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Abstract

In psychology, the term "emotion recognition" describes the process of attribut-
ing emotional states based on the observation of nonverbal visual and aural clues.
Perfect emotional exchanges between humans and computers can enhance commu-
nication. Emotional interactions are advantageous for various applications because
they have a significant impact on cognitive functions of the human brain, such as
learning, memory, perception, and problem-solving. It may also be applicable to
contemporary healthcare, particularly in dealings with Parkinson’s disease sufferers.
The second most prevalent neurodegenerative condition, Parkinson’s Disease (PD),
impairs the ability to recognize and express emotions. Different emotion recogni-
tion systems are appropriate for various uses depending on the application domain.
Nowadays, the concept of emotion recognition is extremely widespread. With the
aid of IoT, physiological signals offer a suitable method to identify human emotion.
There are several ways that emotions can be expressed, including through speech,
behavior changes, facial expressions, and physiological markers. Physical signs pro-
vide a clearer understanding of emotion categorization. In order to construct a
cutting-edge deep learning architecture for emotion charting for Parkinson’s disease,
the associated parameters derived from the physiological signals, i.e. EEG, dur-
ing emotion identification are investigated and evaluated in this study. Using this
technique, one can readily forecast the victim’s emotional state when conducting an
investigation or monitoring the health of Parkinson’s disease patients. In this thesis,
we have proposed a deep learning based framework which can classify emotions of
a PD patient using their EEG signatures. The results indicate that the framework
can be improved to accurately classify emotions.
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Chapter 1

Introduction

Brain is central part of human body which controls emotion ,memory, breathing,

touch, and all process that regulates the body, when human body suffers from some

disease, body also go through from certain emotions like depression, anxiety, hap-

piness and many more. Emotions are controlled by neuro-physiological changes,

mainly related to the sentiments, conduct reactions and level of joy and disappoint-

ment. Emotions are also defined as positive or negative experience associated to

specific patterns of physiological activities. It plays an important role in decision

making, effective communication and in extraction of useful information from mes-

sages in both speech and images. Mostly the emotion recognition methods are

biased because an individual can easily hide their actual emotions or emotional

states. Many limitations appear in emotion recognition models due to limited num-

ber of facial expression and fake emotions. People with disease cannot express their

emotional states correctly. Physiological signals give a better insight of emotion

charting. Therefor we consider physiological signals (EEG,ECG and GSR) from

dataset of Parkinson’s disease and developed an emotion charting system.
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1.1 Motivation

Over the past two decades research on human emotion has increase which includes

many fields like medicine, psychology, history, computer science and sociology of

emotion. Current areas of exploration includes the development of materials that

stimulate and elicit emotion. Due to advancement in human computer interaction

many applications become operational around the globe leading to multiple solutions

for problems which is enhancing the quality of life. Emotion charting enables us to

understand human behavior and develop improved systems that can manipulate

data on human emotions.

Accurate classification of emotions can reduce the manual effort required by re-

searchers, medical and scientific community. Emotion charting is one of the com-

ponents of HCI, it helps to keep record and history of individuals with disease and

helpful for their recovery. Our motivation for this research is to work mainly on

charting feelings of a person that is suffering from Parkinson’s disease using physi-

ological signals.

1.2 Problem Statement

Brain is the central part of human body which controls memory, feeling, contact,

breathing and each cycle that directs our body, when a person suffers from some dis-

ease, body also go through from certain emotional changes like depression, anxiety,

happiness and many more. Emotion charting of Parkinson’s disease patients using

physiological signals can contribute in development of many applications enhancing

the quality of life and adding ease in the lives of PD patients

We intend to develop model using deep learning techniques that precisely classify

emotional states of PD patients.
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1.3 Aims and Objectives

Major objectives of the research are as follow:

• Devise Deep Learning based framework for classification emotion of PD pa-

tients using EEG signals.

• To facilitate people so they can make their true emotional assessment this can

be further utilized in variety of ways.

1.4 Structure of Thesis

Organization of remaining work of thesis is given below as:

• Chapter 2 covers the details about Parkinson’s disease.

• Chapter 3 gives review of the literature and the significant work done by re-

searchers in past few years for classification of emotions using Deep learning

techniques.

• Chapter 4 covers the proposed methodology in detail. In this chapter, we will

discuss the pre-processing and data preparation steps along with the finalized

DNN model.

• Chapter 5 includes all the experimental results accompanied by relevant fig-

ures.

• Chapter 6 concludes the thesis and reveals future scope of this research.
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Chapter 2

Background

In this chapter a brief introduction of Parkinson ’s disease, causes, the induced

symptoms, the rating scales according to the stage and the progression of the disease,

the clinical diagnosis, the medications and their side effects on body is given. Also

we have discusses the prevention and treatment. Hence, this chapter is an outline

of the condition and the motivations to look for new plans to help clinicians in the

conclusion and appraisal.

2.1 Parkinson’s Disease

Parkinson’s disease (PD) is now a days seen as the second most typical neurodegen-

erative issue that is affecting over 6 million people. Disregarding the way that there

are intriguing meds that can assemble the survivability of the disorder, there are

no mending treatments. The prevalence of PD and debilitation changed life years

continue to extend reliably, provoking a creating weight on patients, their families,

society and the economy. Dopaminergic medications can basically tone down the de-

velopment of PD when applied during the starting stages. Regardless, these drugs

every now and again become less suitable with the disorder development. Early

finding of PD is crucial for ensured mediations so the patients can remain free for
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the longest time span possible. Sadly, break down are regularly late, due to factors

like an overall absence of sensory system experts gifted in early PD finding. PC

upheld suggestive (CAD) gadgets, considering automated thinking methods, that

can perform motorized investigation of PD, are obtaining thought from clinical con-

sideration administrations [1].

Parkinson’s disease is a brain disorder. It is also known as neurodegenerative dis-

order that is present in later stage of life. It damage parts of brain progressively

over many years. In this disease person has difficulty in walking, coordination and

balance. By the time PD gets worse and person also faces difficulty in talking.

Parkinson’s prompts shaking specific pieces of body, sluggish development and firm-

ness in muscles. Its symptoms start gradually and by the time it gets worse.

The traditional qualities side effects of PD are tremor at rest, muscular rigidity,

developmental bradykinesia gradualness, akinesia a defer in the beginning of ad-

vancements with long reaction times, and postural solidness. The most well-known

prescription endorsed to treat patients with PD is Levodopa L (dopa), since the lack

of dopaminergic neurons in the substantia nigra in the mind is connected with the

presence of the motor symptoms in PD. The et iology of PD is additionally con-

nected with age and openness to free radicals and external toxins, as well as gene

mutations [2].

2.2 Causes

The primary driver of this sickness is loss of specific nerve cells in part of cerebrum

known as substantia nigra. These nerve cells produce important chemical of brain

“dopamine”. When the nerve cells die, the production of dopamine chemical also

reduces and it causes movement issues in body. Reduction in dopamine results in

several symptoms of Parkinson’s disease.
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Till now scientists can’t figure out what exactly causes dopamine to die. Some

experts think that genetics and environmental factors are responsible for this disease.

Number of genetics factors has been shown that an increase chance of getting PD

but exactly who is going to suffer is not clear.

Men and women both suffer from this disease but in a study it is shown that male

gets 50In Parkinson’s illness, neurons continuously break or bite the dust. PD side

effects are because of misfortune of neuron producing dopamine. Dopamine level

cause any changes in brain activity, decrease in dopamine level leads to impaired

movement and other symptoms of PD.

There are several factors that can cause Parkinson’s disease, few are as following:

• Genes: Research shows that specific gene mutations can cause Parkinson’s.

