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Abstract

The bio-electric activity of the heart can be modeled by Barrio-Varea-Aragon-Maini

(BVAM) model. This model covers normal rhythm and four arrhythmia that lie in the

chaotic region. This model exhibits several bifurcations, starting from fixed point bifur-

cation, Hopf bifurcation, period doubling and ultimately leading to chaos. An analytical

solution to the BVAM model is developed in the local region of Hopf bifurcation. Center

manifold reduction is applied to the main governing equations to reduce the order of

the system to limit cycle oscillations of center manifolds. Application of the method of

multiple scales is used on the center manifolds to develop a normal form of Hopf bifurca-

tion, which is then transformed back into the original coordinates. Comparison with the

numerical solution shows that the analytical solution matches well with the numerical

solution in the local region of the bifurcation. The value of the control parameter for pe-

riod doubling bifurcation is identified using the Floquet multipliers of the monodromy

matrix for the corresponding periodic solution. Shooting method is employed to get

monodromy matrix and form periodic and period doubling cycle. It identifies periodic

solution by iterating through the time period and initial conditions. The results of this

research can be used for sensitivity and parametric analysis. Such solutions also allow

simpler and low cost simulators for training and research purposes.

Keywords: Bio-electric activity of the heart, Center Manifold Reduction, BVAM model,

Bifurcations, Method of Multiple Scales
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Chapter 1

Introduction

1.1 Dynamical Systems

All natural phenomena are nonlinear in nature. From the change of weather, the flow of

fluids over different surfaces, the working of different engines to the beating of hearts, and

many more. Nonlinear systems are inherently complex and finding their solution is often

difficult. There are certain characteristics associated with nonlinear phenomena. These

characteristics can be forming a limit cycle in any given space, frequency manipulation,

aperiodic solution, and exhibiting chaotic behavior. In a nonlinear system, the change

of output or state variable is generally not proportional to the input.

In mathematics, nonlinear systems are represented by a set of differential equations with

at least one equation with more than one degree. The degree of an equation is defined

to be the highest exponent of a given differential equation.

1.1.1 Types of Solution

A nonlinear equation is often difficult to solve. Many types of solutions exist for linear

or nonlinear differential equations. This solution can be mainly classified into numer-

ical solutions and analytical solutions. A numerical solution generally consists of an

algorithm, an iterative scheme, or some set of sequence of rules, which when applied

to any given set of a linear or nonlinear differential equation, shows a solution of the

system. A numerical solution can only be visualized in a given phase space instead of

an equation form. The problem with the numerical solution is that it has to be run

over and over again to find the solution for different times, parameters, and initial and

1



Chapter 1: Introduction

Figure 1.1: A schematic of simple pendulum as an example

boundary conditions. In any iterative numerical solution, the accuracy of a numerical

solution depends upon the step size of time or any other spatial parameter and hence

the number of iterations. If one wants to find an accurate solution, he will have to do

more iterations, and therefore more time will be needed to solve for just one instance.

A solution in any given algebraic functional form is known to be the analytical solution.

For example, equation (1.1.1) shows a general representation of an analytical solution.

If the state variable of an equation is y which is time t dependent any function functional

form f dependent on the state variable, time, and some combination of parameters c

can be taken as the analytical solution

y(t) = f(y,t,c). (1.1.1)

The analytical solution, as opposed to the numerical solution, is difficult to find and in

many cases of complex nonlinear systems and even some linear systems, an analytical

solution is not possible. Of course, there are benefits to going with the difficulty of finding

an analytical solution that gives the upper hand to it. The benefits of the analytical

solution will be discussed in the later sections. That is why wherever possible, it is

best to find the analytical solution to the system. The simple pendulum has a general

governing equation given in equation (1.1.1),

d2u

dt2 + g

l
u = 0 (1.1.2)

and considering the case of a simple linear pendulum. A simple pendulum consists of a

bob of definite mass and is connected to a very little mass of rod that is attached to a

point from its other side. A pendulum is free to rotate on its axis. The solution of this

2



Chapter 1: Introduction

system oscillates around a fixed point or an equilibrium point. This oscillation is back

and forth and the diminishing of amplitude with time is very small which many times

in mathematics can be neglected.

u(t) = u0 cos
√

g

l
t (1.1.3)

A solution to this linearized system can be represented by a cosine function. It is

dependent upon initial condition u0, length of rod l and gravity g. This is the analytical

solution to a pendulum problem. This solution develops an understanding of the nature

of the system. For example in analytical solution terms with time t, is the angular

frequency ω =
√

g
l and its inverse is the time period T0 = 2π

√
l
g . That is the benefit

of an analytical solution. It establishes the fact that for a linear system, the only

important parameters for the time period of the pendulum are gravity and the length of

the pendulum rod. For a numerical solution, one has to break the differential time step

into discrete steps and iterate over time to have its solution. The accuracy of a solution

depends upon the size of the discrete steps

du

dt
|n = un+1 −un

tn+1 − tn
(1.1.4)

d2u

dt2 |n =
du
dt |n+1 − du

dt |n
tn+2 − tn

. (1.1.5)

1.1.2 Tools of Nonlinear Dynamics

A very basic approach to visualizing a solution is visualizing in time series. In a time

series plot, the state variable is plotted against time. This plot shows the state variable

value at any past, present, and future instance of time. An example plot is shown in

figure (1.2). In a Poincare section, the trajectory of any dynamical system is sampled

periodically. If there is a phase plane of n dimensions, then a n−1 dimension is taken,

and its intersection is taken out with the trajectory in the phase plane periodically. This

in turn transforms a periodic solution into a fixed point solution. An example plot is

shown in figure (1.3). In figure (1.3), the section
∑

is the Poincare section, and Qk and

Qk+1 are the intersection points of the trajectory in the specified phase space with the

section
∑

which appears as dots on the Poincare section. The power spectrum of a time

series describes how power is distributed across the frequency components that make up

3



Chapter 1: Introduction

Figure 1.2: An example of phase portrait plots

the signal. Any physical signal can be decomposed into several discrete frequencies or a

spectrum of frequencies over a continuous range using Fourier analysis. The spectrum

is the statistical average of a signal or type of signal (including noise) as analyzed in

terms of frequency content. An example plot is shown in figure (1.4).

1.1.3 Nature of Solution

There are multiple types of solutions for a system solely dependent upon time. These so-

lutions include fixed point solutions, periodic solutions, multiple-period solutions, quasi-

periodic solutions, and in many cases chaotic solutions.

A fixed-point solution or an equilibrium solution is a type of solution with a non-varying

steady state against time. In any phase portrait, the trajectory of this kind of solution

always approaches a fixed point with initial conditions provided in its proximity. An

example of such a case includes a real pendulum that after some oscillations approaches

an equilibrium point. In many situations temperature across the room or of an object

assumes a constant steady state value providing a fixed point or equilibrium solution.

4



Chapter 1: Introduction

Figure 1.3: An example of Poincare sections

There is a class of dynamic solutions in which the physical state changes with time even

in the steady state condition. Examples include the flutter of an aircraft wing, heart

beatings, flows over surfaces, and many others. This type of solution can be further dis-

tinguished as a periodic solution or quasi-periodic solution. A periodic solution repeats

itself over a constant period of time. The example includes an undamped pendulum,

flutter, and wind turbine oscillations. The periodic solution can be a limit cycle oscilla-

tion (LCO). LCO is associated with nonlinear systems and it is defined to be an isolated

steady close loop trajectory in phase space. The amplitude of the steady-state cycle is

independent of the initial conditions. flutter is its pure example. The power spectrum

of a periodic solution consists of the main harmonics and its odd or even harmonics or

both. A periodic solution can be converted into a map. A single-period solution can be

seen as a single dot on the Poincare section.

A periodic solution can have multiple periods. Beat is a phenomenon that contains

multiple period oscillations. A two-period solution can have two distinct frequencies in

the power spectrum. There is also a type of solution whose period changes after each

cycle. These types of solutions are called quasi-periodic solutions or aperiodic solutions.

The example includes the ECG of the normal rhythm of the heart. The Poincare section

of a two-period solution has two dots on it. For a quasi-periodic solution, the Poincare

section shows a close set of dots.

A distinct class of solutions for a deterministic system in which the predictability of the

next instance does not be guaranteed. This type of solution comes under the category

5
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Figure 1.4: An example of power spectrum plots

of chaos. A chaotic solution is generally identified using the Lyapunov exponent. A

Lyapunov exponent is the measurability of how two points in phase space which at time

t=0 are very close to each other evolve with time. Lyapunov exponent is the slope of

the difference between the two initial conditions close to each other evolving in time.

In a normal periodic or aperiodic solution with LCO, two initial conditions close to

each come further close and eventually come to the same point or trajectory in case of

a stable solution. However, in the case of a chaotic solution, this difference increases

but is bounded in time. Therefore, the Lyapunov exponent of the chaotic solution is

positive.

1.2 Mechanical System of the Heart

The human heart is an important biological organ making life possible for human beings.

It primarily acts as a pump propelling blood to the whole body. Like any other pump,

it is actuated by electrical pulses in the form of action potential driving the overall four

chambers of the heart. Two of these chambers are called atria classified as the left and

right atrium and two are the ventricles which are situated at the bottom of the atria.

The heart is a combination of two pumps. The left side of the heart consisting of the

6
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Figure 1.5: Two trajectories in phase space from nearby initial conditions for under-

standing Lyapunov exponent

left atrium and left ventricle forms one of the pumps and the other pump consists of

the right atrium and right ventricle. The right pump of the heart pumps de-oxygenated

blood to the lungs where it is oxygenated and transferred to the left side pump of the

heart. The left side heart then propels the blood to the whole body.

Each atrium serves as a weak priming pump for the ventricle, assisting in the move-

ment of blood into it. The ventricles then provide the major pumping power that drives

blood either via the pulmonary circulation or the systemic circulation, depending on

which ventricle is used. The pericardium, a two-layer sac that covers and maintains the

heart in place, surrounds the heart. The heart’s special processes create a continuous

series of contractions known as cardiac rhythmicity, which is caused by action potentials

being sent all the surface of the cardiac muscle and causing the heart’s rhythmical beat.

Atrial muscle, ventricular muscle, and specific excitatory and conductive muscle fibers

are the three basic kinds of cardiac muscle found in the heart. The atrial and ventricular

forms of muscle contract in a similar fashion to skeletal muscle, but for a considerably

longer period of time since the heart is highly specialized excitatory and conductive

fibers. Instead of contractile fibrils, they have automatic rhythmical electrical discharge

in the form of action potentials or conduction of action potentials through the heart,

giving an excitatory system that governs the heart’s rhythmical beating.

7



Chapter 1: Introduction

Figure 1.6: Mechanical anatomy of heart [1]

Blood flows continuously into the atria from the great veins; roughly 80% of blood flows

directly through the atria into the ventricles, even before the atria contract. Following

that, atrial contraction normally results in a 20% filling of the ventricles. The atria act

as priming pumps, increasing the efficacy of ventricular pumping by up to 20%. The

heart, on the other hand, can continue to function under most settings even without this

extra 20% efficacy since it can routinely pump 300 percent to 400 percent more blood

than the resting body requires. If the atria fail to function, the difference is unlikely

to be recognized unless a person exercises; at that point, symptoms of heart failure,

including shortness of breath, may appear.

The opening of the valves is not audible while listening to the heart with a stethoscope

since it is a rather gradual operation that generally creates no noise. When the valves

close, however, the vanes of the valves and the surrounding fluids shake due to abrupt

pressure changes, causing the sound to flow in all directions through the chest. The

8



Chapter 1: Introduction

closing of the AV valves causes a sound when the ventricles contract. The initial heart

sound is characterized by a low vibration pitch and a relatively long duration (S1). Be-

cause the aortic and pulmonary valves close quickly towards the conclusion of systole,

one hears a sudden snap and the surroundings shake for a brief duration. The second

heart sound is the name given to this sound (S2).

The heart only pumps 4 to 6 liters of blood per minute while a person is at rest. The

heart may pump four to seven times this amount during vigorous activity. The primary

processes for controlling heart pumping are (1) intrinsic cardiac pumping regulation in

response to variations in blood flow into the heart; and (2) autonomic nervous system

control of heart rate and heart strength.

1.3 Electrical System of the Heart

The human heart is also an electrical oscillator exhibiting strong nonlinear behavior.

As discussed before specialized excitatory and conductive muscle fibers are the muscle

of the heart that produce or conduct electrical pulses. There are three primary nodes

where these pulses originated. These three nodes govern the perfect contraction and

expansion of the heart along with pumping blood. These nodes are known as sinoatrial

(SA) nodes located at the upper side of the atrium. The pulse originating here spreads

over the atrium valves and produces heart contraction. Then there is the atrioventricular

(AV) node which is located between the atrium and ventricle and is responsible for

initiating the excitation of the ventricle and also providing a delay to the start of ventricle

contraction in a cycle during the contraction of the atrium. Purkinje fibers conduct the

electrical pulses through the ventricles of the heart and are responsible for uniform

contraction of ventricles with no delay between the start and portion of the ventricle.

1.3.1 Action Potential in Cardiac Cycle

The action potential climbs from a highly negative value of around -85 millivolts between

beats to a slightly positive value of about +20 millivolts during each beat, as illustrated

in figure (1.8). After the first spike, the membrane stays depolarized for roughly 0.2

9



Chapter 1: Introduction

Figure 1.7: Electrical anatomy of the heart

seconds, forming a plateau, which is followed by rapid repolarization at the end of the

plateau. The existence of this plateau in the action potential allows cardiac muscle

contractions to persist up to 15 times longer than skeletal muscle contractions.

The extended action potential and plateau in cardiac muscle are due to at least two

main changes in membrane characteristics between cardiac and skeletal muscle. First,

the action potential of skeletal muscle is nearly entirely triggered by the abrupt opening

of a large number of fast sodium channels, which enable massive amounts of sodium ions

from the extracellular fluid to enter the skeletal muscle fiber. Fast channels are so named

because they are only active for a few thousandths of a second before quickly closing.

Repolarization happens at the conclusion of this closure, and the action potential is over

in less than a thousandth of a second.

The opening of two types of channels in cardiac muscle causes the action potential to

be triggered: A unique population of L-type calcium channels (slow calcium channels),

also known as calcium-sodium channels, and voltage-activated rapid sodium channels

comparable to those found in skeletal muscle are one way. This second class of sodium

channels differs from fast sodium channels in that they take longer to open and, more

importantly, they stay open for several tenths of a second. During this time, a large
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Figure 1.8: Acton potential [1]

number of calcium and sodium ions move through these channels to the interior of the

heart muscle fiber, resulting in a prolonged period of depolarization and a plateau in the

action potential. Furthermore, calcium ions coming during this plateau phase stimulate

the muscle contractile process, whereas calcium ions driving skeletal muscle contraction

originate from the sarcoplasmic reticulum inside the cell. Regardless of the source, lower

potassium permeability reduces the outflow of positively charged potassium ions during

the action potential plateau, preventing the action potential voltage from returning to

its resting level too soon. When the slow calcium-sodium channels close after 0.2 to 0.3

seconds and the input of calcium and sodium ions stops, the membrane permeability

for potassium ions rapidly rises. The quick loss of potassium from the fiber causes the

membrane potential to revert to its resting level, thus stopping the action potential.

Lower potassium permeability, regardless of the source, lowers the outflow of positively

charged potassium ions during the action potential plateau, preventing the action poten-

tial voltage from recovering too quickly to its resting state. The membrane permeability

for potassium ions rapidly rises when the sluggish calcium-sodium channels close after

0.2 to 0.3 seconds and the input of calcium and sodium ions ends. The action potential is

stopped when potassium is rapidly lost from the fiber, causing the membrane potential

11
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to return to its resting state.

