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Abstract 

Accurately estimating crop emergence prior to harvesting is increasingly critical for 

ensuring the long-term sustainability of natural resources. This process serves multiple 

purposes, including yield estimation, seed quality prediction, identification of regions 

prone to yield losses, and formulation of effective agricultural plans. By maximizing 

crop population within the constraints of limited land and resources, crop emergence 

estimation contributes to the sustainable utilization of these valuable resources. 

However, existing plant counting frameworks often require extensive offline image 

processing using licensed software to generate orthomosaics through the multiview 

stereo, resulting in significant computational demands. To address this challenge, this 

study proposes a comprehensive plant counting framework that directly estimates 

plant counts from aerial images. The framework comprises three essential modules: 

overlap detection, plant detection, and plant counting. The overlap detection module 

eliminates the need for computationally intensive orthomosaic generation by utilizing 

only visual cues to mask overlapping areas, thereby preventing duplicate plant 

counting. Three distinct methods are evaluated as core modules to identify an optimal 

generalized solution for plant counting, considering both time complexity and 

accuracy. The first method employs semantic segmentation with U-NET after overlap 

detection for plant detection followed by counting connected pixels. In the second 

method, object detection using YOLOv7 is utilized for plant detection after overlap 

removal. Finally, the third method introduces a real-time plant counting framework 

based on multiple object tracking, employing YOLOv7 for object detection and SORT 

for object tracking as a replacement for the overlap detection module. The proposed 

algorithm is evaluated using high-resolution aerial data collected from two separate 

Tobacco fields near Peshawar, Pakistan. The first and second methods achieve average 

F1 scores of 0.947 and 0.9667, respectively. Notably, the third method exhibits 

promising potential for real-time applicability, achieving an average F1 score of 0.967. 

 

Keywords: Semantic Segmentation, Plant Count, Deep Learning, U-Net, Overlap 

Detection, Object Tracking, Object Detection, YOLO, SORT 
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Chapter 1: Introduction 

1.1 Overview 

Agricultural countries highly depend upon their agriculture for economic growth. 

However, this sector is also dependent on natural resources like land and water, which 

are becoming increasingly scarce due to the growing demands of a rapidly increasing 

population. It's therefore imperative to sustain these resources by optimizing their 

usage. 

One of the ways to optimize the usage of natural resources is by estimating crop 

emergence during the initial stages of growth. Crop emergence refers to the emergence 

of a plant from its seed, and it's a critical stage in crop production. At this stage, every 

seed that germinates has the potential to become a productive plant, leading to 

maximum yields. As we can apply agricultural input like reseeding etc. to identify 

potential yield losses at this initial stage. Accurate estimation of crop emergence is 

important because it allows farmers to assess the success of their planting, make timely 

management decisions, and forecast crop yields. On the other hand, if the seeds fail to 

germinate or emerge weakly, it can result in lower yields, reduced productivity, and 

wasted resources. 

This research presents a generalized framework for plant counting. The proposed 

generalized framework consists of Deep Learning modules for identification of Plants 

and a novel overlap detection module. We have evaluated multiple DL models to find 

the best for this framework. Other than this we also evaluated Object Detection with 

Tracking for real time plant counting.  The results are evaluated for Tobacco Fields. 

1.2 Importance of Plant Counting in Pakistan 

In Pakistan, agriculture is the backbone of the economy, contributing around 20% 

of the GDP and employing over 40% of the labor force. The country is known for its 

production of cotton, wheat, rice, sugarcane, and maize, among other crops. However, 

agriculture in Pakistan is vulnerable to various challenges, including water scarcity, 

soil degradation, pests and diseases, and unpredictable weather patterns. 
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Crop emergence estimation can help farmers in Pakistan to address some of these 

challenges. For example, if emergence rates are low, farmers can take corrective 

measures such as reseeding or adjusting irrigation to ensure that crops reach their full 

potential. Early identification of emerging problems can also help farmers to reduce 

the risk of crop failure, resulting in increased crop yields and improved food security. 

Moreover, accurate crop emergence estimation can also assist in making informed 

decisions regarding the use of inputs such as fertilizers, pesticides, and herbicides. By 

knowing the percentage of crops that have emerged, farmers can apply these inputs 

more efficiently and reduce their costs while minimizing the impact on the 

environment.  

1.3 Challenges in Plant Counting  

Traditionally plant counting is done manually through human labor that is error 

prone, time consuming and labor-intensive task.  Manual plant counting can result in 

poor identification of areas having potential yield losses. This leads to ineffectiveness 

in the process of crop emergence estimation. Cutting edge technologies Deep Learning 

(DL), Computer Vision etc. utilization for plant counting is proven to be a reliable 

solution. These applications require the data of the entire field. This large-scale field 

monitoring can be possible with unmanned aerial vehicles (UAV) imagery or through 

sentinel data.  Sentinel data unavailability, polygon formation, cloud calibration and 

storage capacity make it ineffective as compared to UAV imagery that can be acquired 

at any favorable time and weather conditions making it a feasible solution for real time 

plant counting. UAV imagery at any framerate results in the overlap between frames 

that results in inaccurate redundant plant count. So, state of the art techniques solved 

this overlapping problem through Orthomosiac formation, discussed as follows: 

1.3.1 Orthomosiac Formation 

An orthomosaic is a high-resolution, georeferenced, and orthorectified image 

created by stitching together multiple overlapping aerial photographs or images. The 

resulting orthomosaic provides a detailed and accurate representation of the area 

captured in the images, with distortions and perspective effects removed. 

Orthorectification is the process of removing the effects of terrain relief and camera 

perspective distortions from the original images, such that the resulting mosaic can be 
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used for accurate measurements and mapping applications. To achieve this, a digital 

surface model (DSM) of the terrain is generated from the original images, which 

provides information about the height of the objects captured in the images. The DSM 

is used to correct for variations in elevation, such as hills and valleys, that can cause 

distortions in the images. The process involves warping and blending the images to 

create a seamless and georeferenced orthomosaic making it a computational expensive 

process. There are many software packages available to perform these steps, including 

Pix4D, Agisoft Metashape, and DroneDeploy, among others. However, creating a 

high-quality orthomosaic requires expertise in remote sensing, photogrammetry, and 

GIS. 

1.4 Tobacco Fields in Pakistan  

There are more than 50,000 tobacco growers in Pakistan. Every year many fields in 

hectares are occupied by Tobacco fields. It is of great importance that every bit of land 

occupied, and resources used must be economically at most beneficial.  

Table 1.1: Tobacco fields in Hectares 

Year Flue-

cured 

Virginia 

Dark air-

cured 

Rustica Whaite 

Patta 

Burley Total 

2013-14 27413 1225 16004 4341 57 49040 

2014-15 30765 925 16822 5250 42 53804 

2015-16 29061 872 17434 5278 40 52685 

2016-17 26121 599 16609 3880 38 47247 

2017-18 24527 1367 19025 1366 47 46332 

2018-19 24790 740 17702 630 56 44877 

2019-20 27639 896 21201 1003 50 50789 

2020-21 27150 591.6 10959 1190 50 39941 

2021-22 23159 586 9823.62 1106 50 +66 

(Sun-

cured 

Virginia) 

34790.62 
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1.5 Research Objectives 

The research objectives to achieve the primary goal of creating a framework for 

effectively estimating crop counts in various agricultural scenarios are as follows: 

• Develop a generic plant counting framework based on Computer Vision with 

Deep Learning (DL) that is applicable to multiple crop stand counts. 

