
 

Sugarcane Crop Classification from Satellite Imagery 

using Deep Learning Approach 

 

 

 

 

 

Author 

Sidra Muquddas 

00000319775 

 
 

Supervised by 

Prof. Dr. Hamid Jabbar 

 
MASTERS IN MECHATRONICS ENGINEERING, 

 
 

DEPARTMENT OF MECHATRONICS ENGINEERING, 

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING, 

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY, 

ISLAMABAD, PAKISTAN. 

 
JULY 2023 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 With unwavering support and encouragement from my 

exceptional parents, beloved husband, and adored siblings, I have 

achieved this remarkable accomplishment. 

 

 



IV  

Acknowledgments 

 

I am grateful to Almighty Allah, the most Merciful for giving me the ability to 

accomplish my thesis. 

I am grateful to my cherished guardians, my beloved husband, and my adored 

siblings for their help to me in every period of my life. 

I might likewise want to communicate unique gratitude to my supervisor Dr. Hamid 

Jabbar and Dr. Waqar Shahid for their assistance throughout the duration of my thesis. 

I can confidently affirm that without their assistance, the completion of this research 

would not have been possible. 

I would also like to extend my heartfelt gratitude to my classmate Ramsha Shahid 

for her endless support and motivation. Her willingness to share knowledge fostered 

a supportive learning environment. 

I am also thankful to Ayaz Fayyaz and all staff of the Mechatronics Engineering 

department for their support and cooperation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V  

Abstract 

 
Sugarcane holds great importance as a crop in Pakistan, being one of the top global 

producers. Precise mapping of sugarcane fields is vital for effectively monitoring their 

size, production, and evaluating their influence on society, the economy, and the 

environment. This study focuses on presenting a deep learning-based framework that 

employs pixel-based classification to identify sugarcane crops in Pakistan, along with 

other commonly grown crops, using Sentinel 2A multi-spectral imagery. The 

framework encompasses various stages, including the selection of Sentinel products, 

preprocessing, extraction of spectral indices, a compilation of spectral features, 

labeling through spectral unmixing, and crop classification. The selection of Sentinel 

products for each crop field is based on the NDVI values. Multiple spectral and 

biophysical indices are derived from these Sentinel products. Each pixel is compiled 

into an image, representing the temporal evolution of that pixel across spectral bands 

and indices. These synthetic images are resampled using bilinear sampling and fed into 

various deep-learning models to solve the classification problem. Additionally, linear 

spectral unmixing is employed to assign labels to each pixel, ensuring accurate 

identification of the predominant crop in that pixel. The dataset used in this study 

comprises samples from different districts in Pakistan. Two combinations of datasets 

are created to assess the robustness of the developed methodology: one for training 

and testing within the same district and another for training and testing across separate 

districts. For the first dataset combination, most of the tested classification models 

achieve a high accuracy of approximately 99%. In the second dataset combination, 

LSTM outperforms other models, achieving an accuracy of 90%. The classified pixels 

are then integrated into the classification map, accurately representing their 

geolocation within the corresponding field. The proposed framework demonstrates 

promising results compared to the convNext model and exhibits the potential to 

effectively classify ready for harvest sugarcane among other crops using a limited 

number of products. Furthermore, it proves capable of classifying sugarcane across 

different districts. 

Keywords: Convolution neural network (CNN), Sentinel-2, Spectral Un-mixing, Long 

short-term memory (LSTM), Normalized difference vegetation index (NDVI), Deep 

Learning, Sugarcane 
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Chapter 1: Introduction 
 

 

1.1 Overview 
 

Agriculture is the backbone of the world’s economy and in order to manage the 

resources for high-quality production of crops, an updated and well-maintained 

management system is essential. In order to get maximum productivity and high- 

quality products it is required to adapt modern methods that are observed worldwide 

for monitoring and management of agriculture resources. Traditional field surveys for 

crop monitoring requires a lot of man power resulting in time consumption, 

extravagant budgets and still the results are not accurate. 

Precision agriculture plays a crucial role in crop identification, growth monitoring, 

yield estimation, and irrigation and soil management. Traditional methods like ground 

surveys and aerial imagery for crop monitoring are labor-intensive, time- consuming, 

and costly. However, the introduction of remote sensing technology in agriculture, 

starting with Landsat-1 in 1972, has revolutionized the monitoring and identification 

of crop types and growth stages, making it more cost-effective and efficient. Crop-type 

mapping offers valuable insights into crop yields and their economic significance in 

the agricultural sector. The European Space Agency's launch of Sentinel-2A in June 

2015 followed by Sentinel-2B in March 2017 aimed to enhance spectral, spatial, and 

temporal resolution compared to previous satellites. These satellites provide multi-

spectral imagery covering extensive land areas, islands, and coastal waters. When 

combined with machine learning and deep learning techniques, they enable effective 

monitoring of land cover without extensive on-site visits. 

This study proposes a framework for the classification and mapping of sugarcane 

crop among various other popular crops. The proposed framework consists of selection 

of sentinel products based on time-series NDVI plots, along with generation of 2D 

time series spectral feature maps representing individual pixels, which are classified 

using multiple CNN architectures and LSTM and then fitting each pixel in 

classification maps. 

 

1.2 Contribution of Sugarcane to Pakistan’s Economy 
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The agricultural sector plays a critical role in Pakistan's economy, accounting for 

24% of the country's GDP [1]. Additionally, nearly 30% of the labor workforce in 

Pakistan is associated with agricultural activities. However, this contribution has been 

declining in recent years due to various factors such as low productivity, climate 

change, inadequate infrastructure, and the prevalence of pests and diseases. These 

challenges collectively lead to reduced yields and hinder the sector's growth. One 

significant reason for low productivity is the failure to adopt modern monitoring and 

production farming techniques practiced in developed countries, as there is a reliance 

on traditional methods. 

Sugarcane is a prominent cash crop in Pakistan, ranking among the top five. It 

contributes approximately 0.6% to the country's GDP [2]. During the 2020-2021 

period, sugarcane cultivation spanned an area of 1.2 million hectares, resulting in a 

production of 80 million tons as presented in Table 1.1. Apart from its primary use in 

sugar and jaggery production, sugarcane offers other valuable byproducts such as 

ethanol, alcohol, bagasse, and press mud. Ethanol is utilized as fuel, while alcohol 

finds applications in the pharmaceutical industry. Bagasse, the fibrous residue, serves 

as a source of renewable energy for electricity generation, and press mud is used to 

enhance soil fertility. 

Table 1.1: Sugarcane Area and Production 
 

Sr       Year Area Production Yield 

 (000 

Hectare) 

% Change (000 

Tons) 

% Change (Kgs/Hec.) % Change 

1 2016-17 1218 - 75482 - 61972 - 

2 2017-18 1342 10.2 83333 10.4 62096 0.2 

3 2018-19 1102 -17.9 67174 19.4 60956 -1.8 

4 2019-20 1040 -5.6 66380 -1.2 63827 4.7 

5 2020-21 1165 12.0 81009 22 69536 8.9 

 
In Pakistan, the production of sugarcane is distributed across various regions, with 

the Punjab province contributing the majority at 66 percent, followed by Sindh 

contributing 26 percent, Khyber Pakhtunkhwa (KPK) contributing 8 percent, and 

Baluchistan with almost 1 percent as demonstrated in Table 1.2. Additionally, in the 

higher elevations of KPK, due to the more temperate climate there is a low production 

of sugar beet. Farmers in Pakistan commonly prefer to plant sugarcane 
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either in the autumn or spring, autumn planting typically yielding superior outcomes 

due to the extended growing season. 

