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Abstract

The frequency diverse array radar has brought a lot of interest due to the peri-

odicity of the beampattern in angle, time, and range. It is possible to transmit

energy over the required coverage and angle with only a small variation in fre-

quency, yielding an array factor from the angle, duration, and range. This newer

technique, MIMO FDA (which refers to multiple inputs and multiple Output fre-

quency diversity array), was recently invented. It is intended to improve upon

FDA radar in various ways. It is a hybrid of MIMO and FDA, and in the interest

of estimating the angle and range simultaneously, a minimum frequency increment

is employed in the transmitting antennas, which are positioned near each other.

This is done so that the system can calculate both simultaneously. This aims to

ensure that the measurements are as accurate as possible. The sparse reconstruc-

tion techniques used in this thesis are utilized in a MIMO FDA transmitting array.

The one multiple signal classification (MUSIC) technique is utilized for joint angle

estimation in FDA-MIMO. As the methodology recommends, estimating angles

using an FDA MIMO radar is accomplished by employing sparsity enforced re-

construction technique. When applied to FDA MIMO radar, numerical findings

indicate that the FBMP algorithm provides an outstanding Mean Squared Error

versus Signal to Noise Ratio performance compared to other algorithms.

ix



Chapter 1

Introduction

1.1 The Evolution of Radar Through History.

Radar technology and theory is a vastly advancing field and work has been done

in its architecture, concept and different challenges have been updated continu-

ously from time to time in new radar systems. Although ”Radio Detection and

Ranging” is where the word ”Radar” originally came from, with time, it has trans-

formed into a regularly used noun in English speech. It is recognized by a large

number of people [1]. Heinrich Hertz, a German physicist, first proved wave re-

flection in a series of tests in 1885, which is when radar technology first became

a reality. Another German physicist, Christian Hulsmeyer, created a monostatic

radar device in 1904 that could detect ships. But, at the time of his discovery, the

importance of what he had found was not comprehended. In 1922, S. G. Marconi,

the man who is credited with inventing the wireless radio, made the observation

that the radio may be used to identify targets. L. C. Young and A. H. Taylor of

the United States Naval Research Laboratory demonstrated that it was possible

to locate ships using radar in the same year (NRL). Hyland made the discovery

that radar may be used to identify airplanes in the year 1930. In addition, the

initial continuous wave (CW) radar was developed in 1934 and put into operation

the same year. Many nations developed and disseminated radar technology inde-

pendently of one another during World War II, including the USA, UK, the Soviet
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Chapter 1: Introduction

Union, France, Germany, Italy, the Netherlands even Japan too [1] [2]. With the

conclusion of World War Two, there was surge in the development of radar, which

spawned a plethora of new technologies and system modifications; included in this

is the result of coherency, as well as the imaging capabilities of synthetic aperture

radar (SAR), and the use of pulse compressing in the 1950s, the inclusion of so-

phisticated antenna structures such as phased arrays or MIMO designs, in addition

to ultrawideband radar applications. [3] [4] [5] [6]. Towards the end of the World

War second many people had come to understand the usefulness of radar as well

as the benefits of microwave frequencies and pulsed waveforms [1]. In the modern

world, radar is used for a wide range of operations, include law enforcement, traf-

fic safety, military activities, remote sensing, and space vehicles. Measurement of

both distance and speed has been accomplished with the use of radar in a wide

range of commercial and industrial contexts, as well as, with caution, to identify

the physical characteristics of an interest system.

1.2 Fundamental Radar Functions

Radar is used for environmental sensing as well as the detection and localization

of objects like spacecraft, vehicles, ships, and people [2]. In order to identify

the presence of the target, the radar first generates an electromagnetic signal

through its antenna, which is then used to receive the reflected signal from the

target. Modern applications frequently use monostatic radar, which transmits and

receives signals using a single antenna. When a pulse is sent out, the duplexer

will flip the antenna to its reception mode. This will allow the radar to wait for

the pulse to be sent back to it. The target’s proximity may be determined using

radar by calculating the amount of time that elapses between the pulses sent out

and those received. This is the most essential piece of information that radar can

supply. However, other information, such as the velocity, size, and orientation of

the target, can also be extracted from the received radar signal.
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Chapter 1: Introduction

Figure 1.1: Basic Principle of Radar.

1.3 Types of Radar

1.3.1 Monostatic Radar

A monostatic radar is a type of radar system where the transmitter as well as re-

ceiver are located at the same location, typically on the same platform or device.

In a monostatic radar system, transmit and receive antennas are separate, but

they are co-located, typically using a duplexer to isolate the transmit and receive

paths. This makes it possible to use the same antenna for transmission and receiv-

ing. A lot of applications use monostatic radar systems, comprising surveillance,

weather forecasting, and air traffic management. They are relatively simple to

design and implement compared to other types of radar systems, and they can

provide good performance in many situations. However, they are also subject to

interference from clutter and other sources, which can limit their performance in

certain environments.

1.3.2 Frequency Diverse Array Radar

FDA idea was introduced by Antonik and Wicks [7] as a technique to perform

range dependent beamforming. FDA’s unique capabilities are achieved by varying

the carrier frequency between its various antennas. In contrast to phased arrays,

a frequency increase that is relatively small in contrast to the carrier frequency

3



Chapter 1: Introduction

is used by elements of FDA. Increase in frequency results in beam pattern. This

is based on the range and the angle, which enables range dependent intervention

suppression and target localization in [8], [9], and [10], respectively.

Each radiating element in a conventinal phased array made up of perfect isotropic

radiators produces waveforms identical to the others. If there is no break in the

waveforms, they all have the same phase. In this configuration, the antenna beam

will be aimed either broadside or perpendicular to the aperture face. On the other

hand, this is only valid if the waveforms strike a far field target at a certain angle

of θ relative to the broadside direction. The condition mentioned above will not

hold true if the phase shift is brought on by a different route length being taken

by each constituent.

A traditional phased array differs from the frequency diversity array in terms of

the amount of control it provides over beam synthesis. More degrees of freedom

are afforded as a result of its generic structure. FDA makes it possible to have

a range dependent beamformer and variable beam scanning choices using recent

improvements in signal processing technology. In addition, it permits additional

modes of radar, such as SAR and moving target indication, which may be used to

reduce the effects of point interference caused by phenomena such as multipath.

The traditional phased array creates an electronic beam scan, but the FDA uses

a linear phase progression over its aperture. Applying an extra linear frequency

shift to the elements causes the generation of a new term, which, when applied to

the far field, resulting in an angle of the scan that varies with range. This provides

more flexibility in the possibilities for beam scanning and resistance to point in-

terference, such as multipath. The management of space time, frequency, phase,

and polarization may benefit from extra degrees of freedom thanks to general

implementations.

The novel strategy for joint aperture waveform layouts begins with constructing

the frequency diverse array as the initial stage. Transmission of a signal that is a

continuous wave from each spatial channel is one of its most fundamental forms.

From one channel to the next, a very slightly frequency shift occurs, amounting to
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Chapter 1: Introduction

only a few Hertz. Consequently, a beam pattern is produced, resulting in a change

in the direction in which the beam is focused. In contrast to the traditional phased

array, this transmission considers the sent data’s angle, range, and time. In terms

of range and duration in the far field, this has a beam that always points in the

same direction.

Figure 1.2: Concept of Frequency Diverse Array.

1.4 Application of FDA-Radar

• Target localization

• Target Imaging

• Target Tracking

• Range-dependent beampattern

1.5 FDA MIMO Radar

The FDA is also significantly distinct from MIMO schemes. MIMO has frequently

and extensively been used for the purpose of communications applications. This

entails many channels, each supplying many independent routes that further lessen
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Chapter 1: Introduction

fading effects. Fading is a primary consequence to multipath. Radar is also a con-

temporary application of MIMO. The MIMO radar concepts are relatively akin to

communications applications of MIMO. The MIMO radar ideas also provided nu-

merous unique independent routes attributed to reducing fading caused by changes

in the target radar cross section.

MIMO approaches are a salient consideration of contemporary developments; for

acquiring closely spaced spatial channels. Large frequency separations between

spatial channels are usually opted for, to avoid significant spectral overlap of sig-

nals across spatial channels. Moreover, this technique also features a greater degree

of spatial channel separation distances; as compared to frequency diverse array.

Contrary to that, frequency diverse array utilises slight changes in frequencies be-

tween channels. It in turns, leads to a considerable signal overlap. In addition

to that, distinct beam properties are also a salient feature of the respective array.

