose of each object and filter within the 

document. This can help them to identify any suspicious or malicious URLs or actions and take 

action to neutralize the threat. 

In conclusion, the keywords "/URL" and "/Action" are used within a PDF document to indicate 

the presence of a URL or hyperlink and an action, respectively. By analyzing the number of 

occurrences of these keywords within a PDF document and examining the contents of the 

URLs or actions, cybersecurity professionals can detect potential malware. There are several 

tools and techniques that can be used for this analysis, including PDFiD, PDF Stream Dumper, 

PDF Parser, and examining the PDF’s metadata. By using these tools and techniques, 

cybersecurity professionals can keep computer systems and networks safe from PDF malware. 

 

2.3.11 No. of Keywords “/AA”, No. of Keywords “/OpenAction”  

PDF files have become an increasingly popular file format for sharing documents online. 

Unfortunately, like any other file format, PDF files can be used to distribute malware. 

Malicious actors can exploit vulnerabilities in PDF software to execute code or launch phishing 

attacks, among other things. To help detect malicious PDF files, there are certain keywords that 

security researchers can look for within the file. Two of these keywords are "/AA" and 

"/OpenAction". In this part, we'll explore how these keywords can be used for PDF malware 

detection. 

The "/AA" keyword in PDF refers to "additional actions". Additional actions are JavaScript 

scripts that are executed when a user interacts with a PDF document. For example, an 

additional action could be executed when the user clicks on a button or types of text into a 

field. Additional actions can be used for legitimate purposes, such as form validation, but they 

can also be used for malicious purposes, such as launching a malware download. 
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To detect whether a PDF file contains malicious additional actions, security researchers can use 

a PDF analysis tool that looks for the "/AA" keyword. The tool can then extract the JavaScript 

code associated with the additional action and analyze it for any malicious behavior. The 

analysis can include checking for the presence of known malware signatures or looking for 

suspicious network connections. 

The "/OpenAction" keyword in PDF refers to an action that is executed when a PDF document 

is opened. Like additional actions, open actions can be used for legitimate purposes, such as 

opening the document to a specific page, but they can also be used for malicious purposes, such 

as launching a malware download. 

To detect whether a PDF file contains a malicious open action, security researchers can again 

use a PDF analysis tool that looks for the "/OpenAction" keyword. The tool can then extract the 

action and analyze it for any malicious behavior. This can include checking for the presence of 

known malware signatures or looking for suspicious network connections. 

While keyword-based detection can be effective for detecting some types of PDF malware, it 

has limitations. For example, some malware may use obfuscated or encrypted code that is 

designed to evade detection by analysis tools. In addition, not all malicious PDF files will 

contain the "/AA" or "/OpenAction" keywords, so a lack of these keywords does not 

necessarily mean that a file is safe. 

PDF files can be used to distribute malware, but the /AA and /OpenAction keywords can be 

used to help detect malicious behavior. By using PDF analysis tools that look for these 

keywords, security researchers can extract and analyze JavaScript code associated with 

additional actions and open actions. While keyword-based detection has its limitations, it is an 

important tool in the fight against PDF malware. As always, it is important to keep your 

software up-to-date and exercise caution when opening PDF files from unknown sources. 

2.3.12 No. of Keywords “/launch”, No. of Keywords “/submitForm” 

PDF files are a common file format for sharing and distributing documents online. However, 

they can also be used to distribute malware. Malicious actors can exploit vulnerabilities in PDF 

software to execute code or launch phishing attacks, among other things. To help detect 

malicious PDF files, there are certain keywords that security researchers can look for within the 
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file. Two of these keywords are "/launch" and "/submitForm". In this part, we'll explore how 

these keywords can be used for PDF malware detection. 

The "/launch" keyword in PDF refers to an action that launches an application or executable 

file when the PDF is opened. This can be used for legitimate purposes, such as opening a 

linked document or a website, but it can also be used for malicious purposes, such as launching 

malware. 

To detect whether a PDF file contains a malicious launch action, security researchers can use a 

PDF analysis tool that looks for the "/launch" keyword. The tool can then extract the action and 

analyze it for any malicious behavior. This can include checking for the presence of known 

malware signatures or looking for suspicious network connections. 

The "/submitForm" keyword in PDF refers to an action that submits data from a PDF form to a 

server or other external location. This can be used for legitimate purposes, such as submitting a 

job application or survey, but it can also be used for malicious purposes, such as submitting 

sensitive data to a phishing site. 

To detect whether a PDF file contains a malicious submitForm action, security researchers can 

use a PDF analysis tool that looks for the "/submitForm" keyword. The tool can then extract the 

action and analyze it for any malicious behavior. This can include checking for the presence of 

known malware signatures or looking for suspicious network connections. 

While keyword-based detection can be effective for detecting some types of PDF malware, it 

has limitations. For example, some malware may use obfuscated or encrypted code that is 

designed to evade detection by analysis tools. In addition, not all malicious PDF files will 

contain the "/launch" or "/submitForm" keywords, so a lack of these keywords does not 

necessarily mean that a file is safe. 

PDF files can be used to distribute malware, but the /launch and /submitForm keywords can be 

used to help detect malicious behavior. By using PDF analysis tools that look for these 

keywords, security researchers can extract and analyze actions associated with launching 

applications or submitting form data. While keyword-based detection has its limitations, it is an 

important tool in the fight against PDF malware. As always, it is important to keep your 

software up-to-date and exercise caution when opening PDF files from unknown sources. 
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2.3.13 No. of Keywords “/Acroform”, No. of Keywords “/XFA”  

PDF files have become a popular file format for sharing and distributing documents online. 

Unfortunately, PDF files can also be used to distribute malware. Malicious actors can exploit 

vulnerabilities in PDF software to execute code or launch phishing attacks, among other things. 

To help detect malicious PDF files, there are certain keywords that security researchers can 

look for within the file. Two of these keywords are "/Acroform" and "/XFA". In this part, we'll 

explore how these keywords can be used for PDF malware detection. 

The "/Acroform" keyword in PDF refers to a type of interactive form in a PDF file. Acroforms 

can be used for legitimate purposes, such as filling out a tax form, but they can also be used for 

malicious purposes, such as collecting sensitive information or launching malware. 

To detect whether a PDF file contains a malicious Acroform, security researchers can use a 

PDF analysis tool that looks for the "/Acroform" keyword. The tool can then extract the form 

and analyze it for any malicious behavior. This can include checking for the presence of known 

malware signatures or looking for suspicious network connections. 

The "/XFA" keyword in PDF refers to XML Forms Architecture, which is a way of creating 

interactive forms in a PDF file. XFA forms can be used for legitimate purposes, such as 

submitting an online job application, but they can also be used for malicious purposes, such as 

launching malware. 

To detect whether a PDF file contains a malicious XFA form, security researchers can use a 

PDF analysis tool that looks for the "/XFA" keyword. The tool can then extract the form and 

analyze it for any malicious behavior. This can include checking for the presence of known 

malware signatures or looking for suspicious network connections. 

While keyword-based detection can be effective for detecting some types of PDF malware, it 

has limitations. For example, some malware may use obfuscated or encrypted code that is 
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designed to evade detection by analysis tools. In addition, not all malicious PDF files will 

contain the "/Acroform" or "/XFA" keywords, so a lack of these keywords does not necessarily 

mean that a file is safe. 