Sugarcane cultivation practices vary in different regions of Pakistan. In Punjab and 

KPK, sugarcane is planted during the spring season and harvested it after a duration of 

8-10 months. Conversely, in Sindh, the majority of planting occurs during the autumn, 

providing an extended growth period of up to 16 months. This longer growth period 

in Sindh contributes to a slight enhancement in the sucrose content of the sugarcane, 

potentially resulting in better prices when selling to sugar mills[3]. 

Table 2.2: Sugarcane Area and Production with respect to Province 
 

Sr Year Area (Hectare) Production (Tons) 

  2019/20 2020/21 2021/2022 2019/2020 2020/2021 2021/2022 

1 Punjab 670K 784K 845K 44M 51M 57M 

2 Sindh 265K 280K 310K 17M 17.9M 19.8M 

3 KPK 102K 110K 114K 5.7M 5.8M 6M 

4 Baluchistan 1K 1K 1K 0.047M 0.047M 0.048 

5 Total 1,038K 1,175K 1,270K 67M 75.5M 83M 

 

 
1.3 Challenges in Sugarcane Production and Management 

 

The productivity of sugarcane per-hectare in Pakistan falls below the international 

standards. Specialists attribute this to various factors such as water shortages, limited 

availability of high-yielding varieties, and inconsistent application of fertilizers and 

pesticides. To improve yields and bring them in line with global standards, its widely 

agreed that Pakistan would have befitted impact from increased research and 

development initiatives focused on sugarcane and crop monitoring and mapping 

techniques. 

Moreover, during the process of field data collection, there is a possibility of errors 

occurring, which can result in inaccurate and improper measurements. Additionally, 

in certain areas where physical access is limited, estimation is carried out instead. 

Unfortunately, these circumstances can lead to the transmission of incorrect 

information to sugar mills, potentially causing a shortfall in the crushing process. As 

sugar mills operate based on specific timeframes, any inaccuracies in the transmitted 

information can disrupt the smooth functioning of the mills, leading to unforeseen 

challenges in meeting the required crushing quotas. 
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In order to get accurate crop maps at large scale satellite imagery along with efficient 

Deep learning algorithms have been showing promising results. This study will not 

only help sugar mills but also farmer with large crop areas to manage resources and 

estimate production. 

 

1.4 Satellites used in Crop Classification 
 

Various satellites have been launched that is used in crop mapping and management, 

vegetation health monitoring, crop yield estimation and monitoring soil and irrigation 

requirements. A comparison of most popular satellites that has been used in satellite 

enabled farming is shown in Table 1.3. 

Table 3.3: Satellite Comparison 
 

Sr      Platform Resolution 

 Spatial (m) Spectral 
(bands) 

Temporal 
(Days) 

Radiometric 
(bits) 

1 MODIS 250-1000 36 1-2 12 

2 LandSat-8 15-100 11 16 12 

3 Sentinal-2 10-60 13 5 12 

4 Rapid Eye 5 5 1 12 

5 WorldView-3 0.3-30 29 1-5 11-14 

 

Sentinel-2 has the highest spatial resolution among the satellites whose data is freely 

available. Additionally, its temporal resolution of 5 days can be regarded as nearly 

real-time for crop mapping purposes. Numerous studies have utilized Sentinel-2 and 

have observed encouraging outcomes. 

 

1.5 Research Objectives 
 

This study proposes deep learning-based framework for classifying sugarcane crop 

among other crops grown in Pakistan. To achieve this goal, the study sets out the 

following objectives: 

• Develop a robust framework that is capable of classifying and mapping 

sugarcane crop with great accuracy among other crops irrespective of area. 

• Select sentinel products based on time-series NDVI plot. 

• Extract subpixel information for labeling of each pixel using spectral 

unmixing. 
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• Develop 2D time-series spectral feature map of each pixel which is further 

used for classification. 

• Explore and implement multiple classification algorithms within the 

framework. 

•  Evaluate the performance of the developed frame work using performance 

metrics 
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Figure 1.1: Flowchart of the Research 
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Chapter 2: Literature Review 

 
This chapter describes the extensive review of the research work done to facilitate the 

agriculture sector in adapting modern and recent techniques, among which crop 

mapping and monitoring are the most essential. The launch of Landsat-1 opened new 

gates for the research community to utilize the satellite data to get crop maps at very 

low cost and at very large scale. 

This chapter is sectioned in three parts, first section presents the work done using 

conventional machine learning techniques and second part defines the work related to 

time weighted time warping method to obtain the classification maps and final part 

describes the work done in deep learning domain. 

 

2.1 Crop mapping using conventional machine learning techniques 
 

Previous studies have demonstrated the efficacy of traditional machine learning 

algorithms, including Support Vector Machine (SVM), Random Forest (RF), K- 

Nearest Neighbour (KNN), and Decision Tree (DT), in crop classification tasks, 

yielding favorable results compared to traditional methods. However, these approaches 

require substantial effort in terms of domain knowledge and feature engineering to 

extract relevant information from raw data. 

 

2.1.1 Incorporating single-date data 

 
Soon after the launch of sentinel 2, pixel based and object-based classification of crops 

and tree species were carried out using random forest algorithm utilizing single date 

images. The crops having greater training data seemed to be classified with better 

accuracy and pixel-based classification was slightly more accurate than object- based 

classification. Study also stated that red-edge and shortwave infra-red bands 

contributed the most towards better crop mapping [4]. 

The classification of six different crops were performed in the western region of 

Japan using most widely used machine learning algorithms such as random forest (RF) 

and support vector machine using multi spectral instrument. 
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Eighty-two vegetation indices were calculated using MSI to classify the crops with 

greater accuracy. Along with RM and SVM, ensemble learning technique was used 

that resulted in more accurate results than the two previously applied algorithms. 

Moreover, various algorithms were applied to evaluate the accuracy of each method. 

Since study shows that many researchers have used random forest classifier, because 

RF is ensemble learning technique that results in good approximation and 

classification [5]. 

 

2.1.2 Incorporating time-series data 

 
Similarly, Performance of several machine learning algorithm was accessed on four 

types of datasets obtained from sentinel-2, i.e., first being the uni-temporal images, 2nd 

contained combination of 5 best performing images in single date, 3rd comprises of 

handpicked 5 images that covered the crop developing period, and 4th contained images 

covering the chronological stage before harvesting. In order to train the classifiers forty 

one features were generated from single sentinel image and accuracies were calculated. 

In almost all of experiments SVM outperformed the rest [6]. 

2.1.3 Incorporating fusion of different satellite data 

This study, examines the potential of integrating Sentinel-1 SAR data with Sentinel- 

2A optical data to enhance the efficiency of crop classification. They assess the 

importance of different input data and investigate the temporal dynamics of various 

crop types. Nine scenarios are tested, including both SAR-only and SAR-optical 

integration approaches. The study evaluates the effectiveness of 22 nonparametric 

classifiers is assessed, focusing on previously untested algorithms with SAR data. 

The findings suggest that the most effective scenario involves integrating VH and 

VV SAR data with NDVI and employing a cubic support vector machine (SVM) 

classifier. This combination yields the highest accuracy compared to other tested 

scenarios [7]. 

To tackle the challenge of crop classification in extensive areas, a novel approach is 

proposed that combines multi-temporal remote sensing data from open-source 

platforms such as Sentinel-2 (S2) and Landsat-8 (L8) satellites. A unique concept of 

Tuplekeys is introduced, enabling the integration of data from these sensors with 

varying spatial and temporal resolutions. 
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The fluctuations in the time-series Normalized Difference Vegetation Index (NDVI) 

serve as input for crop classification. Additionally, filters based on farm management 

and composition criteria are employed to enhance efficiency and minimize 

redundancies. 

