

Automated Whitebox Test Case Generation for

Statement Coverage Using U-NSGA-III

Author

Mehwish Naz
MS-19-00000321001

Supervisor

Dr. Wasi Haider Butt

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

December 2022

Automated Whitebox Test Case Generation for Statement

Coverage Using UNSGAIII

Author:

Mehwish Naz

00000321001

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Software Engineering

Approved by:

Supervisor:

Dr. Wasi Haider Butt

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES & TECHNOLOGY

December 2022

DECLARATION

The substance of this thesis is the original work of the author and due references and

acknowledgements have been made, where necessary, to the work of others. No part of this thesis

has been submitted in candidature of any degree.

Ms. Mehwish Naz

00000321001

Countersigned:

Dr. Wasi Haider Butt

THESIS SUPERVISOR

PLAGIARISM REPORT (TURNITIN REPORT)

This thesis copy has been checked for Plagiarism. Turnitin report endorsed by Supervisor is

attached.

Signature of Student

Mehwish Naz

00000321001

Signature of Supervisor

Dr. Wasi Haider Butt

Language Correctness Certificate

This thesis has been read by an English expert and is free of most typing, syntax, semantic,

grammatical, and spelling mistakes. The thesis is set all according to the format given by the

university.

Signature of Student

Mehwish Naz

00000321001

Signature of Supervisor

Dr. Wasi Haider Butt

Copyright Statement

 Copyright in text of this thesis rests with the student author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the author

and lodged in the Library of NUST College of E&ME. Details may be obtained by the

Librarian. This page must form part of any such copies made. Further copies (by any process)

may not be made without the permission (in writing) of the author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of E&ME, subject to any prior agreement to the contrary, and may

not be made available for use by third parties without the written permission of the College

of E&ME, which will prescribe the terms and conditions of any such agreement.

 Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of E&ME, Rawalpindi.

Acknowledgements

I am extremely thankful to ALLAH Almighty for his bountiful blessings throughout this work. It

was quite an arduous exercise that could not have been completed without the help of God Almighty

and the strength that he bestowed upon me.

I would like to offer my sincere thanks to my incredible supervisor ‘Dr. Wasi Haider Butt’ and the

entire committee: ‘Dr. Arslan Shaukat’ and ‘Dr. Ahsan Shehzad’. Without their support – in every

sense of the word – and constant guidance, this thesis would never have been completed. I cannot

thank them enough for their role in the completion of this thesis and report.

I am also eternally grateful to all my friends, who helped me and supported me to accomplish this

herculean task.

Dedicated to my Parents for their love and endless prayers

&

My supervisor

Dr. Wasi Haider Butt

Who has provided me the guidance, encouragement, and

advice throughout my time as his student

ABSTRACT

Software testing is a significant and complex phase of software development as it ensures the

complete functionality of the software. To evaluate the behaviour of the software the testing

process acquires generation of test cases as an input for the system under test. Generation of test

cases remains a challenging task usually as it is done based on human intelligence and it has

become much complicated and time-consuming process. Therefore, it can be enhanced by

automating the test case generation mechanism to identify and eliminate bugs. Unified Modelling

Language (UML) is a de facto standard that has been used in academia and industry currently.

Test case automation using UML diagrams is more effective and efficient as it is done early in the

software development life cycle. Therefore, to overcome the problem of time as well as budget

constraint, it is required to optimize the entire test suite. Many researchers have proposed

conventional based approaches for dealing with this problem and they have achieved optimized

test cases by selecting, minimizing, or reducing the test cases. However, in this research UML

sequence diagram and class diagram have been proposed for white box testing. To generate test

cases these two diagrams have been proved as compatible from existing literature. Currently,

existing approaches dealing with test case optimization have achieved 85% and 90% statement

coverage for the System Under Test 1 (SUT1) and System Under Test 2 (SUT2) using genetic

algorithm. However, in this research Unified Non-Sorting Genetic Algorithm (U-NSGA-III) has

been proposed for automated test case generation and optimization. The proposed approach has

achieved 95% statement coverage for SUT1 and 90.47% for SUT2. In this dissertation, two

benchmark case studies have been used and controlled experimentation have been performed for

optimization of test cases. The comparison of our approach has been done with GA-UNSGAIII

and PSO-UNSGAIII. From our results, it has been concluded that proposed U-NSGA-III has

performed better than other approaches.

Key Words: Testing, White box testing, Optimization, Test cases, U-NSGA-III, Coverage, Genetic

Algorithm, Unified Modeling Language

TABLE OF CONTENTS

Contents

DECLARATION .. 3

PLAGIARISM REPORT (TURNITIN REPORT) .. 4

Language Correctness Certificate .. 5

Copyright Statement .. 6

Acknowledgements ... 7

ABSTRACT ... 9

TABLE OF CONTENTS.. 10

LIST OFTABLES .. 4

LIST OF FIGURES .. 5

Chapter 1. INTRODUCTION ... 6

1.1 Motivation behind the Research .. 7

1.2 Problem Statement ... 8

1.3 Objective ... 8

1.4 Scope of Proposed Work .. 8

1.5 Title of Research .. 9

1.6 Significance of Research .. 9

1.7 Methodology of Research ... 9

Chapter 2. Automated Test Case Generation .. 13

2.1 Test Case Automation .. 13

2.2 Unified Modeling Languages .. 13

2.3 White Box Testing ... 14

2.5 Branch Coverage .. 15

2.6 Path Coverage .. 15

2.7 Black Box Testing .. 15

2.8 Equivalence Partitioning... 15

2.9 Boundary Value Analysis ... 16

2.10 Genetic Algorithm.. 16

Chapter 3. Literature Review.. 18

3.1 Overview and Major outcomes of SLR ... 18

3.2 Review Protocol ... 20

3.2.1 Research Questions ... 21

3.2.2 Category Definition ... 21

3.2.3 Selection and Rejection Criteria ... 22

3.2.4 Search Process... 24

3.2.5 Quality Assessment ... 25

3.2.6 Data Extraction and Synthesis .. 27

3.3 Results & Analysis ... 28

3.3.1 Model-Based Testing ... 28

3.3.2 Testing Types Based on UML Models.. 29

3.3.3 Approaches for Test Case Automation ... 30

3.3.4 Comparison and Analysis .. 33

3.3.5 Research Productivity .. 33

3.3.6 Challenges in Test Case Automation .. 34

3.4 Answers of Research Questions .. 36

3.5 Conclusion ... 38

Chapter 4: Methodology .. 40

4.1 Testing Objectives.. 40

4.2 Fitness Function ... 40

4.3 GA Operators ... 41

4.4 Selection .. 41

4.5 Roulette Wheel selection .. 41

4.6 Ranked Fitness Selection .. 41

4.7 Tournament Selection... 42

4.8 Crossover Operators ... 43

4.10 Mutation Operator .. 44

4.11 Stopping Criteria .. 44

4.12 Unified Non- Sorting Genetic Algorithm (UNSGAIII) Approach ... 44

Chapter 5. Discussion And Conclusion .. 69

References………………………………….…………………………………………………………………………...…78

4

LIST OFTABLES

Table 1. Data Sources and Search Criteria ...21
Table 2 Search Terms with Results ...23
Table 3:Summary of Selected Studies ...26
Table 4: Data Extraction and Synthesis ..27
Table 5: Testing Methods ..29
Table 6: Types of Testing ...30
Table 7: Analysis of Approaches for Test Automation by UML diagrams31
Table 8: Case Study Verification ..32
Table 9: Comparison and Analysis of UML Diagrams ..35
Table 10: Observed Test Cases..51
Table 11. Control Parameters of UNSGA3 ..52
Table 12. Coverage Percentage Manually Calculated ..55
Table 13. Control Parameters of PSO ..56
Table 14. Observed Test cases of LMS..62
Table 15. Generated Test Cases of SUT2 ..64
Table 16. Comparison with ... Error! Bookmark not defined.

5

LIST OF FIGURES

Figure 1: Generation of Test Cases ... 6
Figure 2 : Process followed by proposed research ... 11
Figure 3. Thesis Outline ... 12
Figure 4. Survey Architecture [] ... 14
Figure 5. Illustration of Black Box Testing ... 16
Figure 6. Genetic Algorithm Flowchart .. 17
Figure 7 Overview of the SLR ... 18
Figure 8. Steps Followed in SLR .. 20
Figure 9. Search Process .. 25
Figure 10. Distribution of selected studies with respect to publication type 26
Figure 11. Functional Testing ... 30
Figure 12. Research Productivity between 2011-2021 .. 34
Figure 13. Steps of Genetic Algorithm ... 41
Figure 14. Selection through Roulette Wheel Method [TSS] ... 42
Figure 15. Tournament Selection Mechanism [TSSSS] .. 42
Figure 16. Proposed Flow Diagram .. 45
Figure 17. Experimental Flow .. 46
Figure 18: Control Flow Graph (ATM Machine) .. 48
Figure 19: Class Diagram ... 49
Figure 20: Sequence Diagram .. 50
Figure 21. Achieved Statement Coverage with initial population ... 52
Figure 22. Achieved Statement Coverage with Population Size 20 ... 53
Figure 23. Achieved Statement Coverage with Population Size 30 ... 53
Figure 24. Achieved Statement Coverage with Population Size 40 ... 54
Figure 25. Achieved Statement Coverage with Final Population ... 54
Figure 26. Achieved Statement Coverage with Final Population Size ... 54
Figure 27. Comparison of UNSGA3 with GA .. 56
Figure 28. Statement Coverage with Final Population size.. 57
Figure 29. Comparison with GA and PSO .. 57
Figure 30. Comparison of algorithm’s convergence speed with different population size 57
Figure 31. Sequence Diagram of LMS ... 59
Figure 32. Control Flow Diagram of LMS .. 60
Figure 33. Class Diagram of LMS .. 63
Figure 34. Achieved statement Coverage with population size 10 .. 64
Figure 35. Achieved Statement Coverage with population size 20 .. 65
Figure 36. Achieved Statement Coverage with population size 30 .. 65
Figure 37. Achieved Statement Coverage with population size 40 .. 66
Figure 38. Achieved Statement Coverage with population size 50 .. 66
Figure 39. Comparison of UNSGA3 with GA ... 67
Figure 40. Statement Coverage with PSO .. 67

6

Chapter 1. INTRODUCTION

Traditional software engineering life cycle goes through essential phases of software

development such as requirement engineering, requirement analysis, design,

implementation, testing and maintenance. However, among all these software testing is a

vital and significant component of the software development life cycle. It is a process of

analysing the actual and expected behaviour of a software. Testing can be done in two

ways either manually or automatically. In manual testing, code is tested manually and it

doesn’t give effective results [1]. Test case generation is an essential activity of the

software test process as the size and complexity of a software increases and automating

it, increases the reliability of test cases, reduces errors and faults as well as saves time,

cost, and effort. Test case generation methods are classified into the following categories

i.e., specification-based testing that includes black box testing and program-based that

comprises white box testing. Model-based testing (MBT) is a standard testing strategy in

which test cases are extracted from different models. Therefore, the test can be derived

from a behavioural model or requirement model. Model-based testing is widely being used

to generate test cases, it is considered as the most crucial source of information for test

design [2],[3]. To make a development process more versatile, testing is needed to be done

before the implementation phase.

Figure 1: Generation of Test Cases

Test automation from UML specification is more useful as it permits the test plan to be

carried out parallel in the development cycle and minimizes efforts, cost enhances

software reliability and quality [4]. UML can present specific characteristics of software

devices; it consists of the following two categories:

7

 Structure diagrams: These diagrams describe the structure of the system at the

abstract and implementation level.

 Behavioural Diagrams: These diagrams show the behaviour of the system

including the dynamic aspects of the system

Mostly, test data generation tools are the source to generate test data and the quality of

generated test cases can be assured through test adequacy criteria. However, using

different existing testing techniques many test data generators have been developed [7].

To specify the functional requirements of a system UML use case diagrams are widely

used. A use case represents how user interacts with the system, its major elements are use

cases, actors, and interaction among them with the concept of generalization, include and

exclude relationships among the use cases [8]. Testcases can be generated from use cases

through test scenario analysis methods. This approach identifies the scenarios from use

cases and generates test cases from them. Requirements written in natural language are

too uncertain and non-specific to be processed automatically therefore the behaviour of a

use case is translated into a formal model for this purpose UML activity diagram has been

used to characterize the behaviour of the use case [9]. However, in this study class diagram

and sequence diagrams have been used for test case automation and optimization. For this

purpose, unified non-dominated sorting algorithm is used that is much efficient for

optimization.

1.1 Motivation behind the Research

The method of optimization and generation of test cases against a certain case study is

static in nature and which requires the involvement of human experts. With the passage

of time, the size and time of test cases increases, which requires more effort for the

execution of the test cases in result the testing cost also increases. If a person attempts to

manually generate the test cases by using his judgement, it is likely that several

important test cases might skip out that has negative impacts on software quality. For

addressing the above-mentioned problems, an adaptive approach is required that is also

based on expert judgment. All the requirements can be fulfilled by unified non-

dominated sorting genetic algorithm (U-NSGA-III). Currently, unified evolutionary

optimization process i.e., U-NSGA-III has been used in various activities related to

Software Engineering E.g., mono, multi and many optimization problems including constraints

or unconstraint are resolved much accurately and efficiently.

8

1.2 Problem Statement

Automated test case generation and optimization has significantly reduced software

testing resources such as cost, development time and other variables that led towards an

efficient software testing process. Complicated software development consists of large

number of test cases in the test suit which has becomes much difficult to handle

manually. Therefore, automated software testing has overcome this problem by

automatically generating test cases for such large systems through various approaches.