In terms of angle, range, and duration, the properties of MIMO FDA radar are

different from those of conventional MIMO radar. FDA MIMO radar’s enhanced

beam features, such as range dependent beamforming and angle independent auto

scanning, enable additional capabilities. This is accomplished without the using

mechanical beam steering or phase shifters.

It is a mixture of the frequency diverse array and MIMO radar technologies. With

this type of radar, antennas close to each other have a slight increase in frequency

so that the angle and distance can be calculated simultaneously. Researchers

merged FDA radar with MIMO radar to build this new sort of radar. Compared

to conventional MIMO radar, this new type offers improved accuracy and range.

Figure 1.3: Block diagram of MIMO-FDA radar
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The above figure shows the transmitting antennas work independently of each

other; radiating a distinct arbitrary waveform. Each signal is received by a dif-

ferent antenna. Moreover, due to the distinct nature of the waveforms, a single

transmitter can be re-assigned the signals.The transmitted signal, denoted as x(t),

is accompanied by a parameter k, which represents the number of uncorrelated

targets. The (rk, θk) values represent the range and angle of the kth target re-

spectively. Transmitting side consists of multiple transmitters that generate high

frequency signals. These signals are sent to multiple antennas for transmission.

As in the receiving section it consists of multiple antennas that receive the re-

flected signals from the target. Received signals are sent to the receiver section

for processing. These signals are amplified, filtered, and demodulated to extract

the target information. After that various signal processing operations such as

Doppler filtering, pulse compression, and beamforming are done. After that tar-

get detection and tracking processes to detect or track the target.

1.6 Sparse Reconstruction

Sparse reconstruction is technique which uses signal sample properties to recon-

struct under sampled k spaced data. The target parameters are mainly estimated

by creating a model of a sparse signal and reconstructing its spatial spectrum.

Many real signals can be considered sparse in some domain, meaning they have a

large number of elements that are either equal to or close to zero. A sparse signal is

a signal that has a small number of non-zero elements in relation to its dimension.

Shannon-Nyquist theorem is used for the reconstruction of signals, and it enables

more efficient signal processing. The sampling rate of a signal must be at least

twice as high as the signal’s highest frequency to comply with the requirements of

the theorem. It is necessary to take these steps to ensure that the signal can be

perfectly recreated from its samples.

By using the Shannon-Nyquist theorem, we can design more efficient signal pro-

cessing systems that only sample the necessary frequency components and ignore
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the rest, reducing the quantity of data that has to be processed. This leads to

lower computational and storage requirements, making the signal processing more

efficient.

Sparse recovery approaches’ objective is to recreate a signal from a small amount

of undersampled data. Sparsity is a method that has been widely used because

of its efficiency in a variety of signal-processing applications. Some examples of

these applications include statistical analysis, classification, and data compression.

When a signal is represented using a sparse basis, like the discrete cosine trans-

form, wavelet, or curvelet, among others. It is classified as a signal that can be

compressed. In the sparse representation domain, the signal samples can be in-

terpreted as data observations. A linear modification of the movement ultimately

leads to the production of the light signal representation.

The ability to reconstruct sparse signals with significantly fewer observations than

the standard sample size has recently been demonstrated. This is main develop-

ment in signal processing field. It would be necessary to cover all of the signal’s

available bandwidth. The result of methods for locating the sparsest approxima-

tion from duplicated dictionaries has made it feasible to achieve this goal. The

efficacy and efficiency of sparse signal recovery have been significantly improved

due to these strategies. The class of algorithms known as ”greedy iterative tech-

niques” is the one that is the simplest while maintaining high-efficiency levels. The

matching pursuit (MP) algorithm, the orthogonal matching pursuit (OMP) algo-

rithm, and the compressive sampling matching pursuit (CoSaMP) algorithm are

the three techniques that are used most frequently. [11], [12], [13] [14], [15], [16].

1.7 Sparse reconstruction applications

Sparse reconstruction have many applications such as

• Information processing.

• Data compression
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Chapter 1: Introduction

• Optical imaging

• Radar signal processing

• Channel estimation in wireless Communications

• Medical Imaging

1.8 MUSIC Algorithm

The acronym MUSIC stands for ”Multiple Signal Classification,” In signal process-

ing; it is a well-known technique for calculating the direction of arrival (DOA).

MUSIC method uses a subspace-based technique to identify the noise subspace

and then estimate the DOAs by looking for the peak in the spatial spectrum of

the signal. This is the fundamental concept behind the algorithm. To speak more

specifically, the MUSIC method extracts the signal subspace and the noise sub-

space by using the eigenvalue decomposed of the correlation matrix containing

the received signal. The next step is to create what is known as a steering vector,

which is a representation of the reaction of the array to a signal that has arrived

from a particular direction. The program can estimate the DOAs by projecting

the noise subspace onto the orthogonal complements of the signal subspace and

then finding the directions corresponding to this projection’s lowest eigenvector.

This allows the algorithm to determine the DOAs. Music can be utilized in var-

ious applications such as sonar, radar and wireless communication networks to

determine the direction of incoming signals.

1.9 Problem Statement

The objective is to determine the angle and range of target through the use of

sparse reconstruction techniques in a FDA MIMO radar system.

9
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1.10 Summary Of Contributions

The central focus of this thesis is on Sparse reconstruction algorithms applied on

FDA MIMO radars and to compare the performance of various sparse reconstruc-

tion algorithms for the target parameters estimation (range and angle) in FDA

MIMO radar. Algorithms including NESTA, FBMP and OMP were applied on

FDA MIMO radar. The results of the recovery were analyzed in the form of MSE

verses SNR for target parameter estimation. The significance of selecting an effi-

cient sparse recovery technique to improve sparse signal estimation performance

and to find better way to accomplish the radar signal acquisition and processing

with a considerably small amount of data and power requirement.

1.11 Thesis Arrangement

The thesis is divided into 5 chapters the contents of these chapters are summarized

below:

1. Chapter 1 is the introduction of Radar and its types, sparse reconstruction

and Music algorithm. It consists of problem statement and the summarizing

contents of thesis.

2. Chapter 2 consists of the literature review.

3. Chapter 3 is based on the Sparse Reconstruction Algorithms.

4. Chapter 4 is based on the proposed Methodology.

5. Chapter 5 consists of conclusion.

10



Chapter 2

Comprehensive Review of the

Literature

2.1 Frequency Diverse Array Radar

The author provides an overview of FDA and its potential for use in radar and nav-

igation applications. The basic structures of FDA systems are presented in [17], as

well as a comparison to traditional phased array methods. Recommendations for

selecting suitable system characteristics and implementation are also discussed.

The author also describe the potential applications of FDA radar, including cog-

nitive FDA radar, identification FDA radar low probability, assessment of the

distance and angle of targets, and identification of technological problems.

The author in [18], provides information on a Frequency Diverse Array that uses a

frequency offset that increases logarithmically and produces a beampattern with

a single maximum at the target point. It also includes mathematical descriptions

and evaluations of the transmitter for this radar system. The authors also present

the transmit beam pattern, which they compare to those of a phased-array radar

and current FDA designs with uniform frequency offset. The author worked on

uniformly spaced linear FDA only and the angle was obtained, as they only worked

on angle and didnot involved FDA MIMO radar.

The author in [19] suggests using time dependent frequency offset to generate a
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beampattern that is stable over time for a specific range and even angle combi-

nation. Simulations shows that, although the beam pattern still varies for other

range and angle pairs, it remains constant for a particular distance and angle

pair. The target detection can be improved by constantly illuminating the target

throughout the pulse duration in the suggested radar system, resulting in a strong

reflection. It provides simulation results to demonstrate the effectiveness of the

proposed approach. However, it lacks experimental validation of the proposed

method, which could have further strengthened the findings.

By providing an array factor that depends on range, direction, and time, this in-

crement makes it possible to target energy delivery to a specific range and angle.

Antennas that use frequency diversity are compared to phased arrays by the au-

thor of [20], who offers an overview of the two types of arrays. At each element,

the FDA makes use of frequency adjustments that are pretty minor compared to

the array’s carrier frequency. In addition, the author analyzes the possible applica-

tions of the FDA in spectrum energy control and the technical obstacles connected

with implementing it into effect. This is to encourage more research on technol-

ogy relevant to the FDA. The author does not compare frequency diverse array

antennas with other existing antenna technologies, which could provide readers

with a better understanding of the advantages and limitations of this technology

compared to other alternatives.