Three machine learning based classifiers are assessed, utilizing a field-based 

calibration and a pixel-based approach for the ultimate classification. The proposed 

methodology is tested on the data taken during spring and summer of 2017 from the 

Duero River basin. Among the analyzed classifiers, the Ensemble Bagged Trees (EBT) 

algorithm achieves the highest overall accuracy, with individual crop classification at 

87% and grouped classification at 92% [8]. 

A parcel-based approach was employed to assess the performance of 22 nonparametric 

classification algorithms in Spain. The mean normalized difference vegetation index 

(NDVI) along with standard deviation were utilized for each plot. Ground truth data 

from over two thousand visited fields encompassing 12 different crops were used. The 

study revealed that ensemble classifiers demonstrated robustness but were less 

efficient, whereas nearest neighbor methods and support vector machines struck a 

better balance between robustness and efficiency. The overall F1 score, indicating 

accuracy, approached 90%, although misclassifications were observed for spring 

crops. Nonetheless, the developed tool successfully distinguished crops with similar 

growth cycles, such as distinguishing between purple garlic and white garlic [9]. 

 

2.2 Crop Mapping using time weighted dynamic time warping 

method 

The application of a time-weighted dynamic time warping (TWDTW) method is 

explored in both spatial-based and patch-based classifications of diverse crop 

categories across three discrete study areas of USA, Romania and Italy. The 

classification results of TWDTW are compared with those of Random Forest (RF) 

for both spatial-based and patch-based analyses. Patch-based TWDTW surpasses 

spatial-based TWDTW in all investigated areas, demonstrating overall accuracies 

ranging from 78.05% to 96.19% and exhibiting faster computational time. In Romania 

and Italy, TWDTW performs similarly to RF, while RF achieves superior results in 

the USA due to significant in-class spectral variations. In Addition to, 
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TWDTW proves to be less dependent on training samples, offering an advantage in 

regions with limited availability of training data [10]. 

Temporal patterns were developed by utilizing four parameters extracted from 

Sentinel-1 SAR data and correlating them with unclassified satellite imagery using the 

time-weighted dynamic time warping (TWDTW) algorithm. The study focused on 

pixel-based and parcel-based classifications to identify four different crop varieties 

under two water limiting conditions. The overall accuracy achieved for pixel-based 

and parcel-based classifications was 63% and 76% respectively, with corresponding 

Kappa coefficients of 0.58 and 0.73. The findings suggest that the parcel-based 

TWDTW algorithm, influenced by temporal patterns of the radar vegetation index 

(RVI), effectively delineates croplands subjected to varying irrigation treatments. This 

makes it well-suited for modeling studies related to yield assessment and damage 

analysis [11]. 

Another research endeavor focuses on delineating the geographical extent of sugarcane 

cultivation areas in China utilizing a phenology-based methodology. This approach 

leverages the temporal patterns observed in time-series data derived from Landsat and 

Sentinel-1/2 images, which are accessed through the Google Earth Engine platform. 

By examining the phenological resemblance within the normalized difference 

vegetation index (NDVI) sequences, the method effectively discerns the presence of 

sugarcane plantations. The time-weighted dynamic time warping (TWDTW) 

technique is employed to account for the variable life cycles exhibited by sugarcane 

crops. The outcomes of this investigation exhibit notable levels of overall accuracy, 

successfully mapping the distribution of sugarcane areas in concordance with 

agricultural statistical zones [12]. 

 

2.3 Crop mapping using deep learning techniques 
 

Over the decade we noted a shift from extracting features to developing architectures, 

as ML involves a lot of data engineering and data cleaning where as deep learning 

algorithm has the capability of extracting features on its own. For a long time, 

convolutional neural network ruled in solving the computer vision’s domain problem. 

In the same way recurrent neural networks and LSTM was considered as saviors in 

dealing with sequence data and natural language processing tasks. 
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2.3.1 Using Recurrent Neural Network and LSTM 

 
The correlation within the timeseries data is extracted using recurrent neural networks, 

while features are extracted using convolutional neural networks to enable 

classification. By combining these two networks, specifically the recurrent and 

convolutional neural networks, various crops were successfully classified using a 

fusion approach. 

An innovative deep learning model was introduced that combines Recurrent Neural 

Networks (RNN) and Convolutional Neural Networks (CNN) specifically designed for 

pixel-based land cover and crop classification. The model leverages multi- temporal 

Sentinel-2 imagery captured in the central north part of Italy, characterized by diverse 

agricultural systems. By automatically extracting features through learning time 

correlations, the proposed methodology reduces the reliance on manual feature 

engineering. Impressively, the model achieves an outstanding overall accuracy of 

96.5%, surpassing the performance of traditional ML algorithms like SVM, RF, Kernal 

SVM, and XGBoost [13]. 

Various deep learning architectures were examined using time-series data extracted 

from Multi-temporal Sentinel-2 imagery. The assessed architectures encompass 

➢ one-dimensional convolutional neural networks (1D-CNNs), 

➢ two-dimensional CNNs (2D-CNNs), 

➢ three-dimensional CNNs (3D-CNNs), 

➢ long short-term memory (LSTM), and 

➢ two-dimensional convolutional LSTM (ConvLSTM2D). 

The findings illustrate that 1D-CNN and LSTM models outperform random forest 

(with accuracies of 92.5% and 93.25%, respectively) when utilizing a single time- 

based attribute. The 2D-CNN model, incorporating both temporal and spatial 

information, achieves a little higher accuracy of 94.76%, but it falls short in fully 

leveraging the multi-spectral features. Integrating both temporal and multi-spectral 

features enhance accuracy to 96.94% for the 1D-CNN model and 96.84% for the 

LSTM model. However, both models do not sufficiently extract spatial information. 

On the other hand, the 3D-CNN and ConvLSTM2D models achieve higher accuracy 

rates of 97.43% and 97.25%, respectively, by effectively utilizing both temporal and 

spatial information [14]. 
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2.3.2 Using Convolutional Neural Network 

 
The fusion of Sentinel-2 optical and Sentinel-1 Synthetic Aperture Radar (SAR) 

imagery was employed to accurately detect the distribution of paddy rice fields. A 

workflow was created using CNN based U-Net segmentation and the GEE geospatial 

analysis platform to delineate smallholder paddy rice fields. The most suitable dataset 

for mapping paddy rice was determined to be a fusion of Sentinel-2 multispectral bands 

and Sentinel-1 SAR dual polarization bands acquired during the crop growing season. 

The deep learning based segmentation model, ResU-Net, achieved an overall accuracy 

of 94%, surpassing the performance of the random forest (RF) classification method. 

Time series images were created by extracting pixel-level data from Sentinel-2 satellite 

images and processing all available bands over multiple dates to classify crops with 

greater accuracy. A deep convolutional network system is trained with historical data 

to extract the essential features for classifying distinct crop varieties throughout the 

year. The proposed method allows for efficient crop classification while being 

computationally low-cost [15]. 

A novel framework for pixel classification was introduced, utilizing spectral and time-

series data obtained from the Sentinel-2 satellite to map two rice varieties, Basmati and 

IRRI, cultivated in Pakistan. Data utilized in this study was rice fields at various time 

points throughout the entire rice-growing season. To extract spatial information for 

labeling each individual pixel a linear spectral unmixing model was incorporated. The 

classifier was fed a 16x15 image containing spectral features from different time points 

and generated pixel-level classifications for Basmati, IRRI, as well as other classes 

such as soil and water. Experimental findings showcased an impressive overall 

accuracy of 98.6% for the anticipated methodology, with Basmati rice achieving a 

higher accuracy of 99.7% compared to IRRI rice, which achieved 95.2% accuracy [16]. 