PDF files can be used to distribute malware, but the /Acroform and /XFA keywords can be 

used to help detect malicious behavior. By using PDF analysis tools that look for these 

keywords, security researchers can extract and analyze interactive forms associated with 

collecting data or launching applications. While keyword-based detection has its limitations, it 

is an important tool in the fight against PDF malware. As always, it is important to keep your 

software up-to-date and exercise caution when opening PDF files from unknown sources. 

2.3.14 No. of Keywords “/JBig2Decode”, No. of Keywords “/Colors”  

PDF files have become a popular file format for sharing and distributing documents online. 

Unfortunately, PDF files can also be used to distribute malware. Malicious actors can exploit 

vulnerabilities in PDF software to execute code or launch phishing attacks, among other things. 

To help detect malicious PDF files, there are certain keywords that security researchers can 

look for within the file. Two of these keywords are "/JBig2Decode" and "/Colors". In this part, 

we'll explore how these keywords can be used for PDF malware detection. 

The "/JBig2Decode" keyword in PDF refers to a compression method used for image data in 

PDF files. While JBIG2 is a legitimate compression method, it can also be used by malware to 

hide malicious code. Malicious actors can use JBIG2 to compress code in a PDF file, making it 

more difficult to detect. 

To detect whether a PDF file contains malicious JBIG2 code, security researchers can use a 

PDF analysis tool that looks for the "/JBig2Decode" keyword. The tool can then extract the 

compressed image data and analyze it for any malicious behavior. This can include checking 

for the presence of known malware signatures or looking for suspicious network connections. 
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The "/Colors" keyword in PDF refers to the number of colors used in an image in a PDF file. 

While this may seem like a benign keyword, it can be used by malware to evade detection. 

Malicious actors can create PDF files with images that have a large number of colors, which 

can cause some analysis tools to fail or crash. 

To detect whether a PDF file contains malicious code that exploits the "/Colors" keyword, 

security researchers can use a PDF analysis tool that looks for large images with a high number 

of colors. The tool can then analyze the image for any malicious behavior, such as hidden code 

or network connections. 

While keyword-based detection can be effective for detecting some types of PDF malware, it 

has limitations. For example, some malware may use obfuscated or encrypted code that is 

designed to evade detection by analysis tools. In addition, not all malicious PDF files will 

contain the "/JBig2Decode" or "/Colors" keywords, so a lack of these keywords does not 

necessarily mean that a file is safe. 

PDF files can be used to distribute malware, but the /JBig2Decode and /Colors keywords can 

be used to help detect malicious behavior. By using PDF analysis tools that look for these 

keywords, security researchers can extract and analyze compressed image data associated with 

PDF files. While keyword-based detection has its limitations, it is an important tool in the fight 

against PDF malware. As always, it is important to keep your software up-to-date and exercise 

caution when opening PDF files from unknown sources. 

2.3.15 No. of Keywords “/Richmedia”, No. of Keywords “/Trailer”  

PDF files are a popular document format that are widely used for sharing information. 

However, due to their flexibility, they can also be used for malicious purposes, such as 

spreading malware. To combat this, security researchers use various techniques to detect 

malware hidden within PDF files. Two of these techniques include looking for the presence of 
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the "/Richmedia" and "/Trailer" keywords within the PDF file. In this part, we'll explore how 

these keywords can be used for PDF malware detection. 

The "/Richmedia" keyword is used in PDF files to embed multimedia content, such as video or 

audio, within a PDF document. However, this keyword can also be exploited by attackers to 

embed malicious code within the PDF file. This can be done by embedding a Flash file that 

contains malicious code, which is then executed when the PDF file is opened. 

To detect whether a PDF file contains malicious code embedded within a "/Richmedia" object, 

security researchers can use a PDF analysis tool that searches for the keyword. Once the object 

is identified, the tool can then analyze the object for any malicious code, such as an embedded 

Flash file. 

The "/Trailer" keyword is used in PDF files to provide information about the structure of the 

document, including its catalog and metadata. This keyword can also be used by attackers to 

hide malicious code within the PDF file. This is done by manipulating the "/Trailer" keyword 

to include additional information, which can be used to launch an attack. 

To detect whether a PDF file contains malicious code hidden within the "/Trailer" keyword, 

security researchers can use a PDF analysis tool that searches for the keyword. The tool can 

then analyze the metadata within the "/Trailer" keyword for any suspicious activity, such as the 

presence of hidden scripts or URLs that may be used to launch an attack. 

While keyword-based detection can be effective for detecting some types of PDF malware, it 

has limitations. Malware authors can use various techniques to obfuscate or hide their code, 

making it difficult to detect using simple keyword searches. In addition, not all malicious PDF 

files will contain the "/Richmedia" or "/Trailer" keywords, so a lack of these keywords does not 

necessarily mean that a file is safe. 
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PDF files can be used to distribute malware, but the "/Richmedia" and "/Trailer" keywords can 

be used to help detect malicious behavior. By using PDF analysis tools that look for these 

keywords, security researchers can identify embedded multimedia content and analyze the 

metadata associated with PDF files. While keyword-based detection has its limitations, it is an 

important tool in the fight against PDF malware. As always, it is important to keep your 

software up-to-date and exercise caution when opening PDF files from unknown sources. 

2.3.16 No. of Keywords “Xref”, No. of Keywords “/Startxref”  

PDF files are a popular document format that is commonly used for sharing information. 

However, malicious actors can use PDF files to spread malware, which makes it essential for 

security researchers to develop techniques to detect malware hidden within PDF files. Two of 

these techniques include looking for the presence of the "/Xref" and "/Startxref" keywords 

within the PDF file. In this part, we'll explore how these keywords can be used for PDF 

malware detection. 

The "/Xref" keyword is used in PDF files to define the cross-reference table, which contains 

information about the location of objects within the PDF file. This keyword is essential for the 

PDF file to function properly, but it can also be used by attackers to embed malicious code 

within the PDF file. This is done by manipulating the cross-reference table to include 

additional information, which can be used to launch an attack. 

To detect whether a PDF file contains malicious code hidden within the "/Xref" keyword, 

security researchers can use a PDF analysis tool that searches for the keyword. The tool can 

then analyze the cross-reference table for any suspicious activity, such as the presence of 

hidden scripts or URLs that may be used to launch an attack. 

The "/Startxref" keyword is used in PDF files to provide information about the start of the 

cross-reference table. This keyword can also be used by attackers to hide malicious code within 
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the PDF file. This is done by manipulating the "/Startxref" keyword to include additional 

information, which can be used to launch an attack. 

To detect whether a PDF file contains malicious code hidden within the "/Startxref" keyword, 

security researchers can use a PDF analysis tool that searches for the keyword. The tool can 

then analyze the metadata associated with the "/Startxref" keyword for any suspicious activity, 

such as the presence of hidden scripts or URLs that may be used to launch an attack. 

While keyword-based detection can be effective for detecting some types of PDF malware, it 

has limitations. Malware authors can use various techniques to obfuscate or hide their code, 

making it difficult to detect using simple keyword searches. In addition, not all malicious PDF 

files will contain the "/Xref" or "/Startxref" keywords, so a lack of these keywords does not 

necessarily mean that a file is safe. 