• Explore and implement innovative algorithms/models within the framework. 

• Replace the computationally expensive orthomosaic formation by 

implementing overlap detection based solely on visual cues. 

• Eliminate the dependency on commercialized/licensed products for 

orthomosaic formation. 

• Evaluate the effectiveness of multiple object tracking on UAV imagery for 

plant counting in order to develop a real-time system 
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Chapter2: Literature Review 

In literature, precision agriculture being a hot domain in research, diverse techniques 

are found for one its sub domain that is plant counting. These diverse techniques 

involve Image Processing, Computer Vision, Machine Learning (ML) and Deep 

Learning for plant identification followed by counting.  

2.1  Image Processing based Plant Counting   

Image processing-based plant counting involves contour detection, segmentation, 

thresholding based on vegetation indices. 

2.1.2 Contour Detection 

Contours are the outlines of the objects that can be represented as a sequence of 

connected points or curve. Contour detection is the detection of boundaries around an 

object. Contour detection involves techniques like thresholding, edge detection and 

segmentation. A method based on image processing is proposed [1], which involves 

detecting contours followed by combination of morphological operations.  

2.1.2 Watershed Segmentation 

Watershed segmentation is a popular image segmentation technique that separates 

an image into distinct areas based on the gradient magnitude topology. The main 

principle underlying watershed segmentation is to treat the image as a topographic 

map, with each pixel's brightness corresponding to the terrain's elevation. Plant region 

extraction using watershed segmentation is proposed in [2], extracted plant region 

consist of Tobacco and non- Tobacco regions. These are classified using CNN 

architecture followed by post processing. The proposed algorithm consists of several 

pre-processing and post-processing steps. 

2.2 Segmentation Through Vegetation Indices 

Vegetation indices are mathematical formulas used to analyze remote sensing data, 

particularly from satellite imagery, to estimate the density, health, and productivity of 

vegetation. These indices are based on the principle that plants absorb and reflect 
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different wavelengths of light in varying amounts, and by measuring the reflectance of 

certain wavelengths, we can infer certain characteristics of the vegetation. A 

segmentation based on vegetation indices was proposed in [3] , this study utilized EXG 

(Excess Green Index), NGRDI (Normalized Green-red Difference Vegetation Index), 

and (EXG-EXR Excess Green Minus Excess Red Index) for detection of Tobacco 

Plants in an Orthophoto. After segmentation a high pass filter is utilized to suppress 

noise. The technique showed promising results but requires high computational power.  

Combination of EXG and Otsu Threshold is proposed [4] for the extraction of wheat 

seedlings. The resulting images contain holes and noise that is resolved using 

morphological operations. Six Vegetation Indexes were utilized by [5], they have 

utilized Random Forest for the prediction of soybean plant. The model was trained on 

66 experimental plots collected in 2018 of soybean whereas test dataset contains 200 

plots from the year 2019. In the proposed approach [6], the extraction of features for 

wheat ears segmentation and feature extraction from an orthophoto was accomplished 

using Laplacian and Finding Maxima filters. Once the features were extracted, a 

machine learning-based approach was employed for classification. Among the tested 

algorithms, Support Vector Machines (SVM) and Random Forest (RF) demonstrate 

superior performance compared to other machine learning algorithms. These 

algorithms effectively learn and classify the extracted features, accurately 

distinguishing between wheat ears and background elements. 

2.3 Plant Counting Using Deep Learning 

Deep learning being cutting edge technology have been utilized in almost every 

sector. The current state of the research involves mainly object detection and semantic 

segmentation.  

2.3.1 Object Detection 

Object detection framework was utilized in [6] on very high-resolution imagery. The 

Structure from motion (SFM) was generated using licensed software in order to get 

camera internal orientation an external orientation. Then, You Only Look Once 

(YOLOv3) was trained to detect the plants in original image. The image was cropped 

before detection in order to detect the smaller seedlings. Lastly, the image coordinates 

were projected to geographic coordinates. A deep learning-based method for cotton 
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boll counting is proposed using multi-receptive filed extraction called MRF-YOLO[7]. 

It consists of a multi-scale residual block and attention module to enhance the feature 

details and loss is reduced using a multi-receptive field extraction module followed by 

a small target detection layer for the improvement detection of precision. A CNN for 

wheat head detection called WheatNet [8] was proposed for wheat head counting using 

point annotation. Truncated MobileNetV2 was used as a feature extractor followed by 

a two branched architecture for localization and counting. Experimental evaluations 

demonstrate the effectiveness and superior performance of WheatNet compared to 

other existing methods for wheat head detection 

2.3.2 Segmentation 

A pipelined framework was proposed in [9], that consist of distortion removal, crop 

row detection, geo referencing rows and followed by pre-trained RESNET18 

architecture for crop emergence and canopy size estimation. The framework was 

evaluated for per image estimation. A system was developed [10] which employs deep 

neural networks and geometric descriptors to estimate the number of early-season 

maize plants in low spatial resolution aerial data. The raw data was combined to form 

a single large image, and the Max Area Mask Scoring RCNN was used to detect each 

row. The detected row was then horizontally rotated, followed by segmentation of soil 

and green plants. The sparse region detection algorithm was applied to each row, and 

the results were combined for all detected rows to calculate the average plant stand 

count of the entire field. The study[11] focused on the semantic segmentation of 

sorghum using hyperspectral data and identification of genetic associations. The 

researchers aimed to develop a method that could accurately segment and classify 

different components of sorghum plants based on their genetic characteristics. Organ-

level semantic segmentation presents promising opportunities for identifying genes 

that influence variation in various morphological phenotypes across grain crops like 

sorghum, maize, and related species. Valente et al.[12] employed the Otsu 

thresholding method for segmenting spinach plants. They first converted the 

orthomosaic into smaller units or patches and then applied the Otsu thresholding 

algorithm to distinguish the plant pixels from the background. By effectively 

thresholding the image, they were able to separate the spinach plants and extract them 

for further analysis. To assess the number of pixels per plant, utilized the AlexNet 
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architecture, a deep convolutional neural network (CNN) model known for its 

excellent performance in image classification tasks. By leveraging the capabilities of 

AlexNet, they were able to analyze the segmented spinach plants and estimate the 

number of pixels dedicated to each individual plant. A two-branched CNN-based 

architecture [13] was evaluated for per-image plant counting in orchard and corn 

fields. This architecture comprised two separate branches, each dedicated to different 

aspects of plant counting. The first branch focused on plant localization, accurately 

identifying the positions of individual plants within the image. The second branch was 

responsible for counting the detected plants per image. RiceNet [14]for detection and 

localization of rice plants was proposed that consist of multiscale feature fusion with 

plant attention mechanism that outer perform on the URC dataset. 