1.3.2 Phases in Cardiac Cycle

Figure (1.9) summarizes the phases of the action potential in cardiac muscle and the

ion flows that occur during each phase.

Phase 1- Depolarization: Sodium channels open quickly. The membrane potential be-

comes more positive as the cardiac cell is activated and depolarized. Fast sodium chan-

nels (voltage-gated sodium channels) open and allow sodium to flow quickly into the

cell, depolarizing it. Before the sodium channels close, the membrane potential reaches

roughly +20 millivolts.

Phase 2- Initial repolarization: The sodium channels close quickly. When the sodium

channels close, the cell repolarizes, and potassium ions exit through open potassium

channels.

Phase 3- Calcium channels open: The potassium channels are closing with the enhanced

calcium ion permeability and decreased potassium ion permeability, the action potential

plateaus after a brief initial repolarization. During phases 1 and 0, the voltage-gated

calcium ion channels slowly open, allowing calcium to enter the cell. Potassium channels

then shut, causing the action potential to plateau due to a combination of decreased

potassium ion outflow and increased calcium ion inflow.

Phase 4- Rapid repolarization: Calcium channels close and potassium channels open

slowly. The plateau is broken and the cell membrane potential is restored when calcium

ion channels are closed and potassium ion permeability is enhanced, allowing potassium

ions to depart the cell quickly.

Phase 5- Resting membrane potential: It has an average of about −80 to −90 millivolts.

1.4 Cardiac Cycle

The cardiac cycle is the series of events that occur from the beginning of one heartbeat

to the beginning of the next. Each cycle is initiated by the spontaneous generation of

an action potential in the sinus node, as previously indicated. The action potential goes
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Figure 1.9: Phases of action potential [1]

quickly from here via both atria and then through the AV bundle into the ventricles, as

it is located at the entrance of the superior vena cava in the superior lateral wall of the

right atrium. Because of the peculiar arrangement of the conducting system from the

atria to the ventricles, there is a delay of more than 0.1 second during the transit of the

cardiac impulse from the atria to the ventricles. The atria contract first, enabling blood

to flow into the ventricles before the forceful ventricular contraction occurs. The atria

act as priming pumps for the ventricles, which provide the principal source of energy

for blood flow throughout the body’s circulatory system.

Figure (1.10) shows the P, Q, R, S, and T waves on the EKG. These are electrical

voltages generated by the heart and detected by an ECG from the body’s surface. The
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Figure 1.10: Comparison of pressure-volume inside the heart with ECG [1]

P wave is created when depolarization propagates throughout the atria, followed by

atrial contraction, which generates a little rise in the atrial pressure curve shortly after

the electrocardiograph P wave. Due to electrical depolarization of the ventricles, which

causes the ventricles to contract and the ventricular pressure to rise, the QRS waves

appear 0.16 second after the P wave begins. The QRS complex begins earlier than

ventricular systole. Finally, during repolarization, the ventricular T wave signals the

point at which the ventricular muscle fibres begin to relax. Therefore, the T wave

appears just as ventricular contraction comes to a close.

1.4.1 Rhythmical Excitation of Cardiac Muscles

The average daily frequency of the human heart’s rhythmic self-excitation and repeated

contraction mechanism is 100,000, or 3 billion times throughout a lifetime. This amazing
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accomplishment is made possible by a mechanism that carries out the following tasks.

It generates electrical signals, which are swiftly transported throughout the heart and

cause the cardiac muscle to contract rhythmically. When this system is functioning

correctly, the atria compress approximately a sixth of a second before the ventricles,

enabling the latter to fill before pumping blood through the lungs and peripheral circu-

lation.

The system’s ability to enable all ventricle regions to almost entirely constrict concur-

rently is another crucial component for generating the best possible pressure in the

ventricular chambers. Heart illness, particularly ischemia brought on by insufficient

coronary blood flow, can damage the heart’s rhythmical and conductive system. The

abnormal cardiac beat or erratically sequenced contractions of the heart chambers can

significantly impair the heart’s ability to circulate blood, even to the point of mortality.

The sinus node is a flattened, ellipsoid strip of specialized cardiac muscle that is around

3 mm in width, 15 mm in length, and 1 mm in thickness. It is in the superior postero-

lateral wall of the right atrium, immediately below and somewhat lateral to the superior

vena cava’s entry. This node’s fibers have almost no contractile muscle filaments and are

just 3 to 5 micrometers (m) in diameter, compared to the nearby atrial muscle fibers,

which are 10 to 15 m in diameter. The atrial muscle fibers are immediately coupled to

the sinus nodal fibers, thus any action potential initiated in the sinus node passes fast

along the atrial muscle wall.

Self-excitation, a mechanism that causes automatic rhythmical discharge and contrac-

tion, is a capacity of some cardiac fibers. This is especially true of the heart’s specialized

conducting system, which includes sinus node fibers. The sinus node is usually in charge

of the entire heart’s beat rate.

1.4.2 Mechanism of Sinus Nodal Rhythmicity

Figure (1.10) displays three heartbeats of action potentials captured inside a sinus nodal

fiber, as well as a single ventricular muscle fiber action potential for comparison. The

resting membrane potential of the sinus node fiber is between -55 and -60 millivolts, while

that of the ventricular muscle fiber is between -85 and -90 millivolts. Since sodium and

calcium ions naturally seep through the cell membranes of the sinus fibers, there is less

intracellular negativity. This is because some of the intracellular negativity is neutral-
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ized by the positive charges of the sodium and calcium ions as they reach the cell.

In cardiac muscle, three types of membrane ion channels play important roles in creat-

ing voltage changes in the action potential. The three kinds of sodium channels include

fast sodium channels, calcium channels (particularly L-type or "slow" calcium channels),

and potassium channels. The rapid upstroke spike of the action potential observed in

ventricular muscle is induced by opening the fast sodium channels for a few 10,000th of

a second due to the rapid entry of positive sodium ions into the interior of the fiber.

Due to the delayed opening of the slow sodium-calcium channels, which lasts around 0.3

seconds, the ventricular action potential achieves a plateau. Finally, when potassium

channels are activated, large amounts of positive potassium ions flow outward through

the fiber membrane, restoring the membrane potential to its resting condition. Since

the resting potential of these channels in the sinus nodal fiber is substantially lower.

The nodal fiber has a voltage of only -55 millivolts compared to the ventricular muscle

fiber’s -90 millivolts, and its role is different from that of the latter. The fast sodium

channels are typically inactivated or closed at a voltage of -55 millivolts. This is due

to the fact that the deactivation gates on the interior of the cell membrane that close

the fast sodium channels shut and remain closed if the membrane potential is less than

approximately -55 millivolts for more than a few milliseconds. Only the sluggish sodium-

calcium channels can open i.e. become active, resulting in an action potential. As a

consequence, the atrial nodal action potential matures more slowly than the ventricular

muscle’s action potential. Instead of returning suddenly as seen in the ventricular fiber,

the potential slowly returns to its negative condition when the action potential happens.

1.5 Conduction and Excitation Control inside the Heart

The cardiac impulse generally originates in the sinus node, as we discussed while dis-

cussing its genesis and transit through the heart. This is not the case in some unusual

circumstances. Other regions of the heart, such as the AV nodal and Purkinje fibers,

can also demonstrate intrinsic rhythmical excitation in the same way as the sinus nodal

fibers.

The AV nodal fibers discharge at a rate of 40 to 60 times per minute when not trig-

gered by an external source, whereas the Purkinje fibers discharge at a rate of 15 to
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40 times per minute. The sinus node normally beats at a rate of 70 to 80 times per

minute, therefore these rates are unusual. Why is the sinus node in charge of the heart’s

rhythmicity rather than the AV node or the Purkinje fibers? The sinus node’s discharge

rate is far quicker than the AV node or Purkinje fiber’s natural self-excitatory discharge

rate, which explains why. When the sinus node fires, an impulse goes to the AV node

and Purkinje fibers, where excitable membranes are discharged. Before the AV node or

Purkinje fibers reach their self-excitation limitations, the sinus node discharges again.

Therefore, before either of these locations can self-excite, the new impulse from the sinus

node discharges both the AV node and the Purkinje fibers. The sinus node governs the

heart’s beat because its rate of rhythmical discharge is quicker than any other compo-

nent of the heart. Therefore, the sinus node is almost always the heart’s pacemaker in

a healthy heart.

1.5.1 Ectopic Pacemaker (EP)

In some circumstances, the sinus node is surpassed by another area of the heart in terms

of rhythmical release rate. Such growth may take place, for instance, when the Purkinje

fibers or AV node behave abnormally. In either scenario, the sinus node is replaced by

the AV node or the stimulated Purkinje fibers as the heart’s pacemaker. Rarely, an area

of the atrial or ventricular muscle experiences abnormal activity and takes on the role

of the pacemaker.

EPs are those that are located away from the sinus nerve. An EP causes the heart’s

various chambers to beat in an abnormal pattern, which can seriously impair the heart’s

ability to circulate blood.

Another reason for the pacemaker to move is an obstruction of the cardiac impulse’s

path from the sinus node to the rest of the heart. The new pacemaker is usually seen

at the AV node or in the entering region of the AV bundle as it travels to the ventri-

cles. When the AV nodal and bundle system fails to transmit the cardiac impulse, a

new pacemaker emerges in the Purkinje system of the ventricles, moving the ventric-

ular muscle at a new rate, typically between 15 and 40 pulses per minute. The atria

continue to beat at the sinus node’s normal rate. The Purkinje system does not start

producing its normal rhythmical impulses until 5 to 20 seconds after an abrupt AV
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bundle block because the Purkinje fibers had been "over-driven" by the rapid sinus im-

pulses before the obstruction and were muted. The ventricles stop moving blood during

these 5 to 20 seconds, and the individual passes out during the first 4 to 5 seconds of

insufficient blood flow to the brain. The delayed recognition of the pulse is referred to

as Stokes-Adams syndrome. A delay that lasts longer than usual may result in mortality.

1.5.2 Role of the Purkinje Fibers for Contraction of the Ventricles

The Purkinje system’s fast conduction allows the cardiac impulse to reach practically

all parts of the ventricles in a short amount of time, with the first ventricular muscle

fiber being excited 0.03 to 0.06 seconds before the final ventricular muscle fiber. This

timing causes the entire ventricular muscle in both ventricles to contract at about the

same moment and then continue contracting for another 0.3 seconds.

This synchronized form of contraction is required for effective pumping by the two ven-

tricular chambers. If the cardiac impulse were to move slowly through the ventricles,

most of the ventricular mass would contract before the rest, resulting in a significant

reduction in the total pumping effect. Slow transmission does occur in some kinds of

ventricular failure, and the pumping efficacy of the ventricles can be reduced by as

much as 20% to 30%. Implantable cardiac re-synchronization devices are pacemakers

that use electrical wires or leads that can be implanted into the cardiac chambers to

restore proper timing between the atria and both ventricles in patients with enlarged

and weaker hearts.

1.6 Electrocardiograms

The typical ECG shown in figure (1.11) consists of a P wave, a QRS complex, and a T

wave. Although, not usually, the QRS complex is made up of three waves: the Q wave,

the R wave, and the S wave.

Electrical potentials generated when the atria depolarize before cardiac constriction are

what produce the P wave. Potentials created when the ventricles depolarize before con-

tracting—specifically, as the depolarization wave spreads over the ventricles—are what
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Figure 1.11: Electrocardiogram showing sinus rhythm [1]

give rise to the QRS complex. Consequently, the P wave and the QRS complex compo-

nent are both depolarization waves. Potentials generated as the ventricles recoup from

depolarization are what induce the T wave. This happens 0.25 to 0.35 seconds after the

depolarization of the ventricular muscle. Repolarization wave is another name for the

T wave.

The ECG contains both repolarization and depolarization waves. In electrocardiogra-

phy, the difference between depolarization and repolarization waves is so important that

it deserves an additional explanation.

1.6.1 Action Potential Link to QRS and T Waves

In the majority of instances, the monophasic action potential of the ventricular mus-

cle lasts between 0.25 and 0.35 seconds. In figure (1.12), the upper panel displays a

monophasic action potential recorded by a microelectrode inserted into a single cardiac

muscle fiber. This action potential upsweeps in response to depolarization, but it de-

scends in response to repolarization.

In figure (1.12), the lower half depicts a contemporaneous ECG recording from the

same ventricle. The monophasic action potential has a T wave at its conclusion and

QRS waves at its commencement. No potential is recorded on the ECG when the ven-

tricular muscle is fully polarised or completely depolarized. Only when the muscle is
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Figure 1.12: Normal rhythm ECG and action potential relationship [1]

partially polarised and partially depolarized can current travel from one region of the

ventricles to another, and current spreads to the body’s surface to create the ECG.

1.6.2 Relationship of Atrial and Ventricular Contraction to Electro-

cardiograms

Depolarization must enter the muscle and begin the molecular processes of contraction

before muscular movement can happen. According to figure (1.12), the P wave ap-

pears at the start of the atrioventricular contraction and the QRS complex of waves

appears at the start of ventricle contraction. The ventricles stay compressed up until

re-polarization, or until the T wave has finished.

After the P wave has finished, the atria repolarize for 0.15 to 0.20 seconds, during which

time the QRS complex is captured on the ECG. As a consequence, the much bigger QRS

complex frequently covers up the atrial repolarization wave, also known as the atrial T

wave.

An atrial T wave on an ECG is uncommon. The ventricular repolarization wave is rep-

resented by the T wave in a normal ECG. In most cases, the ventricular muscle begins

to repolarize 0.20 seconds after the commencement of the depolarization wave (the QRS

complex), while it can take up to 0.35 seconds in certain fibers. Therefore, the process

of ventricular repolarization takes a long time, about 0.15 seconds. While the T wave

in a typical ECG is lengthy, its voltage is much lower than that of the QRS complex,
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due in part to its length.
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Literature Review

2.1 ECG Based Classification for Arrhythmia

An ECG is often used to diagnose problems related to the heart due to its ease of use

and lack of invasiveness. The electrical signal of each heartbeat, which is a blend of

action impulse waveforms produced by distinct specialized cardiac tissues located in

the heart, can be used to detect some of the disorders in the heart. In recent decades,

several studies have been conducted to build automated ECG-based heartbeat clas-

sification systems. ECG signal preprocessing, heartbeat segmentation methodologies,

feature description methods, and learning algorithms, as well as the most up-to-date

ECG-based automated abnormalities heartbeat classification methods, are all discussed

in the work [7]. Additionally, [7] covers some of the databases used to examine processes

in ANSI/AAMI EC57:1998/(R)2008 (ANSI/AAMI, 2008), a well-known standard de-

veloped by the Association for the Advancement of Medical Instrumentation (AAMI).

The most common abnormal heart rhythm and the leading cause of stroke is atrial fib-

rillation (AF). Ablation, which involves removing atria regions, is a mostly empirical

procedure with a poor clinical success rate. A basic model for the propagation of ac-

tivation wavefront over an an-isotropic structure that replicates the branching network

of cardiac muscle cells is proposed in [8]. AF forms spontaneously when transverse cell-

to-cell coupling decreases below a threshold value, as it does with age. The authors

identified critical areas that are involved in the onset and maintenance of AF and ab-

lating them. Because of the simplicity of model [8] arrhythmia risk can be calculated

and the transversal cell-to-cell coupling threshold value can be expressed as a function
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of model parameters. The number of critical areas capable of initiating and sustain-

ing micro reentrant circuits decreases as the refractory period increases, lowering this

threshold value. Ablation treatment and arrhythmic risk assessment might benefit from

these scientifically testable predictions.

2.2 Mathematical Models for Generating Electrocardio-

grams

The heart beats around 2 to 3 billion times in a normal human life span. Arrhythmia

occurs when the normal rhythm of the heart is interrupted, resulting in considerably

faster and irregular beats, which can result in premature death in ill people. The move

from a normal heartbeat to an arrhythmia entails a change from regular electrical wave

conduction to irregular or turbulent wave conduction, making this a physics and math

challenge. In clinical, experimental, and theoretical research over the last century, dy-

namical theories have been demonstrated to be critical in understanding the mechanisms

underlying the genesis of both normal and deadly arrhythmia.