 

2.3.3 Convolution Neural Network with Attention Layers 

 
The researchers examine and contrast three integration approaches (input, layer, and 

decision levels) to identify the optimal method for enhancing the classification 

performance of combined optical-radar data. They employ the pixel-set encoder- 
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temporal attention encoder (PSE-TAE), a recently established architecture designed 

for parcel-based classification of spatio-temporal satellite imagery using self- attention 

mechanisms. The experiments are conducted in Brittany, France, utilizing temporal 

data from Sentinel-1 and Sentinel-2 satellites. The findings demonstrate that both 

the input and layer-level fusion strategies surpass the decision-level fusion, achieving 

the highest overall F-score with a notable 2% improvement. Decision-level fusion 

enhances the accuracy results of prominent classes, while layer-level fusion 

significantly enhances the accuracy of less prominent classes, exhibiting an 

enhancement of up to 13%. In comparison to using data from a single sensor, the fusion 

strategies yield more precise identification of crop types [17]. 

A new attention-based CNN methodology named Geo-CBAM-CNN was developed 

to achieve precise crop classification utilizing time series imagery from the Sentinel-

2 satellite. This approach was designed to tackle the challenges posed by geographical 

variations and a vast number of features. By integrating geographic information into 

an advanced attention module called CBAM, the Geo-CBAM module effectively 

mitigated the impact of heterogeneity and filtered out unnecessary information. The 

proposed model surpassed three other cutting-edge approaches, exhibiting outstanding 

performance with an overall accuracy of 97.82%, a Kappa coefficient of 96.82%, and 

a Macro-average F1 score of 96.96%. It showcased remarkable spatial adaptability and 

assigned attention weights to different features, with a higher emphasis on red-edge 

features. The Geo-CBAM-CNN model exhibits significant potential for large-scale 

crop mapping applications [18]. 

 

2.4 Research Gap Analysis 
 

Extensive research has been carried out using Sentinel imagery to facilitate crop 

mapping and classification through the utilization of machine learning (ML) 

techniques, time-warp methods, and various deep learning algorithms. ML techniques 

often involve extensive feature extraction and engineering. However, over the past 

decade, a shift has been observed towards the development of deep learning 

architectures that require less preprocessing or feature extraction compared to ML. 

CNNs have been predominantly used for image classification, and they can serve as 

a backbone for various other techniques such as image segmentation, object detection, 

image generation, and image captioning. 
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Literature review reveals that CNN, along with other algorithms, has been employed 

to achieve improved results. For instance, CNN combined with RNNs, Long Short-

Term Memory (LSTM), or attention layers, are computationally intensive yet 

effective for handling complex images. In our proposed framework, we address these 

challenges by reducing the large images with 13 channels to 2D time- series spectral 

maps, where each spectral map represents an individual pixel. This approach 

eliminates the need for merging different deep learning architectures. Additionally, 

most studies commonly perform training and testing on the same area and a single 

growing season. 

Considering the aforementioned complexities and limitations, we propose a model 

with the ability to classify crops in different study areas and growing seasons, aiming 

to evaluate its robustness. Our specific focus lies in the pixel-based classification of 

sugarcane, utilizing a reduced set of Sentinel products. Our approach combines 

multispectral patterns and the temporal evolution of each pixel, organizing them into 

a 2-D image. To capture temporal dependencies, we leverage the features of recurrent 

neural networks and LSTM, enabling each pixel to retain its previous state 

information. Alongside spectral bands, we incorporate six biophysical and spectral 

indices, which are stacked together to enhance the efficiency of the developed model. 

The resulting images are simplified yet contain sufficient information for 

straightforward classification using a simple multilayer perceptron or convolutional 

neural network, particularly for the same district. When dealing with different districts, 

we explore various options, including state-of-the-art CNN architectures and LSTM. 

Despite dataset variations such as location and growing season, the classification 

results prove to be satisfactory. This study contributes to the identification of 

sugarcane at any stage of its life cycle and facilitates the estimation of sugarcane 

availability in a specific area using a reduced number of Sentinel products. 
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Chapter 3: Study Area and Materials 

 
This chapter primarily centers around the study area, providing a comprehensive 

exploration of the geographical region under investigation. It delves into the key 

concepts and principles that underpin the research conducted in this study. By 

explaining these fundamental aspects, the chapter aims to provide a solid foundation 

for understanding the subsequent analyses and findings presented in the following 

chapters. 

 

3.1 Study Area 
 

The study area we focused on encompasses six districts in Punjab, Pakistan, spanning 

from 29.3544° N, 71.6911° E to 33.5651° N, 73.0169° E. This region experiences a 

temperature range of 0 to 26 °C during winter and 28 to 48 °C during summer, with 

an annual precipitation of 532.384 mm. 

For our research, we collected field data specifically from the districts of Chiniot, 

Sargodha, and Khanewal, which provided information about sugarcane cultivation. 

Additionally, field data for other crops such as rice was gathered from Narowal and 

Khanewal, wheat from Faisalabad and Cholistan, and corn from Bahawalpur. 

 

 

Figure 3.1: Study area 

To support our analysis, we acquired Sentinel-2A products from the open-access hub 

[19]. These products were selected based on their cloud coverage, with a criterion of 

less than 8%. Each product covers an area of 100x100 km2, and there are two types 
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available: 1C and 2A. The Sentinel-2, 1C product consists of thirteen spectral bands, 

with four bands offering a spatial resolution of 10 m, six bands having 20 m, and three 

bands have 60 m. The Sentinel-2, 2A product includes 12 bands, with band 10 

specifically used for atmospheric correction to derive the bottom of atmosphere 

reflectance. Georeferenced field data and sowing dates were obtained as ground truth 

from Agriculture Robot Lab at NCRA [20]. 

The study area consists of a total crop field of 270 acres. Among which sugarcane 

spans the area of 130 acres whereas wheat, rice and corn fields cover an area of 45, 55, 

and 42 acres respectively. It is evident from figure 1 that study area is distributed 

through the Punjab province and not confined to one particular district or area as in 

most of studies one particular area is selected and trained and evaluated on same 

region. 

 

3.2 Spectral Indices 
 

Spectral indices play a crucial role in crop mapping and classification by utilizing 

mathematical ratios of different spectral bands within multispectral imagery. These 

indices are applied to individual pixels, allowing for the extraction of key features 

related to various crop types. 

The normalized difference vegetation index (NDVI) is a commonly employed spectral 

index that evaluates the density and health of vegetation. It accomplishes this by 

quantifying the disparity among the reflectance values of the near-infrared (NIR) and 

red spectral bands captured in multispectral imagery. By comparing the reflectance of 

these specific wavelengths, NDVI offers valuable insights into the vigor and 

abundance of vegetation. This information is particularly useful in assessing 

vegetation dynamics, monitoring ecosystem health, and detecting changes in land 

cover over time. NDVI serves as a fundamental tool in remote sensing and plays a vital 

part in various fields such as agriculture, ecology, and environmental management 

[21]. 

Another important spectral index is the normalized difference water index (NDWI), 

which primarily reflects the presence of water content within vegetation. It calculates 

the discrepancy between the green and NIR channels and helps to identify drought 

conditions in crops [22]. By analyzing the spectral variations associated with water 

content, NDWI serves as an indicator of vegetation stress caused by water scarcity. 
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The differenced vegetation index (DVI) is a relatively simple spectral index that 

exhibits sensitivity to changes in vegetation relative to the background, such as soil 

[23]. By quantifying the discrepancy between reflectance values, DVI enables the 

detection of vegetation changes and provides valuable information about variations 

in plant growth and health. 