The author in [21], conducts research on three fundamental receive chain architec-

tures, analyzes their spatial patterns, and assesses the complexity of their designs

while operating in a specific setting with a single target. The author also provides

a concise description of a receive pattern in closed form. The author does not

compare the proposed receiver architectures with other existing receiver technolo-

gies, which could provide readers with a better understanding of the advantages

and limitations of the proposed architectures compared to other alternatives.

In [22], a thorough analysis of the FDA signal characteristics was carried out.

The author also examines the transmitted and received signals, with a focus on

topics such as Doppler effects, the ambiguity function, and inter element spacing
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of array. Furthermore, it briefly discusses different waveforms and introduces the

concept of a waveform diverse array. [22]. The author did not worked with FDA

radar combined MIMO.

The author in [23] suggests that Ground-Moving Target Indicators (GMTI) pro-

cessing might benefit from using linear Frequency Diverse Arrays (FDA). It is well

known to have trouble reducing ambiguous range clutter.In a linear FDA, each

channel works at a distinct frequency, and this results in the formation pattern

that relies on the range.The output SINR in the area of ambiguous clutter Doppler

is considerably boosted when FDA is used, which indicates improved detection. It

has been demonstrated that the SINR of the output may potentially increase by

up to 40 decibels, as contrasted with an array with a constant frequency. It did

not detect the target with high probability moreover the error was more in this

cited technique.

The author in [24] explores the application of planar array geometries to beam-

forming theory in FDA and presents snapshots of spatial pattern from both the

transmit and receive sides. While FDA has been discussed previously as a linear

array on transmit or with a receiving processing chain that omits some transmit-

ted signals, the author suggests a method that allows each element to observe and

interpret every transmitted signal in a monostatic arrangement. This method en-

ables a more complete analysis of the FDA system and its potential applications.

This system did not allow the receiver to maximize the signal-to-noise ratio for

the available power and main beam peak-to-side ratio was not improved. It does

not provide experimental results to demonstrate the effectiveness of the proposed

receiver architecture in real-world scenarios. This could limit the confidence of

readers in the potential of the proposed architecture.

The author in [25] proposes a joint two dimensional Inverse Synthetic Aperture

Radar (ISAR) deception technique based on FDA and interrupted sampling. FDA

permits more creative flexibility than the conventional methods of producing range

deception, such single channel and phased array approaches. The suggested strat-

egy produces a collection of erroneous targets in both range and cross-range direc-
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tions. Advantage of this technique is that regulating the amount and distribution

of these fake targets is easy, very effective, and needs very little processing work.

It is anticipated that using this combined method will improve ISAR systems’

performance by making it more difficult for prospective adversaries to recognize

and categorize targets. Computational burden was not improved as this technique

did not worked on finding the range.

A Multi-Layer Perceptron (MLP) neural network is used in a method reported

in [26] for estimating the combined range and angle for FDA. The MLP model is

built using signal data generated by an optimal outcome of the FDA radar system.

The effectiveness of the training MLP neural revenue is demonstrated through ex-

perimental assessment. Because of this technology, it is projected that FDA radar

systems will have improvements in terms of their efficiency as well as their ac-

curacy when estimating angles and distances. Additionally, there is a possibility

that the computational complexity of the signal analysis required for target recog-

nition and detection will be reduced due to this method. This techniqiue didnot

use FDA with MIMO moreover the algorithms of sparse reconstruction were not

applied.

The author in [27] proposed an FDA synthesis technique for designing the trans-

mit beampattern based on range and angle using offset of frequency optimization.

To realize a transmit beampattern in the form of a dot, the suggested approach

uses optimization using particle swarms in designing the FDA element frequency

increment. In addition, temporal modulation compensation was considered while

designing matched weights. Compared to prior FDA frameworks, the suggested

technique displayed increased time-invariant efficiency. The range– angle depen-

dence is not decoupled and computational complexity is not reduced.

In [28], the author proposes a method to address the time varying issue in the re-

ceive beamforming of FDA. This method provides increased flexibility by removing

the constraint on pulse duration, resulting in improved receive beamforming ef-

ficiency. It does not provide experimental results or simulations to validate the

corrections proposed. This could limit the confidence of readers in the effectiveness
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of the corrections.

The author in [29] introduced a novel FDA radar system that employs diverse

linear frequency modulation waveforms. The receiver architecture incorporates

a time variant beamforming chain and maintains the FDA system’s automatic

spatial beam scanning capability, enabled by the increment in frequency across

elements. However, the current receiver based beamforming used in FDA systems

can lead to low echo energy signal tolerance or high sidelobe peaks during target

recognition. This paper primarily presents theoretical analysis and simulations.

However, it lacks experimental results to validate the proposed waveform design

method. This may limit the confidence of the readers in the effectiveness of the

proposed approach.

A symmetric FDA with a Hamming window that is uniformly spaced is presented

by author in [30], which employs tapering inter element offsets of frequency. With

this configuration, a single maximum beam pattern pointed in the desired range

and angle values is produced. One potential con of this paper is that it may have a

limited scope. The authors focus only on beam pattern synthesis for an FDA radar

with Hamming window-based nonuniform frequency offset. While this approach

may be effective for this particular scenario, it may not be suitable for other radar

systems or applications.

The applications of frequency diverse arrays in bistatic radar are examined in [31]

and [32], with the latter using linear frequency modulated continuous waveforms

for the FDAs. In [33], a full wave simulation of an FDA antenna is presented,

utilizing the finite difference time domain technique to investigate the radiation

pattern characteristics of changes in offset of frequency, element spacing, and

array size. A mathematical analysis of the LFMCW FDA is developed to provide

a fundamental proof-of-concept structure. Additionally, the multipath effects of

the FDA over a ground plane are explored in reference [34].

The authors in [35] examined the phase characteristics of a FDA based on a sug-

gested generalized structure. They derived a closed form signal model and phase

radiation pattern, as well as a phase radiation function, based on the structure.
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Authors then investigated periodicity radiation pattern of phase using a recursive

method and rational analysis. Finally, phase center of generalized FDA was calcu-

lated using a three point technique. Considerable numerical results were obtained

to validate the proposed signal model. The proposed approach does not intro-

duce any significant novel concepts or ideas to the existing literature on phase

characteristics of frequency diverse array radar. The paper primarily describes an

approach that builds upon existing techniques and methods.

For random log FDA radar, which shows range and angle dependency, a method

has been given for creating the beam space transformation matrix based on the

received signal. Its behavior is dependent on the range as well as the angle. It

has been proved that the intended beam spatial transformation matrix does, to

a significant degree, satisfy the beam gain criteria. However, the planned trans-

formation matrix has a few flaws that must be addressed. For example, unclear

beam gain and same peak power sidelobe levels. An optimization strategy was

suggested by the author in [36] to overcome these concerns, which involves adjust-

ing the array’s element spacing and the random frequencies offset values to reach

the optimal beam gain. The proposed algorithm is relatively complex and may

require a high computational cost, especially in real-time applications. Therefore,

it may not be practical for implementation in certain scenarios.

A nested FDA design scheme that combines angle and range dependent beampat-

terns and increased degrees of freedom in a nested array configuration. Due to

source correlation, the commonly used multiple signal classification technique is

ineffective in estimating multiple sources in this case. To address this limitation,

an algorithm based on CS range and angle estimation was suggested in [37]. This

suggested approach utilizes fewer snapshots and outperforms conventional spatial

smoothing (SS) based localization methods.

The author in [38] proposed a clutter suppression technique for blind Doppler

target recognition in FDA radar by utilizing the Doppler spreading effect. A joint

angle and range Doppler processing system is developed for FDA radar that takes

the Doppler spreading effect into account. The Doppler spreading effect offers
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the potential to resolve Doppler ambiguity. For target detection utilising FDA,

the probability of detection and the signal to clutter plus noise ratio are also

calculated.

In [39], author presents a restudy of the literature on designing a time-invariant

beam pattern for FDA radar to concentrate transmit energy in a specific location.

The author reexamined the derivation of the FDA beam pattern synthesis and

discovered a neglected constraint condition. After comparing the results of prior

work with the author’s results, it was concluded that it is not possible to obtain

a beam pattern that solely focuses on specific spatial positions and persists for a

particular duration.

The range and angle matched receiver is a novel form of receiver introduced by the

author in 40. The transmit beam pattern modulates a range and angle dependent

filter that the receiver uses to process each shorter sub pulse after breaking the

pulse duration into multiple shorter sub pulses. The author looked into the char-

acteristics of the ambiguity function in various dimensions and provided a design

for the sub pulse duration.