By accurately segmenting and classifying different organs or plant structures within 

these crops, such as leaves, stems, panicles, and other components, researchers can 

study the genetic associations underlying diverse traits. Nee et al. [15] utilized U-Net 

for semantic segmentation on UAV data after row detection using Hough Transform 

for row detection. The identified rows than followed by semantic segmentation to 

segment corn plants.[16] also utilized U-Net for semantic segmentation of very high-

resolution imagery from different altitudes. U-Net results are then followed by 

morphological operations and blob detections for plant counting. 

2.3.3 Object Detection and Tracking 

Multiple object tracking was utilized [17]for cotton emergence estimation. Modified 

CenterNet was used for object detection whereas DeepSORT[18]. This proposed 

technique was evaluated on aerial images taken from a height of 0.5m.  

YOLOv4 in combination with DeepSORT is utilized for the development of Multi-

object framework[19] for pear fruit detection and counting. The proposed framework 

was evaluated using different versions of YOLOv4. YOLOV4 for detection and optical 

flow for tracking for cotton seedling is utilized in the study[20].The integration of 

YOLOV5 and DeepSORT is applied [21] to detect and localize the generative organs, 

such green tomato, red tomato and flowers in the images. Tomato data was acquired 

in an experimental setup and resulting F1 scores of red tomato, green tomato, and 

flower classes are 0.74, 0.56, and 0.61, respectively. UAV system is proposed [22]to 

detect, localize and count ornamental plants in their natural habitats. 
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 Although object detection and semantic segmentation in DL-based approaches show 

promising results, they involve computationally expensive processes such as 

orthomosaic formation or row detection based on GPS location. Other than skipping 

the orthomosaic formations step based multi object tracking frameworks for counting 

one study [9] developed a framework for real-time cotton stand count and canopy size 

mapping. The cotton rows in each image frame were detected and the row angle was 

used for rotating each individual frame. The row spacing was used as a reference for 

dynamic GSD calibration of each image frame. Seedlings in every individual frame 

were located based on their position in image coordinates, the GSD and through 

georeferencing cotton rows to replace orthomosaic formation. 

2.4 Research Gap Analysis 

The conventional approach of orthomosaic formation in cutting-edge research 

typically relies on resource-intensive computational power and commercial softwares 

such as Agisoft PhotoScan, Zephyr, and Pix4D. This offline processing method limits 

the advantages of real-time plant counting. Recognizing the promising outcomes of 

utilizing UAV imagery in advanced agricultural fields, this study endeavors to develop 

a versatile plant counting framework. 

The proposed framework introduces a novel overlap detection module that solely 

relies on visual cues, eliminating the need for computationally demanding orthomosaic 

formation. By combining the overlap detection module with semantic segmentation 

and object detection techniques, the feasibility of estimating tobacco plant counts is 

evaluated. The results obtained through this framework demonstrate significant time 

savings, thereby enhancing the benefits of plant counting. These benefits include the 

optimized allocation of resources during the early stages of crop growth, enabling 

farmers to make informed decisions regarding irrigation, fertilization, and pest 

management.  

Moreover, the integration of an object detection algorithm with SORT tracking 

offers a real-time applicable method for plant counting. A real-time plant counting 

framework holds the potential to facilitate the early detection of plant diseases, pests, 

and other issues, thus mitigating the risk of crop losses. By promptly identifying such 

issues, farmers can implement appropriate preventive measures to ensure the health 

and productivity of their crops. 
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Chapter 3: Proposed Framework 

A generalized framework that can replace the computational expensive process of 

orthomosaic formation is proposed as shown in Figure 3.1. The framework consists of 

a detection module for which object detection and semantic segmentation is evaluated. 

Another real time system is also proposed based on object detection in conjunction 

with multiple object tracking.  

3.1 Data Collection 

   We have obtained a new dataset of tobacco fields in Peshawar, Pakistan using a DJI 

Mavic Mini drone equipped with a high-resolution RGB camera, recording aerial data 

at a rate of 20-30 frames per second. The dataset comprises two fields of tobacco plants 

captured during the early growth stage, approximately 15-40 days after planting, at a 

resolution of 1920 x 1080 pixels. The two distinct tobacco fields are recorded at a rate 

of 20-30 frames per second. This resulted in the creation of two separate field videos, 

Figure 3.1: Proposed General Framework 
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each representing a different tobacco field. To facilitate evaluation and ground truth 

analysis, these videos are further divided into smaller, distinct clips. The clips are given 

specific names, namely DATASET-1, DATASET-2, DATASET-3, DATASET-4, and 

DATASET-5, which is consistently used throughout the study to refer to the respective 

datasets. This naming convention ensured clarity and consistency when referring to 

specific clips during analysis and discussions. 

Each dataset captured the movement of the drone in a single direction, maintaining a 

consistent flight path throughout the recording. This one-directional movement 

allowed for easier analysis and comparisons between datasets, as the drone's motion 

was consistent and predictable within each clip. Images of the tobacco dataset is shown 

in Figure 3.2, depicting different soil textures and sunlight conditions. This stage is  

considered optimal for plant counting as the correct agricultural inputs can boost 

production, and weed infestation is relatively low. However, due to manual control of 

the UAV, there may be speed and height variations, resulting in uneven frame overlap. 

To avoid counting repetition caused by overlap, an overlap detection technique has 

been devised. 

 

  

 

 

 

 

 

 

 

 

Figure 3.2: Samples of Acquired data set under different sunlight and soil 

conditions. 

3.2 Overlap Detection 

In this proposed framework, frames are extracted from video clips with a 40-50% 

overlap between consecutive frames. The detection of overlapping regions between 

frames is crucial for accurate plant counting. To ensure reliable counting results, it is 

necessary to accurately mark and determine the overlapping regions. By detecting and 
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delineating these regions, potential issues such as double-counting or miscounting of 

plants can be avoided.  

The process begins with feature extraction, where distinctive features are extracted 

from the frames. These features act as descriptors for identifying corresponding 

regions across frames. Next, feature matching is performed to establish 

correspondences between features from adjacent frames. Once correspondences are 

established, perspective transformation is applied to align the overlapping regions 

correctly. This transformation compensates for any perspective distortions or 

differences in viewpoints, ensuring accurate registration of the overlapping areas. This 

enhances the accuracy of plant counting by addressing the challenges posed by 

overlapping regions. 

3.2.1 Feature Extraction 

Feature detection and description is an active area of research in computer vision. It 

involves obtaining features that are highly distinctive and repeatable against various 

image transformations, which is crucial in many applications. The two most popular 

algorithms for multiscale feature detection and description are SIFT[23] and SURF. 

SIFT features use a Difference of Gaussians operator applied through a Gaussian scale 

space to obtain feature locations and build a descriptor vector of 128 elements based 

on gradient orientation. SURF features are inspired by SIFT and can be computed 

much faster using the integral image. They use a rectangular grid of 4x4 subregions 

and a sum of Haar wavelet responses weighted by a Gaussian centered at the interest 

keypoint to build a descriptor vector of 64 or 128 elements. The Gaussian scale space 

and sets of Gaussian derivatives are commonly used for scale space analysis in both 

the approaches and their related algorithms. However, it should be noted that Gaussian 

scale space does not preserve the natural boundaries of objects and equally smooths 

details and noise at all scale levels. 