To consider the impact for the soil reflectances on vegetation indices, the soil- adjusted 

vegetation index (SAVI) includes an adjustment factor to minimize this impact [24]. 

By mitigating the confounding effects of soil reflectance, SAVI enhances the accuracy 

of vegetation mapping and monitoring. 

In addition to these indices, the leaf area index (LAI) serves as a biophysical indicator 

that quantifies the ratio of leaf area to ground area. It provides information about the 

extent and density of leaves within the canopy [25]. LAI is particularly useful for 

understanding vegetation structure and estimating biomass. 

Lastly, the fractional vegetation cover (FVC) is a metric that quantifies the percentage 

of soil surface covered by green vegetation. It provides an assessment of the spatial 

extent and distribution of vegetation within a given area. 

By employing these spectral indices, researchers can harness the unique characteristics 

of multispectral imagery to accurately map and classify crop types, assess vegetation 

health, monitor water availability, and derive valuable insights into the dynamics of 

agricultural ecosystems. 

Table 3.1: Spectral indices ranges 
 

Spectral Indices Value range 

NDVI -1 to +1 

DVI -1 to +1 

SAVI -1 to +1 

NDWI -1 to +1 

FVC 0 to +1 

LAI 1 to 4.5 
 

 

3.3 Spectral Unmixing 
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When working with low spatial resolution imagery, a difficulty arises where the pixel 

size or instantaneous field of view (IFOV) exceeds the size of the object or area of 

interest. This constraint poses a challenge in accurately discerning and isolating the 

unique spectral characteristics of individual objects or features. Instead, each pixel's 

spectral signature becomes a mixture of various materials or features, represented by 

their individual pure spectral signatures, also known as endmembers (such as water, 

soil, rock, vegetation, etc.). The fraction of each endmember within a pixel is referred 

to as fractional abundance. 

 

Figure 3.2: Spectral Unmixing[26] 

Consequently, each mixed pixel contains a combination of two or more classes, which 

significantly impacts the accuracy of supervised classification. The presence of mixed 

pixels introduces complexities and uncertainties in the classification process, as the 

spectral characteristics of different objects or features are blended within a single pixel. 

As a result, accurately identifying and classifying specific land cover types becomes 

challenging, particularly in cases where mixed pixels are prevalent. 

Efforts to address this issue involve advanced techniques for sub-pixel analysis, 

unmixing algorithms, and spectral mixture analysis. These methods aim to estimate 

the fractional abundances of different endmembers within mixed pixels, allowing for 

more accurate classification results and improved characterization of land cover types. 

By effectively handling mixed pixels, the classification accuracy can be enhanced, 

enabling more precise analysis and interpretation of remotely sensed imagery for 

various applications in fields like agriculture, land use planning, and environmental 

monitoring. 

 

3.4 Classification Models 
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3.4.1 VGG-16 

 
VGG16 is an architecture of a CNN that comprises of 21 layers, including 13 

convolutional layers, 5 Max Pooling layers, and 3 Dense layers. One notable feature 

of VGG16 is its emphasis on 16 weight layers, which are the parameters that undergo 

the learning process. The configuration of convolution and max pooling layers in 

VGG16 follows a consistent pattern, employing 3x3 filters with a stride of 1 for 

convolutions and 2x2 filters with a stride of 2 for max pooling. The convolution layers 

are organized with 64, 128, 256, and 512 filters, respectively. After the convolutional 

stack, three Fully-Connected layers are present, with the first two containing 4096 

channels each, and the third performs classification with 1000 channels representing 

different classes based on the findings discussed in [27]. The architecture concludes 

with a soft-max layer [28]. 

 

Figure 3.3: VGG-16 Architecture [29] 

 

3.4.2 ResNet-50 

 
ResNet-50 is an advanced convolutional neural network (CNN) architecture 

comprising a total of 50 layers. It introduces an innovative approach called residual 

connections, which effectively tackle the issue of vanishing gradients commonly 

encountered in deep networks. This technique enables the network to retain and 

propagate important information throughout the layers, enhancing the overall learning 

process. ResNet-50 also incorporates a bottleneck design that significantly improves 

training speed and reduces the number of parameters, leading to more efficient and 

effective model training [30]. 
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Figure 3.4: ResNet-50 Architecture [31] 
 

3.4.3 Inception v3 

 
The inception v3 architecture was introduced in the study conducted by [32]. Inception 

V3 employs inception modules, which consist of parallel convolutional layers with 

diverse filter sizes, enabling the network to extract features from various spatial scales. 

Additionally, the architecture incorporates techniques such as factorized convolutions 

and auxiliary classifiers to enhance training and overall performance. 

 

Figure 3.5: Inception v3 Architecture[33] 

 

3.4.4 Long Short-term Memory 

 
Long Short-Term Memory (LSTM) is a deep learning architecture widely 

acknowledged for its suitability in handling sequential data and data with extensive 

dependencies. Unlike traditional feedforward networks, LSTM incorporates feedback 

connections that enable it to capture context and long-range dependencies within the 

data. These feedback connections empower LSTM to process entire sequences of 
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data, rather than treating each data point in isolation. As a result, the model retains 

information from previous points and combines it with new data points to extract 

patterns and characteristics. This unique capability makes LSTM a preferred choice 

for managing sequential and time-series data. 

Within LSTM networks, information flow is regulated by gates. These gates play a 

crucial role in determining which incoming information to accept, what information to 

retain for future reference, and which information to output from the network. The 

input gate, forget gate, and output gate collectively govern the flow of information 

within the LSTM network, ensuring effective management and utilization of relevant 

data [34]. 

 

Figure 3.6: Long short-term memory Recurrent Unit[35] 

 
3.4.5 ConvNext 

 
With the rapid progress of deep learning technologies, traditional recurrent neural 

networks (RNNs) and Long Short-term Memory (LSTM) networks have largely been 

replaced by transformers in the field of Natural Language Processing (NLP), as 

introduced in [36]. Similarly, for more than a decade, convolutional neural networks 

(CNNs) have been the predominant force in the field of computer vision. Despite the 

distinct differences between vision and language domains, the architectural principles 

of these two domains have converged into a new framework called vision transformers, 

as proposed by [37]. 
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When compared to CNNs in the context of image classification, vision transformers 

have shown promising results. However, they do not perform as well in image 

segmentation tasks. To address this limitation, Liu et al. proposed the Swin transformer 

in 2021, which reintroduced the concept of sliding windows to transformers. The Swin 

transformer demonstrated strong performance in problems beyond classification, 

highlighting that the essence of convolutional networks remains significant [38]. 

To leverage the advantages of both convolutional networks and transformers, a new 

architecture called convNext was proposed by Liu et al. in 2022. In convNext, the 

baseline architecture is built upon ResNet50, and it progresses with a hierarchical 

construction similar to the Swin transformer. This approach aims to combine the 

strengths of both architectures and further enhance performance in various tasks [39]. 

 

Figure 3.7: ConvNext architecture[40] 
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Chapter 4: Proposed Framework 

 
A deep-learning based crop classification framework that is capable of mapping 

sugarcane crop from other popular crops using a smaller number of Sentinel products 

is shown in Figure 4.1. and detailed graphical abstract is given in Figure 4.2. 

 
 

Figure 4.1: Block diagram of proposed framework for crop classification 

 

4.1 Product Selection 
 

The available data for this study includes georeferenced field data and sowing dates, 

represented by polygons drawn in Google Earth Pro [41]. NDVI (Normalized 

Difference Vegetation Index) time series graphs were obtained from the date of 
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sowing until the estimated harvesting period, as depicted in Figure 4.4. Based on the 

NDVI crop signatures, a specific time window was determined for each field. Within 

these time windows, Sentinel products were downloaded, focusing on periods when 

the NDVI value exceeded 0.2. 

