
Optimizing of Multi-Layer Perceptron for

Detecting PDF Malware: A study in Machine

Learning

by

Muhammad Saad Ali

A thesis submitted to the faculty of Information Security Department, Military College of

Signals, National University of Sciences and Technology, Rawalpindi in partial

fulfillment of the requirements for the degree of MS in Information Security

May 2023

iii

Declaration

I hereby declare that no portion of work presented in this thesis has been submitted in support

of another award or qualification either at this institution or elsewhere.

MS Student

iv

Dedication

“In the name of Allah, the most Beneficent, the most Merciful"

I dedicate this thesis to my mother, brother and teachers who supported me in each step of

the way.

v

Acknowledgments

All praises to Allah for the strengths and his blessing in completing this thesis.

I would like to convey my gratitude to my supervisor, Dr. Faisal Amjad for his supervision and

constant support. His invaluable help of constructive comments and suggestions throughout the

experimental and thesis works are major contributions to the success of this research. Also, I

would thank my committee members; Assoc Prof Dr. Mian Muhammad Waseem Iqbal, and

Asst Prof Dr. Fawad Khan for their support and knowledge regarding this topic.

Last, but not the least, I am highly thankful to my mother and brother. They have always stood

by my dreams and aspirations and have been a great source of inspiration for me. I would like

to thank them for all their care, love and support through my times of stress and excitement.

vi

Abstract

In this thesis, we demonstrate that multi-layer perceptrons (MLPs) are a promising approach

for detecting PDF-based malware. Malware in the form of PDF files is becoming increasingly

prevalent, making it crucial to develop effective detection methods. Traditional methods for

detecting malware, such as signature-based detection, are becoming less effective as attackers

can easily evade them by modifying the malicious code. To train our MLP, we first collected a

large dataset of both benign and malicious PDFs. The dataset was pre-processed to extract

relevant features, such as the presence of certain keywords and the structure of the PDF file. In

total we used 37 static representative features. We used a combination of supervised learning

techniques to train the MLP on this dataset. The trained model was then evaluated on a separate

test dataset and was shown to have high accuracy of about 96% in detecting PDF-based

malware. We also investigated the effect of different feature selection methods and the impact

of network architecture on the performance of the model. The results demonstrate that using

MLPs for detecting PDF-based malware is an effective approach and can achieve high

accuracy. Moreover, we also proposed an approach to increase the robustness of the model by

using adversarial machine learning techniques to improve the model’s ability to detect novel

and evasive malware. In conclusion, this thesis presents a novel approach for training MLPs to

detect PDF-based malware, and the results demonstrate the effectiveness of this approach. The

proposed approach could be used to improve the security of systems that handle PDF files and

provide a new tool for the security community to fight against PDF-based malware.

vii

Table of Contents

Page

Title Page …………………………………………………………….……..….……

Thesis Acceptance Certificate………………………………………………….………

Declaration………………………………………………………………….……….

Dedication…………………………………………………………………….……..

Acknowledgements………………………………………………………….…...….

Abstract……………………………………………………………………….……..

Table of contents……………………………………………………………..………

List of figures…………………………………………………………………..…….

List of tables …………………………………………….………….………….…….

Chapter

1 Introduction

1.1 Overview…………………………………………………………...….

1.2 Motivation and Problem Statement………………………….…...……

1.3 Objectives………………………………………………………..…….

1.4 Thesis Contribution…………………………………….…………..….

1.5 Thesis Organisation……………………………………….………..….

1.6 Literature Review………………………………………………..…….

2 Features

2.1 Overview……….………………………………………………..…….

2.2 General Features……………………………………………….………

2.2.1 Size………………………………………………..…….……..

2.2.2 Title Characters………………………………….……….……

2.2.3 Encryption……………………………………………….…….

2.2.4 Metadata Size……………………………………………….…

2.2.5 Page Number…………………………………………….…….

2.2.6 Header……………………………………………………...….

i

ii

iii

iv

v

vi

vii

ix

ix

1

3

3

4

4

4

9

10

10

11

12

13

15

16

viii

2.2.7 Image Number……………………………….………………….

2.2.8 Text…………………………………………………………...…...

2.2.9 Object Number………………………………….…………………

2.2.10 Font Objects……………………………………………………….

2.2.11 No. of Embedded Files……………………………………….……

2.2.12 Average Size of all Embedded Data…………………..............…….

2.3 Structural Features…………………………………………...…………….

2.3.1 No. of Keywords “Streams”………………………………..……..

2.3.2 No. of Keywords “endstreams” …………………………...………

2.3.3 Average Stream Size………………………………………..……..

2.3.4 No. of Xref Entries…………………………………………..…….

2.3.5 No. of Name Obfuscations…………………….………..…………

2.3.6 Total Number of Filters………………………………….……..….

2.3.7 No. of Objects with Nested Filters…………………………….…..

2.3.8 No. of Stream Object (ObjStm)……………………………….…..

2.3.9 No. of Keywords “/JS”, number of Keywords “/JavaScript”……..

2.3.10 No. of Keywords “/URL”, number of Keywords “/Action”………

2.3.11 No. of Keywords “/AA”, number of Keywords “/OpenAction”….

2.3.12 No. of Keywords “/launch”, No. of Keywords “/submitForm”…..

2.3.13 No. of Keywords “/Acroform”, No. of Keywords “/XFA”……....

2.3.14 No. of Keywords “/JBig2Decode”, No. of Keywords “/Colors”…

2.3.15 No. of Keywords “/Richmedia”, No. of Keywords “/Trailer”…....

2.3.16 No. of Keywords “Xref”, No. of Keywords “/Startxref”……..…..

3 Architecture and Training of MLP

3.1 Overview……………………………………………………..………..…..

3.2 Experimental Setup………………………………………………….…….

3.3 Comparison with other models……………………………………….……..

3.3.1 Accuracy…………………………………….……………….……

3.3.2 Balanced Accuracy…………………………….………………….

3.3.3 ROC AUC…………………………………………………………

3.3.4 F1 Score……………………………………..…………………….

17

18

19

20

21

23

24

24

25

27

28

29

30

32

33

34

36

37

38

40

41

42

44

46

48

49

50

50

51

51

ix

3.3.5 Time Taken……………………………………………………..….

3.3.6 Results……………………………………………..……….….….

3.3.7 Benefits of MLP………………………………………………..….

4 Conclusion, Challenges and Future Work

4.1 Challenges and Future Direction……………………………….……....…

4.2 Conclusion……………………………………………………………..….

References………………………………………………………………………...………..

List of Figures

1 Tree Structure of a PDF……………………………………………………………

2 Raw PDF…………………………………………………………………………..

3 Training neural network with RGB……………………………………………….

4 JavaScript in PDF raw…………………………………………………………….

5 Compilation of Dataset……………………………………………………………

6 Comparison of MLP with Random Forest and Decision Tree ……………………

List of Tables

1 Comparison of MLP with other algorithms……………………..………..………… 54

Appendix A

Training of MLP………………………………………………………………………… 62

Appendix B

Comparison of MLP with other algorithms……………………………………………… 72

Appendix C

Comparison of Time Taken by different Algorithms……………………………………. 73

52

52

55

56

56

58

1

2

7

35

48

54

1

Chapter 1

Introduction

1.1 Overview

PDF, which stands for Portable Document Format, was invented in 1991 by Adobe Systems co-

founder Dr. John Warnock. The first version of the PDF specification, version 1.0, was released

in 1993. Since then, PDF has become one of the most popular file formats for digital documents,

as it allows users to share documents across different platforms and devices while preserving the

original formatting and layout.

It was made an open standard in 2008, as ISO 32000–1: 2008 [1]. According to this standard

PDF at its core is an advanced imaging model which is derived from PostScript. PDF allows

device-independent and resolution-independent viewing of a document. But unlike the

programming language Postscript, PDF is a structured binary file format that is optimized for

high performance in interactive viewing. PDF/X (ISO 15930) for printing, PDF/A (ISO 19005)

for archiving and PDF/E (ISO 24517) for engineering documents are specific standards for PDF

applications. A basic structure of a PDF can be observed from the tree figure below.

Figure 1: Tree structure of a PDF

Apart from Adobe software. PDFs can be modified with the help of Microsoft office which first

converts it to word document and then edit it. But it's not usually a very convenient conversion.

2

Libre Office Draw is an open-source alternative to Adobe software for editing a PDF. But then

again it has flaws in it which make it difficult to produce an exact copy of the PDF after editing

it. Adobe Acrobat Pro has an advantage over other software as it is made by Adobe itself and can

produce exact PDF with all the exact fonts.

They invented it because they wanted a format that can be used by any device or software. This

is the reason why today we can open a PDF file even in our browsers. It has been built to look

the same in any device or software. PDFs can contain fonts, embedded images, hyperlinks,

interactive buttons, videos, images and text. A raw PDF when opened with note pad shows

something like in following figure. It has head, body, xref table and trailer. When updated a new

body, xref table and trailer is added.

Figure 2: Raw PDF

PDFs also allow users to encrypt themselves to protect themselves from unauthorized access.

The algorithms used by PDFs are RC4 and AES.

The detection of malware is a critical task in cybersecurity. Malware can cause significant harm,

including data loss, financial theft, and network downtime. In recent years, machine learning

algorithms have been increasingly used for malware detection due to their ability to learn from

patterns in data and detect previously unseen malware. One such algorithm is the Multi-Layer

Perceptron (MLP), a type of artificial neural network that has shown great promise in detecting

malware.

3

PDF files have become a popular medium for the distribution of malware due to their ability to

contain a variety of content such as images, videos, and interactive forms. PDF malware can be

embedded in a document in various ways, such as using JavaScript, embedded objects, or

exploiting vulnerabilities in PDF readers. The detection of PDF malware is a challenging task

due to the complexity and variety of techniques used to hide malicious content.

In this thesis, we will explore the optimization of MLP for detecting PDF malware. We will begin

by discussing the features extraction for PDF files, followed by an overview of architecture and

training of MLPs for PDF files. We will then discuss the steps involved in optimizing the MLP,

including dataset curation, hyperparameter tuning, and model evaluation. Finally, we will discuss

some challenges and future directions for optimizing MLP for detecting PDF malware.

1.2 Motivation and Problem Statement

Malware in the form of PDF files is becoming increasingly prevalent because of their versatility

as a document type and their robustness as unchangeable. These are the reasons why PDFs have

become very popular.

With the increase in PDF files popularity, malwares in the PDF files have also become popular.

This is why it is crucial to develop effective detection methods for these malwares.

Traditionally PDF malware just like any other malware was detected through an Antivirus

program which heavily relies on signature-based detection to detect them [2]. According to this

method a PDF malware is compared with a list of malware signatures to declare it as malicious

or benign. [3]

The problem with signature-based detection is that malware authors are using these signature

libraries while creating malwares which practically makes these Anti-Virus programs useless for

detecting PDF malwares and malwares in general.[4] [5]

Hence, there is a need for an effective detection scheme. After detection of an attacker, the utmost

requirement is of a mechanism which enables a node to do its effective defense.

Machine learning can provide a better mathematical framework for analyzing these security

issues in the network.

1.3 Objectives

Following are the objectives of this research:

• To conduct a study of various obfuscation techniques

• To understand working of windows PDF malwares and their countermeasures

4

• To train an artificial intelligence model to detect PDF malware.

1.4 Thesis Contribution

To the best of our knowledge the Multi-Layer Perceptron method proposed in this paper has not

been used for training over the dataset.

The main contributions of this work are as follows:

• We have provided a deep understanding of PDF malware that can be detected using

different features of a PDF file.

• We propose a MLP based Artificial Intelligence model for training a dataset of PDF

malware.

1.5 Thesis Organization

The thesis is structured as follows:

• Chapter 1 provides an overview of the whole thesis, provides introduction, motivation,

objectives, contribution, organization and literature review.

• Chapter 2 contains the features information and details. It discusses features selection,

general features and structural features.

• Chapter 3 discusses the evaluation parameters for the proposed algorithms for its

comparison with rest of the algorithms and results obtained by the experiment.

• Chapter 4 marks the end of the document. The conclusion, challenges and future work

areas are revealed in this chapter.

1.6 Literature Review

The dataset that we are using is a relatively new dataset. It was published in the February of

2022 [6] therefore there is not a lot of work done on it. [7] Proposed a new technique namely

Invasive Weed Optimization with Stacked Long Short-Term Memory (IWO-S-LSTM). To test

the outcomes of this technique, two datasets were used, one of which is CIC-Evaisve-

PDFMal2022. [8] used CIC-Evasive-PDFMal2022 to train a variant of a standard detector and

found out that predictions of maliciousness had improved.[9] Improved the robustness of

machine learning based PDF malware detection systems when trained with CIC-Evasive-

5

PDFMal2022. The algorithm used by [9] was Random Forest and accuracy obtained was

99.65% with an F1 score of 99.7%. [10] uses AdaBoost decision tree to train a model over

CIC-Evasive-PDFMal2022. Accuracy achieved was 98.84% and a prediction interval of 2.174

microseconds.[11] proposed a new attack called deep reinforcement learning (DRL)—based

attack framework to make PDF files undetectable. Simultaneously a DRL-based defense

strategy is proposed to counter this attack. Their results show that both this attack is effective

as well as its mitigation strategy.[12] used 17 datasets for malware classification to train a

model based on One Rule which is basically a decision tree with a root nod. Although it has

been accepted in the paper that this One Rule model is not very effective against so many

features which are present in CIC-Evaisve-PDFMal2022.

[13] believes that static analysis of malwares is better then dynamic analysis which is resource

intensive. They have given an account of research done on PE32 which was first released in

1992 in windows 3.1. The reason they have taken PE32 and not PE64 is backward integration.

This means that a 64 bit architecture system is made to run as such that it can also run 32 bit

architecture software. But a 32 bit architecture system cannot run 64 bit software. The paper

claims that most of the malware is 32 bit because it can be generalized and effect a diverse

range of systems. The paper also gives an account of machine learning tools like Weka or

Waikato Environment, Python weka wrapper, LIBSVM, RapidMiner and Dlib which can be

used to deploy machine learning algorithms. The paper provides a history of different machine

learning algorithms which are 24 in total from literature published from 2004 onwards but none

use neural networks for training their models. This paper also provides an account of the

features selection as observation of ShortInfo_Directories, ShortInfo_Xor, ShortInfo_FileSize,

ShortInfo_Detected, ShortInfo_Sections, DigitalSignature, Packer, AntiDebug, AntiVM,

SuspiciousAPI, SuspiciousSections and Url from PE32 header as well as Byte n-Gram, Opcode

n-gram and API calls from the code. For their experiment, authors have created their own

dataset of benign files while they have taken malicious files from VXheaven [14] has now been

renamed vx-underground)and VirusShare [15]. PEFRAME, HEXDUMP and OBJDUMP are

the tools used for feature extraction. In their own experimental setup they claim to use neural

networks using fivefold cross validation technique but unfortunately have not provided any

stats on it. The highest accuracy achived was 95.53 by C4.5 algorithm.

https://www.vx-underground.org/

6

[16] introduced controlled flow graphs, behavioral features like performance metrics, memory

information and system calls. It is claimed in this paper that todays modern malware

incorporate polymorphism and change themselves on the go therefore it is static malware

analysis is of not much use. This paper shows the use of cuckoo sandbox for generating

dynamic analysis report.

[17] points out that there are fundamental differences between intrusion detection and other

applications. There are 6 key differences. First one is that machine learning is generally better

at finding similarities not differences. Then there is a very high cost of classification error.

After that there is a semantic gap between detection results and their operational

interpretability. There is also a huge variability in perceiving what is normal. It is also observed

that there is difficulty in sound evaluation of the result. And finally operating in an adversarial

setting is something that differentiates intrusion detection with from other applications. Also, in

the same paper it is claimed that most organizations keep their malware data proprietary and

don’t share it. Open-source datasets of malwares are created by combining known malwares in

the wild that are tagged as malicious by multiple accounts. This means that these datasets are

not optimal and may not be able to detect even known proprietary malwares [18, 19]. There has

been some work done to tag even slightly malicious portable executables as malicious to

increase security and train the models better. [20,21] The datasets mentioned in this paper are

from VX heaven [14], VirusShare [15], MalImg [22], MS malware Classification[23], EMBER

[24], MalRec [25], Malware Training Sets [26], Mal-API-2019 [27], the Zoo (malware DB)

[28], Virus Total [29] and Meraz’18 Kaggle [30]. It is claimed in this paper that most often the

features used are simple features like metadata which result in high success rate of more then

98 percent leaving little room for improvement [31]. Resources like MalImg [22] uses deep

learning to detect maliciousness of a program. How this works is by first extracting the binary

of the program and then converting that binary of zeros and ones into RGB files. This produces

an image which is completely not understandable by humans but is understandable computer.