Zhilin Qu et al. [9] summarized the nonlinear and stochastic dynamics that occur in the

heart, as well as their links to normal cardiac functions and arrhythmia, by integrating

dynamics from the molecular (microscopic) scale to the organelle (mesoscopic) scale, to

the cellular, tissue, and organ (macroscopic) scales. It is explained that the existing

obstacles and challenges, as well as how multi-scale mathematical modeling and nonlin-

ear dynamics might aid in the resolution of these issues. Aberrant cardiac excitation is

caused by abnormalities and propagation blockages in the Purkinje circuit. Ventricular

tachycardia and fibrillation, two of the most prevalent causes of sudden cardiac death,

appear to be linked to the Purkinje network. Anatomically accurate modeling is becom-

ing increasingly important in the research of heart arrhythmia. The Purkinje network

is not described in the vast majority of available anatomical models. Therefore, these

models cannot be used to investigate critical role of the Purkinje system in arrhythmia

development and maintenance.

Tusscher et al. [10] summarized previous works on modeling the Purkinje system and

reports on the creation of a Purkinje system for human ventricular model. Authors

[10] replicated both normal and abnormal bundle branch block and reentry activation

patterns using the model.
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In a dynamical model [11], three coupled ordinary differential equations (ODE) are

employed to generate realistic synthetic ECG signals. Furthermore, many of the mor-

phological variations found in the human ECG are due to the geometrical structure of

the model. PQRST-complex morphologies may differ depending on model parameters.

The operator can alter the heart rate mean and standard deviation, the PQRST cycle

shape, and the power spectrum of the RR tachogram. The model takes into account

both high-frequency (HF) respiratory sinus arrhythmia and low-frequency (LF) Mayer

waves, as well as the LF/HF ratio. The outcomes are QT dispersion and R-peak am-

plitude modulation, as well as a significant amount of beat-to-beat fluctuation in the

structure and timing of the human ECG.

The RR-interval power spectrum can be chosen ahead of time and utilized to drive

the ECG generator. The operator can then define heart rate dynamics like mean and

standard deviation, as well as spectrum features like the LF/HF ratio. Furthermore,

by defining the positions of the P, Q, R, S, and T events, as well as the magnitude of

their influence on the ECG, the average morphology may be altered. When comparing

different biological signal processing algorithms, the presence of a true ECG serves as a

benchmark. It is vital to understand how these techniques work at varied noise levels

and sample frequencies to test their operational features in a clinical setting.

A recent work [12] provides a deterministic model based on traditional map dynamics for

modeling cardiac electrical activity. These models include nonlinearity, which represents

the self-regulatory function of the heart. Signal processing approaches for physiological

signals may be tested using synthetic electrocardiograph data based on deterministic

chaos. The model is based on the standard map dynamics and may be enhanced by

mixing two or more standard maps. To increase realism of the signal, stochastic effects

can be incorporated. This method develops a formula for synthesizing ECG signals

using deterministic chaos. These signals may be used to evaluate time series analysis

algorithms using real ECGs as a baseline.It is worth mentioning that [12] ECG genera-

tion model is data-driven, meaning the equations were designed to generate actual ECG

signals. Similarly, more complicated models based on the combination of physiological

models for electrical heart activity and chaotic dynamics appear to be conceivable to

create.

Angela et al. [13] investigated a phenomenological heartbeat model made up of two

coupled van der Pol oscillators. This model accounts for both unidirectional and bidirec-

24



Chapter 2: Literature Review

tional connections, as well as external driving from a pacemaker. Even when subjected

to external forces or parameter mismatches, which are inescapable in a physiological

context, both units should oscillate in lockstep to enable stable functioning. It investi-

gated the synchronization characteristics of such a link in terms of coupling type and

intensity. Authors were interested in employing chaotic oscillator frequency modulation

to synchronize rhythms and it also investigated how unstable dimension variability in

the chaotic invariant set might trigger shadowing breakdown of numerically generated

chaotic trajectories of the connected oscillator system.

The reaction-diffusion equation predicts that wave propagation will result in medium

deformation in many real-world situations. The coupled reaction-diffusion mechanics

(RDM) are used to mathematically mimic such processes. The effects of deformation on

wave propagation in cardiac tissue, often known as mechano-electrical feedback (MEF),

were recently investigated using RDM systems. The findings of numerous of these stud-

ies, particularly those pertaining to the influence of deformation on pacemaker activity

and spiral wave dynamics in the heart, are summarized in article [3].

A model of electrical activity in the heart [4] has been proposed that accurately re-

produces real ECG signals in healthy people. Two resistance-inductor-capacitor (RLC)

linear oscillators are used in the model, which is periodically triggered by the primary

pacemaker impulses at the frequency of a genuine heart. The recommended model in-

cludes an electrical cardiac conduction system with a coupling capacitor that can be

unidirectional or bidirectional, and the atria are represented by one oscillator and the

ventricles by another. The main pacemaker activates a network of two capacitively con-

nected oscillators regularly, pushing periodic limit cycles into the system; a time delay is

added to mimic the electrical transit delay between the atria and the ventricles. There-

fore, healthy synthetic ECG signals are formed by linearly combining the current signal

of each oscillator. The electrical transport delay from the atria to the ventricles is repre-

sented by the first oscillator, which has a temporal delay. An analytical solution can be

formed for a single impulse, and this solution was extended to an impulse train utilizing

the superposition notion, which includes periodic forcing of limit cycles similar to what

happens in the heart. The finding suggested that the proposed model may be utilized

to simply depict the worldwide consequences of cardiac electrical activity. The ability

of the proposed model to create analytical solutions is a significant feature. Different

system parameters, such as the interplay between excitable oscillators, frequency and
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coupling types, and the main pacemaker features, can also be examined to produce var-

ious harmful cardiac rhythms. Finally, in comparison to earlier models, their model was

capable of extracting common characteristics and replicating the most essential waves

found in real ECGs.

Another work [4] proposed a model of the cardiac conduction system made up of a net-

work of heterogeneous oscillators characterized by nonlinear differential equations, such

as main pacemakers and heart muscles. The SA node, AV node, and Purkinje system

are represented by modified van der Pol-type oscillators with time-delay velocity cou-

pling. Atrial and ventricular muscles are explained using a modified FitzHugh–Nagumo

model, with depolarization and repolarization processes considered independent waves.

The authors created synthetic ECG as a combined signal of atrial and ventricular mus-

cles and utilized it to mimic a variety of normal and diseased rhythms. Researchers

may use therapeutically relevant real ECG values to analyze pacemaker interactions

and the consequent global heartbeat dynamics thanks to the inclusion of cardiac mus-

cle response. This characteristic distinguishes the model from other cardiac oscillator

models.

The model given in [4] is capable of reproducing realistic ECG patterns linked to well-

known normal and abnormal rhythms. The findings suggest that the suggested model

may be used to examine worldwide cardiac electrical activity. It enables researchers to

investigate the interactions between basic components of the heart, with the option of

employing many pacemaker models with various coupling types, as well as analyzing

and comparing underlying cardiac dynamics to clinically used ECG patterns.

2.3 Classifying Ventricular Fibrillation

The academicians has been fascinated by the use of nonlinear time series analysis to

determine whether or not the human heart system is chaotic for a long time. ECG and

pulse pressure propagation data are insufficient to demonstrate the presence of deter-

ministic chaotic dynamics in cardiac time series. Furthermore, with the exception of the

most basic linear noise hypotheses, these approaches fail to rule out any but the most

fundamental linear noise hypotheses. The study [14] describes a fourth technique for

testing the assumptions of a noise-driven periodic orbit to see if the signals are consistent

with deterministic chaos.
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The algorithmic complexity is employed as the differentiating statistic in the surrogate

data approach. The authors then utilized nonlinear modeling to forecast ECG and

pulse data in the short term, demonstrating that the processes are predictable. The

authors showed the use of those methodologies on human ECG recordings and blood

pressure propagation at the fingertip of seven healthy people. According to their find-

ings, bounded aperiodic determinism may be found in both ECG and pulse time series.

It is difficult to tell if the underlying system is chaotic due to (unavoidable) dynamic

noise.

Due to chaotic events, cardiac arrhythmia has been seen. A Ruelle-Takens-Newhouse

path to chaos from regular rhythm causes ventricular fibrillation (VF), a kind of spa-

tiotemporal chaos. An ectopic pacemaker that activated the ventricular muscle to reflect

arrhythmia was postulated in [5] as part of a modified heterogeneous oscillator model

of the cardiac conduction system. With this alteration, a single parameter governs the

shift from normal rhythm to VF.

The expanded model includes an ectopic pacemaker connected to the ventricular mus-

cles, which allows for the formation of VF, with the coupling constant serving as a

control parameter. The ECG in VF becomes chaotic. Furthermore, when the control

parameter is modified, the transition from a regular synchronized rhythm to a chaotic

one follows the quasi-periodic, torus, or Ruelle-Takens-Newhouse path to chaos [5].

2.4 Normal Form of Governing Equations

The normal form is proposed as a method for evaluating the performance and reliabil-

ity of piezo aeroelastic energy harvesters based on galloping. Two separate harvesting

systems are being considered.

A multilayered cantilever beam is connected to a tip mass prismatic structure in the

first design. Aerodynamic nonlinearity is the only source of nonlinearity in this system.

Two cantilever beams are joined in the second arrangement by an equilateral triangu-

lar cross-section bar. The structural and aerodynamic nonlinearities of this system are

deliberate. The authors created electromechanical controlling equations that link trans-

verse displacement to generated voltage for both systems [15]. The effects of electrical

load resistance and harvester type on the onset speed of galloping were studied using

linear analysis. After that, the normal form of Hopf bifurcation was computed and uti-
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lized to define the sort of instability that happens there.

Load resistance, cross-section shape (first harvester), and nonlinear torsional springs

were all explored for their influence on the harvesters’ performance and forms of insta-

bilities (second harvester). The results demonstrated that the bigger the absolute value

of the effective nonlinearity, the smaller the generated voltage and collected power are.

Furthermore, for the first system, the Hopf bifurcation is supercritical, and both cross-

sections are investigated. Supercritical or subcritical instabilities are obtained through-

out a wide range of values in the second system, depending on structural nonlinearity.

The range has been demonstrated to vary based on the electrical load resistance value

in each situation. The advantage of employing the normal form of the Hopf bifurcation

was found to identify the kind of instability and construct optimal and reliable energy

harvesters.

2.5 Approximating the Heartbeat as Relaxation Oscilla-

tion and an Electrical Model of the Heart

The van der Pol oscillator is a single degree of freedom, second-order differential equation

with cubic nonlinearity at the damping. This oscillator plays an important role in many

applications, for example in simulating the action potential for any of the nodes of the

heart or even forming the ECG of the whole cardiac cycle,

d2v

dt2 −α(1−v2)dv

dt
+ω2v = 0, (2.5.1)

this system (2.5.1), is unstable at v = 0 due to negative damping. Weak nonlinearity

for example in figure (2.1a), shows the phase portraits for the simple oscillator given in

equation (2.5.1). The term ϵ is the ratio of the coefficient of damping to stiffness i.e.,

ϵ = α2

ω2 . The phase portrait shows LCO for weak nonlinear terms. However, this phase

portrait is a bit deformed when the strength of nonlinearity is increased for example

ϵ = 1 in figure (2.1b).

In figure (2.2) it is shown that the time series data for ϵ = 10 shows strong nonlinear

behavior. The nonlinear damping term plays an important role in the behavior of the

system. The damping is both negative and positive as the amplitude of the system is

steadily increased or decreased for amplitude v < 1 the damping is negative and it tends

to make the system go away from zero and make it unstable. The slope of the trajectory
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(a) van der pol oscillator at ϵ = 0.1 (b) van der pol oscillator at ϵ = 1

Figure 2.1: Phase portraits of van der Pol oscillator at different strength of nonlinearity

[2]

with time increases as the amplitude rises. However, as the amplitude crosses ±1,

the damping term becomes positive and damping steadily increases with an increase

in amplitude. It, therefore, stops the system at a particular value of magnitude for

instance 2 in figure (2.2) and makes it decay however, as the trajectory in phase time

space again crosses to less than |1|, again negative damping make it go away from the

time axis. However, the strong nonlinear nature is exhibited by a simple nonlinear van

der Pol oscillator of equation (2.5.1). This behavior is very similar to action potential

form within a heart that is actuating the pumping action.

For applying a relaxation oscillator to the heart, the heart is considered as three degrees

of freedom system. The three independent behavior is taken due to three nodes known

as the SA node, atrioventricular node, and Purkinje muscles. A relaxation oscillator

can be represented by an electrical circuit as shown in figure (2.3). Connecting three

electrical oscillators as shown in figure (2.4) makes a coupled model representing the

sinus, atrial and ventricular sections of the heart. The output can be seen in figure (2.5)

closely resembles the ECG of the heart.
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Figure 2.2: van der Pol oscillator time series profile at strong nonlinearity [2]

Figure 2.3: Electrical circuit model of equation (2.5.1) [2]

2.6 Describing Cardiac Mechano-electrical Feedback with

Reaction-Diffusion Equations

The reaction-diffusion equation can model a wide variety of phenomena of biological

importance. One of the applications is modeling the electrical and mechanical activity

of the heart. In the dynamics of the heart, an electrical excitation initiates mechani-

cal deformation. The types of tissues are different, some of the excitable tissues and

some tissue are stretched activated channels (SAC). The SAC produces current when

deformed, so there is feedback of mechanical deformation of the heart on its electrical

activity. This mechano-electric feedback is present in the ECG of the heart.

Mechano-electric feedback has its application in the activity of the heart. The heart

pacemakers usually produce current which controls or rehabilitates the normal activity

of the heart. Electric shocks are executed on patients with very abnormal activity of

the heart. Similarly, the mechanical impacts can vary the ECG of the heart.

A system of reaction-diffusion equations can be used to describe the electrical activity

of the heart. Equations (2.6.1) is a common mono-domain model for the heart tissue.
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Figure 2.4: Three coupled electrical circuit model of equation (2.5.1) [2]

Figure 2.5: ECG of the heart using the van der Pol relaxation oscillator model [2]

The first equation describes changes in the cell membrane trans-membrane potential V

(with capacitance C) due to inward and outward trans-membrane ionic currents Im, as

well as currents between adjacent cardiac cells ∆ · (D∆V ), where D is the conductivity

tensor that accounts for the electrical anisotropy of the cell membrane.

C
∂V

∂t
= ∆ · (D∆V )+ Im(V,gi)

dgi

dt
= ϕ(gi,V ) (2.6.1)

The ionic current Im is the total of all currents that flow across the cardiac membrane

(e.g., Im = D+INa +ICa +IK . . .) shown in figure (2.6). Each of these currents is depen-

dent on other variables known as gating variables gi, which account for the activation

and inactivation kinetics of that specific current as measured experimentally. There are

a variety of cardiac cell models available, each with its level of complexity and detail in

the modeling of ionic currents Im. Hodgkin-Huxley [16] and Noble [17] established the

first biophysical or ionic models for nerve cells and cardiac cells respectively, which ex-

plain individual ion currents across the cell membrane based on extensive experimental

findings. In addition to ionic currents, modern ionic models also describe concentration

changes of the key ions involved. These models create correct cardiac action potential

features such as shape, refractoriness, and rate dependency, as well as describe the mul-

tiple specific biophysical mechanisms of excitation that occur due to varied ion channel

dynamics. These models frequently have a large number of ODEs (10-100) and are com-
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putationally costly. Ionic models can be used to investigate the quantitative impacts

of ion channels in a variety of settings, including drug development, and hereditary ill-

nesses described in [18], [19] and [20]. Basic macroscopic features of the heart tissue,

such as form, refractoriness, and so on, are described by more simplistic phenomeno-

logical models. These models have fewer ODEs (less than four) and can be used to

investigate broader qualitative effects.