PDF files can be used to distribute malware, but the "/Xref" and "/Startxref" keywords can be 

used to help detect malicious behavior. By using PDF analysis tools that look for these 

keywords, security researchers can identify hidden scripts or URLs that may be used to launch 

an attack. While keyword-based detection has its limitations, it is an important tool in the fight 

against PDF malware. As always, it is important to keep your software up-to-date and exercise 

caution when opening PDF files from unknown sources. 
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Chapter 3 

Architecture and Training of MLP 

3.1 Overview 

The Multi-Layer Perceptron is a type of artificial neural network that consists of multiple layers 

of interconnected nodes. Each node performs a simple mathematical operation on the input it 

receives and passes the result on to the next layer. The output of the final layer is the predicted 

class of the input data. MLPs have been successfully applied in a wide range of applications, 

including image classification, speech recognition, and natural language processing. 

The architecture of an MLP consists of an input layer, one or more hidden layers, and an output 

layer. The input layer receives the input data, which is typically represented as a vector of 

features. Each node in the input layer corresponds to a feature of the input data. The hidden layers 

perform a series of transformations on the input data, gradually learning to extract higher-level 

features. Finally, the output layer produces the predicted class of the input data, which is typically 

represented as a probability distribution over the possible classes.[42] 

The training of an MLP involves adjusting the weights of the connections between its nodes 

based on the training data. The weights control the strength of the connections between the nodes 

and determine how the input data is transformed as it passes through the network. The training 

process involves an iterative optimization algorithm called backpropagation, which adjusts the 

weights to minimize the difference between the predicted output and the actual output. 

Backpropagation involves computing the gradient of the loss function with respect to the weights 

and using this gradient to update the weights. The loss function measures how well the MLP is 

able to predict the correct output given the input data. There are various loss functions that can 

be used for different types of classification problems, such as cross-entropy loss for binary 

classification or categorical cross-entropy loss for multi-class classification. 

The optimization of MLPs involves finding the optimal values for the hyperparameters of the 

network, such as the learning rate, the number of hidden layers, and the number of nodes in each 

layer. Hyperparameter tuning can be a challenging task, as the optimal values may depend on the 



 

47 

 

specific characteristics of the dataset and the problem being solved. In the next paragraph, we 

will discuss the steps involved in optimizing MLPs for detecting PDF malware. 

The optimization of MLPs for detecting PDF malware involves several steps, including dataset 

curation, feature selection, hyperparameter tuning, and model evaluation. Each of these steps is 

critical to the overall performance of the MLP and requires careful consideration. 

Dataset curation involves selecting a set of PDF files that represent the target population of 

malware. The dataset should include a representative sample of benign and malicious PDF files, 

and the malicious files should be diverse in terms of the techniques used to hide the malware. 

The dataset should also be balanced to ensure that the MLP does not become biased towards the 

majority class. 

Feature selection involves selecting a subset of the available features that are most relevant to 

the task of detecting PDF malware. This step can be challenging, as there may be many features 

to choose from, and the optimal subset may depend on the specific characteristics of the dataset 

and the problem being solved. Feature selection can be performed using techniques such as 

mutual information, correlation analysis, or principal component analysis (PCA). 

Hyperparameter tuning involves finding the optimal values for the hyperparameters of the MLP, 

such as the learning rate, the number of hidden layers, and the number of nodes in each layer. 

Hyperparameter tuning can be performed using techniques such as grid search, random search, 

or Bayesian optimization. The optimal values for the hyperparameters can be determined using 

metrics such as accuracy, precision, recall, or F1-score. 

Model evaluation involves testing the performance of the optimized MLP on a separate test set 

of PDF files that were not used in the training or validation phases. Model evaluation can be 

performed using metrics such as accuracy, precision, recall, or F1-score. The performance of the 

optimized MLP should be compared to that of other state-of-the-art methods for detecting PDF 

malware. 
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3.2 Experimental Setup 

For the purpose of this thesis, we have decided to go with the dataset provided by the Canadian 

institute of cyber security with the name CIC-Evasive-PDFMal2022. This dataset has been 

created by collecting 11,173 malicious files from Contagio, 20,000 malicious files from 

Virustotal and 9,109 benign files from Contagio.[43] 

The multi-layer perceptron model that we have used uses 3 hidden layers with 6,100,50 and 10 

neurons respectively. Maximum number of iterations to be run by the solver are set to 5,000,000. 

80% of the data was used for training and 20% for testing. After doing the experiment, we were 

able to achieve an accuracy of 96.05985. This is a very good accuracy which is very much in line 

with the best models available in the literature. 

 

Figure 5: Compilation of Dataset 

Next, we have proposed a comparison of MLP with other Artificial Intelligence algorithms and 

proved that MLP is the better algorithm for implementation of PDF malware detector using 

Artificial Intelligence  
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3.3 Comparison with other models 

After performing the experiment with MLP, we compared our results with other algorithms as 

well. These algorithms include: 

1. ExtraTreesClassifier 

2. XGBClassifier 

3. RandomForestClassifier 

4. BaggingClassifier 

5. AdaBoostClassifier 

6. LGBMClassifier 

7. DecisionTreeClassifier 

8. KNeighborsClassifier 

9. LabelPropagation 

10. LabelSpreading 

11. ExtraTreeClassifier 

12. SVC 

13. SGDClassifier 

14. LogisticRegression 

15. LinearDiscriminantAnalysis 

16. RidgeClassifierCV 

17. RidgeClassifier 

18. CalibratedClassifierCV 

19. LinearSVC 

20. NuSVC 

21. NearestCentroid 

22. BernoulliNB 

23. Perceptron 

24. PassiveAggressiveClassifier 

25. QuadraticDiscriminantAnalysis 

26. GaussainNB 

27. DummyClassifier 
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Comparison was made on the following metrics: 

3.3.1 Accuracy 

Accuracy is a commonly used evaluation metric in artificial intelligence (AI) and machine 

learning (ML) algorithms that measures how well a model is able to correctly predict the outcome 

of a task. 

In the context of classification tasks, accuracy measures the proportion of correctly classified 

instances over the total number of instances in the dataset. It is calculated as: 

accuracy = (number of correctly classified instances) / (total number of instances) 

For example, if a model correctly classifies 90 out of 100 instances, the accuracy would be 90%. 

While accuracy is a useful metric, it may not always be the best measure of performance in 

certain situations, especially when the class distribution is imbalanced or when different types of 

errors have different consequences. In these cases, other metrics such as precision, recall, F1 

score, or AUC may be more appropriate. 

 

3.3.2 Balanced Accuracy 

Balanced accuracy is a modified version of accuracy that takes into account class imbalance in a 

dataset. It is a useful evaluation metric in binary classification tasks where the number of samples 

in each class is not equal. 

In contrast to accuracy, which only considers the overall accuracy of the model, balanced 

accuracy calculates the average of sensitivity (true positive rate) and specificity (true negative 

rate) for each class. Sensitivity measures the proportion of true positives (TP) out of all positive 

cases (TP + false negatives (FN)), while specificity measures the proportion of true negatives 

(TN) out of all negative cases (TN + false positives (FP)). 