However these are not normal besides in that frame of mind with numerous

relatives impacted by PD. In any case, certain gene variations seem to expand

the gamble of PD yet with a somewhat little gamble of PD for every one of

these hereditary markers.

• Environmental triggers: Openness to specific ecological elements or poisons

might expand the risk of PD, yet the risk is tiny.

2.3 Risk factors

Following are a few Risk factors for Parkinson’s disease:

• Age: Youths only here and there experience Parkinson’s. It normally begins

in focus or late life, and the gamble increases with age. People, generally

speaking, encourage the disease around age at least 60 laid out.

• Heredity: Having an immediate connection with Parkinson’s disease fabri-

cates the potential outcomes that you’ll cultivate the contamination. Anyway,
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your risks are still little aside from assuming you have various relatives in your

family with Parkinson’s ailment.

• Gender: Male can develop Parkinson’s more likely than are female.

• Exposure to toxins: Advancing receptiveness to pesticides and herbicides

may imperceptibly grow your gamble of Parkinson’s.

2.4 Symptoms

Parkinson’s disease symptoms are divided into two categories

• Motor impairments

• Non-Motor impairments

2.4.1 Motor Impairments

Motor weakness is the fractional or full loss of capability of a body part, by and

large appendage or appendages. This prompts the muscle shortcoming, unfortunate

endurance, absence of muscle control, or all out loss of motion. Motor hindrance

oftentimes show up in neurological circumstances such a cerebral loss of motion,

Parkinson’s illness, stroke and various sclerosis.

Actual incapacity is related with the motor debilitation and incorporates muscle

shortcoming and exhaustion, impeded sensation and unfortunate equilibrium, muscle

contracture and spasticity - which should be all utilitarian in the event that we are

to bear the standard scope of routine exercises.

Common Motor Symptoms that Require Management

• Tremor is an early side effect of Parkinson’s illness likewise a conspicuous one

however not generally present and is definitely not a fundamental element for

finding.
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• Gradualness (bradykinesia) is a center component of Parkinson’s sickness (PD).

• Inflexibility is viewed as the third noticeable component on assessment.

• A blend of gradualness (bradykinesia) and unbending nature prompts a few

different side effects of PD, micrographia.

• Walk unsettling influence is the fourth unmistakable side effect of PD, this is

ordinarily late indication. Walk jumble is definitely not an early component

of PD however is every now and again depicted as it is not difficult to perceive

and secures the conclusion in later stages [3] . Flexed act, diminished arm

swing, ataxia, festination, walk a-petits-pas, camptocormia, retropulsion and

turning en coalition are well known terms to portray the step in PD.

Individuals with Parkinson’s much of the time experience expanded step impedances

as the sickness advances and side effects become more extreme [4]. Debilitations

incorporate; [5]

• Hypokinesia (diminished step length with diminished speed)

• Diminished coordination

• Festination (Decreased step length with expanded rhythm)

• Freezing of stride (the failure to deliver compelling strides at the inception of

walk or the total suspension of venturing during step)

• Trouble with double entrusting during step

These step debilitation have expanded risk and falling rate. The likelihood of

falling increments which likewise increment the gamble of hip crack and wounds

that additionally influence a singular’s autonomy and capacity to communicate with

others. Apprehension about falling has mental influences that might prompt self-

confinement and wretchedness [6].

8



2.4.2 Non-motor Impairments

Non- motor impairment symptoms are a key component of Parkinson’s disease (PD).

A range of Non-motor symptoms, includes sleep pattern dysfunction, impairment in

sense of smell and dysautonimia are considered to be present from the ’pre-motor’

stage to the last palliative stage.

Normal motor side effects in both of these groups are tremor and bradykinesia;

though, the non-motor side effects every now and again experienced in these groups

were cramps, constipation and unnecessary daytime drowsiness (EDS).

Non-Motor Symptoms Can Be More Detrimental

• Disturbance in sleep pattern

• Difficulty in swallowing

• Low blood pressure

• Saliva Drooling or excessive production

• No control on bladder

• Facial Masking: All the time looking mad, sad, or not interested

2.5 Symptoms

The 3 fundamental side effects of Parkinson’s illness influence actual development

• Termor

• Bardykinesia

• Rigidity

These fundamental side effects are once in a while alluded to by specialists as Parkin-

sonism as there can be causes other than Parkinson’s sickness.
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2.5.1 Other Symptoms

Parkinson’s illness can likewise cause a scope of other physical and mental side

effects.

Physical Symptoms Given are the symptoms:

• Balance issue: these can make somebody with the condition bound to have a

fall and harm themselves

• Ansomia: loss of feeling of smell at times happens quite a while before different

side effects create

• Nerve torment: can create upsetting uproars, like consuming, chilliness or

deadness

• Issues with peeing -, for example, getting up oftentimes during the night to

pee or accidentally peeing(urinary incontinence)

• Blockage

• Wooziness, obscured vision or swooning while moving from a sitting or lying

position to a standing position-by an unexpected drop in pulse

• Hyperhidrosis: over the top perspiring

• Dysphagia: gulping challenges - this can prompt unhealthiness and parched-

ness

• Slobbering: unreasonable creation of spit

• A sleeping disorder: issues resting - this can bring about exorbitant languor

during the day

Cognitive and Psychiatric Symptoms

• Gloom

10



• Tension

• Gentle mental weakness memory issues and issues with exercises that need

arranging and association

• Dementia - this incorporates more serious issues, character changes, visual

mind flights (seeing things that doesn’t exist) and hallucinations (trusting

)things that are false

2.6 Stages of Parkinson’s disease

Parkinson’s disease have following five stages:

• Initial stage, have just gentle side effects and can approach your day to day

existence without any problem.

• Symptoms, for example, quakes and solidness start to decline. May foster

unfortunate stance or experience difficulty strolling.

• In this stage, development will start to dial back and lose balance. Side effects

can frustrate the capacity to perform everyday undertakings, for example,

getting dressed or cooking.

• Symptoms gets extreme and cause huge issues with everyday living. Right

now, incapable to live alone in light of the fact that one can’t get done with

everyday responsibilities all alone.

• Walking or standing could be unimaginable. Individuals at this stage are

bound to a wheelchair or bed and require a medical caretaker to deal with

them at home.
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2.7 Realities of Living with Parkinson’s

This illness is eccentric, living with the agonizing side effects can be depleting both

physical and mental, thus making any arrangements is undeniably challenging.

Day to day errands require a ton of energy for Parkinson’s infection patients to

finish or are removed through and through. For instance, a sound individual can

head to the supermarket, return home and do clothing, cook supper for their family,

have opportunity and willpower to unwind by the day’s end. An individual with

Parkinson’s should focus on each undertaking and will be unable to drive by any

means.

As the infection advances, many individuals are compelled to surrender their freedom

and independence with regards to dealing with themselves. While, with the right

medicines, can diminish illness movement and stay free to the extent that this would

be possible.

2.8 Treatment of Parkinson ’s Disease

There is considered to have no cure for Parkinson’s disease but following treatments

can relieve some symptoms. These treatments include:

• Physiotherapy (Supportive therapies)

• Medical procedure for certain individuals

• Medication

Prevention From above discuss we come to know that the reason for Parkinson’s

is obscure and no demonstrated ways of forestalling the sickness.

• Standard activity i.e high-impact excercise could lessen the gamble of Parkin-

son’s illness.

12



• Individuals who polish off caffeine (which is tracked down in espresso, tea and

cola) get Parkinson’s illness less frequently than the people who don’t drink it.

Green tea is likewise connected with a diminished gamble of fostering Parkin-

son’s sickness. It is as yet not known how caffeine admission is connected.