By using deep learning computers can identify the patterns in the file and when trained over a

large dataset, might be able to identify new malwares. Though even this technique is not

completely fool proof but given the fact that malware authors tend to innovate and come up

with newer malwares every here and there, this type of model is better suited for unknown and

novel malwares and hence better suited for deploying in IDSs and IPSs. However there is a

problem with this type of machine learning application and that is high computational resource

7

requirement. Image processing for machine learning algorithms require a lot of computer

processing power and often require GPUs (Graphical Processing units), IPU (dedicated image

processing units) and TPUs (Tensor Processing units) [32] Although google does provide these

resources to be used by general public but image processing is still resource intensive [33]To

convert a program to binary and then to image is just too much work for a result that can be

achieved by applying neural networks on the program themselves. This saves computational

power and provides almost identical results. [34] used whole binary of a PE and directly fed it

into the neural network.

Figure 3: Training neural network with RGB

EMBER [2] is a dataset known for 1 percent false positive rate. The features having highest

impact on EMBER [35] are general file information from the PE header such as virtual size of

the file, thread local storage, resources, as well as the file size and number of symbols; header

information from the COFF header providing the timestamp, the target machine, linker

versions, and major and minor image versions; import functions obtained by parsing the

address table; exported functions; section information including the name, size, entropy virtual

size and list of strings representing section characteristics; byte histogram representing the

counts of each byte value; byte-entropy histogram approximating the joint distribution of

entropy and a given byte value; simple statistics about printable strings that are at least five

characters long. Specifically providing information on strings that begin with “C:\", “http://",

“https://" or “HKEY_". Over all the features represented in this paper are byte counts (BYTE),

the size of the hexadecimal representation and the address of the first byte sequence

(MD1),byte entropy (ENT), image representation using Haralick features (IMG1), Local

8

Binary Patterns (IMG2), histogram of the length of strings extracted from the hexadecimal file

(STR), the size of the number of line in the disassembled file (MD2), the frequency of a set of

symbols in the disassembled file (-, +, *,], [, ?, @) (SYM), the frequency of the occurrence of

a subset of 93 of possible operation codes in the disassembled file (OPC), the frequency of the

use of registers (REG), the frequency of the use of the top 794 Window API calls,

characteristics of the sections in the binary (SEC), statistics around using db, dw, and dd

instructions which are used for setting byte, word, and double word and are used to obfuscate

API calls (DP), the frequency of 95 manually chosen keywords from the disassembled code

(MISC)

[17] claims behavioral or dynamic analysis as active field of research. They have tried to use

behavioral analysis of malware to detect maliciousness. For this purpose, they have leveraged

MITRE attack framework. This is a framework that outlines all the steps of an attack. The

authors have utilized MITRE malware behavior catalog or MBC to try to capture dynamic

behavior of a malware. The attribute that come under anti-behavioral analysis are debugger

detection, debugger evasion, dynamic analysis evasion, emulator evasion, memory dump

evasion, sandbox detection, executable code virtualization, virtual machine detection,

conditional execution and capture evasion. They have also incorporated Microsoft Malware

Classification Challenge which has distinguished malware families as Ramnit (worm), Lollipop

(Adware), Kelihos_ver3 (backdoor),Vundo (Trojan), Simda (backdoor), Tracur (trojan

downloader), Kelihos_ver1 (backdoor), Obfuscator.ACY (obfuscated malware) and Gatak

(backdoor). Apart from MBC and Microsoft malware classification challenge, authors have

also mentioned Semantic Malware Attribute Relevance Tagging or SMART. SMART provides

a richer set of technical features for malware analysis. On VX Heaven, PE-Miner [68] achieves

a detection rate greater than 99% only using structural information (PE and section header

information), DLLs and object files. Such statistics are common in literature where high is

being achieved but one has to understand this that machine learning task should be to detect

malware and not just to identify behaviors.

9

Chapter 2

Features

2.1 Overview

Feature selection and extraction from Files is a critical step in optimizing MLPs for detecting

PDF malware. The goal of feature extraction is to transform the input data into a set of features

that can be used to train the MLP. In the case of PDF files, feature extraction involves extracting

information from the document's content, structure, and metadata. There are various feature

extraction techniques that can be used for PDF files, such as those based on textual analysis,

image processing, and metadata analysis.[36]

Text-based features can be extracted by converting the PDF document to plain text and then

applying techniques such as bag-of-words, n-grams, or term frequency-inverse document

frequency (TF-IDF). These techniques involve representing the document as a vector of features

based on the frequency of occurrence of individual words or combinations of words in the text.

Text-based features can be effective in detecting PDF malware that contains textual content, such

as phishing attacks or social engineering scams.[37]

Image-based features can be extracted by converting the PDF document to images and then

applying techniques such as edge detection, texture analysis, or color analysis. These techniques

involve representing the document as a vector of features based on the visual characteristics of

the images in the document. Image-based features can be effective in detecting PDF malware

that contains images, such as those used in steganography or obfuscation.[37]

Metadata-based features can be extracted by analyzing the metadata of the PDF document, such

as the author, title, creation date, and modification date. These features can be used to identify

patterns in the metadata that are indicative of malicious activity, such as documents with

suspicious authors or creation dates. Metadata-based features can be effective in detecting PDF

malware that is designed to exploit vulnerabilities in PDF readers or manipulate the document's

metadata.

For the purpose of this thesis, we have selected 12 general features and 25 structural features of

PDF, details of which are given below.

10

2.2 General Features

General features are the features of a PDF file which are not generally related to its

maliciousness directly but can give an idea about the covert maliciousness of a PDF when they

are not exactly how they are supposed to be. For this thesis, we have decided to use 12 such

features, details of which are in the following paragraphs.

2.2.1 Size

One method for detecting PDF malware is by analyzing the size of the PDF file. PDF files that

are abnormally large or small may be an indicator of malicious activity. In this part, we will

explore the use of PDF size for PDF malware detection.

PDF malware is a type of malware that is embedded within a PDF file. The malware can be

designed to exploit vulnerabilities in the PDF reader software or to trick the user into

downloading and executing the malware. PDF malware can be used to steal information,

compromise systems, and launch further attacks.

PDF files can contain various types of malwares, such as viruses, trojans, and ransomware. These

malicious files can be hidden within the PDF file, or they can be disguised as legitimate

documents.[8]

PDF files can vary in size depending on the content of the file. A basic PDF file with no images

or graphics may be only a few kilobytes in size, while a PDF file with high-quality images,

videos, and other multimedia content can be several megabytes in size. In general, the size of a

PDF file is determined by the amount of data it contains.

The size of a PDF file can also be affected by compression. PDF files can be compressed to

reduce their size, which can make them easier to share and download. However, compression

can also affect the quality of the images and other content within the file.

The size of a PDF file can be used as an indicator of potential malware activity. Malware authors

may use techniques such as obfuscation or encryption to hide the malicious code within the PDF

11

file. However, these techniques can increase the size of the PDF file. Therefore, a PDF file that

is significantly larger than expected may be an indicator of malicious activity.

On the other hand, a PDF file that is significantly smaller than expected may also be an indicator

of malicious activity. Malware authors may use techniques such as compression to reduce the

size of the PDF file. However, compression can also be used to hide the malicious code within

the file. Therefore, a PDF file that is smaller than expected may also be an indicator of malicious

activity.

It is important to note that the size of a PDF file alone is not a definitive indicator of malware

activity. A large or small PDF file may be legitimate, depending on the content and purpose of

the document. However, analyzing the size of a PDF file can be a useful tool for detecting

potential malware activity.

2.2.2 Title Characters

PDF files are commonly used for sharing and exchanging documents due to their flexibility and

compatibility with almost all devices. However, like any other file format, PDF files can be used

to deliver malware, making them a popular vector for cybercriminals. One method of detecting

malware within a PDF file is by analyzing the title characters within the document. In this part,

we will explore the use of PDF title characters for PDF malware detection.

PDF malware is a type of malware that is embedded within a PDF file. This malware can be

designed to exploit vulnerabilities in PDF reader software, trick users into downloading and

executing the malware, or to steal information, compromise systems, and launch further attacks.

Malware can be hidden within PDF files, disguised as legitimate documents or scripts. Such

documents can also be used to download additional malware from the internet or infect the device

on which they are opened.

The PDF title characters are the text that appears in the title bar of a PDF reader software when

a PDF file is opened. This title is often used to provide users with information about the contents

of the document, such as the name of the document, author, or publisher.

12

PDF files can have a title set within the document properties. The title can be added using a PDF

authoring tool or software. The title can be set to any string of characters or a blank string. When

a PDF file is opened in a PDF reader software, the title appears in the title bar of the reader.

The title of a PDF file can be used as an indicator of potential malware activity. Cybercriminals

often use social engineering techniques to trick users into opening a malicious PDF file. They

may use a catchy or intriguing title to lure the user into opening the document. For example, a

title like "2019 tax return" may entice a user to open the PDF, which may contain malware.

PDF files that contain no title or have an empty title field can also be an indicator of potential

malware activity. Cybercriminals may use these methods to try and hide the malicious nature of

the PDF file.

Using title characters for malware detection is a quick and easy way to determine if a PDF file is

suspicious. However, it is important to note that the title of a PDF file alone is not a definitive

indicator of malware activity.

2.2.3 Encryption

PDF encryption is a security feature that is designed to protect PDF files from unauthorized

access. Encryption involves scrambling the contents of a PDF file using a secret key, which can

only be accessed by authorized users who have the correct decryption key. While encryption is

primarily used for security purposes, it can also be a useful tool for detecting malware within

PDF files. In this part, we will explore the use of PDF encryption for PDF malware detection.

PDF malware is a type of malware that is embedded within a PDF file. This malware can be

designed to exploit vulnerabilities in PDF reader software, trick users into downloading and

executing the malware, or to steal information, compromise systems, and launch further attacks.

PDF malware can be difficult to detect because it can be hidden within legitimate-looking PDF

files. Cybercriminals may use social engineering techniques to trick users into opening a

malicious PDF file, or they may use obfuscation techniques to hide the malware from detection.

PDF encryption is a security feature that is designed to protect PDF files from unauthorized

access. Encryption involves scrambling the contents of a PDF file using a secret key, which can

only be accessed by authorized users who have the correct decryption key. PDF encryption can

13

be used to protect sensitive information, such as financial data, medical records, and personal

information.

PDF encryption can be applied to both the contents of the PDF file and the metadata, such as the

title, author, and creation date. PDF encryption can be applied using a variety of encryption

algorithms, including AES (Advanced Encryption Standard), RC4 (Rivest Cipher 4), and 3DES

(Triple Data Encryption Standard).

PDF encryption can be a useful tool for detecting malware within PDF files. When a PDF file is

encrypted, the contents of the file are scrambled using a secret key, which makes it difficult for

cybercriminals to modify the contents of the file without the correct decryption key.

If a PDF file is encrypted, and it contains malware, the malware will also be encrypted. This

means that when the PDF file is opened, the PDF reader software will not be able to access the

malware until the file has been decrypted using the correct decryption key. If the decryption key

is not available, the malware will remain encrypted and will not be able to execute.

By using PDF encryption, organizations can protect their sensitive information from

unauthorized access and detect potential malware activity within their PDF files. PDF encryption

can be used in conjunction with other security measures, such as antivirus software, firewalls,

and intrusion detection systems, to provide a comprehensive security solution.

PDF encryption is a powerful security feature that is designed to protect PDF files from

unauthorized access. Encryption can also be a useful tool for detecting potential malware activity

within PDF files. If a PDF file is encrypted and it contains malware, the malware will also be

encrypted, making it difficult for cybercriminals to modify the contents of the file without the

correct decryption key.

While PDF encryption can be a useful tool for detecting malware, it should not be relied upon as

the sole method of malware detection. Organizations should implement a comprehensive security

solution that includes antivirus software, firewalls, intrusion detection systems, and user

education to protect their systems from malware attacks.

2.2.4 Metadata Size

14

PDF metadata is a set of information that provides additional details about a PDF file, such as

the file's title, author, creation date, and modification date. While metadata is primarily used to

help users organize and manage their PDF files, it can also be a useful tool for detecting malware

within PDF files. In this part, we will explore the use of PDF metadata size for PDF malware

detection.[38]

PDF malware is a type of malware that is embedded within a PDF file. This malware can be

designed to exploit vulnerabilities in PDF reader software, trick users into downloading and

executing the malware, or to steal information, compromise systems, and launch further attacks.

PDF malware can be difficult to detect because it can be hidden within legitimate-looking PDF

files. Cybercriminals may use social engineering techniques to trick users into opening a

malicious PDF file, or they may use obfuscation techniques to hide the malware from detection.

PDF metadata is a set of information that provides additional details about a PDF file. Metadata

can include information such as the file's title, author, creation date, modification date, and

keywords. Metadata can be used to help users organize and manage their PDF files, and it can

also be used by search engines to index and categorize PDF files.

Metadata is stored within the PDF file itself and can be accessed using PDF reader software or

other tools that are designed to extract metadata from PDF files. Metadata can be modified using

a variety of tools, including PDF authoring software, command-line tools, and scripts.

PDF metadata size can be a useful tool for detecting malware within PDF files. When a PDF file

is created, metadata is added to the file to provide additional information about the file. The

metadata size can be measured in bytes, and it can be used to determine whether a PDF file

contains more information than is necessary.

If a PDF file contains a large number of metadata, it may indicate that the file has been modified

or tampered with. Large amounts of metadata can also be an indication of malicious activity

within the PDF file, such as the addition of malware code.

By measuring the metadata size of a PDF file, organizations can detect potential malware activity

within their PDF files. If a PDF file contains a large number of metadata, it may be a sign that

15

the file has been tampered with or contains malware code. Organizations can use this information

to take appropriate action to protect their systems from potential malware attacks.

PDF metadata size can be a useful tool for detecting potential malware activity within PDF files.

If a PDF file contains a large number of metadata, it may be an indication that the file has been

modified or tampered with, or that it contains malware code. By measuring the metadata size of

a PDF file, organizations can detect potential malware activity and take appropriate action to

protect their systems from malware attacks.

While PDF metadata size can be a useful tool for detecting malware, it should not be relied upon

as the sole method of malware detection. [39] Organizations should implement a comprehensive

security solution that includes antivirus software, firewalls, intrusion detection systems, and user

education to protect their systems from malware attacks.

2.2.5 Page Number

PDF files are a common target for malware attacks due to their widespread use in sharing and

distributing documents. Malware can be hidden in PDF files, which can infect the user's

computer or steal sensitive information. In this part, we will explore the use of PDF page numbers

for detecting malware in PDF files.

PDF malware is a type of malware that is embedded within a PDF file. This malware can be

designed to exploit vulnerabilities in PDF reader software, trick users into downloading and

executing the malware, or to steal information, compromise systems, and launch further attacks.

Malware can be hidden in various parts of the PDF file, such as in embedded links, images, or

scripts.

PDF page numbers are used to identify the page number of a specific page in a PDF file. Page

numbers are usually located in the header or footer of a document, and they are useful for

navigating and referencing specific pages in a long document.

PDF page numbers can be a useful tool for detecting malware in PDF files. Malware may be

hidden on specific pages of a PDF file, such as on the last page, to avoid detection. By analyzing

the page numbers of a PDF file, it may be possible to identify if the PDF file contains malware.

16

One way to use page numbers for malware detection is to analyze the distribution of page

numbers in a PDF file. For example, a legitimate PDF file typically has a consistent and

continuous page numbering system, where the page numbers increase sequentially from the

beginning to the end of the document. In contrast, a PDF file that contains malware may have

page numbers that are discontinuous or irregular.

Another way to use page numbers for malware detection is to analyze the page numbers of

embedded links or scripts within the PDF file. Malware may be hidden in links or scripts that are

embedded within a PDF file, and these links or scripts may be associated with a specific page

number. By analyzing the page numbers of embedded links or scripts, it may be possible to

identify if the PDF file contains malware.

PDF page numbers can be a useful tool for detecting malware in PDF files. By analyzing the

distribution of page numbers and the page numbers of embedded links or scripts, it may be

possible to identify if a PDF file contains malware. However, PDF page numbers should not be

relied upon as the sole method of malware detection. Organizations should implement a

comprehensive security solution that includes antivirus software, firewalls, intrusion detection

systems, and user education to protect their systems from malware attacks.

2.2.6 Header

 PDF files are a popular way of sharing and distributing digital documents. Unfortunately, PDF

files are also a popular method for distributing malware. Malicious actors can hide malware in

PDF files and use social engineering tactics to convince users to download and open them. In

this part, we will discuss how the PDF header can be used for malware detection.