The formula for balanced accuracy is: 

balanced accuracy = (sensitivity + specificity) / 2 



 

51 

 

Balanced accuracy is especially useful when the class distribution is imbalanced, where one class 

has significantly more samples than the other. In such cases, accuracy may be a misleading metric 

because the model may achieve high accuracy by simply predicting the majority class. In 

contrast, balanced accuracy takes into account the performance of the model in both classes and 

provides a more accurate assessment of its performance. 

3.3.3 ROC AUC 

ROC (Receiver Operating Characteristic) curve is a graphical plot that illustrates the performance 

of a binary classifier system as its discrimination threshold is varied. It is a plot of the true positive 

rate (TPR) against the false positive rate (FPR) for different threshold values. 

AUC (Area Under the ROC Curve) is a metric that measures the overall performance of a binary 

classifier system. It is the area under the ROC curve, and its value ranges from 0 to 1. AUC is a 

useful metric because it summarizes the ROC curve into a single number, indicating how well 

the classifier is able to distinguish between positive and negative classes. 

An AUC of 1.0 indicates perfect classification, while an AUC of 0.5 indicates that the classifier 

is no better than random guessing. AUC values between 0.5 and 1.0 indicate varying degrees of 

classification performance, with higher values indicating better performance. 

In general, ROC and AUC are commonly used to evaluate the performance of binary 

classification models, especially in situations where the class distribution is imbalanced, i.e., one 

class has many more examples than the other. 

3.3.4 F1 Score 

The F1 score is a commonly used evaluation metric in artificial intelligence (AI) and machine 

learning (ML) algorithms to measure the overall performance of a model in binary classification 

tasks. It is the harmonic mean of precision and recall, and it takes into account both false positives 

and false negatives. 

Precision measures the proportion of true positives (TP) out of all predicted positives (TP + false 

positives (FP)), while recall measures the proportion of true positives (TP) out of all actual 

positives (TP + false negatives (FN)). The F1 score is the harmonic mean of precision and recall, 

and it ranges from 0 to 1, with higher values indicating better performance. 



 

52 

 

The formula for F1 score is: 

F1 score = 2 * ((precision * recall) / (precision + recall)) 

The F1 score is a useful metric when the dataset is imbalanced, i.e., one class has many more 

examples than the other. In such cases, accuracy may not be a good metric to evaluate the 

performance of the model, as it can be misleading. The F1 score provides a balanced measure of 

precision and recall, and it can help to identify models that have high precision but low recall, or 

vice versa. 

3.3.5 Time Taken 

The time taken in artificial intelligence algorithm comparison refers to the amount of time 

required by different algorithms to train a model, make predictions on a dataset, and evaluate its 

performance. It is an important factor to consider when comparing different algorithms because 

it can have a significant impact on the practical feasibility of using a model in a real-world setting. 

The time taken for an algorithm to run depends on several factors, such as the size of the dataset, 

the complexity of the model, and the computing resources available. Some algorithms, such as 

decision trees and k-nearest neighbors, are relatively fast to train and make predictions, while 

others, such as deep neural networks, can be very computationally expensive. 

When comparing different algorithms, it is important to consider the time taken in addition to 

other factors such as accuracy, interpretability, and scalability. Depending on the application, a 

fast but less accurate algorithm may be preferable over a slower but more accurate one. 

Therefore, the choice of algorithm ultimately depends on the specific requirements of the task at 

hand and the trade-offs between different factors. 

3.4 Results 

The results of the comparison based on above-mentioned evaluation metrics on the above-

mentioned algorithms can be observed in the table below: 
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Model Accuracy Balanced 

Accuracy 

ROC 

AUC 

F1  

Score 

Time 

Taken 

ExtraTreesClassifier 1.00 1.00 1.00 1.00 0.32 

XGBClassifier 1.00 1.00 1.00 1.00 0.20 

RandomForestClassifier 1.00 1.00 1.00 1.00 0.44 

BaggingClassifier 1.00 1.00 1.00 1.00 0.08 

AdaBoostClassifier 1.00 1.00 1.00 1.00 0.40 

LGBMClassifier 1.00 1.00 1.00 1.00 0.21 

DecisionTreeClassifier 1.00 1.00 1.00 1.00 0.02 

KNeighborsClassifier 0.99 0.99 0.99 0.99 0.16 

LabelPropagation 0.99 0.99 0.99 0.99 1.12 

LabelSpreading 0.99 0.99 0.99 0.99 2.37 

ExtraTreeClassifier 0.99 0.99 0.99 0.99 0.02 

SVC 0.99 0.99 0.99 0.99 0.49 

SGDClassifier 0.98 0.98 0.98 0.98 0.04 

LogisticRegression 0.97 0.97 0.97 0.97 0.04 

LinearDiscriminantAnalysis 0.97 0.97 0.97 0.97 0.04 

RidgeClassifierCV 0.97 0.97 0.97 0.97 0.02 

RidgeClassifier 0.97 0.97 0.97 0.97 0.02 

CalibratedClassifierCV 0.97 0.97 0.97 0.97 1.00 
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LinearSVC 0.96 0.96 0.96 0.96 0.25 

NuSVC 0.95 0.96 0.96 0.95 2.89 

NearestCentroid 0.95 0.95 0.95 0.95 0.02 

BernoulliNB 0.94 0.94 0.94 0.94 0.02 

MLP 0.88 0.88 0.88 0.88 0.02 

PassiveAggressiveClassifier 0.88 0.89 0.89 0.88 0.02 

QuadraticDiscriminantAnalysis 0.82 0.83 0.83 0.81 0.02 

GaussianNB 0.80 0.82 0.82 0.80 0.02 

DummyClassifier 0.56 0.50 0.50 0.40 0.02 

Table 1: Comparison of MLP with other algorithms 

There are other algorithms that perform better then MLP according to all these evaluation 

parameters except time taken. Below figure shows comparison of MLP with Random Forest and 

Decision Tree algorithms which are most popular in literature. 

 

Figure 6: Comparison of MLP with Random Forest and Decision Tree 
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3.5 Benefits of MLP 

Multi-layer perceptron (MLP) is a type of artificial neural network that can be used for 

classification and regression tasks, while decision trees and random forests are machine learning 

algorithms used for classification and regression tasks as well. Here are some potential benefits 

of using MLP over decision tree and random forest: 

• MLP can handle non-linearly separable data: MLP can learn complex non-linear decision 

boundaries, whereas decision trees and random forests may struggle with this task. 

• MLP can generalize better: MLP can generalize better to new, unseen data compared to 

decision trees and random forests, which may overfit the training data. 

• MLP can work with continuous and categorical data: MLP can handle both continuous 

and categorical data, whereas decision trees and random forests typically work best with 

categorical data. 

• MLP can learn complex feature representations: MLP can learn complex feature 

representations of the data, whereas decision trees and random forests may rely on hand-

crafted feature engineering. 

• MLP can be used for end-to-end learning: MLP can be used for end-to-end learning, 

where the raw input data is fed directly into the network, and the network learns to extract 

features and make predictions, whereas decision trees and random forests typically 

require pre-processing of the data. 