We have employed KAZE features[24], a technique for detecting and describing 

multiscale 2D features in nonlinear scale spaces. Unlike previous methods that depend 

on the Gaussian scale space, our approach is based on nonlinear scale spaces utilizing 

efficient Additive Operator Splitting (AOS) techniques and variable conductance 

diffusion. Although our method incurs a slightly higher computational cost, our results 
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demonstrate significant improvements in both detection and description performance 

compared to previous state-of-the-art methods. 

 

 

 

 

 

 

 

 

 

Figure 3.3: Feature Extraction with KAZE 

3.2.2 Feature Matching  

Feature matching is the process of comparison of features across images. We get a set 

of pairs of matching features for two images. As discussed in previous section we have 

extracted KAZE feature. So, to match the KAZE features of two successive frames, a 

(Fast Library for Approximate Nearest Neighbors) Flann-based matcher is employed. 

This matcher comprises a collection of algorithms that are specifically designed for 

speedy nearest-neighbor searches in high-dimensional features and large datasets. It is 

faster than (Brute Force) BF-based Matcher for significant datasets. The matches 

obtained from this process are sorted based on Euclidean distance, and the top 500 

matches are deemed as good matches. These good matches are then utilized to estimate 

homography. Not all of the matched keypoints may be relevant. To separate the inliers 

from the outliers, the RANSAC (Random sample consensus) algorithm is used. The 

feature matching with two consecutive frames is shown in Figure 3.4. 

 

Figure 3.4: Feature Matching  
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3.2.3 RANSAC 

RANSAC (Random Sample Consensus) [25] is a robust method used to estimate 

models in the presence of noise and outliers. It provides a reliable approach for 

handling datasets that contain erroneous or inconsistent data points. The RANSAC 

procedure can be divided into three key steps, each contributing to the robust 

estimation process. 

The first step involves sampling the dataset into smaller subsets, treating these 

samples as inliers. This random sampling strategy helps in identifying potential data 

points that conform to the underlying model. By considering these samples as inliers, 

RANSAC reduces the influence of outliers in the estimation process. 

In the second step, the model is estimated using the selected inliers. The algorithm 

computes a model based on the subset of inlier points, aiming to find the best-fit 

representation of the underlying structure within the data. The estimated model 

captures the relationship between the data points, despite the presence of noise and 

outliers. 

In the third step, the algorithm calculates the score of inliers and outliers for the 

estimated model. Each data point is evaluated based on its fit to the estimated model, 

allowing for the differentiation between inliers (data points consistent with the model) 

and outliers (data points deviating from the model). This scoring mechanism helps to 

further refine the estimation by emphasizing the contribution of reliable inliers and 

reducing the impact of noisy outliers. 

These three steps are repeated iteratively, typically over multiple iterations, to 

identify the model with the highest number of inliers. The number of iterations 

required depends on factors such as the probability of inliers, the probability of 

outliers, and the minimum number of samples necessary for accurately estimating the 

model. 

3.2.4 Homography 

The source points are determined by selecting the keypoints of sorted matches from 

the first frame or image, while the destination points are identified by selecting the 

keypoints of sorted matches from the second frame or image. These points are then 

used to compute the Homography, which relates the images of a plane captured by 
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different camera orientations or positions Figure 3.5 shows the homography between 

consecutive frames. 

 

Figure 3.5: Overlap region identification with homography  

Homography is represented by a 3-by-3 matrix (H) in homogeneous coordinates and 

can be calculated for each match using RANSAC to obtain the solution with the least 

number of outliers. 

3.2.5 Overlap Removal 

The process of identifying the overlapping regions between consecutive frames 

using the homography matrix, which is obtained through the previously described 

steps is shown in Figure 3.6. Once the overlapping region is identified, it is masked. 

This process effectively identifies and removes the overlapping areas from the image. 

 

Figure 3.6: Overlap detection and masking pipeline 

3.3 SVM as a Detection module 

To find the optimal solution for plant detection for the proposed general framework 

we have utilized multiple models including the fundamental classification model 

Support Vector Machine (SVM) that lies in the realm of Machine learning(ML). 
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3.3.1 SVM 

Support Vector Machine (SVM)[25] is a fundamental algorithm that holds great 

importance for machine learning experts. One of the reasons for its popularity is its 

ability to achieve remarkable accuracy while requiring relatively less computational 

power. SVM is a versatile algorithm that can be applied to both regression and 

classification tasks, although it is predominantly used for classification objectives. Its 

effectiveness and reliability in solving classification problems have made it a preferred 

choice in various domains. 

SVM operates by constructing hyperplanes in a high-dimensional feature space to 

effectively separate different classes of data points. It aims to find an optimal decision 

boundary that maximizes the margin between classes, leading to improved 

generalization capabilities and better classification performance on unseen data. By 

utilizing a subset of training data points called support vectors, SVM can efficiently 

classify new instances based on their proximity to the decision boundary. 

3.3.2 Proposed Framework with SVM 

In the proposed general framework, we conducted an evaluation of Support Vector 

Machine (SVM) as the plant detection module, as depicted in Figure 3.7. The SVM 

module was trained on descriptors extracted from KAZE features, which are robust 

and distinctive image features commonly used in computer vision tasks. 

To train the SVM, we manually labeled 4000 descriptors from the dataset. Each 

descriptor is assigned a label indicating whether it belonged to the tobacco plant or 

not. This labeled dataset is then utilized to train the SVM classifier, enabling it to 

distinguish between plant and non-plant descriptors. In order to estimate the total plant 

count, the tobacco plants are further grouped into clusters using the Euclidean distance. 

This clustering process grouped similar plant descriptors together, forming distinct 

clusters. The number of centroids, which represent the centers of these clusters, was 

then evaluated to determine the total plant count. The results obtained using the SVM-

based approach are not satisfactory, as explained in further chapters of our study. 

Consequently, we explored an alternative approach by evaluating a Deep Learning 

(DL) semantic segmentation architecture. 
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Figure 3.7: Proposed general framework using SVM 

3.4 Semantic Segmentation as Detection Module 

Segmentation is a crucial technique in various applications, including object 

detection and autonomous vehicles. Semantic segmentation is a technique that assigns 

labels to each pixel in an image, thereby segmenting the entire scene. In this research, 

the authors used LabelMe[26] to annotate 97 images for training, validation, and 

testing a deep learning architecture U-Net [27] for semantic segmentation.  

3.4.1 U-Net  

For image segmentation, a particular kind of network is employed: the UNet 

architecture. The U-Net model is a type of convolutional neural network that can 

extract features from low-resolution and small-sized images. It has a U-shaped 

structure and is made up of a bridge connecting a decoder network (expanding path) 

and an encoder network (contracting path). 
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Figure 3.8: U-Net architecture[27] 

 The encoder network serves as a feature extractor, learning an abstract representation 

of the input image via a series of encoder blocks. Each encoder block typically consists 

of two consecutive operations: a convolutional layer followed by a non-linear 

activation function such as ReLU (Rectified Linear Unit) and a max pooling layer. 