On the other hand, optimization is another way that works by finding best solution and

by eliminating redundant test cases from test suits. However, statement coverage with

minimum test cases has become a challenge in automated white box testing and

optimization techniques. Therefore, this study has proposed an approach that has

maximized statement coverage by generating minimum number of test cases.

1.3 Objective

Test case optimization is one of the most challenging activities in software development

life cycle. There are two approaches for optimization i.e., Single objective, Multi

Objective. Only one objective is considered at a time in case of Single Objective

approaches while Multi Objective approaches simultaneously consider several

objectives. These approaches incorporate Genetic Algorithm based on multiple

optimization objective, Fuzzy Logic and hybrid genetic algorithms etc. In short, for

improving the quality of testing process in constrained time and budget, optimizing

the test cases is a mandatory task. The basic objective of this research is performing

optimization of test cases with maximum path coverage using unified evolutionary

algorithms i.e., Unified Non-Dominated Sorting Genetic Algorithm (U-NSGA-III).

Furthermore, analysis of genetic algorithm and U-NSGA-III under various

circumstances will be done in this research.

1.4 Scope of Proposed Work

Scope of proposed research work includes the study of methods for performing model-

based testing for test case automation and heuristic based evolutionary methods have

been used to generate and optimize test cases. In this research automated test case

generation and optimization has targeted small and medium size software’s which need

quick testing process containing huge number of test cases in a test suit.

 This research contributes the implementation of unified non-sorting genetic

algorithm U-NSGA-III to get the most optimized test cases with maximum

9

coverage from the test suit.

 The expected output of the proposed study is to generate minimum test cases

with maximum coverage from the given domain model.

 It also focuses on comparing the proposed technique with the existing one.

 Benchmark case studies are used for validation purpose.

1.5 Title of Research

“Automated white box test case generation for statement coverage using U-NSGA-III”

1.6 Significance of Research

In this research, the area of model-based testing related to automated test cases

generation and optimization has been explored and it initiates a new area of research.

Following are the key considerations of this dissertation:

• Exploration and analysis of weaknesses in different state-of-the-art meta-

heuristics as well as soft computing approaches for automated test case

generation and optimization from UML diagrams

• Exploration of applicability of evolutionary algorithms in the field of automated

testing.

• The proposed work signifies benefits to the software testing organizations

focusing on automated testing by giving an alternative method of test case

generation as compared to manual testing.

• UML models have been used to derived test cases as this method is time-

efficient and identify errors early in the software development process.

• Software testing is a laborious process. Therefore, automated test case generation

reduces development time and resources as well.

• This study contributes an additional knowledge of software testing to the

researchers to explore more about automated software test case generation

techniques.

1.7 Methodology of Research

There are six key research questions for this study. To answer them, we conducted a

systematic review of state-of-the-art approaches used for model-based automated white

box testing for path coverage. During the review process, it has been observed that

existing approaches did not efficiently deal with automated testing. So, there is a need

to propose an approach that is capable or more efficient for automated test case generation

10

and optimization. Therefore, the proposed study has selected an evolutionary algorithm

i.e., U-NSGA-III for automated test case generation and optimization. The results of

experimentation are performed on selected case studies.

1.1.1 Research Process

In figure 1, the research process is shown followed for this study. As an initial idea

automated test case generation from UML diagram is selected. However, different

approaches for a u t o m a t e d t e s t c a s e g e n e r a t i o n a n d optimization are

studied after a careful analysis of techniques a unified non- dominated sorted genetic

algorithm has been selected as a goal of this research. After doing an analysis of several

approaches based on evolutionary algorithms it is found that UNSGAIII has not been

used for the purpose automated white box test case generation from UML diagrams.

Although they have great potential for solving complex optimization problems. In the

second step the goal is refined and designed the initial draft of this research. Similarly,

based on this finalized goal a detailed literature review has been done to analyze the

implementation details of several state-of-the-art studies. In the next step cases studies

are selected as a test data for test case automation, then objective function is defined to

solve the problem. Furthermore, test data is generated from selected case studies.

 Finally, the results of optimization were generated, and their analysis was done in both

quantitative and qualitative manner to propose our findings.

11

Figure 2 : Process followed by proposed research

12

Structure of Thesis

The structure of the thesis is as follows:

Chapter 2 covers the basics and background of test case automation, unified modelling

language and single-objective optimization.

Chapter 3 gives a review of the literature in detail and the significant work done by

researchers in the past few years. The systematic literature review is composed of three

main sections. First section is review protocol which gives details on the methodology

using which the literature review is carried out. Section two presents’ details on research

works carried out in this area in form of research question and tables. Whereas section

three highlights the research gaps that were encountered.

Chapter 4 consists of the proposed approach in detail. It discusses the approach in terms

of overview of algorithm (U-NSGA-III, fitness functions), main components of approach

and solution representation.

Chapter 5 includes implementation, validation and discussion of results accompanied by

research question and relevant figures. It also brings detail to the comparison of our work

with the state of the art. Additionally, it briefly explains the limitations of our work.

Chapter 6 concludes the thesis and reveals the future scope of this research.

Thesis outline is shown in the Figure 3.

Figure 3. Thesis Outline

13

Chapter 2. Automated Test Case Generation

In this section, the necessary background related to Test case automation, Uniform

Modeling Languages (UML) and single-objective optimization is described.

2.1 Test Case Automation

Software testing is a significant process during software development that ensures the quality of

a product. In manual testing, code is tested manually and it doesn’t give effective results [1].

Execution of test cases multiple times is not easy in manual testing, but it can be done easily via

automated testing techniques. Test case generation is an essential activity of the software test

process as the size and complexity of a software increases, automating it enhances the reliability

of test cases, reduces errors, faults as well as saves time, cost, and effort. Software testing is

done to make sure that software is reliable and works according to the expected output.

Testing is done to identify and fix errors detected in software before its release. Software

testing is a challenging and time-consuming process, it costs almost 50% of the software

development resources. This problem requires a solution to optimize the test cases in

minimum time and budget constraint. Therefore, test automation techniques have

become a dire need in software testing domain. Automated methodologies are used to

execute and generate optimized test cases much effectively as compared to manual test

cases that are generated by humans. However, formal models are being frequently used

as an input for automated test case generation. It provides more realistic, less expensive

and better-quality testing process. Similarly, various methods have been used by

researchers to produce optimized test cases such as ant colony optimization (ACO), fuzzy

clustering algorithms, particle swarm optimization and many others. These methods may

not be able to optimize test cases in a more efficient way as compared to other

evolutionary algorithms i.e., unified non determinant sorting genetic algorithm.

2.2 Unified Modeling Languages

A model is a generalization of a reality. Unified Modelling Language (UML) is a standard

language used to visualize the detailed aspects of a system. Model-based testing (MBT)

is a standard testing strategy in which test cases are extracted from different models.

Model based software testing is done in the start of software development process,

therefore it lessens time and cost. A strong and good software can be developed by using

this approach. It improves the quality of a product and reliability as well. Model-based

testing consists of three major components, test generation algorithms, model notations

and tools used as a supporting structure for the test. Automated test cases can be generated

14

from several types of models, but UML models have been significantly used to derived

test cases as this method is time-efficient and identify errors early in the software

development process. Defects that come into requirement phase due to inconsistent

requirements may cause heavy cost later in developmental stages if remained undetected

[5]. To generate test cases MBT uses UML diagrams i.e., class diagram, activity diagram,

use case diagram, sequence diagram, communication diagram, and state chart diagram as

shown in figure 4. These diagrams are then converted into an intermediate form using

different approaches and algorithms for automated test case generation [6].

Figure 4. Survey Architecture

The software under testing (SUT) can be checked for errors using two significant testing

techniques.

 White Box Testing

 Black Box Testing

2.3 White Box Testing

In white box testing the internal structure of the SUT is observed. It is also known as

structural, glass box testing or program-based testing. Testing of an internal system is

done by running the code. In this type of testing tester must have implementation

knowledge as well. Appropriate outputs are determined by choosing inputs of SUT to

execute paths through the code [7]. All the source code paths are examined by using this

technique. Therefore, highly skilled resources and implementation knowledge is needed

to carry out white box testing. There are various structural testing-based coverage criteria

15

2.4 Statement Coverage

In statement coverage every statement is executed at least once while testing. It is

considered as weak because if a program consists of IF statements and ELSE statements

then either IF statement will be executed or ELSE statement.

2.5 Branch Coverage

Branch coverage is considered as better than statement coverage. In this process, each

branch must be executed at least once. However, decision coverage generally satisfies

statement coverage. If every branch is executed, then every statement must have

undergone through the execution process while testing is being done. Therefore, if the

branches and statements are executed in a specific order then there is a possibility to detect

some errors during the testing process. However, to detect these errors path testing is

required.

2.6 Path Coverage

This method of testing is stronger as compared to statement and branch testing, because

in path testing each possible path of SUT must be executed. In this way probability of

error identification gets increased. If a path is traversed by giving an input during code

execution, then it is called as feasible path. Similarly, if the path is not traversed during

program execution it is known as unfeasible paths.

2.7 Black Box Testing

In black box testing overall functionality or external behavior of a system against its

specification is checked. In this method test data is generated from SUT specification early

in the development life cycle. Black box testing manly focuses on expected output of an

application for given input values [7]. The internal working of the software is not known

to the tester in this testing technique thats why it is called as behavior or specification-

based testing. Both valid and invalid inputs, according to the users’ requirements are

handled by this type of testing. Black box testing includes different types i.e., equivalence

partitioning, boundary-value analysis, decision table based and error guessing.

2.8 Equivalence Partitioning

In equivalence partitioning, inputs of a program are partitioned into equivalent classes so

that the test values of each class is equivalent to test of any other value in the equivalent

class could be easily assessed. If one test case from the corresponding class identifies

bugs, then rest of the test cases that belong to the same class would be expected to find

16

same bugs. Similarly, if a test case of the same class does not find an error, then no other

test case will identify the same error from the that class.

2.9 Boundary Value Analysis

In boundary value analysis, the boundary values of input data of SUT are taken. Test cases

are designed and then one test case is selected from each boundary value containing both

valid and invalid inputs. However, this testing technique do not analyze multiple input

data of a system.

Figure 5. Illustration of Black Box Testing

2.10 Genetic Algorithm

Genetic algorithm (GA) works on the principle of natural selection and genetics, inspired

by the biological evolution of human being. Genetic algorithms are considered as well-

known optimization tool and are very easy to use. Generally, GA consists of two main

steps, in the first process individuals based on fitness values are selected from the

population using specific selection method. In the second step production of new

individuals take place through cross over and mutation techniques. The search space of

genetic algorithm consists of candidate solutions representing the problem called

chromosomes. These algorithms provide more than one solution also known as alternate

possible solutions. The goal is to produce such solutions that are able to optimally satisfy

each objective concurrently. These credentials are termed as ‘Objectives’ and an

algorithm may use a single objective, may incorporate multiple objectives, or may utilize

many objectives. For example, an algorithm considering only one objective (i.e., test case

automation) may be termed as a single objective utilization algorithm. The algorithm that

takes into account two or three objectives is termed as a multi-objective optimization.

A random population of random pop size known as individuals is initiated in the beginning

of Genetic Algorithms. It is reproduced iteratively by exploring the fittest individuals from

the search space. The target problem is defined and then evaluated by using a fitness

17

function (one fitness function for one respective objective) for the population. A random

selection of 2 chromosomes as parents is selected to perform crossover and mutation

operators on them. While applying selection operator, it is ensured to select the individuals

with highest fitness values so that the new individuals come up with higher probability to

undergo crossover and mutation operators. A new population is created from old

population with a purpose to keep producing the better population every next time. The

stopping criteria is defined to stop the algorithm where the individuals/population found

is the best and fittest population. The flowchart of a genetic algorithm is displayed in

Figure 6.

Figure 6. Genetic Algorithm Flowchart

18

Chapter 3. Literature Review

This chapter contains the systematic literature review that has been done for the proposed

research. It includes overview and major outcomes of SLR, review methodology, research

questions, category definitions, review protocol, results and analysis, answers to the research

questions for literature and conclusion.

3.1 Overview and Major outcomes of SLR

Several studies are contributing to this systematic literature review, where various approaches,

case studies, algorithms/techniques, and validation of various case studies are highlighted in

bits and pieces. Moreover, comprehensive research covering all the major aspects concerning

the automated test case generation as part of optimization, and detailed study of UML

diagrams, test coverage criteria are found in the existing studies.

Figure 7 Overview of the SLR

19

The structure and organization of the systematic literature review with complete detail is shown

in Figure 7. Six well known scientific repositories are selected in the search process and as a

result 73 studies are selected that fully meets the inclusion and exclusion criteria. Furthermore,

the selected research is classified into five major categories i.e., UML testing category, UML

approaches category, validation category and general category. For ease of analysis and to

explore the studies as per the research questions, studies were further categorized into five

groups i.e., UML testing category (21 studies), UML approaches category (12 studies),

validation category (10 studies), challenges category (4 studies) and general category (26

studies). To obtain the required and precise results, a combination of qualitative and

quantitative analysis is performed on the selected studies. As highlighted in Fig. 7.

Furthermore, there two types of UML test case generation i.e., functional and non-functional.