Right now there isn’t sufficient proof to propose drinking jazzed refreshments

to safeguard against Parkinson’s.

13



Chapter 3

Literature Review

Recently, Electroencephalography (EEG) got significant consideration from scien-

tists, since it can give a straightforward, modest, compact, and simplicity to-utilize

answer for recognizing feelings. EEG-based feeling acknowledgment task with cus-

tomary and profound learning procedures widely announced in different explores,

this part likewise portrays the most significant examinations in view of Parkinson’s

sickness.

3.1 Emotion Charting

Feeling classification framework has various applications in numerous fields. Feelings

are on a very basic level related with mental way of behaving, direction, and practi-

cal wellbeing issues. It makes an effect on simply deciding, expectations in business,

medical care and scholastics. Arising genuinely smart applications are fundamentally

pertinent in item customization, feeling guideline, and mental wellbeing observing.

Computerized feeling handling is either founded on outer deliberate articulations or

natural compulsory physiological reactions. Looks, signals, and manner of speaking

are a couple of instances of outward articulations in view of willful activities that can

undoubtedly be faked or concealed. Physiological reaction to a particular inclina-
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tion is characteristic for the human body, like heartbeat and electroencephalogram

(EEG), which won’t be quickly faked or concealed.

One of most significant goals of human-machine connection is the manner by which

to make the way of behaving of machine more like human’s, particularly in the field

of machine feeling articulation. To accomplish this objective, [7] tackles the issues

in the human-machine collaboration in three viewpoints: separated feeling, feeling

contrast goal, and undercover feeling acknowledgment. In the proposed strategy, the

EEG (Electroencephalogram) signal is utilized to introduce the articulation mode

of individual inclination and character, and a similitude estimation technique is in-

tended to gauge the distinction between EEG signals. Also, bunch division approach

is created to accomplish the differential result in feeling move model. Subsequently,

the point of this exploration is to foster a customized arrangement of machine feel-

ing articulation, and to fabricate the powerful close to home communication model

among human and machine in a shrewd intuitive climate. The outcomes on the

DEAP dataset confirm practicality of the gathering division strategy and the sep-

arated inclination move model. The capacity to perceive feeling is one of the signs

of feeling insight. Ref [8] proposed to perceive feeling utilizing physiological signs

acquired from different subjects. IAPS (International Affective Picture System) pic-

tures were utilized to evoke target feelings. Five physiological signs: Blood volume

beat (BVP), Electromyography (EMG), Skin Conductance (SC), Skin Temperature

(SKT) and Respiration (RESP) were chosen to extricate 30 highlights for acknowl-

edgment. Two example classification strategies, Fisher discriminant and SVM tech-

nique are utilized and looked at for profound state classification. The exploratory

outcomes demonstrate that the proposed strategy gives truly steady and effective

close to home classification execution as 92% north of six profound states [8].
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3.2 Parkinson’s Disease

Parkinson’s disease is a progressive neurodegenerative condition marked by Lewy

bodies seen throughout the brain and the death of dopaminergic neurons. By pro-

ducing the chemical dopamine, which is essential for regulating voluntary movement

sequences, the dopaminergic neuron plays a crucial role in motor coordination and

movement regulation. Although the majority of instances of PD have unknown aeti-

ology, complex interactions between genetic and environmental variables are thought

to be involved.

After Alzheimer’s disease, PD is the second most prevalent neurodegenerative ail-

ment. It affects 1% of people over 60 and reaches about 5% by the time they are 85.

The prevalence is increasing as the population ages. The Parkinson Disease Foun-

dation estimates that there are roughly 10 million persons with PD in the world,

with one million living in the USA, 1.2 million in Europe, and two expected in

China by 2030. In the UK, one in 500 people suffers from this condition, and it

is predicted that over the next 50 years, that figure will triple [9]. There isn’t a

proven disease-modifying treatment yet. The presence of bradykinesia (slowness of

movement), rigidity, tremor, and postural instability is used to diagnose PD. 20% of

patients don’t experience tremor development. It’s critical to get an early diagnosis

of PD in order to give patients access to the right care and prognosis information.

It can be difficult to make an early diagnosis that is correct. Clinical evaluation is

used by doctors to diagnose Parkinson’s disease (PD), evaluating information pri-

marily gleaned from patient examination and history-taking. Despite the fact that

there are currently no tests that are completely sensitive or specific for Parkinson’s,

brain imaging may occasionally be requested to aid support the clinical diagnosis.

About 10–25% of PD diagnoses are incorrect [10], and it takes an average of 2.9

years to reach 90% accuracy [11]. Earhat and Williams’ study [12] examined the

impact of physical activity (treadmill use). According to the author’s analysis of
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the results of a controlled experiment, persons having mild to moderate Parkinson’s

disease can use treadmills without risk. However, patients need to be aware of the

required safety precautions and should complete this session under the guidance of

professionals. Additionally, the research indicates that using a treadmill to exercise

can enhance walking distance, stride length, and gait speed (motor skills).

Parkinson’s disease (PD) sufferers have difficulty recognising face expression expres-

sions, especially negative ones. They have no control over their facial expressions;

the phrase "facial masking" is used to describe them. The brain basis of facial

emotion recognition (FER) in healthy and sick people is assessed using neuroimag-

ing techniques, primarily focusing on functional alterations. In a sizable sample of

Parkinson’s disease patients, this study [13] examined the grey matter and white

matter correlates of facial emotion detection. Magnetic resonance imaging and the

Ekman 60 test for facial expression identification were administered to 39 people with

Parkinson’s disease (PD) and 23 healthy volunteers. According to earlier research,

PD patients dramatically underperformed when it came to identifying sadness, rage,

and disgust. This demonstrates the patients’ poor ability to appropriately identify

facial expressions.

A wide range of symptoms, including abnormal movements, are associated with

Parkinson’s disease (PD). Since the signs and symptoms of PD, especially in the

early stages, often resemble those of other medical conditions or the physiological

changes associated with normal ageing, making an accurate diagnosis of the condi-

tion can be difficult. CNN, a form of Deep Neural Network Architecture, was used

in [14] to diagnose Parkinson’s disease and distinguish PD patients from healthy

controls. Using drawing exercises, the researchers identified patient movement devi-

ation. 93.5% accuracy was attained using CNN on the drawing’s images. Parkinson’s

disease (PD) is often diagnosed based on clinical signs, such as the description of a

range of movement symptoms, and medical observations. Model [14] has the possi-
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bility of being developed into an automated single-task offline real-time diagnostic

tool that can be quickly implemented in a clinical context.

Traditional approaches to diagnosis are centred on motor symptoms, which can

occasionally be missed by the human eye and result in diagnostic inaccuracy and mis-

classification. Additionally, non-motor symptoms are minor and might be brought

on by any other illness, which contributes to early-stage PD misdiagnosis. Machine

learning techniques are utilised to distinguish PD from healthy controls in order to

eliminate human error. The databases IEEE Xplore and PubMed provide a thorough

literature evaluation of investigations on PD. According to study [15], using machine

learning techniques and new biomarkers can help clinicians make a thorough and

knowledgeable diagnosis of PD.

Hypomimia, a symptom of Parkinson’s disease that adversely affects social interac-

tion and facial expressiveness, significantly lowers the quality of life for both patients

and their loved ones. Patients typically have non-motor symptoms (impairments in

emotional processing), which are thought to be related to worsened interpersonal

difficulties. PD still show inconsistent results when recognising facial emotions, and

its cause is unknown. Improve therapeutic practise and boost fundamental under-

standing, particularly in respect to potential embodied emotion impairment in PD,

according to study from [16]. Focus on the recognition of facial emotions, the func-

tion of basal ganglia-based circuits in emotion, and the significance of embodied

simulation theory in the use of facial imitation.