Figure 2.6: (A) Schematic overview of inward and outward ion currents across the

surface cell membrane (B) Schematic time plot of currents during the action potential

phase [3]

2.7 Determining Route to Chaos in Cardiac Conduction

A model of the electrical activity of the heart can be summed up in an ECG of the

heart. Heart in normal condition has a specific ECG which has similar characteristics

for every person. It has a PQRST waves feature which is positioned in a particular

manner. The ECG of the person with the heart problem is not normal and can be

classified as arrhythmia. One of the most malignant arrhythmia is known to be VF.

A normal rhythmic ECG of the heart can be modeled using a set of differential equations.

There are two sections to the heterogeneous oscillator model of cardiac conduction sug-

gested by Ryzhii et al. [21]. The first considers the primary pacemakers, the SA and AV

nodes, as well as the Purkinje system (HP), which are represented by modified VDP os-

cillators, [22] with time delays, as proposed in [23]. A modified FitzHugh-Nagumo model

[24] is used in the second section to describe the depolarization and re-polarization pro-
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cesses in the atria and ventricles. The cardiac conduction system is characterized by

seven sets of differential equations in this model, three of which are related to pace-

makers and the other four to the heart muscles. As a combination of depolarization

and re-polarization waves in the atrial and ventricular muscles, the model may generate

synthetic ECG waveforms.

A modified van der Pol (VDP) oscillator is used to represent each natural heart pace-

maker. A system of six differential equations with unidirectional time delay coupling

describes the three natural pacemakers:

ẋ1 = y1

ẏ1 = −a1y1(x1 −u11)(x1 −u12)−f1x1(x1 +d1)(x1 +e1)

ẋ2 = y2 (2.7.1)

ẏ1 = −a2y2(x2 −u21)(x2 −u22)−f2x2(x2 +d2)(x2 +e2)−kSA−AV (y1 −y2)

ẋ3 = y3

ẏ3 = −a3y3(x3 −u31)(x3 −u32)−f3x3(x3 +d3)(x3 +e3)−kSA−HP (y2 −y3)

The synchronization required by the system is provided by two-time delay “velocity” or

“current” couplings, established between pacemaker nodes in the system (2.7.1). The

terms ai, di, ei, fi and uij are the parameters of each oscillator, kSA−AV and kAV −HP are

the coupling coefficients, yτn
i = yi(t−τn) are the current coupling components, where τn

are time delays and n refers to AV −HP or SA−AV couplings. The parameters f1,f2

and f3 set the intrinsic frequencies of the natural pacemakers. The coupling coefficients

must be proportional to f1 [21] , thus for simplicity they are set as kSAAV = kAV HP = f1.

A modified FitzHugh-Nagumo system [24] describes the electrical responses of the atria

and ventricles muscles. A system of four sets of ODE is used to simulate the depolar-
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ization and re-polarization processes in cardiac muscles:

ż1 = k1(−c1z1(z1 −w11)(z1 −w12)− b1v1 −d1v1z1 + IATDe
)

v̇1 = k1h1(z1 −g1v1)

ż2 = k2(−c2z2(z2 −w21)(z2 −w22)− b2v2 −d2v2z2 + IATRe
)

v̇2 = k2h2(z2 −g2v2) (2.7.2)

ż3 = k3(−c3z3(z3 −w31)(z3 −w32)− b3v3 −d3v3z3 + IV NDe
)

v̇3 = k3h3(z3 −g3v3)

ż4 = k4(−c4z4(z4 −w41)(z4 −w42)− b4v4 −d4v4z4 + IV NRe
)

v̇4 = k4h4(z4 −g4v4)

The recovery variables vi correspond to the net trans-membrane potential of the mus-

cle cells, while the state variables zi = (1, . . . ,4) correspond to the net trans-membrane

potential of the muscle cells. The parameters ci represent the pulse amplitude, while

wi1 < wi2 for (i = 1, . . . ,4) represent the excitation threshold and excited state, respec-

tively. The parameters bi and gi affect the rest state, while hi governs the excitability

and controls the crude activation and duration of action potential. Muscle cells, unlike

pacemaker cells, do not exhibit self-oscillatory behavior; they must be activated by an

electrical signal from a pacemaker to produce a single response. The variable Im (the

index m corresponds to ATDe, ATRe, V NDe, and V NRe) in equation (2.7.2) denotes the

amount of the stimulation current that couples the SA and HP pacemakers to the atrial

(AT ) and ventricular (V N) muscles, respectively; De and Re stand for depolarization

and re-polarization. Finally, a linear combination of the electrical impulses from the AT

and VN muscles yields the synthetic ECG waveform:

ECG = z0 +z1 +z2 +z3 +z4 (2.7.3)

The z0 parameter determines the baseline of the ECG signal since the Ta wave is opposite

the P wave, and the value of z2 has a negative sign. The primary goal is to create a

model that can accurately mimic the ECG of a healthy heart as well as that of VF,

which is caused by several, short-lived, re-entrant electrical waves in the ventricles [21].

Therefore, authors regarded the mother rotor and/or numerous wavelets as a combined

trigger source, represented by an EP , that stimulates the AT and V N muscles in their

study. The extended model has a conceptual framework which is shown in figure (2.7).
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Figure 2.7: Schematic of the propose heterogeneous model [4]

The EP is a modified VDP oscillator, given by the following set of equations

ẋ4 = βT y4

ẏ4 = βT (−a4y4(x4 −u41)(x4 −u42)−f4x4(x4 +d4)(x4 +e4))+βT Asinωt, (2.7.4)

where βT is the time scale adjustment coefficient in this case. The EP settings were

chosen to produce chaotic oscillations as shown in figure (2.7) that are the primary cause

of additional heart electrical excitation abnormalities, leading to cardiac arrest [25].

Furthermore, the EP is a stable mother rotor that is always maintained till the conclusion

of the simulation duration, producing secondary excitation sources at a distance.

Extra variables are introduced in the system (2.7.2) to facilitate coupling of the EP with
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the AT and VN muscles, which are given in equation (2.7.5):

ż1 = k1(−c1z1(z1 −w11)(z1 −w12)− b1v1 −d1v1z1 + IATDe
+kEP −AT x4)

v̇1 = k1h1(z1 −g1v1)

ż2 = k2(−c2z2(z2 −w21)(z2 −w22)− b2v2 −d2v2z2 + IATRe
+kEP −AT x4)

v̇2 = k2h2(z2 −g2v2) (2.7.5)

ż3 = k3(−c3z3(z3 −w31)(z3 −w32)− b3v3 −d3v3z3 + IV NDe
+kEP −kEP −V N

x4)

v̇3 = k3h3(z3 −g3v3)

ż4 = k4(−c4z4(z4 −w41)(z4 −w42)− b4v4 −d4v4z4 + IV NRe
+kEP −V N x4)

v̇4 = k4h4(z4 −g4v4)

where kEP −AT and kEP −V N are the EP coupling constants. In what follows, only a

ventricular stimulus will be considered, thus kEP −AT = 0 and the corresponding coupling

constant kEP −V N will play the role of the control parameter.

Therefore, the coupling parameter kEP −V N plays an important role in the dynamics

Figure 2.8: Time series (left column) and their corresponding frequencies (right column)

for three distinct control parameter values kEP −V N . (a) and (b) correspond to normal

condition (kEP −V N = 0.0 ), (c) and (d) to a quasi-periodic oscillation (kEP −V N = 0.001),

and (e) and (f) to V F (kEP −V N = 0.009) [5]
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of the ECG of the heart. So when kEP −V N = 0, it corresponds to the original model of

equation (2.7.2), and the ECG displays is in the normal rhythm or the sinus rhythm.

Increasing the coupling parameter, the model follows a quasi-periodic route to chaos

and exhibits VF which is shown in figure (2.8).
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Identification and Analysis of

Bifurcations

3.1 Mapping Reaction-diffusion Equation to Electrical Ac-

tivity of the Heart

The reaction-diffusion equation is used to model a variety of biologically important

real-life phenomena. By assuming the mass conservation of the two morphogens, ex-

panding through the Taylor series, and limiting the degree of the equation to three,

this model can be reduced to two first-order partial differential equations (PDE). The

Barrio-Varea-Aragon-Maini (BVAM) model [26] is the name of this model. Turing pat-

terns, traveling waves, temporal oscillations, and chaotic behavior are all examples of

real-world applications of this model [27]. These equations are given in (3.1.1),

∂u

∂t
= D▽2u+η(u+av −Cuv −uv2)

∂v

∂t
= ▽2v +η(bv +Hu+Cuv +uv2) (3.1.1)

consist of two PDEs can be interpreted as some chemical substances, morphogens, or any

other measurable quantity morphogens or current. The state variables u = u(x,t) and

v = v(x,t) are dependent upon position x and time t. The parameters of the system are

H, η, D, C, and b. For the concerned system, the values of some of the parameters are

fixed. These parameters value are η = 1, a = −1, and b = −3. This can be discretized at

three distinct nodes which are mainly responsible for actuating the heart. These nodes

physically are known to be SA Node, AV Node, and Purkinje complex. The electrical
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Figure 3.1: SA Node, AV Node, and HIS-Purkinje complex and three oscillators of the

BVAM model x1 −x6 given in equation (3.1.5)

system of the heart as described in the previous sections is mainly represented by these

three nodes,

∂u

∂x
|F D = ui −ui−1

∆x
∂v

∂x
|F D = vi −vi−1

∆x
, (3.1.2)

∂u

∂x
|BD = ui −ui−1

∆x
∂v

∂x
|BD = vi −vi−1

∆x
. (3.1.3)

The PDE (3.1.1) can be discretized to form a set of ODEs and for this purpose, for-

ward and backward differentiation is used. The mathematical expression of forward and

backward differential equations are shown in equations (3.1.2) and (3.1.3). The PDE

(3.1.1) is discretized at three nodes with two additional nodes as the boundary condi-

tions. Using the relationships provided in equations (3.1.2) and (3.1.3) on each node of

figure (3.2) and using Neumann boundary conditions provided in equation (3.1.4), one

arrives at equation (3.1.5),

∂u

∂x
= ui −u0

∆x
= 0

∂v

∂x
= vi −v0

∆x
= 0, (3.1.4)
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Figure 3.2: Discretization of (3.1.1) at three different nodes SA node, AV node, and

HIS-Purkinje complex

ẋ1 = x1 −x2 −Cx1x2 −x1x2
2

ẋ2 = Hx1 −3x2 +Cx1x2 +x1x2
2 +β(x4 −x2)

ẋ3 = x3 −x4 −Cx3x4 −x3x4
2 (3.1.5)

ẋ4 = Hx3 −3x4 +Cx3x4 +x3x4
2 +β(x6 −2x4 +x2)

ẋ5 = x5 −x6 −Cx5x6 −x5x6
2

ẋ6 = Hx5 −3x6 +Cx5x6 +x5x6
2 +β(x4 −x6).

The Neumann boundary condition states that there should be no flux passage across

the boundary. This essentially implies that the value of the state at the boundary will be

equal to the state right beside the boundary, if the value of state outside the boundary is

taken to be x0 it means, implying equation (3.1.4) that x1 = x10 and x2 = x20. Similarly

at the other side of the boundary x5 = x10 and x6 = x20. These kinds of boundary

conditions imply that now current is escaping the boundaries and helps to reduce the

complexity of the under-considered system. Using these boundary conditions further

dictates that x1 = x5 and x2 = x6. It means that the SA node and HIS-Purkinje complex

are mathematically symmetrical. Therefore the order of the system is reduced to in total

four first-order nonlinear ODE

ẋ1 = x1 −x2 −Cx1x2 −x1x2
2

ẋ2 = Hx1 −3x2 +Cx1x2 +x1x2
2 +β(x4 −x2)

ẋ3 = x3 −x4 −Cx3x4 −x3x4
2 (3.1.6)

ẋ4 = Hx3 −3x4 +Cx3x4 +x3x4
2 +2β(x2 −x4).
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3.2 Nonlinear Analysis of Fixed Points (FP)

When the value of the control parameter (H) is varied, the mathematical model under

consideration (3.1.6) exhibits various types of solutions. FP solutions for (H > 8.77),

stable limit cycles, period two oscillations, quasi-periodic attractors, and chaotic solu-

tions are among the types of solutions. A trajectory initiated from any point in the

phase plate, for example, will eventually lead to a single point attractor at (H = 9).

This FP attractor can be discovered by considering the condition ẋ = 0 at which this

attractor will be found. A set of algebraic equations with unknowns is created by this

condition. Given equation (3.2.1) can be written compactly as equation (3.1.6).

ẋ = F(x,H) (3.2.1)

The condition for locating FP attractors is given in the equation, which, when applied

to the original system of equations (3.1.6), yields four nonlinear algebraic equations with

four unknowns.

F(x,H) = 0 (3.2.2)

x1 −x2 −Cx1x2 −x1x2
2 = 0

Hx1 −3x2 +Cx1x2 +x1x2
2 +β(x4 −x2) = 0

x3 −x4 −Cx3x4 −x3x4
2 = 0 (3.2.3)

Hx3 −3x4 +Cx3x4 +x3x4
2 +2β(x2 −x4) = 0

To solve the equations in equation (3.2.3), a nonlinear iterative scheme can be used.

There are eight possible solutions, five of which are complex numbers. Since it is known

that FP must be real for a physical system, the real FP is the only one that remains.

Table (3.1) contains the three FPs. The set of FP is the trivial solution, as shown in

FP x1 x2 x3 x4

FP 1 0 0 0 0

FP 2 −1.1975 −1.29 1.5284 0.4136

FP 3 0.8963 0.3546 −2.1215 −1.5315

Table 3.1: FP of BVAM model at H ≈ 9

table (3.1), while the other two fixed pints are also mentioned. Any trajectory that
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begins in the phase plane will now be drawn to one of these FPs. The initial conditions

determine which of these FPs will be the final destination of a phase plane trajectory.

It is necessary to conduct a stability analysis of these FPs before proceeding. This

stability analysis holds only in the immediate vicinity of these FPs. Therefore, the

system of equations given in equation (3.1.6) must be linearized. The linear form of a

system of equations is represented by the Jacobian J of a system. When a FP is inserted

in the Jacobian J , the dynamics of the system are reduced to a local region of a FP.

The Jacobian can be expressed as a form of equation (3.2.4),

J =



∂F1
∂x1

∂F1
∂x2

∂F1
∂x3

∂F1
∂x4

∂F2
∂x1

∂F2
∂x2

∂F2
∂x3

∂F2
∂x4

∂F3
∂x1

∂F3
∂x2

∂F3
∂x3

∂F3
∂x4

∂F4
∂x1

∂F4
∂x2

∂F4
∂x3

∂F4
∂x4


(3.2.4)

while the eigenvalues of a Jacobian matrix are significant because they reveal informa-

tion about the stability of the system. The eigenvalues of a linear system are usually

expressed in exponential terms. The eigenvalues are frequently complex numbers, with

the real part representing rise and decay and the imaginary part frequently representing

frequency. Therefore, the eigenvalues with a positive real part (if they are complex)

indicate that the response of the system will eventually rise to infinity from the FP. The

eigenvalues with a negative real part, on the other hand, represent a system response

approaching a FP. When all of the eigenvalues corresponding to a FP are negative, the

FP is said to be stable. The corresponding FP is unstable if any of the eigenvalues are

positive. Although, the negative eigenvalues in this case attempt to bring the trajectory

to a FP along the corresponding eigenvector, which is referred to as manifold in a global

region, the impact of just one positive eigenvalue is sufficient to cause any trajectory

initiated at any point other than the stable manifolds to deviate from that FP in the

phase plane. The eigenvalues of the Jacobian matrix for FP are shown in table (3.2),

FP Eigenvalues of Jacobian

FP 1 −14.42,0.42,−1±2.24ι

FP 2 −8.83,−2.48,−0.27±5.38ι

FP 3 −7.3,−3.7,−0.04±5.8ι

Table 3.2: The eigenvalues of the Jacobian matrix of BVAM model for the FP at H ≈ 9
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which indicates the system’s stability. The trivial FP is unstable, as shown in table

(3.2). Therefore, it is unlikely that any trajectory will lead to it t → ∞.