Functional testing includes (17 studies) non-functional testing (4 studies). Similarly,

verification of case studies includes different case studies such as ATM (2 studies), LMS (2

studies), login system (1 study) and other (5 studies). Moreover, test case automation

challenges incorporate manual testing (1 study), tests case automation (1 study), model-based

testing (2 studies). The answers to the research questions are extracted with the help of data

analysis and synthesis method. In general category, comparison and analysis (20 studies) and

automated testing (6 studies). Testing based on functional and non-functional testing

(References, [8],[9] etc. Similarly, availability of approaches (References, [10],[11]) and

verification of UML models is done via case study (References, [12],[13]). Challenges in test

case automation includes (References, [14],[15] etc. The detailed discussion on these

categories is carried out in section III. Answers to research questions are discussed in section

IV.

The main contribution of this study is summarized below:

 This research has selected 73 studies published during 2011-2021 containing detailed

analysis of UML diagrams followed by the defined guidelines of conducting SLR.

 For test case automation different techniques and approaches of UML diagrams have

been identified by following the ways due to which model-based automated testing is

better than other methods.

 Validation of an identified approaches is done via case studies.

20

 Finally, this research has highlighted the more efficient UML diagram for test case

automation in software testing based on coverage criteria and defects detection.

 Challenges in test case automation from UML diagrams.

The purpose of a Systematic Literature Review is to identify, assess and to do a detailed

analysis of existing relevant research that has been done in previous years in a particular

domain. The SLR ensures comprehensive analysis and is conducted by a precise search plan

by following the Kitchenham guidelines[16]. These guidelines have been performed in a very

systematic way including the five major steps category definition, Development of a review

protocol, search process, Inclusion and Exclusion criteria, Quality assessment, Data extraction

and synthesis.

3.2 Review Protocol

A review protocol is developed for the selected studies. The major parts of this methodology

are planning, preparing and reporting the review as shown in figure 8. It focuses on the

background of the research, research questions related to a particular topic, inclusion and

exclusion rules associated with quality evaluation, search process, data extraction and

synthesis. Furthermore, data sources and search criteria have been highlighted in table 1. The goal

is to review the latest research available on automated test case generation from UML

diagrams. This systematic Literature Review (SLR) contributes the techniques or approaches

used to derive automated test cases from UML diagrams and how model-based testing is better

than traditional testing methods. Similarly, it has also identified the UML diagram that is more

appropriate in the automated test case generation process.

Figure 8. Steps Followed in SLR

Identify the need

Commissioning a review

Research questions are
specified

Review protocol is
developed

Review
Planning

Research Identification

Selection of Primary
Research

Quality Assessment

Data Extraction and
Synthesis

Preparing the
Review Specifying dissemination

mechanism

Formatting the document

Evaluation of document

Reporting

21

3.2.1 Research Questions

Following research questions have been identified:

RQ1: What are the foremost research that have been published in the past ten years for test

automation?

RQ2: What type of automated testing has been performed by UML diagrams?

RQ3: What are the techniques and case studies used in existing work for test automation from

UML diagrams?

RQ4: Which UML diagram can be considered as a better option for test case automation?

RQ5: How automated test case generation from UML is better as compared to other testing

ways?

RQ6: What are the challenges in test case automation which have been overcome by UML?

Table 1. Data Sources and Search Criteria

Electronic

Repositories

1. IEEE Xplore (https://ieeexplore.ieee.org/Xplore/home.jsp)

2. Springer (https://www.springer.com/in)

3. ACM Digital Library (https://dl.acm.org/)

4. ScienceDirect (https://www.sciencedirect.com/)

5. Taylor& Francis (https://www.tandfonline.com/)

6. Wiley (https://onlinelibrary.wiley.com/)

Language English

Publication Period 2011-2021

Searched Items
Books, journals, and conference papers having any of the search strings in their title

or keywords

3.2.2 Category Definition

The proposed research is organized into five major categories for classifying each selected

study that provided us with an appropriate way of answering our research questions.

1) UML Testing Category: Functional and non-functional are the two major types of

testing. The research studies specifically dealing with the functional and non-functional

testing types are placed in this category. This includes the studies that are based on

automated generation of test cases from UML diagrams e.g., the automated test cases

by UML models are generated by doing functional testing such as system-level testing,

integration testing, regression testing and unit level testing. Additionally, components

of non-functional testing i.e., security testing, performance testing and robustness

testing are also placed under this category.

2) Approaches Category: The research studies dealing with techniques and approaches

for automated test case generation from UML diagrams are placed under this category.

Various algorithms and approaches are comprehensively investigated that have been

https://www.tandfonline.com/
https://onlinelibrary.wiley.com/

22

used for automated test case generation from UML diagrams are defined in the

respective category. For example authors in [11] and [12] have used genetic algorithm

that have decreased the number of unrealistic test cases and made the testing process

faster. However, all such studies where these approaches are utilized for test case

automation comes in this section.

3) Validation Category: There are researches where different case studies have been

taken to validate the UML diagrams for automatic test case generation. For example,

authors in [10] have validated the model diagrams through a case study. Similarly, in

another study [13] automatic teller machine (ATM) is used to accomplish the

automated test case generation process. Therefore, all such studies where case studies

are considered to achieve this goal are included in the validation category.

4) Challenges Category: This category includes the research studies that focus on

challenges that are faced in test case automation. For example authors in [15] have

presented issues with manual testing that have been overcome by UML diagrams by

automating them. Therefore, research studies dealing with challenges in test case

automation are incorporated in the corresponding category.

5) Other Category: All the above defined studies belong to this category. In few studies,

UML testing along with functional (e.g., regression, integration, system level, unit

testing) and non-functional (security testing, robustness, performance) types of testing

is done for the automatic generation of test. Such studies instantaneously targeting

UML testing are placed under general category. Similarly, there are few studies (e.g.,

[17]) where certain techniques and approaches for automated test case generation are

identified. On the other hand, some studies has proposed case studies for example

(movie tickets booking system [10] etc) for the validating the proposed approaches and

UML input models come in this section. Furthermore, research dealing with challenges

of automated test case generation, that do not belong to either validation nor approaches

category are also placed in general category.

3.2.3 Selection and Rejection Criteria

Four renowned databases incorporating IEEE, ACM, Springer, and Elsevier are chosen in

selection and rejection criteria. However, some other databases i.e., Wiley online library,

Taylor and Francis are also included to carry out this systematic review. In selection and

rejection criteria some rules are defined as explained below.

23

Table 2. Search Terms with Results

Sr.No Search Keywords
Operator

(AND/OR)

No. of Search Results

IEEE

Wiley

Online

Library

ACM

Springer

T &

F

Elsevier

1 Unified modelling
language

AND 30 2 15 40 1 63

OR 48 5 30 24 3 28

2 Test case automation AND 20 0 10 25 2 10

OR 35 2 20 12 5 17

3 Software testing using

UML

AND 45 0 28 0 0 35

OR 15 3 32 10 2 11

4 Test case automation

using UML

AND 30 1 0 45 0 0

OR 34 4 25 29 5 15

5 Automation of software

testing using UML

AND 20 5 15 23 4 20

6 UML, Test case

generation

AND 10 0 0 26 0 12

OR 40 1 9 35 2 3

7 UML, Test case

automation

N/A 32 2 20 22 6 8

1) Subject: The research studies in which the words such as UML diagram and test case

automation are used in the abstract are selected. We have not considered those research

in which UML diagrams and test case automation are not discussed in the abstract.

Some studies are also rejected based on the title where test case automation or UML

diagrams were not present.

2) Publication Year: Only the latest studies published during 2011- 2021 are included,

all other research papers other than the defined limits are excluded.

3) Publisher: To carry out this SLR four well-known databases IEEE, ACM, Springer,

and Elsevier are chosen. Moreover, some other search engines i.e., Wiley online

library, Tylor & and Francis have also been considered. Studies other than these

repositories are rejected.

4) Application Research: Result-oriented research studies which have effective

methodology with the correct outcome are considered, whereas weak approaches with

unsatisfactory results are excluded.

5) Repetition: Research with the most similar content are discarded, only relevant studies

are included.

6) Validation of proposal: Proper validation of research studies is really an integral part

of research studies. Therefore, only those studies are selected that are properly

validated through some appropriate methods like experimentation and case study etc.

24

3.2.4 Search Process

Six major databases IEEE, Springer, ACM, Elsevier, Wiley, and Taylor & Francis have been

selected to carry out the search process as per in selection and rejection rules. We have used

different search terms or keywords for this process as summarized in Table 2. Particularly,

most relevant search terms like test case automation etc were used to start the search process.

However, these search terms extracted thousands of results that were difficult to analyzed. For

example, ACM digital library returned 513,934 results in default settings for “Test case

automation” search term. Therefore, we used different filters like “Publication Year” (2011-

2021) to optimize the search results. Similarly, two operators such as AND, OR are used to

obtain more relevant results. The outcomes gathered from AND operator was not enough that’s

why the OR operator is used. However, the outcome gathered by utilizing OR operator was

too large, and it was not possible to check all operators therefore, an advance search option has

also been used provided by these scientific databases. To speed up the search process we

further have used search options such as “where title or abstract contains” etc.

After doing the comprehensive analysis only 73 studies that are relevant to our proposed

domain have been selected and 63 studies are rejected. The following steps are carried out in

the search process as shown in figure 9.

 By using different search terms in well-known databases overall, we have collected

1131 results.

 Among the collected results, we have rejected 348 studies based on title, and 142

studies based on abstract as defined in our selection and rejection rules.

 Moreover, 63 studies are rejected based on general studies and further, an analysis of

136 studies has been done.

 Finally, after investigations, 63 studies are rejected and 73 research have been selected.

25

Figure 9. Search Process

3.2.5 Quality Assessment

High impact studies from well-known repositories that are accepted all over the world have been

selected to assure the reliable outcome of this SLR. It can be seen from Table 3 that Thirty-one (31)

research studies are selected from IEEE, thirteen (13) studies are extracted from springer, fourteen (14)

from ACM, twelve (12) from Elsevier two (02) from other Taylor and Francis and one (01) from Wiley

databases. It is worthwhile to note that the identified studies are selected without any biasness.

In fact, results are searched and analyzed properly from each renowned databases, where comparatively

higher number of studies were found from IEEE and ACM. In contrast, few numbers of studies are

obtained from Elsevier, Wiley and Taylor & Francis. It highlights that the high impact studies and

latest results are chosen to develop this research methodology. The Database shows the name of

databases, Type represents that either the research study is a conference or journal whereas references

describe the selected studies, and the total gives a number of references from given databases. However,

parameter 2 (publication years) ensures the identification of latest studies only. Similarly, the parameter

4 (Application Research) of inclusion and exclusion criteria indicates that only those studies are

selected that have genuine techniques or framework. This substantially improves quality of this SLR

as the insignificant research articles are not considered. This leads to analyze the generation of test case

automation from UML diagrams.

26

Table 3:Summary of Selected Studies

Sr. No Database Type References Total

1. IEEE

Conference

[12], [18] ,[19], [20], [21], [22], [23], [24], [25] [26], [27],

[28], [29], [30], [31], [32], [17], [10], [33], [34], [35],

[36],[9], [37], [38], [39], [40], [41], [42], [43], [44]
31

2. Springer

Conference [45], [46], [13], [11], [47], [48], [49], [50], [51], [52], [53]

13

Journal [54], [55],

3. ACM

Conference
[56], [57], [58], [59], [60], [61], [8], [62], [63]

14

Journal [64], [65], [66], [67]

4. Elsevier

Conference
[68], [69], [70], [15]

12

Journal [71], [72], [73], [14], [74], [75], [76], [77]

5.
Tylor &

Francis

Journal
[78], [79] 02

6. Wiley
Journal

[80] 01

Moreover, the quality of SLR is ensured by the type (i.e., conference or journal) of selected

studies. Although, we tried to choose journal studies as much as possible and we extracted 19

journal studies (out of 73) which were completely complaint with the inclusion and exclusion

criteria. Therefore, the distribution of selected studies with respect to publication type is shown

below in figure 10. Where 26% of the identified studies are from well-known journals while

rest of the 74% studies are selected from conferences.

Figure 10. Distribution of selected studies with respect to publication type

74%

26%

Conferences Journals

27

3.2.6 Data Extraction and Synthesis

After the identification of studies according to the inclusion and exclusion criteria, the process

of data extraction and synthesis is executed. Various data extraction elements have been

identified to find the answers to research questions as shown in table 5. Specifically, the key

elements are first extracted from serial no 1 to 5 of Table 4. Similarly, for other important

elements, data extraction with synthesis is performed as shown from serial no 6 to 10 in the

respective Table. The mining of bibliographic information of each selected study is done.

After that data collection with the proposed methodology and results are extracted. This is the

best way to achieve the goal of the proposed research. Furthermore, a grouping of each selected

study to the corresponding categories is done and the validation of the proposed methodology

is observed in the selected studies. Moreover, techniques or approaches that are utilized to

generate test case automation are identified in the chosen studies. Finally, a detailed analysis

is done to answer the research questions proposed in our systematic literature review.

All the major components of review protocol have been discussed. Moreover, we have selected

73 studies based on inclusion and exclusion criteria. Furthermore, data extraction is carried out

to obtain relevant studies from the identified studies. This has led to compile the results

accurately as given in following section.

Table 4: Data Extraction and Synthesis

Sr. No Description Details

Data Extraction

1. Bibliographic Information The Title of the paper, its publication year and publication type

is observed

2. Data collection Either data is qualitative or quantitative

3. Proposed Methodology Methods that are followed in selected studies are analysed

4. Results Results of each study are comprehensively analysed

5. Validation Methods of validation of respective techniques are observed

Data Synthesis

6. Research Overview Overview of proposed SLR incorporating introduction and

research methodology

7. Grouping Selected studies are grouped into their corresponding

categories as summarized in Table 3.