In [41], a signal transmission system for bistatic frequency diverse array radar

is proposed, which aims to detect and localize targets accurately while keeping

the computational complexity low. The proposed approach aims to provide the

narrowest possible transmit beam for a given number of transmit antennas, and

achieves better detection and localization performance compared to existing meth-

ods. The approach uses a fast algorithm to generate initial estimates that can be

used to initialize a numerical algorithm for computing the maximum likelihood

estimates.

A method for designing a general receiver for FDA radar was suggested in [42].

The suggested receiver signal model can accommodate any FDA radar with arbi-

trary frequency and geometry increments. By utilizing the maximum likelihood

criterion, the best estimate and detection may be made with the suggested receiver

structure.

In [43], a model was developed to analyze the structure of interference covariance
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matrix for spectral interference in FDA radar. The study showed that FDA radar

has the potential to reduce spectrum interference, even if it enters via the re-

ceiver’s main lobe, as the study indicated. The author described an approach that

improves the output SINR to build a transmit weight vector that employs adap-

tive element-wise power allocation. Specifically, this approach aimed to improve

the SINR. According to the research findings, the FDA radar that was outfitted

with different power allocations can avoid spectral interferences by adjusting the

spectrum across which it broadcasts. Traditional phased array (PA), multiple in-

put multiple outputs (MIMO), and uniform power allocation radars all displayed

signal-to-noise ratios that were inferior to those achieved by the FDA radar with

adaptive power allocation.

2.2 Frequency Diverse Array MIMO Radars

The author in [44] examines a system of MIMO radar that uses beamforming of

transmits antenna and receive antenna with a radar signal to produce sparse radar

scene with frequency domain.The next step is to create the radar waveforms and

receiver filters to recreate the radar picture using compressed sensing techniques.

These approaches identify several extended objects whose impulse responses are

known. The MIMO radar system’s performance for target identification depends

on the reconstruction of a noisy scene to get optimal results. This accuracy is

determined by analyzing the results of numerical examples acquired from simula-

tions.

The authors of [45] proposed a model for performing frequency diverse array with

MIMO radar operation and embedded communication using Costas frequency

codes. They employed phase shift keying to embed communication symbols in

each of the Costas frequency codes and used standard ratio testing at the receiver

side to recognize the embedded symbols. Model was evaluated based on the symbol

error rate; transmit beam pattern, SINR, and data rate for communication. The

findings show that the suggested model can effectively produce low probability of
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interception in radar applications.

The authors of [46] investigated the target detection performance in frequency di-

verse array radar MIMO , which combines benefits of the FDA even MIMO radar

for single coherent pulses and even for multiple coherent pulses. They developed

target detection signal models for FDA MIMO, phased array, FDA, and MIMO

radars and used a unified framework detector based on the Neyman Pearson cri-

terion to compare their target detection performance based on target detection.

Moreover, to compare their performance, the SINR and the deflection coefficient

are also used as performance metrics. Better target detection performance is

achieved by FDA MIMO radars as compared to other conventional radar systems.

In [47], the authors proposed a joint disambiguation technique based on the es-

timation of signal parameters via rotational invariance techniques (ESPRIT) for

LBTA-FDA-MIMO radar. They proved a uniqueness theorem to address the

challenge of the existence of ambiguities in both range and angle. The proposed

technique was evaluated using simulations and demonstrated improved estimation

accuracy of both angle and, more importantly, ranging accuracy.

The author of [48] suggested a search-free approach for estimating range and angle

in monostatic MIMO radar with FDA by using an estimate of signal parameters

through the rotational invariance methods (ESPRIT) algorithm. This algorithm

was used to calculate the components of the signal. The angle was estimated with

the algorithm’s help, and the concept of least squares determined the spectrum.

The author of [49] developed a 1D MUSIC strategy for merging range estimates

and angle estimations in monostatic MIMO radar incorporating FDA. Suggested

approach was developed to reduce the amount of computational complexity while

obtaining performance levels equivalent to those of the 2D MUSIC algorithm.

Range and angle calculation in general FDA MIMO radar using MUSIC algo-

rithms, the authors found Cramer-Rao lower limits and mean square error formu-

las. These formulas can be found in [50]. In addition, they figured out the range

and angle resolution requirements essential for target recognition and localization.

The research indicates that FDA-MIMO radar performs better than traditional
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MIMO radar regarding the range-angle seismic performance evaluation and the

resolving thresholds performance.

In [51], author suggested a combined range and DOA estimation method in mono-

static MIMO radar with FDA. Suggested technique derives its functionality from

the forecast of signal parameters using rotationally invariant techniques. Using ac-

curate data helps improve the accuracy of estimations and reduces the amount of

computing complexity. The rotation invariance of the receiving subarrays is taken

advantage of so that the connection between range and angle in the transmitting

array steering vectors may be avoided. This allows the DOA to be estimated.

Also, the author suggested a method to eliminate the phase ambiguity brought on

by the transmitting array steering vector.

MIMO radar has several advantages, including enhanced gain in both DOFs and

spatial diversity. Unfortunately, it has difficulty correctly differentiating targets

that are densely grouped inside the same angle cell but separate range cells. The

FDAMIMO radar was proposed to address this problem by taking advantage of its

range dependent beampattern for target estimation for range and angle. However,

as this is a recently developed radar technique, it requires theoretical performance

analysis. The CRLB and MSE equations for range and angle estimation methods

based on the MUSIC approach, commonly employed in the bulk of FDA MIMO

literature, are derived by the author of [52]. These expressions may be found in

the cited article. In addition, the author devises target detection and localization

criteria to maximize range resolution and angle accuracy.

In [53], the author investigates the challenge of adaptive target detection using

MIMO combined with FDA radar in the presence of homogeneous Gaussian in-

terference. This work investigates the development of adaptive detectors based on

the generalized likelihood ratio test (GLRT) criteria. The test assumes that the

target’s location concerning each range cell is uncertain. The Newton method,

discrete grid search, and semi-definite programming are the three optimization

procedures used in this work to estimate the maximum likelihood of the incre-

mental range of the goal while operating under the H1 hypothesis (SDP). At the

20



Chapter 2: Comprehensive Review of the Literature

analysis step, both the recently developed adaptive detectors and the mismatched

receivers are tested, assessed, and compared concerning their performance in terms

of detection.

Using a FDA as the transmit array and a MIMO radar; author attempt to detect

the target signal’s presence while rejecting any potential deceptive jamming. The

GLRT was utilized to address this issue. In [54], the author characterized the po-

tential false target locations during the design phase. FDA MIMO radar provides

controllable DOFs in both the angle and range domains, range and angle relation-

ships can be used to reject false targets resulting from mismatches either in angle

or range. In the analysis stage, the detector’s performance was compared to that

of a conventional MIMO scenario to evaluate its effectiveness in the presence of

ECM systems, especially when dealing with mainlobe deceptive jamming.

In [55], the author suggested a technique for estimating joint angle, range, and

Doppler for FDAMIMO radar. Rather than starting with the maximum likelihood

(ML) estimator, the approach uses the extended invariance principle to estimate

the Doppler independently, which reduces computational complexity. Then, an

unstructured model is applied to separately estimate the range as well as angle. As

a direct consequence, the challenge of joint estimation is broken down into three

different search problems in a single dimension. The numerical outcomes show

that the suggested approach has significant advantages over traditional machine

learning algorithms.

A persymmetric adaptive detector for FDA MIMO radar is proposed in [56], as-

suming an unidentified Gaussian interference-noise covariance matrix. The pro-

posed method in [56] involves obtaining an unbiased estimate of the interference

noise covariance matrix by leveraging its inherent structure. Using this estimate,

an analytical expression for the detection probability is derived. The study’s nu-

merical findings show that the persymmetric adaptive detector beats its traditional

equivalent for FDA-MIMO radar.

PSFDA-MIMO radar, which combines polarization sensitive frequency and FDA

MIMO, is a relatively new technology. However, current algorithms for parameter
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estimation with this radar require computationally expensive multidimensional

searches. In [57], the author introduces a search free method for estimating 4D

parameters with PSFDA MIMO radar. DOA is calculated using the rotational

invariance of the receiving array and the Estimation of Signal Parameters via Ro-

tational Invariance Techniques (ESPRIT) algorithm. Then, using the rotational

invariance of the transmitting array and the estimated DOA parameter, range

is estimated via ESPRIT. Finally, the ESPRIT algorithm is used again with the

rotational invariance of the polarization domain to calculate polarization param-

eters. This method is called the successive ESPRIT algorithm, and the results of

the simulation demonstrate its efficacy for PSFDA-MIMO radar.