The FP in table (3.1) changes continuously as the value of control parameter H changes,

and the state of stability can change at a certain value of H. A bifurcation is respon-

sible for this change of behavior. When one of these eigenvalues has zero real part, the

bifurcation of these FP can be seen. Since the effects of the positive and negative real

parts of the eigenvalues have been discussed, the zero real part of an eigenvalue shows

no rise or decay but a constant amplitude of oscillations, indicating that the system is

marginally stable.

3.3 Hopf Bifurcation

Hopf bifurcation is a term used to describe the transition from a FP solution to a periodic

solution. The system’s stable FP becomes unstable in a supercritical Hopf bifurcation.

According to study [6], three conditions must be met for Hopf bifurcation to occur at

the critical value of the control parameter.

1. F(x0,Hc) = 0.

2. The Jacobian system of equation (3.1.6) has at least one pair of purely imaginary

values while all other eigenvalues have the non-zero real part at that particular

FP x0 and control parameter value Hc.

3. At H = Hc, let the analytical continuation of purely imaginary value be λ ± ιω

then dλ
dH ̸= 0. This is called the transversality condition.

FP is indicated by the first condition, while non-hyperbolic FP is indicated by the

second condition. When the value of a control parameter is changed, the transversality

condition implies an exchange of stability. Table (3.3) shows the FP and corresponding

H FPs Eigenvalues of Jacobian

8.77 0.92, 0.36, −2.18, −1.54 −7.36,−3.86,±5.82ι

8.50 0.96,0.36,−2.27,−1.55 −6.9,−4.1,0.05±5.85ι

Table 3.3: FP and the eigenvalues at different values of H for FP 3

the eigenvalues for FP 3 from table (3.1) at H = 8.77 and H = 8.50. FP and the
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eigenvalues for FP 3 at H = 9 are already listed in tables (3.1) and (3.2), respectively.

The eigenvalue with zero real part indicates that the FP 3 from table (3.1), loses stability

at H = 8.77, as indicated by the eigenvalue. Since the real part of the specific eigenvalue

becomes positive, the transversality condition is satisfied. The frequency that is added

at this bifurcation point is the pure imaginary part of the eigenvalue at the critical

control parameter value H = Hc = 8.77 i.e. ω = 5.82. Therefore, the FP at Hc lost its

stability, and the process continued while a stable branch of a periodic solution emerged

from the bifurcation point. The supercritical Hopf bifurcation is the name given to this

particular bifurcation.

At H = 7.97, the same thing happens with FP 2 from table (3.1). The critical value

of the control parameter causes a stable branch of FP to lose its stability and become

unstable, resulting in the emergence of a stable periodic solution. This is demonstrated

by table (3.4) as well as analysis of tables (3.1) and (3.2). There are three unstable FP

H FPs Eigenvalues of Jacobian

7.97 −1.41, −1.37, 1.8, 0.43 −7.5,−3.35,±5.56ι

7.95 −1.42,−1.37,1.8,0.43 −7.46,−3.38,0.006±5.56ι

Table 3.4: FP and eigenvalues at different values of the control parameter for FP 2

(all three emerged from table (3.1)) and two stable periodic solutions, the branches that

emerged from the Hopf bifurcation point for the corresponding FP, at this point for the

local region of H < 7.97.

3.4 Period Two Solution

For a given range of control parameter values, the BVAM model appears to have a

two-period solution. On-time series data, a two-period solution can be identified by

two peaks. There are two dots visible on a Poincare section of a period two solution,

compared to one dot for a periodic solution. The Poincare section is frequently used to

visualize and detect period-doubling bifurcation in period two solutions. The Poincare

section is a plane used to find the intersection of a phase plane trajectory with the

Poincare section. After a time period, the Poincare section can also be used to find the

intersection with time serious data T . Therefore, a single period solution appears as
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a single dot on the Poincare section, whereas at the period-doubling bifurcation point,

where the period is abruptly doubled, two dots appear on the Poincare section as an

indicator of period-doubling bifurcation and represent a period two solution.

The Floquet multipliers must be found to detect a period-doubling bifurcation analyti-

cally. These Floquet multipliers provide crucial information about a periodic solution’s

bifurcation. The eigenvalues of a monodromy matrix are called Floquet multipliers, and

they are often complex numbers. According to literature [6], one of the Floquet multi-

pliers associated with any periodic solution is always unity, indicating that the solution

has a periodic behavior. All other Floquet multipliers in a stable periodic solution lie

within the complex plane’s unit circle. If any of the Floquet multipliers are outside

the unit circle for any solution, it indicates that the solution is unstable. If any of the

Floquet multipliers other than unity are found at the circumference of the unit circle,

the corresponding system has become non-hyperbolic, and some sort of bifurcation is

possible. The type of bifurcation that occurs is determined by the route taken by the

Floquet multipliers as they leave the unit circle. It was pointed out that if a Floquet

multiplier leaves the unit circle through −1, it indicates a possible period-doubling bi-

furcation [6]. The shooting method is used to create periodic solutions and to find the

Floquet multipliers that go along with them. A periodic solution in the phase plane

appears as a closed trajectory in the phase plane and can be found in the exact initial

conditions of these periodic solutions are known, such that no transients appear in the

first part of the time series data. Because the system of equations is numerically simu-

lated only until the time period T in the shooting method, it is also necessary to find the

time period. The algorithm is first initialized with a set of arbitrary initial conditions

η0η0η0 and a time period T0 in the shooting method. The algorithm then performs several

iterations to determine the appropriate initial conditions ηηη and time period T for the

periodic solution to appear.

The periodic solution is not formed after the first iteration of the shooting method, where

the system of equations (3.1.6) is integrated up until the time period (T0), because the

arbitrarily chosen initial conditions η0η0η0 and the time period T0 are not correct, and the

only way forward is to move towards the right set of initial conditions ηηη and time period

T . It is desired to reduce δη0δη0δη0 = ηηη −η0η0η0 and δT = T −T0 to satisfy equation (3.4.1). The

periodic solution is not formed after the first iteration of the shooting method, where

the system of equations (3.1.6) is integrated up until the time period T0), because the
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arbitrarily chosen initial conditions η0η0η0 and the time period T0 are not correct, and the

only way forward is to move towards the right set of initial conditions ηηη and time period

T . It is desired to reduce δη0δη0δη0 = ηηη −η0η0η0 and δT = T −T0 to satisfy equation (3.4.1).

Equation (3.4.1) implies that the initial and final points of a trajectory in phase space

are the same, implying that the solution obtained is periodic. The obtained equations

are shown in equation (3.4.2), which can be expanded in the Taylor series by retaining

only the linear terms.∂x
∂ηηη (T0,η0η0η0) and I are an n × n matrix where I is n × n matrices,

with I being an identity matrix ∂xxx
∂T (T0,η0η0η0) = F(T0,η0η0η0) is a n×1 vector.

x(T0 + δT,η0η0η0 + δηηη)− (η0η0η0 + δηηη) ≈ 000 (3.4.1)

[∂x
∂ηηη

(T0,η0η0η0)− I]n×nδηηη + ∂xxx

∂T
(T0,η0η0η0)δT = η0η0η0 −x(T0,η0η0η0) (3.4.2)

The four unknowns for ∂xxx
∂T = F(T0,η0η0η0) can be determined numerically using the integrat-

ing equation (3.1.6). The final values of the integration at t = T0 will be the unknowns.

The unknowns associated with ∂x
∂ηηη can be determined by first calculating the time deriva-

tive, as shown in equation (3.4.3). Numerically integrating equation (3.4.3) yields the

value of the 16 unknowns ∂x
∂ηηη at t = T0. Equation (3.4.5) is a n×n identity matrix that

contains the initial conditions for equation (3.4.3).

∂ẋxx

∂ηηη
= DxxxFFF (xxx;M)∂xxx

∂ηηη
(3.4.3)

with the initial condition,
∂x

∂η
(000) = I (3.4.4)

where DxxxFFF is the Jacobian matrix shown in equation (3.2.4) and ∂xxx
∂ηηη is shown in equation

(3.4.5)

∂xxx

∂ηηη
=



∂X1
∂η1

∂X1
∂η2

∂X1
∂η3

∂X1
∂η4

∂X2
∂η1

∂X2
∂η2

∂X2
∂η3

∂X2
∂η4

∂X3
∂η1

∂X3
∂η2

∂X3
∂η3

∂X3
∂η4

∂X4
∂η1

∂X4
∂η2

∂X4
∂η3

∂X4
∂η4


. (3.4.5)

There are 20 equations with 21 unknowns at this point. The system’s time period is an

additional unknown. The integration of all previous 20 equations can result in a set of

initial conditions with a periodic solution if it is known.

The orthogonality condition can be used to meet the requirement of approximating the

time period variable. The initial conditions must be in a direction perpendicular to the
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trajectory flow in any phase plane, according to this equation. Overall, we can represent

equation (3.4.6) for describing the shooting method∂xxx
∂ηηη (T0,η0η0η0)− I FFF (η0η0η0;MMM)

FFF (η0η0η0;MMM) 0


δηηη

δT

 =

η0η0η0 −xxx(T0,η0η0η0)

0

 . (3.4.6)

Iterating with the above equations until ||δηηη|| < ϵ1 and δT < ϵ2 are obtained, where ϵ1

and ϵ2 are small numbers, yields the required initial conditions and the time period of the

system of equations given in equation (3.1.6). Monodromy matrix ϕ = ∂xxx
∂ηηη is produced

as a by-product of the shooting method and is given in equation (3.4.5).

3.4.1 Period Doubling Bifurcation

A periodic solution, as well as the Floquet multipliers associated with it, can be ob-

tained using the shooting method. The shooting method has the advantage of being

able to identify the unstable periodic solution as well. As previously discussed, the

Floquet multipliers provide crucial information about the stability of the solution and

bifurcations. As discussed in the section where the Hopf bifurcation generated these

two periodic solutions, there were two stable periodic solutions. As seen in table (3.1),

one of the periodic solutions that originated from FP 3 of table (3.1), through the Hopf

bifurcation at H = 8.77 undergoes period-doubling bifurcation at H = 4.625. The Flo-

quet multipliers are all under the unit circle except one, for H > 4.625, and the periodic

solution becomes non-hyperbolic at H = 4.625, and the result shows that the periodic

solution becomes unstable after that, and it continues to be so for the later part where

H < 4.625. Now, as shown in table (3.5), one of the Floquet multipliers −1 left the unit

circle at H = 4.625 and thus at later values, it can be seen that it left the unit circle

through the value −1, implying that a stable period two cycle has emerged from this

point. Period doubling bifurcation occurs at this point H = 4.625.

The stable periodic solution, which originated through Hopf bifurcation at H = 7.97

from FP 2 in table (3.1), is the same. As can be seen from table (3.6), this period one

cycle undergoes period-doubling bifurcation at H = 4.565. One of the Floquet multi-

pliers, similar to the other branch, leaves a unit circle through −1 at H = 4.565, while

the other stays at 1 at H = 4.565. The stable periodic solution becomes unstable, and

a stable period two solution emerges H ≤ 4.565 and remains stable for a time. Three

unstable FP, two unstable periods one solution, and two stable periods two solutions

47



Chapter 3: Identification and Analysis of Bifurcations

H Floquet multipliers Remarks

4.65 1 -0.91 -0.24 0 Periodic cycle

4.63 1 -0.99 -0.62 0 Periodic cycle

4.625 1 -1 -0.61 0 Non-hyperbolic point

4.62 1 -1.01 -0.61 0 Period doubled cycle

4.60 1 -1.04 -0.60 0 Period doubled cycle

Table 3.5: Floquet multipliers for first stable periodic solution

can be found near H ≤ 4.565.

H Floquet multipliers Remarks

4.58 1 -0.93 -0.33 0 Periodic cycle

4.57 1 0.98 -0.32 0 Periodic cycle

4.565 1 -1 -0.32 0 Non-hyperbolic point

4.56 1 -1.01 -0.32 0 Period doubled cycle

4.55 1 -1.05 -0.32 0 Period doubled cycle

Table 3.6: Floquet multipliers for second stable periodic solution
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Analytical Solution

Approximation

An analytical solution can be written in the form of an algebraic equation. This solution

is displayed in terms of parameters and their relation with each other providing useful

information to attain the required response from that specific system. Approximation

of analytical is not straightforward for a nonlinear ODE. For linear equations usually,

an analytical solution is accurate. However, in the case of nonlinear ODEs, the approx-

imation can have some error. Nonetheless, an analytical solution serves its purpose by

providing useful insight into the system.

The considered system of equation (3.1.6) consists of four first-order nonlinear ODEs

with quadratic and cubic nonlinearities. By investigating numerically, it can be seen

that the BVAM model has multiple solutions at each value of control parameter H.

These solutions are stable as well as unstable. For example, as seen in the previous

chapter from the table (3.1). At H = 9 there are three FPs. From there the stability

analysis of FPs (refer to table (3.2), it is seen that the trivial FP are unstable while the

nontrivial FPs are stable.

From the identification of the control parameter value where Hopf bifurcation occurs

from the table (3.3) and table (3.4), the eigenvalues of the linearized system show the

occurrence of a periodic solution along with other stable and unstable FPs and other

periodic solution in case of Hopf bifurcation at H = 7.97. The case is similar for another

control parameter H values. This brings a problem when trying to approximate an ana-

lytical solution. In doing simulation of the model given in equation (3.1.6) numerically,
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the type of solution form depends upon the value of the control parameter as well as

the value of initial conditions.

If the value of the control parameter is fixed H = c, even then there are multiple solu-

tions as evidenced before. The type of solution formed at the end depends upon the

initial condition. A trajectory in phase space is usually attracted to a stable solution

near it.

4.1 Invariant Manifolds

An invariant subspace or manifold can be seen as a subspace with a set of initial condi-

tions such that any solution initiated from these initial conditions remains in the same

subspace. To understand the concept of manifolds, eigenvectors can play an important

role. In fact eigenvectors are the subspace for a linearized system,

Es = span[p1,p2, . . . ,ps]

Eu = span[ps+1,ps+2, . . . ,ps+u] (4.1.1)

Ec = span[ps+u+1,ps+u+2, . . . ,ps+u+c]

and for a linear system of ODE, any trajectory follows a path given by eigenvectors with

a pace given by an eigenvalue at the exponential (eλt). A system with positive eigen-

values diverges from a FP or periodic attractor while the negative eigenvalues converge

towards an attractor. For a system described by equations (4.1.1), any solution initiated

in the span of any eigenspace Es,Eu or Ec, which is a subspace of a system, the solution

will remain in that subspace of system.

Linear and nonlinear manifolds are shown in figure (4.1). In figure (4.1a) the linear

manifolds or the subspaces are the eigenvectors of the linearized system. These eigen-

vectors or subspaces are only valid in the local region to a certain FP or another point

of interest. As we move away from a FP, the shape of the manifold is curved. Therefore,

the eigenvectors are not the ideal representation of a manifold in the global domain.