The PDF header is the first part of a PDF file and contains important information about the file.

The header is usually the first 1024 bytes of the file and contains metadata that is used by PDF

readers to interpret and display the file. The PDF header contains information such as the file

version, the number of pages, and the encryption type.

Malicious PDF files may contain outdated PDF versions, which could be an indicator of malware.

For example, older PDF versions may not have the same security features as newer versions,

making them easier to exploit. PDF readers may also be less likely to detect malware in older

versions of PDF files.

17

The PDF header contains metadata that can be used to identify potential indicators of malware.

For example, a PDF file with an unusually large number of metadata fields or metadata fields

with suspicious names may indicate that the file is malicious.

Malicious actors may encrypt PDF files to hide malware. However, legitimate PDF files can also

be encrypted. One way to determine if a PDF file is encrypted is to analyze the PDF header.

Encrypted PDF files will have a flag in the PDF header that indicates encryption is being used.

Malicious actors may use JavaScript to hide malware in PDF files. JavaScript can be used to

create dynamic content and to interact with the user's computer. To detect JavaScript in PDF

files, the PDF header can be analyzed for the presence of a /Names object. The /Names object is

used to define named JavaScript actions, which may indicate the presence of malicious

JavaScript.

The PDF header can be a useful tool for detecting malware in PDF files. By analyzing the PDF

version, metadata, encryption, and JavaScript, it may be possible to identify potential indicators

of malware. However, the PDF header should not be relied upon as the sole method of malware

detection. Organizations should implement a comprehensive security solution that includes

antivirus software, firewalls, intrusion detection systems, and user education to protect their

systems from malware attacks.

2.2.7 Image Number

PDF files are commonly used for sharing and distributing digital documents. However, they can

also be used for malicious purposes, such as distributing malware. Malware can be hidden within

the images embedded in PDF files. In this part, we will discuss how PDF image numbers can be

used for malware detection.

PDF image numbers are used to identify the position of an image within a PDF file. PDF files

can contain multiple images, and each image is assigned a unique identifier, known as an object

number. The object number can be used to determine the position of the image within the PDF

file.

18

PDF image numbers can be a useful tool for detecting malware in PDF files. By analyzing the

distribution of image numbers in a PDF file, it may be possible to identify if the file contains

malware.

One way to use image numbers for malware detection is to analyze the distribution of image

numbers in a PDF file. Legitimate PDF files typically have a continuous sequence of image

numbers. In contrast, a PDF file that contains malware may have irregular or discontinuous image

numbers. Malicious actors may use irregular image numbers to hide malware within the file.

Another way to use image numbers for malware detection is to analyze the object numbers of

embedded images within the PDF file. Malware may be hidden in images that are embedded

within a PDF file, and these images may be associated with a specific object number. By

analyzing the object numbers of embedded images, it may be possible to identify if the PDF file

contains malware.

It is important to note that image numbers should not be relied upon as the sole method of

malware detection. Malicious actors may use various techniques to hide malware within a PDF

file, and analyzing image numbers alone may not be sufficient to detect all types of malware.

PDF image numbers can be a useful tool for detecting malware in PDF files. By analyzing the

distribution of image numbers and the object numbers of embedded images, it may be possible

to identify if a PDF file contains malware. However, image numbers should not be relied upon

as the sole method of malware detection. Organizations should implement a comprehensive

security solution that includes antivirus software, firewalls, intrusion detection systems, and user

education to protect their systems from malware attacks.

2.2.8 Text

PDF files are commonly used for sharing and distributing digital documents. However, they can

also be used for malicious purposes, such as distributing malware. Malware can be hidden within

the text of a PDF file. In this part, we will discuss how PDF text can be used for malware

detection.

PDF files can contain different types of text, such as regular text, annotations, and form fields.

Regular text is the text that is visible in the PDF file. Annotations are used to provide additional

19

information about the content in the PDF file. Form fields are used to collect information from

the user.

PDF text can be a useful tool for detecting malware in PDF files. By analyzing the distribution

of text within a PDF file, it may be possible to identify if the file contains malware.

One way to use PDF text for malware detection is to analyze the number of text objects in a PDF

file. Legitimate PDF files typically have a low number of text objects, while PDF files that

contain malware may have a large number of text objects. Malicious actors may use a high

number of text objects to hide malware within the file.

Another way to use PDF text for malware detection is to analyze the content of the text within a

PDF file. Malware may be hidden within the text of a PDF file, and this text may contain

suspicious or malicious content. By analyzing the content of the text within a PDF file, it may be

possible to identify if the file contains malware.

It is important to note that analyzing PDF text alone may not be sufficient to detect all types of

malware. Malicious actors may use various techniques to hide malware within a PDF file, and

analyzing text alone may not be enough to detect all types of malware.

PDF text can be a useful tool for detecting malware in PDF files. By analyzing the number of

text objects and the content of the text within a PDF file, it may be possible to identify if the file

contains malware. However, text analysis should not be relied upon as the sole method of

malware detection.

2.2.9 Object Number

PDF is a widely used file format for documents and other types of content that need to be viewed

or printed in a consistent manner regardless of the operating system or software used. However,

PDF files can also be used to deliver malware or other malicious content to unsuspecting users.

PDF object numbers are a key element in detecting PDF malware.

PDF files are made up of a series of objects, which are identified by a unique object number.

These objects can be of different types, such as text, images, and annotations. Each object has a

specific structure that includes a dictionary of properties and a stream of data.

20

PDF object numbers can be used to detect PDF malware in a number of ways. One approach is

to analyze the structure of the PDF file and look for anomalies in the object numbering scheme.

For example, some malware may use non-standard or random object numbers, which can indicate

that the file is suspicious.

Another approach is to look for patterns in the object numbering scheme that are commonly used

by malware. For example, some malware may use object numbers that are sequential or have a

specific pattern, such as 1, 2, 3, 4, or 10, 20, 30, 40. By identifying these patterns, it may be

possible to detect and prevent the spread of malware.

Anti-malware tools can use PDF object numbers to detect and prevent the spread of malware.

These tools can analyze PDF files for anomalies in the object numbering scheme and other

indicators of malware. For example, some anti-malware tools can detect PDF files that have been

obfuscated or encrypted to hide their true contents.

In addition, anti-malware tools can use machine learning algorithms to analyze patterns in the

object numbering scheme and other features of PDF files to identify new and emerging types of

malware. These tools can also use heuristics to detect potentially malicious behavior, such as

attempts to download additional files or execute commands on the user's system.

PDF object numbers are an important element in detecting PDF malware. By analyzing the

structure of PDF files and looking for anomalies in the object numbering scheme, it may be

possible to detect and prevent the spread of malware. Anti-malware tools can use PDF object

numbers to identify new and emerging types of malware, and to detect potentially malicious

behavior. As PDF files continue to be a popular means of delivering content, it is important to

stay vigilant and use the latest security measures to protect against malware.

2.2.10 Font Objects

PDF files are commonly used for sharing and storing documents across various platforms.

However, they can also be used to deliver malware to unsuspecting users. PDF font objects are

a critical component in detecting PDF malware. In this part, we will explore how PDF font

objects are used for malware detection.

21

PDF files can contain various types of objects, such as text, images, and fonts. Fonts are used to

display text in PDF files and are usually embedded within the document itself. A font object in

a PDF file includes information about the font type, size, and style.

PDF font objects can be used to detect malware in several ways. One approach is to analyze the

font objects within a PDF file and look for anomalies in the font information. For example,

malware can use non-standard or unusual fonts that are not commonly used in legitimate

documents. By analyzing the font objects, it is possible to detect suspicious files.

Another approach is to look for patterns in the font objects that are commonly used by malware.

For example, some malware may use a specific font type or size consistently across different

PDF files. By identifying these patterns, it may be possible to detect and prevent the spread of

malware.

Anti-malware tools can use PDF font objects to detect and prevent the spread of malware. These

tools can analyze PDF files for anomalies in the font information and other indicators of malware.

For example, some anti-malware tools can detect PDF files that contain encrypted or obfuscated

font data.

In addition, anti-malware tools can use machine learning algorithms to analyze patterns in the

font objects and other features of PDF files to identify new and emerging types of malware.

These tools can also use heuristics to detect potentially malicious behavior, such as attempts to

download additional files or execute commands on the user's system.

PDF font objects are an essential component in detecting PDF malware. By analyzing the font

information within a PDF file, it is possible to detect suspicious files and prevent the spread of

malware. Anti-malware tools can use PDF font objects to identify new and emerging types of

malware, as well as to detect potentially malicious behavior. As PDF files continue to be a

popular means of delivering content, it is crucial to stay vigilant and use the latest security

measures to protect against malware.

2.2.11 No. of Embedded Files

PDF files are widely used for sharing documents and other types of content. However, PDF files

can also be used to deliver malware to unsuspecting users. The number of embedded files in a

22

PDF file is a critical component in detecting PDF malware. In this part, we will explore how the

number of embedded files in a PDF file is used for malware detection.

PDF files can contain embedded files such as images, videos, and other documents. These

embedded files can be used to enhance the functionality and visual appeal of the PDF document.

Embedded files are typically compressed within the PDF file and can be accessed by users when

they interact with the PDF file.

The number of embedded files in a PDF file can be used to detect malware in several ways. One

approach is to analyze the number of embedded files in a PDF file and look for unusual patterns.

For example, malware may contain many embedded files or a small number of files that are

unusually large. By analyzing the number of embedded files, it is possible to detect suspicious

files.

Another approach is to look for patterns in the types of embedded files that are commonly used

by malware. For example, some malware may use a specific type of embedded file or a specific

file format consistently across different PDF files. By identifying these patterns, it may be

possible to detect and prevent the spread of malware.

Anti-malware tools can use the number of embedded files in a PDF file to detect and prevent the

spread of malware. These tools can analyze PDF files for anomalies in the number and type of

embedded files and other indicators of malware. For example, some anti-malware tools can

detect PDF files that contain encrypted or obfuscated embedded files.

In addition, anti-malware tools can use machine learning algorithms to analyze patterns in the

number and type of embedded files and other features of PDF files to identify new and emerging

types of malwares. These tools can also use heuristics to detect potentially malicious behavior,

such as attempts to download additional files or execute commands on the user's system.

The number of embedded files in a PDF file is an essential component in detecting PDF malware.

By analyzing the number and type of embedded files, it is possible to detect suspicious files and

prevent the spread of malware. Anti-malware tools can use the number of embedded files to

identify new and emerging types of malwares, as well as to detect potentially malicious behavior.

As PDF files continue to be a popular means of delivering content, it is crucial to stay vigilant

and use the latest security measures to protect against malware.

23

2.2.12 Average Size of all the Embedded Data

PDF files are commonly used for sharing documents and other types of content. However, PDF

files can also be used to deliver malware to unsuspecting users. The average size of all the

embedded files in a PDF file is a critical component in detecting PDF malware. In this part, we

will explore how the average size of all the embedded files in a PDF file is used for malware

detection.

PDF files can contain embedded files such as images, videos, and other documents. These

embedded files can be used to enhance the functionality and visual appeal of the PDF document.

Embedded files are typically compressed within the PDF file and can be accessed by users when

they interact with the PDF file.

The average size of all the embedded files in a PDF file can be used to detect malware in several

ways. One approach is to analyze the average size of all the embedded files in a PDF file and

look for unusual patterns. For example, malware may contain a large number of embedded files

that are unusually small or large. By analyzing the average size of all the embedded files, it is

possible to detect suspicious files.

Another approach is to look for patterns in the types of embedded files that are commonly used

by malware. For example, some malware may use a specific type of embedded file or a specific

file format consistently across different PDF files. By identifying these patterns, it may be

possible to detect and prevent the spread of malware.

Anti-malware tools can use the average size of all the embedded files in a PDF file to detect and

prevent the spread of malware. These tools can analyze PDF files for anomalies in the average

size and type of embedded files and other indicators of malware. For example, some anti-

malware tools can detect PDF files that contain encrypted or obfuscated embedded files.

In addition, anti-malware tools can use machine learning algorithms to analyze patterns in the

average size and type of embedded files and other features of PDF files to identify new and

emerging types of malwares. These tools can also use heuristics to detect potentially malicious

behavior, such as attempts to download additional files or execute commands on the user's

system.

24

The average size of all the embedded files in a PDF file is an essential component in detecting

PDF malware. By analyzing the average size and type of embedded files, it is possible to detect

suspicious files and prevent the spread of malware. Anti-malware tools can use the average size

of all the embedded files to identify new and emerging types of malwares, as well as to detect

potentially malicious behavior. As PDF files continue to be a popular means of delivering

content, it is crucial to stay vigilant and use the latest security measures to protect against

malware.

2.3 Structural Features

Structural features are the features of a PDF that are directly related to the maliciousness of the

malware. These include a variety of keywords and parameters. We have used 25 structural

features here under 16 headings for simplicity purposes because some features are identical to

other features. Details of these structural features are given below.

2.3.1 No. of Keywords “Streams”

PDF files are widely used for sharing documents, but they can also be used to distribute malware.

To detect and prevent malware in PDF files, security researchers use a range of techniques,

including analyzing the number of "streams" in a PDF file. In this part, we will explore the use

of the number of "streams" as a technique for detecting PDF malware.

Streams are a fundamental component of PDF files, and they are used to store binary data, such

as images, videos, and fonts, as well as other types of data, including JavaScript and metadata.

Streams are usually compressed, which helps to reduce the size of the PDF file.

PDF files can have many streams, depending on the complexity of the document and the number

of images, videos, and other types of data that are included in the file. Each stream in a PDF file

has a unique identifier known as a stream ID.

The number of streams in a PDF file can be used to detect malware in several ways. One approach

is to compare the number of streams in a PDF file to the expected number of streams for a file of

similar complexity. If the number of streams in a PDF file is significantly higher or lower than

the expected number, it may be an indication that the file contains malware.

25

Another approach is to look for patterns in the number of streams in PDF files that are known to

contain malware. For example, malware may use a specific number of streams consistently

across different PDF files. By identifying these patterns, it may be possible to detect and prevent

the spread of malware.

In addition, some anti-malware tools can use heuristics to detect potentially malicious behavior

based on the number of streams in a PDF file. For example, a tool may flag a PDF file as

suspicious if it has an unusually large number of streams or if the number of streams increases

significantly during the file's execution.

Malware authors may use multiple streams in a PDF file to evade detection by anti-malware

tools. By splitting the malware into multiple streams, it can be more difficult for anti-malware

tools to detect and remove the malware from the PDF file.

In addition, malware authors may use streams to hide malicious code within a PDF file. For

example, malware may use JavaScript code embedded in a stream to execute commands on the

user's system or to download additional malware.

The number of "streams" in a PDF file is an essential component in detecting PDF malware. By

analyzing the number of streams and looking for unusual patterns, it is possible to detect

suspicious files and prevent the spread of malware. Anti-malware tools can use the number of

streams to identify new and emerging types of malware, as well as to detect potentially malicious

behavior. As PDF files continue to be a popular means of delivering content, it is crucial to stay

vigilant and use the latest security measures to protect against malware.

2.3.2 No. of Keywords “endstreams”

PDF files are widely used for sharing documents, but they can also be used to distribute

malware. To detect and prevent malware in PDF files, security researchers use a range of

techniques, including analyzing the number of "endstreams" keywords in a PDF file. In this

part, we will explore the use of the number of "endstreams" keywords as a technique for

detecting PDF malware.

In a PDF file, streams are typically compressed to reduce the size of the file. To correctly

decompress a stream, a PDF reader must first locate the end of the stream. The end of a stream

is indicated by the keyword "endstream" followed by a line break.

26

The number of "endstream" keywords in a PDF file indicates the number of compressed

streams in the file. This information can be useful for detecting malware in PDF files.

The number of "endstream" keywords in a PDF file can be used to detect malware in several

ways. One approach is to compare the number of "endstream" keywords in a PDF file to the

expected number of "endstream" keywords for a file of similar complexity. If the number of

"endstream" keywords in a PDF file is significantly higher or lower than the expected number,

it may be an indication that the file contains malware.

Another approach is to look for patterns in the number of "endstream" keywords in PDF files

that are known to contain malware. For example, malware may use a specific number of

"endstream" keywords consistently across different PDF files. By identifying these patterns, it

may be possible to detect and prevent the spread of malware.

In addition, some anti-malware tools can use heuristics to detect potentially malicious behavior

based on the number of "endstream" keywords in a PDF file. For example, a tool may flag a

PDF file as suspicious if it has an unusually large number of "endstream" keywords or if the

number of "endstream" keywords increases significantly during the file's execution.