The ability to perceive emotion has been found to be impaired in people with Parkin-

son’s disease (PD), however the results have indeed been mixed. The effects of sen-

sory input, task type, and particular emotion are yet unknown, and this deficit in

PD is related to depression and more general cognitive deficits. A study that exam-

ined the impact of numerous potential modifiers of emotion identification abilities in

PD and gave a valid assessment of the size of the alleged deficiency was published in
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[17]. As this deficit does not seem to be related to anxiety or visuo - spatial deficits,

further research into the potential contribution of working memory restrictions is

warranted. [17] explains the possible effects of these findings on PD patients’ ability

to communicate.

A patient’s daily life is impacted by Parkinson’s disease (PD). Numerous studies

have suggested that a sensor- and machine-learning-based system that monitors pa-

tients in real environments can provide a thorough analysis of the course of PD

and allow for continuous evaluation of the condition. A multi - modal deep learn-

ing method for distinguishing between PD patients and healthy individuals was

suggested in [18]. To train variational autoencoder (VAE) models, the suggested

architecture, called MCPD-Net, has two data modalities: vision and accelerometer

sensors in a home setting. These VAEs, which are modality-specific, forecast that

a classification module would receive combined adequate representations of human

movements. We reduce the disparity between the latent regions that correspond to

the two data modalities during our end-to-end training. Because of this, our tech-

nique can handle modalities that are missing during inference. When a modality

is absent during inference, our method still outperformed other ways by an average

gain in F1-score of 0.17, highlighting the value of training on many modalities [18].

There aren’t any curative treatments; rather, symptomatic ones can improve the

disease’s prognosis. A rising burden is placed on patients, their family, society, and

the economy as PD prevalence and impairment continue to rise rapidly. Medication

slows the progress of PD and is beneficial in the early stages of the disease, but as

the disease advances, many treatments lose their efficacy. Unfortunately, PD is de-

tected in its latter phases since there aren’t enough neurologists trained in initial PD

diagnosis. Patients are most independent in the early stages. Healthcare services

are becoming more interested in computer-aided diagnostic (CAD) solutions that

use artificial intelligence techniques to perform automated PD diagnosis. According

to [19] review, 63 research published between January 2011 and July 2021 presented
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deep learning algorithms for an automated PD diagnosis utilising several types of

modalities, including mobility symptoms(gait, handwriting, speech and EMG) and

brain analyses (SPECT, PET, MRI, and EEG) . To improve the utility, application,

and impact of such systems to improve early identification of PD globally, conduct

additional research on deep learning in automated PD detection.

3.3 Traditional Techniques

The EEG for emotion was processed using a variety of conventional feature extrac-

tion techniques. Traditional methods employed classifiers such as the Fast Fourier

Transform (FFT), Short-time Fourier Transform (STFT), Discrete Wavelet Trans-

form (DWT), statistical features, Power Spectral Density (PSD), and combinations

of these attributes with SVM Classifier and Linear Discriminant analysis. The ac-

curacy is also affected by the amount of emotions; in many cases, the accuracy

increased or reduced in accordance with the number of emotional responses. There

are two methods for categorizing emotions in literature: the one classifies the six

basic emotions (sad, joyful, angry, fear, surprise, and disgust) as a subset, while

the second categorizes simply the valance and arousal classes. These conventional

methods perform poorly across many different emotion classes and vast swaths of

the population [20].

3.4 Deep learning based Techniques

Due to the large population and variety of inclination classes, deep learning tech-

niques were familiar in feeling characterisation with study on the low performance

compared to conventional strategies. According to research, using neural networks

instead of conventional component extraction techniques with classifiers like K-

Nearest Neighbors (KNN) and SVM produces better results or more advanced exe-

cution. However, these studies progress from the less complex deep brain networks
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(DNN), convolutional brain networks (CNN), and recurrent brain networks (RNN),

to a combination of these known as CRNN with different convolutional layer thick-

nesses and features. However, we are still having trouble using the right DL model

to precisely and effectively arrange EEG signals.

Three convolutional layers are used in [21] to improve the SincNet-based classifier.

Three deep neural network (DNN) layers are also proposed, and they are used to

test the accuracy and potency of the classification using strong EEG signals. The

similar results between our suggested SincNet-R model and the original SincNet

model and other traditional classifiers like CNN, LSTM, and SVM demonstrate

that our proposed model has higher characterisation exactness and better calculation

strength. In this study, 62-channel EEG signals were used and practically verified

on the SEED dataset.

Ref [22] Four components (Entropy, Energy-Entropy, Spectral Entropy, and Spec-

tral Energy-Entropy) and two classifiers were used to analyse the layout of EEG-

based feeling recognition in Parkinson’s disease (Probabilistic Neural Network and

K-Nearest Neighbors Algorithm) It is clear from the analysis that the suggested

energy-entropy mix highlight incorporating PNN and KNN in time space consis-

tently outperforms the benchmark (above 80.07% to 90.74%) for all emotions. As

a movement of the focused sensory system, electroencephalogram (EEG) data are

used to reflect the Parkinson’s disease patient’s concealed, true emotions. This study

[23] focuses on using AI computations to arrange EEG deep states in PD patients.

For emotions, the basic six emotions are used and contrasted with sound controls.

In this work, two classifiers—k-closest neighbour (kNN) and support vector machine

(SVM)—were presented and investigated in a comparable manner, as well as two

methods for extracting highlights—HOS and power range. Using EEG signals in

a client-free manner, AI becomes one of the effective methods for PD patients to

induce deep states. The great majority of the early investigations focused on PD di-
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agnosis using behaviour measurements. Although not much research is being done,

the centre is currently moving toward the distinct proof using EEG.

In [24], 14 channel EEG is used, and EEG data was separated via preprocessing. The

Extreme Learning Machine (ELM) classifier with two different kinds of bit capacities

is used to organise the sentiments of PD and NC. Repeat Quantification Analysis

(RQA) is used to separate the two biggest highlights (Maximum Line Length, Max-

imum Vertical Line Length) from Recurrence Plot (RP). Trial results show that

RQA highlights are remarkably effective at differentiating the feelings in PD when

compared to other techniques, and ELM provides the highest mean exactness when

compared to other works in writing. Arranging the feelings using various AI cal-

culations and deep learning strategies may be effective for presentations. Speaking

with others is also used for Parkinson’s illness.The patient’s speech has a distinct

vocal pattern that is used by researchers to create an exchange learning approach

and provide Misture-of-Experts to determine what the PD pathology entails for the

problem determination [25]. (MoE). The horrifying components in this model were

divided and processed in a slope-supporting choice tree model. Discourse obstruction

was used as a benchmark for assessing how uncomfortable the patient, how severe

the sickness, and how serious the unhappiness feelings are. Facial recognition and

identification have always been used to express gratitude. Three simple steps were

used to perceive any feeling. With the use of a camera, we first recognise faces, then

the input is evaluated in light of many factors and data using convolutional neu-

ral networks, and finally the observed appearance is confirmed to separate human

emotion into its constituent parts (happy, angry, sad, surprise, joy and disgust).

This system of facial recognition has been put to use in many different contexts.

Facial recognition has also been done continually, and the physiological changes are

identified by the influence of internal feeling [26].