One simple trick in numerically plotting the manifolds is to first calculate the eigenvec-

tors of the linearized system. These eigenvectors correspond to the subspace and are

valid only in the local region. Then take a point on the eigenvector very near to the

FP and then simulate numerically with the initial conditions corresponding to the point
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Figure 4.1: Manifolds of a system: picture (a) shows stable Es subspace and unstable

Eu subspace and (b) shows the corresponding nonlinear subspace or the manifolds [6]

chosen near the FP at the eigenvector which is a subspace. The numerical simulation

should be done as t −→ ∞ in case a subspace is a stable subspace Es. The manifold form

because of numerical simulation will be stable manifold W s. This stable subspace Es

and stable manifold W s are shown in figure (4.1b). The unstable manifold W u can be

plotted similarly from an unstable subspace Eu however, the numerical simulations are

performed such that t −→ −∞ and this manifold is also shown in figure (4.1b).

Manifolds of a solution play an important role in forming the overall solutions. Numer-

ically a solution follows the path of an attractor or a repeller near it. This attractor is

defined by the manifolds of a solution. Therefore, if someone wants to find a periodic

solution to a system, he should focus on the center manifold. This pretty much does

answer our original problem about which solution we are trying to approximate analyt-

ically.

The next question which arises is that can we find those manifolds of a system and its

answer is yes. If someone knows the FPs from where a manifold is passing through, then

one can make transformations to that manifold. The equations of these manifolds in the

transformed version are ODEs. These manifolds equations represent distinct manifolds

such as stable, unstable, and center manifolds. These manifolds are usually coupled. In

many cases, it is desired to uncouple these manifolds so that the analysis is performed

on the required manifolds and the required solution is attained without going into the

details of other manifolds. In such a case, the other manifolds are approximated in terms

of a polynomial expression of those manifold variables.
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4.2 Center Manifold Reduction

Since equations (3.1.6) have multiple solutions even at a single value of control parame-

ter, focus on one specific solution can be made by finding the manifolds of that solution.

Since we are trying to find out the periodic solution of the system (3.1.6), the associated

manifold is the center manifold. After transforming equations (3.1.6) to its manifolds,

which are coupled. Analysis of the center manifold reveals the specific periodic behavior.

However, to further ease the analysis, it is recommended that the analysis is focused on

the center manifold only, which means that the other manifold variables e.g., stable and

unstable should be decoupled from the center manifold equations.

4.2.1 Translation of Origin

First, it is needed to concentrate on the specific periodic solution. Considering FP

2 or FP 3 from the table (3.1). These points according to the table (3.3) and table

(3.4) respectively, undergo a Hopf bifurcation as discussed in chapter (3). So keeping

the value of the control parameter near this critical value i.e., H = 8.77 or H = 7.97 a

periodic solution is being formed. Let us focus our attention at H = 7.97. At the exact

value of the control parameter, two stable manifolds are corresponding to a negative

eigenvalue of the Jacobian matrix which is the subset of the initial condition which can

bring a trajectory in phase space right toward that FP. However, there forms a new

manifold corresponding to the pure imaginary eigenvalue of the Jacobian matrix. These

eigenvalues of the Jacobian matrix can be seen in the table (3.3).

To begin with, it is needed to concentrate on the FP undergoing Hopf bifurcation so

that the center manifold can be determined. This can be accomplished by using the

relationship provided in equation (4.2.1). The FP 2 (x0) are derived for H = 7.97 and

are given in table (3.4). The variable y is the disturbances to the FP x0

x = x0 +y. (4.2.1)

Applying the transformation of equation (4.2.1) to the set of equations (3.1.6), resulting

in an equation whose origin is at the corresponding FP x0. After applying this transfor-

mation, equation (3.1.6) assumes the form given in equation (4.2.2). Here in equation

(4.2.2), A is the Jacobian matrix of equation (3.1.6), F2(y) represents the quadratic
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Figure 4.2: Origin translation from x to a new axis corresponding to y and Wc corre-

sponds to center manifold

nonlinear terms involving the variable y and F3(y) represent the cubic nonlinear terms

in terms of variable y

ẏ = Ay+σy+F2(y)+F3(y)+O(||y||4). (4.2.2)

This equation (4.2.2) in matrix form with coefficient values is shown by equation (4.2.3).

Here the matrix A, control parameter terms, and quadratic and cubic nonlinear terms

can be seen. The disturbance variable y has the same dimensions as of original variable
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x, which is 4×1

ẏ =



0.969961 −2.97135 0 0

8.0092 −5.02865 0 4

0 0 0.238418 −4.96362

0 8 8.73246 −7.03638


·



y1

y2

y3

y4



+



0

−1.41438+y1

0

1.7963+y3


σ +



1.39y1y2 +1.41y2
2 −y1y2

2

−1.39y1y2 −1.41y2
2 +y1y2

2

−2.21y3y4 −1.80y4
2 −y3y4

2

2.21y3y4 +1.80y4
2 +y3y4

2


. (4.2.3)

4.2.2 Transformation to get the Manifold Equations

For a solution at the control parameter value of H = 7.97 the FPs experiencing Hopf

bifurcation along with the eigenvalues of the linearized system are given in the table

(3.3). These eigenvalues show that there should be two stable manifolds corresponding

to the negative real eigenvalues and a center manifold corresponding to the pure imag-

inary complex conjugate eigenvalues. There should be two manifolds corresponding to

eigenvalues ±5.82 of the linearized system. In the linearized system, the eigenvectors

represent the linear manifolds so a transformation (4.2.4) is needed to transform the

system to a linear manifold coordinate system. The matrix P in equation (4.2.4) is the

matrix of eigenvectors for the linearized system of equation for equation (3.1.6),

y = Pv (4.2.4)

and after applying the transformation of equation (4.2.4) and multiplying both sides of

equation with P −1 so that the form of equation involving the state variable y can be

converted to v. A general equation representation of the equation is shown in equation

(4.2.5). Here the matrix J is the diagonal matrix while F2(v) represents the quadratic

nonlinear terms involving the variable v and F3(v) represent the cubic nonlinear terms

in terms of variable v,

v̇ = Jv+P −1F2(Pv)+P −1F3(Pv)+O(||v||4) (4.2.5)

the diagonal matrix which essentially means that different manifolds, stable and center

in our case are decoupled linearly. Although the manifolds are coupled non-linearly. An

expanded form of equation (4.2.5) is given in equation (4.2.6). Linear decoupling and

54



Chapter 4: Analytical Solution Approximation

nonlinear coupling can be seen more clearly in equation (4.2.6). The former equations

are the general representation after transformation (4.2.4) has been applied on equation

(4.2.3) and note that in our case there is no unstable manifold concerning the variable

vu. Therefore the form we are dealing with looks closer to equation (4.2.7). This general

representation is given here instead of writing the full equation since the original equation

representing the transformation (4.2.7) is lengthy and is given in chapter (7) containing

appendix.
v̇c

v̇s

v̇u

 =


Jc 0 0

0 Js 0

0 0 Ju




vc

vs

vu

 +


G2(vc,vs,vu)+G3(vc,vs,vu)

H2(vc,vs,vu)+H3(vc,vs,vu)

K2(vc,vs)+K3(vc,vs,vu)

 +σ


G4(vc,vs,vu)

H4(vc,vs,vu)

K4(vc,vs,vu)


(4.2.6)v̇c

v̇s

 =

Jc 0

0 Js


vc

vs

 +

G2(vc,vs)+G3(vc,vs)

H2(vc,vs)+H3(vc,vs)

 +σ

G4(vc,vs)

H4(vc,vs)

 . (4.2.7)

For equation (4.2.7), Jc is the diagonal matrix representing the pure imaginary eigenval-

ues at its main diagonal entries, Js s the diagonal matrix representing the real negative

eigenvalues at its main diagonal entries, G2(vc,vs) is the function representing the

quadratic nonlinear terms while G3(vc,vs) is representing the cubic nonlinear terms

with the variable of course given as vc,vs. Now as can be interpreted with the eigenval-

ues at the diagonal entries, the equation in terms of state variables vc is the equation

of center manifold, and the equation concerning the variable vs is the equation of stable

manifold.

4.2.3 Decoupling Center Manifold from Stable Manifold

Transformation of the manifolds was done to focus on the specific type of solution.

Now the transformed equation (4.2.7) containing the center and stable manifold is non-

linearly coupled. It will be helpful if we can somehow ignore the not required manifolds.

If the stable manifolds from equation (4.2.7), can somehow be approximated in terms

of center manifold variables, then the substitution of stable manifold variables in the

center manifold equation eventually decouples the center manifold equation.

In the current analysis the manifold variables v = [v1, v2, v3, v4]T contain the center

manifold variables v2, v3 and stable manifold variables v1, v4. Therefore, to decouple

the two center manifold equations from the two stable manifold equations, the center

manifold is approximated in terms of stable manifold variables. The approximation
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is done using polynomial series such as given in equation (4.2.8). There are certain

properties for manifolds such that representing manifold in terms of a series such as

given in equation (4.2.8) is subjected to certain conditions. These conditions are listed

in equation (4.2.9), (4.2.10) and (4.2.11)

v1 = h1(v2,v3,σ) = a4σ + c1 + c2v2 + c3v3 +a1v2
2 +a2v2v3 +a3v3

2 + . . .

v4 = h2(v2,v3,σ) = b4σ +d1 +d2v2 +d4v3 + b1v2
2 + b2v2v3 + b3v3

2 + . . . . (4.2.8)

The manifold polynomial expressions (4.2.8) is subjected to conditions (4.2.9), (4.2.10)

and (4.2.11) reduces some of the terms related to (4.2.8). The first condition (4.2.9)

illustrates that the stable manifold variable should be at the FP when the center manifold

variables are zero i.e., both manifolds should coincide at the FP. The second condition

enlisted (4.2.10) and (4.2.11) says that the manifolds should be perpendicular to each

other when passing through a FP

h1(0,0,0) = 0, h2(0,0,0) = 0 (4.2.9)
∂h1
∂v2

(0,0,0) = 0,
∂h1
∂v3

(0,0,0) = 0 (4.2.10)

∂h2
∂v2

(0,0,0) = 0,
∂h2
∂v3

(0,0,0) = 0. (4.2.11)

Applying the conditions (4.2.9), (4.2.10) and (4.2.11) on the polynomial approximations

of the stable manifolds given in equation (4.2.8) reduces it to equations (4.2.12) which

are the approximations to the stable manifolds in terms of polynomial series of center

manifold variables. Although the coefficients in equation (4.2.12) are still unknown.

These coefficients can be determined by using the stable manifold equations from equa-

tion (4.2.7). Inserting these approximations (4.2.12) into the stable manifold expression

and using the center manifold equation makes two equations with only center manifold

variables v2,v3. Comparing the coefficients of both sides gives a certain number of al-

gebraic equations. Solving these equations for unknowns gives the value of coefficients.

These values of coefficients are given in table (4.1),

v1 = h1(v2,v3,σ) = a4σ +a1v2
2 +a2v2v3 +a3v3

2 + . . .

v4 = h2(v2,v3,σ) = b4σ + b1v2
2 + b2v2v3 + b3v3

2 + . . . (4.2.12)

and with values of coefficients known for equation (4.2.12) as given in table (4.1), the

stable manifolds are well approximated and are in terms of center manifold variables.

Inserting these expressions (4.2.12) into the center manifold equation consisting of v2, v2
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Parameters Values Parameters Values

a1 −0.26+0.17ι b1 −0.20−0.27ι

a2 0.99 b2 2.099

a3 −0.26−0.17ι b3 −0.20+0.27ι

a4 −0.72 b4 1.02

Table 4.1: Parameters for polynomial

from equation (4.2.7) decouples the center manifold equation from the other manifold

variables. These equations are given in the expression (4.2.13) and (4.2.14). The center

manifold equations (4.2.13) and (4.2.14) represent the periodic nature of the system of

equation (3.1.6) at the specific area work is focused in the phase space. This area is the

local region to the FP x0 from the table (3.3). Similar can be done for the other FP

as well. Although the nature of the solution is periodic the coordinate system is not

the original space in which the solution is required. The origin is translated (equation

(4.2.1)) and more importantly transformed (equation (4.2.4)). However, one can always

transform back to the original coordinates with back transformation using the same

expressions as were used for transformations, once the solution is known,

v̇2(t) =ιωv2(t)+ c0σ +(c132σ + c131)v2(t)3 +(c122σ + c121)v2(t)2 +(c322σ + c321)v3(t)v2(t)2

+(c332σ + c331)v3(t)2v2(t)+ c112σv2(t)+(c312σ + c311)v3(t)v2(t)+(c232σ + c231)v3(t)3

+(c222σ + c221)v3(t)2 + c212σv3(t) (4.2.13)

v̇3(t) =− ιωv3(t)+d0σ +(d232σ +d231)v2(t)3 +(d222σ +d221)v2(t)2 +(d332σ +d331)v3(t)v2(t)2

+(d322σ +d321)v3(t)2v2(t)+d212σv2(t)+(d312σ +d311)v3(t)v2(t)+(d132σ +d131)v3(t)3

+(d122σ +d121)v3(t)2 +d112σv3(t). (4.2.14)

The ODEs are first-order and complex and these two equations are similar to the pure

imaginary eigenvalues, they are complex conjugates of each other. The coefficients are

known and are given in the appendix. Their general form is as given ca = αa + βaι and

db = αb + βbι where a and b are integers from 1 to 13, where σ indicates how much the

control parameter value is far from the bifurcation point. The dynamics of the system

are reduced from four ODEs to two of them and the approximate representation is close

to the Hopf bifurcation point i.e., H = 7.97+ ϵσ.
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4.3 Method of Multiple Scales

An ODE can be solved using any of the perturbation techniques suitable at the moment.

In the present work, the method of multiple scales is applied to solve the coupled complex

conjugate nonlinear equations. In this perturbation technique, the solution is expanded

in the form of power series, and along with that time is divided into different fast-moving

and slow-moving scales. The idea is to separate the dynamics along the fast and slow-

moving time scales such that a solution to the system can be found.

The original time T0 = t corresponds to the second arm of the watch, whereas slow

changing time T1 = ϵt corresponds to the minute arm of the watch, and even slower time

T2 = ϵ2 t corresponds to the hour arm of the watch. Therefore v(t) = v(t, ϵ t, ϵ2 t . . .)

becomes the variables. Therefore, variable dependence shifts from actual time t to

different fast and slow time scales T0, T1, T2, . . . converting, the ODE to the PDE. The

variables and derivatives are changed using this method, as shown in equations (4.3.1)

and (4.3.2),

v = v0 + ϵv1 + ϵ2v2 + . . . (4.3.1)
d

dt
= ∂

∂T0
+ ϵ

∂

∂T1
+ ϵ2 ∂

∂T2
+ . . . (4.3.2)

the main governing equation, given in (4.2.13) and (4.2.14), becomes a PDE when the

above transformations given in equations (4.3.1) and (4.3.2) are applied to it. The idea

now is to separate terms involving various powers of ϵ. The equations are linear in terms

of one of the variables v0, v1, etc. at the individual powers.

The solution to the first equation, for example, containing variable v0 at ϵ = 0, can be

used as an input force to the second equation, which occurs at ϵ = 1 and contains state

variable v1. The first ODE for ϵ = 0 is usually homogeneous and linear, whereas the

others for ϵ ≥ 1 are usually non-homogeneous linear. Solving equations with increasing

powers of ϵ sequentially reveals all variables involved in any equation involving the

power of ϵ. Following the evaluation of some of the variables, such as v0, v1 and v2,

the equation (4.3.1) approximates the system.

In applying the method of multiple scales, secular terms in the input force frequently

appear, causing the system solution to blow up to infinity if they are not removed.

Secular terms are those whose frequency is equal to, or sometimes a sub-multiple of, the

system’s natural frequency. These terms’ coefficients are removed by setting them to

zero. This procedure yields amplitude and phase equations, which can be used to plot
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frequency response curves.