Malware authors may use multiple streams and "endstreams" keywords in a PDF file to evade

detection by anti-malware tools. By splitting the malware into multiple streams, it can be more

difficult for anti-malware tools to detect and remove the malware from the PDF file. Similarly,

by using an unusual number of "endstream" keywords, malware authors can make it more

difficult for anti-malware tools to detect and analyze the contents of a PDF file.

In addition, malware authors may use streams and "endstreams" keywords to hide malicious

code within a PDF file. For example, malware may use JavaScript code embedded in a stream

to execute commands on the user's system or to download additional malware.

The number of "endstreams" keywords in a PDF file is an essential component in detecting

PDF malware. By analyzing the number of "endstreams" keywords and looking for unusual

patterns, it is possible to detect suspicious files and prevent the spread of malware. Anti-

malware tools can use the number of "endstreams" keywords to identify new and emerging

types of malware, as well as to detect potentially malicious behavior. As PDF files continue to

27

be a popular means of delivering content, it is crucial to stay vigilant and use the latest security

measures to protect against malware.

2.3.3 Average Stream Size

PDF files are widely used for sharing documents, but they can also be used to distribute

malware. To detect and prevent malware in PDF files, security researchers use a range of

techniques, including analyzing the average stream size in a PDF file. In this part, we will

explore the use of the average stream size as a technique for detecting PDF malware.

Streams are a type of object in PDF files that contain compressed or uncompressed data, such

as text or images. Streams are often used to reduce the size of a PDF file, as they can be

compressed using algorithms like Flate, LZW, or RunLength. Streams are identified in a PDF

file using the "stream" keyword and are ended using the "endstream" keyword.

The average stream size in a PDF file can be used to detect malware in several ways. One

approach is to compare the average stream size in a PDF file to the expected average stream

size for a file of similar complexity. If the average stream size in a PDF file is significantly

higher or lower than the expected average, it may be an indication that the file contains

malware.

Another approach is to look for patterns in the average stream size in PDF files that are known

to contain malware. For example, malware may consistently use streams of a specific size

across different PDF files. By identifying these patterns, it may be possible to detect and

prevent the spread of malware.

In addition, some anti-malware tools can use heuristics to detect potentially malicious behavior

based on the average stream size in a PDF file. For example, a tool may flag a PDF file as

suspicious if it has an unusually large average stream size or if the average stream size

increases significantly during the file's execution.

Malware authors may use different stream sizes in a PDF file to evade detection by anti-

malware tools. By using varying stream sizes, it can be more difficult for anti-malware tools to

detect and remove the malware from the PDF file. Similarly, by using streams of an unusual

28

size, malware authors can make it more difficult for anti-malware tools to detect and analyze

the contents of a PDF file.

In addition, malware authors may use different stream sizes to hide malicious code within a

PDF file. For example, malware may use JavaScript code embedded in a stream to execute

commands on the user's system or to download additional malware.

The average stream size in a PDF file is an essential component in detecting PDF malware. By

analyzing the average stream size and looking for unusual patterns, it is possible to detect

suspicious files and prevent the spread of malware. Anti-malware tools can use the average

stream size to identify new and emerging types of malware, as well as to detect potentially

malicious behavior. As PDF files continue to be a popular means of delivering content, it is

crucial to stay vigilant and use the latest security measures to protect against malware.

2.3.4 No. of Xref Entries

PDF files are a popular way of sharing documents. However, they can also be used to distribute

malware. To detect and prevent malware in PDF files, security researchers use a range of

techniques, including analyzing the number of Xref entries in a PDF file. In this part, we will

explore the use of the number of Xref entries as a technique for detecting PDF malware.

Xref (cross-reference) entries are a fundamental component of a PDF file's internal structure.

They provide information about the location of objects within the PDF file, including the

pages, fonts, images, and other resources. The Xref table is a critical part of a PDF file and

allows it to be rendered correctly.

The number of Xref entries in a PDF file can be used to detect malware in several ways. One

approach is to compare the number of Xref entries in a PDF file to the expected number for a

file of similar complexity. If the number of Xref entries in a PDF file is significantly higher or

lower than the expected number, it may be an indication that the file contains malware.

Another approach is to look for patterns in the number of Xref entries in PDF files that are

known to contain malware. For example, malware may consistently use a specific number of

Xref entries across different PDF files. By identifying these patterns, it may be possible to

detect and prevent the spread of malware.

29

In addition, some anti-malware tools can use heuristics to detect potentially malicious behavior

based on the number of Xref entries in a PDF file. For example, a tool may flag a PDF file as

suspicious if it has an unusually high number of Xref entries or if the number of Xref entries

increases significantly during the file's execution.

Malware authors may use different numbers of Xref entries in a PDF file to evade detection by

anti-malware tools. By using varying numbers of Xref entries, it can be more difficult for anti-

malware tools to detect and remove the malware from the PDF file. Similarly, by using an

unusual number of Xref entries, malware authors can make it more difficult for anti-malware

tools to detect and analyze the contents of a PDF file.

In addition, malware authors may use different numbers of Xref entries to hide malicious code

within a PDF file. For example, malware may use JavaScript code embedded in the Xref table

to execute commands on the user's system or to download additional malware.

The number of Xref entries in a PDF file is an essential component in detecting PDF malware.

By analyzing the number of Xref entries and looking for unusual patterns, it is possible to

detect suspicious files and prevent the spread of malware. Anti-malware tools can use the

number of Xref entries to identify new and emerging types of malware, as well as to detect

potentially malicious behavior. As PDF files continue to be a popular means of delivering

content, it is crucial to stay vigilant and use the latest security measures to protect against

malware.

2.3.5 No. of Name Obfuscations

PDFs are widely used for sharing and storing digital documents. However, they can also be

used to distribute malware. Malicious actors can embed malware into PDFs, which can then

infect a computer system or network when the PDF is opened. In order to combat this threat,

researchers and cybersecurity professionals have developed various methods for detecting PDF

malware. One of these methods is the use of PDF number of name obfuscations.

PDF obfuscation is the practice of making code or data difficult to understand or analyze. This

can be done in a variety of ways, including through the use of encryption, compression, and

obfuscation techniques. One common technique is to obfuscate the names and numbers used in

30

the code. This can make it more difficult for malware detection tools to identify malicious

code.

PDF number and name obfuscation is a technique used to obfuscate the names and numbers in

a PDF document. This can be done in a variety of ways, such as by replacing the names and

numbers with random characters or by using an encoding algorithm to transform the names and

numbers into a different format. The goal of this technique is to make it more difficult for

malware detection tools to identify the code in the PDF as malicious.

One way that PDF number and name obfuscation can be used for PDF malware detection is by

analyzing the structure of the PDF document. Malware detection tools can examine the

structure of the PDF and look for patterns that are indicative of obfuscation. For example, if the

PDF contains a large number of randomly generated names or numbers, this may indicate that

obfuscation is being used to conceal malicious code.

Another way that PDF number and name obfuscation can be used for PDF malware detection is

by analyzing the code itself. Malware detection tools can deobfuscate the code and analyze it to

determine whether it is malicious. This can be done by using reverse engineering techniques to

analyze the obfuscated code and identify its purpose.

There are several tools and techniques that can be used to detect PDF number and name

obfuscations. One commonly used tool is PDFid, which can be used to identify suspicious

patterns in PDF documents. Other tools, such as PDF Stream Dumper and PDF Parser, can be

used to extract and analyze the contents of a PDF document.

In conclusion, PDF number and name obfuscation is a technique used to obfuscate the names

and numbers in a PDF document. This technique can be used to conceal malicious code and

make it more difficult for malware detection tools to identify the code as malicious. However,

there are several tools and techniques that can be used to detect PDF number and name

obfuscations, making it possible to identify and neutralize PDF malware.

2.3.6 Total Number of Filters

PDFs are commonly used for sharing and storing digital documents. However, they can also be

used to distribute malware. Malicious actors can embed malware into PDFs, which can then

31

infect a computer system or network when the PDF is opened. In order to combat this threat,

researchers and cybersecurity professionals have developed various methods for detecting PDF

malware. One of these methods is the use of PDF filters.

PDF filters are used to compress or decompress data within a PDF document. They can also be

used to encode or decode data, or to transform data from one format to another. Malicious

actors can use filters to hide malicious code within a PDF document. However, by analyzing

the filters used in a PDF document, cybersecurity professionals can detect and neutralize PDF

malware.

PDF filters are typically identified by their filter names, which are used to indicate the type of

filter being used. Some examples of filter names include FlateDecode, ASCIIHexDecode, and

RunLengthDecode. By analyzing the filter names used in a PDF document, cybersecurity

professionals can identify suspicious patterns and detect potential malware.

One way that PDF filters can be used for PDF malware detection is by examining the filter

order within a PDF document. Malicious actors may attempt to hide malicious code by using

multiple filters in a specific order. By examining the filter order, cybersecurity professionals

can detect suspicious patterns and identify potential malware.

Another way that PDF filters can be used for PDF malware detection is by analyzing the

contents of the filters themselves. Malicious actors may attempt to use custom filters to hide

malicious code within a PDF document. By analyzing the contents of the filters, cybersecurity

professionals can detect suspicious patterns and identify potential malware.

There are several tools and techniques that can be used to detect PDF filters. One commonly

used tool is PDFid, which can be used to identify suspicious patterns in PDF documents. Other

tools, such as PDF Stream Dumper and PDF Parser, can be used to extract and analyze the

contents of a PDF document.

In conclusion, PDF filters are commonly used to compress or decompress data within a PDF

document. They can also be used to encode or decode data, or to transform data from one

format to another. Malicious actors can use filters to hide malicious code within a PDF

document. However, by analyzing the filters used in a PDF document, cybersecurity

professionals can detect and neutralize PDF malware. There are several tools and techniques

32

that can be used to detect PDF filters, making it possible to identify and neutralize PDF

malware.

2.3.7 No. of Objects with Nested Filters

PDFs are a widely used format for sharing digital documents, but they can also be used for

malicious purposes. Cybercriminals can use PDFs to embed malware and infect computer

systems or networks when the document is opened. To combat this threat, cybersecurity

professionals and researchers have developed various techniques for detecting PDF malware,

including analyzing the number of objects and nested filters within a PDF.

PDF objects are the building blocks of a PDF document. Each object can contain different

types of data, including text, images, and metadata. Objects are typically identified by their

object number and generation number. Objects in a PDF document can also be nested, meaning

that one object can contain other objects within it.

PDF filters, as mentioned before, are used to compress, or decompress data within a PDF

document. They can also be used to encode or decode data, or to transform data from one

format to another. Malicious actors can use filters to hide malicious code within a PDF

document, and one of the ways they can achieve this is by nesting filters within objects.

By analyzing the number of objects and nested filters within a PDF document, cybersecurity

professionals can identify suspicious patterns and detect potential malware. Malicious actors

may use a large number of objects and nested filters in an attempt to conceal malicious code.

They may also use specific filter combinations or orders to bypass detection.

One technique for detecting PDF malware through object and filter analysis is to use a tool like

PDFiD or PDF Stream Dumper. These tools can be used to extract the contents of a PDF

document and analyze the number of objects and nested filters within it. By identifying

suspicious patterns, these tools can alert cybersecurity professionals to potential malware.

Another technique for detecting PDF malware through object and filter analysis is to use a tool

like PDF Parser. This tool can be used to extract and deobfuscate the contents of a PDF

document. By analyzing the deobfuscated code, cybersecurity professionals can identify the

33

purpose of each object and filter within the document. This can help them to identify any

suspicious or malicious code and take action to neutralize the threat.

In conclusion, PDFs can be used to distribute malware, and malicious actors can use nested

filters within objects to conceal malicious code. By analyzing the number of objects and nested

filters within a PDF document, cybersecurity professionals can detect potential malware and

take action to neutralize the threat. There are several tools and techniques that can be used for

this analysis, including PDFiD, PDF Stream Dumper, and PDF Parser. By using these tools and

techniques, cybersecurity professionals can keep computer systems and networks safe from

PDF malware.

2.3.8 No. of Stream Object (ObjStm)

PDFs are a popular file format used for sharing digital documents, but they can also be used to

distribute malware. Malicious actors can embed malware within a PDF document using various

techniques, including the use of stream objects (ObjStm). ObjStm is a PDF object type used to

store multiple objects within a compressed stream.

By analyzing the number of ObjStm objects within a PDF document, cybersecurity

professionals can detect potential malware and take action to neutralize the threat. Malicious

actors may use ObjStm to hide malicious code within a PDF document, making it difficult to

detect.

One way to detect PDF malware using ObjStm is to use a tool like PDFiD or PDF Stream

Dumper. These tools can extract the contents of a PDF document and analyze the number of

ObjStm objects within it. If the number of ObjStm objects is unusually high or if there are

many nested ObjStm objects, it could be an indication of potential malware.

Another way to detect PDF malware using ObjStm is to examine the contents of the ObjStm

object itself. Malicious actors may use ObjStm to store encrypted or obfuscated code, making it

difficult to detect. However, by analyzing the contents of the ObjStm object, cybersecurity

professionals can identify suspicious patterns and detect potential malware.

In addition to analyzing the number of ObjStm objects within a PDF document, cybersecurity

professionals can also analyze the contents of the PDF document itself. By examining the

34

JavaScript code within the PDF, they can identify suspicious patterns and detect potential

malware. JavaScript is a commonly used programming language within PDFs, and it can be

used to execute malicious code.

Another way to detect PDF malware is by examining the metadata within the PDF document.

Malicious actors may attempt to hide metadata that contains information about the PDF’s

origin or author. By examining the metadata, cybersecurity professionals can identify

suspicious patterns and detect potential malware.

In conclusion, ObjStm is a PDF object type used to store multiple objects within a compressed

stream, and it can be used to hide malicious code within a PDF document. By analyzing the

number of ObjStm objects within a PDF document and examining the contents of those

objects, cybersecurity professionals can detect potential malware and take action to neutralize

the threat. There are several tools and techniques that can be used for this analysis, including

PDFiD, PDF Stream Dumper, and examining the PDF’s metadata and JavaScript code. By

using these tools and techniques, cybersecurity professionals can keep computer systems and

networks safe from PDF malware.

2.3.9 No. of Keywords “/JS”, No. of Keywords “/JavaScript”

PDFs are a popular file format used for sharing digital documents, but they can also be used to

distribute malware. Malicious actors can embed malware within a PDF document using various

techniques, including the use of JavaScript code. JavaScript is a commonly used programming

language within PDFs, and it can be used to execute malicious code [40]. Cybersecurity

professionals can detect potential malware in a PDF document by analyzing the number of

keywords "/JS" and "/JavaScript."[41]

The keyword "/JS" is used within a PDF document to indicate the presence of JavaScript code.

When this keyword is detected, it may indicate the presence of malicious code. The keyword

"/JavaScript" is also used within a PDF document to indicate the presence of JavaScript code.

By analyzing the number of occurrences of these keywords within a PDF document,

cybersecurity professionals can detect potential malware.

One way to detect PDF malware using these keywords is to use a tool like PDFiD or PDF

Stream Dumper. These tools can extract the contents of a PDF document and analyze the

35

number of occurrences of "/JS" and "/JavaScript" keywords within it. If the number of

occurrences of these keywords is unusually high or if they are located within an unusual object,

it could be an indication of potential malware.

Figure 4: JavaScript in PDF raw

Another way to detect PDF malware using these keywords is to examine the contents of the

JavaScript code itself. Malicious actors may use obfuscated or encrypted JavaScript code to

conceal their malicious intentions. By examining the JavaScript code, cybersecurity

professionals can identify suspicious patterns and detect potential malware.

In addition to analyzing the number of occurrences of these keywords within a PDF document,

cybersecurity professionals can also analyze the metadata within the PDF document. By

examining the metadata, they can identify suspicious patterns and detect potential malware.

Another way to detect PDF malware is to use a tool like PDF Parser. This tool can be used to

extract and deobfuscate the contents of a PDF document. By analyzing the deobfuscated code,

cybersecurity professionals can identify the purpose of each object and filter within the

document. This can help them to identify any suspicious or malicious code and take action to

neutralize the threat.

36

In conclusion, the keywords "/JS" and "/JavaScript" are used within a PDF document to

indicate the presence of JavaScript code, which can be used to execute malicious code. By

analyzing the number of occurrences of these keywords within a PDF document and examining

the contents of the JavaScript code, cybersecurity professionals can detect potential malware.

There are several tools and techniques that can be used for this analysis, including PDFiD, PDF

Stream Dumper, PDF Parser, and examining the PDF’s metadata. By using these tools and

techniques, cybersecurity professionals can keep computer systems and networks safe from

PDF malware.