Parkinson’s disease (PD) is typically characterised by non-motor symptoms (exhaus-

22



tion, dementia, uneasiness, discourse and correspondence issues, gloom, etc). Elec-

troencephalography (EEG) now plays a crucial role in actual close-to-home state

finding. As previously discussed, a variety of tests (separating, Fourier changes,

wavelet changes, and non-straight techniques) have been suggested for the identifi-

cation of localised weakness in PD. Nevertheless, these methods are constrained in

terms of accuracy and call for the determination of the premise. For the charac-

terization of emotions in PD and conventional controls, tunable Q wavelet change

(TQWT) is presented in [27]. (NC). A k-closest neighbour, probabilistic brain net-

work, irregular forests, selection tree, and outrageous learning machine are grouped

with six highlights (happy, furious, sad, surprise, delight, and disgust) selected by

factual investigation. Three execution metrics are obtained, with a probabilistic

brain network achieving the highest mean accuracy, sensitivity, and specificity of

96.16%, 97.59%, and 88.51% for NC and 93.88%, 96.33%, and 81.67% for PD. The

intended method in [27] can be used as a standard tool for assessing near-home

impedance in clinics. In any event, this technique is limited by the number of

tests, the boundaries, and its focus solely on AI computations. By applying deep

learning techniques and a larger number of boundaries, the framework’s proficiency

can be increased. Our primary goal is to gather knowledge and comprehension

regarding the handling or application of physiological indicators during execution

evaluation. In [27], two example acknowledgment techniques—SVM approach and

Fisher straight discriminant—as well as five physiological signs—blood volume beat

(BVP), electromyography (EMG), skin conductance (SC), skin temperature (SKT),

and respiration (RESP)—have all been tested. 90% of responses were acknowledged,

although SVM produces better results than fisher. The purpose of these investiga-

tions is to develop a workable PC-assisted tool that will aid medical professionals and

researchers in better understanding Parkinson’s disease so they can make objective

and precise judgments about the clinical course of the condition. A deep learning

method has been published in Ref [28] that makes use of a recently developed CNN
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design to exploit the Wavelet space of resting-state EEG for Healthy Control (HC)

, PD (Without medication), and PD (taking drugs). The goal of this method is

to distinguish between PD and HC and also to identify the different EEG features

between PD participants receiving beneficial medications and those receiving little

to no medication. Additionally, we have demonstrated the use of this technique

to a three-class problem where deep learning can successfully differentiate between

typical patients, PD (OFF med), and PD (On med). Parkinson’s disease is initially

treated with dopaminergic medications, which slowed the disease’s progression but

became less effective as the disease advanced. However, early analysis is critical due

to the global shortage of nervous system professionals skilled in PD early detection.

In order to automate the analysis of PD and garner attention from medical care

administrations, research is being conducted in the area of computer-aided analyt-

ical instruments. For this reason, deep learning models are the focus. CNN excels

at this, and the modalities used for brain imaging include SPECT, PET, MRI, and

EEG, as well as motion physical symptoms like walk, handwriting, discourse, and

EMG. To reduce the burden of this degenerative disorder and ensure that affected

persons can maintain their independence for as long as is practical, PD requires

early diagnosis and intervention [19]. [29] offers the 1D-CRNN-ELM design, which

combines an Extreme Learning Machine (ELM) and a one-layered Convolutional

Recurrent Neural Network (1D-CRNN), both of which have already been discussed

in writing. In this system, the EEG is processed beforehand, a prepared CRNN is

used as an element extractor, an ELM serves as a classifier, and a second prepared

CRNN is used to learn about emotions. With six crucial inclination classes, this

cycle provides accuracy of 97.75% for AMIGOS, 83.20% for PD, and 86.00% for

HC. A prepared design that has been calibrated using the SEED-IV dataset’s four

feelings achieves 92.5

In Table 3.1, as of late utilized deep learning engineering are summed up .that were

utilized for EEG based feeling grouping. A more straightforward network Deep
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Belief Network (DBN) is proposed by Ref. [30] in which broke down EEG recur-

rence groups and cathodes for SEED dataset that demonstrated close connection of

beta and gamma groups with feeling elicitation. With restrictive arbitrary field a

superior DBN Deep Belief Network is utilized for freely accessible dataset of AMI-

GOS for paired grouping of valence (high valence or low valence) and excitement

(high excitement or low excitement) [31]. In another review multimodal feeling ac-

knowledgment structure was introduced, which consolidates cerebrum waves and eye

developments. This blend was gives further developed acknowledgment exactness.

This examination shows that model combination with multimodal deep brain net-

works can fundamentally improve the exhibition contrasted and a solitary method-

ology. [32]. Convolutional brain networks are ended up being extremely valuable

in characterization undertakings in view of their strong capacities to accomplish

cutting edge results. As we probably are aware info element can segregate various

classes whenever created unequivocally. Some relative examination were performed

and demonstrated that convolutional layers in brain networks is huge for extricating

the main highlights and further developed special visualizations [33].

[34] Applied the deep learning approach (Deep convolutional brain network DCNN)

on electrocardiogram (EEG) and galvanic skin reaction (GSR) signals. In this pa-

per the feeling identification is finished by the relationship of these signs with the

information of excitement and valence of this dataset (AMIGOS). Comparatively in

[35] 2D-CNN design was utilized for EEG signals due to its fourteen-channel por-

trayal giving a similar execution reaction as in [34] . In a review [36] highlights

from EEG signals were changed over into topological pictures for example geological

and holographic portrayal and two layers of 2D CNN design was carried out involv-

ing these pictures as info. Likewise SVM was utilized as a classifier. This gives a

thought of utilizing pre-prepared designs utilized for pictures and correspondingly

3D convolutional pieces likewise should have been investigated.
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Table 3.1: State of the art techniques for classification of emotion with different
datasets

Method EEG
Chan-
nel

Dataset Feature Classifier Emotion
Classes

Accuracy

DNN 6 SEED-
IV

Restricted
Boltzmann
machine

Bimodal Deep
Auto Encoder

4 85.11%

DCCA 62 SEED-
IV

Deep
Canonical
Correlation
analysis

SVM 4 87.50%

3D-CNN 14 AMIGOS 3D CNN PC 4 95.86%
BLSTM
+Atten-
tion

14 AMIGOS BLSTM
+Attention

DNN 2 72.80%

2D CNN 14 AMIGOS 2D CNN SVM 2 90.54%
1D
CRNN-
ELM

14 PD CRNN ELM 6 83.20%

Table 3.2: State of the art techniques for classification of emotions of patients with
Parkinson’s

Method EEG
Chan-
nel

Dataset Feature Classifier Emotion
Classes

Accuracy

BPC 14 PD Bispectral
functional
connectivity
index

SVM 6 51.66%

Bispectrum 14 PD High order
Statistical

SVM 6 77.43%

TQWT 14 PD Wavelet
transform,
Entropy

PNN 6 93.88%

RQA 14 PD High order
Statistical

ELM 6 84.50%

1DCRNN
ELM

14 PD CRNN ELM 6 83.20%
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In cutting edge, checking of the mental profile of mental problem patients (parkin-

son’s) is concentrated as a specific case on the grounds that these patients can’t

display their profound states appropriately. Table 3.2 includes a summary of the

work done for the EEG-based emotional hierarchy.
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Chapter 4

Proposed Methodology

This thesis provides an investigation of physiological signal analysis-based emotion

charting strategies for Parkinson’s patients. In this chapter the methodology used

to analyze the deep learning based emotion charting is explained in detail. The

proposed methodology consists of two main phases i.e. feature extraction and deep

learning based emotion classification. The physiological signals were first prepro-

cessed, after pre-processing the signals are used as features. Then, to classify Parkin-

son’s disease patients’ emotional states, deep neural network is employed.