4.3.1 Application on the Center Manifolds

The system of equations given in (4.2.13) and (4.2.14) can be solved using the method

of multiple scales. The variables become v2(t) = v2(t, ϵt, ϵ2t . . .), v3(t) = v3(t, ϵ t, ϵ2 t . . .),

and thus v2(t) = v2(T0, T1, T2 . . .) and v3(t) = v3(T0, T1, T2 . . .). Therefore, variable

dependence shifts from real-time t to different fast and slow time scales T0, T1, T2, . . ..

In equations (4.3.3), (4.3.4) and (4.3.5), transformations similar to equations (4.3.1) and

(4.3.2) are used,

v2 = v20 + ϵv21 + ϵ2v22 +O(ϵ3) (4.3.3)

v3 = v30 + ϵv31 + ϵ2v32 +O(ϵ3) and (4.3.4)
d

dt
= ∂

∂T0
+ ϵ

∂

∂T1
+ ϵ2 ∂

∂T2
+O(ϵ3) (4.3.5)

where O(ϵ3) refers to the terms of cubic or higher degree powers. The number of

differential equations is determined by putting these equations (4.3.3), (4.3.4) and (4.3.5)

in the center manifolds equations (4.2.13) and (4.2.14) and comparing both sides of each

equation for the same power of ϵ. We have equations for state variables v20 and v30 at

ϵ = 0, but these are the FPs, so we keep v20 = v30 = 0. These equations are enlisted in

equations (4.3.6), (4.3.7) and (4.3.8) respectively, for ϵ = 1, 2, 3. The conjugate of these

equations are true for the conjugate variables v31, v32 and v33 and are given in (4.3.9),

(4.3.10) and (4.3.11) respectively, for the same ϵ = 1, 2, 3

dv21
dT0

= ιωv21 (4.3.6)

dv22
dT0

− ιωv22 = −dv21
dT1

+ c0σ + c121v2
21 + c311v21v31 + c221v2

31 (4.3.7)

dv23
dT0

− ιωv23 = F (v21,v22,v31,v32) (4.3.8)

dv31
dT0

= −ιωv31 (4.3.9)

dv32
dT0

+ ιωv32 = −dv31
dT1

+ c̄0σ + c̄121v2
31 + c̄311v31v21 + c̄221v2

21 (4.3.10)

dv33
dT0

+ ιωv33 = F̄ (v21,v22,v31,v32) (4.3.11)

It is possible to solve the linear equations at ϵ1 given in equation (4.3.6) and (4.3.9),

and the solutions of these homogeneous equations are given in equation (4.3.12) and
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(4.3.13). There are other equations for variables v31,v32 and v33 that are similar to

equations (4.3.6), (4.3.7) and (4.3.8)but complex conjugate of these equations that are

mentioned in equations (4.3.9), (4.3.10) and (4.3.11). Therefore, the variable v31, which

is the complex conjugate of v21, has a solution in equation (4.3.13). The symmetry of

the two conjugate equations for two conjugate variables is observed during the process

of solving equations (4.2.13) and (4.2.14),

v21(T0,T1,T2) = A(T1,T2)eιωT0 (4.3.12)

v31(T0,T1,T2) = Ā(T1,T2)e−ιωT0 (4.3.13)

equation (4.3.7) is a nonlinear equation of O(ϵ2), with variable v22 unknown and vari-

ables v21 and v31 known from equations (4.3.12) and (4.3.13). Using these values, v21

and v31 act as force inputs to the equation (4.3.7), and thus the nonlinear terms are dis-

solved into known inputs and a linear forced first order equation is obtained, which can

be solved. Equation (4.3.14) shows equation (4.3.7) with the values of input variables

v21 and v31 is inserted into the forcing terms. It has a conjugate equation with unknown

variable v32 given in equation (4.3.10), similar to equation (4.3.7). The nonlinearity is

dissolved into forcing inputs using the known variable function from equations (4.3.12)

and (4.3.13), and the equation can then be solved,

∂v22
∂T0

− ιv22ω =c221e−2iT0ωĀ(T1,T2)2 + c311A(T1,T2)Ā(T1,T2)

−eiT0ω ∂A

∂T1
(T1,T2)+ c121e2iT0ωA(T1,T2)2 + c0σ (4.3.14)

∂v32
∂T0

+ ιv32ω =c̄221e2iT0ωA(T1,T2)2 + c̄311Ā(T1,T2)A(T1,T2)

−e−iT0ω ∂Ā

∂T1
(T1,T2)+ c̄121e−2iT0ωĀ(T1,T2)2 + c̄0σ, (4.3.15)

equation (4.3.14) is created by replacing the values of variables v21 and v31 from equa-

tions (4.3.12) and (4.3.13). The resulting form of the system is shown in equation

(4.3.14) and its solution contains the term T0eιωT0 dA(T1,T2)
dT1

, indicating that the solution

will explode over time. This is due to the fact that one of the forcing terms has the same

frequency as the natural frequency ω of the corresponding equation, causing resonance.

The secular terms containing frequency equal to the system’s natural frequency must be

eliminated. The coefficients of secular terms are gathered and set to zero for this pur-

pose. This results in the equation (4.3.16) being the solution. The form of the solution
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shown in (4.3.18) is obtained by removing the secular term from equation (4.3.14) and

solving for its solution.

The same procedure is applied for the conjugate equation (4.3.10) by putting the value

of variables v21 and v31 acting as force and then removing the coefficients of secular

terms forming equation (4.3.17). The solution of the equation (4.3.10) after removing

the secular terms is given in equation (4.3.19),

dA(T1,T2)
dT1

= 0 (4.3.16)

dĀ(T1,T2)
dT1

= 0. (4.3.17)

The complex conjugate of v22 given in (4.3.18) is the solution to variable v32. One ob-

tained at O(ϵ3) is equation (4.3.8). This is a first-order equation with an unknown vari-

able v23 and a condensed forcing function F (v21,v22,v31,v32). The variables v21, v22, v31

and v32 are known at this point, and inserting these values into the input function

F (v21, v22, v31, v32) yields a linear forced ODE and after plugging in the values for

v21, v22, v31 and v32, the coefficients of the newly formed ODE contain secular terms

that, when solved, blow up the results. The coefficients of the secular terms eιωT0 are

added together and separated to form the equation (4.3.20), which gives the system’s

steady state amplitude,

v22 (T0,T1,T2) = ic311A(T1,T2)Ā(T1,T2)
ω

+ ic221e−2iT0ωĀ(T1,T2)2

3ω
−

ic121e2iT0ωA(T1,T2)2

ω
+ ic0σ

ω
(4.3.18)

v32 (T0,T1,T2) =− ic̄311Ā(T1,T2)A(T1,T2)
ω

− ic̄221e2iT0ωA(T1,T2)2

3ω
−

− ic̄121e−2iT0ωĀ(T1,T2)2

ω
− ic̄0σ

ω
. (4.3.19)

The complex coefficient A(T2) = a(T2)eιβ(T2) is a function of the amplitude and phase.

When this coefficient is expanded in equation (4.3.20), the amplitude equation (4.3.21)

and phase equation (4.3.22) are obtained by substituting values for complex constants

and separating the real and imaginary parts,

A′ (T2) =− 2ic221d221A(T2)2Ā(T2)
3ω

− ic311d311A(T2)2Ā(T2)
ω

+ ic121c311A(T2)2Ā(T2)
ω

+ c321A(T2)2Ā(T2)− ic311d0σA(T2)
ω

+ 2ic0c121σA(T2)
ω

+ c112σA(T2) (4.3.20)
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the normal form of supercritical Hopf bifurcation is represented by the amplitude equa-

tion (4.3.21). Allowing a′(T2) = 0 results in an amplitude of a = ±0.51
√

−σ in the steady

state. This indicates that the periodic solution occurs only when σ < 0, or the value

of the control parameter crosses the Hopf bifurcation point and is less than the critical

control parameter i.e., for H < 7.97,

a′ (T2) = −0.29σa(T2)−1.13a(T2)3 (4.3.21)

γ′ (T2) = −1.84a(T2)2 −0.16σ. (4.3.22)

The amplitude equation (4.3.21) can be combined with equations (4.3.3), (4.3.4) and

(4.3.12), (4.3.13), where A = aeιβ and the solution to the manifold equations (4.2.13)

and (4.2.14) can be obtained by neglecting v22 and v32 and keeping in mind the values

of FPs v20 and v30. However, this is a solution to the manifold equations (4.2.13) and

(4.2.14), not to the governing equation of the BVAM model (3.1.6).

Following the normal forms given in equations (4.3.21) and (4.3.22) at H = 7.97, reverse

transformation to the one done in section (4.2) of center manifolds reduction is required

to get the response for BVAM model given in equation (3.1.6) in the local region of Hopf

bifurcation. The analytical solution for the original BVAM model in the local region of

Hopf bifurcation at H = 7.97 is obtained after that transformation.

4.3.2 Reverse Transformation

As mentioned before, a change of transformation is needed to go back to the original

coordinates. This transformation will be in exact reverse to the transformation that

was done to transform the original coordinates x to the manifold coordinates v. Since

we know for transforming original coordinates, the first transformation was done to

translate the coordinate axis from x to FP x0 where the state variable becomes y.

This transformation is shown in the equation (4.2.1). After that, a transformation was

done to transform the translated coordinates y to manifold coordinates v as shown in

equation (4.2.4). Following the exact steps backward, one can go back from the manifold

coordinates v to the original coordinates x.

First of all the solution is formed using the equation (4.3.12), (4.3.13) and inserting

the values of steady-state phases and amplitudes from equation (4.3.21) and (4.3.22).

Values of v2 and v3 is formed using equation (4.3.3) and equation (4.3.4).

Once the values of v2 and v3 are known, variables v1 and v4 can be determined using
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the equation (4.2.12) with coefficient given in table (4.1). This equation (4.2.12) was

the approximation of stable manifolds in terms of center manifold variables.

With v1, ,v2, ,v3, ,v4 all known, the vector v is determined. So a transformation is

required to shift from v coordinates to y coordinates using the equation (4.2.4). In that

way the variable y is determined. Now next transformation is a simple translation back

of axis from y coordinates to x using the equation (4.2.1). After following all these

transformations one arrive at the solution that is applicable at the original coordinates

x. The solution form is given in equation (4.3.23),

x = x0 +a1σ + ϵ2a2σ + ϵa3
√

σ sin [(ω1 + ϵ2c1σ)t+βββ111]+ ϵ2a4σ sin [(ω2 + ϵ2c2σ)t+βββ222]

(4.3.23)

and it can be seen that from the FP x0, the amplitude of the analytical solution of

equation (4.3.23) solution gradually increases. The FPs change as the control parameter

is varied, as can be seen in the second and third terms of the analytical solution. The

coefficients a1, a2, a3, a4, βββ111 and βββ222 are vectors, and the value of their components

corresponds to the different components of variable x which are x1, x2, x3 and x4.

Therefore, it is clear that all of the components of x have different amplitudes and

phase differences.
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Results and Discussion

A comprehensive analytical analysis is done on the BVAM model. In order to approxi-

mate the analytical solution of the BVAM model at a specific control parameter value,

and analyze its behavior in the local region to that specific value of control parameter,

the method of multiple scales is used which is a perturbation technique to approximate

an analytical solution to nonlinear differential equations.

Direct application of the method of multiple scales was not possible, since the model of

the system has multiple solutions at specific control parameters. Therefore, the analysis

is focused on one specific fixed point and its local region. A transformation to manifolds

was performed so that the right kind of solution is separated.

5.1 Identification of Hopf Bifurcation Points

In this thesis work, analytical techniques for nonlinear dynamical systems were per-

formed to first find out some of the points where bifurcations are happening and then

the analytical solution is approximated in the local region to Hopf bifurcation. The

system is linearized to find out the Jacobian matrix whose eigenvalues gave information

about the stability and help in identifying possible points of Hopf bifurcation. Table

(3.3) and table (3.4) show the eigenvalues of the Jacobian matrix near two fixed points

H = 8.77 and H = 7.97. It is indicated that the former two points are the points of Hopf

bifurcation. The real part of eigenvalues was negative for the control parameter value

greater than the critical value of the control parameter indicating stable fixed points.
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For a control parameter value less than the critical value of the control parameter the

fixed points become unstable and the real part of the eigenvalues of the Jacobian matrix

became positive. At the Hopf bifurcation point, the real part of eigenvalues was zero but

an imaginary part was introduced which added a frequency of oscillation to the system.

For control parameter H > 8.77 there were two stable fixed points and one unstable

trivial fixed point. The two stable fixed points are given in table (3.1) at H = 9. For

7.97 < H ≤ 8.77 there are two unstable fixed points, one stable fixed point along with

a stable periodic solution that has emerged from H = 8.77. At the end for H < 7.97,

there are three unstable fixed points and two stable periodic solutions that are emerged

from H = 8.77 and H = 7.97.

(a) Phase portrait for the periodic solution after

Hopf bifurcation at H = 8.75

(b) Phase portrait for the periodic solution after

Hopf bifurcation at H = 7.95

Figure 5.1: Phase portraits in the local region to Hopf bifurcations

5.2 Identification of Period Doubling Bifurcation Points

The periodic solution can be seen to have a distinct change in phase portrait around

H ≈ 4.625. The trajectory in phase space is folded on itself twice before closing (see

figure (5.2)). Nonlinear analysis is performed in this region of the control parameter to

identify the possible point of period-doubling bifurcation.

For periodic solutions, the Floquet multipliers provide the information about the stabil-

65



Chapter 5: Results and Discussion

ity of the solution. Floquet multipliers are the eigenvalues of the monodromy matrix.

These eigenvalues tell about if a solution will diverge or converge from the path of a

periodic solution. The Floquet multipliers of absolute value 1 show the periodic nature

of the solution. Another Floquet multiplier of value less than absolute 1 represents that

the solution will eventually converge to a periodic solution. However, the Floquet mul-

tipliers greater than absolute 1 show the instability of that periodic solution.

For a periodic solution, there can be different scenarios of how a Floquet multiplier

(a) Phase portrait for the first periodic solution

before period-doubling bifurcation at H = 4.630

(b) Phase portrait for the first periodic solution

after period-doubling bifurcation at H = 4.620

Figure 5.2: Phase portraits before and after H = 4.625

leaves a unit circle in a complex plane. In each scenario, a different bifurcation can hap-

pen. Table (3.5) shows that for the control parameter value greater than 4.625, all the

Floquet multipliers except one are inside the unit circle. One of the Floquet multipliers

is always at a unit circle circumference with the value of 1. However, at value H ≈ 4.625,

there are two Floquet multipliers at the unit circle, one at 1, and the other has the value

of −1. For control parameter values H < 4.625 the Floquet multiplier of value −1 leaves

the unit circle. Therefore from now onward, this periodic solution becomes unstable.

The pattern of how a Floquet multiplier is leaving the unit circle suggests that the type

of bifurcation happening is period-doubling bifurcation.

To confirm this result, Poincare section is plotted at the corresponding values of the con-

trol parameter. An intersection of this plane is taken with the trajectory in the phase

plane after every time period T . So for every periodic solution, it is evident that the
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Poincare section will consist of one single dot. Therefore, in figure (5.3a) the Poincare

section shows a single dot at H = 4.63 indicating a single period, periodic solution.

However, at H = 4.62, we see two dots in the Poincare section in figure (5.3b). Since

by definition since Poincare section is the intersection of the hyper-plane with the phase

plane after every time period and we are seeing two dots for the span of one time period

T , it means that the time period of this system is essentially doubled. A similar conclu-

(a) Poincare section for the first periodic solu-

tion prior to period-doubling bifurcation at H =

4.630

(b) Poincare section for the first periodic solu-

tion after period-doubling bifurcation at H =

4.620

Figure 5.3: Poincare sections before and after H = 4.625

sion is made for the other periodic solution. Following table (3.6), it is observed that

the second stable periodic solution becomes unstable and undergoes period-doubling

bifurcation at control parameter value H = 4.565. Now after, H < 4.565 there are three

unstable fixed points, two unstable periods one solution, and two stable periodic solu-

tions.