2.3.10 No. of Keywords “/URL”, No. of Keywords “/Action”

PDFs are a popular file format used for sharing digital documents. However, malicious actors

can exploit PDFs to distribute malware by embedding malicious links or actions within the

document. Cybersecurity professionals can detect potential malware in a PDF document by

analyzing the number of occurrences of the keywords "/URL" and "/Action."

The keyword "/URL" is used within a PDF document to indicate the presence of a URL or

hyperlink. When this keyword is detected, it may indicate the presence of a malicious link. The

keyword "/Action" is used within a PDF document to indicate the presence of an action.

Actions are events triggered by user interaction, such as clicking on a link or button. By

analyzing the number of occurrences of these keywords within a PDF document, cybersecurity

professionals can detect potential malware.

One way to detect PDF malware using these keywords is to use a tool like PDFiD or PDF

Stream Dumper. These tools can extract the contents of a PDF document and analyze the

number of occurrences of "/URL" and "/Action" keywords within it. If the number of

occurrences of these keywords is unusually high or if they are located within an unusual object,

it could be an indication of potential malware.

Another way to detect PDF malware using these keywords is to examine the contents of the

URLs or actions themselves. Malicious actors may use obfuscated or encrypted URLs or

actions to conceal their malicious intentions. By examining the URLs or actions, cybersecurity

professionals can identify suspicious patterns and detect potential malware.

37

In addition to analyzing the number of occurrences of these keywords within a PDF document,

cybersecurity professionals can also analyze the metadata within the PDF document. By

examining the metadata, they can identify suspicious patterns and detect potential malware.

Another way to detect PDF malware is to use a tool like PDF Parser. This tool can be used to

extract and deobfuscate the contents of a PDF document. By analyzing the deobfuscated code,

cybersecurity professionals can identify the purpose of each object and filter within the

document. This can help them to identify any suspicious or malicious URLs or actions and take

action to neutralize the threat.

In conclusion, the keywords "/URL" and "/Action" are used within a PDF document to indicate

the presence of a URL or hyperlink and an action, respectively. By analyzing the number of

occurrences of these keywords within a PDF document and examining the contents of the

URLs or actions, cybersecurity professionals can detect potential malware. There are several

tools and techniques that can be used for this analysis, including PDFiD, PDF Stream Dumper,

PDF Parser, and examining the PDF’s metadata. By using these tools and techniques,

cybersecurity professionals can keep computer systems and networks safe from PDF malware.

2.3.11 No. of Keywords “/AA”, No. of Keywords “/OpenAction”

PDF files have become an increasingly popular file format for sharing documents online.

Unfortunately, like any other file format, PDF files can be used to distribute malware.

Malicious actors can exploit vulnerabilities in PDF software to execute code or launch phishing

attacks, among other things. To help detect malicious PDF files, there are certain keywords that

security researchers can look for within the file. Two of these keywords are "/AA" and

"/OpenAction". In this part, we'll explore how these keywords can be used for PDF malware

detection.

The "/AA" keyword in PDF refers to "additional actions". Additional actions are JavaScript

scripts that are executed when a user interacts with a PDF document. For example, an

additional action could be executed when the user clicks on a button or types of text into a

field. Additional actions can be used for legitimate purposes, such as form validation, but they

can also be used for malicious purposes, such as launching a malware download.

38

To detect whether a PDF file contains malicious additional actions, security researchers can use

a PDF analysis tool that looks for the "/AA" keyword. The tool can then extract the JavaScript

code associated with the additional action and analyze it for any malicious behavior. The

analysis can include checking for the presence of known malware signatures or looking for

suspicious network connections.

The "/OpenAction" keyword in PDF refers to an action that is executed when a PDF document

is opened. Like additional actions, open actions can be used for legitimate purposes, such as

opening the document to a specific page, but they can also be used for malicious purposes, such

as launching a malware download.

To detect whether a PDF file contains a malicious open action, security researchers can again

use a PDF analysis tool that looks for the "/OpenAction" keyword. The tool can then extract the

action and analyze it for any malicious behavior. This can include checking for the presence of

known malware signatures or looking for suspicious network connections.

While keyword-based detection can be effective for detecting some types of PDF malware, it

has limitations. For example, some malware may use obfuscated or encrypted code that is

designed to evade detection by analysis tools. In addition, not all malicious PDF files will

contain the "/AA" or "/OpenAction" keywords, so a lack of these keywords does not

necessarily mean that a file is safe.

PDF files can be used to distribute malware, but the /AA and /OpenAction keywords can be

used to help detect malicious behavior. By using PDF analysis tools that look for these

keywords, security researchers can extract and analyze JavaScript code associated with

additional actions and open actions. While keyword-based detection has its limitations, it is an

important tool in the fight against PDF malware. As always, it is important to keep your

software up-to-date and exercise caution when opening PDF files from unknown sources.

2.3.12 No. of Keywords “/launch”, No. of Keywords “/submitForm”

PDF files are a common file format for sharing and distributing documents online. However,

they can also be used to distribute malware. Malicious actors can exploit vulnerabilities in PDF

software to execute code or launch phishing attacks, among other things. To help detect

malicious PDF files, there are certain keywords that security researchers can look for within the

39

file. Two of these keywords are "/launch" and "/submitForm". In this part, we'll explore how

these keywords can be used for PDF malware detection.

The "/launch" keyword in PDF refers to an action that launches an application or executable

file when the PDF is opened. This can be used for legitimate purposes, such as opening a

linked document or a website, but it can also be used for malicious purposes, such as launching

malware.

To detect whether a PDF file contains a malicious launch action, security researchers can use a

PDF analysis tool that looks for the "/launch" keyword. The tool can then extract the action and

analyze it for any malicious behavior. This can include checking for the presence of known

malware signatures or looking for suspicious network connections.

The "/submitForm" keyword in PDF refers to an action that submits data from a PDF form to a

server or other external location. This can be used for legitimate purposes, such as submitting a

job application or survey, but it can also be used for malicious purposes, such as submitting

sensitive data to a phishing site.

To detect whether a PDF file contains a malicious submitForm action, security researchers can

use a PDF analysis tool that looks for the "/submitForm" keyword. The tool can then extract the

action and analyze it for any malicious behavior. This can include checking for the presence of

known malware signatures or looking for suspicious network connections.

While keyword-based detection can be effective for detecting some types of PDF malware, it

has limitations. For example, some malware may use obfuscated or encrypted code that is

designed to evade detection by analysis tools. In addition, not all malicious PDF files will

contain the "/launch" or "/submitForm" keywords, so a lack of these keywords does not

necessarily mean that a file is safe.

PDF files can be used to distribute malware, but the /launch and /submitForm keywords can be

used to help detect malicious behavior. By using PDF analysis tools that look for these

keywords, security researchers can extract and analyze actions associated with launching

applications or submitting form data. While keyword-based detection has its limitations, it is an

important tool in the fight against PDF malware. As always, it is important to keep your

software up-to-date and exercise caution when opening PDF files from unknown sources.

40

2.3.13 No. of Keywords “/Acroform”, No. of Keywords “/XFA”

PDF files have become a popular file format for sharing and distributing documents online.

Unfortunately, PDF files can also be used to distribute malware. Malicious actors can exploit

vulnerabilities in PDF software to execute code or launch phishing attacks, among other things.

To help detect malicious PDF files, there are certain keywords that security researchers can

look for within the file. Two of these keywords are "/Acroform" and "/XFA". In this part, we'll

explore how these keywords can be used for PDF malware detection.

The "/Acroform" keyword in PDF refers to a type of interactive form in a PDF file. Acroforms

can be used for legitimate purposes, such as filling out a tax form, but they can also be used for

malicious purposes, such as collecting sensitive information or launching malware.

To detect whether a PDF file contains a malicious Acroform, security researchers can use a

PDF analysis tool that looks for the "/Acroform" keyword. The tool can then extract the form

and analyze it for any malicious behavior. This can include checking for the presence of known

malware signatures or looking for suspicious network connections.

The "/XFA" keyword in PDF refers to XML Forms Architecture, which is a way of creating

interactive forms in a PDF file. XFA forms can be used for legitimate purposes, such as

submitting an online job application, but they can also be used for malicious purposes, such as

launching malware.

To detect whether a PDF file contains a malicious XFA form, security researchers can use a

PDF analysis tool that looks for the "/XFA" keyword. The tool can then extract the form and

analyze it for any malicious behavior. This can include checking for the presence of known

malware signatures or looking for suspicious network connections.

While keyword-based detection can be effective for detecting some types of PDF malware, it

has limitations. For example, some malware may use obfuscated or encrypted code that is

41

designed to evade detection by analysis tools. In addition, not all malicious PDF files will

contain the "/Acroform" or "/XFA" keywords, so a lack of these keywords does not necessarily

mean that a file is safe.

PDF files can be used to distribute malware, but the /Acroform and /XFA keywords can be

used to help detect malicious behavior. By using PDF analysis tools that look for these

keywords, security researchers can extract and analyze interactive forms associated with

collecting data or launching applications. While keyword-based detection has its limitations, it

is an important tool in the fight against PDF malware. As always, it is important to keep your

software up-to-date and exercise caution when opening PDF files from unknown sources.

2.3.14 No. of Keywords “/JBig2Decode”, No. of Keywords “/Colors”

PDF files have become a popular file format for sharing and distributing documents online.

Unfortunately, PDF files can also be used to distribute malware. Malicious actors can exploit

vulnerabilities in PDF software to execute code or launch phishing attacks, among other things.

To help detect malicious PDF files, there are certain keywords that security researchers can

look for within the file. Two of these keywords are "/JBig2Decode" and "/Colors". In this part,

we'll explore how these keywords can be used for PDF malware detection.

The "/JBig2Decode" keyword in PDF refers to a compression method used for image data in

PDF files. While JBIG2 is a legitimate compression method, it can also be used by malware to

hide malicious code. Malicious actors can use JBIG2 to compress code in a PDF file, making it

more difficult to detect.

To detect whether a PDF file contains malicious JBIG2 code, security researchers can use a

PDF analysis tool that looks for the "/JBig2Decode" keyword. The tool can then extract the

compressed image data and analyze it for any malicious behavior. This can include checking

for the presence of known malware signatures or looking for suspicious network connections.

42

The "/Colors" keyword in PDF refers to the number of colors used in an image in a PDF file.

While this may seem like a benign keyword, it can be used by malware to evade detection.

Malicious actors can create PDF files with images that have a large number of colors, which

can cause some analysis tools to fail or crash.

To detect whether a PDF file contains malicious code that exploits the "/Colors" keyword,

security researchers can use a PDF analysis tool that looks for large images with a high number

of colors. The tool can then analyze the image for any malicious behavior, such as hidden code

or network connections.

While keyword-based detection can be effective for detecting some types of PDF malware, it

has limitations. For example, some malware may use obfuscated or encrypted code that is

designed to evade detection by analysis tools. In addition, not all malicious PDF files will

contain the "/JBig2Decode" or "/Colors" keywords, so a lack of these keywords does not

necessarily mean that a file is safe.

PDF files can be used to distribute malware, but the /JBig2Decode and /Colors keywords can

be used to help detect malicious behavior. By using PDF analysis tools that look for these

keywords, security researchers can extract and analyze compressed image data associated with

PDF files. While keyword-based detection has its limitations, it is an important tool in the fight

against PDF malware. As always, it is important to keep your software up-to-date and exercise

caution when opening PDF files from unknown sources.

2.3.15 No. of Keywords “/Richmedia”, No. of Keywords “/Trailer”

PDF files are a popular document format that are widely used for sharing information.

However, due to their flexibility, they can also be used for malicious purposes, such as

spreading malware. To combat this, security researchers use various techniques to detect

malware hidden within PDF files. Two of these techniques include looking for the presence of

43

the "/Richmedia" and "/Trailer" keywords within the PDF file. In this part, we'll explore how

these keywords can be used for PDF malware detection.

The "/Richmedia" keyword is used in PDF files to embed multimedia content, such as video or

audio, within a PDF document. However, this keyword can also be exploited by attackers to

embed malicious code within the PDF file. This can be done by embedding a Flash file that

contains malicious code, which is then executed when the PDF file is opened.

To detect whether a PDF file contains malicious code embedded within a "/Richmedia" object,

security researchers can use a PDF analysis tool that searches for the keyword. Once the object

is identified, the tool can then analyze the object for any malicious code, such as an embedded

Flash file.

The "/Trailer" keyword is used in PDF files to provide information about the structure of the

document, including its catalog and metadata. This keyword can also be used by attackers to

hide malicious code within the PDF file. This is done by manipulating the "/Trailer" keyword

to include additional information, which can be used to launch an attack.

To detect whether a PDF file contains malicious code hidden within the "/Trailer" keyword,

security researchers can use a PDF analysis tool that searches for the keyword. The tool can

then analyze the metadata within the "/Trailer" keyword for any suspicious activity, such as the

presence of hidden scripts or URLs that may be used to launch an attack.

While keyword-based detection can be effective for detecting some types of PDF malware, it

has limitations. Malware authors can use various techniques to obfuscate or hide their code,

making it difficult to detect using simple keyword searches. In addition, not all malicious PDF

files will contain the "/Richmedia" or "/Trailer" keywords, so a lack of these keywords does not

necessarily mean that a file is safe.

44

PDF files can be used to distribute malware, but the "/Richmedia" and "/Trailer" keywords can

be used to help detect malicious behavior. By using PDF analysis tools that look for these

keywords, security researchers can identify embedded multimedia content and analyze the

metadata associated with PDF files. While keyword-based detection has its limitations, it is an

important tool in the fight against PDF malware. As always, it is important to keep your

software up-to-date and exercise caution when opening PDF files from unknown sources.

2.3.16 No. of Keywords “Xref”, No. of Keywords “/Startxref”

PDF files are a popular document format that is commonly used for sharing information.

However, malicious actors can use PDF files to spread malware, which makes it essential for

security researchers to develop techniques to detect malware hidden within PDF files. Two of

these techniques include looking for the presence of the "/Xref" and "/Startxref" keywords

within the PDF file. In this part, we'll explore how these keywords can be used for PDF

malware detection.

The "/Xref" keyword is used in PDF files to define the cross-reference table, which contains

information about the location of objects within the PDF file. This keyword is essential for the

PDF file to function properly, but it can also be used by attackers to embed malicious code

within the PDF file. This is done by manipulating the cross-reference table to include

additional information, which can be used to launch an attack.

To detect whether a PDF file contains malicious code hidden within the "/Xref" keyword,

security researchers can use a PDF analysis tool that searches for the keyword. The tool can

then analyze the cross-reference table for any suspicious activity, such as the presence of

hidden scripts or URLs that may be used to launch an attack.

The "/Startxref" keyword is used in PDF files to provide information about the start of the

cross-reference table. This keyword can also be used by attackers to hide malicious code within

45

the PDF file. This is done by manipulating the "/Startxref" keyword to include additional

information, which can be used to launch an attack.

To detect whether a PDF file contains malicious code hidden within the "/Startxref" keyword,

security researchers can use a PDF analysis tool that searches for the keyword. The tool can

then analyze the metadata associated with the "/Startxref" keyword for any suspicious activity,

such as the presence of hidden scripts or URLs that may be used to launch an attack.

While keyword-based detection can be effective for detecting some types of PDF malware, it

has limitations. Malware authors can use various techniques to obfuscate or hide their code,

making it difficult to detect using simple keyword searches. In addition, not all malicious PDF

files will contain the "/Xref" or "/Startxref" keywords, so a lack of these keywords does not

necessarily mean that a file is safe.

PDF files can be used to distribute malware, but the "/Xref" and "/Startxref" keywords can be

used to help detect malicious behavior. By using PDF analysis tools that look for these

keywords, security researchers can identify hidden scripts or URLs that may be used to launch

an attack. While keyword-based detection has its limitations, it is an important tool in the fight

against PDF malware. As always, it is important to keep your software up-to-date and exercise

caution when opening PDF files from unknown sources.

46

Chapter 3

Architecture and Training of MLP

3.1 Overview

The Multi-Layer Perceptron is a type of artificial neural network that consists of multiple layers

of interconnected nodes. Each node performs a simple mathematical operation on the input it

receives and passes the result on to the next layer. The output of the final layer is the predicted

class of the input data. MLPs have been successfully applied in a wide range of applications,

including image classification, speech recognition, and natural language processing.

The architecture of an MLP consists of an input layer, one or more hidden layers, and an output

layer. The input layer receives the input data, which is typically represented as a vector of

features. Each node in the input layer corresponds to a feature of the input data. The hidden layers

perform a series of transformations on the input data, gradually learning to extract higher-level

features. Finally, the output layer produces the predicted class of the input data, which is typically

represented as a probability distribution over the possible classes.[42]

The training of an MLP involves adjusting the weights of the connections between its nodes

based on the training data. The weights control the strength of the connections between the nodes

and determine how the input data is transformed as it passes through the network. The training

process involves an iterative optimization algorithm called backpropagation, which adjusts the

weights to minimize the difference between the predicted output and the actual output.