Decoder consists of a series of decoder blocks. Each decoder block typically consists 

of an upsampling or transposed convolutional layer to increase the spatial dimensions 

while reducing the number of feature channels. This is followed by a concatenation 

operation that combines feature maps from the corresponding encoder block through 

skip connections as shown in Figure 3.8. It has been found to outperform other popular 

architectures like SegNet, PSPNet, and DeepLab v3+ in comparative studies[28]. U-

Net has become popular in agriculture domain and has become popular in agriculture 

for plant and weed segmentation and classification[29]. 
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Figure 3.9: Proposed framework with semantic segmentation for plant detection 

Encoder of the U-Net can be pretrained network, commonly used pretrained 

networks include VGG16, RESNET34, and Inceptionv3. 

3.4.1.1 VGG16 

VGG16 is a convolutional network [30] shown in Figure 3.9. It is trained on 

ImageNet dataset, it is the improved version of AlexNet. VGG16 consists of a total of 

138 million parameters. A notable aspect of the architecture is that all convolutional 

kernels have a size of 3x3, while the max-pooling kernels have a size of 2x2 with a 

stride of two. 
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Figure 3.10: VGG16 Architecture[27] 

3.4.1.2 ResNet34  

Deep networks are not always the better they might result in vanishing gradient 

problem. Residual Networks known as ResNets[31] effectively solve this vanishing 

gradient problem. ResNets are composed of residual blocks, ResNet34 a 34-layer 

residual neural network is shown in Figure 3.11. ResNet presents a novel approach to 

address the vanishing gradient problem by introducing "skip connections" as an 

innovative solution. This technique involves stacking multiple identity mappings, 

which are convolutional layers that initially have no impact on the output, and then 

skipping these layers while reusing the activations from the preceding layer. By 

implementing skip connections, ResNet accelerates the initial training process by 

compressing the network into a reduced number of layers. 

 

Figure 3.11: ResNet34 Architecture[31] 



22 

 

3.4.1.3 InceptionV3 

When compared to VGGNet, Inception Networks[32] have demonstrated higher 

computational efficiency, both in terms of the network's parameter count and the 

economical cost incurred, including memory and other resource utilization. By 

incorporating factorizing convolutions and aggressive dimension reductions within a 

neural network, they have achieved comparatively lower computational costs while 

preserving high quality. 

3.4.2 Proposed Framework with U-Net 

We have evaluated U-Net as plant detection module in the proposed general 

framework as shown in Figure 3.9. The U-Net with VGG16 as its encoder was trained 

using Google Colab[33]. The segmentation results in binary images where vegetation 

pixels are assigned one, and non-vegetation pixels are assigned zero. Median blurring 

and morphological operations are used to remove noise, and counting is performed 

using connected pixel area to obtain the total tobacco plant count in the images. 

However, counting plants that appear on the boundary of the images leads to inaccurate 

total counts. Therefore, corner plants in one frame are counted and ignored in the next 

frame, resulting in better accuracy but missing some plants. To address this, the authors 

evaluated object detection performance for plant counting.  

3.5 Object Detection as Detection Module  

State-of-the-art object detection models have made significant advancements in the 

field, with one prominent example being YOLO (You Look Only Once) [8], [18]. In 

our study, we specifically focused on evaluating the performance of YOLOv7 [18] for 

the task of plant counting. YOLOv7 is a variant that builds upon the YOLO 

architecture, incorporating various improvements and optimizations. By utilizing 

YOLOv7 for plant counting, we aimed to assess its capabilities and effectiveness in 

accurately detecting and counting plants in an efficient manner. This involved 

analyzing its performance on a specific dataset and evaluating its accuracy, speed, and 

robustness in comparison to other object detection models. 
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The choice of YOLOv7 for this study was driven by its reputation as a reliable and 

high-performing object detection model. By evaluating its performance specifically in  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Comparison of other object detection models with YOLOv7[34] 

the context of plant counting, we sought to contribute to the understanding of its 

applicability in agricultural and plant-related applications. 

3.5.1 YOLOv7 

YOLOv7 is optimized with model reparameterization, compound model scaling and 

dynamic label assignment without increasing the inference cost. It outperformed 

transformer-based object detection models.  Its comparison with other models is shown 

in Figure 3.12. 

3.5.2 Proposed Framework with YOLOv7 

Pre-trained basic YOLOv7 is used instead of its scaled version. The model is trained 

on 83 images and annotated using LabelImg [35]. After overlap detection, the frames 

are passed to train YOLO, and then number of bounding boxes are calculated to find 

the total count as shown in Figure 3.13. 
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The highest accuracy is achieved at a confidence threshold of 0.6. The problem of 

corner plants is much less than semantic segmentation as a bounding box is formed 

after correctly classifying something as tobacco rather than on connected pixels area. 

The above-mentioned techniques require very little time compared to state-of-the-art 

orthomosaic-based counting techniques. To make the system real-time, we evaluate an 

object detection model with tracking for tobacco plant counting.  

Figure 3.13: Proposed framework with object detection 

 

3.6 Object Detection and Tracking  

We have assessed the effectiveness of object detection combined with tracking for 

plant counting. This approach eliminates the need for overlap detection, as the plants 

are tracked, which prevents multiple counts of the same plant due to overlap. We 

conducted evaluations using recorded videos, but this technique can also be applied in 

real-time scenarios. For real-time plant counting, we integrated the YOLOV7 trained 



25 

 

in the previous section with the SORT[19] algorithm. See Figure 3.14 for a graphical 

representation of this approach. 

 

 
Figure 3.14: Proposed framework with object detection & tracking 
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Chapter 4: Results & Discussion 

 

In order to assess the efficiency of the general plant counting development, it is 

crucial to critically evaluate each module. We conducted a comprehensive evaluation 

of every module of to gain valuable insights into the proposed methods. 

4.1 Proposed Framework with Semantic Segmentation  

In the evaluation of the proposed framework with semantic segmentation, we have 

evaluated plant detection module and the overall counting independently. 

4.1.1 Evaluation Metrics for Semantic Segmentation 

Evaluation of semantic segmentation model, involve several such as Intersection 

over Union (IOU), Precision, and Recall. These metrics play a crucial role in assessing 

the performance and accuracy of the model's predictions. 

4.1.1.1 IOU 

IOU is a widely utilized metric for semantic segmentation, ranging from 0 to 1. A 

value of 0 indicates the worst-case scenario, where there is almost no overlap between 

the predicted object and the ground truth. Conversely, a value of 1 represents a perfect 

prediction with 100% overlap between the ground truth and the prediction. 

𝐼𝑂𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝
           (1) 

4.1.1.2 Precision 

Precision measures the proportion of true positives (TP) to the total number of positive 

predictions (TP + FP). A high precision value indicates accurate predictions with a low 

rate of false positives. It quantifies the model's ability to correctly classify positive 

instances. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                  (2) 
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4.1.1.3 Recall 

Recall, on the other hand, calculates the proportion of true positives (TP) to the total 

number of actual positive cases (TP + false negatives (FN)). A high recall value 

indicates that the model predicts most positive cases as positive. It assesses the model's 

ability to capture most positive instances. 

TP: the number of correctly classified pixels belonging to the target class.  