 

Figure 4.2: Detailed Abstract of proposed framework 
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For each field, a total of ten products were downloaded, covering most of the crop's 

lifecycle. Since sugarcane in Pakistan typically requires 10 to 12 months to grow, ten 

tiles with approximately one-month intervals were downloaded. On the other hand, 

wheat is a 4 to 5-month crop, rice takes around 3.5 to 4 months, and corn has a growth 

period of 2.5 to 3 months. Consequently, the time duration gap for downloading 

Sentinel products varied accordingly for each crop type. Figure 4.3 provides a visual 

representation of the planting and harvesting periods for these four crops. 

 
 

 Jan Feb March April May June July Aug Sept Oct Nov Dec 

Wheat          

Rice          

Corn          

Sugarcane     

 Jan Feb March April May June July Aug Sept Oct Nov Dec 

 

 
 
Sowing 

 
Mid- Season 

 
Harvest 

Figure 4.3: Crop calendar of investigated crops 

 

 
Sentinel products with the cloud coverage of less than eight percent is download and 

during the month of July and august where cloud coverage is very high in that case the 

product is analyzed and if the concerned area is cloud free then product is used in this 

study. 
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Figure 4.4: Selection of time window for downloading sentinel products for a) 

sugarcane, b) wheat, c) rice, d) corn 
 

4.2 Preprocessing 
 

The pre-processing steps for all Sentinel-2 data were accomplished using the Sentinel 

Application Platform (SNAP). SNAP is an openly available software tool that provides 

a modular and feature-rich client platform, portability, efficient memory management, 

and a framework for graph processing [42]. These features make SNAP an ideal 

platform for processing and analyzing earth observation data. 
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Table 4.1: Crop type and estimated crop life 

Crop type Crop life in Pakistan 

Sugarcane  10-12 months 

 

Rice 3.5-4 months 
 

Wheat 4 – 5 months 
 

Corn 2.5-3 months 
 

 

The preprocessing and feature extraction steps are conducted utilizing the Sentinel 

Application Platform (SNAP). To ensure consistency, all bands of Sentinel products 

with a resolution lower than 10m are up-sampled to a 10m resolution using the bilinear 

up-sampling method. Reprojection is not necessary since the product is already in 

the UTM/WGS84 coordinate reference system. 

Polygons outlining each field are drawn in Google Earth Pro and then converted to 

ESRI shapefile format using QGIS software. These shapefiles are subsequently 

employed to clip the area of interest from the Sentinel products, as depicted in Figure 

4.5. Following the preprocessing and polygon clipping procedures, the resulting fields 

contain 12 spectral bands, including red, blue, green, near-infrared (NIR), short-wave 

infrared (SWIR), and others. 

 



29  

Figure 4.5: Polygons used for clipping the fields of a) sugarcane, b) wheat, c) rice, 

d) corn from sentinel product in SNAP 

 

4.3 Feature Extraction 
 

Spectral indices have been used in crop mapping in techniques involving machine 

learning algorithm. A large number of features are usually extracted, a study 

mentioned in literature review section extracted around 90 spectral features from the 

13 spectral bands of sentinel multispectral imagery. In this study, four spectral indices 

and 2 bio physical indices, a total of six spectral features along with spectral bands are 

used. In SNAP, spectral indices such as the 

➢ difference vegetation index (DVI), 

➢ soil adjusted vegetation index (SAVI), 

➢ normalized difference vegetation index (NDVI), 

➢ normalized difference water index (NDWI), 

➢ leaf area index (LAI), and 

➢ fractional vegetation cover (FVC) 

are derived from the spectral bands of sentinel product. 

Figure 4.6: Spectral features extracted from 12 spectral bands of sentinel image 
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4.4 Compilation of 2D spectral feature maps 
 

The spectral bands and corresponding six indices of the cropped fields are combined 

by stacking them together. Each pixel is treated independently, where the columns 

represent the spectral bands and indices, and the rows represent the evolution of that 

pixel throughout the crop's lifecycle. 

To compile the images, a total of 10 Sentinel products are selected based on the NDVI 

value, covering the entire phenological stages of each crop. These products are 

combined with the 18 spectral bands and indices, resulting in an image size of 18x10 

when arranged in a 2D matrix. 

For transfer learning purposes, the images are   up-sampled using bilinear 

interpolation, increasing the image size to 32x32x3. This size is suitable for CNN 

architectures such as VGG16 and ResNet50, as they require a minimum image size 

of 32x32x3. However, for Inceptionv3, the minimum image size should be 75x75x3. 

A visual representation of the compilation of spectral features is provided in Figure 

4.7, offering a comprehensive graphical overview of the process. 

 

 
Figure 4.7: Compilation of time-series spectral features from field image having 

12 spectral bands to 32x32x3 image 
 

4.5 Labeling 
 

Within multispectral images, pixels that exhibit spectral values resulting from a 

combination of two or more materials are known as mixed pixels. In contrast, pixels 

that reflect the spectral signature of a single object are referred to as pure pixels. 

To analyze the multispectral images, spectral signatures of green vegetation and soil 

are extracted using SNAP. Subsequently, an abundance map for each field is 
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computed at the peak of the crop season. This calculation involves utilizing the two 

endmembers, namely green vegetation and soil. 

 

Figure 4.8: a) Endmember selection, b) Endmember spectrum extraction, c) 

abundance map of green vegetation 

 

 
In the green vegetation abundance map, pixel values exceeding 0.5 indicate a high 

abundance of crop, thereby representing crop pixels. Conversely, pixel values below 

0.5 are considered soil pixels, indicating a lower abundance of green vegetation. 

 
4.6 Dataset combination 

 

The dataset used in our study showcases notable disparities in terms of location, 

sowing year, and crop stage during the selection of Sentinel images. It is a balanced 

dataset, comprising an approximately equal number of synthetic images for both 

sugarcane and non-sugarcane classes, which include wheat, rice, and corn. 

In the first set of experiments, datasets from all locations are combined and separated 

into training and validation datasets using a 70:30 ratio. This ensures a representative 

distribution of data for training and evaluation purposes. 

In the second set of experiments, the sugarcane data from Khanewal and Sargodha 

districts are utilized for training, while the data from Chiniot district is used for testing. 

Similarly, for other classes, training data is obtained from different districts and tested 

in different districts. This approach allows us to assess the model's performance across 

various geographical areas and generalize its effectiveness beyond specific regions. 

 

4.7 Training Classification Models 
 

Once the dataset is compiled and divided into training and validation sets, it is 

subjected to various pre-existing convolutional neural network (CNN) architectures, 
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including simple sequential convnet, multi-layer perceptron, and LSTM. The CNN 

models employed in this study encompass VGG16, ResNet50, Inception V3, and 

convNext. 

To leverage the image classification knowledge acquired by these models, the pre- 

trained portions of the networks are utilized. Specifically, the layers responsible for 

feature extraction are frozen, while only the classification layers are trained. This 

transfer learning approach allows the models to classify sugarcane among other 

crops, benefiting from the previously learned representations. 

In the second scenario, all layers of these CNN models are trained using our dataset. 

This entails updating the weights and parameters throughout the entire network to 

adapt to the precise features of our dataset and improve the classification performance. 

To classify the developed spectral maps with great accuracy several classification 

algorithms were trained and analyzed which includes Multilayer perceptron, Convnet, 

state of the art CNN architectures and LSTM. The input size of classifier various 

depends on the its architecture. For Multilayer perceptron 10x18 feature map is 

flattened and fed to the input layer of size 1x180, followed by 3 dense layers and finally 

a softmax layer. 