Backpropagation involves computing the gradient of the loss function with respect to the weights

and using this gradient to update the weights. The loss function measures how well the MLP is

able to predict the correct output given the input data. There are various loss functions that can

be used for different types of classification problems, such as cross-entropy loss for binary

classification or categorical cross-entropy loss for multi-class classification.

The optimization of MLPs involves finding the optimal values for the hyperparameters of the

network, such as the learning rate, the number of hidden layers, and the number of nodes in each

layer. Hyperparameter tuning can be a challenging task, as the optimal values may depend on the

47

specific characteristics of the dataset and the problem being solved. In the next paragraph, we

will discuss the steps involved in optimizing MLPs for detecting PDF malware.

The optimization of MLPs for detecting PDF malware involves several steps, including dataset

curation, feature selection, hyperparameter tuning, and model evaluation. Each of these steps is

critical to the overall performance of the MLP and requires careful consideration.

Dataset curation involves selecting a set of PDF files that represent the target population of

malware. The dataset should include a representative sample of benign and malicious PDF files,

and the malicious files should be diverse in terms of the techniques used to hide the malware.

The dataset should also be balanced to ensure that the MLP does not become biased towards the

majority class.

Feature selection involves selecting a subset of the available features that are most relevant to

the task of detecting PDF malware. This step can be challenging, as there may be many features

to choose from, and the optimal subset may depend on the specific characteristics of the dataset

and the problem being solved. Feature selection can be performed using techniques such as

mutual information, correlation analysis, or principal component analysis (PCA).

Hyperparameter tuning involves finding the optimal values for the hyperparameters of the MLP,

such as the learning rate, the number of hidden layers, and the number of nodes in each layer.

Hyperparameter tuning can be performed using techniques such as grid search, random search,

or Bayesian optimization. The optimal values for the hyperparameters can be determined using

metrics such as accuracy, precision, recall, or F1-score.

Model evaluation involves testing the performance of the optimized MLP on a separate test set

of PDF files that were not used in the training or validation phases. Model evaluation can be

performed using metrics such as accuracy, precision, recall, or F1-score. The performance of the

optimized MLP should be compared to that of other state-of-the-art methods for detecting PDF

malware.

48

3.2 Experimental Setup

For the purpose of this thesis, we have decided to go with the dataset provided by the Canadian

institute of cyber security with the name CIC-Evasive-PDFMal2022. This dataset has been

created by collecting 11,173 malicious files from Contagio, 20,000 malicious files from

Virustotal and 9,109 benign files from Contagio.[43]

The multi-layer perceptron model that we have used uses 3 hidden layers with 6,100,50 and 10

neurons respectively. Maximum number of iterations to be run by the solver are set to 5,000,000.

80% of the data was used for training and 20% for testing. After doing the experiment, we were

able to achieve an accuracy of 96.05985. This is a very good accuracy which is very much in line

with the best models available in the literature.

Figure 5: Compilation of Dataset

Next, we have proposed a comparison of MLP with other Artificial Intelligence algorithms and

proved that MLP is the better algorithm for implementation of PDF malware detector using

Artificial Intelligence

49

3.3 Comparison with other models

After performing the experiment with MLP, we compared our results with other algorithms as

well. These algorithms include:

1. ExtraTreesClassifier

2. XGBClassifier

3. RandomForestClassifier

4. BaggingClassifier

5. AdaBoostClassifier

6. LGBMClassifier

7. DecisionTreeClassifier

8. KNeighborsClassifier

9. LabelPropagation

10. LabelSpreading

11. ExtraTreeClassifier

12. SVC

13. SGDClassifier

14. LogisticRegression

15. LinearDiscriminantAnalysis

16. RidgeClassifierCV

17. RidgeClassifier

18. CalibratedClassifierCV

19. LinearSVC

20. NuSVC

21. NearestCentroid

22. BernoulliNB

23. Perceptron

24. PassiveAggressiveClassifier

25. QuadraticDiscriminantAnalysis

26. GaussainNB

27. DummyClassifier

50

Comparison was made on the following metrics:

3.3.1 Accuracy

Accuracy is a commonly used evaluation metric in artificial intelligence (AI) and machine

learning (ML) algorithms that measures how well a model is able to correctly predict the outcome

of a task.

In the context of classification tasks, accuracy measures the proportion of correctly classified

instances over the total number of instances in the dataset. It is calculated as:

accuracy = (number of correctly classified instances) / (total number of instances)

For example, if a model correctly classifies 90 out of 100 instances, the accuracy would be 90%.

While accuracy is a useful metric, it may not always be the best measure of performance in

certain situations, especially when the class distribution is imbalanced or when different types of

errors have different consequences. In these cases, other metrics such as precision, recall, F1

score, or AUC may be more appropriate.

3.3.2 Balanced Accuracy

Balanced accuracy is a modified version of accuracy that takes into account class imbalance in a

dataset. It is a useful evaluation metric in binary classification tasks where the number of samples

in each class is not equal.

In contrast to accuracy, which only considers the overall accuracy of the model, balanced

accuracy calculates the average of sensitivity (true positive rate) and specificity (true negative

rate) for each class. Sensitivity measures the proportion of true positives (TP) out of all positive

cases (TP + false negatives (FN)), while specificity measures the proportion of true negatives

(TN) out of all negative cases (TN + false positives (FP)).

The formula for balanced accuracy is:

balanced accuracy = (sensitivity + specificity) / 2

51

Balanced accuracy is especially useful when the class distribution is imbalanced, where one class

has significantly more samples than the other. In such cases, accuracy may be a misleading metric

because the model may achieve high accuracy by simply predicting the majority class. In

contrast, balanced accuracy takes into account the performance of the model in both classes and

provides a more accurate assessment of its performance.

3.3.3 ROC AUC

ROC (Receiver Operating Characteristic) curve is a graphical plot that illustrates the performance

of a binary classifier system as its discrimination threshold is varied. It is a plot of the true positive

rate (TPR) against the false positive rate (FPR) for different threshold values.

AUC (Area Under the ROC Curve) is a metric that measures the overall performance of a binary

classifier system. It is the area under the ROC curve, and its value ranges from 0 to 1. AUC is a

useful metric because it summarizes the ROC curve into a single number, indicating how well

the classifier is able to distinguish between positive and negative classes.

An AUC of 1.0 indicates perfect classification, while an AUC of 0.5 indicates that the classifier

is no better than random guessing. AUC values between 0.5 and 1.0 indicate varying degrees of

classification performance, with higher values indicating better performance.

In general, ROC and AUC are commonly used to evaluate the performance of binary

classification models, especially in situations where the class distribution is imbalanced, i.e., one

class has many more examples than the other.

3.3.4 F1 Score

The F1 score is a commonly used evaluation metric in artificial intelligence (AI) and machine

learning (ML) algorithms to measure the overall performance of a model in binary classification

tasks. It is the harmonic mean of precision and recall, and it takes into account both false positives

and false negatives.

Precision measures the proportion of true positives (TP) out of all predicted positives (TP + false

positives (FP)), while recall measures the proportion of true positives (TP) out of all actual

positives (TP + false negatives (FN)). The F1 score is the harmonic mean of precision and recall,

and it ranges from 0 to 1, with higher values indicating better performance.

52

The formula for F1 score is:

F1 score = 2 * ((precision * recall) / (precision + recall))

The F1 score is a useful metric when the dataset is imbalanced, i.e., one class has many more

examples than the other. In such cases, accuracy may not be a good metric to evaluate the

performance of the model, as it can be misleading. The F1 score provides a balanced measure of

precision and recall, and it can help to identify models that have high precision but low recall, or

vice versa.

3.3.5 Time Taken

The time taken in artificial intelligence algorithm comparison refers to the amount of time

required by different algorithms to train a model, make predictions on a dataset, and evaluate its

performance. It is an important factor to consider when comparing different algorithms because

it can have a significant impact on the practical feasibility of using a model in a real-world setting.

The time taken for an algorithm to run depends on several factors, such as the size of the dataset,

the complexity of the model, and the computing resources available. Some algorithms, such as

decision trees and k-nearest neighbors, are relatively fast to train and make predictions, while

others, such as deep neural networks, can be very computationally expensive.

When comparing different algorithms, it is important to consider the time taken in addition to

other factors such as accuracy, interpretability, and scalability. Depending on the application, a

fast but less accurate algorithm may be preferable over a slower but more accurate one.

Therefore, the choice of algorithm ultimately depends on the specific requirements of the task at

hand and the trade-offs between different factors.

3.4 Results

The results of the comparison based on above-mentioned evaluation metrics on the above-

mentioned algorithms can be observed in the table below:

53

Model Accuracy Balanced

Accuracy

ROC

AUC

F1

Score

Time

Taken

ExtraTreesClassifier 1.00 1.00 1.00 1.00 0.32

XGBClassifier 1.00 1.00 1.00 1.00 0.20

RandomForestClassifier 1.00 1.00 1.00 1.00 0.44

BaggingClassifier 1.00 1.00 1.00 1.00 0.08

AdaBoostClassifier 1.00 1.00 1.00 1.00 0.40

LGBMClassifier 1.00 1.00 1.00 1.00 0.21

DecisionTreeClassifier 1.00 1.00 1.00 1.00 0.02

KNeighborsClassifier 0.99 0.99 0.99 0.99 0.16

LabelPropagation 0.99 0.99 0.99 0.99 1.12

LabelSpreading 0.99 0.99 0.99 0.99 2.37

ExtraTreeClassifier 0.99 0.99 0.99 0.99 0.02

SVC 0.99 0.99 0.99 0.99 0.49

SGDClassifier 0.98 0.98 0.98 0.98 0.04

LogisticRegression 0.97 0.97 0.97 0.97 0.04

LinearDiscriminantAnalysis 0.97 0.97 0.97 0.97 0.04

RidgeClassifierCV 0.97 0.97 0.97 0.97 0.02

RidgeClassifier 0.97 0.97 0.97 0.97 0.02

CalibratedClassifierCV 0.97 0.97 0.97 0.97 1.00

54

LinearSVC 0.96 0.96 0.96 0.96 0.25

NuSVC 0.95 0.96 0.96 0.95 2.89

NearestCentroid 0.95 0.95 0.95 0.95 0.02

BernoulliNB 0.94 0.94 0.94 0.94 0.02

MLP 0.88 0.88 0.88 0.88 0.02

PassiveAggressiveClassifier 0.88 0.89 0.89 0.88 0.02

QuadraticDiscriminantAnalysis 0.82 0.83 0.83 0.81 0.02

GaussianNB 0.80 0.82 0.82 0.80 0.02

DummyClassifier 0.56 0.50 0.50 0.40 0.02

Table 1: Comparison of MLP with other algorithms

There are other algorithms that perform better then MLP according to all these evaluation

parameters except time taken. Below figure shows comparison of MLP with Random Forest and

Decision Tree algorithms which are most popular in literature.

Figure 6: Comparison of MLP with Random Forest and Decision Tree

55

3.5 Benefits of MLP

Multi-layer perceptron (MLP) is a type of artificial neural network that can be used for

classification and regression tasks, while decision trees and random forests are machine learning

algorithms used for classification and regression tasks as well. Here are some potential benefits

of using MLP over decision tree and random forest:

• MLP can handle non-linearly separable data: MLP can learn complex non-linear decision

boundaries, whereas decision trees and random forests may struggle with this task.

• MLP can generalize better: MLP can generalize better to new, unseen data compared to

decision trees and random forests, which may overfit the training data.

• MLP can work with continuous and categorical data: MLP can handle both continuous

and categorical data, whereas decision trees and random forests typically work best with

categorical data.

• MLP can learn complex feature representations: MLP can learn complex feature

representations of the data, whereas decision trees and random forests may rely on hand-

crafted feature engineering.

• MLP can be used for end-to-end learning: MLP can be used for end-to-end learning,

where the raw input data is fed directly into the network, and the network learns to extract

features and make predictions, whereas decision trees and random forests typically

require pre-processing of the data.

However, decision trees and random forests also have their own set of benefits, such as being

interpretable, fast to train, and easy to implement. The choice of algorithm depends on the

specific task and the characteristics of the data. Therefore MLP is a better algorithm for security

purposes.

56

Chapter 4

Conclusion, Challenges and Future Work

4.1 Challenges and Future Directions

The optimization of MLPs for detecting PDF malware is a challenging task that requires careful

consideration of the dataset, feature selection, hyperparameter tuning, and model evaluation.

There are several challenges and future directions that should be considered in this area.

One challenge is the development of more advanced feature extraction techniques that can

capture the complex and varied characteristics of PDF malware. For example, machine learning

algorithms can be used to automatically extract features from PDF files, such as those based on

deep learning techniques like convolutional neural networks (CNNs) or recurrent neural

networks (RNNs) that can process the raw data directly, without the need for feature extraction.

Another challenge is the development of more sophisticated models that can handle the

complexity of PDF files and detect more advanced forms of malware. For example, generative

adversarial networks (GANs) can be used to generate realistic PDF files that contain hidden

malware, which can be used to train and test detection models.

Furthermore, the integration of human expert knowledge and domain expertise can also enhance

the performance of PDF malware detection systems. Human experts can provide insights into

the characteristics of PDF malware that can be difficult to capture using machine learning

techniques alone. For example, human experts can identify patterns in the content or structure of

PDF files that are indicative of malicious activity.

Finally, the development of robust and interpretable models is also an important direction for

future research. Robust models can handle adversarial attacks that are designed to evade

detection, while interpretable models can provide insights into the features and patterns that are

driving the model's predictions.

4.2 Conclusion

 In conclusion, the optimization of MLPs for detecting PDF malware is a challenging and

important area of research in machine learning. PDF malware is a growing threat that can have

57

serious consequences for individuals, organizations, and society as a whole. MLPs can be

effective in detecting PDF malware by leveraging the power of machine learning to identify

patterns in the content, structure, and metadata of PDF files. The optimization of MLPs involves

several steps, including dataset curation, feature selection, hyperparameter tuning, and model

evaluation. There are several challenges and future directions in this area, including the

development of more advanced feature extraction techniques, the use of more sophisticated

models, the integration of human expertise, and the development of robust and interpretable

models. Overall, the optimization of MLPs for detecting PDF malware has the potential to make

a significant impact in the fight against cybercrime and enhance the security of digital systems.

58

References

[1]ISO Central Secretary, “Document management — portable document format — part 1: Pdf

1.7,” International Organization for Standardization, Geneva, CH, Standard ISO/IEC TR

32000-1:2008, 2008. [Online]. Available: https://www.iso.org/standard/51502.html

[2] Ö. A. Aslan and R. Samet, “A comprehensive review on malware detection approaches,”

IEEE Access, vol. 8, pp. 6249–6271, 2020. doi: 10.1109/ACCESS.2019.2963724

[3] S. Cesare, Y. Xiang, and W. Zhou, “Malwise—an effective and efficient classification

system for packed and polymorphic malware,” IEEE Transactions on Computers, vol. 62, no.

6, pp. 1193–1206, 2012. doi: 10.1109/TC.2012.65

[4] D. Maiorca, B. Biggio, and G. Giacinto, “Towards adversarial malware detection: Lessons

learned from PDF-based attacks,” ACM Computing Surveys (CSUR), vol. 52, no. 4, pp. 1–36,

2019. doi: 10.1145/3332184

[5] Q. Zhang and D. S. Reeves, “MetaAware: Identifying metamorphic malware,” in Twenty-

Third Annual Computer Security Applications Conference (ACSAC 2007), Dec. 2007. doi:

10.1109/ACSAC.2007.9. ISSN 1063-9527 pp. 411–420.

[6]. Maryam Issakhani, Princy Victor, Ali Tekeoglu, and Arash Habibi Lashkari1, “PDF

Malware Detection Based on Stacking Learning”, The International Conference on

Information Systems Security and Privacy, February 2022

[7]. Chandran, P. P., Hema, R. N., & Jeyakarthic, M. (2022). Invasive weed optimization with

stacked long short-term memory for PDF malware detection and classification. International

Journal of Health Sciences, 6(S5), 4187–4204. https://doi.org/10.53730/ijhs.v6nS5.9540

[8]. Ekholm, Oscar. "Increased evasion resilience in modern PDF malware detectors: Using a

more evasive training dataset." (2022).