8. UML Diagrams techniques Techniques of test case Automation from UML are analysed as

shown in Table 7.

9. Testing Mechanism Ways to derive test case automation

10. Findings of each category Detailed analysis of each research question to get the answer

and results of research answers are shown in Table 7 and Table

8

28

3.3 Results & Analysis

The identified studies are classified into five categories as given in Table 11. For further

exploration the references of each study are provided against each category. The primary aim

of this review is to examine and query the selected literature in order to reliably answer the

identified research questions. This section reports the results after careful examination of

various aspects of extracted data. It is worthwhile to mention that the Journals generously

contributing to our quest for the latest trends in test case automation and optimization from

UML diagram are; Journal of Systems and Software, Software & Systems Modeling,

International Journal of Software Engineering, International Journal of System Assurance

Engineering and Management, Journal for Science and Engineering, SIGSOFT Software

Engineering Notes, Journal of King Saud University-Computer and Information Sciences,

Journal of Software: Evolution and Process. Similarly, various significant conferences are;

International Conference on the Quality of Information and Communications Technology,

International Conference on Evaluation and Assessment in Software Engineering, Conference

on Computer Science & Software Engineering, International Conference on Information and

Software Technologies and many other are included in this SLR.

3.3.1 Model-Based Testing

Software testing is a pivotal activity in the software development life cycle. It evaluates the

quality of a product and detects the potential failures of the software under test [12]. Testing

can be done in multiple ways i.e., code-based testing, requirements-based, and model-based.

Code-based testing is done on code, it is not very effective as it is carried out later in a

developmental phase that leads to many errors, takes much time and intolerable cost. Whereas,

in requirements-based testing, test cases are generated from requirements’ written in a natural

language which is not a very successful way to derive test cases. Requirements written in a

natural language can be ambiguous that causes errors in the next phase of development.

Moreover, it is challenging to test a complete set of requirements by single test cases[59]. The

model-based testing technique is one of the automated testing techniques that has improved

the traditional testing methods [72]. Model-based testing produced high quality product as

compared to code-based testing and requirement-based testing as shown in table 5.

However, UML diagrams are extensively used in software modeling process test case

generation from UML diagram shows higher efficacy, reduces development time and cost [36].

Software testing took a lot of time, effort, less productivity and produced low-quality products

by using traditional testing models. Therefore, test automation not only improves the quality

29

of a product but also increases test coverage[47]. Different test cases could be generated from

the UML diagram by identifying more errors and a very appropriate way for testing the entire

system. Automated test case generation from UML diagrams has been done through various

methods so far, test cases can be generated using one diagram and by using a combination of

multiple diagrams. Test generation remained a problem for the system based on concurrency

rules, but the usage of the UML activity diagram has overcome this issue by generating test

cases automatically for such type of software system[71]. Similarly, UML models represent

the behavior of the system abstractly which is a practical way to automate test activities. UML

designs are very supportive and suitable for modelling several types of specifications[54].

Table 5: Testing Methods

Sr. # Approaches of testing Cost Development

Time

Efficiency Quality of Product

1. Code based testing High High Low Low

2. Requirement based

testing

High High Low Low

3. Model based testing Low Low High High

3.3.2 Testing Types Based on UML Models

Software testing is a crucial element in development of a product. In this study 20 research

studies have been identified as shown in Table 6. Various UML based techniques for software

testing are proposed [64]. Uses cases are investigated for test case generation that express the

functional requirements in a very simple way. For functional testing comprehensive research

has been done that includes different UML models such as use cases, sequence diagrams,

activity diagrams and state machine diagrams. However, test case generation from UML

models for functional testing is done using following classified methods i.e., heuristic testing,

and UML based specification. This is carried out at unit testing, integration testing and system

level testing [51]. Similarly, UML activity and use cases are utilized for non-functional testing

that consists of performance testing, robustness and security testing. Security vulnerabilities

are widely detected by UML based testing. Furthermore, system performance under a

particular workload is tested to examine the responsiveness, stability and various other

attributes of the system that involves the model-based testing techniques to generate test cases,

test data, test execution and evaluation.

30

Table 6: Types of Testing

Sr. NO Testing Type Count References

 Functional Testing

1. System level testing 01 [8]

2. Regression Testing 06 [9], [55], [53], [75], [37], [76]

3. Unit Testing 03 [38], [39], [81]

4. Acceptance Testing 02 [40], [41]

5. Integration Testing 04 [79], [39], [62], [77], [51]

 Non-Functional Testing

6. Performance Testing 02 [63], [42]

7. Security Testing 01 [43]

8. Robustness Testing 01 [44]

Graphical representation of functional and non-functional testing has been shown below in

figure 11.

Figure 11. Functional Testing

3.3.3 Approaches for Test Case Automation

In this research 18 techniques/approaches have been identified for test case automation from

UML diagrams. A genetic algorithm is widely used to generate test cases and to optimize them

because of its simplicity and effectiveness. Test cases produced by genetic algorithms are

better in quality than the test cases generated by some other random methods. GA is an efficient

optimization algorithm that decreases the number of unfeasible test cases and makes the testing

procedure faster. It is applied for testing object-oriented software as well as procedural

0

1

2

3

4

5

6

7

System level testing Regression Testing Unit Testing Acceptence Testing Integration Testing

Functional Testing

Functional Testing

31

software specifically in scenario testing. Similarly, the depth first search (DFS) algorithm has

been used mostly for test automation because it is one of the optimized algorithms. Test cases

generated from this algorithm are not only exhaustive but optimum. The use of a hybrid genetic

algorithm i.e., the combination of both genetic algorithm and particle swarm optimization helps

in finding the optimal solution of a problem.

Table 7: Analysis of Approaches for Test Automation by UML diagrams

Sr. No Input Model Algorithm/Approach Language Reference

1. State Machine Ant Colony Optimization (ACO) NLP [17]

2. Sequence diagram and

UML use case Model

Synthesis

algorithm for

Automata & Test

cases set

generation

algorithm

Incremental

approach based

on Finite

Automata &

Event

Deterministic

Finite Automata

OCL

[10]

3. Sequence diagram ATGSD Graphical

Notation

[13]

4. Use case GEN SCENARIOS, GEN TEST

INPUT DATA GEN TCSL MODEL

NLP [21]

5. Usecase specification GenerateInput /UMTG Approach NLP [60]

6. Activity diagram Genetic Algorithm

NLP

[11],[12]

7. Sequence, state chart &

activity diagram

Formal Specification-based testing,

Graph testing, Heuristic testing

OCL

[64]

8. UML StateChart DFS NLP [25]

9.

Activity diagram

Activity graph NLP [28]

Hybrid Genetic Algorithm N/A [22]

GenerateTest

Scenerio

Algorithm

STAD (Synthesis of

Test Scenario from

activity diagram)

N/A

[45]

10. Activity diagram Graph transformation technique and

AToM3 tool

N/A [56]

11. Sequence diagram &

State chart diagram

Genetic Algorithm N/A [68]

12. Activity & Sequence

diagram

DFS NLP [70]

13. Class, Activity &

Usecase Diagram

Comparison has been done

N/A [69]

14.

Sequence diagram

Model-Driven Approach

AndroMDA

NLP [32]

15. State Diagram Genetic Algorithm N/A [65]

16. State Machine Diagram SMTSGA (State Machine To Test

Scenario Generation Algorithm)

DFS

NLP

[27]

17.

Activity Diagram

Genetic Algorithm Fuzzy Clustering

Algorithm

NLP [34]

Memorized const path Algorithm NLP [61]

32

Moreover, by prioritizing the test scenarios probability of fault detection can be increased at

early stages that will further reduce the testing cost and efforts. the algorithms such as ‘Strength

Pareto Evolutionary Algorithm’, ‘Niched Pareto Genetic Algorithm’ and ‘Pareto Archived

Evolution Strategy’ are single-objective optimization algorithms. Similarly, ‘Non-dominated

Sorting Genetic Algorithm’, ‘Ant Colony Optimization’ and ‘Particle Swarm Optimization’

are multi-objective optimization algorithms [15], [19].

Various case studies have been identified from selected studies against each input model. For

example in [13] Automatic Teller Machine (ATM) is used. It is a money dispenser machine to

draw money. Y indicates the case studies are generically created and these are publicly

available. However, test cases generated from input model have been validated by various case

studies as shown in table 8. For sequence, activity and class diagram are validated by ATM,

tickets booking system, login system and Library Management System (LMS). Similarly, state

machine diagram, use case models are validated by online voting system, driverless train and

library management system.

Table 8: Case Study Verification

Sr.N0 Input Model Case Study Availability Reference

1. Sequence diagram and UML

use case Model

Movie Tickets Booking

System

Y [10]

2.

Sequence diagram

Automatic Teller Machine

(ATM)

Y [13]

Scrum Process Y [32]

3. Use case specification Body Sense Y [60]

5. Sequence, state chart &

activity diagram

ATM Y [64]

6.

Activity diagram

ATM with drawl

Book ordering system

Y

[22],[11],[12

]

Cell Phone System Y [45]

7. Sequence diagram & State

chart diagram

Online Voting system Y [68]

8. Heating Kettle problem Y [34]

9. Activity & Sequence diagram Login System Y [70]

10. Class, Activity & Use case

Diagram

ATM & Library Subject

System

Y [69],[29]

11. State Diagram Driverless Train Y [65]

12. State Machine Diagram Library Management

System

Y [27]

33

3.3.4 Comparison and Analysis

Test case generation from UML specification is more beneficial because test planning is done

side by side in the development stages of software. It helps in reducing cost, time and efforts

meanwhile enhancing software quality and reliability. UML models represent the abstract view

of the system, by using these models different types of faults can be detected from the system

at the early stages of software development [31]. According to the selected studies as shown

in table 10, it gives the detailed comparison and analysis of UML diagrams. The first column

indicates the UML diagrams used, second column represents the coverage criteria, and the

third column shows types of faults that are detected by these diagrams. Similarly, the fourth

column signifies the intermediate form used in different approaches. The execution column

indicates the execution of test cases, where M represents manually, and A shows automatically.

The last column is optimization, which tells whether the generated test cases are optimized or

not. The use of sequence diagram as an input model is more effective for test case automation

as it reduces the cost and time of development process by detecting operational, dependency,

loops, scenario, and interaction faults at initial stages. Moreover, a control flow graph is

generated from the sequence diagram that generates the test paths which are efficient for test

case generation as it includes complete path coverage based on extracted CFG. A complete

path coverage emphasis on both node and edge coverage in the control flow graph. Therefore,

the enhanced test coverage in testing contributes to the stability of the software. UML sequence

diagram allows interaction between the objects by a sequence of messages in the system [78].

Moreover, evolutionary genetic algorithms used to generate test cases satisfy the branch

coverage by producing a smaller number of test cases as compared to conditional algorithm.

3.3.5 Research Productivity

The demographic of the selected studies are presented in figure 12 including the number of

researches published from 2011- 2021. Four databases have been selected in a proposed

systematic review includes IEEE, ACM, Elsevier, Springer, and others whereas the other

consists of Wilsey, Taylor & Francis. An increasing trend in the number of publications can

be seen in Fig 8. A detailed list of primary studies is given in Table 9 few well-known journals

and conferences have been published in this domain [80]. Most of the publications are observed

in IEEE conference.

34

Figure 12. Research Productivity between 2011-2021

3.3.6 Challenges in Test Case Automation

Software testing has always been a challenging task despite the accessibility of several tools

and techniques. A software system needs to be tested to verify whether the system is

functioning according to requirements or not. It can be done in two ways either manually or

automatically. Manual testing does not deliver appropriate results that cause ineffective,

inefficient output and effects the quality of a product [15].

 However, automated generation of test cases is not cost-effective if a proper test plan

has not been designed. In the automated test case generation process, deciding which

part of the system needs to be tested remained a particular challenge for the testers.

 Many researches have been done in previous years that have tackled the challenges of

test automation but still, there is room for focusing on the concepts of test automation

during the entire testing procedure from the design of the test case leading to test output

evaluation [35].

 Before model-based testing, designing test cases was almost ad-hoc.

Test case generation and test specifications of a formal or semi-formal software system can be

created from MBT. These models include both structural and behavioral models such as state

machine diagram, class diagram, sequence diagram, use cases and activity diagram.

Meanwhile, test cases can be generated using more than one model input [14]. Therefore, the

generation of test cases using MBT remained much effective in detecting faults at the early

stages of development from each test suite. Moreover, test suites are developed in less time by

utilizing minimum resources [74].

0

5

10

15

20

25

30

IEEE ACM Elsevier Springer Wiley T&F

Journal Conference

35

Table 9: Comparison and Analysis of UML Diagrams

Sr.

No

Input

Diagram

Coverage

Criteria

Fault

Detection

Intermedia

te Form

Executi

on

Optimizati

on

Referenc

es

1.

Sequence,

State chart

& Activity

Branch

Coverage,

Path

Coverage

Interaction,

synchronizat

ion

NULL

A

Y [64]

2. State chart
Path

Coverage
N/A

An

Extended

Flow

Graph

A Y [57]

3.

Sequence

Prime Path

coverage

Operational,

Scenario,

Interaction

Control

Flow

Graph

A

Y

[20]

Message

Sequence

Path Criteria

(MSPC)

Interaction,

Operational

and

Scenario

Concurrent

Composite

Graph

A

N

[19]

Object

Coverage,

Path

Coverage

Decision,

Loop,

Interaction,

Synchroniza

tion,

Message

path

Sequence

Diagram

Graph

A

N

[26]

4.
Sequence

Use case

Predicate

Coverage

Dependency

, Scenario,

and

interaction

Use case

Dependenc

y Graph,

Concurrent

Current

Flow

Graph

A N [49]

5.