However, decision trees and random forests also have their own set of benefits, such as being 

interpretable, fast to train, and easy to implement. The choice of algorithm depends on the 

specific task and the characteristics of the data. Therefore MLP is a better algorithm for security 

purposes. 

 

  



 

56 

 

Chapter 4 

Conclusion, Challenges and Future Work 

4.1 Challenges and Future Directions  

The optimization of MLPs for detecting PDF malware is a challenging task that requires careful 

consideration of the dataset, feature selection, hyperparameter tuning, and model evaluation. 

There are several challenges and future directions that should be considered in this area. 

One challenge is the development of more advanced feature extraction techniques that can 

capture the complex and varied characteristics of PDF malware. For example, machine learning 

algorithms can be used to automatically extract features from PDF files, such as those based on 

deep learning techniques like convolutional neural networks (CNNs) or recurrent neural 

networks (RNNs) that can process the raw data directly, without the need for feature extraction. 

Another challenge is the development of more sophisticated models that can handle the 

complexity of PDF files and detect more advanced forms of malware. For example, generative 

adversarial networks (GANs) can be used to generate realistic PDF files that contain hidden 

malware, which can be used to train and test detection models. 

Furthermore, the integration of human expert knowledge and domain expertise can also enhance 

the performance of PDF malware detection systems. Human experts can provide insights into 

the characteristics of PDF malware that can be difficult to capture using machine learning 

techniques alone. For example, human experts can identify patterns in the content or structure of 

PDF files that are indicative of malicious activity. 

Finally, the development of robust and interpretable models is also an important direction for 

future research. Robust models can handle adversarial attacks that are designed to evade 

detection, while interpretable models can provide insights into the features and patterns that are 

driving the model's predictions. 

4.2 Conclusion 

 In conclusion, the optimization of MLPs for detecting PDF malware is a challenging and 

important area of research in machine learning. PDF malware is a growing threat that can have 
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serious consequences for individuals, organizations, and society as a whole. MLPs can be 

effective in detecting PDF malware by leveraging the power of machine learning to identify 

patterns in the content, structure, and metadata of PDF files. The optimization of MLPs involves 

several steps, including dataset curation, feature selection, hyperparameter tuning, and model 

evaluation. There are several challenges and future directions in this area, including the 

development of more advanced feature extraction techniques, the use of more sophisticated 

models, the integration of human expertise, and the development of robust and interpretable 

models. Overall, the optimization of MLPs for detecting PDF malware has the potential to make 

a significant impact in the fight against cybercrime and enhance the security of digital systems. 
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Appendix A 

Training of MLP 

 

[ ]: Fine name pdfsize metadata size \ 

0 

aedaf3c5428a2e3ba600c44b96ad78dfdf8ed76e7df129… 

8.0 180.0 

1 

fe767fb2584a10c010626263ea950643ac25f6ca24628f… 

15.0 224.0 

2 

544c5223ee301affad514b6fa585b3191625aba0a7222b… 

4.0 468.0 

3 

669772e626deccb9cfb7eb6a61e13d248d0ea08f1abe15… 

17.0 250.0 

4 

e434c884f45a691b0bf33d765f61794007eb0b8bb9f590… 

7.0 252.0 

pages xref Length title characters isEncrypted embedded files images \ 

0 1.0 11.0 0.0 0.0 0.0 0 1 0.0 20.0 7.0 0.0 0.0 0 

2 2.0 13.0 16.0 0.0 0.0 0 

3 1.0 15.0 0.0 0.0 0.0 0 4 3.0 16.0 45.0 0.0 0.0

 0 

text … AA OpenAction Acroform JBIG2Decode RichMedia launch \ 

0 No … 0 1 0 0 0 0 

1 No … 0 0 1 0 0 0 

2 Yes … 0 1 0 0 0 0 

3 No … 0 1 1 0 0 0 

4 Yes … 0 1 0 0 0 0 

 EmbeddedFile XFA Colors Class 

0 0 0 0.0 Malicious 

1 8 1 0.0 Malicious 

2 0 0 0.0 Malicious 

3 0 0 0.0 Malicious 

4 0 0 0.0 Malicious 

[5 rows x 33 columns] 
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[ ]: pdfsize metadata size pages xref Length \ 

 count 10025.000000 10025.000000 10025.000000 10025.000000 

mean  87.209476 334.099352 3.398105 2739.220549 

std 444.197122 1565.853177 11.902471 18139.229396 

min  -1.000000 -1.000000 -1.000000 -1.000000 

25%  9.000000 180.000000 1.000000 12.000000 

50%  36.000000 265.000000 1.000000 21.000000 

75%  80.000000 319.000000 2.000000 77.000000 

max 23816.000000 77185.000000 595.000000 263987.000000 

title characters isEncrypted embedded files stream \ 

count  10025.000000 10025.000000 10025.000000 10023.000000 

mean  51.477207 -0.020848 -0.006484 17.341215 

std  1354.640037 0.206789 0.257098 35.330169 

min  -1.000000 -1.000000 -1.000000 -1.000000 

25%  0.000000 0.000000 0.000000 2.000000 

50%  0.000000 0.000000 0.000000 4.000000 

75%  13.000000 0.000000 0.000000 18.000000 

max  76993.000000 4.000000 5.000000 812.000000 

 trailer encrypt ObjStm Colors 

count 10023.000000 10023.000000 10023.000000 10023.000000 

mean 1.203532 -0.043500 1.516811 2.087000 

std 1.370455 0.256045 7.633485 58.178074 

min -1.000000 -1.000000 -1.000000 -1.000000 

25% 1.000000 0.000000 0.000000 0.000000 

50% 1.000000 0.000000 0.000000 0.000000 

75% 2.000000 0.000000 0.000000 0.000000 

max 46.000000 2.000000 600.000000 5682.000000 

 

[ ]: Fine name pdfsize metadata size \ 

0 

aedaf3c5428a2e3ba600c44b96ad78dfdf8ed76e7df129… 

8.0 180.0 

1 

fe767fb2584a10c010626263ea950643ac25f6ca24628f… 

15.0 224.0 

2 

544c5223ee301affad514b6fa585b3191625aba0a7222b… 

4.0 468.0 

3 

669772e626deccb9cfb7eb6a61e13d248d0ea08f1abe15… 

17.0 250.0 

4 

e434c884f45a691b0bf33d765f61794007eb0b8bb9f590… 

7.0 252.0 

pages xref Length title characters isEncrypted embedded files images \ 

0 1.0 11.0 0.0 0.0 0.0 0 1 0.0 20.0 7.0 0.0 0.0 0 

2 2.0 13.0 16.0 0.0 0.0 0 

3 1.0 15.0 0.0 0.0 0.0 0 

4 3.0 16.0 45.0 0.0 0.0 0 

    



 

64 
 

text … AA OpenAction Acroform JBIG2Decode RichMedia launch \ 

0 No … 0 1 0 0 0 0 

1 No … 0 0 1 0 0 0 

2 Yes … 0 1 0 0 0 0 

3 No … 0 1 1 0 0 0 

4 Yes … 0 1 0 

 EmbeddedFile XFA Colors Class 

0 0 0 0.0 Malicious 

1 8 1 0.0 Malicious 

2 0 0 0.0 Malicious 

3 0 0 0.0 Malicious 

4 0 0 0.0 Malicious 

0 0 0 

[5 rows x 33 columns] 