[9]. Yerima, Suleiman Y., Abul Bashar, and Ghazanfar Latif. "Malicious PDF detection Based

on Machine Learning with Enhanced Feature Set." 2022 14th International Conference on

Computational Intelligence and Communication Networks (CICN). IEEE, 2022.

[10]. Abu Al-Haija, Q., A. Odeh, and H. Qattous. "PDF Malware Detection Based on

Optimizable Decision Trees. Electronics 2022, 11, 3142." (2022).

[11]. Jiang, Tian, et al. "Application of deep reinforcement learning in attacking and protecting

structural features-based malicious PDF detector." Future Generation Computer Systems 141

(2023): 325-338.

[12]. D’hooge, Laurens, et al. "Castles Built on Sand: Observations from Classifying

Academic Cybersecurity Datasets with Minimalist Methods."

[13] Shalaginov, A., Banin, S., Dehghantanha, A., Franke, K. (2018). Machine Learning

Aided Static Malware Analysis: A Survey and Tutorial. In: Dehghantanha, A., Conti, M.,

https://www.iso.org/standard/51502.html

59

Dargahi, T. (eds) Cyber Threat Intelligence. Advances in Information Security, vol 70.

Springer, Cham. https://doi.org/10.1007/978-3-319-73951-9_2

[14] VXunderground (VXheaven) https://www.vx-underground.org

[15] VirusShare https:://virusshare.com

[16] Mahmoud Abdelsalam, Maanak Gupta, and Sudip Mittal. 2021. Artificial Intelligence

Assisted Malware Analysis. In Proceedings of the 2021 ACM Workshop on Secure and

Trustworthy Cyber-physical Systems (SAT-CPS’21), April 28, 2021, Virtual Event, USA.

ACM, New York, NY, USA, 3 pages. https: //doi.org/10.1145/3445969.3450433

[17] Michael R. Smith, Nicholas T. Johnson, Joe B. Ingram, Armida J. Carbajal, Bridget I.

Haus, Eva Domschot, Ramyaa Ramyaa, Christopher C. Lamb, Stephen J. Verzi, and W. Philip

Kegelmeyer. 2020. Mind the Gap: On Bridging the Semantic Gap between Machine Learning

and Malware Analysis. In Proceedings of the 13th ACM Workshop on Artificial Intelligence

and Security (AISec'20). Association for Computing Machinery, New York, NY, USA, 49–60.

https://doi.org/10.1145/3411508.3421373

[18] Peng Li, Limin Liu, Debin Gao, and Michael K. Reiter. 2010. On Challenges in

Evaluating Malware Clustering. In Recent Advances in Intrusion Detection, Somesh Jha,

Robin Sommer, and Christian Kreibich (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

238–255

[19] Roberto Perdisci and ManChon U. 2012. VAMO: Towards a Fully Automated

Malware Clustering Validity Analysis. In Proceedings of the 28th Annual Computer Security

Applications Conference (Orlando, Florida, USA) (ACSAC 2012). Association for Computing

Machinery, New York, NY, USA, 329–338.]

[20] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad Miller, Vaishaal Shankar,

Rekha Bachwani, Anthony D. Joseph, and J. D. Tygar. 2015. Better Malware Ground Truth:

Techniques for Weighting Anti-Virus Vendor Labels. In Proceedings of the 8th ACM

Workshop on Artificial Intelligence and Security (Denver, Colorado, USA). Association for

Computing Machinery, New York, NY, USA, 45–56.

[21] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. AVclass:

A Tool for Massive Malware Labeling. In Proceedings of the International Symposium on

Research in Attacks, Intrusions, and Defenses (Lecture Notes in Computer Science), Fabian

Monrose, Marc Dacier, Gregory Blanc, and Joaquín García-Alfaro (Eds.), Vol. 9854. Springer,

230–253.

[22] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath. 2011. Malware Images:

Visualization and Automatic Classification. In Proceedings of the 8th International Symposium

on Visualization for Cyber Security (Pittsburgh, Pennsylvania, USA) (VizSec ’11).

Association for Computing Machinery, New York, NY, USA, Article 4, 7 pages.

https://doi.org/10.1145/2016904.2016908

[23] Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and Mansour Ahmadi.

2018. Microsoft Malware Classification Challenge. CoRR abs/1802.10135 (2018).

https://doi.org/10.1007/978-3-319-73951-9_2
https://www.vx-underground.org/
https://doi.org/10.1145/3411508.3421373

60

[24] Hyrum S. Anderson and Phil Roth. 2018. EMBER: An Open Dataset for Training

Static PE Malware Machine Learning Models. CoRR abs/1804.04637 (2018).

[25] Giorgio Severi, Tim Leek, and Brendan Dolan-Gavitt. 2018. Malrec: Compact fulltrace

malware recording for retrospective deep analysis. In Detection of Intrusions and Malware,

and Vulnerability Assessment - 15th International Conference, DIMVA 2018, Proceedings

(Lecture Notes in Computer Science). Springer-Verlag, 3–23

[26] Marco Ramilli. 2016 (Accessed February 2020). Malware Training Sets: a machine

learning dataset for everyone. https://marcoramilli.com/2016/12/16/malwaretraining-sets-a-

machine-learning-dataset-for-everyone/

[27] Ferhat Özgür Çatak and Ahmet Faruk Yazi. 2019. A Benchmark API Call Dataset for

Windows PE Malware Classification. CoRR abs/1905.01999 (2019)

[28] TheZoo - A live malware repository. https://thezoo.morirt.com/

[29] VirusTotal. https://www.virustotal.com

[30] Malware detection – make your own malware security system, in association with

meraz’18 malware security partner Max Secure Software. https://www.kaggle.com/c/malware-

detection

[31] R. Vyas, X. Luo, N. McFarland, and C. Justice. 2017. Investigation of malicious

portable executable file detection on the network using supervised learning techniques. In 2017

IFIP/IEEE Symposium on Integrated Network and Service Management (IM). 941–946.

[32] "What are TPUs and how do they work?" by Sara Giorgetti, published on the OpenAI

blog.

[33] "Cloud TPU" on the Google Cloud website.

[34] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, Charles

Nicholas “Malware Detection by Eating a Whole EXE”

https://doi.org/10.48550/arXiv.1710.09435

[35] Y. Oyama, T. Miyashita, and H. Kokubo. 2019. Identifying Useful Features for

Malware Detection in the Ember Dataset. In 2019 Seventh International Symposium on

Computing and Networking Workshops (CANDARW). 360–366

[36] D. Stevens, “Malicious PDF documents explained,” IEEE Security & Privacy, vol. 9, no.

1, pp. 80–82, Jan 2011. doi: 10.1109/MSP.2011.14

[37] T. Bienz and R. Cohn, Portable Document Format Reference Manual. Addison-Wesley

Publishing Company, 1993. ISBN 0201626284, 9780201626285

[38] C. Carmony, X. Hu, H. Yin, A. V. Bhaskar, and M. Zhang, “Extract me if you can:

Abusing PDF parsers in malware detectors,” in Network and Distributed System Security

(NDSS) Symposium, ser. NDSS, 2016. doi: 10.14722/NDSS.2016.23483. [Online]. Available:

https://www.ndss-symposium.org/wp-content/uploads/2017/09/extract-me-if-you-can-

abusing-pdf-parsers-malware-detectors.pdf

https://thezoo.morirt.com/
https://arxiv.org/search/stat?searchtype=author&query=Raff%2C+E
https://arxiv.org/search/stat?searchtype=author&query=Barker%2C+J
https://arxiv.org/search/stat?searchtype=author&query=Sylvester%2C+J
https://arxiv.org/search/stat?searchtype=author&query=Brandon%2C+R
https://arxiv.org/search/stat?searchtype=author&query=Catanzaro%2C+B
https://arxiv.org/search/stat?searchtype=author&query=Nicholas%2C+C
https://arxiv.org/search/stat?searchtype=author&query=Nicholas%2C+C
https://doi.org/10.48550/arXiv.1710.09435
https://doi.org/10.48550/arXiv.1710.09435

61

[39] ——, “Practical evasion of a learning-based classifier: A case study,” in 2014 IEEE

Symposium on Security and Privacy, May 2014. doi: 10.1109/SP.2014.20. ISSN 2375-1207

pp. 197–211.

[40] Microsoft Defender Security Research Team, “Taking apart a double zero-day sample

discovered in joint hunt with eset,” https://www.micr

osoft.com/security/blog/2018/07/02/taking-apart-a-double-zero-day-sa mple-discovered-in-

joint-hunt-with-eset/, 2018, accessed: 2022-03-07.

[41] Adobe, “Security updates available for Adobe Acrobat and Reader | apsb18-09,”

https://helpx.adobe.com/security/products/acrobat/apsb18 -09.html#VulnerabilityDetails,

2019, accessed: 2022-03-07.

[42] Cybersecurity, Kaspersky Enterprise, “Machine learning for malware detection,”

https://media.kaspersky.com/en/enterprise-security/Kas persky-Lab-Whitepaper-Machine-

Learning.pdf, 2018.

[43] Maryam Issakhani, Princy Victor, Ali Tekeoglu, and Arash Habibi Lashkari1, “PDF

Malware Detection Based on Stacking Learning”, The International Conference on

Information Systems Security and Privacy, February 2022

62

Appendix A

Training of MLP

[]: Fine name pdfsize metadata size \

0

aedaf3c5428a2e3ba600c44b96ad78dfdf8ed76e7df129…

8.0 180.0

1

fe767fb2584a10c010626263ea950643ac25f6ca24628f…

15.0 224.0

2

544c5223ee301affad514b6fa585b3191625aba0a7222b…

4.0 468.0

3

669772e626deccb9cfb7eb6a61e13d248d0ea08f1abe15…

17.0 250.0

4

e434c884f45a691b0bf33d765f61794007eb0b8bb9f590…

7.0 252.0

pages xref Length title characters isEncrypted embedded files images \

0 1.0 11.0 0.0 0.0 0.0 0 1 0.0 20.0 7.0 0.0 0.0 0

2 2.0 13.0 16.0 0.0 0.0 0

3 1.0 15.0 0.0 0.0 0.0 0 4 3.0 16.0 45.0 0.0 0.0

 0

text … AA OpenAction Acroform JBIG2Decode RichMedia launch \

0 No … 0 1 0 0 0 0

1 No … 0 0 1 0 0 0

2 Yes … 0 1 0 0 0 0

3 No … 0 1 1 0 0 0

4 Yes … 0 1 0 0 0 0

 EmbeddedFile XFA Colors Class

0 0 0 0.0 Malicious

1 8 1 0.0 Malicious

2 0 0 0.0 Malicious

3 0 0 0.0 Malicious

4 0 0 0.0 Malicious

[5 rows x 33 columns]

63

[]: pdfsize metadata size pages xref Length \

 count 10025.000000 10025.000000 10025.000000 10025.000000

mean 87.209476 334.099352 3.398105 2739.220549

std 444.197122 1565.853177 11.902471 18139.229396

min -1.000000 -1.000000 -1.000000 -1.000000

25% 9.000000 180.000000 1.000000 12.000000

50% 36.000000 265.000000 1.000000 21.000000

75% 80.000000 319.000000 2.000000 77.000000

max 23816.000000 77185.000000 595.000000 263987.000000

title characters isEncrypted embedded files stream \

count 10025.000000 10025.000000 10025.000000 10023.000000

mean 51.477207 -0.020848 -0.006484 17.341215

std 1354.640037 0.206789 0.257098 35.330169

min -1.000000 -1.000000 -1.000000 -1.000000

25% 0.000000 0.000000 0.000000 2.000000

50% 0.000000 0.000000 0.000000 4.000000

75% 13.000000 0.000000 0.000000 18.000000

max 76993.000000 4.000000 5.000000 812.000000

 trailer encrypt ObjStm Colors

count 10023.000000 10023.000000 10023.000000 10023.000000

mean 1.203532 -0.043500 1.516811 2.087000

std 1.370455 0.256045 7.633485 58.178074

min -1.000000 -1.000000 -1.000000 -1.000000

25% 1.000000 0.000000 0.000000 0.000000

50% 1.000000 0.000000 0.000000 0.000000

75% 2.000000 0.000000 0.000000 0.000000

max 46.000000 2.000000 600.000000 5682.000000

[]: Fine name pdfsize metadata size \

0

aedaf3c5428a2e3ba600c44b96ad78dfdf8ed76e7df129…

8.0 180.0

1

fe767fb2584a10c010626263ea950643ac25f6ca24628f…

15.0 224.0

2

544c5223ee301affad514b6fa585b3191625aba0a7222b…

4.0 468.0

3

669772e626deccb9cfb7eb6a61e13d248d0ea08f1abe15…

17.0 250.0

4

e434c884f45a691b0bf33d765f61794007eb0b8bb9f590…

7.0 252.0

pages xref Length title characters isEncrypted embedded files images \

0 1.0 11.0 0.0 0.0 0.0 0 1 0.0 20.0 7.0 0.0 0.0 0

2 2.0 13.0 16.0 0.0 0.0 0

3 1.0 15.0 0.0 0.0 0.0 0

4 3.0 16.0 45.0 0.0 0.0 0

64

text … AA OpenAction Acroform JBIG2Decode RichMedia launch \

0 No … 0 1 0 0 0 0

1 No … 0 0 1 0 0 0

2 Yes … 0 1 0 0 0 0

3 No … 0 1 1 0 0 0

4 Yes … 0 1 0

 EmbeddedFile XFA Colors Class

0 0 0 0.0 Malicious

1 8 1 0.0 Malicious

2 0 0 0.0 Malicious

3 0 0 0.0 Malicious

4 0 0 0.0 Malicious

0 0 0

[5 rows x 33 columns]

[]: # Preprocessing the Dataset

#removing useless columns based on the statistical information

dataframe.shape #dimmensions

[]: Fine name pdfsize metadata size pages xref Length title characters \

0 0 8.0 180.0 1.0 11.0 0.0 1 1 15.0 224.0 0.0 20.0 7.0

2 2 4.0 468.0 2.0 13.0 16.0

3 3 17.0 250.0 1.0 15.0 0.0

4 4 7.0 252.0 3.0 16.0 45.0

isEncrypted embedded files images text … AA OpenAction Acroform \

0 0.0 0.0 0 No … 0 1 0 1 0.0 0.0 0 No … 0 0

 1 2 0.0 0.0 0 Yes … 0 1 0 3 0.0 0.0 0 No … 0

 1 1

 4 0.0 0.0 0 Yes … 0 1 0

 JBIG2Decode RichMedia launch EmbeddedFile XFA Colors Class

0 0 0 0 0 0 0.0 Malicious

1 0 0 0 8 1 0.0 Malicious

2 0 0 0 0 0 0.0 Malicious

3 0 0 0 0 0 0.0 Malicious

4 0 0 0 0 0 0.0 Malicious

[5 rows x 33 columns]

, →

65

<ipython-input-36-26b5073bf24c>:1: FutureWarning: The default value

of numeric_only in DataFrame.mean is deprecated. In a future version,

it will default to False. In addition, specifying 'numeric_only=None'

is deprecated. Select only valid columns or specify the value of

numeric_only to silence this warning. means = dataframe.mean()

Index(['isEncrypted', 'embedded files', 'encrypt'], dtype='object')