Sequence,

Class &

State chart

All Path

Coverage, All

Transition

Coverage, All

State

Coverage

Interaction

and

operational

Intermedia

te Test

Model

PSSETM

A N [30]

6.
Activity

Diagram

Path

Coverage,

Activity

Coverage

Deadlock

Removal

Activity

Graph
A Y

[12],[66]

[18],[58]

Hybrid

Coverage

Transition

Coverage

Branch

Coverage

N/A

Activity

Dependenc

y Graph

A Y [33],[50]

7. Sequence

Message

Sequence

Path

Interactions

Sequence

Flow Chart

Message

Control

Flow

Graph

A Y [46],[23]

36

8.
Activity

Sequence
N/A

Scenario,

Operational,

Integration,

Concurrent

Execution

problem

Sequence

Graph &

Activity

Graph

A Y [48]

9. State Chart

Transition

Coverage

(All

Transitions,

Round Trip

Path and All

Transition

Pairs)

N/A

State

Chart,

Intermedia

te Graph

A N [73]

10.

Class

State

diagram

State

Coverage,

Transition

Coverage,

Path

Coverage

N/A

Control

Flow

Graph

A N [24]

11.
State Chart

Diagram

State

Coverage,

Transition

Coverage, All

path

Coverage

N/A

Testing

Flow

Graph

N N [25]

12.
Collaborati

on diagram
Path coverage

Avoid

redundancy

& infinite

loop

 [52]

3.4 Answers of Research Questions

RQ1: What type of automated testing has been performed by UML diagrams?

With the growing complexity and increasing size of software applications, the importance of

test case automation has been increased to reduce the testing effort, cost and time. We have

identified 20 research studies corresponding to this category as summarized in Table 6.

Software testing is divided into two categories i.e., functional testing and non-functional

testing. The first category includes the automated generation of test cases by UML diagrams

in functional testing that further consists of system-level testing, unit testing, regression testing,

integration testing and acceptance testing. Similarly, the second category incorporates test case

generation of non-functional testing by utilizing UML models. Non-functional testing includes

performance testing, security testing and measuring the robustness of the software system.

RQ2: What are the techniques and case studies used in existing work for test automation from

UML diagrams?

Overall, 18 techniques and 11 case studies have been identified for automated test case

37

generation from UML diagrams as given in Table 8. It has been observed that genetic

algorithms and depth-first algorithms have been widely used for automated test case generation

by utilizing UML diagrams. Furthermore, it is analyzed that model-based test case automation

using various identified techniques are much efficient and cost-effective in automating test

case procedure in software testing. As it is done early in the software development life cycle.

Moreover, the validation of the above-mentioned algorithms and approaches has been done

through identified case studies as summarized in Table 8.

RQ3: Which UML diagram can be considered as a better option for test case automation?

In this category 20 research studies have been highlighted Table 10. According to the above-

mentioned studies sequence diagram has been considered as an appropriate option for test case

automation because it is found in the existing literature that sequence diagram has ability to

detect more faults such as operational, synchronization, loop, scenario and interaction faults

during testing procedure. Moreover, it covers the complete path coverage extracted from

control flow graph (CFG). A complete path coverage incorporates both the node and edge

coverage in a complete graph.

RQ4: How automated test case generation from UML is better as compared to other testing

ways?

Software test case automation has been done in various ways such as code-based testing,

requirement-based testing and model-based testing. Code - based and requirement-based

testing is done later in the developmental stages. Automated test case generation using

traditional ways consumes a lot of time and cost however, model-based testing is done at an

initial level of software development life cycle. Therefore, model-based testing for automated

test case generation remained a better approach as it detects faults early in the software

development life cycle.

RQ5: What are the challenges in test case automation which have been overcome by UML?

Test case generation is a crucial but a tiresome task. To develop a high quality and cost-

effective system brings up with new challenges, for that the manual testing is not an adequate

solution. The reliability of the needed system cannot be managed through it. Moreover, it

cannot ensure the coverage of ever-changing system. Therefore, introducing the innovative

ways for systemization and automation of testing process are required. This complicated

method has become a challenge to ensure the quality delivery of the software. Similarly, proper

test plan design is very imperative for cost and time-efficient automated test case generation.

Test case design was ad-hoc before model- based testing.

Currently, many test case automation tools are available to generate test cases, test planning,

38

test executation and monitoring. The available tools are used for test case design, test data

selection and test data evaluation but for a human tester they remained time consuming and

demanding activity [67]. Model based testing has come up with appropriate approaches such

as depth first algorithm, genetic algorithms, ant colony optimization and many others as

summarized in Table 8. UML Diagrams as an input model have been used to generate test

cases automatically for the system. UML modelling has been recognized as a defecto standard

both for academia and industry.

RQ6: What are the foremost researches that have been published in the past ten years for test

automation?

We have identified 73 research studies from 2011- 2021 as per our selection and rejection

criteria, where UML diagrams are used for automated test case generation.

3.5 Conclusion

In this research a systematic literature review (SLR) has been conducted to identify and

examined 73 research studies that are published during 2011-2021 in the software testing

domain. The identified studies are classified into four categories i.e., test automation from

UML, techniques or approaches utilized for test automation using UML, foremost researches

in the testing domain and efficient test case automation UML diagram. These categories are

thoroughly analyzed to summarize the techniques/approaches for test automation using UML

diagrams in the software testing domain. Moreover, further analysis has been done to identify

how test case automation using UML is effective as compared to other testing ways. It is

concluded from this review that model-based test case automation using identified techniques

or approaches is more effective than other testing methods being used in this domain.

Moreover, it is highlighted that the use of a sequence diagram and genetic algorithm is very

fruitful in software testing as it covers all the paths in coverage criteria and results in a lesser

number of test cases.

Research Gap

This sub-section discusses the research gaps and limitations encountered in existing literature.

Analysis of 73 selected primary studies (in terms of approaches, algorithms, validation case

studies etc.) has been done by following an extensive review process to look for research that

provide automated test case generation methods from UML diagrams.

After the deep analysis of selected studies, it was found that there’s no research that focused

on U-NSGA-III using single-objective algorithm (extended form of NSGA-III) for test case

automation from UML diagrams. There was no single fully automated approach proposed to

39

facilitate test case automation and optimization for statement coverage from UML diagrams.

Though partially proposed or semiautomated tools i.e., models and algorithm’s pseudocodes

are available in literature, but no framework is proposed using them.

40

Chapter 4. Methodology

In this section an approach for test case automation and optimization has been discussed.

Optimized test cases are generated by using an optimization algorithm UNSGAIII. Test case

automation and optimization remained a challenging concern in automated software

engineering. However, several optimization techniques have been developed to solve this

emerging problem in software engineering field. Moreover, genetic algorithms are well-known

optimization methods for test case automation. Genetic algorithm works based on principle of

natural selection. However, basic steps of genetic algorithm are shown in figure 13.

Genetic algorithm differs from other traditional techniques in multiple ways

 Encoded representation of variables is directly used by genetic algorithm instead of

manipulating them by themselves.

 GA uses stochastic instead of using deterministic operators.

 GA works using blind search mechanism by ignoring complete information and

without ignoring the output of the sample

4.1 Testing Objectives

Testing objectives highlight the way the measures that are used to evaluate the ways the testing

process is being conducted. In white box or structural testing, if the path coverage has been

chosen it is important to know how to check whether the program execution with specific test

data has reached to certain criteria or not.

4.2 Fitness Function

Fitness function is also known as objective function. It evaluates the fitness of each

chromosome in the population [82]. The objective function is optimized according to the

proposed problem to find a solution. Fitness function is composed in such a way that it becomes

much effective and efficient in achieving the target goal. In this research, fitness function is

designed in such a way that it maximizes the statement coverage with minimum test cases.

𝐹(𝑋) =
1

∑ 𝑊𝑗𝑔𝑗(𝑥𝑖)
𝑛(𝑥)

𝑗=0

Where, 𝑊𝑗(x) represents weight of each node corresponding to the path of control flow graph,

and 𝑥𝑖 shows the chromosome in the given population. Similarly, 𝑛(𝑥) represents number of

statements covered by the path. The weight of each node is calculated using a formula i.e.,

41

Number of indegree × number of outdegree. Where, indegree (N) denotes the incoming control

to the node N whereas, outdegree indicates number of nodes called by succeeding node N.

Figure 13. Steps of Genetic Algorithm

4.3 GA Operators

Genetic algorithm parameter includes selection, cross-over and mutation. Performance of

genetic algorithm is highly affected by selection method, probability rates of crossover and

mutation operators. Crossover and mutation are used to reproduce the offspring in the next

generation. After applying these parameters, the entire population gets evolved and new pool

of chromosomes is formed. Good operators lessen the search time, fastens the search and

reduces the search space substantially.

4.4 Selection

Selection is used to select the fitter chromosome from a pool of a randomly generated

population. Selection of fitter chromosomes can be done through different selecting ways such

as random selection, roulette wheel selection, rank selection and tournament selection. In this

work tournament selection has been used, other selection methods are also explained shortly.

4.5 Roulette Wheel selection

In this selection method chromosomes with better fitness are more likely to be selected.

Therefore, in this method selection of chromosomes is based on their fitness values. Higher

fitted chromosomes will be selected more time to produce new offspring. The mechanism of

roulette wheel selection is shown in figure 14.

4.6 Ranked Fitness Selection

In this selection method fitness values are sorted in ascending or descending order then each

chromosome is selected based on ranked its ranked value. Indices of individuals are mapped

according to their selection probability by using a mapping function. However, this mapping

42

function could be linear or non-linear, but it does not affect the notion of ranked based selection

method. Mapping function significantly evaluate the performance of selection scheme.

Figure 14. Selection through Roulette Wheel Method

4.7 Tournament Selection

Tournament selection is very simple, efficient, and popular selection method in genetic

algorithms. In tournament selection number of individuals (n) are selected randomly from the

given population, then these selected chromosomes compete with one another. Individuals with

high fitness value win the tournament and are included in the next generation. For binary

tournament, the tournament pressure is set 2 that’s mean two individuals are randomly selected

for the tournament and one with high fitness wins and goes to next generation [83]. Tournament

pressure is basically number of individuals who have participated for the competition.

Therefore, in this way every chromosome or an individual gets a chance of selection that in

return enhances the population diversity. Figure 15 describes the overall mechanism of

tournament selection.

Figure 15. Tournament Selection Mechanism [83]

The advantages of using this selection method are that it does not need requirement of sorting

43

the fitness values of an individuals. It is much efficient towards time complexity, and it ensures

the equal participation of all individuals. In the above figure the tournament size is fixed to

two i.e., only two individuals are contributing and competing each other. For reproduction,

only best chromosome is selected having fitness value nine. However, in this mechanism

bigger tournament size leads to loss of genetic diversity which makes the search greedy in

nature.

4.8 Crossover Operators

Crossover plays a significant role in providing variations in genetic Algorithm. By copying

selected bits from each parent, the crossover operator produces new offspring from two

selected parents’ string. Crossover probability can be set that ranges between 0 and 1.

Crossover operation includes three types of crossover methods i.e, single point, two point and

uniform crossover. In the proposed research uniform crossover has been used. In single point

or one point crossover a random point is chosen from both parents, by swapping them from

cut point produces two new offspring as shown below.

Chromosome 1: 1101100100110010

Chromosome 2: 1101111001100110

Offspring1: 1101111001100110

 Offspring2: 1101100100110010

Similarly, in two-point crossover two random points are selected from the parent

chromosomes, by exchanging genes between selected points produces two new off springs.

4.9 Uniform crossover

Uniform crossover performs better then single- and double-point crossover. In this mechanism

bits from two parents are combined uniformly. It takes place by exchanging bits of parents to

make them incorporate in the offspring by selecting binary numbers randomly i.e., 0 and 1. In

uniform crossover two parents are selected randomly for crossover. By swapping the n genes

among them uniformly, produces new population containing traits of parents [84]. Crossover

and mutation rates highly effect the variations in new individuals. Higher the crossover rate

higher are the chances of completely getting mix the characteristics of both parents into its

offspring. Similarly, higher mutation rate produces offspring that has different characteristics

which do not exist in the parents.

44

Chromosome 1: 111010010

Chromosome 2: 100010110

 Offspring 1: 110010110

 Offspring 2: 101010010

4.10 Mutation Operator

Mutation is the second protagonist in genetic algorithm. It changes the solution by altering the

genes of offspring and enhances the diversity of population as well. it also works based on

random changes. However, like crossover rates, mutation rates also need to be set for

reproducing new population. Mutation operator prevents premature convergence by jumping

out of local solution or suboptimal solution [85]. Various mutation operators are being used

for automated test case generation and optimization such as inversion mutation, swap mutation,

scramble mutation and insert mutation however, in this research bit flip mutation operator has

been used with varying mutation probabilities as it works effectively with binary numbers. Bit

flipping included changing of bits from 1 to 0 and 0 to 1. Mutated genes are shown below.

Offspring1: 1101111001110110

 Offspring2: 1101100100100010

Bits that are highlighted in black color are mutated genes of offspring1 and offspring 2.

4.11 Stopping Criteria

Stopping criteria signifies how search effort should be stopped. It could be either defined by

number of generation or by the specified targeted path.