[ ]: # Preprocessing the Dataset 

#removing useless columns based on the statistical information 

dataframe.shape #dimmensions 

 

[ ]: Fine name pdfsize metadata size pages xref Length title characters \ 

0 0 8.0 180.0 1.0 11.0 0.0 1 1 15.0 224.0 0.0 20.0 7.0 

2 2 4.0 468.0 2.0 13.0 16.0 

3 3 17.0 250.0 1.0 15.0 0.0 

4 4 7.0 252.0 3.0 16.0 45.0 

isEncrypted embedded files images text … AA OpenAction Acroform \ 

0 0.0 0.0 0 No … 0 1 0 1 0.0 0.0 0 No … 0 0

 1 2 0.0 0.0 0 Yes … 0 1 0 3 0.0 0.0 0 No … 0

 1 1 

 4 0.0 0.0 0 Yes … 0 1 0 

 JBIG2Decode RichMedia launch EmbeddedFile XFA Colors Class 

0 0 0 0 0 0 0.0 Malicious 

1 0 0 0 8 1 0.0 Malicious 

2 0 0 0 0 0 0.0 Malicious 

3 0 0 0 0 0 0.0 Malicious 

4 0 0 0 0 0 0.0 Malicious 

[5 rows x 33 columns] 

  

  

           

, →  
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<ipython-input-36-26b5073bf24c>:1: FutureWarning: The default value 

of numeric_only in DataFrame.mean is deprecated. In a future version, 

it will default to False. In addition, specifying 'numeric_only=None' 

is deprecated. Select only valid columns or specify the value of 

numeric_only to silence this warning. means = dataframe.mean() 

 

Index(['isEncrypted', 'embedded files', 'encrypt'], dtype='object') 

Index(['Fine name', 'pdfsize', 'metadata size', 'pages', 'xref 

Length', 'title characters', 'images', 'text', 'header', 'obj', 

'endobj', 

'stream', 'endstream', 'xref', 'trailer', 'startxref', 'pageno', 

'ObjStm', 'JS', 'Javascript', 'AA', 'OpenAction', 'Acroform', 

'JBIG2Decode', 'RichMedia', 'launch', 'EmbeddedFile', 'XFA', 

'Colors', 'Class'], 
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Fine name pdfsize metadata size pages xref Length title characters \ 

0 0 8.0 180.0 1.0 11.0 0.0 

1 1 15.0 224.0 0.0 20.0 7.0 

2 2 4.0 468.0 2.0 13.0 16.0 

3 3 17.0 250.0 1.0 15.0 0.0 

4 4 7.0 252.0 3.0 16.0 45.0 

stream trailer ObjStm Colors 

0 3.0 1.0 0.0 0.0 1 9.0

 1.0 0.0 0.0 2 3.0 1.0

 0.0 0.0 3 2.0 1.0 0.0

 0.0 

 4 4.0 1.0 0.0 0.0 

 

 

     

 

 

       

, →     

      

 

  

      

 

                  

, →     

          

, →         
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Iteration 3, loss = 0.84945731 

Iteration 4, loss = 0.83282700 

Iteration 5, loss = 0.81996741 

Iteration 6, loss = 0.80703455 

Iteration 7, loss = 0.79462416 

Iteration 8, loss = 0.78335563 

Iteration 9, loss = 0.77675159 

Iteration 10, loss = 0.77221580 

Iteration 11, loss = 0.76454551 

Iteration 12, loss = 0.75662850 

Iteration 13, loss = 0.73817340 

Iteration 14, loss = 0.73855514 

Iteration 15, loss = 0.72396001 

Iteration 16, loss = 0.72525145 

Iteration 17, loss = 0.72785319 

Iteration 18, loss = 0.71423694 

Iteration 19, loss = 0.71072084 

Iteration 20, loss = 0.69607157 

Iteration 21, loss = 0.69161742 

Iteration 22, loss = 0.68370341 

Iteration 23, loss = 0.67940726 

Iteration 24, loss = 0.67794917 

Iteration 25, loss = 0.66942196 

Iteration 26, loss = 0.66593699 

Iteration 27, loss = 0.66379387 

Iteration 28, loss = 0.65203520 

Iteration 29, loss = 0.65413469 

Iteration 30, loss = 0.64603790 

Iteration 31, loss = 0.64242178 

Iteration 32, loss = 0.64649772 

Iteration 33, loss = 0.62901734 

Iteration 34, loss = 0.61703872 

Iteration 35, loss = 0.62438432 

Iteration 36, loss = 0.61343330 

Iteration 37, loss = 0.59883955 

Iteration 38, loss = 0.59910119 

Iteration 39, loss = 0.59336769 

Iteration 40, loss = 0.58197049 

Iteration 41, loss = 0.58657537 

Iteration 42, loss = 0.58356771 

Iteration 43, loss = 0.56672245 

Iteration 44, loss = 0.56719903 

Iteration 45, loss = 0.56227133 

Iteration 46, loss = 0.54922892 

Iteration 47, loss = 0.54054469 

Iteration 48, loss = 0.53382364 
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Iteration 49, loss = 0.53352346 

Iteration 50, loss = 0.52666215 

Iteration 51, loss = 0.52154725 Iteration 52, loss = 0.51042947 

Iteration 53, loss = 0.50321544 

Iteration 54, loss = 0.49832079 

Iteration 55, loss = 0.48359526 

Iteration 56, loss = 0.47009186 

Iteration 57, loss = 0.45313203 

Iteration 58, loss = 0.43306311 

Iteration 59, loss = 0.43989371 

Iteration 60, loss = 0.42011681 

Iteration 61, loss = 0.41321519 

Iteration 62, loss = 0.40695503 

Iteration 63, loss = 0.40724181 

Iteration 64, loss = 0.40333271 

Iteration 65, loss = 0.39892181 

Iteration 66, loss = 0.39530011 

Iteration 67, loss = 0.39465271 

Iteration 68, loss = 0.38575951 

Iteration 69, loss = 0.38977782 

Iteration 70, loss = 0.39241008 

Iteration 71, loss = 0.38298531 

Iteration 72, loss = 0.38488808 

Iteration 73, loss = 0.37498073 

Iteration 74, loss = 0.36855905 

Iteration 75, loss = 0.37137417 

Iteration 76, loss = 0.36366008 

Iteration 77, loss = 0.35802508 

Iteration 78, loss = 0.36120000 

Iteration 79, loss = 0.35615484 

Iteration 80, loss = 0.35119258 

Iteration 81, loss = 0.35223679 

Iteration 82, loss = 0.37421088 

Iteration 83, loss = 0.35070015 

Iteration 84, loss = 0.34418504 

Iteration 85, loss = 0.34707818 

Iteration 86, loss = 0.34654475 

Iteration 87, loss = 0.34174237 

Iteration 88, loss = 0.34065737 

Iteration 89, loss = 0.33856552 

Iteration 90, loss = 0.33817393 

Iteration 91, loss = 0.33985001 

Iteration 92, loss = 0.33868208 

Iteration 93, loss = 0.34028122 

Iteration 94, loss = 0.34792737 

Iteration 95, loss = 0.33533680 
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Iteration 96, loss = 0.33220528 