Index(['Fine name', 'pdfsize', 'metadata size', 'pages', 'xref

Length', 'title characters', 'images', 'text', 'header', 'obj',

'endobj',

'stream', 'endstream', 'xref', 'trailer', 'startxref', 'pageno',

'ObjStm', 'JS', 'Javascript', 'AA', 'OpenAction', 'Acroform',

'JBIG2Decode', 'RichMedia', 'launch', 'EmbeddedFile', 'XFA',

'Colors', 'Class'],

66

Fine name pdfsize metadata size pages xref Length title characters \

0 0 8.0 180.0 1.0 11.0 0.0

1 1 15.0 224.0 0.0 20.0 7.0

2 2 4.0 468.0 2.0 13.0 16.0

3 3 17.0 250.0 1.0 15.0 0.0

4 4 7.0 252.0 3.0 16.0 45.0

stream trailer ObjStm Colors

0 3.0 1.0 0.0 0.0 1 9.0

 1.0 0.0 0.0 2 3.0 1.0

 0.0 0.0 3 2.0 1.0 0.0

 0.0

 4 4.0 1.0 0.0 0.0

, →

, →

, →

67

Iteration 3, loss = 0.84945731

Iteration 4, loss = 0.83282700

Iteration 5, loss = 0.81996741

Iteration 6, loss = 0.80703455

Iteration 7, loss = 0.79462416

Iteration 8, loss = 0.78335563

Iteration 9, loss = 0.77675159

Iteration 10, loss = 0.77221580

Iteration 11, loss = 0.76454551

Iteration 12, loss = 0.75662850

Iteration 13, loss = 0.73817340

Iteration 14, loss = 0.73855514

Iteration 15, loss = 0.72396001

Iteration 16, loss = 0.72525145

Iteration 17, loss = 0.72785319

Iteration 18, loss = 0.71423694

Iteration 19, loss = 0.71072084

Iteration 20, loss = 0.69607157

Iteration 21, loss = 0.69161742

Iteration 22, loss = 0.68370341

Iteration 23, loss = 0.67940726

Iteration 24, loss = 0.67794917

Iteration 25, loss = 0.66942196

Iteration 26, loss = 0.66593699

Iteration 27, loss = 0.66379387

Iteration 28, loss = 0.65203520

Iteration 29, loss = 0.65413469

Iteration 30, loss = 0.64603790

Iteration 31, loss = 0.64242178

Iteration 32, loss = 0.64649772

Iteration 33, loss = 0.62901734

Iteration 34, loss = 0.61703872

Iteration 35, loss = 0.62438432

Iteration 36, loss = 0.61343330

Iteration 37, loss = 0.59883955

Iteration 38, loss = 0.59910119

Iteration 39, loss = 0.59336769

Iteration 40, loss = 0.58197049

Iteration 41, loss = 0.58657537

Iteration 42, loss = 0.58356771

Iteration 43, loss = 0.56672245

Iteration 44, loss = 0.56719903

Iteration 45, loss = 0.56227133

Iteration 46, loss = 0.54922892

Iteration 47, loss = 0.54054469

Iteration 48, loss = 0.53382364

68

Iteration 49, loss = 0.53352346

Iteration 50, loss = 0.52666215

Iteration 51, loss = 0.52154725 Iteration 52, loss = 0.51042947

Iteration 53, loss = 0.50321544

Iteration 54, loss = 0.49832079

Iteration 55, loss = 0.48359526

Iteration 56, loss = 0.47009186

Iteration 57, loss = 0.45313203

Iteration 58, loss = 0.43306311

Iteration 59, loss = 0.43989371

Iteration 60, loss = 0.42011681

Iteration 61, loss = 0.41321519

Iteration 62, loss = 0.40695503

Iteration 63, loss = 0.40724181

Iteration 64, loss = 0.40333271

Iteration 65, loss = 0.39892181

Iteration 66, loss = 0.39530011

Iteration 67, loss = 0.39465271

Iteration 68, loss = 0.38575951

Iteration 69, loss = 0.38977782

Iteration 70, loss = 0.39241008

Iteration 71, loss = 0.38298531

Iteration 72, loss = 0.38488808

Iteration 73, loss = 0.37498073

Iteration 74, loss = 0.36855905

Iteration 75, loss = 0.37137417

Iteration 76, loss = 0.36366008

Iteration 77, loss = 0.35802508

Iteration 78, loss = 0.36120000

Iteration 79, loss = 0.35615484

Iteration 80, loss = 0.35119258

Iteration 81, loss = 0.35223679

Iteration 82, loss = 0.37421088

Iteration 83, loss = 0.35070015

Iteration 84, loss = 0.34418504

Iteration 85, loss = 0.34707818

Iteration 86, loss = 0.34654475

Iteration 87, loss = 0.34174237

Iteration 88, loss = 0.34065737

Iteration 89, loss = 0.33856552

Iteration 90, loss = 0.33817393

Iteration 91, loss = 0.33985001

Iteration 92, loss = 0.33868208

Iteration 93, loss = 0.34028122

Iteration 94, loss = 0.34792737

Iteration 95, loss = 0.33533680

69

Iteration 96, loss = 0.33220528

Iteration 97, loss = 0.32692242

Iteration 98, loss = 0.32474545

Iteration 99, loss = 0.32556744 Iteration 100, loss = 0.32585011

Iteration 101, loss = 0.33130359

Iteration 102, loss = 0.32627468

Iteration 103, loss = 0.34263454

Iteration 104, loss = 0.31722116

Iteration 105, loss = 0.31517071

Iteration 106, loss = 0.33748426

Iteration 107, loss = 0.34150354

Iteration 108, loss = 0.32112366

Iteration 109, loss = 0.33003322

Iteration 110, loss = 0.32560238

Iteration 111, loss = 0.32096569

Iteration 112, loss = 0.31789361

Iteration 113, loss = 0.32236922

Iteration 114, loss = 0.30937929

Iteration 115, loss = 0.31289201

Iteration 116, loss = 0.34638520

Iteration 117, loss = 0.30160586

Iteration 118, loss = 0.30057086

Iteration 119, loss = 0.31512145

Iteration 120, loss = 0.31651453

Iteration 121, loss = 0.30068118

Iteration 122, loss = 0.30150828

Iteration 123, loss = 0.29797487

Iteration 124, loss = 0.29781278

Iteration 125, loss = 0.29797281

Iteration 126, loss = 0.29519166

Iteration 127, loss = 0.29437750

Iteration 128, loss = 0.30358302

Iteration 129, loss = 0.29405439

Iteration 130, loss = 0.29621953

Iteration 131, loss = 0.28793387

Iteration 132, loss = 0.28869428

Iteration 133, loss = 0.28770160

Iteration 134, loss = 0.28398103

Iteration 135, loss = 0.28686016

Iteration 136, loss = 0.28962518

Iteration 137, loss = 0.30716241

Iteration 138, loss = 0.29932123

Iteration 139, loss = 0.28291992

Iteration 140, loss = 0.29396323

Iteration 141, loss = 0.28548987

Iteration 142, loss = 0.28986208

70

Iteration 143, loss = 0.30244561

Iteration 144, loss = 0.27565666

Iteration 145, loss = 0.28042302

Iteration 146, loss = 0.28392951

Iteration 147, loss = 0.29702190 Iteration 148, loss = 0.27929378

Iteration 149, loss = 0.27099194

Iteration 150, loss = 0.27095004

Iteration 151, loss = 0.27055895

Iteration 152, loss = 0.26893495

Iteration 153, loss = 0.26788807

Iteration 154, loss = 0.28987887

Iteration 155, loss = 0.26827556

Iteration 156, loss = 0.28343639

Iteration 157, loss = 0.26583491

Iteration 158, loss = 0.26359279

Iteration 159, loss = 0.27241453

Iteration 160, loss = 0.26286970

Iteration 161, loss = 0.26502490

Iteration 162, loss = 0.26238632

Iteration 163, loss = 0.26004744

Iteration 164, loss = 0.25699075

Iteration 165, loss = 0.25728841

Iteration 166, loss = 0.25852979

Iteration 167, loss = 0.25412399

Iteration 168, loss = 0.27238455

Iteration 169, loss = 0.26753600

Iteration 170, loss = 0.26919628

Iteration 171, loss = 0.25371573

Iteration 172, loss = 0.25141928

Iteration 173, loss = 0.25743960

Iteration 174, loss = 0.26240988

Iteration 175, loss = 0.27237598

Iteration 176, loss = 0.24975103

Iteration 177, loss = 0.24736685

Iteration 178, loss = 0.25089413

Iteration 179, loss = 0.25535965

Iteration 180, loss = 0.24412423

Iteration 181, loss = 0.24921267

Iteration 182, loss = 0.24651067

Iteration 183, loss = 0.24835918

Iteration 184, loss = 0.24753967

Iteration 185, loss = 0.25078694

Iteration 186, loss = 0.24331867

Iteration 187, loss = 0.23804045

Iteration 188, loss = 0.24079863

Iteration 189, loss = 0.23469860

71

Iteration 190, loss = 0.26091576

Iteration 191, loss = 0.23985501

Iteration 192, loss = 0.26267464

Iteration 193, loss = 0.23664145

Iteration 194, loss = 0.23127756

Iteration 195, loss = 0.24042043 Iteration 196, loss = 0.23021461

Iteration 197, loss = 0.23291935

Iteration 198, loss = 0.23060653

Iteration 199, loss = 0.22903553

Iteration 200, loss = 0.23347759

Iteration 201, loss = 0.22597181

Iteration 202, loss = 0.22527434

Iteration 203, loss = 0.22601266

Iteration 204, loss = 0.22625700

Iteration 205, loss = 0.22431090

Iteration 206, loss = 0.22271718

Iteration 207, loss = 0.22218772

Iteration 208, loss = 0.22606671

Iteration 209, loss = 0.21916377

Iteration 210, loss = 0.22933461

Iteration 211, loss = 0.23056713

Iteration 212, loss = 0.21882094

Iteration 213, loss = 0.21677561

Iteration 214, loss = 0.21962397

Iteration 215, loss = 0.21419946

Iteration 216, loss = 0.21913049

Iteration 217, loss = 0.21759535

Iteration 218, loss = 0.21444900

Iteration 219, loss = 0.23396053

Iteration 220, loss = 0.21926805

Iteration 221, loss = 0.21731662

Iteration 222, loss = 0.22647935

Iteration 223, loss = 0.21441907

Iteration 224, loss = 0.21120644

Iteration 225, loss = 0.21147581

Iteration 226, loss = 0.21145614

Iteration 227, loss = 0.20863352

Iteration 228, loss = 0.20386253

Iteration 229, loss = 0.21073107

Iteration 230, loss = 0.20439845

Iteration 231, loss = 0.22220631

Iteration 232, loss = 0.20870704

Iteration 233, loss = 0.20501992

Iteration 234, loss = 0.21169930

Iteration 235, loss = 0.20688394

Iteration 236, loss = 0.20802939

72

Iteration 237, loss = 0.21789063

Iteration 238, loss = 0.23596344

Iteration 239, loss = 0.21830213

Training loss did not improve more than tol=0.000100 for 10

consecutive epochs. Stopping.

96.05985037406484

[]:

[]:

73

Appendix B

Comparison of MLP with other Algorithms

[]: # pip install seaborn

[]: import pandas as pd import

numpy as np import

matplotlib.pyplot as plt

import seaborn as sns

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import

RepeatedStratifiedKFold from sklearn.linear_model

import LogisticRegression from sklearn.tree import

DecisionTreeClassifier from sklearn.ensemble import

RandomForestClassifier from sklearn.ensemble import

AdaBoostClassifier from xgboost import

XGBClassifier from sklearn.model_selection import

RandomizedSearchCV from sklearn.model_selection

import train_test_split as tts import lightgbm as

lgb import gc from sklearn.metrics import log_loss

from sklearn.metrics import roc_auc_score from

sklearn.metrics import accuracy_score from

sklearn.metrics import f1_score

from sklearn.metrics import plot_confusion_matrix,

confusion_matrix from sklearn.neighbors import NearestNeighbors

import seaborn as sns

import calendar

from sklearn.decomposition import PCA from

sklearn.linear_model import LogisticRegression

from sklearn.model_selection import

train_test_split from sklearn.model_selection

import RandomizedSearchCV from

sklearn.model_selection import cross_val_score

from sklearn.metrics import r2_score,

mean_squared_error from sklearn.model_selection

import cross_validate from sklearn.metrics

import make_scorer from sklearn.metrics import

confusion_matrix import warnings

warnings.filterwarnings('ignore') sns.set()

import warnings

74

count 10025.000000 10025.000000 10025.000000 10025.000000

mean 87.209476 334.099352 3.398105 2739.220549

std 444.197122 1565.853177 11.902471 18139.229396

min -1.000000 -1.000000 -1.000000 -1.000000

25% 9.000000 180.000000 1.000000 12.000000

50% 36.000000 265.000000 1.000000 21.000000

75% 80.000000 319.000000 2.000000 77.000000

max 23816.000000 77185.000000 595.000000 263987.000000

title charactersisEncryptedembedded files stream \

count 10025.000000 10025.000000 10025.000000 10023.000000

mean 51.477207 -0.020848 -0.006484 17.341215

std 1354.640037 0.206789 0.257098 35.330169

min -1.000000 -1.000000 -1.000000 -1.000000

25% 0.000000 0.000000 0.000000 2.000000

50% 0.000000 0.000000 0.000000 4.000000

75% 13.000000 0.000000 0.000000 18.000000

max 76993.000000 4.000000 5.000000 812.000000

 trailer encrypt ObjStm Colors

count 10023.00000010023.00000010023.00000010023.000000

mean 1.203532 -0.043500 1.516811 2.087000

std 1.370455 0.256045 7.633485 58.178074

min -1.000000 -1.000000 -1.000000 -1.000000

25% 1.000000 0.000000 0.000000 0.000000

75

50% 1.000000 0.000000 0.000000 0.000000

75% 2.000000 0.000000 0.000000 0.000000

Index(['isEncrypted', 'embedded files', 'encrypt'],

dtype='object')

Index(['Fine name', 'pdfsize', 'metadata size', 'pages', 'xref

Length', 'title characters', 'images', 'text', 'header', 'obj',

'endobj',
'stream', 'endstream', 'xref', 'trailer', 'startxref',

'pageno',

'ObjStm', 'JS', 'Javascript', 'AA', 'OpenAction',

'Acroform',

'JBIG2Decode', 'RichMedia', 'launch', 'EmbeddedFile', 'XFA',

'Colors', 'Class'],

, →

76

1 1 15.0 224.0 0.0 20.0 7.0

2 2 4.0 468.0 2.0 13.0 16.0

3 3 17.0 250.0 1.0 15.0 0.0

4 4 7.0 252.0 3.0 16.0 45.0

 stream trailer ObjStm Colors

0 3.0 1.0 0.0 0.0 1 9.0

 1.0 0.0 0.0 2 3.0 1.0

 0.0 0.0 3 2.0 1.0 0.0

 0.0 4 4.0 1.0 0.0 0.0

[]: from lazypredict.Supervised import

LazyClassifier from sklearn.model_selection

import train_test_split

[]: clf = LazyClassifier(verbose=0,ignore_warnings=True,

custom_metric=None) models,predictions = clf.fit(X_train, X_test,

y_train, y_test) models.sort_values(by = ["Accuracy","F1

Score"],ascending = False)

 100%|| 29/29 [00:10<00:00, 2.82it/s]

, →

77

[]:
Model

Accuracy Balanced
Accuracy

ROC AUC F1 Score \

ExtraTreesClassifier 1.00 1.00 1.00 1.00

XGBClassifier 1.00 1.00 1.00 1.00

RandomForestClassifier 1.00 1.00 1.00 1.00

BaggingClassifier 1.00 1.00 1.00 1.00

AdaBoostClassifier 1.00 1.00 1.00 1.00

LGBMClassifier 1.00 1.00 1.00 1.00

DecisionTreeClassifier 1.00 1.00 1.00 1.00

KNeighborsClassifier 0.99 0.99 0.99 0.99

LabelPropagation 0.99 0.99 0.99 0.99

LabelSpreading 0.99 0.99 0.99 0.99

ExtraTreeClassifier 0.99 0.99 0.99 0.99

SVC 0.99 0.99 0.99 0.99

SGDClassifier 0.98 0.98 0.98 0.98

LogisticRegression 0.97 0.97 0.97 0.97

LinearDiscriminantAnalysis 0.97 0.97 0.97 0.97

RidgeClassifierCV 0.97 0.97 0.97 0.97

RidgeClassifier 0.97 0.97 0.97 0.97

CalibratedClassifierCV 0.97 0.97 0.97 0.97

LinearSVC 0.96 0.96 0.96 0.96

NuSVC 0.95 0.96 0.96 0.95

NearestCentroid 0.95 0.95 0.95 0.95

BernoulliNB 0.94 0.94 0.94 0.94

Perceptron 0.88 0.88 0.88 0.88

PassiveAggressiveClassifier 0.88 0.89 0.89 0.88

QuadraticDiscriminantAnalysis 0.82 0.83 0.83 0.81

GaussianNB 0.80 0.82 0.82 0.80

0.56 0.50 0.50 0.40

78

DummyClassifier

Model

Time Taken

ExtraTreesClassifier 0.32

XGBClassifier 0.20

RandomForestClassifier 0.44

BaggingClassifier 0.08

AdaBoostClassifier 0.40

LGBMClassifier 0.21

DecisionTreeClassifier 0.02

KNeighborsClassifier 0.16

LabelPropagation 1.12

LabelSpreading 2.37
ExtraTreeClassifier 0.02
SVC 0.49
SGDClassifier 0.04
LogisticRegression 0.04
LinearDiscriminantAnalysis 0.04
RidgeClassifierCV 0.02
RidgeClassifier 0.02
CalibratedClassifierCV 1.00
LinearSVC 0.25
NuSVC 2.89
NearestCentroid 0.02
BernoulliNB 0.02
Perceptron 0.02
PassiveAggressiveClassifier 0.02
QuadraticDiscriminantAnalysis 0.02
GaussianNB 0.02
DummyClassifier 0.02

[]:

79

Appendix C

Comparison of Time taken by different algorithms