In [58], the author proposes a robust adaptive beamforming technique for FDA

radar combined with MIMO using FDA as transmit array. The suggested approach

utilizes the direct data domain technique, which includes a smoothing process in

both the transmit and receive domains to reduce the effect of the target. This re-

sults in three homogeneous samples that can be processed further using secondary

data from multiple pulses. The FDA MIMO radar system leverages the combined

transmit and receive domains to separate the interference from the target signal.

The simulation results presented in the study demonstrate the effectiveness of this

approach.

The author presents a combined range angle estimate strategy for FDA MIMO

radar based on gridless compressed sensing [59]. This method was conceived and

created by the author. This explains a decoupling model to decouple the range

from the angle. Following that, the problem of scope and angle calculation is

rethought as a problem of atomic norm minimization (ANM) in two dimensions.

After that, singular value decomposition (SDP) problem is constructed from it

with the help of convex relaxation. To address the SDP problem, the author

developed an estimation method that leverages the accelerated proximal gradient

(APG) technique. The superior performance of the approach that was provided

was shown with the use of numerical simulations.

With a low cognitive probability of intercept (LPI), the author in [60] proposes a
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broadcast beamforming technique. This scheme is built on a hybrid array antenna

that comprises FDA and MIMO technologies. According to [60], this scheme

was suggested by the author. Consequently, the FDA MIMO radar’s one of a

kind transmitting beampattern, which is dependent on both range and angle, it

is possible to minimize beam power at the target location in order to make it

less visible while at the same time increasing beam power at the radar receiver

in order to maintain radar detection performance. This strategy allows for the

achievement of LPI. In addition, FDA radar with MIMO has a cognitive mode of

operation, which estimates the target range and direction of approach by using

numerous signal classification algorithms in a two-dimensional space. After that,

these estimations are sent to the transmitter so that the FDA MIMO transmits

beamforming may be updated. Optimization of transmit beam-forming is a non-

convex issue, and the authors provide three ways to tackle it: closed form solution,

nonlinear combination, and linear combination. The results of simulations are used

to validate each of the recommended strategies.

The author of [61] explains how the ESPRIT technique may be used for FDA

MIMO radar. This technique can calculate the range and even angle between the

objects. The recommended pairing strategy is used in order to sidestep the high

degree of processing complexity connected with both the 2-D peak searching that

is carried out by the MUSIC algorithm. Specifically, this complexity is avoided by

using the word ”sidestep.” In addition, the author offers closed-form formulae for

the average square error and the Cramer-Rao lower limit for estimations of angle

or range. Both of these are presented in the previous section. The author has

shown, through both theoretical analysis and empirical observations that FDA-

MIMO radar performs at a level that is superior to that of traditional phased-array

radar as well as MIMO radar when it comes to target localization.

In [62], the authors present an unambiguous technique for jointly estimating range

and angle in MIMO radar systems with FDA. In contrast to conventional phased

array radars, MIMO radars with FDA have the ability to use a small increment

in frequency across the array elements, allowing the transmit steering vector to

depend on both range as well as angle. Ability of FDA MIMO radars to use
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frequency increments across array elements allows for exploitation of degrees of

freedom in both the range and angle domains, enabling joint estimation of target

range and angle parameters even in the presence of range ambiguity. In [62],

authors derive the range and angle Cramer-Rao bounds and examine the coupling

between these two parameters. The authors also provide numerical data that

showcase the effectiveness of their suggested approach. These results indicate

a superior estimation performance compared to conventional phased array and

MIMO radars, particularly in scenarios that involve range ambiguity.

The method that is described in [63] is successful in overcoming the restrictions

that FDA has for tracking moving targets and offers a solution for the combined

processing of range, angle, and Doppler data for tracking low-observable mov-

ing targets under challenging settings. The SRD focus processing strategy is a

hybrid method that combines the FDA and MIMO processing methods to use

the strengths of both approaches. The SRD data are processed quickly and ef-

fectively using the STFD approach that has been presented, which also offers a

high-resolution joint estimate of the range, angle, and Doppler parameters. Nu-

merical simulations shows the suggested method is capable of effectively detecting

and estimating moving targets, even in challenging scenarios. As a result, this

method holds promise as a potential candidate for integration into future radar

systems.

The author in [64] proposes using MIMO with FDA radar as the transmit array

to suppress false targets for main beam deceptive jamming. The steering vector

depends on both distance and angle in FDA-MIMO, allowing for mismatches in

either range or angle to be used for false target suppression. The proposed scheme

was shown to be effective in suppressing jamming in various situations through

simulations.
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2.3 Sparse Reconstruction

The BIM-NESTA technique is a regularization method that combines the Born

Iterative Method with the NESTA algorithm to solve sparse microwave imaging

problems. By using a first-norm penalty term and measurement data misfit in

the cost function, the method can reconstruct closely spaced objects and preserve

edges in a sparse domain. This has been supported by numerical simulations

presented by the author in [65].

In [66], the author proposed a Bayesian matching pursuit (BMP) algorithm as a

method for detecting sparse signals in a greedy manner. The BMP algorithm’s

primary objective is to determine which nonzero components of a sparse signal

have the most excellent posterior probability over a series of iterations. The results

of the simulation reveal that the BMP method is superior to the currently used

strategies for sparse signal reconstruction in terms of frame error rates, despite

the fact that it has a much lower level of computational complexity than other

techniques.

The article’s author [67] described a straightforward recursive method for calcu-

lating the most petite average square error using linear regression models. In this

scenario, the prior vector of uncertain variables is represented by a Gaussian mix-

ture. Using the just detailed approach, it is possible to acquire both an estimated

MMSE estimation of the parameter and a set of mixing parameters with a high

posterior probability. In order to demonstrate that the proposed strategy is ef-

fective and to draw attention to the differences, a numerical simulation was run

between the MAP model selection procedures and the MMSE estimation.

OMP technique is a possible solution for recovering a high-dimensional sparse sig-

nal from a sparse group of noisy linear measurements. This may be accomplished

by using the approach. In [68], the author provides an entirely data driven OMP

approach with distinct stopping circumstances. The OMP approach can reliably

recover the support for the movement despite the need for reciprocal incoherence

as well as the lowest amplitude of the nonzero elements of the signal. This results
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in a high likelihood of successful recovery. This can be accomplished with a high

level of precision. In addition, the author examines the challenge of determin-

ing whether nonzero components are relevant in a scenario in which some of the

nonzero features are likely to be of a low magnitude. The OMP approach would,

despite the circumstances, nevertheless choose all of the relevant components be-

fore selecting the incorrect ones. By using updated stopping criteria, the OMP

technique is able to provide an assurance that no zero members will be chosen.

In [69], the author proposed an OMP method for channel estimation, which aims

to address the convergence issue encountered by the MP algorithm due to the res-

election of basis vectors. By avoiding the reselection problem, the OMP algorithm

has been demonstrated to produce more accurate channel estimates. When com-

pared to the MP algorithm in the context of decision feedback equalizers based

on channel estimates, the OMP algorithm has been found to outperform the MP

algorithm while maintaining a similar level of computational complexity.

In [70], the author proposes a fast matching pursuit technique for sparse signal

recovery that employs a Bayesian method. Unlike traditional methods, this ap-

proach can estimate sparse signals using Bayesian approaches even in situations

where the prior signal is uncertain or otherwise not Gaussian. This method does

not depend on the signal’s statistics; instead, it uses the a priori demographics of

frequency components and the signal sparsity rate. If the signal statistics are not

readily accessible, these statistics might be deduced from the data. In order to

find the sparse supports which are most dominant and to compute the estimated

MMSE values of the sparse signal, this strategy makes use of a greedy methodology

and order-recursive updates of its metrics. The outcomes of the simulation provide

evidence that the estimation that was provided is both practical and reliable.

An effective strategy for resolving reconstruction issues involving sparse signals

was given by the author of [71]. The proposed method is an augmented La-

grangian technique based on the dual problem. Due to the dual formulation, it

is effective even when there are many more unknown variables than observations.

Additionally, the sparsity in the solution is taken advantage of, and the primal
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variable is explicitly updated.