4.12 Unified Non- Sorting Genetic Algorithm (U-NSGA-III) Approach

In this research one of the variants of genetic algorithm i.e., U-NSGAIII has been proposed for

white box test case generation and optimization. UNSGAIII works well with one and more

than one objective problems. NSGAIII is extended to UNSGAIII, because for single objective

problems NSGAIII works with random selection process and with very small population size.

Similarly, for successful multi and many optimizations problems normalization and niching

operators are very essential but these operators of NSGAIII become useless for mono objective

problems. Therefore, a unified approach has become efficient for both single and multi-

objective optimization problems. The proposed approach makes niching and normalization

operator non-functioning for mono objective and functioning for multi to many optimization

problems. However, to solve the above-mentioned mono objective problem large number of

45

population size N has been used which is greater than number of reference point H i.e, N>H

by using UNSGAIII approach.

Figure 16. Proposed Flow Diagram

46

Chapter 5: Experimentation and Results

For implementing the proposed approach and comparing it with existing algorithm, different

experiments are performed. Two case studies have been selected for performing experiments

and the focus of all these experiments is on reduction of test cases with maximum statement

coverage. Implementation of unified non sorting genetic algorithm is done on each case study.

The discussion about experiments and their results has been done in this chapter. Experimental

flow is shown in figure 17.

Figure 17. Experimental Flow

47

Case Study 1: Automatic Teller Machine (ATM)

For evaluating and performing comparison of our approach with other approaches that have

already been implemented, ATM case study is selected. This specific case study has been

selected because it is not difficult for the readers to understand its results and it has been widely

used in software testing domain. A sequence diagram of ATM withdrawal and deposit system

has been created using Draw.io for the presentation of a case study as shown in Figure 20.

Moreover, based on sequence diagram a control flow graph (CFG) is created as shown in

Figure 18. Genetic algorithm is applied to generate test case and to optimize them. Weights

of each node are calculated that are used in the fitness function to calculate fitness of each test

case. ATM system consists of GUI based transaction mechanism as shown in UML class

diagram Figure 19. The ATM card is inserted by the user then it gets validate using pin and

account number. However, on successful login user can perform different transaction actions

such that withdrawal, money deposit, balance inquiry and received receipt.

ATM should be able to provide following services to the customers:

A user should be able to withdraw cash upon his request and received an approval message

form the relevant bank before the cash is dispensed. If balance is less than an entered amount,

then an error message should be displaced on the screen. Similarly, if a user wants to deposit

cash, he should be able to transfer it between the two linked accounts. A user must be able to

check balance through the card. If the bank finds that the pin entered by the customer is invalid,

the customer needs to enter the pin again before the transaction proceed. If the customer is not

able to enter right pin till three tries, then the card will be blocked by the machine. For each

successful transaction the ATM provides a receipt showing the transaction date, time and type

of transaction.

Generation of Test Scenario

All possible test scenarios are generated from the CFG before generating test cases. The

possible identified test paths are as follows:

Test Path 1: 1->2->3->4->5->7->8->9->10->12->13->14->16->20

Test Path 2: 1->2->3->4->5->7->8->9->10->12->13->17->20

Test Path 3: 1->2->3->4->5->7->8->9->11->15->18->19->20

Test Path 4: 1->2->3->4->5->7->8->20

Test Path 5: 1->2->3->4->6->20

48

Figure 18: Control Flow Graph (ATM Machine)

49

Cyclomatic Complexity

Cyclomatic complexity of the above CFG is given as:

V(G) = E-N+2

 V(G) = 24-20+2

= 6

Where, E represents number of edges in the graph and N denotes number of nodes in the

above graph.

Class Diagram

Figure 19: Class Diagram

50

Sequence Diagram

Figure 20: Sequence Diagram

51

Test Cases

After identifying all the possible test path from the control flow graph, test cases are

generated from the respective test paths. Test cases are generated based on coverage

activity. Generated test cases are shown in Table 10.

TC1: {Input: Insert card, pin invalid, block card, display screen}

TC2: {Input: pin valid, CNIC valid, view balance (yes), output: Display balance}

TC3: {Input: pin valid, CNIC valid, view balance (no), cash withdraw (yes), balance >

amount (yes), output: cash dispense, update an account, exit screen

TC 4: {Input: pin valid, CNIC valid, view balance (no) cash withdraw (yes), balance <

amount (yes) output: show error message, exit screen.

TCS5: {Input: pin valid, CNIC valid, view balance (no) cash withdraw (no), cash

deposit (yes), output: Input amount, update an account, exit screen

Observed Test cases

Table 10: Observed Test Cases

Test

Case

Pin

number

CNIC Entered

Amount

Balance

in

account

Expected

Output

Actual Output

1 7630

(invalid)

valid

1000

5000

Invalid pin

Block Card

2 7360

(valid)

valid

1000

5000

Valid pin

Successful

3

7360

valid

3000

5000

Dispense

Cash, Update

Account

Dispense cash

Successfully,

Account Updated

4

7360

valid

6000

5000

Insufficient

Balance, Error

Message

Show an Error

Message

5 7360 valid 2000 8000 Show Balance Show Balance

52

Two examples of system under test (SUT) have been proposed for this research.

Experimental Results for SUT1

Test case generation method was tested by designing a first system SUT1. GA is an

evolutionary approach is developed on the idea of population of chromosome and their

recombination. GA is free of derivation and solves complex problems quite easily. UNSGA3

gives better results in minimum time. A total of five experiments with different population

size have been carried out that have covered 95% of program statements. Therefore, an

algorithm is run multiple times to obtain the maximum coverage of program statements by

using lesser number of iterations. Manually calculated coverage for SUT1 is shown in table

12.

Table 11. Control Parameters of U-NSGA-III

Sr # Parameters Names Assigned Values

1. Number of Generations 100

2 Population Size 50

3 Crossover Probability 0.8

4 Mutation Probability 0.2

When Population size10 and number of generations are 100

Figure 21. Achieved Statement Coverage with initial population

53

When Population size is 20 and number of generations are100

Figure 22. Achieved Statement Coverage with Population Size 20

When Population size is 30 and number of generations are 100

Figure 23. Achieved Statement Coverage with Population Size 30

When Population size is 40 and number of generations are 100

54

Figure 24. Achieved Statement Coverage with Population Size 40

When Population size is 50 and number of generations are 100

Figure 25. Achieved Statement Coverage with Final Population

Figure 26. Achieved Statement Coverage with Final Population Size

55

Table 12. Coverage Percentage Manually Calculated

Genetic algorithm (GA) works on the principle of natural selection and genetics, inspired by

the biological evolution of human being. Genetic algorithms are considered as well-known

optimization tool and are very easy to use. Generally, GA consists of two main steps, in the

first process individuals based on fitness values are selected from the population using

specific selection method. In the second step production of new individuals take place

through cross over and mutation techniques. Therefore, by doing comparison of UNSGA3

with GA, it is observed that by applying UNSGA3 95% statement coverage has been

achieved with population size of 50. Whereas, by applying GA using same parameters 85%

statement coverage has been achieved as shown in figure 26.

Best solution Found by GA

Test Case ID Coverage % Statement Coverage Indicator

1
65% 11111111010100100110

2 65% 11111110000000000010

3 70% 11111100000000000011

4 70% 11110000000000000011

5 80% 11111111010101010010

6 95% 11111111101000001010

56

Figure 27. Comparison of UNSGA3 with GA

Comparison with Particle Swarm Optimization (PSO)

The proposed UNSGA3 algorithm tuned with PSO is used for optimization of UNSGA3

structure. PSO is an evolutionary algorithm that is based on the social behavior. It repeatedly

attempts for improving the candidate solution in correspondence to a specific measure of

quality. Random velocity is assigned to each particle and every particle is drawn to the fitness

value that is attained by that particular candidate particle. For optimizing the performance

and finding the best solution, tuning of parameters has been used [86]. But there are some

deficiencies in PSO as well, for example, for solving the scattered problems in which search

space is refined, PSO is not a good choice. Therefore, this algorithm has achieved 65%

coverage of an optimized test case.

In table 13 controlled parameters of PSO are shown and the results of case study are presented

below.

Table 13. Control Parameters of PSO

Sr # Parameters Names Assigned Values

1. Number of Generations 100

2 Population Size 50

3 Weight of Inertia 0.9

4 Co-efficient of personal Learning 0.6

5 Co-efficient of global learning 0.6

7 Velocity Max 0.3

8. Velocity Min 0.1

57

Figure 28. Statement Coverage with Final Population size

Figure 29. Comparison with GA and PSO

Figure 30. Comparison of algorithm’s convergence speed with different population

size

58

Case Study 2: Library Management System (LMS)

The implementation of our approach has also been done using another case study i.e.,

Library Management System (LMS) as shown in figure 32. A control flow graph consists of

number of nodes and edges. Nodes represent the statements and edges show the flow of the

program from one statement to another. Many institutions and organizations utilize LMS to

manage their books and keeping tracks of their members who borrow, issue, and return

the books available in the library. A library management system, or LMS, allows members

of an organization to find, borrow, and return books. They can even reserve selected books.

LMS allows the user to find a book using search engine and a user can also locate a specific

rack where the book is placed. This system only provides access to its registered members

i.e., librarian and a member. Therefore, this LMS supports the following features:

 It allows member to search a book

 It allows member to reserve a book

 It allows member to issue a book

 It allows member to return a book

Similarly, LMS allows the librarian to create, update and delete the record. Librarian can also

register a book, update and delete the record. Two types of users work with the system, one

is librarian and another one is registered member. Both types of users interact with the system

in their own way having different responsibilities. The librarian uses the system with

provided login credentials and perform his/her task by managing books and keeping the

record of members and books as well. Similarly, a member can issue, reserve and return a

selected book by using valid authentications. Furthermore, a sequence diagram has been

created for library management system it consists of three actors a user, librarian and a system

as shown in figure 31. It shows that how a registered member and a librarian interact with the

system. Class diagram for LMS is created that consists of various classes like login, member,

librarian, book and a class of search book. Each class has its own attributes and is associated

with another class with many to many and 1 to many multiplicities. A login class has its

attributes username and password, a member class has its attributes member name, password,

registration number, CNIC, and email. Similarly, a book class contains its attributes book

title, ISBN number, volume and addition.

59

Figure 31. Sequence Diagram of LMS

60

Figure 32. Control Flow Diagram of LMS

Cyclomatic Complexity

Cyclomatic complexity of the above CFG is given as:

V(G) = E-N+2

 V(G) = 33-21+2

 = 14

Where, E represents number of edges in the graph and N denotes number of nodes in the

above graph.

Test case Scenario

0->1->2->11->12->20

0->1->2->11->13->20

0->1->2->11->14->20

61

0->1->2->3->4->20

0->1->2->3->5->8->20

0->1->2->3->5->9->20

0->1->2->3->5->10->20

0->1->2->3->6->20

0->1->2->3->7->20

0->1->15->16->18->20

0->1->15->16->19->20

0->1->15->17->20

0->1->20

After identifying all the possible test path from the control flow graph, test cases are

generated from the respective test paths. Test cases are generated based on coverage

activity. Observed test cases are shown in table 14

TC1: {Input: login, Invalid credentials, Output, show an error, display screen}

TC2: {Input: login, valid credentials, main screen, book management, register book,

output: Book registered, display screen}

TC3: {Input: login, valid credentials, main screen, book management, update book, output:

Book updated, display screen}

TC4: {Input: login, valid credentials, main screen, book management, delete book, output:

Book deleted, display screen}

TC5: {Input: login, valid credentials, main screen, book management, search book, issue

book output: Book issued, display screen}

TC6: {Input: login, valid credentials, main screen, book management, search book, reserve

book, output: book reserved, display screen}

TC7: {Input: login, valid credentials, main screen, member management, delete member,

output: member deleted, display screen}

TC8: {Input: login, valid credentials, main screen, member management, register member,

output: member registered, display screen}

TC9: {Input: login, valid credentials, main screen, member management, update member,

output: member updated, display screen}

TC10: {Input: login, valid credentials, member screen, book search, reserve book, output:

book reserved, display screen}

TC11: {Input: login, valid credentials, member screen, search book, reserve book, issue

book, output: book issued, display screen}

62

TC12: {Input: login, valid credentials, member screen, return book, output: book returned,

display screen}

Table 14. Observed Test cases of LMS

Test

Case #

Test cases Expected Output Actual Output

1 Enter valid login

credentials

A main screen should be

displayed

Main screen

displayed

2

Enter invalid login

credentials

Main screen should not be

displayed

Successful

3

Click on Add button

User should be able to add

book in the database

Book added

successfully

4

Click on update button

User should be able to update

the record

Record updated

successfully

5 Click on delete button User should be able to delete

the entered data

Book deleted

successfully

6 Click on Add Button Admin should be able to add

new member

New member

added

successfully

7

Click on update button

Admin should be able to

update database

Database

updated

successfully

8

Click on delete button

Admin should be able to delete

member

Member deleted

successfully

9

Click on search button

System should be able to

display the details of books

against the entered title or

ISBN number

List of entitled

books are

displayed

10 Book Issue: “Click on

issue book icon”

System should display details

of available books

List of available

books displayed

11. Book Reserve: “click on

book reserve icon”

System should display details

of reserved books

List of reserved

books displayed

63

12. Click on search button Member should be able to

search the books

List of searched

books displayed

13. Click on issue book icon Member should be able to

issue book

List of issued

books displayed

14. Click on book return icon Member should be able to

return book

Book returned

successfully

Therefore, through above observed test cases, we can predict the expected and actual results

of our requirements. High quality results are obtained by designing test cases from UML

models.