Iteration 97, loss = 0.32692242 

Iteration 98, loss = 0.32474545 

Iteration 99, loss = 0.32556744 Iteration 100, loss = 0.32585011 

Iteration 101, loss = 0.33130359 

Iteration 102, loss = 0.32627468 

Iteration 103, loss = 0.34263454 

Iteration 104, loss = 0.31722116 

Iteration 105, loss = 0.31517071 

Iteration 106, loss = 0.33748426 

Iteration 107, loss = 0.34150354 

Iteration 108, loss = 0.32112366 

Iteration 109, loss = 0.33003322 

Iteration 110, loss = 0.32560238 

Iteration 111, loss = 0.32096569 

Iteration 112, loss = 0.31789361 

Iteration 113, loss = 0.32236922 

Iteration 114, loss = 0.30937929 

Iteration 115, loss = 0.31289201 

Iteration 116, loss = 0.34638520 

Iteration 117, loss = 0.30160586 

Iteration 118, loss = 0.30057086 

Iteration 119, loss = 0.31512145 

Iteration 120, loss = 0.31651453 

Iteration 121, loss = 0.30068118 

Iteration 122, loss = 0.30150828 

Iteration 123, loss = 0.29797487 

Iteration 124, loss = 0.29781278 

Iteration 125, loss = 0.29797281 

Iteration 126, loss = 0.29519166 

Iteration 127, loss = 0.29437750 

Iteration 128, loss = 0.30358302 

Iteration 129, loss = 0.29405439 

Iteration 130, loss = 0.29621953 

Iteration 131, loss = 0.28793387 

Iteration 132, loss = 0.28869428 

Iteration 133, loss = 0.28770160 

Iteration 134, loss = 0.28398103 

Iteration 135, loss = 0.28686016 

Iteration 136, loss = 0.28962518 

Iteration 137, loss = 0.30716241 

Iteration 138, loss = 0.29932123 

Iteration 139, loss = 0.28291992 

Iteration 140, loss = 0.29396323 

Iteration 141, loss = 0.28548987 

Iteration 142, loss = 0.28986208 
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Iteration 143, loss = 0.30244561 

Iteration 144, loss = 0.27565666 

Iteration 145, loss = 0.28042302 

Iteration 146, loss = 0.28392951 

Iteration 147, loss = 0.29702190 Iteration 148, loss = 0.27929378 

Iteration 149, loss = 0.27099194 

Iteration 150, loss = 0.27095004 

Iteration 151, loss = 0.27055895 

Iteration 152, loss = 0.26893495 

Iteration 153, loss = 0.26788807 

Iteration 154, loss = 0.28987887 

Iteration 155, loss = 0.26827556 

Iteration 156, loss = 0.28343639 

Iteration 157, loss = 0.26583491 

Iteration 158, loss = 0.26359279 

Iteration 159, loss = 0.27241453 

Iteration 160, loss = 0.26286970 

Iteration 161, loss = 0.26502490 

Iteration 162, loss = 0.26238632 

Iteration 163, loss = 0.26004744 

Iteration 164, loss = 0.25699075 

Iteration 165, loss = 0.25728841 

Iteration 166, loss = 0.25852979 

Iteration 167, loss = 0.25412399 

Iteration 168, loss = 0.27238455 

Iteration 169, loss = 0.26753600 

Iteration 170, loss = 0.26919628 

Iteration 171, loss = 0.25371573 

Iteration 172, loss = 0.25141928 

Iteration 173, loss = 0.25743960 

Iteration 174, loss = 0.26240988 

Iteration 175, loss = 0.27237598 

Iteration 176, loss = 0.24975103 

Iteration 177, loss = 0.24736685 

Iteration 178, loss = 0.25089413 

Iteration 179, loss = 0.25535965 

Iteration 180, loss = 0.24412423 

Iteration 181, loss = 0.24921267 

Iteration 182, loss = 0.24651067 

Iteration 183, loss = 0.24835918 

Iteration 184, loss = 0.24753967 

Iteration 185, loss = 0.25078694 

Iteration 186, loss = 0.24331867 

Iteration 187, loss = 0.23804045 

Iteration 188, loss = 0.24079863 

Iteration 189, loss = 0.23469860 
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Iteration 190, loss = 0.26091576 

Iteration 191, loss = 0.23985501 

Iteration 192, loss = 0.26267464 

Iteration 193, loss = 0.23664145 

Iteration 194, loss = 0.23127756 

Iteration 195, loss = 0.24042043 Iteration 196, loss = 0.23021461 

Iteration 197, loss = 0.23291935 

Iteration 198, loss = 0.23060653 

Iteration 199, loss = 0.22903553 

Iteration 200, loss = 0.23347759 

Iteration 201, loss = 0.22597181 

Iteration 202, loss = 0.22527434 

Iteration 203, loss = 0.22601266 

Iteration 204, loss = 0.22625700 

Iteration 205, loss = 0.22431090 

Iteration 206, loss = 0.22271718 

Iteration 207, loss = 0.22218772 

Iteration 208, loss = 0.22606671 

Iteration 209, loss = 0.21916377 

Iteration 210, loss = 0.22933461 

Iteration 211, loss = 0.23056713 

Iteration 212, loss = 0.21882094 

Iteration 213, loss = 0.21677561 

Iteration 214, loss = 0.21962397 

Iteration 215, loss = 0.21419946 

Iteration 216, loss = 0.21913049 

Iteration 217, loss = 0.21759535 

Iteration 218, loss = 0.21444900 

Iteration 219, loss = 0.23396053 

Iteration 220, loss = 0.21926805 

Iteration 221, loss = 0.21731662 

Iteration 222, loss = 0.22647935 

Iteration 223, loss = 0.21441907 

Iteration 224, loss = 0.21120644 

Iteration 225, loss = 0.21147581 

Iteration 226, loss = 0.21145614 

Iteration 227, loss = 0.20863352 

Iteration 228, loss = 0.20386253 

Iteration 229, loss = 0.21073107 

Iteration 230, loss = 0.20439845 

Iteration 231, loss = 0.22220631 

Iteration 232, loss = 0.20870704 

Iteration 233, loss = 0.20501992 

Iteration 234, loss = 0.21169930 

Iteration 235, loss = 0.20688394 

Iteration 236, loss = 0.20802939 
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Iteration 237, loss = 0.21789063 

Iteration 238, loss = 0.23596344 

Iteration 239, loss = 0.21830213 

Training loss did not improve more than tol=0.000100 for 10 

consecutive epochs. Stopping. 