In [72], there is a technique for sparse restructuring source estimation that makes

use of a coprime array. A difference coarray is particularly produced from the co

- prime array, and a virtually uniform linear subarray co-variance matrix sparse

restructuring optimization problem is designed for DOA estimation. This is done

so that the number of degrees of freedom (DOFs) may be increased. Processing

the recovered sparse spatial spectrum involves utilizing a refined sliding window

approach to get rid of spurious peaks and employing a least squares problem to

get a more accurate power calculation. The results of the simulation show that

the suggested approach is successful in terms of estimating DOA and power, as

well as the DOFs that may be attained.

Adaptive Sparsity Matching Pursuit (ASMP) is a novel greedy approach devel-

oped in [73] for sparse solutions to underdetermined systems that use a random

projection matrix. Back tracking is used by ASMP to enhance both the currently

used approximation as well as the supports that have been chosen. ASMP was

developed to extract information on the sparsity of the target signal in an adaptive

manner utilizing a stagewise technique. These improvements provide results that

are even more attractive than those produced by the most advanced version of the

CoSaMP algorithm, which works without any prior awareness of the sparsity level

in the data. The experimental findings indicate that the proposed technique is

efficient in handling input data, whether they are free from noise or contain noise.

A novel sparse recovery approach using weighted subspace fitting is suggested in

[74] as a potential solution to the problem of DOA estimation. The approach that

has been developed uses a regularization scheme that strikes a balance between

the sparsity penalty and the subspace fitting error for all SNR ranges. Also, this

algorithm is a modified form of the l1 − SV D algorithm. The efficiency of the

suggested technique is shown by numerical simulations, especially in situations

with a low signal to noise ratio.

The author shows an easy Bayesian technique for reconstructing sparse signals

in [75]. This method uses the sparsity constraint and a priori statistical data,
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regardless of whether or not these data are Gaussian, to obtain estimates that

are close to being optimum. In addition, the author presents a new method for

fast sparse recovery that capitalizes on the large structure of the sensing matrix,

which is a component often used in various signal processing applications. In

comparison to commonly used convex relaxation methods and greedy matching

pursuit strategies. The approach that has been suggested has low computational

complexity, especially at high sparsity levels.

DOA estimation using a sparse array based on CS was introduced in [76]. The

sources are supposed to be at the off-grid location according to the receiving

antenna array. By using the OMP method for reconstruction from the sparse

samples, the grid-off DOA of the sources can be calculated almost accurately.

The authors above worked on uniformly spaced linear FDA and focused on ob-

taining angle information. They did not involve FDA MIMO radar, which is an

emerging technology that uses multiple antennas to transmit and receive signals,

and could potentially improve radar performance. Conventional phased array

radars can suffer from range ambiguity, which occurs when the radar cannot dis-

tinguish between multiple targets at different ranges that appear to have the same

Doppler shift. However, the ability of FDA MIMO radars to use frequency incre-

ments across array elements allows for exploitation of degrees of freedom in both

the range and angle domains, enabling joint estimation of target range and angle

parameters even in the presence of range ambiguity. The main focus of this thesis

is on Sparse reconstruction algorithms applied on FDA MIMO radars which is

the novel idea and to compare the performance of various sparse reconstruction

algorithms for the target parameters estimation that are range and angle in FDA

MIMO radar. Algorithms including NESTA, FBMP and OMP were applied on

FDA MIMO radar. The significance of selecting an efficient sparse recovery tech-

nique to improve sparse signal estimation performance and to find better way to

accomplish the radar signal acquisition and processing with a considerably small

amount of data and power requirement.
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Sparse Reconstruction

Algorithms

3.1 Sparse Reconstruction

Sparse reconstruction is an approach for reconstructing k-sparse data. Most real

signals can be considered sparse in some domain. Such signals have large number

of elements which are equal to or close to zero.

3.2 Reconstruction of Sparse Signal

To retrieve the complete signal from a limited number of measurements, a set of

N coefficients X(k), where k = 0, 1, . . . , N − 1, is used. The vector containing

these coefficients, referred to as X, is classified as sparse if the count of its non-

zero coefficients, represented by K, is significantly lower than the total number of

samples, N .

X(K) = 0 for K /∈ K = K1, K2, ......Kk and K ≪ N .

The count of non-zero coefficients is represented by ||X||0 = K and is known

as the l0-norm of the vector X. A measurement of X can be expressed as a

linear combination of its elements X(k), with the mth measurement represented
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by y(m). If there are M measurements, a set of M linear equations can be written

as follows:

y(m) =
N−1∑
k=0

αk(m)X(k),m = 0, 1, .....,M − 1,M < N (3.2.1)

The coefficients for the measurements are denoted by αk(m). We can represent

the set of linear equations in matrix form as follows:


y(0)

y(1)
...

y(M − 1)

 =


α0(0) α1(0) . . . αN−1(0)

α0(1) α1(1) . . . αN−1(1)
...

...
. . .

...)

α0(M − 1) α1(M − 1) . . . αN−1(M − 1)




X(0)

X(1)
...

X(N − 1)


(3.2.2)

We can represent the sampled signal as a vector.

Y = Ax+ v (3.2.3)

The measurement matrix is denoted by the matrix A, with its elements represented

by αk(m). The vector v represents any additional noise present in the system. Our

objective is to retrieve the vector x from the equation Ax = y. To achieve this,

various reconstruction algorithms are applied.

3.3 Nesterov’s Algorithm (NESTA)

This algorithm provides a speedy and precise solution to common recovery prob-

lems in signal processing. The linear model is considered as follows:

b = Axo + z (3.3.1)

where xo is the interest signal. z is the noise. A is a known M × N sampling
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matrix.

Input :

A which is measurement matrix with M ×N dimensions. b is the Observed data

with a M × 1 array.

Output :

xk is the estimate of the solution xo on which nesta is applied.

3.3.1 Algorithm

The code solves the following optimization problem:

1.

minx∥|Ux||1s.t.||b− Ax||2 <= δ (3.3.2)

Where U is a diagonal matrix and the measurement matrix is b. A is the

matrix of normally distributed random numbers with dimension of M ×N

and K are the nonzero elements in x0 and a signal b ∈ RN .

2. The signal that we are attempting to recreate is x.

3. The SNR is set to a certain value, which is converted to a linear value. The

code first generates the measurement vector b from a randomly generated

sparse x0 and a measurement matrix Amatrix with some added Gaussian

noise.

4. The original signal is extracted from the noisy measurements using the

NESTA algorithm, with the regularization parameter λ selected according

to the noise level.

5. The algorithm is run several times for different SNR levels and iterations.

Finally, the solution x0 is plotted against the original signal, and the relative

norm difference is calculated.
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3.4 Results of Simulation
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Figure 3.1: Reconstruction of Signal

The 3.1 figure above depicts reconstruction of a signal using NESTA Algorithm.

The signal is reconstructed using l1 normalization problem under a quadratic

constraint using the Nesterov algorithm. The parameters used in this algorithm

are U is the diagonal matrix, measurement matrix is b. A is the matrix of normally

distributed random numbers with dimension of N = 1024 and M = 512 and with

K = 102 those are the nonzero elements in x0 and a signal b ∈ RN . The SNR

ratio is set to SNR dB = 50 dB, which is converted to a linear value. The original

signal and the recovered signal are then compared and relative l2 norm difference

between the two is printed. The script is written to perform this process multiple

times with different SNRs, and reports the total number of function evaluations

required by NESTA for each run.

The 3.2 figure depicts SNR Vs MSE graph using the NESTA Algorithm. The

algorithms used N = 1024, M = 512 and k = 102. The performance of MSE is

examined with 100 trials. When SNR is 0 dB in NESTA, MSE equals 1.45 dB.

The MSE is 1.19 dB when the SNR is 2 dB. The MSE is 0.95 dB at 4 dB SNR. The

MSE is 0.21 dB at an SNR of 18 dB. The average time for run of this algorithm

was 2296.1 seconds and averaged error was 0.2126.
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Figure 3.2: Nesta Algorithm SNR Vs MSE grap

3.5 Fast Bayesian Matching Pursuit

The difficulty of sparse signal reconstruction motivated developing a Fast Bayesian

Matching Pursuit (FBMP) technique. This method estimates the sparse signal by

choosing the best model and averaging the results. Sparse vector is represented

as a combination of several different components; these components are chosen

depending on the successive expansion of the model. Under the assumption of a

binomial prior for the signal’s sparsity, FBMP provides an approximation of the

Bayesian MMSE estimate of the sparse vector, a multimodal Gaussian prior for

the noise, and a multivariate Gaussian prior for the values of the sparse vector

that are not zero. FBMP employs iterative greedy techniques to obtain a practical

approximation of the MMSE estimator.