4.1 Dataset

We employed a dataset of Parkinson’s patients for our study, which can be divided

into two sets: one for the 20 patients with the condition (9 men and 11 women) and

another for the 20 healthy control participants (10 males and 10 females). Parkin-

son’s disease individuals suffer from PD on average for 5.7 years and 58.7 years, re-

spectively. All subjects’ EEG data were collected while receiving multimodal stimuli

(im- ages, sounds, and videos). The International Affective Picture System (IAPS)

database, International Affective Digitized Sounds (IADS), and numerous movies

are the sources for multimodal stimuli. Each of the 40 subjects (20 PD and 20
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HC) undergoes six sessions, with six emotion categories in each session, for a total

of 36 sessions per subject. With session intervals ranging from 49 to 70 seconds,

a total of 720 sessions for PD and 720 sessions for HC have been completed. For

PD, a minimum interval of 50 seconds was recorded, and for HC, a minimum of 49

seconds. The first 5 seconds of the EEG data were utilised as a baseline for stan-

dardisation, and the remaining 45 seconds were divided into 45 segments using the

minimum interval’s length (44 segments for HC). A total of 45 seconds divided by

720 sessions equals 32,400 samples for PD and 44 seconds divided by 720 sessions

equals 31,680 samples for HC are used for further processing. Each session of EEG

data is tagged with a specific emotion category established by each participant using

a self-assessment questionnaire because each second of data contains 128 samples of

EEG signals from 14 channels.

4.2 Pre-Processing

The following steps from [29] are used to perform the pre - processing on the EEG

signals from the dataset of Parkinson’s disease patients:

• Baseline Removal

• z-score Normalization

4.2.1 Baseline Removal

Baseline signals is the electrical activity of brain with no external stimulus. In [37]

a method was proposed to remove the baseline signal which will result in extraction

of the desired EEG signal that will give the increased recognition performance on

the emotional stimuli. In first five seconds EEG signal gives the neutral response

which makes first five seconds as baseline. Then according to the given methodology

we divided the baseline into one sec or per second segments for all channels of EEG
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separately.

The formula to compute the average of all the segments (for our case five segments

average) that gives a mean baseline signal of 1-second is given in equation 4.1.

meanBL =
1

σ

∑
BLs (4.1)

To remove all the baseline from the complete EEG data signals each signal is divided

into 1-second sample and is subtracted from the mean computed from above equa-

tion. The resultant signal is an EEG signal with no baseline or baseline removed

segments.

4.2.2 z-Score Normalization

Z-score normalization refers to the process of normalizing every value (signal in our

case) in dataset such that the mean for all values is 0 and the standard deviation is

1. Formula used for z-score normalization is given in equation 4.2.

xnew =
x− µ

σ
(4.2)

where

• x: original value

• µ: mean of data

• σ: standard deviation of data

To standardize our EEG signals we used Z-score normalization, the signal after

baseline removal is our original value while mean is 0 and standard deviation is 1.

Formula given in equation 4.3 is used in our methodology. This normalization of

input data will speed up the learning of neural networks.
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z =
meanBL− µ

σ
(4.3)

4.3 Deep Learning Network

Deep learning permits computational models of many handling layers to under-

stand and address information with varying degrees of thought impersonating how

the cerebrum sees and comprehends multimodal data, in this way verifiably catch-

ing complex designs of large-scale information. Deep learning is a rich group of

techniques, enveloping brain organizations, progressive probabilistic models, and an

assortment of solo and managed highlight learning calculations. The new flood of in-

terest in deep learning strategies is because of the way that they have been displayed

to beat past cutting edge procedures in a few undertakings, as well as the overflow

of complicated information from various sources (e.g., visual, sound, clinical, social,

and sensor). [38]

Deep learning techniques accomplish the best presentation in a few spaces (e.g., pic-

ture handling, facial acknowledgment) and have a laid out place in protein expecta-

tion, having been really applied to buildup contact forecast and turmoil expectation

Deep learning (conviction) organizations (DNs) are like a two-layer counterfeit brain

organization yet vary in the quantity of secret layers and the preparation method.

[39]

The multi-layer network models used in DNNs have advanced that can manage

intricate, nonlinear and unstructured information, for example, sound, video, picture

and text by changing them into a progressive design of elements with numerous

degrees of abstraction .

A DNN’s geography, often known as its design, is depicted by the way its multi-

ple layers are linked and arranged. A CNN is a powerful feed-forward DNN that
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performs this task by naturally extracting highlights from raw input using only

the surrounding network of the hubs structured in neighboring layers. A typical

CNN geography is made up of a combination of a few convolutional layers that can

distinguish highlights from input data in light of nearby hidden spatial examples

while taking learning highlights with a higher level of reflection into account. The

three phases that make up each layer are convolution, initiation capability (non-

linear change), and pooling (nonlinear down-inspecting). By stacking these layers,

the organization can dynamically distinguish examples that are more distinctive,

reducing the number of associations the organization has. The separated elements

are then converted to a single-layered vector using a smoothing layer, and finally,

the CNN combines these convolutional layers and traditional thick layers to produce

the classifier’s output.

Medical diagnosis using Deep Learning Clinical imaging is one broad area of

clinical finding where DL has been successfully used. Because of their exceptional

ability to utilize image data, CNNs and their modifications have been widely used

in this sector for picture-related challenges.

4.3.1 GoogLeNet

One of the major advancements in the field of neural networks, particularly for

CNNs, was the Inception Network. Beginning is available in three different versions:

1, 2, and 3. As suggested by the name "Google Net," the primary version was

developed by a team at Google and joined the market in 2014. The Inception

network’s initial iteration is referred to as Google Net.

Over-fitting occurs when an organization works with many highly knowledgeable

individuals. To identify the problems, the inventors suggested the Google Net en-

gineering in their research paper [40]. This proposed engineering has channels of

different diameters that can operate at the same level, which expands the organi-
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zation rather than deepening it. The image in figure 4.1 depicts a Naive Inception

Module.

Figure 4.1: Building blocks of GoogLeNet

The Google Net Network has a depth of 22 levels and includes 27 pooling layers.

There are a total of 9 beginning modules stacked vertically. The global normal

pooling layer is linked to the commencement modules’ closures. The complete Google

Net architecture is shown in the figure 4.2.

Figure 4.2: The stem in the architecture with the fewest initial convolutions is the Orange
Box. The auxiliary classes are indicated by purple boxes. (Image Credits: An Easy Guide
to the Inception Network Versions.)

The figure 4.3 explains the specific architecture and settings.
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Figure 4.3: Details of GoogLeNet’s architecture

4.3.2 SqueezeNET

Squeeze Net is a smaller organization that was intended to take the place of Alex

Net. Although it operates three times faster than Alex Net, it has over 50 times

less bounds. In 2016, analysts [41] from Deep Scale, Stanford University, and the

University of California, Berkeley recommended this engineering. The following are

the main principles of Squeeze Net:

• Swap out your 3-by-3 filters for 1-by-1 ones.

• Reduce the number of input channels to 3 3 filters.

• Down sample the network late so that the convolution layers have a large

activation map.

The "squeeze" and "expand" layers are part of the Squeeze Net design. Only one

squeeze for one convolutional layer. These are handled in a layer that extends and

combines 1 1 and 3 3 convolution squeezing. This is seen in figure 4.4.

A squeeze layer and an expand layer combined are referred to as a "fire module" by
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Figure 4.4: Fire Module

the paper’s authors. An independent convolutional layer is the first place an input

image is transmitted. As according Strategy One above, this is followed by 8 "fire

modules" with the names "fire2-9. Figure 4.5 shows an illustration of the resulting

Squeeze Net.