FP: the number of pixels incorrectly classified as the target class when they are not 

FN: represents mistakenly classified pixels of the target class as other classes or 

background. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                        (3) 

We conducted an evaluation of the U-Net architecture using Eq. 1, Eq. 2, and Eq. 3. 

This evaluation encompassed two approaches: transfer learning and fine-tuning. 

4.1.2 Transfer Learning VS Fine Tuning 

Transfer learning involved initializing the network with pre-trained weights and 

freezing all layers except the fully connected layers. On the other hand, fine-tuning 

included retraining all layers of the network. We have evaluated transfer learning and 

fine tuning for different backbones as shown in Figure 4.1. 

 

Figure 4.1: Comparison of fine-tuning and transfer learning with different 

backbone models for the U-Net architecture 

The results clearly indicate that fine-tuning produces better outcomes for 

RESNET34, VGG16, and Inception V3 in our specific problem. Fine-tuning, which 

involves further training of pre-trained models, leads to improved accuracy, 
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particularly when dealing with smaller datasets. This advantage makes the model more 

applicable to other plant species even with limited labeled data. 

Among the different configurations, U-Net with a fine-tuned VGG16 architecture as 

the backbone model achieves the highest IOU score of 0.9556. This score signifies the 

model's strong performance in accurately predicting the overlap between the predicted 

and ground truth segmentation masks. Moreover, this configuration also demonstrates 

higher precision, indicating the model's capability to minimize false positive 

predictions. Input image, U-NET prediction, and counting after morphological 

operations are shown for the initial/first frame with no overlap masked region in Figure 

4.2a, Figure 4.2b, and Figure 4.2c respectively. 

     (a) Input Frame                          (b)Prediction                     (c) Counting results 

Figure 4.2: Visualization of results obtained using U-Net for detection 

4.1.3 Evaluation Metrics for Plant Counting 

Proposed General framework is evaluated using the following metrics: 

4.1.3.1 Precision  

.A precision score of 1 signifies a high level of accuracy and reliability, indicating 

that all identified plants can be assumed to be real. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑜.  𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑃𝑙𝑎𝑛𝑡𝑠

 𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑝𝑙𝑎𝑛𝑡𝑠 +  𝑁𝑜. 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑝𝑙𝑎𝑛𝑡𝑠
   (4) 

4.1.3.2 Recall 

A recall score of 1 indicates high sensitivity, capable of detecting all plants present 

in the field. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑜.  𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑃𝑙𝑎𝑛𝑡𝑠

 (𝑁𝑜.  𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑝𝑙𝑎𝑛𝑡𝑠 +  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑒𝑑 𝑝𝑙𝑎𝑛𝑡𝑠)
            (5) 
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4.1.3.3 F1 Score 

An F1 score of 1 indicates accurate identification and counting of all plants (high 

recall) while minimizing false positives (high precision). This represents an ideal 

scenario without any overlooked plants or misidentifications during the counting 

procedure.  

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
            (6) 

Table 4.1: Crop Emergence Estimation using Semantic Segmentation 

Name No. of 

images 

True 

Count 

Estimated Precision  Recall F1 

Score  

DATASET-1 28 472 428 1 0.906 0.951 

DATASET-2 29 478 426 1 0.89 0.943 

DATASET-3 32 522 510 1 0.977 0.988 

DATASET-4 40 536 464 1 0.86 0.930 

DATASET-5 61 540 463 1 0.857 0.923 

Average     1 0.898 0.947 

 

Table 4.1 displays the estimated number of plants based on semantic segmentation. 

Five different video clips of data from three tobacco fields are used to evaluate the 

model. Dataset 1, Dataset 2, Dataset 3, Dataset 4, and Dataset 5 are the different video 

clips. The estimated count is the outcome of the framework, and the ground truth is a 

manual count performed in a video. The precision, recall, and F1 score are calculated 

using Eq. 4, Eq. 5, and Eq. 6 respectively. 

The proposed framework achieved impressive results with an average F1 score of 

0.947, a precision score of 1, and a recall score of 0.8992. These metrics indicate the 

framework's ability to accurately segment and count objects. 

One notable observation is that a higher precision in the semantic model leads to a 

higher precision in the counting process, effectively minimizing false positive 

detections. Additionally, a higher Intersection over Union (IOU) of the U-Net model 

contributes to accurate segmentation masks, reducing the chances of both false positive 
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and false negative plant detections. Consequently, the overall plant counting becomes 

more precise. 

4.1.4 Challenges and Limitations of the Proposed Framework with Semantic 

Segmentation 

Figure 4.3a represents the input image with the manually cropped overlap region, 

while Figure 4.3b shows the predicted image after the same region has been cropped. 

Additionally, Figure 4.3c displays the result of the proposed framework with semantic 

segmentation, which includes cropping the identified overlap region, applying 

morphological operations, and performing counting based on connected pixel area. 

The data presented in Table 4.1 reveals a consistent pattern of underestimation in 

the estimated counts compared to the ground truth counts. This underestimation can 

be attributed to two primary factors depicted in Figure 4.3. Firstly, there are plants that 

are not included in the count due to their removal from the predicted images through 

the application of morphological operations. These operations may inadvertently 

eliminate certain plants, resulting in their exclusion from the final count. Secondly, we 

have excluded boundary plants in one of the two consecutive frames are excluded to 

avoid double counting plants that partially reside at the boundaries of both frames. Due 

to this some of the plants are not counted at all resulting in underestimation. 

             (a) Input                     (b)Plant detection                (c)Plant counting 

Figure 4.3: Qualitative analysis of proposed framework with U-Net 

4.2 Proposed Framework with Object Detection 

In this study, the model we used for plant counting was trained on a carefully curated 

dataset consisting of 83 images. These images were selected to represent a diverse 

range of plant types, growth stages, and environmental conditions commonly 

encountered in the target applications. 
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To ensure the reliability and generalizability of our model, we performed rigorous 

validation on a separate set of 20 images that were not included in the training dataset. 

This validation set allowed us to assess the model's performance on unseen data and  

                     (a) Input Frame                                       (b)Prediction 

Figure 4.4: Visualization of results obtained using YOLOv7 for detection 

determine its ability to generalize to new instances. The evaluation of the model on the 

validation set yielded exceptional results, with a mean average precision (mAP) of 

0.988. This high mAP score is indicative of the model's remarkable accuracy and 

performance in accurately detecting plants. The tobacco detection using this trained 

object detection model (YOLOv7) is demonstrated in Figure 4.4. The counting of 

tobacco plants is accomplished by determining the number of bounding boxes 

generated after the detection process. 

Table 4.2: Crop Emergence Estimation using Object Detection 

Name No. of 

images 

True 

Count 

Estimated Precision  Recall F1 

Score 

DATASET-1 28 472 460 1 0.97 0.987 

DATASET-2 29 478 500 0.956 1 0.977 

DATASET-3 32 522 535 0.975 1 0.988 

DATASET-4 40 536 498 1 0.929 0.963 

DATASET-5 61 540 459 1 0.85 0.918 

Average    0.986 0.9498 0.966 

 

Table 4.2 presents the evaluation results of the proposed algorithm. The evaluation 

metrics include ground truth, accuracy, precision, and recall, which were calculated as 

described in the previous section. The algorithm achieved an average F1 score of 

0.9667, a precision score of 0.9852, and a recall score of 0.9484. These results 
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demonstrate that the proposed algorithm is a reliable solution for plant detection, 

exhibiting good sensitivity. 