Figure 33. Class Diagram of LMS

64

Experimental Results of SUT2

In System under test 2 large number of operations are covered. The control flow graph CFG

has been shown in figure 32. Genetic Algorithm is applied to generate optimized test cases

with maximum statement coverage. Therefore, 90% statement coverage has been achieved

in minimum time by using an optimization algorithm i.e., UNAGA3. On the other hand, 90%

statement coverage is achieved manually by going through a series of steps that is a much

time-consuming process. Generated test cases are shown below in table 15.

Table 15. Generated Test Cases of SUT2

Test cases Coverage, % Statement Coverage Indicator

1 24% 111001010000000000000

2 33% 111101000010000000000

3 33% 111101000010000000000

4 42% 111101001000000100000

5 42% 111101001000000100000

6 48% 111101001000001000000

7 52% 111101001000000010000

8 62% 111100100000100000000

9 67% 111100100000010000000

10 71% 111100100001000000000

11 71% 110100000000000000000

12 85% 110101000000000001011

13 90% 110110000000000001010

14 90% 110110000000000000000

When population size is given 10 with 100 iterations

Figure 34. Achieved statement Coverage with population size 10

65

When population size is 20 and number of generations are 100

Figure 35. Achieved Statement Coverage with population size 20

When population size is 30 and number of generations 100

Figure 36. Achieved Statement Coverage with population size 30

When population size is 40 and number of generations are set 100

66

Figure 37. Achieved Statement Coverage with population size 40

When population size is 50 and number of iterations are 100

Figure 38. Achieved Statement Coverage with population size 50

Comparison with GA

Best Result by UNSGA3 with final population

Best Result Found by GA

67

Figure 39. Comparison of UNSGA3 with GA

Comparison with Particle Swarm Optimization Algorithm (PSO)

Figure 40. Statement Coverage with PSO

68

Table 16. Comparison with GA and PSO

 Parameters SUT 1 SUT 2

Algorithm

s

Pop

Siz

e

No.o

f

iters.

Convergenc

e

Executio

n Time

(sec)

Coverag

e %

Convergenc

e

Executio

n Time

(sec)

Coverag

e %

U-NSGA-

III
50 100 15 1.56 95% 25 1.65 90.47%

GA 50 100 25 1.83 90% 59 1.81 85%

PSO 50 100 35 1.62 75% 70 2.455 65%

69

 Chapter 5. Discussion And Conclusion

An automated test case generation technique has been presented in this research to generate

test cases automatically from unified modelling language. The research is carried out by

doing a systematic literature review (SLR). 73 research studies have been selected published

between 2011-2021 based on review protocol. This study has identified 3 different test case

automation approaches of which the model-based test case generation approach has been

widely used. 14 techniques have been identified of which genetic algorithm have remained

an efficient method for test case generation and optimization. Moreover, 11 validation

protocols are found in the review, ‘Automated Teller Machine’ (ATM) is commonly utilized

to validate the identified techniques. Although, this study has presented a comprehensive

overview of model based automated test case generation and optimization techniques but,

there is still a need to do a comparative analysis of identified techniques to identify their

strengths and weaknesses.

For optimization of test cases from UML a unified non-sorting genetic algorithm has been

introduced in this research. UNSGA3 has been implemented and a comparative analysis is

done with UNSGA3-GA and UNSGA3-PSO in terms of statement coverage percentages.

After performing experiments on both case studies, it has been observed that UNSGA3

performed better in terms of coverage percentage, convergence rate and execution time.

However, performance of a proposed methodology is evaluated through two benchmark case

studies. Average calculated statement coverage is 95% and 90% for both case studies. It has

been observed that manually generated test cases are much time consuming as compared to

automated test case generation and optimization method. Furthermore, a comparative

analysis is carried out with other optimization algorithms and the proposed methodology has

shown promising performance in every aspect.

The benefits of using UNSGA3 for model-based testing are as follows:

 This approach is much efficient in finding a best test case from an optimized test suit.

 This unified approach is used for automated test case generation

 The proposed approach can be used for single objective as well as multi-objective

problems

 For white box testing, this methodology is capable enough to achieve 95% coverage

 It can be used for different domain models by simply replacing the inputs

 The unified approach works well with binary tournament selection

 It is capable enough of handling constraint problems

70

The proposed approach has been implemented and compared with other optimization

algorithms. Results have been listed in chapter 4. By using this approach minimum test cases

with maximum statement coverage have been achieved.

In this thesis, for automated test case generation and optimization multiple experiments have

performed for each case study. It is concluded from the results that U-NSGA-III performed

better for both case studies as compared to other selected approaches. The proposed approach

not only reduces the number of test cases and minimizes the time of execution but also

maximizes statement coverage. It shows that it is not only a safe approach but also behaves

as a human expert for optimization of test cases by selecting the most suitable among them.

Moreover, in this research single objective problem has been selected for model-based

automated test case generation and optimization but this technique can also be used for multi-

objective optimization problems. Therefore, by using U-NSGA-III approach test cases can

be reduced effectively by maximizing coverage criteria. However, in future the formulation

of new fitness function and integration of other evolutionary approaches with U-NSGA-III

seems promising for model base test case generation and optimization.

71

References

[1] K. Kaur and V. Chopra, "Review of automatic test case generation from UML

diagram using evolutionary algorithm," International Journal of Inventive

Engineering and Sciences (IJIES), ISSN, pp. 2319-9598, 2014.

[2] P. N. Boghdady, N. L. Badr, M. Hashem, and M. F. Tolba, "A proposed test case

generation technique based on activity diagrams," International Journal of

Engineering & Technology IJET-IJENS, vol. 11, no. 03, pp. 1-21, 2011.

[3] K. Jin and K. Lano, "Generation of Test Cases from UML Diagrams-A Systematic

Literature Review," in 14th Innovations in Software Engineering Conference

(formerly known as India Software Engineering Conference), 2021, pp. 1-10.

[4] R. G. Tiwari, A. P. Srivastava, G. Bhardwaj, and V. Kumar, "Exploiting UML

Diagrams for Test Case Generation: A Review," in 2021 2nd International

Conference on Intelligent Engineering and Management (ICIEM), 2021: IEEE, pp.

457-460.

[5] S. S. Priya and P. Malarchelvi, "Test path generation using uml sequence diagram,"

International Journal of Advanced Research in Computer Science and Software

Engineering, vol. 3, no. 4, 2013.

[6] S. U. Ahmed, S. A. Sahare, and A. Ahmed, "Automatic test case generation using

collaboration UML diagrams," World Journal of Science and Technology, vol. 2,

2013.

[7] A. Verma, A. Khatana, and S. Chaudhary, "A comparative study of black box testing

and white box testing," Int. J. Comput. Sci. Eng, vol. 5, no. 12, pp. 301-304, 2017.

[8] S. Iftikhar, M. Z. Iqbal, M. U. Khan, and W. Mahmood, "An automated model based

testing approach for platform games," in 2015 ACM/IEEE 18th International

Conference on Model Driven Engineering Languages and Systems (MODELS),

2015: IEEE, pp. 426-435.

[9] E. Fourneret, J. Cantenot, F. Bouquet, B. Legeard, and J. Botella, "Setgam:

Generalized technique for regression testing based on uml/ocl models," in 2014

Eighth International Conference on Software Security and Reliability (SERE), 2014:

IEEE, pp. 147-156.

[10] C. Zhang, Z. Duan, B. Yu, C. Tian, and M. Ding, "A test case generation approach

based on sequence diagram and automata models," Chinese Journal of Electronics,

vol. 25, no. 2, pp. 234-240, 2016.

[11] S. Karakatič and T. Schweighofer, "A novel approach to generating test cases with

72

genetic programming," in International Conference on Knowledge Management in

Organizations, 2015: Springer, pp. 260-271.

[12] A. K. Jena, S. K. Swain, and D. P. Mohapatra, "A novel approach for test case

generation from UML activity diagram," in 2014 International Conference on Issues

and Challenges in Intelligent Computing Techniques (ICICT), 2014: IEEE, pp. 621-

629.

[13] V. Panthi and D. P. Mohapatra, "Automatic test case generation using sequence

diagram," in Proceedings of International Conference on Advances in Computing,

2013: Springer, pp. 277-284.

[14] K. L. Petry, E. OliveiraJr, and A. F. Zorzo, "Model-based testing of software product

lines: Mapping study and research roadmap," Journal of Systems and Software, vol.

167, p. 110608, 2020.

[15] D. Kumar and K. K. Mishra, "The impacts of test automation on software's cost,

quality and time to market," Procedia Computer Science, vol. 79, pp. 8-15, 2016.

[16] S. Keele, "Guidelines for performing systematic literature reviews in software

engineering," Citeseer, 2007.

[17] S. Arifiani and S. Rochimah, "Generating test data using ant Colony Optimization

(ACO) algorithm and UML state machine diagram in gray box testing approach," in

2016 International Seminar on Application for Technology of Information and

Communication (ISemantic), 2016: IEEE, pp. 217-222.

[18] P. Mahali, S. Arabinda, A. A. Acharya, and D. P. Mohapatra, "Test case generation

for concurrent systems using uml activity diagram," in 2016 IEEE Region 10

Conference (TENCON), 2016: IEEE, pp. 428-435.

[19] M. Khandai, A. A. Acharya, and D. P. Mohapatra, "A novel approach of test case

generation for concurrent systems using UML Sequence Diagram," in 2011 3rd

International Conference on Electronics Computer Technology, 2011, vol. 1: IEEE,

pp. 157-161.

[20] B. Hoseini and S. Jalili, "Automatic test path generation from sequence diagram

using genetic algorithm," in 7'th International Symposium on Telecommunications

(IST'2014), 2014: IEEE, pp. 106-111.

[21] C. T. M. Hue, D. D. Hanh, and N. N. Binh, "A transformation-based method for test

case automatic generation from use cases," in 2018 10th International Conference

on Knowledge and Systems Engineering (KSE), 2018: IEEE, pp. 252-257.

[22] X. Wang, X. Jiang, and H. Shi, "Prioritization of test scenarios using hybrid genetic

73

algorithm based on UML activity diagram," in 2015 6th IEEE International

Conference on Software Engineering and Service Science (ICSESS), 2015: IEEE, pp.

854-857.

[23] M. Dhineshkumar, "An approach to generate test cases from sequence diagram," in

2014 International Conference on Intelligent Computing Applications, 2014: IEEE,

pp. 345-349.

[24] R. Anbunathan and A. Basu, "Dataflow test case generation from UML Class

diagrams," in 2013 IEEE International Conference on Computational Intelligence

and Computing Research, 2013: IEEE, pp. 1-9.

[25] N. L. Hashim and Y. S. Dawood, "A Review on Test Case Generation Methods Using

UML Statechart," in 2019 4th International Conference and Workshops on Recent

Advances and Innovations in Engineering (ICRAIE), 2019: IEEE, pp. 1-5.

[26] S. S. Panigrahi, S. Shaurya, P. Das, A. K. Swain, and A. K. Jena, "Test Scenarios

Generation Using UML Sequence Diagram," in 2018 International Conference on

Information Technology (ICIT), 2018: IEEE, pp. 50-56.

[27] V. Panthi, A. Gardizy, R. K. Mohapatra, and D. P. Mohapatra, "Functionality testing

of object-oriented software using UML state machine diagram," in 2018

International Conference on Circuits and Systems in Digital Enterprise Technology

(ICCSDET), 2018: IEEE, pp. 1-7.

[28] P. E. Patel and N. N. Patil, "Testcases formation using UML activity diagram," in

2013 International Conference on Communication Systems and Network

Technologies, 2013: IEEE, pp. 884-889.

[29] Z. A. Hamza and M. Hammad, "Generating test sequences from UML use-case

diagrams," in 2019 International Conference on Innovation and Intelligence for

Informatics, Computing, and Technologies (3ICT), 2019: IEEE, pp. 1-6.

[30] C.-S. Wu, C.-H. Huang, and Y.-T. Lee, "The test path generation from state-based

polymorphic interaction graph for object-oriented software," in 2013 10th

International Conference on Information Technology: New Generations, 2013:

IEEE, pp. 323-330.

[31] Y. Li and L. Jiang, "The research on test case generation technology of UML

sequence diagram," in 2014 9th International Conference on Computer Science &

Education, 2014: IEEE, pp. 1067-1069.

[32] M. Elallaoui, K. Nafil, and R. Touahni, "Automatic generation of TestNG tests cases

from UML sequence diagrams in Scrum process," in 2016 4th IEEE International

74

Colloquium on Information Science and Technology (CiSt), 2016: IEEE, pp. 65-70.

[33] P. Boghdady, N. Badr, M. Hashem, and M. Tolba, "An enhanced technique for

generating hybrid coverage test cases using activity diagrams," in 2012 8th

International Conference on Informatics and Systems (INFOS), 2012: IEEE, pp. SE-

20-SE-28.

[34] S. Dalal and S. Hooda, "A novel technique for testing an aspect oriented software

system using genetic and fuzzy clustering algorithm," in 2017 International

Conference on Computer and Applications (ICCA), 2017: IEEE, pp. 90-96.

[35] Y. Amannejad, V. Garousi, R. Irving, and Z. Sahaf, "A search-based approach for

cost-effective software test automation decision support and an industrial case

study," in 2014 IEEE Seventh International Conference on Software Testing,

Verification and Validation Workshops, 2014: IEEE, pp. 302-311.

[36] A. K. Sultania, "Developing software product and test automation software using

Agile methodology," in Proceedings of the 2015 Third International Conference on

Computer, Communication, Control and Information Technology (C3IT), 2015:

IEEE, pp. 1-4.