Consider observing the linear regression model as

b = Axo + z (3.5.1)

We consider a linear model where the measurement vector b with dimension M is

related to an unknown parameter vector xo, matrix A, and additive white Gaussian
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noise with variance σ2. To account for sparsity, we model the parameters using a

Gaussian mixture density.

Input :

b is the vector of observations of length M

A is the measurement matrix with M ×N dimensions.

Output :

xmmse is the approximate sparse MMSE estimate of xo, given b

3.5.1 Algorithm

1. The algorithm constructs a signal based on a given signal model and recovers

the signal using the Fast Bayesian Matching Pursuit (FBMP) algorithm.

2. An observation vector is generated from a random mixing matrix and a

sparse coefficient vector, which is generated using a user defined signal model.

3. The user can choose between a zero-mean binary model and a non-zero-mean

ternary model for the signal.

4. The signal model is characterized by the means (mus) and variances (sig2s)

of the coefficients.

5. To generate an observation, a sparse coefficient vector x is first generated

with values drawn from the Gaussian distributions defined by the signal

model. The observation is then generated by multiplying the coefficient

vector with a random normal mixing matrix A.

6. The Signal-to-Noise Ratio (SNR) is specified in dB.

7. The FBMP technique is used to retrieve the sparse coefficient vector from

the observation.

8. The function (FBMPR) is called to perform the recovery.
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9. The code performs the experiment for different SNR values and for a specified

number of iterations.

3.6 Results of Simulation

Figure 3.3: Reconstruction Signal of FBMP Algorithms

The figure 3.3 shows the reconstruction signal using the FBMP Algorithm. The

results of the FBMP algorithm depend on the input signal and the parameters used

for the algorithm. In general, the algorithm tries to recover a sparse representation

of the input signal using a minimum number of measurements. The output of the

algorithm is a sparse vector that represents the signal. The performance of the

FBMP algorithm is evaluated based on the recovery accuracy and the speed of

the algorithm. The recovery accuracy is a measure of how close the output vector

is to the true sparse representation of the signal. The speed of the algorithm is

measured in terms of the number of iterations required for convergence.

The 3.4 figure shows SNR Vs MSE graph using the FBMP Algorithm. The al-

gorithms used N = 1024, M = 512 and k = 102. The performance of MSE is

examined with 100 trials. In FBMP, When SNR is 0 dB the value of MSE is 1.169.

When the SNR is 2 dB the MSE is 0.68 dB. when SNR is 4 dB the MSE is 0.53

dB.When SNR reaches to 18 dB is MSE is 0.065. Moreover, the average time for

run of this algorithm was 2522.4 seconds and averaged error was 0.0605.
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Figure 3.4: SNR Vs MSE graph of FBMP Algorithm

3.7 Orthogonal Matching Pursuit

OMP is a greedy technique built on Matching Pursuit (MP) algorithm that at

each iteration removes the selected column vector from the residual vector. It

constructs an approximation by going through an iteration process. Optimum

solution is calculated at each iteration. This is accomplished by selecting a group

of chosen columns from A, adding the column vector that most closely matches a

residual vector r, that is, r = b. This cycle will continue. By projecting the vector

b onto the space covered by the chosen columns in the set, the method will update

the residuals. The residuals are orthogonal to all the chosen columns after each

step. As a result, no column is picked more than once, and collection of selected

columns grows with each step.

Input :

The matrix A represents the measurements, while the vector b contains the obser-

vations. Additionally, the variable k represents the approximation of the sparsity.

Output :

The estimated unknown signal’s k-sparse value is xo.
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3.7.1 Algorithm

1. A random Gaussian measurement matrix A is created with dimensions M ×

N , where M and N are selected to be 512 and 1024, respectively.

2. A sparse signal x is generated with K non-zero elements, where K is chosen

to be M/5, and it has a size of N × 1.

3. Gaussian noise is added to the signal.

4. The Orthogonal Matching Pursuit (OMP) algorithm is applied to recover

the signal.

5. An oracle solution is computed to compare the recovery error.

6. Results are displayed for each iteration, including the error in the recovered

signal and the time taken for each algorithm to run.

3.8 Results of Simulation

Figure 3.5: SNR Vs MSE graph of OMP Algorithm
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The 3.5 figure depicts SNR Vs MSE graph using the OMP Algorithm. The al-

gorithms used N = 1024, M = 512 and k = 102. The performance of MSE is

examined with 100 trials. In OMP When SNR is 0 dB the value of MSE is 0.89

dB. When the SNR is 2 dB the MSE is0.769 dB. when SNR is 4 dB the MSE

is 0.605dB. When the SNR is 18 dB the MSE is 0.121dB. Moreover, the average

time for run of this algorithm was 1336.3 seconds and averaged error was 0.0970.

3.9 Simulation Results of Different Algorithms

Figure 3.6: Comparison between different algorithms.

The MSE performance versus SNR of three distinct methods is depicted in Figure

3.2. The algorithms used N = 1024, M = 512 and k = 102. The performance

of MSE is examined with 100 trials. The difference in performance of these algo-

rithms is more noticeable. When SNR is 0 dB in NESTA, MSE equals 1.45 dB.

The MSE is 1.19 dB when the SNR is 2 dB. The MSE is 0.95 dB at 4 dB SNR.

The MSE is 0.21 dB at an SNR of 18 dB. In FBMP, When SNR is 0 dB the value

of MSE is 1.169. When the SNR is 2 dB the MSE is 0.68 dB. when SNR is 4 dB

the MSE is 0.53 dB.When SNR reaches to 18 dB is MSE is 0.065 and lastly, in
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Table 3.1: Complexity analysis of Algorithms.

Algorithms Average Error Average time
NESTA 0.2126 2296.1
FBMP 0.0605 2522.4
OMP 0.0970 1336.3

OMP When SNR is 0 dB the value of MSE is 0.89 dB. When the SNR is 2 dB

the MSE is0.769 dB. when SNR is 4 dB the MSE is 0.605dB. When the SNR is 18

dB the MSE is 0.121dB. FBMP is is clearly the best performing algorithm. While

OMP, however, performs a little bit better than the competition. The table above

shows complexity analysis of different algorithms including NESTA, FBMP and

OMP. It also shows the average error and average time.

3.10 Conclusion

In this chapter, we examine various popular sparse estimation algorithms, such as

NESTA, FBMP, and OMP, for the purpose of recovering multiple sparse vectors

from a set of noisy linear measurements that are underdetermined. The focus is

on computing the MMSE and SNR estimates of the sparse vector, which provide

a measure of estimation performance. Through numerical simulations, it has been

shown that FBMP provides a good approximation to the MMSE estimator. OMP,

however, performs somewhat better than NESTA. A number of sparse reconstruc-

tion issues can be solved using the adaptable and effective FBMP approach.
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Design and Methodology

We examined a monostatic FDA-MIMO radar that utilizes a uniform linear array

consisting of half-wavelength spaced transmit and receive antennas. The system

included M transmit antennas and N receive antennas, which were co-located to

maintain consistent direction of departure (DOD) and direction of arrival (DOA).

The transmit signal frequency of the mth antenna was also analyzed.

fm = fc + (M − 1)∆fo (4.0.1)

we assume that the first antenna transmits a reference carrier frequency of fc

and that the array elements have a frequency increment of ∆fo. There are K

uncorrelated targets located at different ranges and angles, denoted by (rk, θk).

Each target’s range is constrained by maximum unambiguous range, which is

determined by the formula c/(2∆f) (where c is the speed of light). Specifically, rk

cannot exceed this value. Transmit steering vector for the k-th target is determined

accordingly.

c(θk, Rk) = r(rK)⊙ d(θk) ∈ CM×1 (4.0.2)

r(rk) = [1, e−j4π∆frk/c, ......, e−j4π(M−1)∆frk/c]T ∈ CM×1 (4.0.3)
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d(θk) = [1, ejπsin(θk), ......, ejπ(M−1)sin(θk)]T ∈ CM×1 (4.0.4)

Transmit steering vector for the k-th target consists of two components: the range-

dependent part r, which is a function of rk, and the angle-dependent part d,

which is a function of θk. The Hadamard product operator, denoted by ⊙, is used

to perform an element-wise multiplication between these two components. The

transpose operator, denoted by ⊙T , is used to obtain the conjugate transpose of

the resulting vector.