The achieved accuracy is higher than that of semantic segmentation alone, primarily 

due to the superior precision of the model employed in the proposed algorithm. The 

higher precision ensures the detection of all plants in the image. However, there is still 

some variance observed in the estimated counts compared to the ground truth counts.  

4.2.1 Challenges and Limitations of the Proposed Framework with Object 

Detection 

This variance in the observed estimated count can be attributed to two factors. 

Firstly, when plants are located at the corners of consecutive frames, they may be 

counted twice, leading to a higher estimated count than the ground truth. This occurs 

because partially present plants at the corners can appear as separate entities in both 

frames, resulting in their double counting. 

Secondly, datasets that contain smaller plants tend to have a lower estimated count 

compared to the ground truth. This is due to the challenge of accurately identifying 

very small tobacco plants, resulting in their exclusion from the count. 

  To provide visual evidence of these factors, Figure 8 showcases the same input image 

as in Figure 4.2a. In Figure 4.5, the solid blue circles represent the partially present 

corner plants, highlighting the possibility of double counting. The figure also 

emphasizes the presence of smaller plants that are not classified as tobacco, 

contributing to the variance between the estimated count and the ground truth. 

 
                  (a) Input Frame                                    (b) Plant detection & counting 

Figure 4.5: Qualitative analysis of proposed framework with YOLOv7 
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4.3 Proposed Framework with Object Detection and Tracking  

  The process of tobacco plant estimation utilizing object detection and tracking is 

illustrated in Figure 4.6, providing a visual representation of the algorithm's workflow. 

The detected tobacco plants are enclosed within bounding boxes, which are annotated 

with unique IDs for identification and tracking purposes. The estimation of the plant 

count is derived from the total number of generated IDs, allowing for an accurate 

quantification of the tobacco plants in the given video clips. To assess the performance 

and effectiveness of this technique, comprehensive evaluation results are presented in 

Table 4.3. This table showcases the quantitative metrics obtained from the evaluation, 

offering insights into the algorithm's performance and its ability to accurately estimate 

the plant count in the video clips. 

  

 

 

 

 

 

 

                     (a) Input frame                                   (b) Detection & tracking  

Figure 4.6: Visualization of results obtained using YOLOv7 & SORT 

The proposed methodology demonstrates great promise for real-time estimation, 

showcasing a recall score of 1.  

Table 4.3: Crop Emergence Estimation using Real-Time Applicable Framework 

   

Name True 

Count 

Estimated Precision  Recall F1 score 

DATASET-1 472 496 0.951 1 0.974 

DATASET-2 478 518 0.922 1 0.959 

DATASET-3 522 566 0.922 1 0.959 

DATASET-4 536 560 0.957 1 0.978 

DATASET-5 540 578 0.931 1 0.966 

Average    0.9336 1 0.967 
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The high recall score indicates excellent sensitivity in plant detection, as it 

successfully captures all the plants present in the scene. Furthermore, the methodology 

achieves a good enough precision, suggesting a high level of accuracy in the counting 

process. The combination of high recall and satisfactory precision makes this approach 

a promising solution for plant counting tasks. By effectively detecting and accurately 

counting the plants, it addresses the key objectives of the estimation process. The 

methodology's ability to achieve a recall score of 1 implies that it leaves no room for 

missing any plants, ensuring comprehensive coverage. 

With its real-time capabilities and a balance between sensitivity and precision, this 

methodology offers significant potential in various applications where accurate and 

timely plant estimation is crucial. Researchers and practitioners can leverage this 

promising approach to enhance plant monitoring, agricultural management, and 

related fields where counting and tracking plants are essential for decision-making and 

analysis. 

4.3.1 Challenges and Limitations of the Proposed Framework with Object 

Detection & Tracking 

An observation from the evaluation is that the estimated count is higher than the true 

value. This discrepancy can be attributed to the switching IDs of partial tobacco plants 

at the side rows of the video clips. When occlusion occurs, and a partially visible plant 

reappears in the frame, it is detected as a new entry with a different ID. As a result, the 

count is inflated, leading to an overestimation of the tobacco plant population. 

This issue highlights a challenge in accurately tracking and counting plants when 

dealing with occlusion and the reappearance of the same plant. The switching IDs 

phenomenon can introduce inaccuracies in the estimation process, especially in 

scenarios where partial plants are present at the edges of the video clips. Addressing 

this challenge requires further refinement of the object tracking algorithm to handle 

occlusion and maintain consistent IDs for the same plant throughout the video 

sequence. By mitigating the switching IDs problem, more accurate and reliable plant 

counts can be obtained using the object detection and tracking approach. 
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Figure 4.7: Comparison of plant counting techniques 

Crop emergence estimation with all the techniques is observed in Figure 4.7. which 

presents a detailed comparison of the proposed techniques, showcasing notable 

patterns in the estimated plant counts. The findings demonstrate distinct characteristics 

among the different approaches. 

The semantic segmentation technique consistently yields lower plant counts, 

suggesting a tendency towards underestimation. On the other hand, the real-time plant 

counting framework consistently produces higher counts, indicating a tendency 

towards overestimation. This consistent pattern observed in both techniques suggests 

that their performance is independent of the nature of the dataset.  

In contrast, the object detection-based technique exhibits variance in the plant count. 

This variance indicates a dependency on the specific characteristics of the dataset, such 

as plant density, size, and arrangement. The results highlight the sensitivity of the 

object detection approach to the dataset's unique features, leading to fluctuations in the 

estimated plant counts. 
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Figure 4.8: Speed Analysis 

Figure 4.8 illustrates the speed analysis of the proposed techniques. The real-time 

plant counting framework, evaluated on video data, demonstrates relatively higher 

average processing time compared to the other methods. However, the results highlight 

the efficiency of the proposed pipelines, as depicted in Figure 1, which require 

significantly less time and computational power compared to state-of-the-art 

techniques that involve orthomosaic formation. 

It is worth noting that all the computations for this research were performed using 

Google Colab. This choice of computing platform contributes to the efficient 

processing of the proposed techniques while maintaining computational feasibility. 

The findings presented in Figure 10 provide valuable insights into the trade-off 

between speed and accuracy in the various plant counting approaches. Researchers and 

practitioners can utilize this information to select the most suitable technique based on 

their specific requirements, considering the desired level of real-time capability and 

computational resources available. 
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4.3.2 Performance Comparison of YOLOv7 and YOLOv8 for Plant Counting in 

the Proposed Framework 

We have also evaluated the recently updated version of YOLO, YOLOv8 for our 

proposed framework that incorporates object detection and tracking. The detection 

module using YOLOv7 was replaced with YOLOv8. 

For better evaluation we have trained and validated YOLOv8 with the same images 

as used for training and validating YOLOv7 that results in 0.99 MAP.  

Figure 4.9 shows tobacco plant detection with both YOLOv7 and YOLOv8 on the 

same video clip. Solid red circle shows weed. It can be clearly observed that YOLOv8 

classified weed as tobacco plant. Whereas YOLOv7 did not detected weed as tobacco 

plant. 