[37] N. Ye, X. Chen, P. Jiang, W. Ding, and X. Li, "Automatic regression test selection

based on activity diagrams," in 2011 Fifth International Conference on Secure

Software Integration and Reliability Improvement-Companion, 2011: IEEE, pp. 166-

171.

[38] R. Ahmadi, K. Jahed, and J. Dingel, "mCUTE: A model-level concolic unit testing

engine for UML state machines," in 2019 34th IEEE/ACM International Conference

on Automated Software Engineering (ASE), 2019: IEEE, pp. 1182-1185.

[39] A. Khatun and K. Sakib, "An automatic test suite regeneration technique ensuring

state model coverage using UML diagrams and source syntax," in 2016 5th

International Conference on Informatics, Electronics and Vision (ICIEV), 2016:

IEEE, pp. 88-93.

[40] R. Ramler and C. Klammer, "Enhancing acceptance test-driven development with

model-based test generation," in 2019 IEEE 19th International Conference on

Software Quality, Reliability and Security Companion (QRS-C), 2019: IEEE, pp.

503-504.

[41] M. Boucher and G. Mussbacher, "Transforming workflow models into automated

end-to-end acceptance test cases," in 2017 IEEE/ACM 9th International Workshop

on Modelling in Software Engineering (MiSE), 2017: IEEE, pp. 68-74.

75

[42] F. T. Rodríguez, F. Lonetti, A. Bertolino, M. P. Usaola, and B. P. Lamancha,

"Extending UML testing profile towards non-functional test modeling," in 2014 2nd

International Conference on Model-Driven Engineering and Software Development

(MODELSWARD), 2014: IEEE, pp. 488-497.

[43] S.-Y. Wang, J.-Z. Sun, and J. Zhang, "The Method of Generating Web Link Security

Testing Scenario Based on UML Diagram," in 2016 IEEE

Trustcom/BigDataSE/ISPA, 2016: IEEE, pp. 1831-1838.

[44] R. Moraes, H. Waeselynck, and J. Guiochet, "UML-based modeling of robustness

testing," in 2014 IEEE 15th International Symposium on High-Assurance Systems

Engineering, 2014: IEEE, pp. 168-175.

[45] A. Nayak and D. Samanta, "Synthesis of test scenarios using UML activity

diagrams," Software & Systems Modeling, vol. 10, no. 1, pp. 63-89, 2011.

[46] A. K. Jena, S. K. Swain, and D. P. Mohapatra, "Test case creation from UML

sequence diagram: a soft computing approach," in Intelligent Computing,

Communication and Devices: Springer, 2015, pp. 117-126.

[47] S. Dhir and D. Kumar, "Automation software testing on web-based application," in

Software Engineering: Springer, 2019, pp. 691-698.

[48] A. Tripathy and A. Mitra, "Test case generation using activity diagram and sequence

diagram," in Proceedings of International Conference on Advances in Computing,

2013: Springer, pp. 121-129.

[49] S. K. Swain, D. P. Mohapatra, and R. Mall, "Test case generation based on use case

and sequence diagram," International Journal of Software Engineering, vol. 3, no.

2, pp. 21-52, 2010.

[50] F. A. D. Teixeira and G. B. e Silva, "EasyTest: An approach for automatic test cases

generation from UML Activity Diagrams," in Information Technology-New

Generations: Springer, 2018, pp. 411-417.

[51] D. Barisas, E. Bareiša, and Š. Packevičius, "Automated method for software

integration testing based on UML behavioral models," in International Conference

on Information and Software Technologies, 2013: Springer, pp. 272-284.

[52] A. Kaur and V. Vig, "Automatic test case generation through collaboration diagram:

a case study," International Journal of System Assurance Engineering and

Management, vol. 9, no. 2, pp. 362-376, 2018.

[53] P.-L. Vincent, L. Badri, and M. Badri, "Regression testing of object-oriented

software: a technique based on use cases and associated tool," in Computer

76

Applications for Software Engineering, Disaster Recovery, and Business Continuity:

Springer, 2012, pp. 96-106.

[54] M. Shirole and R. Kumar, "Constrained permutation-based test scenario generation

from concurrent activity diagrams," Innovations in Systems and Software

Engineering, pp. 1-11, 2021.

[55] P. K. Arora and R. Bhatia, "A systematic review of agent-based test case generation

for regression testing," Arabian Journal for Science and Engineering, vol. 43, no. 2,

pp. 447-470, 2018.

[56] A. Hettab, E. Kerkouche, and A. Chaoui, "A graph transformation approach for

automatic test cases generation from UML activity diagrams," in Proceedings of the

Eighth International C* Conference on Computer Science & Software Engineering,

2015, pp. 88-97.

[57] M. Shirole, A. Suthar, and R. Kumar, "Generation of improved test cases from UML

state diagram using genetic algorithm," in Proceedings of the 4th India Software

Engineering Conference, 2011, pp. 125-134.

[58] S. Yimman, S. Kamonsantiroj, and L. Pipanmaekaporn, "Concurrent test case

generation from UML activity diagram based on dynamic programming," in

Proceedings of the 6th International Conference on Software and Computer

Applications, 2017, pp. 33-38.

[59] R. Elghondakly, S. Moussa, and N. Badr, "A comprehensive study for software

testing and test cases generation paradigms," in Proceedings of the International

Conference on Internet of things and Cloud Computing, 2016, pp. 1-7.

[60] C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal, "Automatic generation of

system test cases from use case specifications," in Proceedings of the 2015

International Symposium on Software Testing and Analysis, 2015, pp. 385-396.

[61] S. Kamonsantiroj, L. Pipanmaekaporn, and S. Lorpunmanee, "A memorization

approach for test case generation in concurrent uml activity diagram," in Proceedings

of the 2019 2nd International Conference on Geoinformatics and Data Analysis,

2019, pp. 20-25.

[62] F. Häser, M. Felderer, and R. Breu, "Software paradigms, assessment types and non-

functional requirements in model-based integration testing: a systematic literature

review," in Proceedings of the 18th International Conference on Evaluation and

Assessment in Software Engineering, 2014, pp. 1-10.

[63] M. Bernardino, E. M. Rodrigues, and A. F. Zorzo, "Performance Testing Modeling:

77

an empirical evaluation of DSL and UML-based approaches," in Proceedings of the

31st Annual ACM Symposium on Applied Computing, 2016, pp. 1660-1665.

[64] M. Shirole and R. Kumar, "UML behavioral model based test case generation: a

survey," ACM SIGSOFT Software Engineering Notes, vol. 38, no. 4, pp. 1-13, 2013.

[65] P. Gulia and R. Chillar, "A new approach to generate and optimize test cases for

UML state diagram using genetic algorithm: http://doi. acm.

org/10.1145/180921.2180933," ACM SIGSOFT Software Engineering Notes, vol.

37, no. 3, pp. 1-5, 2012.

[66] M. Shirole and R. Kumar, "Testing for concurrency in UML diagrams," ACM

SIGSOFT Software Engineering Notes, vol. 37, no. 5, pp. 1-8, 2012.

[67] T. E. Vos, I. Prasetya, S. Eldh, S. Getir, A. Parsai, and P. Aho, "Automating TEST

Case Design, Selection and Evaluation Report on 10 Editions of A-TESTWorkshop,"

ACM SIGSOFT Software Engineering Notes, vol. 45, no. 1, pp. 21-24, 2020.

[68] N. Khurana and R. Chillar, "Test case generation and optimization using UML

models and genetic algorithm," Procedia Computer Science, vol. 57, pp. 996-1004,

2015.

[69] P. K. Arora and R. Bhatia, "Agent-based regression test case generation using class

diagram, use cases and activity diagram," Procedia Computer Science, vol. 125, pp.

747-753, 2018.

[70] I. Septian, R. S. Alianto, and F. L. Gaol, "Automated test case generation from UML

activity diagram and sequence diagram using depth first search algorithm," Procedia

computer science, vol. 116, pp. 629-637, 2017.

[71] J. Cvetković and M. Cvetković, "Evaluation of UML diagrams for test cases

generation: Case study on depression of internet addiction," Physica A: Statistical

Mechanics and Its Applications, vol. 525, pp. 1351-1359, 2019.

[72] T. Ahmad, J. Iqbal, A. Ashraf, D. Truscan, and I. Porres, "Model-based testing using

UML activity diagrams: A systematic mapping study," Computer Science Review,

vol. 33, pp. 98-112, 2019.

[73] S. Pradhan, M. Ray, and S. K. Swain, "Transition coverage based test case generation

from state chart diagram," Journal of King Saud University-Computer and

Information Sciences, 2019.

[74] V. Garousi, A. B. Keleş, Y. Balaman, Z. Ö. Güler, and A. Arcuri, "Model-based

testing in practice: An experience report from the web applications domain," arXiv

preprint arXiv:2104.02152, 2021.

http://doi/

78

[75] P. Sapna and A. Balakrishnan, "An approach for generating minimal test cases for

regression testing," Procedia computer science, vol. 47, pp. 188-196, 2015.

[76] K. Lano, K. Jin, and S. Tyagi, "Model-based Testing and Monitoring using

AgileUML," Procedia Computer Science, vol. 184, pp. 773-778, 2021.

[77] Y. Shin, Y. Choi, and W. J. Lee, "Integration testing through reusing representative

unit test cases for high-confidence medical software," Computers in biology and

medicine, vol. 43, no. 5, pp. 434-443, 2013.

[78] L. Burgueño, A. Vallecillo, and M. Gogolla, "Teaching UML and OCL models and

their validation to software engineering students: an experience report," Computer

Science Education, vol. 28, no. 1, pp. 23-41, 2018.

[79] M. Abdelgawad, S. McLeod, A. Andrews, and J. Xiao, "Model-based testing of a

real-time adaptive motion planning system," Advanced Robotics, vol. 31, no. 22, pp.

1159-1176, 2017.

[80] N. M. Minhas, S. Masood, K. Petersen, and A. Nadeem, "A systematic mapping of

test case generation techniques using UML interaction diagrams," Journal of

Software: Evolution and Process, vol. 32, no. 6, p. e2235, 2020.

[81] J. P. Faria, A. C. Paiva, and Z. Yang, "Test generation from UML sequence

diagrams," in 2012 Eighth International Conference on the Quality of Information

and Communications Technology, 2012: IEEE, pp. 245-250.

[82] L. Haldurai, T. Madhubala, and R. Rajalakshmi, "A study on genetic algorithm and

its applications," International Journal of Computer Sciences and Engineering, vol.

4, no. 10, p. 139, 2016.

[83] N. M. Razali and J. Geraghty, "Genetic algorithm performance with different

selection strategies in solving TSP," in Proceedings of the world congress on

engineering, 2011, vol. 2, no. 1: International Association of Engineers Hong Kong,

China, pp. 1-6.

[84] P. Kora and P. Yadlapalli, "Crossover operators in genetic algorithms: A review,"

International Journal of Computer Applications, vol. 162, no. 10, 2017.

[85] S. M. Lim, A. B. M. Sultan, M. N. Sulaiman, A. Mustapha, and K. Y. Leong,

"Crossover and mutation operators of genetic algorithms," International journal of

machine learning and computing, vol. 7, no. 1, pp. 9-12, 2017.

[86] V. Prakash, S. Tatale, V. Kondhalkar, and L. Bewoor, "A critical review on au-

tomated test case generation for conducting combinatorial testing using particle

swarm opti-mization," Int. J. Eng. Technol, vol. 7, no. 3, p. 22, 2018.

79

80

	DECLARATION
	PLAGIARISM REPORT (TURNITIN REPORT)
	Language Correctness Certificate
	Copyright Statement
	Acknowledgements
	ABSTRACT
	TABLE OF CONTENTS
	LIST OFTABLES
	LIST OF FIGURES
	Chapter 1. INTRODUCTION
	1.1 Motivation behind the Research
	1.2 Problem Statement
	1.3 Objective
	1.4 Scope of Proposed Work
	1.5 Title of Research
	1.6 Significance of Research
	1.7 Methodology of Research

	Chapter 2. Automated Test Case Generation
	2.1 Test Case Automation
	2.2 Unified Modeling Languages
	2.3 White Box Testing
	2.5 Branch Coverage
	2.6 Path Coverage
	2.7 Black Box Testing
	2.8 Equivalence Partitioning
	2.9 Boundary Value Analysis
	2.10 Genetic Algorithm

	Chapter 3. Literature Review
	3.1 Overview and Major outcomes of SLR
	3.2 Review Protocol
	3.2.1 Research Questions
	3.2.2 Category Definition
	3.2.3 Selection and Rejection Criteria
	3.2.4 Search Process
	3.2.5 Quality Assessment
	3.2.6 Data Extraction and Synthesis

	3.3 Results & Analysis
	3.3.1 Model-Based Testing
	3.3.2 Testing Types Based on UML Models
	3.3.3 Approaches for Test Case Automation
	3.3.4 Comparison and Analysis
	3.3.5 Research Productivity
	3.3.6 Challenges in Test Case Automation

	3.4 Answers of Research Questions
	3.5 Conclusion

	Chapter 4. Methodology
	4.1 Testing Objectives
	4.2 Fitness Function
	4.3 GA Operators
	4.4 Selection
	4.5 Roulette Wheel selection
	4.6 Ranked Fitness Selection
	4.7 Tournament Selection
	4.8 Crossover Operators
	4.10 Mutation Operator
	4.11 Stopping Criteria
	4.12 Unified Non- Sorting Genetic Algorithm (U-NSGA-III) Approach

	Chapter 5. Discussion And Conclusion