Figure 4.5: SqueezeNET architecture vs AlexNet
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Squeeze Net, Squeeze Net with a straightforward bypass, and Squeeze Net with a so-

phisticated bypass, in that order. By using "simple bypass," Strategy Two increases

the number of filters per fire module. Layers conv1, fire4, fire8, and conv10 come

before Squeeze Net, which does max-pooling with a stride of 2. The "complicated

bypass" that Squeeze Net has as a result of Strategy Three’s placement of pooling

very late in the network (the rightmost architecture in the image above).

A comparison of Squeeze Net and the original Alex Net is shown in the figure 4.6.

Figure 4.6: SqueezeNET architecture vs AlexNet

As we can see, the weights for Alex Net’s compressed model were 240MB and had an

accuracy of 80.3%. A Deep Compressed Squeeze Net uses 0.47MB of memory while

performing at the same level. Details of further network parameters are provided

below:

• Inside the fire module, the ReLU activation is performed between each squeeze

and expand layer.

• After the fire9 module, dropout layers are included with a 0.5 probability to

lessen overfitting.

• The network does not use any completely connected layers. The Network In

Netowork (NIN) framework suggested by was the design inspiration for this

decision (Lin et al, 2013).

• The learning rate used to train Squeeze Net is 0.04, and it decreases linearly

during the course of training.
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• The network employed an Adam Optimizer, and the training batch size was

32.

Due to its compact size, Squeeze Net makes deployment simpler. This network was

initially used in Caffe, but it has since acquired popularity and been deployed on a

wide range of platforms.

4.4 Proposed Framework

We intend to develop a framework using deep learning techniques that precisely

classify emotional states of PD patients. To devise an algorithm for classification

we proposed a neural network that have convolutional layers and it can be said to

be a convolutional neural network. We have proposed a smaller network that was

designed to classify the emotions of Parkinson’s disease patient’s emotions using the

EEG signals. The following are the main concepts of the proposed framework:

• use 1 × 7 dimension for all filters

• the number of filters per layer decrease as the network feed forward

• Using 2D Network for our 1D input

Our proposed framework has one feature extraction head that gives the extracted

features to classify than after extraction of 1D feature from signals, used fully con-

nected layer and then output. The proposed framework 1D-CNN is given inn figure

4.7:

Our Proposed network is 3 layers deep with following changes in filter number while

kept the filter size constant:

• First layer: The no. of filters used is 64

• Second layer: For second layer the number of filter is reduced to half which is

32
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Figure 4.7: Proposed Deep Learning Model

• Third layer: The number of filters used in this layer are 16 filters

Details of further network parameters are provided below:

• The proposed framework receives 1D input.

• Batch normalization, ReLU, and convolutional algorithms make up each 2D

network.

• The network employs fully connected layers.

• The neural network’s output layer uses the softmax function as its activation

function.

Our proposed framework gives classified emotions for Parkinson’s disease patients.
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Chapter 5

Experimentation and Results

This chapter discusses the experimentation protocol of networks that were analyzed

and proposed framework with variation in dataset.

5.1 Experimental Setup

5.1.1 Dataset Description

For our Experiment we have used EEG signals of Parkinson’s disease patients after

pre-processing. Dataset is characterized into two categories (1) is 20 PD patients

that have 9 males and 11 females (2) Healthy control subjects that includes 10 from

each gender males and females. These subjects of PD patients have been suffering

from PD for the past 5.75 years. Multimodal stimuli, such as images, sounds, and

movies, were employed to recode the EEG data. The International Affective Picture

System database, International Affective Digitized Sounds, and numerous movies

served as the source for the multimodal stimuli. Each participant is put through six

sessions, each of which includes one of the six emotion categories (angry, disgust,

fear, happy, sad, and surprise), for a total of 720 sessions for each dataset. The time

between sessions was 49 and 70 sec (minimum interval for PD was 50 seconds and
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49 seconds for healthy controls).

Dataset used for experiment We are using dataset after preprocessing for our

experimentation. Each data is split into 1 second’s segment whereas each segment

is 128 samples. EEG is 14 channel, by 14 channel we means 14 dimensions. For our

networks we have kept the split 70-30 for training and testing dataset. With these

all description we have used following three type of data variation for experiment:

• Original signals as images

• Scalograms of preprocessed signals

• Spectrograms of Preprocessed signals

And for these above three data variation we analyzed results of two networks (1)

Google Net and (2) Squeeze Net which makes total of 6 experimental cases.

5.2 Performance Metrics

To examining the efficiency of our proposed algorithms, key performance index can

be obtained using the true classification and misclassifications in a confusion matrix

5.1, as described in given Table, as an example for a simple binary classification.

The elements in diagonal show the correct classification for a specific class, class A

in this case and are termed as a True Positive and when the remaining classes which

are not of interest are also correctly identified as class B. The two terms namely

False Positive and False Negative indicate ‘false alarm’ and ‘missed identification,

respectively.

Table 5.1: Sample Confusion Matrix

True/Predicted A B

A True Positive False Negative
B False Positive True Negative
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5.2.1 Accuracy

Classification accuracy is calculated as the sum of all correct predictions divided

by all predictions. It is calculated using the expression 5.1. Accuracy is a poor

performance metric for classification that is unbalanced.

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(5.1)

5.2.2 Specificity

The degree of genuine negatives that the model can reliably identify is measured by

specificity. This implies that there will be an additional degree of true negatives that

were mistakenly thought to be positive and could be referred to as false positives.

This amount may also be referred to as a True Negative Rate (TNR). Specificity

(true negative rate) and false positive rate would always be 1, respectively. Low

specificity suggests that the model is mislabeling many negative results as positive,

whereas high specificity suggests that the model is correctly differentiating the great

majority of the negative outcomes. It is calculated using expression given in 5.2.

Specificity =
TN

(FP + TN)
(5.2)

5.2.3 Sensitivity

Sensitivity is a measure of how effectively a machine learning algorithm can distin-

guish between good and bad examples. The real positive rate (True positive rate)

or recall are other names for it. Sensitivity is used to evaluate model performance

since it enables us to see how many successful cases the model was able to correctly

identify. Sensitivity (true positive rate) and deceptive negative rate would both be 1.

The model performs better at correctly differentiating positive situations the greater
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the true positive rate. It is calculated using expression given in 5.3.

Sensitivity =
TP

(FN + TP )
(5.3)

5.2.4 Precision

A statistic that counts the amount of accurate positive predictions is known as preci-

sion. It is employed to determine minority class accuracy. The ratio of successfully

anticipated positive values to all accurately predicted positive values is known as

precision. It is calculated using expression given in 5.4.

Precision =
TP

(FP + TP )
(5.4)

5.2.5 F2 Measure

The F2-measure is the Fbeta-measure with a beta value of 2.0. It lessens the impor-

tance of accuracy while increasing the importance of sensitivity. The F2-measure

gives more thought to reducing false negatives than decreasing false positives if

increasing precision restricts false positives and maximizing recall minimizes false

negatives. It is calculated using expression given in 5.5.

F2Measure =
5 ∗ Precision ∗ Sensitivity
(4 ∗ Precison+ Sensitivity)

(5.5)

5.2.6 Misclassification Rate

Misclassification rate tells us about the incorrectly predicted percentages of obser-

vations by a classification model. Its range of values is 0 to 1, where: 0 represents

no inaccurate predictions; 1 represents all incorrect guesses. Misclassification Rate

= Number of Values Wrongly Predicted / Number of Predictions. A classification
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model is better equipped to predict the outcomes of the reaction variable when the

misclassification rate is lower. It is calculated using expression given in 5.6.