96.05985037406484 

[ ]: 

[ ]: 
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Appendix B 

Comparison of MLP with other Algorithms 

[ ]: # pip install seaborn 

[ ]: import pandas as pd import 

numpy as np import 

matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import 

RepeatedStratifiedKFold from sklearn.linear_model 

import LogisticRegression from sklearn.tree import 

DecisionTreeClassifier from sklearn.ensemble import 

RandomForestClassifier from sklearn.ensemble import 

AdaBoostClassifier from xgboost import 

XGBClassifier from sklearn.model_selection import 

RandomizedSearchCV from sklearn.model_selection 

import train_test_split as tts import lightgbm as 

lgb import gc from sklearn.metrics import log_loss 

from sklearn.metrics import roc_auc_score from 

sklearn.metrics import accuracy_score from 

sklearn.metrics import f1_score 

# from sklearn.metrics import plot_confusion_matrix, 

confusion_matrix from sklearn.neighbors import NearestNeighbors 

import seaborn as sns 

import calendar 

from sklearn.decomposition import PCA from 

sklearn.linear_model import LogisticRegression 

from sklearn.model_selection import 

train_test_split from sklearn.model_selection 

import RandomizedSearchCV from 

sklearn.model_selection import cross_val_score 

from sklearn.metrics import r2_score, 

mean_squared_error from sklearn.model_selection 

import cross_validate from sklearn.metrics 

import make_scorer from sklearn.metrics import 

confusion_matrix import warnings 

warnings.filterwarnings('ignore') sns.set() 

import warnings 
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count 10025.000000 10025.000000 10025.000000 10025.000000  

mean  87.209476 334.099352 3.398105 2739.220549  

std 444.197122 1565.853177 11.902471 18139.229396  

min  -1.000000 -1.000000 -1.000000 -1.000000  

25%  9.000000 180.000000 1.000000 12.000000  

50%  36.000000 265.000000 1.000000 21.000000  

75%  80.000000 319.000000 2.000000 77.000000  

max 23816.000000 77185.000000 595.000000 263987.000000  

 
title charactersisEncryptedembedded files stream \ 

count  10025.000000 10025.000000 10025.000000 10023.000000  

mean  51.477207 -0.020848 -0.006484 17.341215  

std  1354.640037 0.206789 0.257098 35.330169  

min  -1.000000 -1.000000 -1.000000 -1.000000  

25%  0.000000 0.000000 0.000000 2.000000  

50%  0.000000 0.000000 0.000000 4.000000  

75%  13.000000 0.000000 0.000000 18.000000  

max  76993.000000 4.000000 5.000000 812.000000 

 trailer encrypt ObjStm Colors 

 

count 10023.00000010023.00000010023.00000010023.000000  

mean  1.203532 -0.043500 1.516811 2.087000  

std  1.370455 0.256045 7.633485 58.178074  

min  -1.000000 -1.000000 -1.000000 -1.000000  

25%  1.000000 0.000000 0.000000 0.000000  
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50%  1.000000 0.000000 0.000000 0.000000  

75%  2.000000 0.000000 0.000000 0.000000  

 
Index(['isEncrypted', 'embedded files', 'encrypt'], 

dtype='object') 

Index(['Fine name', 'pdfsize', 'metadata size', 'pages', 'xref 

Length', 'title characters', 'images', 'text', 'header', 'obj', 

'endobj', 
'stream', 'endstream', 'xref', 'trailer', 'startxref', 

'pageno', 

'ObjStm', 'JS', 'Javascript', 'AA', 'OpenAction', 

'Acroform', 

'JBIG2Decode', 'RichMedia', 'launch', 'EmbeddedFile', 'XFA', 

'Colors', 'Class'], 

     

  
           

, →  
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1 1 15.0 224.0 0.0 20.0 7.0 

2 2 4.0 468.0 2.0 13.0 16.0 

3 3 17.0 250.0 1.0 15.0 0.0 

4 4 7.0 252.0 3.0 16.0 45.0 

 stream trailer ObjStm Colors 

0 3.0 1.0 0.0 0.0 1 9.0

 1.0 0.0 0.0 2 3.0 1.0

 0.0 0.0 3 2.0 1.0 0.0

 0.0 4 4.0 1.0 0.0 0.0 

[ ]: from lazypredict.Supervised import 

LazyClassifier from sklearn.model_selection 

import train_test_split 

[ ]: clf = LazyClassifier(verbose=0,ignore_warnings=True, 

custom_metric=None) models,predictions = clf.fit(X_train, X_test, 

y_train, y_test) models.sort_values(by = ["Accuracy","F1 

Score"],ascending = False) 

 100%|| 29/29 [00:10<00:00, 2.82it/s] 

 

  
     

                         
            

       

           
 

 
        

     

 
 

     

, →      
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[ ]: 
Model 

Accuracy Balanced 
Accuracy 

ROC AUC F1 Score \ 

ExtraTreesClassifier 1.00  1.00 1.00 1.00  

XGBClassifier 1.00  1.00 1.00 1.00  

RandomForestClassifier 1.00  1.00 1.00 1.00  

BaggingClassifier 1.00  1.00 1.00 1.00  

AdaBoostClassifier 1.00  1.00 1.00 1.00  

LGBMClassifier 1.00  1.00 1.00 1.00  

DecisionTreeClassifier 1.00  1.00 1.00 1.00  

KNeighborsClassifier 0.99  0.99 0.99 0.99  

LabelPropagation 0.99  0.99 0.99 0.99  

LabelSpreading 0.99  0.99 0.99 0.99  

ExtraTreeClassifier 0.99  0.99 0.99 0.99  

SVC 0.99  0.99 0.99 0.99  

SGDClassifier 0.98  0.98 0.98 0.98  

LogisticRegression 0.97  0.97 0.97 0.97  

LinearDiscriminantAnalysis 0.97  0.97 0.97 0.97  

RidgeClassifierCV 0.97  0.97 0.97 0.97  

RidgeClassifier 0.97  0.97 0.97 0.97  

CalibratedClassifierCV 0.97  0.97 0.97 0.97  

LinearSVC 0.96  0.96 0.96 0.96  

NuSVC 0.95  0.96 0.96 0.95  

NearestCentroid 0.95  0.95 0.95 0.95  

BernoulliNB 0.94  0.94 0.94 0.94  

Perceptron 0.88  0.88 0.88 0.88  

PassiveAggressiveClassifier 0.88  0.89 0.89 0.88  

QuadraticDiscriminantAnalysis 0.82  0.83 0.83 0.81  

GaussianNB 0.80  0.82 0.82 0.80  

0.56  0.50 0.50 0.40  
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DummyClassifier 

Model 

Time Taken 

ExtraTreesClassifier 0.32     

XGBClassifier 0.20     

RandomForestClassifier 0.44     

BaggingClassifier 0.08     

AdaBoostClassifier 0.40     

LGBMClassifier 0.21     

DecisionTreeClassifier 0.02     

KNeighborsClassifier 0.16     

LabelPropagation 1.12     

LabelSpreading 2.37 
ExtraTreeClassifier 0.02 
SVC 0.49 
SGDClassifier 0.04 
LogisticRegression 0.04 
LinearDiscriminantAnalysis 0.04 
RidgeClassifierCV 0.02 
RidgeClassifier 0.02 
CalibratedClassifierCV 1.00 
LinearSVC 0.25 
NuSVC 2.89 
NearestCentroid 0.02 
BernoulliNB 0.02 
Perceptron 0.02 
PassiveAggressiveClassifier 0.02 
QuadraticDiscriminantAnalysis 0.02 
GaussianNB 0.02 
DummyClassifier 0.02 

[ ]: 
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Appendix C 

Comparison of Time taken by different algorithms 

 