 

Figure 4.9: Classification models trained on sample size 10x18 
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For convnet the input sample size is a 2D 10x18x1 feature map, the architecture 

has 3 convolution layers with filter size 32,64,128 and kernel size 3x3 and stride rate 

of 1. Moreover, there are 2 pooling layers, batch normalization layer, dropout layer, 

fully connected layer and a softmax layer. The rectified linear unit is served as 

activation function. 

For LSTM input sample size is 10x18, representing 18 spectral features at ten-time 

stamps. The data was processed using three LSTM layers, with each layer consisting 

of 20 blocks of LSTM cells and a dropout layer of 0.4. Following the LSTM layers, a 

linear SoftMax layer with two units, representing the possible number of outcomes to 

be predicted, is employed. 

During the experiments, a learning rate of 0.001 and a batch size of 32 is used 

consistently. During the training process, the cross-entropy was used as loss function 

and optimized with an Adam optimizer. The training process spanned 10 epochs, 

enabling the model to iteratively learn and refine its predictions. 

CNN architectures like VGG16, Resnet50, and convNext are trained and optimized 

using keras framework, the minimum input sample size for above mentioned 

architectures is 32x32x3 and for Inception v3 its 75x75x3. So, the time-series spectral 

feature maps are up sampled using bilinear interpolation method to 32x32x3 and 

75x75x3. All models were trained using cross-entropy loss function and optimized 

with Adam optimizer. 

 

Figure 4.10: Classification models trained on sample size 32x32x3 
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To leverage the image classification knowledge acquired by the pre-trained 

models, that knowledge is utilized for the classification of sugarcane and other crops. 

In our approach, specifically the pre-trained feature extractor portion of these models 

is employed, keeping those layers frozen while training only the classification layers. 

By utilizing the pre-trained feature extractor, we benefit from the learned 

representations and patterns extracted from a large-scale dataset. This allows to focus 

our training efforts on fine-tuning the classification layers to suit the specific task of 

crop classification. By freezing the feature extraction layers, the valuable knowledge 

already captured by those layers is preserved and concentrate our training on the final 

classification stage. 
 

 

 

 
Figure 4.11: Classification models trained on sample size 75x75x3 
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Chapter 5: Results & Discussion 

 
5.1 Proposed Framework for Sugarcane classification 

 

To evaluate the performance of proposed framework for sugarcane crop 

classification, all the classification models used in this study are tested and analyzed 

using key evaluation metrices i.e., Accuracy, Precision, and Recall, F1 score. These 

metrics are represented by mathematical equations, namely Eq. 1, Eq. 2, Eq.3, and Eq. 

4, respectively. 

 

5.1.1 Confusion matrix 

 
Confusion matrix helps in visualizing the results of classification and provides 

information about correct and incorrect predictions by the classifier and further used 

to evaluate the model performance using metrics like accuracy, precision, and recall. 

 

Figure 5.1: Confusion matrix[43] 

The terminology associated with the confusion metrics are described as: 

True positive: when the actual label corresponds to positive class and is classified as 

positive class 

False Negative: when the actual label corresponds to positive class and is classified 

as negative class 

False Positive: when the actual label corresponds to negative class and is classified 

as positive class 
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True Negative: when the actual label corresponds to negative class and is classified 

as negative class 

 

5.1.1.1 Accuracy 

 
Accuracy is the widely employed evaluation metric in classification, representing the 

proportion of accurately predicted labels in relation to the total number of labels. 

𝑇𝑃 + 𝑇𝑁 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

 

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 
(1) 

 

5.1.1.2 Precision 

 
Precision quantifies the ratio of true positives (TP) to the sum of true positives and 

false positives (TP + FP). It serves as a measure of the model's accuracy in predicting 

positive instances, reflecting the ability to minimize false positive classifications and 

ensure precise positive predictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃 

 
 

𝑇𝑃 + 𝐹𝑃 
(2) 

 

5.1.1.3 Recall 

 
On the contrary, recall evaluates the ratio of true positives (TP) to the sum of true 

positives and false negatives (TP + FN). A higher recall value signifies that the model 

correctly identifies a larger proportion of actual positive cases. It measures the model's 

capability to effectively capture a significant number of positive instances. 

𝑇𝑃 
𝑅𝑒𝑐𝑎𝑙𝑙 =   

𝑇𝑃 + 𝐹𝑁 
(3) 

 

5.1.1.4 F1 Score 

 
The F1 score is a metric used to evaluate the performance of a classification model. 

It combines precision and recall into a single value, providing a balanced measure of 

the model's accuracy. It finds particular application in scenarios where there exists a 

disparity in the quantity of positive and negative instances within the dataset. 

𝑭𝟏 𝒔𝒄𝒐𝒓𝒆 = 𝟐 ∗ 
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∗𝑹𝒆𝒄𝒂𝒍𝒍 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍 
(𝟒) 
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5.1.2 Classification results for dataset combination 1 

 
In the initial dataset combination, where the testing data is from one of the districts 

used for training the classifier, the results are highly impressive. The classification of 

the 2D time series spectral maps achieves exceptional accuracy. The evaluation 

metrics of all the models for dataset combination 1 used in the proposed framework 

are presented in Table 5.1, demonstrating their performance. 

Table 5.1: Evaluation metrics along with input sample size for dataset 

combination 1 
 

Input sample 

size 

Architecture Test 

% 

Accuracy Precision Recall F1 Score 

1x18 MLP 0.77  0.97 0.56 0.71 

1x180 MLP 0.94  1.00 0.89 0.94 

10x18x1 Simple 

convnet 

0.99  0.99 0.99 0.99 

10x18 LSTM 0.98  1.00 0.97 0.98 

32x32x3 VGG16 0.99  0.99 0.99 0.99 

32x732x3 Resnet50 0.99  1.00 0.98 0.99 

75x75x3 Inception V3 0.99  1.00 0.99 0.99 

 
The values reported in the aforementioned table were obtained during testing using 

sugarcane fields from Sargodha district and non-sugarcane pixels from Narowal 

fields. The test dataset consisted of approximately two thousand samples, with an equal 

number of samples from each class. The confusion matrix for each classification 

model, trained with a sample size of 10x18, is presented below. 

 
 

 
Figure 5.2: Confusion matrix for the models with input sample size 10x18 
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The table and confusion matrix provide a visual representation of the impressive 

classification results achieved by MLP, convnet, and LSTM using 2D time-series 

spectral feature maps for sugarcane classification. The accuracy of the models is 

evident from the classification maps, which visually depict the classified pixels. Each 

pixel in the classification map corresponds to the same location from the sentinel 2 

cropped field imagery, highlighting the accuracy and consistency of the classification 

models. 

 
 

a b c 
 

d e f 

Figure 5.3: Classification model MLP; a) cropped sugarcane field b) abundance 

map c) classification map green pixel shows sugarcane grey shows non-sugarcane, d) 

non-sugarcane field, e) abundance map of green vegetation, f) classification map 

green shows non-sugarcane and grey shows sugarcane 

 

 
From cropped field spectral imagery 2D timeseries spectral feature maps are created 

and classified as sugarcane or non-sugarcane pixel by testing on trained classification 

models. When arranged in the classification map it can be visualized whether the field 

is sugarcane or not. 
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a b c 
 

d e f 

Figure 5.4: Classification model Convnet; a) cropped sugarcane field b) 

abundance map c) classification map green pixel shows sugarcane grey shows non- 

sugarcane, d) non-sugarcane field, e) abundance map of green vegetation, f) 

classification map green shows non-sugarcane and grey shows sugarcane 
 

a b c 

 
 

c d e 

Figure 5.5: Classification model LSTM; a) cropped sugarcane field b) abundance 

map c) classification map green pixel shows sugarcane grey shows non-sugarcane, d) 
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non-sugarcane field, e) abundance map of green vegetation, f) classification map 

green shows non-sugarcane and grey shows sugarcane 

In classifying sugarcane field all the three models accurately classified all pixels as the 

actual class, whereas in case of non-sugarcane some of the boundary pixels are 

classified incorrectly. 