Let x(t) is the sent signal represented as:

p(t) = xT (t)c(θk, rk) (4.0.5)

p(t) = cT(θk, rk)x(t) (4.0.6)

The k-th target’s receiving spatial steering vector is given by the formula b(θk).

b(θk) = [1, ejπ sin(θk), ......, ejπ(N−1) sin(θk)]T ∈ CM×1 (4.0.7)

b(θk)x
T tc(rk, θk) (4.0.8)

b(θk)c
T (rk, θk)x(t) + z(t) (4.0.9)

b(θk)c
T (rk, θk)x(t)x

T t+ z(t)xT t (4.0.10)

where x(t)xT t is a matched filter which is orthogonality in nature and z(t)xT t is

a matrix.
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b(θk)c
T (rk, θk)I+ z(t)xT t (4.0.11)

b(θk)c
T (rk, θk)s(t) + z(t)xT t (4.0.12)

b̃(θk)c̃
T (rk, θk)s(t) + ⃗z(t)xT t (4.0.13)

b(θk)⊗ cT (rk, θk)s(t) + n(t) (4.0.14)

The kronecker product operator, denoted by ⊗, is used in the expression for the

transmitted signal x(t). If the transmission waveforms meet the requirement for

orthogonality, the output of the matched filters for the l-th pulse can be repre-

sented by:

y(tl) = As(tl) + n(tl) (4.0.15)

Where the combined transmit-receive array matrix is A ∈ CNM∗k.

A = [b(θ1)⊗ c(r1, θ1), .........b(θk)⊗ c(rk, θk)] (4.0.16)

Where s(tl) is the signal vector after matched filters as shown below,

s(t1) = [s1(t1), s2(t2), .......sk(tk)]
T ∈ CK×1 (4.0.17)

sk(tl) is the complex Gaussian random process with a mean of zero. The noise

vector n(tl) is obtained after passing the received signal through matched filters,

and covariance matrix of n(tl), which is obtained by passing the received signal

through matched filters, can be represented as σ2IMN , where σ2 denotes the

variance of the noise and IMN denotes an identity matrix with dimensions NM×
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NM .

If L pulses are received, then received data is written as,

y = As+ n ∈ CNML (4.0.18)

where s = [s1(t1), s2(t2), .......sk(tk)] ∈ CK∗L and n = [n1(t1),n2(t2), .......nk(tk)] ∈

CNM∗L.

In this we applied sparse reconstruction techniques on MIMO FDA radar and

MUSIC algorithm was used to find target parameter (angle). Specifically, we

compare the performance of various sparse reconstruction algorithms using a sce-

nario where the number of transmit antennasM and received antennas N are both

8, and there is only 1 uncorrelated target (k = 1). The frequency offset between

adjacent transmit antennas is ∆f = 2×103. The carrier frequency is fc = 3×109,

and the target’s range is rk = 1 × 104 with an angle of θk = −10 degrees. The

speed of light is assumed to be c = 3× 108 meters per second.

4.1 Applying sparse reconstruction algorithms

The sparse reconstruction algorithm NESTA was applied on FDAMIMO radar.Similarly,

the application of FBMP applied on FDA MIMO radar and lastly OMP algorithm

was applied too.

4.2 Applying MUSIC algorithm

The MUSIC algorithm is used for calculating the DOA of a signal source in the

radar system. Here are the basic steps for applying the MUSIC algorithm:

1. First, to acquire data from the signal sources using a receiver array. The

data should be sampled at a sufficiently high rate to capture the signals of

interest.
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2. Compute the received signal matrix: The received signal matrix is a matrix

of size N × M , where N is the number of receiver antennas and M is the

number of samples. Each element of the matrix corresponds to the signal

received at a particular receiver antenna at a particular time.

3. Compute the sample covariance matrix: The sample covariance matrix is

computed as R = XXH , where X is the received signal matrix and H

denotes the Hermitian transpose (i.e., the conjugate transpose). Note that

R is an N ×N Hermitian positive semi-definite matrix.

4. Compute the eigen-decomposition of the covariance matrix: The eigen-

decomposition of R yields its eigenvalues and eigenvectors. Sort the eigen-

values in descending order and select the N −K largest eigenvalues, where

K is the number of signal sources.

5. Compute the noise subspace: The noise subspace is spanned by the eigen-

vectors corresponding to the N −K smallest eigenvalues of R.

6. Compute the spectrum: For each possible DOA angle, compute the MUSIC

spectrum by projecting the steering vector of the signal onto the noise sub-

space and taking its norm squared. The DOA is estimated as the angles

that correspond to the K highest peaks in the MUSIC spectrum.

4.3 Simulation Results

To assess the effectiveness of the technique for estimate in monostatic FDA-MIMO

radar, numerous numerical simulations are conducted in this section. The com-

parison of the algorithms used on FDA MIMO radar is shown in figure 4.1. As

it shows the NESTA, FBMP and OMP algorithm applied on FDA MIMO radar

and shows performance of SNR Vs MSE. As SNR is increasing MSE is decreas-

ing gradually. The NESTA method produced MSE values of 0.376 dB, 0.142 dB,

0.0207 dB, and 0.0025 dB for SNRs of 0 dB, 4 dB, 12 dB, and 20 dB, respectively.

On the other hand, applying the FBMP algorithm on FDA MIMO radar resulted
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in MSE values of 0.3775 dB, 0.14 dB, 0.02375 dB, and 0.0025 dB for SNRs of 0

dB, 4 dB, 12 dB, and 20 dB, respectively. Meanwhile, the OMP method yielded

MSE values of 0.21 dB, 0.092 dB, 0.01625 dB, and 0.00125 dB for SNRs of 0 dB,

4 dB, 12 dB, and 20 dB, respectively.

Figure 4.1: Comparison of different algorithms applied on FDA .

Figure 4.2: Music algorithm applied on FDA .
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We use the MUSIC algorithm to simulate the Direction of Arrival estimation. The

Algorithm takes transmit antennas as M = 8 and the receive antennas as N = 8

and generates the signal data accordingly. The true location of the target is also

provided, and the measurement data is simulated based on this information. We

then compute the covariance matrix of the measurements and perform eigenvalue

decomposition. The noise subspace is obtained, and the spatial power spectrum is

determined using it. Peaks of the spatial power spectrum correspond to the DOA

estimates, which are plotted and displayed in Figure 4.2.

Through simulation, the performance of the different algorithms were examined

and analyzed. Figures 4.3 depict the results obtained when the number of pulses is

set to 100. Hence it shows that the music alogorthim applied on FDA and FBMP

has almost the same performance and is better than NESTA.

Figure 4.3: Comparison of different algorithms RMSE of angle versus SNR .
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Conclusion

In this thesis, a reduced dimension MUSIC method for monostatic FDA-MIMO

radar was proposed and different sparse algorithms were applied which included

NESTA, FBMP and OMP. These algorithms were applied on it and comparison

was done by finding the SNR values and MSE values. The goal is to calculate

Minimum Mean Squared Error and Signal to Noise Ratio estimates of the sparse

vector, which are used to evaluate the accuracy of the estimation. Numerical

simulations have demonstrated that the Fast Bayesian Matching Pursuit (FBMP)

algorithm is a reliable approximation to the MMSE estimator, and while Orthogo-

nal Matching Pursuit (OMP) performs slightly better than NESTA, FBMP stands

out as a flexible and computationally efficient method that can be used for various

sparse reconstruction problems. We also considered direction-of-arrival estimation

by MUSIC algorithm. The numerical simulations validate that the suggested al-

gorithm outperforms other algorithms in terms of angle estimation.

In the future, research in this area is likely to focus on developing more accurate

and efficient algorithms for target parameter estimation using FDA radar. This

may involve exploring new sparse reconstruction techniques, as well as optimizing

existing algorithms to reduce computational complexity and improve accuracy.

Additionally, researchers may investigate the use of deep learning algorithms for

target parameter estimation in FDA radar. Deep learning has shown promise in a

variety of signal processing applications, and it may be useful for developing more

47



Chapter 5: Conclusion

robust and accurate algorithms for target parameter estimation in FDA radar.

Overall, the future work in this area is likely to focus on developing more advanced

algorithms and techniques for target parameter estimation in FDA radar, with the

ultimate goal of improving radar performance in a variety of applications.
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Appendix A

First Appendix

The separate numbering of appendices is also supported by LaTeX. The appendix

macro can be used to indicate that following chapters are to be numbered as

appendices. Only use the appendix macro once for all appendices.
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