5.3 Analytical Solution

the analytical solution is found in the local region to Hopf bifurcation. After transform-

ing the system to its center manifold and decoupling the center manifold from stable

manifolds as is done in section 4, an analytical solution is found using the method of
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(a) Amplitude comparison for x1 (b) Amplitude comparison for x2

Figure 5.4: Comparison of analytical and numerical amplitudes for state variables x for

equation (3.1.6) upon variation control parameter H

multiple scales. The amplitude and phase equations (4.3.21) and (4.3.22) represent the

change in amplitude and phase with the control parameter value. However, this change

can be visualized but it cannot be compared to see the numerical solution since this

amplitude is in the coordinates of manifolds v and the numerical solution is only avail-

able in original coordinates x. A reverse transformation was also applied in the previous

section to attain the analytical solution of the system which is given in equation (4.3.23).

From this solution, the time-varying cosines and sines are assumed to be 1 and in this

way, the other terms sum up to represent the actual amplitude of the system in x.

These two amplitudes i.e. amplitude obtained through analytical consideration (equa-

tion (4.3.23)) compared with the amplitude obtained numerically. The comparison is

done with the variation of the control parameter H value. Figures (5.4) and (5.5) shows

this comparison. Comparison of analytical amplitude obtained from equation (4.3.23)

with the numerical solution shows that the analytical solution to the system of equation

is accurate up to a finite value of control parameter away from the Hopf bifurcation.

After a certain value control parameter, the two solution amplitudes diverge from each

other. This is the limit of analytical solutions that cannot be computed accurately for

more than a certain limit. However, the amplitude equation is giving a good insight

into the nature of the system.

The power spectrum of the BVAM model is shown in the local region to Hopf bifurca-
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(a) Amplitude comparison for x3 (b) Amplitude comparison for x4

Figure 5.5: Comparison of analytical and numerical amplitudes for state variables x for

equation (3.1.6) upon variation control parameter H

tion at H = 7.95 in figure (7.1) in the appendix. The spectrum shows three dominant

frequencies as evident the system has cubic non-linearity. The frequencies obtained an-

alytically are Hc − σ = 7.97. At H = 7.95 the first dominant frequency is ω1 + ϵ2c1σ

and the second dominant frequency is ω2 + ϵ2c2σ. The parameter values are given in

equation (??). Filling these values gives us the frequency values to be 5.55rad/s and

11.10 rad/s. Numerically from the power spectrum, these values are close to 5.2rad/s

and 10.4rad/s. Although these frequencies are not exact, there is a slight amount of er-

ror between the values of frequencies calculated analytically and numerically. However,

calculation analytically provide us with the relationship of how a frequency can change

upon varying control parameter.
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Conclusion

6.1 Summary of Current Work

The heart is a vital organ in the human body however, according to an engineering

perspective it is a mechanical pump that is actuated by electrical pulses. These electrical

pulses make the walls of the heart stretch and contract in such a way that blood gets

flowed into the whole body. While this phenomenon is happening, electrical charges

get placed at different locations of the body having definite values of potential when

measured over time, it forms a specific wave. This is referred to as an ECG of the heart.

This ECG is different with different conditions of the heart. A very recent paper presents

a mathematical model which reproduces ECGs of healthy and abnormal hearts and the

route from normal sinus rhythm to arrhythmia validates the actual path followed.

This model is referred to as a discretized version of the BVAM model. The BVAM

model has several types of solutions at different values of parameters. It has fixed

point solutions, periodic and multi-period solutions and quasi-periodic solutions, and

chaotic solutions. Bifurcation happens when one type of solution changes to another

type of solution with a varying control parameter value. The BVAM model has three

fixed point solutions for control parameter value less than 8.77 where two FP are stable

and the trivial solution representing origin is unstable. The Hopf bifurcation occurs at

the control parameter value of 8.77 and 7.97 for the two stable FPs and turns them

into periodic solutions. We formed an analytical solution in the local region to Hopf

bifurcation. This periodic solution changes into a period-two solution at the mentioned

control parameter values of period-doubling bifurcation. ECG of the heart lies in one
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of the branches of solution which emerged as the solution kept changing its types from

fixed point solution to multi-period solution. Further bifurcation brings solution into

the chaotic region where we observe atrial fibrillation which is one of the malignant

arrhythmia of the heart.

6.2 Future Work

Current thesis work is limited to finding two of the bifurcation points and forming an

analytical solution in the local region to the Hopf bifurcation only. This is applicable

on many natural phenomena related to biology however, the ECG of human body lies

near the chaotic and quasi-periodic region. The route towards chaos is known to be

Ruelle–Takens–Newhouse route to chaos. Although it may be difficult to find analytical

solution near this region however, appropriate system identification tools can be used

to associate the parameters of BVAM model to ECG of the heart.
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Equation (4.2.7)

v′
1(t) =− (0.241519 −0.222009i)σv2(t)− (0.241519 +0.222009i)σv3(t)

+(0.57831 +0.612048i)v2(t)v1(t)2 +(0.57831 −0.612048i)v3(t)v1(t)2

+(1.14885 +1.61151i)v2(t)2v1(t)+(1.14885 −1.61151i)v3(t)2v1(t)

− (2.26337 +2.84244i)v2(t)v1(t)− (2.26337 −2.84244i)v3(t)v1(t)

+(0.993279 +0.868225i)v2(t)v4(t)v1(t)+(0.993279 −0.868225i)v3(t)v4(t)v1(t)

− (0.260007 −0.424567i)v2(t)3 − (0.260007 +0.424567i)v3(t)3 − (3.8589 +1.68177i)v2(t)2

− (0.178819 +0.315926i)v2(t)v3(t)2 − (3.8589 −1.68177i)v3(t)2

+(0.279673 +0.327613i)v2(t)v4(t)2 +(0.279673 −0.327613i)v3(t)v4(t)2

− (0.178819 −0.315926i)v2(t)2v3(t)+(1.45039 +1.05599i)v2(t)2v4(t)

+(1.45039 −1.05599i)v3(t)2v4(t)− (1.38617 +2.18671i)v2(t)v4(t)

− (1.38617 −2.18671i)v3(t)v4(t)−5.41348σ +1.00081σv1(t)+1.5962σv4(t)+0.84583v1(t)3

+2.55533v4(t)v1(t)2 −6.72024v1(t)2 +2.43107v4(t)2v1(t)+1.68556v2(t)v3(t)v1(t)

−12.2344v4(t)v1(t)−7.49796v1(t)+0.752717v4(t)3 −5.46495v4(t)2

−7.42918v2(t)v3(t)+2.40363v2(t)v3(t)v4(t)
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v′
2(t) =(0.30014 −0.163536i)σ +(0.0282701 +0.0531356i)σv1(t)

− (0.00979015 −0.334817i)σv2(t)+(0.186253 −0.308481i)σv3(t)

− (0.00149033 −0.0720104i)σv4(t)− (0.0748609 −0.434152i)v2(t)v1(t)2

+(0.335977 +0.331142i)v3(t)v1(t)2 − (0.0620415 −0.219681i)v4(t)v1(t)2

+(0.187056 −0.522723i)v1(t)2 − (0.304132 +0.0318502i)v2(t)2v1(t)

+(0.137781 −0.025187i)v3(t)2v1(t)

− (0.0908968 −0.135614i)v4(t)2v1(t)− (0.437948 +2.34955i)v2(t)v1(t)

− (0.0659915 −0.0871909i)v2(t)v3(t)v1(t)− (1.31142 +2.32047i)v3(t)v1(t)

+(0.043977 +0.920467i)v2(t)v4(t)v1(t)+(0.578765 +0.795192i)v3(t)v4(t)v1(t)

+(0.457912 −0.681398i)v4(t)v1(t)− (0.110516 −0.114752i)v2(t)3

+(0.205373 +0.0298759i)v3(t)3 − (0.0391608 −0.0166236i)v4(t)3

+(0.79171 −0.137661i)v2(t)2 +(0.22726 +0.0150395i)v2(t)v3(t)2

− (0.31667 −0.136479i)v3(t)2 +(0.0894677 +0.45013i)v2(t)v4(t)2

+(0.253637 +0.419201i)v3(t)v4(t)2 +(0.267918 −0.158453i)v4(t)2

+(0. +5.56511i)v2(t)− (0.139824 −0.135539i)v2(t)2v3(t)

+(0.427722 −0.0691838i)v2(t)v3(t)− (0.250396 +0.00723305i)v2(t)2v4(t)

+(0.062812 −0.0131308i)v3(t)2v4(t)− (0.650968 +2.19451i)v2(t)v4(t)

− (0.106076 −0.0967724i)v2(t)v3(t)v4(t)− (1.11413 +2.26283i)v3(t)v4(t)

+(−0.0112774+0.0940332i)v1(t)3
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v′
3(t) =(0.30014 +0.163536i)σ +(0.0282701 −0.0531356i)σv1(t)

+(0.186253 +0.308481i)σv2(t)− (0.00979015 +0.334817i)σv3(t)

− (0.00149033 +0.0720104i)σv4(t)+(0.335977 −0.331142i)v2(t)v1(t)2

− (0.0748609 +0.434152i)v3(t)v1(t)2 − (0.0620415 +0.219681i)v4(t)v1(t)2

+(0.187056 +0.522723i)v1(t)2 +(0.137781 +0.025187i)v2(t)2v1(t)

− (0.304132 −0.0318502i)v3(t)2v1(t)− (0.0908968 +0.135614i)v4(t)2v1(t)

− (1.31142 −2.32047i)v2(t)v1(t)− (0.0659915 +0.0871909i)v2(t)v3(t)v1(t)

− (0.437948 −2.34955i)v3(t)v1(t)+(0.578765 −0.795192i)v2(t)v4(t)v1(t)

+(0.043977 −0.920467i)v3(t)v4(t)v1(t)+(0.457912 +0.681398i)v4(t)v1(t)

+(0.205373 −0.0298759i)v2(t)3 − (0.110516 +0.114752i)v3(t)3

− (0.0391608 +0.0166236i)v4(t)3 − (0.31667 +0.136479i)v2(t)2

− (0.139824 +0.135539i)v2(t)v3(t)2 +(0.79171 +0.137661i)v3(t)2

+(0.253637 −0.419201i)v2(t)v4(t)2 +(0.0894677 −0.45013i)v3(t)v4(t)2

+(0.267918 +0.158453i)v4(t)2 +(0.22726 −0.0150395i)v2(t)2v3(t)

+(0.427722 +0.0691838i)v2(t)v3(t)− (0. +5.56511i)v3(t)

+(0.062812 +0.0131308i)v2(t)2v4(t)− (0.250396 −0.00723305i)v3(t)2v4(t)

− (1.11413 −2.26283i)v2(t)v4(t)− (0.106076 +0.0967724i)v2(t)v3(t)v4(t)

− (0.650968 −2.19451i)v3(t)v4(t)+(−0.0112774−0.0940332i)v1(t)3
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v′
4(t) =(0.181794 −0.0145951i)σv2(t)+(0.181794 +0.0145951i)σv3(t)

− (0.371626 +0.487084i)v2(t)v1(t)2 − (0.371626 −0.487084i)v3(t)v1(t)2

− (1.10889 +1.43283i)v2(t)2v1(t)− (1.10889 −1.43283i)v3(t)2v1(t)

+(1.06091 +2.50517i)v2(t)v1(t)+(1.06091 −2.50517i)v3(t)v1(t)

− (0.544012 +0.702237i)v2(t)v4(t)v1(t)− (0.544012 −0.702237i)v3(t)v4(t)v1(t)

+(0.281913 −0.330622i)v2(t)3 +(0.281913 +0.330622i)v3(t)3

+(3.67938 +1.34322i)v2(t)2 +(0.205895 +0.214997i)v2(t)v3(t)2

+(3.67938 −1.34322i)v3(t)2 − (0.0624146 +0.27382i)v2(t)v4(t)2

− (0.0624146 −0.27382i)v3(t)v4(t)2 +(0.205895 −0.214997i)v2(t)2v3(t)

− (1.3878 +0.933346i)v2(t)2v4(t)− (1.3878 −0.933346i)v3(t)2v4(t)

+(0.274437 +1.97631i)v2(t)v4(t)+(0.274437 −1.97631i)v3(t)v4(t)

+3.43956σ −0.604166σv1(t)−0.981228σv4(t)−0.762353v1(t)3

−2.3334v4(t)v1(t)2 +6.16244v1(t)2 −2.25442v4(t)2v1(t)

−1.5663v2(t)v3(t)v1(t)+11.3459v4(t)v1(t)−0.709943v4(t)3 +5.13664v4(t)2

+7.0516v2(t)v3(t)−2.2465v2(t)v3(t)v4(t)−3.35868v4(t)
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Coefficients for equations (4.2.13) and (4.2.14)

c0 = 0.30014 −0.163536i,c112 = −0.360237−0.216171i,c121 = 0.79171 −0.137661i

c122 = −0.00716157+0.0146752i,c131 = −0.322004+0.394762i,c132 = 0.00629063 −0.0465835i

,c212 = −0.00786543−0.95043i,c221 = −0.31667+0.136479i,c222 = −0.0974716+0.0441227i

,c231 = 0.54642 +0.10721i,c232 = −0.0279866−0.0221947i,d0 = 0.30014 +0.163536i,

d112 = −0.00786543+0.95043i,d121 = −0.31667−0.136479i,d122 = −0.0974716−0.0441227i

d131 = 0.54642 −0.10721i,d132 = −0.0279866+0.0221947i,d212 = −0.360237+0.216171i

d221 = 0.79171 +0.137661i,d222 = −0.0072−0.01468ι,d231 = −0.322004−0.394762i

d232 = 0.00629063 +0.0465835i,ω = 5.56511, c311 = 0.427722 −0.0691838i,

c312 = 0.168833+0.429731i,c321 = −1.16988−1.90762i,c322 = 0.178467 +0.186764i

c331 = −0.632278−2.36005i,c332 = 0.080681 +0.247657i,d311 = 0.427722 +0.0691838i

d312 = 0.168833 −0.429731i,d321 = −1.16988+1.90762i,

d322 = 0.178467 −0.186764i,d331 = −0.632278+2.36005i,d332 = 0.080681 −0.247657ι

Equations (4.3.8)

F (v21,v22,v31,v32) =− dv21
dT2

(T0,T1,T2)− dv22
dT1

(T0,T1,T2)+ c112σv21 (T0,T1,T2)+ c212σv31 (T0,T1,T2)

+ c131v21 (T0,T1,T2)3 + c321v31 (T0,T1,T2)v21 (T0,T1,T2)2

+ c331v31 (T0,T1,T2)2v21 (T0,T1,T2)+2c121v22 (T0,T1,T2)v21 (T0,T1,T2)

+ c311v22 (T0,T1,T2)v21 (T0,T1,T2)+ c231v31 (T0,T1,T2)3

+2c221v22 (T0,T1,T2)v31 (T0,T1,T2)+ c311v22 (T0,T1,T2)v31 (T0,T1,T2)
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Figure 7.1: Power spectrum simulated numerically at H = 7.95 for equation (3.1.6)

Parameters for Analytic Solution given in equation (4.3.23)

a1 =



0.212308

0.122757

−0.342036

0.0214689


a2 =



0.135121

0.131086

−0.23636

−0.0763403


a3 =



0.281731

0.535615

0.540988

0.607102


aaa444 =



0.0323221

0.0305694

0.051652

0.0461832



βββ111 =



1.07987

−0.318365

1.52798

0


βββ222 =



0.310676

−0.744948

0.128051

1.46583


c1 = 0.307995 c2 = 0.615991 ω1 = 5.56 ω2 = 11.12
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