In order to explore more classification models, 2D Spectral maps are up sampled to 

cater the requirement of size which is minimum of 32x32x3. Single channel is stacked 

together thrice to make it three channel input. 

The test results for all three CNN architectures show similar performance. Our 

classification accuracy for identifying sugarcane pixels among other crops such as 

wheat, rice, and corn is approximately 99.55% for VGG16, 99.05% for ResNet-50, 

and 99.75% for Inception v3. Notably, the results remain consistent regardless of 

whether transfer learning or parameter training is employed. 

Figure 5.6 presents the confusion matrix for VGG16, ResNet-50, and Inception v3. 

However, ConvNext Tiny did not perform well in both training and testing phases, 

with an accuracy of approximately 51%. This suggests that ConvNext Tiny failed to 

effectively extract features from the 2D multispectral feature maps during training, 

resulting in unsatisfactory results during testing. 

 

 
Figure 5.6: Confusion matrix for classification models VGG16, ResNet-50, 

Inception v3 

 

5.1.3 Classification results for dataset combination 2 

 
The results for the second dataset combination are not as impressive as those of the 

first combination. This is due to the high variance and noise present in this dataset 

combination, resulting in lower comparable accuracies compared to the first 

combination. Among the models, LSTM performed the best with an accuracy of 

89.22%, indicating its ability to capture the time sequence dependencies in the data. 
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ResNet50 and VGG16 achieved similar performances of approximately 85% and 88%, 

respectively, as they were able to extract relevant features from different crops despite 

variations in location, sowing year, and crop stage during sentinel product selection. 

However, in the case of Inception V3, the input sample size should be 75x75x3. When 

the 10x18 image size is up-sampled using interpolation, a significant amount of noise 

is introduced into the data, causing the model to struggle in accurately fitting the test 

data. The lower accuracy compared to the first case indicates a high variance in the 

dataset. To reduce variance, additional data similar to the test data can be added to the 

training dataset, which helps in stabilizing the model parameters. 

 
Table 5.2: Training and test accuracy for dataset combination 2 

 

Input sample 

size 

Architecture Training Accuracy 

% 

Test Accuracy % 

32x32x3 VGG16 98.40 82.25 

32x32x3 ResNet-50 99.01 82.24 

75x75x3 Inception v3 98.11 64.23 

32x32x3 LSTM 99.60 89.22 

32x32x3 ConvNext(without 

data augmentation) 

51.91 51.32 

32x32x3 ConvNext (with data 

augmentation) 

91.41 79.83 

 
The confusion matrix of LSTM, VGG16, and ResNet-50 for this dataset 

combination is shown in figure 5.7. and evaluation metrices for all the classification 

models for dataset combination 2 are shown in table 5.3. 

 
Table 5.3: Evaluation metrics along with input sample size for dataset 

combination 2 
 

 

Input sample 

size 

Architecture  Test 

Accuracy % 

Precision Recall  F1 

Score 

 

10x18 MLP 0.66 0.67 0.64 0.65 

10x18 Simple 0.72 0.71 0.73 0.72 
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convnet 
 

10x18 LSTM 0.90 0.87 0.94 0.90 

32x32x3 VGG16 0.88 0.85 0.91 0.87 

32x32x3 ResNet-50 0.85 0.98 0.78 0.86 

32x32x3 ConvNext 0.78 0.75 0.85 0.79 

75x75x3 Inception v3 0.68 0.70 0.66 0.68 

 

In both dataset combinations, ConvNext achieved an accuracy of approximately 

51%, indicating its failure to effectively capture the features present in the training 

data. However, after applying data augmentation techniques, the training accuracy 

improved to 91% and the test accuracy increased to 79.83%. This suggests that the 

ConvNext model has the capability to perform well when the size of the dataset is 

increased. Figure 5.8 provides a qualitative comparison of F1 score for both the 

dataset combination. 

 
 

Fig. 5.8. Performance of classification models on both dataset combinations i.e. (similar district and 

different district) 
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a b c 

 
 

d e f 

Figure 5.9: Classification model VGG16 for dataset combination 2; a) cropped 

sugarcane field b) abundance map c) classification map green pixel shows sugarcane 

grey shows non-sugarcane, d) non-sugarcane field, e) abundance map of green 

vegetation, f) classification map green shows non-sugarcane and grey shows 

sugarcane 

Based on the results, it is evident that in order to enhance the robustness of our 

classifier, it is recommended to incorporate sugarcane and other crop datasets from 

various regions across Pakistan into our training data. This is important because crop 

characteristics can vary between different areas due to factors such as soil composition, 

crop varieties, and crop duration. Furthermore, increasing the number of products 

utilized will enable our model to learn a wider range of crop phenology attributes and 

gain a deeper understanding of crop characteristics overall. 
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Chapter 6: Conclusion 

 
Ensuring accurate information regarding the readiness of sugarcane fields for 

harvesting is essential to optimize yield and quality. Harvesting at the right maturity 

level maximizes sugar content, reduces losses due to overripening or delays, and 

provides valuable insights for long-term planning and market forecasting. 

To address this, a deep learning-based framework is proposed for identifying ready-

to-harvest sugarcane fields among other popular crops grown in Pakistan. The 

framework involves selecting Sentinel-2 Level 2A products based on NDVI time- 

series plots, followed by preprocessing and spectral feature extraction using SNAP. 

The temporal and multispectral features are organized into 2D images referred to as 

2D time-series multispectral feature maps in this study. These feature maps are 

classified using multiple classification models. 

The developed framework exhibits positive potential in distinguishing sugarcane 

feature maps from other major crop feature maps within the same district. Despite 

the challenges posed by dataset variability in location and dates, as well as the 

limited number of products used, our methodology excelled in feature extraction and 

pixel-based classification, yielding impressive results. 

Experimental findings indicate that extracting essential features throughout the 

entire crop life cycle for each crop requires a quantity of ten time-series samples. 

Additional tests using five and seven time-series samples did not yield satisfactory 

results. Thus, utilizing ten time-series samples ensures sufficient multitemporal 

features. 

The classification task primarily focuses on distinguishing sugarcane from crops like 

wheat, rice, and corn, which have shorter growth periods of 4-6 months compared to 

sugarcane's 10–12-month maturity cycle in Pakistan. To ensure fairness, an equal 

number of Sentinel-2 tiles were collected for all crops, resulting in a significant time 

gap for sugarcane. This methodology involves feature extraction and compilation of 

each pixel as an image, and it performs well even with MLP and simple Convnet 

models, achieving F1 scores of 0.94 and 0.99, respectively, when trained and tested 

within the same district. CNN architectures and LSTM significantly contribute to 

recognizing sugarcane from other districts, where MLP 
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and simple Convnet models performed poorly. The sugarcane classification task 

achieves impressive results using LSTM, VGG16, and ResNet-50 models, with F1 

scores of 0.90, 0.87, and 0.86, respectively. 

To enhance the performance of the proposed framework, which is capable of 

identifying mature sugarcane fields across Pakistan, it is necessary to include data from 

most sugarcane-growing districts in the training dataset. Additionally, the choice of 

ten samples should cover all growing phases of sugarcane, including germination, 

tillering, grand growth, ripening, and maturation phases. 
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