MisclassificationRate =
FP + FN

(TP + FP + TN + FN)
(5.6)

5.3 Experimental Results

Experimentation for classification of PD patient’s Emotions is carried out using

various modalities including:

• Scalograms of the EEG Signal

• Spectrograms of the EEG Signal

• EEG Signals converted into 2D images

• Proposed Deepl Learning Model

5.3.1 Results using Scalograms as Feature Map

After preprocessing we generated Scalograms of the pre-processed signals that gave

us the 2D representation of our EEG signals. Figure 5.1 shows the representation

of our signals as scalograms.

GoogLeNet

Scalogram was used as input to the Google Net, figure 5.2 shows the trend for

training accuracy and loss. It is clear from the training graph that this network fails

to learn or train itself on the given data as their is no change in training accuracy

and loss.
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Figure 5.1: Scalograms of emotions (a)-(f), Angry-Surprise.

Figure 5.2: Training Accuracy and Loss using GoogLeNet

SqueezeNET

In the next phase, Scalogram was used as input to the Squeeze Net and training

graph of this network give no change in training with no variation which shows that

the model didn’t trained the Scalogram with no results as shown in figure 5.3. This

is the same tend as for the Google Net.
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Figure 5.3: Training Accuracy and Loss using SqueezeNET

5.3.2 Results using Spectrograms as Feature Map

After preprocessing we generated Spectrogram of the pre-processed signals that gave

us the 2D representation of our EEG signals. Figure 5.4 shows the representation

of our signals as Spectrograms.

Figure 5.4: Spectrograms of emotions (a)-(f), Angry-Surprise.

From the above representation of Spectrogram and Scalogram we can analyze that

the representation of the signals as Spectrogram and Scalogram is similar they do

not give much information about the signals.
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GoogLeNet

Given is the Results of the training experiment for Google Net for Spectrogram that

shows similar trend as for the Scalogram with no results and training output. And

loss is also not converging as shown in figure 5.5.

Figure 5.5: Training Accuracy and Loss using SqueezeNET

SqueezeNET

After the above experiment we used Spectrogram feature as input for Squeeze Net

and the results shows that the experiment didn’t give as training output. The trends

can be seen in figure 5.6.

Figure 5.6: Training Accuracy and Loss using SqueezeNET
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5.3.3 2D Images Generated from Signals

For this experiment we used the 2D representation of the signals as images to get

the training results of the two Networks but the training trend didn’t changed and

the two chosen network give no results. The trends can be seen in figure 5.7 and 5.8

using GoogLeNet and SqueezeNET.

Figure 5.7: Training Accuracy and Loss using SqueezeNET

Figure 5.8: Training Accuracy and Loss using SqueezeNET

5.3.4 Proposed Model

We have done two experiments one for the 20 epochs and again did the training

for 50 epochs. Results for the proposed model are given below we have already
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performed 6 experiment with 6 different cases and after that we proposed our method

that didn’t give much encouraging results but the network started training and our

main purpose of this research was to analyze different methods for classification of

emotions of Parkinson’s disease patients. The traning accuracy and loss trends for

the proposed architecture while keeping 20 epochs can be seen in figure 5.9

Figure 5.9: Training Accuracy and Loss using Proposed Model for 20 Epochs

While testing the proposed trainied network an accuracy of 50.14% was achieved

while the confusion matrix is shown in table 5.2.

Table 5.2: Confusion matrix for 20 epochs

Angry Disgust Fear Happy Sad Surprise

Angry 566 113 85 111 115 135
Disgust 100 584 79 114 127 84

Fear 110 112 461 147 129 101
Happy 105 128 91 599 93 100
Sad 89 111 94 113 560 76

Surprise 97 121 84 157 110 511

The performance matrices for the proposed model keeping epochs as 20 are stated

in table 5.3.

In order to check whether further training the proposed model can yeild better

results we increased the epochs to 50. Even with the increase the trend for training

accuracy and loss remained similar which can be seen in figure 5.10.
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Table 5.3: Performance Matrix for 20 Epochs

Sensitivity Specificity Precision F2-
Measure

Misclassification
Rate

0.5 0.84 0.53 0.52 0.16
0.52 0.82 0.48 0.5 0.17
0.43 0.87 0.52 0.47 0.16
0.54 0.8 0.48 0.51 0.18
0.54 0.82 0.49 0.51 0.16
0.48 0.85 0.51 0.49 0.16

Figure 5.10: Training Accuracy and Loss using Proposed Model for 50 Epochs

While testing the proposed trainied network an accuracy of 51.13% which shows a

meger change from 50.14%. Finally the confusion matrix for the testing phase is

shown in table 5.4.

Table 5.4: Confusion matrix for 50 epochs

Angry Disgust Fear Happy Sad Surprise

Angry 536 102 79 113 115 115
Disgust 95 519 88 147 126 103

Fear 98 116 464 153 155 105
Happy 70 89 87 613 108 99
Sad 71 93 101 118 646 85

Surprise 108 105 94 135 94 535

The performance matrices for the proposed model keeping epochs as 50 are stated

in table 5.5.
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Table 5.5: Performance Matrix for 50 Epochs

Sensitivity Specificity Precision F2-
Measure

Misclassification
Rate

0.51 0.86 0.55 0.53 0.15
0.48 0.85 0.51 0.49 0.16
0.43 0.86 0.51 0.46 0.17
0.58 0.8 0.48 0.52 0.17
0.58 0.82 0.52 0.55 0.16
0.5 0.85 0.51 0.51 0.16
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Chapter 6

Conclusion and Future Work

Emotion Classification of PD patients is an important challenge as the disease is

progressing and we need to have system with less manual effort. So to do that many

researchers are now a days performing research and experiment for the improvement

of already proposed methods and devising new methods for the help in medical field

for practitioners. We analyzed already proposed methods for the dataset used in [30]

which is not publically available. For our experimentation we used Physiological sig-

nals more specifically EEG signals for the emotion charting analysis of PD patients.

First we performed experiment on three different variation of 2D data that includes:

images of preprocessed data, Scalograms and Spectrograms of preprocessed signals.

And for networks analysis we choose Google Net and Squeeze Net because of the

difference in there architecture. As Google Net is a very deep neural network with

22 layers on the other hand Squeeze Net is 50x smaller and faster than Alex net.

This vast difference in the architecture made us choose these two networks. For ex-

perimnetattaion the above setup gives us a total of 6 experimental cases to get our

analysis done. For the two already trained and tested networks we didn’t manage to

get our data trained as form the above results we can see that the training have no

variation or we can say that the network didn’t trained. Then after the 6 experiment
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with no satisfactory results we proposed a new framework that is 1D CNN which is

3 layered and each layer have filter size of 1 x 7 and the number of filter for layer

1, 2 and 3 is 64, 32 and 16 respectively. Then used a flatten layer and softmax was

used as activation function before output then output. The input of this proposed

framework was 1D signal of EEG after preprocessing and this signal was used as

input for the 2D network of conv, BN and ReLU as one layer. We used Softmax

at output because it’s a multiclass classification problem where class membership is

required on more than two class labels. So the results after the implementation of

our Framework were not much impressive but at least the proposed method showed

some variation in training. For first experiment we trained till 20 epochs which gives

accuracy of 50% approximately then we performed the experiment for 50 epochs and

this shows that the increase in epochs will not change the accuracy much. So we

stopped here as our purpose of this whole research was analysis not improving ac-

curacy. In our study we have tested different models and proposed a novel deep

learning framework that classifies the PD patient’s emotions.

For future directions we suggest to use the emotion charting method for other cogni-

tive disease like Alzheimer’s disease, stroke, traumatic brain injury or developmental

disabilities. This is not a binary class problem, it’s a multiclass problem and there

is room for improvement. The accuracy can be improved by using combination of

different deep learning methods. The scope of this study can be extended to 3D

deep learning methods.
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