                 (a) UsingYOLOv7 & SORT                         (b) YOLO8 & SORT 

Figure 4.9: Comparison of plant detection with YOLOv7 vs YOLOv8 

Figure 4.9 illustrates the occurrence of misclassifications where weeds are 

incorrectly identified as tobacco plants within our proposed framework. The solid red 

circles highlight all the instances of misclassification. It is evident that the performance 

of the YOLOv8 model is not up to the mark for our proposed general framework. 

To address this issue, one potential solution is to enhance the training of the model 

by incorporating three distinct classes: weeds, tobacco plants, and ground. By 

including a specific class for weeds, the model can learn to differentiate more 

effectively between the different types of vegetation present in the field. This approach 

has the potential to improve the accuracy of the plant classification process within our 

framework. Misclassification of weed as tobacco plant is represented in Figure 4.10 in 

which solid red circle highlights all the misclassified instances. Hence, for our 

proposed framework YOLOv8 shows poor results. This might be improved by training 

the model with three classes; weed, tobacco, and ground. 
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(a) Using YOLOv7 & SORT                           (b) Using YOLOv8 &SORT 

Figure 4.10: Comparative analysis of plant detection performance between 

YOLOv7 & YOLOv8 models 

4.4 Orthomosaic based Plant Counting 

We also tested orthomosaic-based counting to highlight the time-efficiency of the 

proposed plant counting framework, which consists of orthomosaic formation 

followed by patchifying (extraction of small images) this very high-resolution image 

to smaller images, plant detection on patches using previously discussed in Section 4.2    

trained YOLOv7, and reconstruction of large image from these plant-detected patches.  

(a) Orthomosaic of Dataset-1                        (b) Blurred Edges Removed 

Figure 4.11: Orthomosaic Formation 

Figure 4.11 depicts the orthomosaic of Dataset-1. Agisoft Metashape[36] is used to 

create the orthomosaic. Orthomosaic is preprocessed to remove blurred edges as 

shown in Figure 4.11b and resized for patch extraction with the least amount of overlap 

between patches. The reconstruction of a large image from detected patches is used to 

identify plants that are counted twice because they are present in more than one patch.  
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During our evaluation, we have observed a limitation in the orthomosaic formation 

process, which is the possibility of missing frames. In some instances, certain frames 

not included during the construction of the orthomosaic in the alignment o frames. As 

a result, these excluded frames can lead to an underestimation in the manual plant 

count within the orthomosaic. It is important to address this limitation because the 

absence of these frames can result in an incomplete representation of the plant 

population within the area of interest. By missing frames, there is a risk of not 

accounting for all the plants present, leading to a lower count than the actual number 

of plants. 

(a) Object detection on a patch                (b) Recontruction after detection                  

Figure 4.12: Orthomosaic based Plant Counting 

Figure 4.12 shows the plant detected patched of resolution 1920×1920 and a 

reconstructed large image to detect the double detection of a single plant present in 

more than one patch. Figure 4.13 depicts that manually counting plants in an 

orthomosaic results in a count of 457 which is lower than the observed ground truth 

count of 472 from a video clip. This underestimation suggests that one or more frames 

were missed during the time-consuming process of orthomosaic formation, and it may 

also be attributed to blurred corners that hindered accurate plant identification. In 

contrast, the proposed object detection-based technique is also evaluated on patches 

extracted from the orthomosaic. The evaluation revealed an underestimation in plant 

count, with a total of 421 plants detected. This count is lower compared to the count 

achieved by the proposed framework. 
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Figure 4.13: Comparison of proposed techniques with orthomosaic based plant 

counting 

To highlight the time efficiency of the proposed framework we have done time 

comparison. The orthomosaic formation process for DATASET-1, as depicted in 

Figure 4.10a, required a significant amount of time, taking approximately 6639 

seconds (equivalent to 1 hour and 50 minutes). In contrast, the proposed overlap 

detection algorithm, utilizing the same dataset and hardware specifications, achieved 

the desired results in a significantly shorter duration, completing the task in just 184 

seconds. Both process are done on the same system with hardware specifications of 

7.92 GB RAM, CPU Intel(R) Core(TM) i5-7200U, CPU 2.50GHz and AMD 

Radeon(TM) R5 M430 (Hainan) GPU. 
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Chapter 5: Conclusion 

We conducted a comprehensive comparison of techniques for early stand count 

estimation of tobacco plants using UAV data and DL models. The primary objective 

was to find a more efficient and accurate approach for tobacco plant counting, 

considering both time efficiency and computational requirements. 

The proposed generalized framework with different detection modules showcased 

promising results, demonstrating their potential for estimating tobacco plant counts in 

a shorter amount of time and with reduced computational power. One notable 

contribution of this study was the introduction of a novel approach for overlap 

detection based on visual features. This approach proved to be effective in achieving 

comparable counting accuracies to the computationally expensive orthomosaic-based 

methods commonly used in the field. 

By combining overlap detection with semantic detection, the researchers observed 

variances in the results, with an average F1 score of 0.947. It was observed 

misclassified pixels could introduce noise to the binary images, leading to slight 

discrepancies in the results. To overcome this, the researchers further explored the 

combination of overlap detection with object detection, resulting in an improved 

average F1 score of 0.9667, surpassing the performance of the segmentation-based 

approach. 

To evaluate the proposed techniques in real-time scenarios, a dedicated system for 

plant counting through object detection with tracking was assessed using recorded 

data. The system showed an average F1 score of 0.9672, exhibiting minimal variance. 

While the techniques showed overall effectiveness, certain challenges and areas for 

improvement were identified. For instance, during overlap detection, plants located at 

the boundaries of the images were partially present in both frames, leading to potential 

recounting issues. To mitigate this, we opted to ignore boundary objects in subsequent 

frames for the semantic segmentation-based approach. But this leads missing plants in 

counting and results in underestimated count. 

Moreover, the object detection approach exhibited higher sensitivity, resulting in the 

inclusion of some larger weeds being counted as plants and recounting some corner 

plants present in consecutive frames. We aim to address these by training the detection 
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model on weed class data as well and feature matching of every detected tobacco at 

the end of the proposed pipelined framework will solve double counting of 

corner plants. 

  Additionally, the detection and tracking approach encountered id switching for 

partial plants located at the corners of the video. This issue will be resolved by ensuring 

the drone's position stability during data collection, preventing horizontal shifts of 

plants at the vertical corners. 

However, it should be acknowledged that the collected aerial data used in the study 

had minimal weed infestation. So, the algorithm's performance might differ when 

dealing with higher levels of weed infestation. To address this limitation, future work 

will involve integrating the proposed algorithm with a weed classification technique 

previously proposed in [29]. Moreover all the datasets have one directional motion of 

the UAV. 

We will evaluate the proposed methods on other plant species in the future, 

expanding our applicability beyond tobacco. This will enable a broader understanding 

of the techniques' effectiveness and adaptability across various crops. 

The findings provide a foundation for enhancing precision agriculture practices and 

hold potential for broader applications in crop management and monitoring.  
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